sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# A Talking AI made with GPT2 trained with Harry Potter transcripts ## Currently working on Text to speech and speech recognition ## Likes to say "i'm not a wizard"
{"tags": ["conversational"]}
text-generation
TheDiamondKing/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# A Talking AI made with GPT2 trained with Harry Potter transcripts ## Currently working on Text to speech and speech recognition ## Likes to say "i'm not a wizard"
[ "# A Talking AI made with GPT2 trained with Harry Potter transcripts", "## Currently working on Text to speech and speech recognition", "## Likes to say \"i'm not a wizard\"" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# A Talking AI made with GPT2 trained with Harry Potter transcripts", "## Currently working on Text to speech and speech recognition", "## Likes to say \"i'm not a wizard\"" ]
[ 51, 18, 11, 15 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# A Talking AI made with GPT2 trained with Harry Potter transcripts## Currently working on Text to speech and speech recognition## Likes to say \"i'm not a wizard\"" ]
[ 0.012168629094958305, 0.05764763429760933, -0.004386494867503643, 0.08479016274213791, 0.11425915360450745, 0.024097856134176254, 0.1681688129901886, 0.15861046314239502, 0.10149145871400833, -0.02437458001077175, 0.12034663558006287, 0.19641968607902527, 0.03869687393307686, 0.04205805063247681, 0.03706921264529228, -0.2189006805419922, 0.09908465296030045, -0.02475130371749401, 0.08138436824083328, 0.10544401407241821, 0.08361227810382843, -0.010176409967243671, 0.062066931277513504, -0.021314261481165886, -0.15963687002658844, -0.07674802839756012, 0.09578502923250198, -0.11572588235139847, 0.1636364758014679, 0.09508754312992096, -0.02614831179380417, -0.00972251407802105, -0.016623105853796005, -0.10160835832357407, 0.018032310530543327, -0.009227794595062733, 0.03472587838768959, 0.04288174957036972, -0.02163255587220192, -0.07179106026887894, 0.21829771995544434, 0.15734387934207916, 0.06126285344362259, 0.08815436065196991, -0.15826576948165894, -0.10788431018590927, 0.017890119925141335, 0.04943840950727463, -0.07590488344430923, 0.10461956262588501, -0.0329727940261364, 0.170752614736557, 0.014460443519055843, 0.06529736518859863, 0.1813957542181015, -0.40652450919151306, -0.052716214209795, -0.022532934322953224, 0.08767153322696686, 0.11326771229505539, -0.0810115709900856, 0.0692962259054184, -0.022026032209396362, 0.025507336482405663, -0.025691932067275047, -0.02203933522105217, -0.015813114121556282, 0.0011042815167456865, -0.09172961115837097, 0.004897700157016516, 0.2868446409702301, -0.06657958030700684, -0.025626923888921738, -0.11392109096050262, -0.005673171486705542, 0.0038389740511775017, -0.010538563132286072, -0.11373572051525116, -0.08236688375473022, 0.04546239599585533, -0.04293929412961006, -0.12847378849983215, -0.11147596687078476, -0.06637492030858994, -0.10597692430019379, 0.22948087751865387, 0.03648513928055763, 0.010046207346022129, -0.11603142321109772, 0.06483610719442368, 0.054359909147024155, 0.01522468589246273, -0.017477670684456825, -0.11362093687057495, 0.0017244305927306414, 0.06170699745416641, -0.03216569125652313, -0.008879277855157852, 0.029418427497148514, 0.08339214324951172, -0.014306120574474335, 0.03555919975042343, 0.0059290556237101555, 0.07002902776002884, 0.06224185228347778, 0.06751697510480881, 0.0044855703599750996, -0.016386287286877632, 0.00034352531656622887, -0.06543945521116257, 0.03610379248857498, -0.10435411334037781, -0.1429750770330429, -0.011602749116718769, 0.002695763483643532, 0.009081892669200897, 0.0025204201228916645, 0.10209276527166367, -0.04444972053170204, -0.021676991134881973, -0.035364892333745956, 0.037900619208812714, -0.015060986392199993, -0.006857733242213726, -0.03135911002755165, 0.0954083725810051, -0.009456162340939045, 0.025389131158590317, -0.11297155916690826, -0.013077324256300926, -0.041631169617176056, -0.004700592253357172, 0.019107624888420105, -0.023332448676228523, -0.007580096367746592, 0.07728774100542068, -0.010486648418009281, -0.18940521776676178, 0.03182531148195267, 0.03385813906788826, -0.05415860563516617, -0.05987495929002762, -0.06635099649429321, -0.0948043093085289, 0.022814802825450897, 0.020248180255293846, -0.035561468452215195, -0.06362795829772949, -0.014383343048393726, 0.14068005979061127, -0.0221577025949955, 0.1463085561990738, -0.122336745262146, 0.04346233233809471, -0.07637838274240494, -0.09900553524494171, -0.07965724170207977, 0.05642115697264671, -0.01057357806712389, 0.024957992136478424, -0.0007032887660898268, 0.02433171682059765, 0.011097860522568226, 0.058237962424755096, -0.06448954343795776, 0.1625632792711258, -0.04911844804883003, -0.09194009751081467, 0.2575077414512634, -0.08060412108898163, -0.12498090416193008, 0.19030247628688812, 0.0178668349981308, 0.11333464831113815, 0.1892424076795578, 0.23715738952159882, -0.14406968653202057, -0.04700230434536934, -0.0018821780104190111, 0.024650977924466133, -0.16643120348453522, 0.1307714432477951, 0.058433592319488525, 0.025202864781022072, -0.16571572422981262, 0.03181573003530502, 0.05349219962954521, -0.01672177202999592, -0.023380571976304054, -0.019003000110387802, 0.028938690200448036, -0.06253781169652939, 0.15793244540691376, -0.028041427955031395, 0.04295501112937927, -0.06789559870958328, -0.0898984968662262, -0.17204099893569946, 0.03925270214676857, -0.046541571617126465, 0.06166735291481018, -0.16543012857437134, 0.07798389345407486, 0.1814674586057663, 0.07053157687187195, -0.09525281935930252, 0.07741952687501907, -0.016650032252073288, 0.14483989775180817, 0.23257726430892944, 0.001122036948800087, 0.04960167407989502, -0.001967255724593997, -0.025404363870620728, 0.07985112816095352, 0.07516942918300629, 0.007132409140467644, -0.09145811945199966, -0.14802874624729156, 0.10076483339071274, -0.03918081521987915, 0.06407724320888519, -0.0565691702067852, 0.01990308240056038, -0.023493720218539238, 0.0210757814347744, -0.004130656365305185, -0.014406748116016388, 0.011342370882630348, -0.013124161399900913, -0.045059699565172195, -0.02767985500395298, 0.11200044304132462, -0.007612559478729963, -0.12257731705904007, 0.1639438271522522, -0.18242880702018738, 0.07007834315299988, 0.17234760522842407, -0.21795880794525146, -0.05513482540845871, 0.054041579365730286, 0.022557370364665985, -0.009726740419864655, 0.06376497447490692, -0.019563885405659676, 0.2617552578449249, -0.08192666620016098, 0.13000789284706116, -0.04533057659864426, -0.03444622457027435, -0.03338513523340225, -0.06959827989339828, -0.026883743703365326, 0.08568012714385986, 0.002128793392330408, -0.10531269758939743, 0.06818636506795883, 0.0806141272187233, 0.021046107634902, 0.16265831887722015, 0.15758001804351807, 0.025610677897930145, 0.012724199332296848, -0.023042017593979836, -0.028935572132468224, -0.051611464470624924, -0.3400770425796509, -0.10440538078546524, 0.07238996773958206, -0.02227134443819523, 0.0672714039683342, -0.1075320839881897, -0.03248707205057144, -0.03005697764456272, -0.03842155262827873, 0.04111934453248978, 0.09370296448469162, -0.048854243010282516, 0.16502392292022705, 0.025699974969029427, -0.02828504517674446, 0.059303104877471924, 0.006917093880474567, -0.10467059910297394, 0.05454957112669945, -0.1459653675556183, -0.3368948698043823, -0.06933111697435379, -0.1427457332611084, 0.016809312626719475, 0.13264788687229156, 0.0969170406460762, -0.10626357793807983, 0.02731531858444214, -0.00684672174975276, 0.08581658452749252, -0.18708984553813934, -0.031090274453163147, -0.09669852256774902, 0.04270823672413826, -0.1122807115316391, -0.09919486939907074, -0.009003732353448868, 0.01401984691619873, -0.09571962058544159, 0.13184517621994019, -0.1269330084323883, 0.028678927570581436, 0.1952677071094513, 0.04735814034938812, 0.0321953259408474, -0.09206880629062653, 0.15533244609832764, -0.10419504344463348, -0.07074224203824997, 0.061509858816862106, -0.03924344480037689, 0.011707283556461334, 0.02698882669210434, -0.02062343992292881, -0.09685248136520386, 0.048050686717033386, -0.09253976494073868, -0.0670558512210846, -0.22209909558296204, -0.06142215430736542, -0.01096444670110941, 0.1695103645324707, 0.0003359772090334445, 0.045485686510801315, 0.14718487858772278, 0.008984680287539959, -0.029734693467617035, 0.00752258999273181, 0.03081946261227131, 0.07649116963148117, 0.11692351847887039, -0.11908067762851715, 0.0902295708656311, -0.008460715413093567, -0.05956574156880379, 0.07430742681026459, 0.06592349708080292, -0.008500522002577782, 0.08399443328380585, 0.09389889240264893, -0.03674003854393959, 0.07517891377210617, 0.11247549206018448, 0.007153133396059275, 0.11566507816314697, -0.005451775621622801, -0.0745222344994545, -0.01857571303844452, -0.14718306064605713, 0.06063653901219368, 0.13716579973697662, -0.08422950655221939, -0.02582334540784359, 0.023335816338658333, 0.04920240119099617, 0.021405406296253204, 0.022793440148234367, -0.11277463287115097, -0.07296409457921982, 0.04917454347014427, -0.08897793292999268, -0.1601395606994629, 0.14073798060417175, 0.04985910281538963, -0.20793817937374115, -0.01975412853062153, 0.08253073692321777, 0.019712520763278008, -0.1318379044532776, 0.06289903074502945, -0.15609955787658691, -0.11090267449617386, -0.009485228918492794, 0.08165770024061203, -0.34427303075790405, 0.11681517213582993, -0.03280516713857651, 0.04791504889726639, -0.08865936845541, -0.06359896063804626, 0.022195450961589813, 0.01174367405474186, 0.14476646482944489, 0.004262849688529968, 0.03140689432621002, -0.09239333868026733, -0.015697132796049118, 0.010512717999517918, 0.12721823155879974, 0.00756102567538619, -0.02150105871260166, -0.04802236333489418, 0.003470371011644602, -0.06470436602830887, -0.09600776433944702, 0.017910677939653397, -0.13733723759651184, 0.11070714890956879, 0.08718430250883102, 0.15786409378051758, 0.04240333288908005, 0.009237715974450111, -0.11341805756092072, 0.1440768837928772, -0.10420349985361099, -0.03284599632024765, -0.030670790001749992, -0.038512490689754486, -0.051300354301929474, -0.01665043830871582, -0.03477663919329643, -0.018424196168780327, 0.042428966611623764, -0.07024992257356644, -0.08768709003925323, 0.10065584629774094, -0.018797727301716805, -0.12409583479166031, -0.027795474976301193, 0.17835888266563416, 0.06744913756847382, 0.1520807296037674, 0.01229307521134615, -0.026560265570878983, -0.1302020251750946, -0.01922193169593811, 0.14775553345680237, 0.0457608737051487, -0.07766082137823105, 0.04794684797525406, 0.02371024154126644, -0.0016579485964030027, -0.22019535303115845, -0.08576435595750809, 0.33498623967170715, 0.08217278122901917, -0.06592244654893875, 0.1575828194618225, 0.15387624502182007, -0.06216585636138916, -0.20350372791290283, -0.17741578817367554, -0.07992172241210938, -0.026205355301499367, -0.1150466799736023, -0.18437136709690094, 0.045629601925611496, -0.028280004858970642, 0.009225237183272839, 0.07445747405290604, -0.2172027975320816, -0.10034681111574173, 0.12113618105649948, 0.024637902155518532, 0.2612890899181366, -0.1138572245836258, -0.06044505909085274, -0.0687737688422203, -0.0189182348549366, 0.124698705971241, -0.07271326333284378, 0.18034037947654724, -0.012798486277461052, 0.16768017411231995, -0.005098564084619284, 0.06081803888082504, 0.0662306398153305, -0.011058243922889233, -0.07659008353948593, -0.09286941587924957, -0.16761747002601624, 0.009328979067504406, 0.05771416425704956, 0.042951542884111404, -0.0201606135815382, -0.0322720929980278, -0.036158859729766846, -0.06010496988892555, -0.05191749706864357, -0.003910076338797808, 0.03375155106186867, -0.032202161848545074, -0.09425337612628937, -0.02414596453309059, -0.07672245055437088, 0.05433829873800278, 0.0677127093076706, -0.13310480117797852, 0.1631193608045578, 0.02512400783598423, 0.17316441237926483, -0.12164826691150665, 0.011261701583862305, -0.049940284341573715, -0.10200875997543335, 0.09097011387348175, -0.0601242259144783, -0.0025582541711628437, 0.06427057832479477, -0.008190463297069073, 0.11983694136142731, 0.07075554877519608, -0.02170136570930481, 0.10361776500940323, 0.0565938837826252, -0.23333700001239777, -0.19735150039196014, -0.014440895058214664, 0.08843877911567688, 0.09690312296152115, 0.0604659728705883, 0.19986602663993835, -0.06414850056171417, -0.05387543514370918, -0.013834892772138119, 0.029040813446044922, -0.03127218037843704, 0.08470814675092697, 0.01818455383181572, -0.02868933230638504, -0.13927820324897766, 0.07874731719493866, 0.01410697866231203, -0.0863870233297348, 0.08468465507030487, 0.1436815708875656, -0.06860166788101196, -0.12040550261735916, -0.1856476217508316, 0.004843251314014196, 0.0018811862682923675, -0.03213232755661011, 0.024745315313339233, -0.1262008547782898, 0.04354478418827057, 0.029953429475426674, 0.03597955405712128, 0.07203567028045654, -0.12059126049280167, 0.011523489840328693, -0.021996447816491127, -0.03832300752401352, -0.03612896054983139, -0.009440131485462189, -0.09663581103086472, 0.1951359063386917, -0.00466569047421217, 0.07646593451499939, -0.06938804686069489, -0.15408945083618164, -0.11154479533433914, 0.04813263192772865, -0.010771723464131355, -0.04716251790523529, -0.092198945581913, -0.040880996733903885, 0.04177303612232208, -0.06111971288919449, -0.011781295761466026, -0.06428676843643188, -0.0741206482052803, -0.016445448622107506, 0.013019219040870667, 0.006240321788936853, -0.028224071487784386, 0.06802546977996826, 0.07618434727191925, -0.039539825171232224, 0.17461572587490082, 0.21786245703697205, -0.14275948703289032, 0.06975787878036499, -0.15634824335575104, -0.03645479306578636, 0.0488702766597271, -0.018711654469370842, -0.015211728401482105, 0.01340530440211296, -0.07079312205314636, -0.016860637813806534, 0.061580199748277664, 0.07444467395544052, 0.1901511400938034, -0.05805536359548569, 0.10406321287155151, -0.02695702388882637, -0.08922132104635239, -0.014079077169299126, -0.048107583075761795, 0.07705959677696228, -0.04934784024953842, 0.11153938621282578, -0.05253034457564354, 0.009311887435615063, 0.0022202366963028908, 0.08440593630075455, 0.025158649310469627, -0.07527715712785721, -0.035659059882164, -0.07422010600566864, 0.051084004342556, -0.041572198271751404, 0.16276639699935913, -0.09098904579877853, -0.0480588860809803, 0.021011579781770706, 0.0006128752720542252, -0.09096968173980713, -0.005948575213551521, 0.09952569752931595, 0.08478491008281708, -0.08458219468593597, -0.01956677809357643, 0.03365810960531235, 0.05540213733911514, 0.12266591191291809, 0.09458799660205841, -0.0291591826826334, 0.09544830769300461, 0.09750768542289734, -0.011982523836195469, 0.09063532948493958, -0.15413035452365875, -0.03564763441681862, -0.005495530087500811, -0.01954587548971176, -0.09339842200279236, 0.1704263538122177, 0.15687046945095062, 0.03019769676029682, -0.03200690448284149, -0.05939647927880287, -0.10776806622743607, -0.1120847836136818, -0.06101827323436737, -0.060653626918792725, -0.12319444864988327, -0.005461938213557005, -0.05796796828508377, 0.022668849676847458, -0.05873439460992813, 0.060249846428632736, -0.11015567928552628, 0.04879527539014816, 0.021238461136817932, -0.11034775525331497, 0.13710354268550873, -0.04174241051077843, 0.039583154022693634, -0.1036972850561142, -0.023242764174938202, -0.023221487179398537, 0.047026388347148895, 0.0878329873085022, 0.12154099345207214, -0.12546025216579437, -0.030105572193861008, -0.14926740527153015, -0.06348515301942825, -0.024536827579140663, 0.09200625121593475, -0.0475313626229763, 0.11533274501562119, 0.05247104912996292, -0.10109381377696991, 0.007644083350896835, 0.2042166292667389, -0.08769406378269196, -0.04982960224151611, -0.0676543340086937, 0.23196008801460266, -0.053229864686727524, 0.05156167224049568, -0.03891933709383011, 0.011428660713136196, -0.07717984169721603, 0.29431137442588806, 0.2813977599143982, -0.15156105160713196, -0.005282348487526178, -0.008377919904887676, 0.05951303616166115, 0.05013720318675041, 0.11294855922460556, 0.10824842005968094, 0.20454640686511993, -0.04745054617524147, 0.009913097135722637, -0.0477214939892292, 0.02470722235739231, -0.054301511496305466, 0.040283020585775375, 0.009223012253642082, -0.0345274843275547, -0.07398850470781326, 0.034059107303619385, -0.2418135702610016, 0.027487006038427353, -0.1927042305469513, -0.11418639868497849, -0.01894029602408409, 0.06928840279579163, -0.03089507296681404, 0.06216525658965111, 0.1097087413072586, 0.040345698595047, -0.06912996619939804, -0.02411939762532711, 0.009190661832690239, -0.2127649337053299, 0.09416346251964569, 0.0875023603439331, -0.139440655708313, 0.09985637664794922, -0.016266142949461937, 0.10737326741218567, 0.03293056786060333, 0.09077604115009308, -0.03806743770837784, 0.04702520743012428, -0.039289142936468124, 0.0001666805474087596, 0.023785876110196114, 0.17313534021377563, 0.06914600729942322, 0.054111503064632416, 0.11238228529691696, -0.02025320567190647, 0.07447141408920288, 0.06969701498746872, 0.017465226352214813, -0.009410150349140167, 0.04674652963876724, -0.0937216505408287, 0.08336014300584793, 0.13715721666812897, -0.047446466982364655, -0.035969484597444534, 0.015000669285655022, -0.10551413148641586, -0.011156599968671799, -0.06828604638576508, -0.0689232349395752, -0.2210133820772171, -0.09257509559392929, -0.013705362565815449, 0.024786680936813354, -0.22238397598266602, 0.008949428796768188, -0.0918315127491951, 0.014191594906151295, -0.032651353627443314, 0.05318494513630867, 0.1000225767493248, 0.014716297388076782, -0.0019348228815943003, 0.021706165745854378, 0.06055540218949318, 0.18250404298305511, -0.11837711930274963, -0.05705328658223152 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-toxic This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1295 - Rouge1: 93.7659 - Rouge2: 3.6618 - Rougel: 93.7652 - Rougelsum: 93.7757 - Gen Len: 2.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1595 | 1.0 | 7979 | 0.1295 | 93.7659 | 3.6618 | 93.7652 | 93.7757 | 2.5481 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-toxic", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 93.7659}}]}]}
text2text-generation
TheLongSentance/t5-small-finetuned-toxic
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-toxic ======================== This model is a fine-tuned version of t5-small on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 0.1295 * Rouge1: 93.7659 * Rouge2: 3.6618 * Rougel: 93.7652 * Rougelsum: 93.7757 * Gen Len: 2.5481 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.9.1 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 67, 113, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.07516151666641235, 0.06020769476890564, -0.003650139784440398, 0.09184104949235916, 0.12732863426208496, 0.010483652353286743, 0.1374293714761734, 0.14900349080562592, -0.11415793001651764, 0.05020507425069809, 0.115793377161026, 0.1437053084373474, 0.03632195666432381, 0.1352384388446808, -0.056635111570358276, -0.2737712860107422, 0.01067089568823576, 0.044155169278383255, -0.03763854503631592, 0.13457517325878143, 0.08330463618040085, -0.11284392327070236, 0.07526618987321854, 0.011303954757750034, -0.16344612836837769, 0.010831773281097412, 0.006015675142407417, -0.06937259435653687, 0.13256877660751343, 0.03963669762015343, 0.10673581808805466, 0.021253924816846848, 0.060174908488988876, -0.1964944452047348, 0.010548430494964123, 0.0701788142323494, 0.0009287584689445794, 0.0885285884141922, 0.06595899164676666, 0.0030234078876674175, 0.1709115356206894, -0.08079203218221664, 0.06095561757683754, 0.027880247682332993, -0.11229667067527771, -0.2127351611852646, -0.0834776759147644, 0.04778338968753815, 0.07257324457168579, 0.10408765822649002, -0.012365277856588364, 0.12736207246780396, -0.0510844849050045, 0.11400310695171356, 0.2514890134334564, -0.292263001203537, -0.06264076381921768, -0.011060278862714767, 0.03873059153556824, 0.08114919066429138, -0.08154197037220001, -0.02672930620610714, 0.03048883192241192, 0.05182253569364548, 0.13659803569316864, -0.021464325487613678, -0.08763925731182098, -0.008938280865550041, -0.14593583345413208, -0.05456028878688812, 0.14080198109149933, 0.02771197259426117, -0.027277151122689247, -0.06952965259552002, -0.08884590119123459, -0.18434959650039673, -0.040598079562187195, -0.01643810048699379, 0.03872813656926155, -0.021633880212903023, -0.05587116628885269, -0.030180200934410095, -0.09863395988941193, -0.049723733216524124, -0.06682951748371124, 0.11196891963481903, 0.053576577454805374, 0.0016559773357585073, -0.0470082052052021, 0.09098989516496658, -0.0016623052069917321, -0.14183549582958221, 0.01383158378303051, 0.028330957517027855, 0.009217717684805393, -0.027711786329746246, -0.05378640443086624, -0.10477486997842789, 0.011517939157783985, 0.13103799521923065, -0.08707045763731003, 0.06325597316026688, -0.024928582832217216, 0.04152204841375351, -0.10486630350351334, 0.16445522010326385, -0.024643225595355034, -0.0028813632670789957, 0.015801159664988518, 0.05534772574901581, 0.04155930504202843, -0.027405057102441788, -0.10608427226543427, 0.017936687916517258, 0.1063578873872757, 0.02422335557639599, -0.04315343499183655, 0.07129468023777008, -0.034824155271053314, -0.021742941811680794, -0.005027576815336943, -0.11010869592428207, 0.02484654262661934, -0.0005457864026539028, -0.05806880071759224, 0.007006383966654539, 0.039999108761548996, -0.0034025460481643677, -0.06099749729037285, 0.10074859857559204, -0.07508392632007599, 0.021061914041638374, -0.08954250067472458, -0.12815310060977936, 0.03475876525044441, -0.07864225655794144, -0.006697096861898899, -0.0975649356842041, -0.1505707949399948, -0.01367123331874609, 0.05504346266388893, -0.03210974112153053, -0.05436713621020317, -0.05152883753180504, -0.08392513543367386, 0.037656888365745544, -0.022162016481161118, 0.11635253578424454, -0.059667594730854034, 0.09714356064796448, 0.02299308590590954, 0.06189940124750137, -0.028727302327752113, 0.057389210909605026, -0.08831094950437546, 0.01939861848950386, -0.18024975061416626, 0.048017941415309906, -0.04192101210355759, 0.05164625495672226, -0.10148810595273972, -0.10375356674194336, -0.006707359571009874, -0.004630216863006353, 0.0877276062965393, 0.08804331719875336, -0.16126272082328796, -0.08211719244718552, 0.19257564842700958, -0.08863672614097595, -0.11352711170911789, 0.13011835515499115, -0.0471588633954525, 0.019050221890211105, 0.05231121927499771, 0.19061726331710815, 0.063845694065094, -0.09981243312358856, 0.007144770585000515, -0.01748223975300789, 0.051313698291778564, -0.035949863493442535, 0.06003515049815178, -0.0063955956138670444, 0.031321875751018524, 0.016120437532663345, 0.008123399689793587, 0.04728885740041733, -0.0813683494925499, -0.08278859406709671, -0.05746873468160629, -0.061672698706388474, 0.019632728770375252, 0.0559256449341774, 0.06717521697282791, -0.10807901620864868, -0.10880082845687866, 0.054935555905103683, 0.06955377757549286, -0.089320108294487, 0.056162428110837936, -0.0662560760974884, 0.07630781829357147, -0.03131760656833649, 0.0013298335252329707, -0.18639813363552094, -0.027375219389796257, 0.024324310943484306, -0.025697488337755203, 0.031096477061510086, -0.004891145508736372, 0.0637715682387352, 0.06094600260257721, -0.048844948410987854, -0.02345561608672142, -0.03914879634976387, -0.008157853037118912, -0.11653054505586624, -0.20053808391094208, -0.020863326266407967, -0.01887424662709236, 0.09149309992790222, -0.1847175806760788, 0.04427683725953102, 0.015836970880627632, 0.08904155343770981, 0.021642806008458138, -0.010486376471817493, -0.032309599220752716, 0.08144379407167435, -0.053581271320581436, -0.049133338034152985, 0.07528224587440491, 0.015216399915516376, -0.09262672811746597, -0.0014961720444262028, -0.15445522964000702, 0.12996764481067657, 0.13414356112480164, -0.08680637925863266, -0.07141164690256119, -0.0008451393805444241, -0.06496220827102661, -0.03751228749752045, -0.03376677632331848, 0.012220929376780987, 0.1826585978269577, 0.004279048647731543, 0.16009052097797394, -0.08461417257785797, -0.056409094482660294, 0.03501784801483154, -0.025390207767486572, 0.016164619475603104, 0.125994473695755, 0.09579188376665115, -0.07280249893665314, 0.13701121509075165, 0.1377544403076172, -0.07756941765546799, 0.14993318915367126, -0.05117324739694595, -0.08836649358272552, -0.01599707081913948, 0.000599767139647156, 0.013629375956952572, 0.07014860957860947, -0.1555486023426056, -0.0011222673347219825, 0.02821251004934311, 0.028823131695389748, 0.025980742648243904, -0.2108495533466339, -0.00473626796156168, 0.03797890990972519, -0.06347746402025223, -0.0114762457087636, -0.002062086947262287, 0.01838882640004158, 0.11401667445898056, 0.003457841230556369, -0.06024887040257454, 0.02258569560945034, -0.002600845880806446, -0.08779110014438629, 0.19363917410373688, -0.09211840480566025, -0.18715757131576538, -0.12068137526512146, -0.07061910629272461, -0.049129318445920944, -0.003665521740913391, 0.08218494057655334, -0.07962483167648315, -0.034908477216959, -0.09461162984371185, 0.026705464348196983, -0.016187647357583046, 0.03247828409075737, 0.011490288190543652, 0.0012723669642582536, 0.06758776307106018, -0.11386767774820328, -0.021258549764752388, -0.038179121911525726, -0.04569612070918083, 0.04741564020514488, 0.03190404921770096, 0.1094307154417038, 0.15384076535701752, -0.02562275156378746, 0.024195682257413864, -0.041185058653354645, 0.19848132133483887, -0.06390172243118286, -0.005803299136459827, 0.1462215632200241, -0.009912488050758839, 0.06947676837444305, 0.12220753729343414, 0.053006548434495926, -0.07545056939125061, 0.012444289401173592, 0.03832368180155754, -0.035674143582582474, -0.23984003067016602, -0.040376510471105576, -0.06637135148048401, 0.018121039494872093, 0.0974462702870369, 0.03223377838730812, 0.049516234546899796, 0.0448845773935318, 0.016263172030448914, 0.067827507853508, -0.010190087370574474, 0.08734007179737091, 0.1639273762702942, 0.042485661804676056, 0.13598200678825378, -0.052243947982788086, -0.05027834698557854, 0.050836700946092606, -0.013325540348887444, 0.22257842123508453, -0.00026787674869410694, 0.16886119544506073, 0.059055719524621964, 0.14881418645381927, 0.014336117543280125, 0.07080022990703583, -0.01117684692144394, -0.017550794407725334, -0.010370882228016853, -0.054538048803806305, -0.0303491298109293, 0.02178768627345562, -0.07567373663187027, 0.04124264791607857, -0.12135076522827148, 0.006572581361979246, 0.04816070571541786, 0.2803829610347748, 0.030772045254707336, -0.31431707739830017, -0.09517199546098709, 0.0002354051684960723, -0.0660686269402504, -0.02242577075958252, 0.03208780288696289, 0.09904170781373978, -0.07824166864156723, 0.05672348663210869, -0.08310440182685852, 0.10381847620010376, -0.04162347689270973, 0.04416736215353012, 0.06144091114401817, 0.0943661779165268, 0.006556149572134018, 0.06864776462316513, -0.31319814920425415, 0.2719801962375641, 0.006556779611855745, 0.06361913681030273, -0.07378272712230682, 0.019260205328464508, 0.025179168209433556, 0.031172290444374084, 0.06857423484325409, -0.02276724949479103, -0.08860001713037491, -0.15370316803455353, -0.07735737413167953, 0.02093741111457348, 0.10240433365106583, -0.005810157395899296, 0.1128881573677063, -0.040769029408693314, 0.00205664592795074, 0.0664016604423523, -0.009902609512209892, -0.0718342512845993, -0.11083794385194778, 0.01589663326740265, 0.037038419395685196, -0.03952809423208237, -0.06680980324745178, -0.10822237282991409, -0.08133535087108612, 0.17046958208084106, -0.028765607625246048, -0.04758598655462265, -0.1141848936676979, 0.06971937417984009, 0.07703204452991486, -0.09030983597040176, 0.04024641215801239, -0.004400769714266062, 0.08887720853090286, 0.014969926327466965, -0.09128040820360184, 0.11257094889879227, -0.06334570050239563, -0.176031693816185, -0.05319793149828911, 0.13115334510803223, 0.012248367071151733, 0.06539620459079742, -0.02161070518195629, 0.02080228179693222, -0.03542187809944153, -0.08264319598674774, 0.012724299915134907, 0.013682727701961994, 0.07093538343906403, -0.005797545425593853, -0.06893175840377808, 0.005690570455044508, -0.0630534440279007, -0.040522824972867966, 0.1953437626361847, 0.2220245748758316, -0.08874161541461945, 0.05788971111178398, 0.03368343412876129, -0.0759616494178772, -0.1794477254152298, 0.004342441447079182, 0.06263883411884308, -0.0013357085408642888, 0.016569877043366432, -0.1850963830947876, 0.0726013109087944, 0.09519902616739273, -0.0053600650280714035, 0.09151133894920349, -0.3489852547645569, -0.1380598545074463, 0.10118100792169571, 0.1366329938173294, 0.08613334596157074, -0.1609073132276535, -0.03011666238307953, -0.015391219407320023, -0.1084902435541153, 0.132686048746109, -0.09396059066057205, 0.12343733012676239, -0.02925654500722885, 0.0924585834145546, 0.00970905926078558, -0.05651012808084488, 0.09146089851856232, -0.0157060194760561, 0.07025180011987686, -0.06877854466438293, 0.017912868410348892, 0.05977412685751915, -0.0517277866601944, 0.03642938658595085, -0.09845317900180817, 0.02908466011285782, -0.08979477733373642, -0.02702145092189312, -0.07105670869350433, 0.02702118456363678, -0.03843536227941513, -0.05354426056146622, -0.039644334465265274, 0.0005839731311425567, 0.07843969017267227, -0.017962152138352394, 0.1579020768404007, -0.002051733434200287, 0.16296273469924927, 0.13016241788864136, 0.08550865948200226, -0.06667312234640121, -0.06527046114206314, -0.006141750607639551, -0.0219209436327219, 0.05099989473819733, -0.14898674190044403, 0.028369704261422157, 0.14859294891357422, 0.011617550626397133, 0.13995909690856934, 0.0779869556427002, -0.041465871036052704, 0.01181065198034048, 0.05668465420603752, -0.16577769815921783, -0.11761420220136642, -0.012204189784824848, -0.018636884167790413, -0.10907211899757385, 0.03908252716064453, 0.11689268052577972, -0.07273656129837036, -0.004392039030790329, 0.005696523934602737, 0.017212197184562683, -0.0334356315433979, 0.17675212025642395, 0.027963101863861084, 0.04807385429739952, -0.09214973449707031, 0.08174923807382584, 0.05353263393044472, -0.12973272800445557, 0.038873158395290375, 0.13000565767288208, -0.08071935921907425, -0.04003450646996498, 0.06567804515361786, 0.15823985636234283, -0.04692146182060242, -0.04842282459139824, -0.14261509478092194, -0.12726739048957825, 0.10590138286352158, 0.1849478781223297, 0.07080856710672379, 0.013644205406308174, -0.06042349338531494, 0.01772971637547016, -0.11783149838447571, 0.10766054689884186, 0.04128123074769974, 0.061321720480918884, -0.1188707947731018, 0.15333673357963562, 0.014314856380224228, 0.0311606302857399, -0.020415818318724632, 0.0234795194119215, -0.0962764248251915, 0.0031761103309690952, -0.1230846717953682, -0.006882837973535061, -0.03586491569876671, -0.004969170317053795, -0.007888363674283028, -0.03709046542644501, -0.06402948498725891, 0.018077686429023743, -0.10475729405879974, -0.03475802019238472, 0.0009848542977124453, 0.05210158973932266, -0.11817868798971176, -0.01935047097504139, 0.01596280187368393, -0.07774185389280319, 0.08093953132629395, 0.0446842797100544, -0.0034881196916103363, 0.04605536535382271, -0.11175622791051865, 0.017943983897566795, 0.060199156403541565, 0.01926892064511776, 0.044992219656705856, -0.09885231405496597, -0.005486942362040281, 0.005027326755225658, 0.03184175118803978, 0.01770535297691822, 0.07445673644542694, -0.13554489612579346, 0.002582698129117489, -0.018832577392458916, -0.07502186298370361, -0.07112821191549301, 0.04085301235318184, 0.06116742268204689, 0.018484344705939293, 0.17749206721782684, -0.09468463808298111, 0.051342930644750595, -0.2161906659603119, 0.005782249383628368, 0.00721425237134099, -0.10985468327999115, -0.07661181688308716, -0.0633147582411766, 0.06464292854070663, -0.0629415437579155, 0.1213722676038742, 0.0163035336881876, 0.04260379821062088, 0.04402484744787216, -0.043603137135505676, -0.014494059607386589, 0.01235999260097742, 0.20897600054740906, 0.029122069478034973, -0.04727612063288689, 0.048823609948158264, 0.016072796657681465, 0.09400521218776703, 0.12395040690898895, 0.21773815155029297, 0.14439603686332703, 0.01550108939409256, 0.09680983424186707, 0.03037431091070175, -0.05298016965389252, -0.17507344484329224, 0.06125405430793762, -0.035150196403265, 0.14401443302631378, -0.02419649250805378, 0.22359241545200348, 0.10596202313899994, -0.15598653256893158, 0.05823291465640068, -0.03289293870329857, -0.0777299702167511, -0.12379012256860733, -0.08389334380626678, -0.08600283414125443, -0.1457085907459259, -0.006129627116024494, -0.12404713034629822, 0.05589870363473892, 0.0630597397685051, 0.02598174288868904, -0.013922867365181446, 0.14134348928928375, 0.03116043284535408, -0.002356730168685317, 0.06940707564353943, 0.012160595506429672, -0.017669135704636574, -0.08957995474338531, -0.07239200919866562, 0.004342094529420137, -0.013851580210030079, 0.03967946395277977, -0.019083334133028984, -0.034267161041498184, 0.03841748833656311, -0.03285031393170357, -0.09662699699401855, 0.017671508714556694, 0.02060679905116558, 0.07046792656183243, 0.07376737147569656, 0.0129652488976717, -0.008198820054531097, -0.013331892900168896, 0.21516963839530945, -0.08232178539037704, -0.08173146843910217, -0.09802231937646866, 0.24894443154335022, 0.034069959074258804, -0.025967471301555634, 0.02990412898361683, -0.05825333297252655, -0.02211824432015419, 0.24215315282344818, 0.1869317889213562, -0.03822479024529457, -0.00627425592392683, 0.009930615313351154, -0.005586562678217888, -0.013223953545093536, 0.11212673783302307, 0.14114363491535187, 0.08394923061132431, -0.07321181893348694, -0.0383845716714859, -0.048680245876312256, -0.00463386345654726, -0.06176284700632095, 0.08299397677183151, 0.03227033093571663, -0.008227339014410973, -0.01784963347017765, 0.04907385632395744, -0.060310956090688705, -0.08411270380020142, 0.01370823010802269, -0.21471919119358063, -0.15166178345680237, -0.007075812667608261, 0.11411616206169128, -0.006035047583281994, 0.0482403039932251, -0.010727494955062866, -0.002534603700041771, 0.09569577127695084, -0.018069813027977943, -0.08600425720214844, -0.056725986301898956, 0.08283669501543045, -0.14198188483715057, 0.1822439283132553, -0.03287842869758606, 0.038932036608457565, 0.12910132110118866, 0.06561634689569473, -0.07702823728322983, 0.0774143859744072, 0.047485049813985825, -0.06798257678747177, 0.027815433219075203, 0.12023120373487473, -0.03211720287799835, 0.06367463618516922, 0.05256131291389465, -0.1318558007478714, 0.010532570071518421, -0.07545671612024307, -0.056991949677467346, -0.02643582783639431, -0.03581632673740387, -0.05908896028995514, 0.12798798084259033, 0.2197473794221878, -0.034670982509851456, 0.0019278202671557665, -0.07836320251226425, -0.00401318771764636, 0.04948853328824043, 0.04503152146935463, -0.03926556929945946, -0.2316787838935852, 0.007166416849941015, 0.0638379454612732, -0.0034835285041481256, -0.263942152261734, -0.09906350076198578, 0.01194471400231123, -0.05420456826686859, -0.12981317937374115, 0.08916020393371582, 0.08906552940607071, 0.04431463032960892, -0.050928469747304916, -0.06561975926160812, -0.05646313726902008, 0.16531161963939667, -0.14553305506706238, -0.06759802997112274 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3833 - Rouge1: 29.6452 - Rouge2: 8.6953 - Rougel: 23.4474 - Rougelsum: 23.4553 - Gen Len: 18.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6051 | 1.0 | 102023 | 2.3833 | 29.6452 | 8.6953 | 23.4474 | 23.4553 | 18.8037 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "xsum", "type": "xsum", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 29.6452}}]}]}
text2text-generation
TheLongSentance/t5-small-finetuned-xsum
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum ======================= This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set: * Loss: 2.3833 * Rouge1: 29.6452 * Rouge2: 8.6953 * Rougel: 23.4474 * Rougelsum: 23.4553 * Gen Len: 18.8037 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.9.0 * Pytorch 1.9.0+cu102 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 73, 113, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.08852476626634598, 0.10441398620605469, -0.004041051957756281, 0.08513437956571579, 0.1097647175192833, -0.0024560862220823765, 0.15356510877609253, 0.15990214049816132, -0.1422988474369049, 0.05886593088507652, 0.1339443475008011, 0.14494629204273224, 0.0537857860326767, 0.17077316343784332, -0.07551848143339157, -0.2627723515033722, 0.045265715569257736, 0.052371758967638016, -0.01724896766245365, 0.12479422241449356, 0.09094953536987305, -0.1240684911608696, 0.08683231472969055, 0.02983863092958927, -0.18242305517196655, -0.00972428172826767, 0.0043704514391720295, -0.088894784450531, 0.1067151129245758, 0.03363519906997681, 0.09725366532802582, 0.04154791682958603, 0.0476033017039299, -0.16446243226528168, 0.008976281620562077, 0.06599418818950653, 0.007939138449728489, 0.10294301807880402, 0.06099675968289375, -0.017970260232686996, 0.12057618796825409, -0.08237047493457794, 0.07356104254722595, 0.019444480538368225, -0.12398391216993332, -0.2610819935798645, -0.11304771900177002, 0.04660642892122269, 0.06598969548940659, 0.07788565754890442, -0.00291851325891912, 0.1820172667503357, -0.027494248002767563, 0.11198976635932922, 0.26472583413124084, -0.3080676198005676, -0.05620497092604637, -0.027240168303251266, 0.04612068831920624, 0.08269033581018448, -0.06490031629800797, -0.031759776175022125, 0.020529035478830338, 0.04704571142792702, 0.14899709820747375, -0.013240850530564785, -0.042193833738565445, -0.019018208608031273, -0.13857930898666382, -0.07109714299440384, 0.14783728122711182, 0.02556701935827732, -0.04410158842802048, -0.061469513922929764, -0.08389221131801605, -0.1831960678100586, -0.05141749233007431, -0.005697628017514944, 0.04584112763404846, -0.03596291318535805, -0.0871712863445282, -0.02841591089963913, -0.07351011037826538, -0.03348897024989128, -0.06431382149457932, 0.1380033940076828, 0.05498984456062317, 0.023216094821691513, -0.06609775871038437, 0.07064350694417953, -0.03135569021105766, -0.16051407158374786, -0.01432926394045353, 0.013246724382042885, 0.01564592681825161, -0.03816276788711548, -0.04274416342377663, -0.12708139419555664, 0.009021224454045296, 0.16469034552574158, -0.10414820164442062, 0.07493120431900024, -0.04343762248754501, 0.038239285349845886, -0.08041859418153763, 0.18838925659656525, -0.016251733526587486, 0.018566755577921867, 0.021818697452545166, 0.06192922219634056, 0.06098053231835365, -0.035355620086193085, -0.11145307868719101, 0.03789714351296425, 0.11371972411870956, 0.029868461191654205, -0.032257553189992905, 0.06567974388599396, -0.03933071717619896, -0.024484572932124138, 0.04378240182995796, -0.11388932168483734, 0.03610409423708916, -0.01314373780041933, -0.06529106199741364, 0.008986910805106163, 0.023732269182801247, 0.0027483843732625246, -0.05483727902173996, 0.09265831112861633, -0.07578796148300171, 0.023047029972076416, -0.08282355219125748, -0.14007899165153503, 0.03542185202240944, -0.10189958661794662, -0.004308467265218496, -0.10102268308401108, -0.133639857172966, -0.0019185022683814168, 0.0628981739282608, -0.04434583708643913, -0.051457878202199936, -0.04709833860397339, -0.0955287292599678, 0.042410850524902344, -0.02545447275042534, 0.08097930252552032, -0.06926321238279343, 0.08419551700353622, 0.03039354644715786, 0.07808195799589157, -0.05027030035853386, 0.049083128571510315, -0.0851794108748436, 0.03618199750781059, -0.22299540042877197, 0.060674525797367096, -0.05076088383793831, 0.06853780150413513, -0.10589427500963211, -0.10382692515850067, 0.037607595324516296, -0.027298767119646072, 0.1060476079583168, 0.08339138329029083, -0.17029055953025818, -0.07472828775644302, 0.20655140280723572, -0.09280671924352646, -0.1333857923746109, 0.13246488571166992, -0.04769255220890045, 0.0008743811049498618, 0.054694462567567825, 0.21433673799037933, 0.048170700669288635, -0.10653700679540634, -0.005604785867035389, -0.04023051634430885, 0.04594956710934639, -0.049974773079156876, 0.06582248955965042, 0.004807853605598211, 0.08578743785619736, 0.006020921282470226, 0.02609582059085369, 0.026040153577923775, -0.08814506977796555, -0.07820555567741394, -0.0608411468565464, -0.06341908872127533, 0.00839958619326353, 0.0338667556643486, 0.07020961493253708, -0.12793393433094025, -0.10914059728384018, 0.06862815469503403, 0.06970144063234329, -0.08151111751794815, 0.0688718929886818, -0.10964906960725784, 0.11179216206073761, -0.05141442269086838, -0.0012472870294004679, -0.1885235607624054, -0.019300909712910652, 0.03468098118901253, -0.017106767743825912, 0.023053694516420364, -0.04385863244533539, 0.06373357772827148, 0.06585180014371872, -0.03231057897210121, -0.023590663447976112, -0.021350601688027382, 0.004445124417543411, -0.11687906086444855, -0.20043878257274628, -0.03219416365027428, -0.03543386980891228, 0.07489092648029327, -0.1406293362379074, 0.0449984185397625, 0.06591276079416275, 0.11972824484109879, 0.04170142486691475, -0.01614508591592312, -0.019110530614852905, 0.07580465078353882, -0.052834149450063705, -0.07133378833532333, 0.05748709663748741, 0.03302557393908501, -0.09030506014823914, 0.01095273531973362, -0.16184917092323303, 0.14393368363380432, 0.14400604367256165, -0.02701074630022049, -0.05206115543842316, 0.0021363606210798025, -0.05684632807970047, -0.02133219689130783, -0.017693087458610535, 0.027716755867004395, 0.16658951342105865, 0.022084319964051247, 0.16439427435398102, -0.10002554953098297, -0.052819304168224335, 0.04634987562894821, -0.03912363946437836, -0.004262456204742193, 0.10253444314002991, 0.040573131293058395, -0.10708379000425339, 0.13494093716144562, 0.14451450109481812, -0.061568863689899445, 0.12009438872337341, -0.06660064309835434, -0.07268793135881424, -0.029457930475473404, -0.010700488463044167, 0.032487902790308, 0.08150197565555573, -0.11736747622489929, -0.01518440805375576, 0.04147358238697052, 0.0365009643137455, 0.01157292164862156, -0.19405949115753174, 0.01434500701725483, 0.04052702710032463, -0.05957946181297302, -0.03711840510368347, -0.007228188216686249, 0.025465670973062515, 0.10738188028335571, 0.023159464821219444, -0.059436213225126266, 0.03091137856245041, 0.01010958757251501, -0.06521721184253693, 0.17235207557678223, -0.11415503919124603, -0.17101606726646423, -0.1092173308134079, -0.10354743152856827, -0.05479486286640167, -0.005661016330122948, 0.0888337567448616, -0.06903789192438126, -0.05432669445872307, -0.10363225638866425, -0.02227107807993889, -0.013426494784653187, 0.030884752050042152, 0.04764599725604057, -0.013607462868094444, 0.06866665184497833, -0.11359085142612457, -0.030789922922849655, -0.024762628600001335, -0.004300233907997608, 0.06655460596084595, 0.020015370100736618, 0.10806498676538467, 0.12804639339447021, -0.04181325063109398, 0.04248211905360222, -0.043993350118398666, 0.22031110525131226, -0.06755458563566208, -0.01361401379108429, 0.13534218072891235, -0.0188586562871933, 0.0948418378829956, 0.1177712082862854, 0.04384182393550873, -0.09145883470773697, -0.004275950137525797, 0.011728516779839993, -0.0479557067155838, -0.22485367953777313, -0.021786579862236977, -0.05390646681189537, 0.005974640604108572, 0.09768718481063843, 0.03011763095855713, 0.03434782475233078, 0.04152281582355499, 0.014684455469250679, 0.05829541012644768, -0.01176168117672205, 0.11532945930957794, 0.13452668488025665, 0.059117935597896576, 0.14543478190898895, -0.058398518711328506, -0.025121435523033142, 0.058248843997716904, 0.0016536052571609616, 0.2198701947927475, -0.003311092732474208, 0.1858198493719101, 0.052562497556209564, 0.15364815294742584, 0.028789568692445755, 0.06231550872325897, -0.02110770158469677, -0.000020415116523508914, -0.018339166417717934, -0.04588695988059044, -0.04168717935681343, 0.017642756924033165, -0.06741706281900406, 0.02826845273375511, -0.1131744459271431, 0.02389976941049099, 0.05579652264714241, 0.3067951202392578, 0.02627584896981716, -0.36165517568588257, -0.10472270101308823, 0.009752263315021992, -0.05712169036269188, -0.03729455918073654, 0.012591072358191013, 0.07825279980897903, -0.07158207893371582, 0.08411857485771179, -0.08508651703596115, 0.10788122564554214, -0.0473388247191906, 0.037705518305301666, 0.0437830425798893, 0.09905742108821869, -0.002429961459711194, 0.0450710766017437, -0.3066844642162323, 0.2632904648780823, 0.02163848839700222, 0.06898577511310577, -0.07241151481866837, 0.02385103702545166, 0.00910418014973402, 0.05366922914981842, 0.052950598299503326, -0.0174422487616539, -0.12298055738210678, -0.1420161873102188, -0.09052465856075287, 0.017428770661354065, 0.10122956335544586, 0.028215304017066956, 0.11897299438714981, -0.024024849757552147, 0.001965109258890152, 0.04825248196721077, -0.02750277891755104, -0.04361317679286003, -0.10798632353544235, 0.027987245470285416, 0.0380534790456295, -0.021180899813771248, -0.06903035193681717, -0.10012027621269226, -0.07385633885860443, 0.1886426955461502, 0.012610353529453278, -0.07026117295026779, -0.1255185753107071, 0.041563186794519424, 0.07669737190008163, -0.08872475475072861, 0.03996927663683891, -0.017945164814591408, 0.12027912586927414, 0.00794284325093031, -0.0871443822979927, 0.11645868420600891, -0.04932492971420288, -0.17902785539627075, -0.042725302278995514, 0.10716562718153, 0.00835575070232153, 0.05906149744987488, -0.01075658481568098, 0.04108605161309242, -0.03269168362021446, -0.07193110138177872, 0.020877184346318245, 0.0175156369805336, 0.09042724221944809, -0.03586035594344139, -0.017995109781622887, 0.009819780476391315, -0.06383338570594788, -0.01832558773458004, 0.1832815706729889, 0.26054102182388306, -0.09042997658252716, 0.07645639032125473, 0.03461894765496254, -0.05688903480768204, -0.15593940019607544, 0.006566731259226799, 0.05362153425812721, -0.0049282098188996315, -0.010397308506071568, -0.1697748899459839, 0.028949609026312828, 0.09638167917728424, -0.015046175569295883, 0.06841739267110825, -0.31512337923049927, -0.12917864322662354, 0.08773068338632584, 0.12906554341316223, 0.08254411816596985, -0.162363663315773, -0.04194582253694534, -0.02849971316754818, -0.1321486234664917, 0.14302493631839752, -0.1133151426911354, 0.112538181245327, -0.02823471650481224, 0.1039879322052002, 0.010723864659667015, -0.055567577481269836, 0.10926459729671478, -0.011254342272877693, 0.07376879453659058, -0.07305922359228134, 0.030043961480259895, 0.11052247881889343, -0.08219415694475174, 0.044793710112571716, -0.09164311736822128, 0.03685149550437927, -0.09878315776586533, -0.013916419818997383, -0.05876760557293892, 0.00515103992074728, -0.02862529270350933, -0.037679605185985565, -0.05233093351125717, -0.00294694141484797, 0.08527126908302307, -0.02246471308171749, 0.20387181639671326, 0.015121622011065483, 0.1435144543647766, 0.1586967557668686, 0.09422650188207626, -0.13181540369987488, -0.03955069184303284, 0.011211157776415348, -0.030202539637684822, 0.04778178036212921, -0.16306525468826294, 0.04790489375591278, 0.13961929082870483, -0.0011724986834451556, 0.11887545883655548, 0.06841991096735, -0.06097961962223053, 0.03151560574769974, 0.04835115000605583, -0.16750088334083557, -0.10456959158182144, 0.018147386610507965, 0.0411129854619503, -0.11234042048454285, 0.05834128335118294, 0.13091936707496643, -0.05347316339612007, -0.019705431535840034, 0.006313866004347801, 0.01968240551650524, -0.017292402684688568, 0.164751797914505, 0.025997139513492584, 0.05570648983120918, -0.10810410976409912, 0.08556555956602097, 0.055499687790870667, -0.12351848930120468, 0.05587858334183693, 0.1208266019821167, -0.10033375769853592, -0.02328789047896862, 0.05363456904888153, 0.15707562863826752, -0.061569903045892715, -0.053053732961416245, -0.15303629636764526, -0.12549258768558502, 0.10817127674818039, 0.19449032843112946, 0.06035715714097023, 0.010355575941503048, -0.0418524295091629, 0.004291263874620199, -0.12333490699529648, 0.09406813979148865, 0.04696659743785858, 0.07975082844495773, -0.11883385479450226, 0.14325685799121857, -0.0059152753092348576, 0.043494418263435364, -0.016613930463790894, 0.0207187719643116, -0.10389748215675354, 0.006502580363303423, -0.15215720236301422, 0.011613588780164719, -0.04847584664821625, -0.004754057619720697, -0.01202804408967495, -0.04349150136113167, -0.06414984911680222, 0.018412768840789795, -0.11374533176422119, -0.03381729871034622, 0.006857030559331179, 0.024293091148138046, -0.12320143729448318, -0.019745809957385063, 0.00269071152433753, -0.08821842074394226, 0.08630159497261047, 0.05176423490047455, -0.015787212178111076, 0.028538621962070465, -0.04217279702425003, -0.010063226334750652, 0.06140831485390663, 0.014174346812069416, 0.08030926436185837, -0.10419166088104248, -0.018033450469374657, 0.019014786928892136, 0.01976991817355156, 0.02635595202445984, 0.10879319161176682, -0.11824796348810196, 0.012027931399643421, -0.005440153181552887, -0.06150425598025322, -0.06606733798980713, 0.06214789301156998, 0.0938308909535408, 0.01988080143928528, 0.1811239868402481, -0.0786561593413353, 0.03218574449419975, -0.19175201654434204, -0.0012582509079948068, 0.01080220378935337, -0.14114104211330414, -0.06217962130904198, -0.04470331594347954, 0.06744242459535599, -0.07307906448841095, 0.12403905391693115, 0.008225328288972378, 0.0335492305457592, 0.05344380810856819, -0.051568653434515, -0.03531454876065254, 0.019832493737339973, 0.17363384366035461, 0.033668890595436096, -0.04623571038246155, 0.07024866342544556, 0.007746152579784393, 0.08674509823322296, 0.09835869073867798, 0.2138936072587967, 0.13480359315872192, 0.0527556873857975, 0.10391043871641159, 0.027853360399603844, -0.035658106207847595, -0.18501101434230804, 0.04978575557470322, -0.04435591399669647, 0.1501741111278534, -0.006590345408767462, 0.19714590907096863, 0.12447910755872726, -0.1476140171289444, 0.05037512630224228, -0.03127313777804375, -0.08200492709875107, -0.11940598487854004, -0.07918809354305267, -0.09735500067472458, -0.14400097727775574, -0.011543385684490204, -0.12136458605527878, 0.066097691655159, 0.05089069530367851, 0.019803067669272423, 0.000786098069511354, 0.10549207776784897, 0.021092064678668976, 0.007401412818580866, 0.0602278858423233, 0.0021753315813839436, -0.03815144672989845, -0.050682879984378815, -0.08465611189603806, 0.01300700195133686, 0.0118494164198637, 0.054790083318948746, 0.005948684643954039, -0.004655929747968912, 0.04296645522117615, -0.03698522225022316, -0.11140769720077515, 0.0203009732067585, 0.03327967971563339, 0.06423680484294891, 0.03157710283994675, 0.012845034711062908, -0.004447286482900381, -0.009428485296666622, 0.1925491839647293, -0.08222413808107376, -0.07827574014663696, -0.11159385740756989, 0.2536042034626007, 0.02590572088956833, -0.03722644969820976, 0.03511154651641846, -0.06308367103338242, -0.030893540009856224, 0.19631807506084442, 0.1828845590353012, -0.02935662865638733, -0.009623773396015167, -0.021465348079800606, -0.009057063609361649, -0.027219519019126892, 0.10480913519859314, 0.13700272142887115, 0.025740403681993484, -0.06630987673997879, -0.0341745987534523, -0.05921509861946106, -0.002322246553376317, -0.06509407609701157, 0.07361936569213867, 0.018553027883172035, -0.006647104863077402, -0.02914884313941002, 0.0430012121796608, -0.05962243676185608, -0.07279083132743835, 0.013498011976480484, -0.2081218659877777, -0.1604553461074829, 0.01034535001963377, 0.08251169323921204, -0.015339916571974754, 0.056465473026037216, 0.0026900430675596, -0.0059235901571810246, 0.10281484574079514, -0.017681468278169632, -0.0757577195763588, -0.060304924845695496, 0.10327502340078354, -0.18701212108135223, 0.18060246109962463, -0.028060676530003548, 0.03008871339261532, 0.1428499072790146, 0.057929862290620804, -0.10157405585050583, 0.06017538160085678, 0.044969670474529266, -0.05408454313874245, 0.011280401609838009, 0.12290962040424347, -0.032080989331007004, 0.06805726885795593, 0.05123801901936531, -0.1186135783791542, -0.017097482457756996, -0.08986067771911621, -0.03819737210869789, -0.016758086159825325, -0.05386023223400116, -0.049685027450323105, 0.11156373471021652, 0.19342057406902313, -0.040750108659267426, 0.008704704232513905, -0.06530112028121948, 0.008728337474167347, 0.06213187798857689, -0.006068801507353783, -0.05292736738920212, -0.2563759684562683, 0.004232084844261408, 0.08589792996644974, -0.0023430304136127234, -0.2520879805088043, -0.08620145171880722, -0.0017851656302809715, -0.038560234010219574, -0.11493833363056183, 0.08886732161045074, 0.07601281255483627, 0.041336540132761, -0.06509505957365036, -0.022621702402830124, -0.07040838152170181, 0.16982769966125488, -0.13963985443115234, -0.05673674866557121 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_baseline This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Rouge1: 99.8958 - Rouge2: 99.8696 - Rougel: 99.8958 - Rougelsum: 99.8958 - Gen Len: 46.715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.9852 | 0.33 | 50 | 0.1098 | 55.1421 | 49.8248 | 54.4294 | 54.7377 | 19.0 | | 0.1186 | 0.67 | 100 | 0.0176 | 58.0994 | 54.8973 | 57.7383 | 57.9538 | 19.0 | | 0.0417 | 1.0 | 150 | 0.0057 | 58.3685 | 55.7353 | 58.279 | 58.2729 | 19.0 | | 0.0225 | 1.33 | 200 | 0.0029 | 58.8981 | 56.2457 | 58.8202 | 58.7906 | 19.0 | | 0.0131 | 1.67 | 250 | 0.0024 | 58.8439 | 56.2535 | 58.7557 | 58.7218 | 19.0 | | 0.0112 | 2.0 | 300 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0077 | 2.33 | 350 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0043 | 2.67 | 400 | 0.0010 | 59.0124 | 56.5806 | 58.9867 | 58.9342 | 19.0 | | 0.0052 | 3.0 | 450 | 0.0010 | 59.0402 | 56.6982 | 59.0385 | 58.986 | 19.0 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model_index": [{"name": "t5_large_baseline", "results": [{"task": {"name": "Summarization", "type": "summarization"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 99.8958}}]}]}
text2text-generation
TheLongSentance/t5_large_baseline
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5\_large\_baseline =================== This model is a fine-tuned version of t5-large on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 0.0010 * Rouge1: 99.8958 * Rouge2: 99.8696 * Rougel: 99.8958 * Rougelsum: 99.8958 * Gen Len: 46.715 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adafactor * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.10.0.dev0 * Pytorch 1.9.0+cu111 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adafactor\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adafactor\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 63, 83, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adafactor\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.9.0+cu111\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.08148356527090073, 0.02575700543820858, -0.0018216469325125217, 0.10623802989721298, 0.19190861284732819, 0.024834327399730682, 0.13464868068695068, 0.11982128769159317, -0.1570012867450714, 0.01813049241900444, 0.09943526238203049, 0.13815101981163025, 0.013798788189888, 0.12883859872817993, -0.05580548197031021, -0.2501588761806488, -0.006875349208712578, 0.03553732484579086, -0.08636032789945602, 0.14823691546916962, 0.09634199738502502, -0.11658022552728653, 0.09835246205329895, -0.012229780666530132, -0.2143997848033905, 0.017985904589295387, 0.009338819421827793, -0.08732220530509949, 0.14034979045391083, 0.021609511226415634, 0.10235769301652908, 0.007459182757884264, 0.08638003468513489, -0.19454897940158844, 0.008906163275241852, 0.05577221140265465, 0.011464934796094894, 0.07469429820775986, 0.06969232857227325, -0.006140444427728653, 0.17990635335445404, -0.09708039462566376, 0.03977436572313309, 0.04761522635817528, -0.11788727343082428, -0.14252519607543945, -0.07129675894975662, 0.030558152124285698, 0.055087603628635406, 0.143575981259346, -0.0029424671083688736, 0.09660307317972183, -0.09591517597436905, 0.09854064136743546, 0.24223487079143524, -0.3051246702671051, -0.06519532203674316, 0.00502605177462101, 0.01396469958126545, 0.09233569353818893, -0.07782459259033203, 0.002620276529341936, 0.06262221932411194, 0.05704401805996895, 0.14082551002502441, -0.02758391946554184, -0.14467912912368774, 0.026411859318614006, -0.13631758093833923, -0.0301141906529665, 0.16891375184059143, 0.009583761915564537, -0.016496261581778526, -0.04129740968346596, -0.06752686202526093, -0.1737821102142334, -0.028840497136116028, 0.0005666379583999515, 0.04462871700525284, -0.01940474472939968, -0.059865642338991165, -0.02010124735534191, -0.09899906069040298, -0.07129909843206406, -0.09070370346307755, 0.11656869202852249, 0.03233425319194794, 0.008878261782228947, -0.06153378263115883, 0.11651366949081421, 0.053726982325315475, -0.13490509986877441, 0.033942513167858124, 0.017159130424261093, 0.03130066767334938, -0.02323797531425953, -0.0752178207039833, -0.08648960292339325, 0.03198588639497757, 0.07391320168972015, -0.08299520611763, 0.017247790470719337, -0.008479471318423748, 0.039069779217243195, -0.10836882144212723, 0.16658489406108856, -0.052476316690444946, -0.052246760576963425, 0.031783685088157654, 0.04463955760002136, 0.02303934656083584, -0.01917809620499611, -0.10876273363828659, -0.02502252347767353, 0.0915452092885971, 0.04204678535461426, -0.05764498934149742, 0.08661292493343353, -0.03733004629611969, -0.012031516060233116, -0.04718925431370735, -0.11941433697938919, 0.015321766957640648, -0.003770233830437064, -0.08572311699390411, 0.030398054048419, 0.050927747040987015, -0.005444563925266266, -0.08306483924388885, 0.11327143758535385, -0.07747557014226913, 0.03093096800148487, -0.09474653750658035, -0.10182716697454453, 0.01563877984881401, -0.06294266879558563, -0.011043747887015343, -0.10788727551698685, -0.18200722336769104, -0.020326530560851097, 0.02544669806957245, -0.028246445581316948, -0.06516408175230026, -0.07122647762298584, -0.09991040080785751, 0.013900320045650005, -0.025795023888349533, 0.11152344942092896, -0.0646151676774025, 0.11725904047489166, 0.05042232200503349, 0.06302814185619354, -0.05833315849304199, 0.05880443751811981, -0.0990670919418335, -0.021356981247663498, -0.15935242176055908, 0.07081827521324158, -0.016828026622533798, 0.09642167389392853, -0.07594773918390274, -0.12847235798835754, -0.00954811368137598, 0.003981759771704674, 0.07501887530088425, 0.11499927937984467, -0.15755225718021393, -0.07808621227741241, 0.17693190276622772, -0.08406394720077515, -0.14475548267364502, 0.10241013020277023, -0.031192859634757042, 0.03502433001995087, 0.08471252024173737, 0.14355359971523285, 0.04538668692111969, -0.06695534288883209, 0.025360967963933945, -0.012388513423502445, 0.03843255341053009, -0.055667560547590256, 0.05950603634119034, 0.0039007875602692366, -0.019174115732312202, 0.050577182322740555, -0.0428643673658371, 0.07445785403251648, -0.09882094711065292, -0.08977567404508591, -0.07526904344558716, -0.09603207558393478, 0.040210429579019547, 0.046133458614349365, 0.10028164833784103, -0.09282497316598892, -0.05942896753549576, 0.061232466250658035, 0.06393804401159286, -0.06898615509271622, 0.045488081872463226, -0.05810903012752533, 0.06622152030467987, -0.002198474947363138, 0.008218761533498764, -0.19961723685264587, -0.0034067530650645494, -0.004490040708333254, 0.019396310672163963, 0.044061530381441116, -0.0050320071168243885, 0.05282454192638397, 0.04884893447160721, -0.05696393549442291, -0.0050023384392261505, -0.04553201422095299, -0.021640023216605186, -0.09022587537765503, -0.19777515530586243, 0.013726841658353806, 0.00580926239490509, 0.117294080555439, -0.18270334601402283, 0.052296292036771774, -0.012790555134415627, 0.07807407528162003, -0.004017363768070936, 0.01818021945655346, -0.032476749271154404, 0.09943889081478119, -0.04304863512516022, -0.03973205015063286, 0.07919522374868393, 0.01561479177325964, -0.0843639001250267, 0.005869789514690638, -0.11873681843280792, 0.17139703035354614, 0.16122141480445862, -0.14631330966949463, -0.0643412321805954, 0.0038265655748546124, -0.06473731249570847, -0.02640235237777233, -0.036053214222192764, 0.030423464253544807, 0.18587546050548553, -0.01848560757935047, 0.17698025703430176, -0.07747504115104675, -0.04165981337428093, 0.010992683470249176, -0.015493495389819145, 0.05964675173163414, 0.09755915403366089, 0.12373223155736923, -0.03873986005783081, 0.12583865225315094, 0.13097476959228516, -0.0930556058883667, 0.14763447642326355, -0.04375791177153587, -0.07959151268005371, 0.020969724282622337, -0.01626921445131302, -0.006533926352858543, 0.04709533974528313, -0.14116916060447693, -0.009358985349535942, 0.02591162919998169, 0.019138477742671967, 0.0454627126455307, -0.20856693387031555, -0.025924738496541977, 0.01200521644204855, -0.06718529760837555, -0.01789260283112526, 0.0011587811168283224, 0.02975367195904255, 0.13746914267539978, -0.000892610929440707, -0.03657082840800285, 0.035985317081213, 0.005898449569940567, -0.09855680167675018, 0.20329689979553223, -0.10891959071159363, -0.18406648933887482, -0.1430169939994812, -0.02334354817867279, -0.07518929988145828, 0.005876648239791393, 0.07155940681695938, -0.10454802215099335, -0.03577720746397972, -0.06817328184843063, 0.07909316569566727, 0.0034154083114117384, 0.04323583096265793, 0.03643979877233505, 0.03255632519721985, 0.0670790821313858, -0.12221112102270126, -0.007899312302470207, -0.02523309737443924, -0.09059283137321472, 0.04982723295688629, 0.036634333431720734, 0.12890982627868652, 0.1733839511871338, -0.03181253746151924, 0.010361340828239918, -0.03119637444615364, 0.19070804119110107, -0.06446124613285065, -0.031616613268852234, 0.15227897465229034, 0.00750708719715476, 0.04070213809609413, 0.10847088694572449, 0.04783264547586441, -0.09522426873445511, 0.03542935475707054, 0.01795676350593567, -0.02922622673213482, -0.25434982776641846, -0.07383862882852554, -0.07396034896373749, 0.011753413826227188, 0.07913380861282349, 0.036070145666599274, 0.051452867686748505, 0.04183734580874443, 0.03251458331942558, 0.09200356155633926, -0.008615485392510891, 0.05857900530099869, 0.1893536001443863, 0.04407958313822746, 0.12183184176683426, -0.0704268366098404, -0.061962682753801346, 0.06492683291435242, -0.0483555905520916, 0.21571610867977142, -0.04445603862404823, 0.09490187466144562, 0.061302244663238525, 0.11089489609003067, 0.012137661688029766, 0.09460290521383286, 0.010613249614834785, -0.022718951106071472, 0.0007652844651602209, -0.05092428997159004, -0.03903039172291756, 0.00021017227845732123, -0.12511582672595978, 0.057338375598192215, -0.13878688216209412, 0.01918594352900982, 0.08992260694503784, 0.2623392641544342, 0.013979473151266575, -0.3189190626144409, -0.08225777000188828, -0.004129255190491676, -0.035605538636446, -0.021998414769768715, 0.040165647864341736, 0.1054377481341362, -0.09688486158847809, 0.05481841042637825, -0.046103280037641525, 0.11018853634595871, -0.011157456785440445, 0.05820435658097267, 0.0771346464753151, 0.10326655954122543, 0.012895152904093266, 0.08112962543964386, -0.3641440272331238, 0.2349250167608261, -0.0055921198800206184, 0.07503894716501236, -0.06565646082162857, 0.002875193953514099, 0.031335506588220596, 0.10223100334405899, 0.038090042769908905, -0.012237914837896824, -0.009669587947428226, -0.14066417515277863, -0.042978063225746155, 0.03979291766881943, 0.1135774552822113, -0.0065553318709135056, 0.08562156558036804, -0.048668183386325836, 0.005031297914683819, 0.05735106021165848, -0.059411533176898956, -0.08186344802379608, -0.09918694198131561, -0.00855241622775793, 0.03311808034777641, 0.014398310333490372, -0.061496395617723465, -0.09709028899669647, -0.09627089649438858, 0.15907004475593567, -0.024134492501616478, -0.04395110905170441, -0.1117326021194458, 0.08411385118961334, 0.08112498372793198, -0.07323376834392548, 0.05383212864398956, 0.011172777973115444, 0.059395093470811844, 0.03707465901970863, -0.10050437599420547, 0.082219697535038, -0.056966572999954224, -0.17503875494003296, -0.03614489734172821, 0.1133340522646904, -0.001312915119342506, 0.05927663668990135, -0.015495186671614647, -0.007301784120500088, -0.03680898994207382, -0.1098463237285614, -0.033600375056266785, 0.03622784465551376, 0.07643197476863861, 0.03951110690832138, -0.10016684234142303, -0.02662660740315914, -0.062462709844112396, -0.05140946805477142, 0.2108324021100998, 0.15989409387111664, -0.08799251168966293, 0.041469208896160126, 0.022595923393964767, -0.07921279221773148, -0.2197188138961792, 0.03747870773077011, 0.04949064180254936, 0.014760554768145084, -0.002533205784857273, -0.17604485154151917, 0.1291312873363495, 0.07669325172901154, 0.007752022240310907, 0.11491972953081131, -0.36308422684669495, -0.13756802678108215, 0.0764119103550911, 0.12675262987613678, 0.12419433146715164, -0.169619619846344, -0.02068982645869255, -0.06335477530956268, -0.14449746906757355, 0.11223442852497101, -0.12066810578107834, 0.11166037619113922, -0.04491736739873886, 0.09255991876125336, 0.0034441992174834013, -0.047361474484205246, 0.10207611322402954, 0.01342250406742096, 0.06810570508241653, -0.09134753793478012, 0.03066663071513176, 0.0769522488117218, -0.02997608296573162, 0.04593304172158241, -0.11124540120363235, 0.05231313407421112, -0.09150584042072296, -0.023678360506892204, -0.07522653043270111, 0.04050194472074509, -0.028862228617072105, -0.04899459332227707, -0.03497517481446266, -0.010247421450912952, 0.0654832050204277, -0.027333587408065796, 0.0707579031586647, -0.008116078563034534, 0.1478145569562912, 0.06706798076629639, 0.10529464483261108, -0.06361973285675049, -0.0022364964243024588, 0.00007567448483314365, -0.014716395176947117, 0.053829070180654526, -0.16825713217258453, 0.028331108391284943, 0.14842697978019714, 0.009021863341331482, 0.1262710988521576, 0.09536042809486389, 0.012393340468406677, 0.0025998561177402735, 0.09527699649333954, -0.1792624592781067, -0.04707815870642662, -0.030990231782197952, -0.0714096873998642, -0.08970249444246292, 0.04755068197846413, 0.095273457467556, -0.0741320550441742, -0.004263718146830797, -0.0019451887346804142, 0.01184716448187828, -0.07573910057544708, 0.1813533455133438, 0.036892447620630264, 0.038269251585006714, -0.11139292269945145, 0.10430749505758286, 0.04257002845406532, -0.09419799596071243, 0.011245779693126678, 0.14346027374267578, -0.10929166525602341, -0.04424174875020981, 0.11551007628440857, 0.16713778674602509, -0.07553203403949738, -0.048822205513715744, -0.14887765049934387, -0.15929315984249115, 0.09020631015300751, 0.17260314524173737, 0.08857131749391556, 0.027068087831139565, -0.05607999488711357, -0.00011835558689199388, -0.13050693273544312, 0.06866827607154846, 0.044699009507894516, 0.052277084439992905, -0.12218838930130005, 0.20771728456020355, 0.013405665755271912, 0.051019322127103806, -0.03297270089387894, 0.0421014167368412, -0.09599760174751282, 0.01891394704580307, -0.1328403800725937, -0.027787381783127785, -0.017410393804311752, -0.007416822481900454, -0.013581421226263046, -0.047435034066438675, -0.07052048295736313, 0.01719217374920845, -0.10662814229726791, -0.03254568204283714, -0.00326680694706738, 0.059485290199518204, -0.11509314924478531, -0.01417872030287981, 0.016596779227256775, -0.07412789762020111, 0.08039844036102295, 0.06857313215732574, -0.029612712562084198, 0.08761873096227646, -0.17041611671447754, -0.02006787620484829, 0.07681392133235931, 0.012448618188500404, 0.04204683378338814, -0.04124271124601364, 0.00875284057110548, 0.03202267736196518, 0.06885028630495071, 0.034140445291996, 0.05886700376868248, -0.1272786259651184, 0.008697249926626682, -0.03996552899479866, -0.05726625397801399, -0.06029871106147766, 0.026046881452202797, 0.10376486927270889, 0.024008331820368767, 0.17811225354671478, -0.10122974216938019, 0.04342450946569443, -0.19856591522693634, 0.008770902641117573, -0.016221238300204277, -0.10504011064767838, -0.13339632749557495, -0.07052211463451385, 0.07782060652971268, -0.04372803121805191, 0.1500684767961502, 0.026691028848290443, 0.0430758036673069, 0.04146061837673187, 0.006261836737394333, -0.035535380244255066, 0.031010273844003677, 0.24283652007579803, 0.039199475198984146, -0.031306881457567215, 0.0351276732981205, 0.03947804868221283, 0.10080011188983917, 0.10830797255039215, 0.2317126840353012, 0.13176229596138, -0.02020026557147503, 0.10482000559568405, 0.04005381837487221, -0.04558967798948288, -0.13446097075939178, 0.04671654477715492, -0.06265763193368912, 0.11931388825178146, -0.05470655858516693, 0.21530887484550476, 0.09290120750665665, -0.14550279080867767, 0.04486754536628723, -0.04030665010213852, -0.08437059074640274, -0.11010267585515976, 0.008717251941561699, -0.07888373732566833, -0.18058793246746063, 0.006652390584349632, -0.12578268349170685, 0.044701360166072845, 0.07389924675226212, 0.019256234169006348, -0.032497718930244446, 0.157969668507576, 0.032825637608766556, -0.014977655373513699, 0.08660001307725906, -0.0061178989708423615, -0.008752911351621151, -0.07978618144989014, -0.05637995898723602, -0.0197573434561491, 0.0002891907060984522, 0.04636707529425621, -0.01894296146929264, -0.08058223873376846, 0.035246673971414566, -0.0646304190158844, -0.07501604408025742, 0.023908209055662155, 0.025483164936304092, 0.05502474680542946, 0.08893603086471558, 0.01711287908256054, -0.029908401891589165, -0.005786112975329161, 0.25879979133605957, -0.09372835606336594, -0.15058735013008118, -0.1137210801243782, 0.22902314364910126, 0.06592846661806107, -0.024229057133197784, 0.018232418224215508, -0.05911100655794144, -0.036771535873413086, 0.263918936252594, 0.22425779700279236, -0.09056825190782547, -0.006928055547177792, -0.008429219014942646, 0.0003289692394901067, -0.005676653236150742, 0.12615340948104858, 0.15305320918560028, 0.08865782618522644, -0.07457362115383148, -0.030375948175787926, -0.05867840349674225, -0.006817913614213467, -0.04769158735871315, 0.07925256341695786, 0.02145051397383213, -0.0225738063454628, -0.024167736992239952, 0.06347232311964035, -0.10020523518323898, -0.04802496358752251, 0.010722286067903042, -0.2051914781332016, -0.1305670589208603, -0.023453807458281517, 0.09006855636835098, -0.00960305705666542, 0.04502778872847557, -0.006297980435192585, 0.004068177193403244, 0.08825788646936417, -0.024546638131141663, -0.10186173021793365, -0.050820134580135345, 0.07151301950216293, -0.13246271014213562, 0.14663384854793549, -0.032708533108234406, 0.05042417347431183, 0.10739617049694061, 0.07604891806840897, -0.07842560857534409, 0.07735060900449753, 0.0123434504494071, -0.04618779569864273, 0.03657492995262146, 0.0851941853761673, -0.04051791876554489, 0.0030096194241195917, 0.045715101063251495, -0.08645807206630707, 0.023846955969929695, -0.05480791628360748, -0.055939797312021255, -0.047295331954956055, -0.05287288501858711, -0.05733669176697731, 0.1149650365114212, 0.23422805964946747, -0.03437589108943939, 0.029434073716402054, -0.0855366438627243, 0.0012683689128607512, 0.01336853951215744, 0.03596657142043114, -0.046698518097400665, -0.22208678722381592, -0.011926430277526379, 0.06844543665647507, -0.007767605595290661, -0.2696806788444519, -0.06848142296075821, -0.01261743064969778, -0.05135563760995865, -0.13520900905132294, 0.10487053543329239, 0.10326291620731354, 0.030170602723956108, -0.03361021354794502, -0.11296283453702927, -0.0428522452712059, 0.1758260726928711, -0.1589220017194748, -0.09125174582004547 ]
null
null
transformers
# Harry DialoGPT Model
{"tags": ["conversational"]}
text-generation
ThePeachOx/DialoGPT-small-harry
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry DialoGPT Model
[ "# Harry DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry DialoGPT Model" ]
[ -0.01880907453596592, 0.0980171412229538, -0.0059069362469017506, 0.023342570289969444, 0.11802992224693298, 0.023225609213113785, 0.16636601090431213, 0.1373313069343567, 0.01935729756951332, -0.045280009508132935, 0.11651354283094406, 0.18148040771484375, 0.002703591715544462, 0.07576979696750641, -0.07224826514720917, -0.30115899443626404, 0.051203615963459015, 0.05740946903824806, -0.00162550900131464, 0.11586616188287735, 0.09038824588060379, -0.05554821714758873, 0.08128379285335541, -0.005468311719596386, -0.15780587494373322, -0.006683561019599438, 0.013881181366741657, -0.11792866885662079, 0.12917061150074005, 0.06660302728414536, 0.019768668338656425, 0.010361725464463234, -0.05298709496855736, -0.14290519058704376, 0.03618157282471657, -0.010508129373192787, -0.038279324769973755, 0.06323938071727753, 0.038042593747377396, -0.06062076985836029, 0.1360631138086319, 0.1328713744878769, 0.013418023474514484, 0.03784013167023659, -0.149893119931221, -0.017719322815537453, 0.00047114971675910056, 0.08422047644853592, 0.05874461680650711, 0.10326965153217316, -0.040504902601242065, 0.11580726504325867, -0.055451806634664536, 0.11001712828874588, 0.09934177249670029, -0.35983389616012573, -0.018173174932599068, 0.107166588306427, 0.027464544400572777, 0.056036576628685, -0.05258867144584656, 0.06891169399023056, 0.021460792049765587, 0.0015538957668468356, -0.04106999188661575, -0.08000446856021881, -0.06844716519117355, 0.018818115815520287, -0.0959971621632576, -0.012047155760228634, 0.27897489070892334, -0.0517728328704834, 0.06434420496225357, -0.08637009561061859, -0.10439694672822952, 0.009552586823701859, -0.045350801199674606, -0.0498383492231369, -0.08205809444189072, 0.07685638219118118, -0.002221248345449567, -0.07852847129106522, -0.1062820553779602, -0.014607707969844341, -0.16238434612751007, 0.17498375475406647, 0.047396451234817505, 0.03895950689911842, -0.22381626069545746, 0.10876727104187012, 0.019518811255693436, -0.08081050217151642, 0.02660205401480198, -0.09807474166154861, 0.037008292973041534, 0.012479866854846478, -0.027492715045809746, -0.02907634526491165, 0.06090163439512253, 0.10333308577537537, 0.015238507650792599, 0.019749348983168602, -0.013177933171391487, 0.05177124962210655, 0.06539448350667953, 0.053983405232429504, -0.006843926385045052, -0.10190056264400482, 0.030118191614747047, -0.09567119926214218, -0.007295623421669006, -0.05832265317440033, -0.17653153836727142, -0.04150719940662384, 0.08651190996170044, 0.035021036863327026, 0.04719681292772293, 0.11766022443771362, 0.0016055511077865958, -0.052862558513879776, 0.027556519955396652, -0.014957818202674389, -0.015045118518173695, 0.004624472465366125, -0.009197419509291649, 0.16753855347633362, 0.014543049037456512, 0.031530480831861496, -0.13523609936237335, 0.029964972287416458, -0.06194228678941727, 0.00048544618766754866, -0.008604024536907673, -0.04346535727381706, -0.014443807303905487, 0.017760444432497025, 0.012884707190096378, -0.13275177776813507, -0.13115814328193665, -0.001503310981206596, -0.006189101375639439, -0.041237782686948776, -0.1173100695014, -0.09750867635011673, -0.002766464836895466, 0.03566562384366989, -0.05098886042833328, -0.030252713710069656, -0.056748390197753906, 0.0982932597398758, -0.030760018154978752, 0.08569067716598511, -0.08476068824529648, 0.07403629273176193, -0.08093678206205368, -0.039053838700056076, -0.09237835556268692, 0.10249045491218567, 0.029301343485713005, 0.06680360436439514, -0.010897080413997173, -0.03148962929844856, -0.05524744093418121, 0.0705004334449768, -0.062203116714954376, 0.2536502778530121, -0.07296278327703476, -0.11964210122823715, 0.29097747802734375, -0.056502848863601685, -0.13533172011375427, 0.13295592367649078, -0.010280733928084373, 0.08741167932748795, 0.13337896764278412, 0.18077027797698975, 0.008050891570746899, -0.021249782294034958, 0.08484581112861633, 0.09879670292139053, -0.07543142139911652, 0.019845934584736824, 0.013382459059357643, -0.025612467899918556, -0.13478034734725952, 0.046939607709646225, 0.06001666933298111, 0.026187149807810783, -0.05129586532711983, -0.021437259390950203, 0.001486975816078484, -0.0038139314856380224, 0.10567774623632431, -0.026156075298786163, 0.1352470964193344, -0.03731078654527664, -0.05069442093372345, -0.015251829288899899, 0.030704176053404808, -0.050674330443143845, 0.044133707880973816, -0.07022996246814728, 0.0667286291718483, 0.0031316771637648344, 0.07059119641780853, -0.1353624016046524, -0.030761130154132843, -0.02950434200465679, 0.17317402362823486, 0.055771566927433014, 0.12480100989341736, 0.05257410556077957, -0.03143997862935066, -0.025706609711050987, 0.02530207484960556, 0.17518381774425507, -0.02690885029733181, -0.09648238867521286, -0.12362591177225113, 0.08196555823087692, -0.05133550241589546, 0.1276516616344452, -0.0820220336318016, 0.012153592891991138, -0.02752067521214485, 0.10574746876955032, -0.009683739393949509, 0.03605720028281212, 0.009223483502864838, -0.021054411306977272, -0.06113206222653389, 0.009808477014303207, 0.09361878782510757, -0.0005259321769699454, -0.06583091616630554, 0.18800480663776398, -0.17457371950149536, 0.16659405827522278, 0.191721573472023, -0.24717102944850922, 0.0005695185391232371, -0.1324842870235443, -0.0277012437582016, 0.0026345676742494106, 0.06456071883440018, -0.019373033195734024, 0.20897720754146576, -0.02347109653055668, 0.17208200693130493, -0.031630244106054306, -0.05178384482860565, -0.04314553365111351, -0.05421464517712593, 0.0108089754357934, 0.07767661660909653, 0.0669729933142662, -0.1501810997724533, 0.1610928177833557, 0.08154287934303284, 0.051220204681158066, 0.15979939699172974, 0.05429399758577347, -0.001729802694171667, 0.0639374852180481, -0.009156531654298306, -0.04804132506251335, -0.0615842267870903, -0.3026897609233856, -0.048781685531139374, 0.08026567101478577, 0.007939952425658703, 0.10479902476072311, -0.09512681514024734, -0.019728992134332657, -0.012520667165517807, -0.003648333018645644, 0.04406819865107536, 0.10704774409532547, 0.022480301558971405, 0.1278308928012848, -0.01126655749976635, -0.06032143160700798, 0.0599326454102993, 0.01442120410501957, -0.0994814857840538, 0.1751779168844223, -0.13639070093631744, -0.33099162578582764, -0.10220049321651459, -0.20847485959529877, -0.05238959193229675, 0.04753207787871361, 0.09635809063911438, -0.11570857465267181, -0.020854312926530838, -0.00741452956572175, 0.07337415963411331, -0.13087564706802368, 0.0164411012083292, -0.06380335241556168, 0.01669442653656006, -0.1378810852766037, -0.09659017622470856, -0.03808600828051567, -0.03861158341169357, -0.04934941604733467, 0.12981198728084564, -0.1393604874610901, 0.002306244568899274, 0.24440577626228333, 0.06346654146909714, 0.06187160313129425, -0.036790989339351654, 0.2005697637796402, -0.10365674644708633, -0.007071515079587698, 0.14141526818275452, -0.05447706580162048, 0.05534975603222847, 0.1297229528427124, -0.0071435486897826195, -0.07407668232917786, 0.02995068021118641, -0.046802155673503876, -0.040992073714733124, -0.225070521235466, -0.128619983792305, -0.11386435478925705, 0.10604386031627655, 0.057255715131759644, 0.04954058304429054, 0.18173259496688843, 0.06061291694641113, -0.042166538536548615, 0.036432720720767975, 0.07028189301490784, 0.09954145550727844, 0.2575013041496277, -0.07311394810676575, 0.12318762391805649, -0.013381285592913628, -0.15379652380943298, 0.0673132985830307, 0.05588372424244881, 0.08225110173225403, 0.05205579102039337, 0.028198502957820892, -0.007282917853444815, 0.0710705816745758, 0.12870654463768005, 0.06592089682817459, 0.024233749136328697, -0.019728291779756546, -0.042242102324962616, -0.04051411524415016, -0.0373525433242321, 0.05464489385485649, 0.08187717199325562, -0.14469276368618011, -0.02611168660223484, -0.03887046501040459, 0.05629271641373634, 0.051430054008960724, 0.10123056173324585, -0.16706958413124084, -0.02987154759466648, 0.07308679074048996, -0.05985153093934059, -0.12763512134552002, 0.09099636971950531, 0.003143749199807644, -0.15123990178108215, 0.04304187744855881, -0.01430558878928423, 0.11091449111700058, -0.08802533149719238, 0.07064731419086456, -0.11420328170061111, -0.07561205327510834, 0.0019296419341117144, 0.09603849798440933, -0.3114408552646637, 0.1830584555864334, -0.005395391955971718, -0.045046303421258926, -0.10045992583036423, -0.010443182662129402, 0.019574187695980072, 0.11587530374526978, 0.10135189443826675, -0.011556907556951046, 0.07499334216117859, 0.027809280902147293, -0.05023164302110672, 0.026939962059259415, 0.10197210311889648, -0.035018984228372574, 0.0017082749400287867, -0.04627696052193642, -0.00834465678781271, -0.020315390080213547, -0.05966451019048691, 0.029885485768318176, -0.18731176853179932, 0.092265285551548, 0.013660057447850704, 0.09556721895933151, 0.035249676555395126, -0.027523616328835487, -0.08688215911388397, 0.22921912372112274, -0.02613319642841816, -0.09418055415153503, -0.0777401551604271, -0.03686610981822014, 0.05525117367506027, -0.05132591351866722, 0.013324404135346413, -0.050020717084407806, 0.03448472172021866, -0.06416827440261841, -0.18759340047836304, 0.1059831976890564, -0.08742135018110275, -0.04992355778813362, -0.04030340537428856, 0.21367044746875763, -0.027771826833486557, 0.03481690213084221, 0.04080943390727043, -0.00018685022951103747, -0.1360454112291336, -0.07853888720273972, 0.011780619621276855, 0.03497304767370224, -0.0000639061545371078, 0.03737042471766472, -0.02426978014409542, -0.0629042237997055, -0.07662062346935272, -0.01316798385232687, 0.3122006952762604, 0.15403106808662415, -0.027804655954241753, 0.1688767671585083, 0.12979987263679504, -0.07094260305166245, -0.24811038374900818, -0.11439382284879684, -0.10330964624881744, -0.05860065668821335, -0.10474240034818649, -0.18591190874576569, 0.10571466386318207, -0.03716127946972847, -0.0017851055599749088, 0.12959155440330505, -0.28538432717323303, -0.1038857027888298, 0.19351398944854736, -0.012211043387651443, 0.4258030652999878, -0.10797137767076492, -0.08485259860754013, -0.05110783874988556, -0.20572246611118317, 0.13134729862213135, -0.02657606452703476, 0.10904303193092346, -0.01880747638642788, 0.1808517575263977, 0.04914845526218414, 0.005165386945009232, 0.0803820788860321, 0.015109844505786896, -0.0636984258890152, -0.09094948321580887, -0.09484504908323288, -0.00894199125468731, 0.02371923066675663, 0.02415061555802822, -0.03732800856232643, 0.021132495254278183, -0.12780942022800446, -0.06065882369875908, -0.07547982782125473, 0.029158437624573708, 0.015346844680607319, -0.0720936730504036, -0.011574866250157356, -0.05521459877490997, 0.0021497204434126616, 0.013603871688246727, 0.15754835307598114, -0.07705914229154587, 0.16603979468345642, 0.05694717541337013, 0.14669282734394073, -0.11356239765882492, -0.04116892069578171, -0.052914902567863464, -0.06766749173402786, 0.0800725519657135, -0.07601552456617355, 0.013575994409620762, 0.10664176940917969, -0.020700300112366676, 0.08273827284574509, 0.10451599210500717, 0.00208456558175385, 0.0072139534167945385, 0.07497289776802063, -0.27278345823287964, -0.08940377831459045, -0.06354819238185883, 0.014074944891035557, 0.059362173080444336, 0.09928543865680695, 0.19788560271263123, -0.02491595409810543, -0.04642622917890549, 0.018168475478887558, 0.02912958338856697, -0.03550776094198227, 0.07746781408786774, 0.001820713048800826, 0.015821415930986404, -0.1571723222732544, 0.06325754523277283, -0.00259996484965086, -0.08363469690084457, 0.024512382224202156, 0.15790750086307526, -0.10872045904397964, -0.12145734578371048, -0.08046072721481323, 0.13164174556732178, -0.10543546825647354, 0.0011799527565017343, -0.031710848212242126, -0.13271431624889374, 0.06181350722908974, 0.06073322892189026, 0.04758564382791519, 0.06746693700551987, -0.10814111679792404, -0.021395189687609673, -0.03731151297688484, -0.000132906818180345, 0.05366188660264015, -0.011167112737894058, -0.05137665942311287, 0.11476777493953705, -0.043293289840221405, 0.1167604997754097, -0.09447359293699265, -0.11174752563238144, -0.15322816371917725, 0.03874920681118965, -0.09128187596797943, -0.08383316546678543, -0.12318055331707001, -0.04235512390732765, -0.0028054537251591682, -0.027835939079523087, -0.031411271542310715, -0.05087919533252716, -0.11680055409669876, 0.04074488952755928, -0.028451554477214813, 0.009094576351344585, -0.06364568322896957, 0.04421680048108101, 0.059249311685562134, -0.04247754439711571, 0.1622801423072815, 0.1640947461128235, -0.1226319745182991, 0.10394616425037384, -0.10048065334558487, -0.09398651123046875, 0.08486954122781754, 0.013446401804685593, 0.05113769322633743, 0.05896523594856262, -0.007475884631276131, 0.043810468167066574, 0.06284359842538834, 0.051904626190662384, 0.06423379480838776, -0.07320494204759598, 0.032319575548172, -0.07133399695158005, -0.12822484970092773, -0.047089990228414536, -0.022948436439037323, 0.03565021976828575, 0.030283566564321518, 0.09830617159605026, -0.06599432229995728, 0.08940234035253525, -0.05516565591096878, 0.03335881978273392, 0.021962394937872887, -0.1670469492673874, 0.00833185762166977, -0.07832595705986023, 0.051277682185173035, 0.011918921954929829, 0.22274722158908844, 0.003859071061015129, -0.021057981997728348, 0.024763083085417747, 0.047519754618406296, -0.0005690604448318481, -0.00163988524582237, 0.2294595092535019, 0.12028446048498154, -0.05801625922322273, -0.09319517761468887, 0.08530255407094955, 0.04126480221748352, 0.07208035886287689, 0.12881067395210266, -0.02591916359961033, 0.0041015418246388435, 0.08720564097166061, -0.030582306906580925, 0.01716083101928234, -0.1210278868675232, -0.14189235866069794, -0.026737602427601814, 0.06020066887140274, -0.04591596499085426, 0.17241203784942627, 0.15525595843791962, -0.023418525233864784, 0.018320105969905853, -0.010790202766656876, -0.07300054281949997, -0.17789289355278015, -0.13171009719371796, -0.07926694303750992, -0.1541074961423874, -0.003129835706204176, -0.13178567588329315, 0.02958763763308525, 0.006438902113586664, 0.09110793471336365, -0.07034426927566528, 0.03892199322581291, 0.07707779854536057, -0.11703372001647949, 0.08966987580060959, -0.020333560183644295, 0.0697101280093193, -0.04832516983151436, 0.0017085099825635552, -0.09408330917358398, 0.025165582075715065, 0.015957407653331757, 0.04372399300336838, -0.06929837912321091, 0.023723101243376732, -0.1026940867304802, -0.08807624876499176, -0.04639817774295807, 0.06506340950727463, -0.012805754318833351, 0.1528702825307846, 0.01727808639407158, -0.03534719720482826, 0.015236875042319298, 0.23968727886676788, -0.09179548174142838, -0.09959881007671356, -0.068492591381073, 0.23382502794265747, 0.005788716021925211, 0.08833613246679306, -0.002542769769206643, 0.007024269085377455, -0.0806332379579544, 0.3285839855670929, 0.3176588714122772, -0.0983647033572197, 0.008187346160411835, 0.029922638088464737, 0.04466988518834114, 0.1105397418141365, 0.0949091911315918, 0.10342995077371597, 0.327888160943985, -0.06495413184165955, 0.0013726152246817946, -0.008164268918335438, -0.03234576806426048, -0.06305805593729019, 0.033947091549634933, 0.061871886253356934, -0.08306263387203217, -0.026902152225375175, 0.0994981899857521, -0.27395978569984436, 0.06407684832811356, -0.13659055531024933, -0.16312439739704132, -0.07398173958063126, 0.0010775106493383646, 0.08048227429389954, 0.035106293857097626, 0.09637375921010971, 0.0006038465071469545, -0.06251425296068192, 0.10794321447610855, 0.02430219016969204, -0.21208015084266663, -0.017409587278962135, 0.10271884500980377, -0.07442820817232132, -0.03773704543709755, -0.01613309048116207, 0.07522628456354141, 0.05828395485877991, 0.059473976492881775, -0.023051435127854347, -0.001006819074973464, -0.0021500212606042624, -0.0743560791015625, 0.01901516690850258, 0.04185442626476288, 0.028085313737392426, -0.09379574656486511, 0.09634941816329956, -0.1132097989320755, 0.03384674713015556, 0.014984963461756706, -0.032753150910139084, -0.02642492763698101, 0.02209077961742878, -0.06323353201150894, 0.07180290669202805, 0.10492131859064102, -0.024190114811062813, -0.018338119611144066, -0.02255360223352909, -0.021315164864063263, -0.020176930353045464, -0.07341098040342331, -0.09756306558847427, -0.17062388360500336, -0.11784163117408752, 0.036034565418958664, -0.006645640358328819, -0.18033890426158905, 0.012684792280197144, -0.11934586614370346, 0.05453609675168991, -0.14699961245059967, 0.0999736562371254, 0.09626956284046173, 0.021120963618159294, 0.0012696296907961369, -0.007772899232804775, 0.03546994552016258, 0.10492546856403351, -0.13536128401756287, -0.08466995507478714 ]
null
null
transformers
EconBERTa - RoBERTa further trained for 25k steps (T=512, batch_size = 256) on text sourced from economics books. Example usage for MLM: ```python from transformers import RobertaTokenizer, RobertaForMaskedLM from transformers import pipeline tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaForMaskedLM.from_pretrained('models').cpu() model.eval() mlm = pipeline('fill-mask', model = model, tokenizer = tokenizer) test = "ECB - euro, FED - <mask>, BoJ - yen" print(mlm(test)[:2]) [{'sequence': 'ECB - euro, FED - dollar, BoJ - yen', 'score': 0.7342271208763123, 'token': 1404, 'token_str': ' dollar'}, {'sequence': 'ECB - euro, FED - dollars, BoJ - yen', 'score': 0.10828445851802826, 'token': 1932, 'token_str': ' dollars'}] ```
{}
fill-mask
ThePixOne/EconBERTa
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
EconBERTa - RoBERTa further trained for 25k steps (T=512, batch_size = 256) on text sourced from economics books. Example usage for MLM:
[]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.05978045240044594, 0.0027343870606273413, -0.008724397048354149, 0.02515793778002262, 0.13307689130306244, 0.027639828622341156, 0.09509950131177902, 0.08148215711116791, 0.05693569406867027, -0.005708751268684864, 0.15464650094509125, 0.21959826350212097, -0.03345884382724762, 0.17867937684059143, -0.058117255568504333, -0.2713718116283417, 0.06318216025829315, 0.048634059727191925, -0.07361909002065659, 0.11866326630115509, 0.0721997618675232, -0.07688385248184204, 0.06776180863380432, -0.018220216035842896, -0.12242016196250916, 0.042348217219114304, 0.05527849495410919, -0.1122080385684967, 0.12108562141656876, 0.021961210295557976, 0.2060822993516922, 0.013724464923143387, -0.06524214893579483, -0.0831608921289444, 0.05297759547829628, -0.0005626529455184937, -0.07771056890487671, 0.039234988391399384, 0.006228282582014799, -0.09797824174165726, 0.0029437756165862083, 0.05069584399461746, 0.031919922679662704, 0.043076999485492706, -0.14973030984401703, -0.12170203030109406, -0.021631255745887756, 0.03224768117070198, 0.04861219599843025, 0.06754541397094727, 0.019578367471694946, 0.20521271228790283, -0.1258353292942047, 0.10418124496936798, 0.15854887664318085, -0.29196202754974365, -0.011583889834582806, 0.07336939871311188, 0.07550900429487228, -0.05153534933924675, -0.025016577914357185, 0.061107337474823, 0.0111276526004076, 0.02207767404615879, 0.03159128874540329, -0.08054082095623016, -0.06527844071388245, 0.004459382500499487, -0.07510198652744293, -0.05628051981329918, 0.14868685603141785, -0.051077596843242645, 0.04103284329175949, 0.010015198029577732, -0.12913082540035248, -0.036706481128931046, -0.022282211109995842, 0.0016800274606794119, -0.03736185282468796, 0.03933337330818176, -0.04058491811156273, -0.013890751637518406, -0.10593511909246445, 0.020706869661808014, -0.23111006617546082, 0.27582958340644836, 0.02612913027405739, 0.07012132555246353, -0.1858518421649933, 0.043225426226854324, -0.029383337125182152, -0.12287542223930359, 0.04163218289613724, -0.09743601828813553, 0.012437986209988594, 0.0019431845284998417, -0.06488244980573654, -0.03970800340175629, 0.08601388335227966, 0.2266247421503067, 0.08983870595693588, 0.03475968539714813, 0.03882957249879837, 0.09770892560482025, 0.014865895733237267, 0.08014364540576935, 0.017019858583807945, -0.040938593447208405, 0.06849705427885056, -0.12720969319343567, 0.04322979971766472, -0.059905603528022766, -0.12469810247421265, -0.052705299109220505, 0.004645936656743288, 0.08657316863536835, 0.0478980652987957, 0.04835785925388336, -0.08745969086885452, 0.0031580787617713213, 0.07787331938743591, -0.07194057106971741, -0.002319851191714406, -0.029221290722489357, 0.05152527242898941, 0.10475372523069382, 0.021636445075273514, -0.010703074745833874, -0.016043487936258316, 0.11903663724660873, -0.07282981276512146, -0.03583741933107376, -0.05615774169564247, -0.055342018604278564, 0.03769473731517792, -0.14162738621234894, 0.04631955549120903, -0.1937199980020523, -0.14164285361766815, 0.05045240744948387, 0.058013904839754105, -0.004311853088438511, -0.032746389508247375, 0.032482124865055084, -0.005240604747086763, 0.01717841997742653, -0.04425594210624695, -0.03813016042113304, -0.03695604205131531, 0.10319358855485916, 0.015862006694078445, 0.1258252114057541, -0.10736379027366638, 0.04201505705714226, -0.08612877130508423, 0.012246696278452873, -0.16673244535923004, -0.037367139011621475, -0.02627558261156082, 0.16236986219882965, 0.002689799526706338, -0.04094931110739708, -0.11292707920074463, 0.03153347223997116, -0.005968436133116484, 0.16826218366622925, -0.050691187381744385, -0.1258428990840912, 0.23801551759243011, -0.10858677327632904, -0.137539803981781, 0.0768466368317604, -0.0008964669541455805, 0.00503029627725482, 0.04865459352731705, 0.09409047663211823, 0.054460909217596054, -0.1282840520143509, 0.09256289899349213, 0.09043212980031967, -0.15783078968524933, -0.13727834820747375, 0.027883639559149742, -0.005475207231938839, -0.10261815786361694, 0.044968098402023315, 0.09180816262960434, 0.11191844940185547, -0.07093978673219681, -0.0524664968252182, -0.019335782155394554, -0.04510034993290901, 0.12913495302200317, 0.03954192250967026, 0.09601214528083801, -0.07954450696706772, -0.026266923174262047, -0.06726016104221344, 0.00639816839247942, 0.07083439826965332, 0.03640305995941162, -0.08596820384263992, 0.1376219093799591, -0.05640283599495888, 0.00475625554099679, -0.18434511125087738, -0.10832203924655914, -0.019048554822802544, 0.06233084574341774, -0.024080509319901466, 0.11038170754909515, 0.11115530878305435, -0.04524664208292961, -0.012584532611072063, -0.016787465661764145, 0.09273066371679306, 0.02054671198129654, -0.019367150962352753, -0.09770754724740982, 0.024277135729789734, -0.08850374072790146, 0.00890185683965683, 0.020691927522420883, 0.0034111374989151955, -0.004997740965336561, 0.14283043146133423, -0.00161478400696069, 0.03947531431913376, -0.04557863250374794, 0.03357338905334473, -0.04402673617005348, 0.007829888723790646, 0.08130250126123428, 0.00620792992413044, -0.052449412643909454, 0.15417484939098358, -0.1333128660917282, 0.3405405282974243, 0.18508437275886536, -0.2874508798122406, -0.03881249949336052, 0.04533010721206665, -0.018499813973903656, -0.0015848495531827211, 0.04968307539820671, 0.007090166676789522, 0.027636928483843803, 0.00756347319111228, 0.14252737164497375, -0.008502244018018246, -0.015343432314693928, 0.03761560097336769, -0.0861063003540039, -0.03436943516135216, 0.034367144107818604, 0.09854230284690857, -0.11538184434175491, 0.17259535193443298, 0.22679723799228668, -0.014759926125407219, 0.13486558198928833, 0.019756602123379707, 0.0008263704366981983, 0.004766570404171944, -0.04244794696569443, -0.010318059474229813, 0.04416158050298691, -0.1703941971063614, -0.037341129034757614, 0.07009443640708923, -0.04086581617593765, 0.054106131196022034, -0.1080540344119072, -0.04539399966597557, 0.023229053243994713, 0.05735735595226288, -0.057464465498924255, 0.14314846694469452, 0.02993035688996315, 0.07184498757123947, 0.001863340032286942, -0.0830451101064682, 0.10455971211194992, 0.011808671057224274, -0.027575377374887466, 0.15615016222000122, -0.11499504745006561, -0.3407493829727173, -0.14060579240322113, -0.1856870949268341, 0.012841945514082909, 0.04907330498099327, 0.07068860530853271, -0.0886731967329979, -0.06028576195240021, 0.1009501963853836, -0.002118155127391219, -0.030502429232001305, 0.06733111292123795, -0.059993140399456024, 0.033099252730607986, -0.03546803444623947, -0.05871487408876419, -0.06814772635698318, -0.030771153047680855, -0.026918867602944374, 0.15232053399085999, -0.08588875830173492, 0.09874926507472992, 0.12222868949174881, 0.012513059191405773, 0.06416334956884384, 0.003602869575843215, 0.16369159519672394, -0.08151564747095108, -0.004985830280929804, 0.19588902592658997, -0.039671871811151505, 0.09784439206123352, 0.16251394152641296, 0.01572851650416851, -0.04611923173069954, 0.007210151292383671, -0.054344769567251205, -0.1310671716928482, -0.16383560001850128, -0.10668035596609116, -0.13408245146274567, -0.021317366510629654, 0.045856814831495285, 0.050257451832294464, 0.15384143590927124, 0.10692618787288666, 0.039593882858753204, -0.022173523902893066, -0.07040359079837799, 0.060743995010852814, 0.16259261965751648, -0.02038007788360119, 0.13690350949764252, -0.05275079607963562, -0.15010952949523926, 0.060834385454654694, 0.017343392595648766, 0.13702066242694855, 0.10000376403331757, -0.018073182553052902, 0.04605214297771454, 0.15819214284420013, 0.157943993806839, 0.15094222128391266, 0.040314868092536926, -0.057792484760284424, -0.00135100819170475, -0.00355874327942729, -0.054626744240522385, 0.024207331240177155, 0.13539178669452667, -0.10293795168399811, -0.0397566519677639, -0.122000552713871, 0.05419766530394554, 0.11576513946056366, 0.0632915124297142, -0.2221747636795044, 0.010753236711025238, 0.06315211206674576, 0.00856467429548502, -0.06559337675571442, 0.03360356017947197, -0.0504627525806427, -0.1452513188123703, 0.0742940679192543, -0.05110727250576019, 0.09041508287191391, 0.04023086279630661, 0.06344828754663467, -0.05134069547057152, -0.05041798576712608, 0.03384535759687424, 0.066301628947258, -0.24279962480068207, 0.28508660197257996, -0.015547695569694042, -0.0414053238928318, -0.0798855721950531, -0.0072272163815796375, 0.05470259487628937, 0.10367409884929657, 0.11631010472774506, 0.026701275259256363, -0.05831453949213028, -0.12985455989837646, -0.010049611330032349, 0.025459015741944313, 0.10010068118572235, -0.023013504222035408, -0.008190451189875603, -0.026562752202153206, -0.05088624730706215, -0.014673394151031971, 0.07104095071554184, 0.008848524652421474, -0.12703938782215118, 0.07680127024650574, 0.049460720270872116, -0.018087532371282578, -0.008617108687758446, -0.053773753345012665, -0.09175468981266022, 0.19304224848747253, -0.01958429254591465, -0.05116080120205879, -0.11072391271591187, -0.10805923491716385, 0.10193557292222977, -0.11249701678752899, 0.12616074085235596, -0.10047021508216858, 0.009487134404480457, -0.09380611777305603, -0.1732918620109558, 0.14263565838336945, -0.12662816047668457, -0.005548976361751556, -0.07589493691921234, 0.14169755578041077, -0.06785442680120468, 0.024742592126131058, 0.0028587186243385077, 0.04321930930018425, -0.11557991802692413, -0.053762901574373245, 0.029133325442671776, -0.0661218911409378, 0.03599350154399872, 0.054347891360521317, -0.04755578562617302, -0.035690948367118835, 0.016383660957217216, 0.022910388186573982, 0.2239362597465515, 0.23655645549297333, -0.060722775757312775, 0.14300964772701263, 0.16329653561115265, -0.02534516341984272, -0.334926038980484, -0.11384004354476929, -0.13816533982753754, 0.000659266603179276, 0.005350308958441019, -0.1263294517993927, 0.09073201566934586, -0.018374400213360786, -0.05229932442307472, 0.11701809614896774, -0.15716011822223663, -0.09006257355213165, 0.23355786502361298, 0.007530366536229849, 0.5038071870803833, -0.09967079758644104, -0.05945106968283653, -0.052533090114593506, -0.14235186576843262, 0.02291753888130188, 0.0022186338901519775, 0.09462001919746399, -0.029315819963812828, 0.07914337515830994, 0.03301545977592468, -0.09031011164188385, 0.09982404112815857, -0.03833628445863724, 0.016298605129122734, -0.11617961525917053, -0.08525510132312775, 0.10806074738502502, -0.0136068444699049, -0.016709906980395317, 0.02158220298588276, 0.01456777099519968, -0.04083799198269844, -0.022307492792606354, -0.10379772633314133, 0.10585320740938187, 0.03499794006347656, -0.05941828712821007, 0.022518588230013847, -0.009889909066259861, -0.012628845870494843, -0.004628289956599474, 0.1912514567375183, -0.008090890944004059, 0.17767208814620972, 0.06429888308048248, 0.021506020799279213, -0.12491537630558014, -0.06406809389591217, -0.04999396950006485, -0.08511979877948761, 0.07266417145729065, -0.009923536330461502, 0.04696602374315262, 0.10173138976097107, -0.012479927390813828, 0.029755644500255585, 0.1106644868850708, 0.010039771907031536, -0.014950153417885303, 0.16745342314243317, -0.2137589156627655, 0.04184075817465782, -0.015450791455805302, -0.018000587821006775, 0.06724268943071365, 0.059818465262651443, 0.09292822331190109, 0.042055394500494, -0.040214166045188904, -0.010924269445240498, -0.007243160158395767, -0.06570540368556976, 0.04728737846016884, 0.07078813016414642, 0.0481405109167099, -0.1261121779680252, 0.010777958668768406, -0.019267624244093895, -0.18276818096637726, -0.0193245317786932, 0.08627685904502869, -0.11631006002426147, -0.10884512960910797, 0.009783122688531876, 0.08114659041166306, -0.12021104246377945, -0.030119983479380608, -0.08283551782369614, -0.11298330873250961, 0.05262024328112602, 0.22306393086910248, 0.1127481460571289, 0.06906166672706604, -0.01038964930921793, -0.013437945395708084, -0.019051581621170044, -0.020863153040409088, 0.04014519229531288, 0.036231301724910736, -0.08725123107433319, 0.00853132363408804, -0.009417156688869, 0.15634506940841675, -0.10960228741168976, -0.05792605131864548, -0.15895655751228333, 0.04835722595453262, -0.07342072576284409, -0.09718167781829834, -0.09943155944347382, -0.07611285150051117, 0.009972813539206982, -0.07039758563041687, -0.05352642014622688, -0.033090610057115555, -0.1172407865524292, 0.028002966195344925, 0.02894745022058487, -0.025185875594615936, -0.06389441341161728, -0.04643470048904419, 0.1366305649280548, -0.04931804537773132, 0.07242259383201599, 0.1486574411392212, -0.07077633589506149, 0.07762903720140457, -0.12045170366764069, -0.12859106063842773, 0.09266626089811325, 0.011787940748035908, 0.0829651728272438, 0.04641987010836601, 0.028651097789406776, 0.05126902461051941, 0.04517265781760216, 0.04532682150602341, 0.05619427561759949, -0.11496394872665405, 0.07823242247104645, 0.008991614915430546, -0.1918167769908905, -0.027399636805057526, -0.09008971601724625, 0.08355460315942764, 0.0007113930769264698, 0.12100622057914734, -0.03608888015151024, 0.11319220811128616, -0.03684284910559654, 0.015498606488108635, -0.03130309283733368, -0.1580456793308258, -0.0009196364553645253, -0.04583831876516342, 0.005965739022940397, -0.008378063328564167, 0.23622959852218628, -0.019403686746954918, 0.020302124321460724, 0.03706345707178116, 0.08312346041202545, 0.011911443434655666, 0.0034686587750911713, 0.14071707427501678, 0.09389068931341171, -0.05033082515001297, -0.07029570639133453, 0.09465329349040985, 0.022331232205033302, -0.06154777854681015, 0.12758882343769073, 0.07004008442163467, 0.07805091887712479, 0.09229323267936707, 0.00525510823354125, 0.048385001718997955, -0.10149682313203812, -0.22425489127635956, -0.04245093837380409, 0.04338166117668152, 0.030511466786265373, -0.009528924711048603, 0.16239036619663239, -0.007807712536305189, 0.05438727140426636, -0.0286843404173851, -0.0146601852029562, -0.1913124918937683, -0.12455741316080093, -0.08852022141218185, -0.06035058572888374, 0.034696102142333984, -0.019905485212802887, -0.019849425181746483, 0.10410076379776001, 0.03071051649749279, -0.029069487005472183, 0.1391187459230423, 0.007366697769612074, -0.012996077537536621, 0.016209116205573082, -0.007277622353285551, 0.015048467554152012, 0.04374290257692337, -0.018845049664378166, -0.17080430686473846, -0.003531701397150755, -0.05279584601521492, 0.0019921238999813795, -0.08741256594657898, 0.027429690584540367, -0.09686073660850525, -0.12442773580551147, -0.06279069930315018, 0.03428082540631294, -0.036186520010232925, 0.08635444939136505, -0.008224183693528175, 0.04980190843343735, 0.003494719509035349, 0.13008199632167816, -0.06635979562997818, -0.10865864157676697, -0.0572807714343071, 0.15417969226837158, 0.044320207089185715, 0.07846927642822266, -0.024377785623073578, 0.025428062304854393, -0.09749093651771545, 0.3293962776660919, 0.31430360674858093, -0.0364663191139698, 0.07512470334768295, 0.049478501081466675, 0.03143766522407532, 0.07872943580150604, 0.10979169607162476, 0.07679310441017151, 0.2867131531238556, -0.09095823019742966, -0.0540350005030632, -0.04679121449589729, -0.03458467498421669, -0.12083368748426437, 0.018574830144643784, 0.026663949713110924, -0.03865300863981247, -0.05562908574938774, 0.08287046104669571, -0.17973420023918152, 0.13521145284175873, 0.08000985532999039, -0.2064894735813141, -0.05751892551779747, -0.022878373041749, 0.15401794016361237, 0.030826324597001076, 0.11301977932453156, -0.03987570479512215, -0.09233494848012924, 0.0507376492023468, 0.02869175747036934, -0.20688870549201965, -0.07890072464942932, 0.10709986090660095, 0.004827416036278009, 0.06665920466184616, -0.034168489277362823, 0.019203342497348785, 0.09574570506811142, 0.06589552015066147, -0.023569602519273758, 0.026999808847904205, 0.021599261090159416, -0.10421290993690491, -0.05063549056649208, 0.027946757152676582, -0.005161251872777939, -0.1348150372505188, 0.025101054459810257, -0.1394609659910202, 0.04613953083753586, -0.0913073867559433, -0.008668651804327965, -0.005664225202053785, 0.0692635253071785, -0.0486815981566906, 0.048449039459228516, 0.06823991239070892, 0.01269973162561655, -0.031037641689181328, -0.048129696398973465, -0.011327249929308891, 0.06746246665716171, -0.10943937301635742, -0.1738860160112381, -0.08208338916301727, -0.07020771503448486, 0.0458214171230793, -0.008811558596789837, -0.1559021770954132, -0.0473502054810524, -0.11499189585447311, 0.015934964641928673, -0.14897628128528595, 0.045110028237104416, 0.051641616970300674, 0.04488077014684677, 0.021195126697421074, -0.024013997986912727, 0.037815019488334656, 0.04779626056551933, -0.15743644535541534, -0.09625527262687683 ]
null
null
transformers
BERT finetuned on wallstreetbets subreddit
{}
fill-mask
ThePixOne/retBERT
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
BERT finetuned on wallstreetbets subreddit
[]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 36 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06357412785291672, 0.00690077617764473, -0.008467365056276321, 0.020235946401953697, 0.12968459725379944, 0.03302915394306183, 0.09807441383600235, 0.07729126513004303, 0.10806342214345932, -0.009440856985747814, 0.15823203325271606, 0.20325462520122528, -0.03393663093447685, 0.18361465632915497, -0.065280981361866, -0.2617916762828827, 0.06820162385702133, 0.06229938939213753, -0.06546879559755325, 0.11254725605249405, 0.05687131732702255, -0.0869792252779007, 0.07119062542915344, -0.02728140354156494, -0.10962541401386261, 0.04230697825551033, 0.05219662934541702, -0.10162917524576187, 0.12035926431417465, 0.021910926327109337, 0.2123224288225174, 0.016079774126410484, -0.07168376445770264, -0.09227655827999115, 0.046415410935878754, -0.0007212258642539382, -0.07019324600696564, 0.04336128383874893, 0.01872076466679573, -0.07103253155946732, -0.03834306448698044, 0.05254431441426277, 0.027913549914956093, 0.0400172658264637, -0.146876260638237, -0.1195456013083458, -0.012633946724236012, 0.03010692074894905, 0.04268079623579979, 0.060200124979019165, 0.019220897927880287, 0.21056215465068817, -0.12365733087062836, 0.10502377897500992, 0.15344665944576263, -0.3129054605960846, 0.002867099829018116, 0.06838289648294449, 0.07103738188743591, -0.04424971342086792, -0.023489616811275482, 0.05856989696621895, 0.01071459986269474, 0.022148624062538147, 0.044038139283657074, -0.07715853303670883, -0.044328734278678894, 0.01152737345546484, -0.0813736543059349, -0.059741389006376266, 0.16159793734550476, -0.04301191866397858, 0.04482201114296913, 0.012044340372085571, -0.13646052777767181, -0.04112602770328522, -0.0220506452023983, -0.0066766394302248955, -0.034124407917261124, 0.043702688068151474, -0.030891025438904762, -0.01450628973543644, -0.11146465688943863, 0.02620311640202999, -0.2388714849948883, 0.25444263219833374, 0.025913868099451065, 0.06962989270687103, -0.19036757946014404, 0.04825044423341751, -0.032656311988830566, -0.12202991545200348, 0.05392675846815109, -0.09348990768194199, 0.023280160501599312, -0.004289025440812111, -0.06674729287624359, -0.024281397461891174, 0.07810400426387787, 0.19070357084274292, 0.07175330817699432, 0.038729287683963776, 0.022616418078541756, 0.10197576135396957, 0.015252627432346344, 0.0927167534828186, 0.02304348163306713, -0.03693375736474991, 0.058425456285476685, -0.11234977096319199, 0.02645397186279297, -0.06413000077009201, -0.13045111298561096, -0.03655298054218292, 0.026817962527275085, 0.07910523563623428, 0.039121128618717194, 0.05921967700123787, -0.09775126725435257, -0.00039136706618592143, 0.10266957432031631, -0.07596733421087265, 0.011552278883755207, -0.012669426389038563, 0.05071375519037247, 0.10554905235767365, 0.019699934870004654, -0.013951314613223076, -0.02595921792089939, 0.12606576085090637, -0.07414942234754562, -0.0338914580643177, -0.057671189308166504, -0.0717587098479271, 0.04045988991856575, -0.12276265770196915, 0.03537328913807869, -0.18295785784721375, -0.12786880135536194, 0.05937539413571358, 0.05743318796157837, 0.0075002796947956085, -0.02198064886033535, 0.027785688638687134, 0.0016502209473401308, 0.014095489867031574, -0.051991820335388184, -0.05198881775140762, -0.03936923295259476, 0.10392222553491592, 0.01174288708716631, 0.12164439260959625, -0.12003052234649658, 0.04834338277578354, -0.08534543961286545, 0.014317753724753857, -0.15386703610420227, -0.04163011908531189, -0.028065448626875877, 0.1477208137512207, -0.0017313070129603148, -0.044967345893383026, -0.1107422336935997, 0.03536098450422287, -0.008266955614089966, 0.174587219953537, -0.0640043392777443, -0.13445088267326355, 0.238468199968338, -0.10142715275287628, -0.15124346315860748, 0.08353633433580399, 0.00263609504327178, -0.00937309768050909, 0.05675121024250984, 0.109283447265625, 0.03876260668039322, -0.14184610545635223, 0.0926179513335228, 0.11292947828769684, -0.13638317584991455, -0.12760622799396515, 0.022435644641518593, -0.00732642924413085, -0.12322323024272919, 0.04600539803504944, 0.07860185950994492, 0.1112794280052185, -0.07251705229282379, -0.04695776477456093, -0.01390511728823185, -0.03809646517038345, 0.1488271951675415, 0.03689313679933548, 0.09978006780147552, -0.07845763862133026, -0.02166028693318367, -0.028704503551125526, -0.008114258758723736, 0.06035853177309036, 0.038866739720106125, -0.08729325234889984, 0.1360790729522705, -0.0566742941737175, 0.010620499961078167, -0.180439755320549, -0.12009736150503159, -0.0016330704092979431, 0.05382363870739937, -0.027322817593812943, 0.12601551413536072, 0.11395162343978882, -0.03539265692234039, -0.007137839682400227, -0.03099343180656433, 0.09945479035377502, 0.025088751688599586, -0.03798593953251839, -0.0885278731584549, 0.007986658252775669, -0.08452948927879333, -0.014333197847008705, 0.01457307767122984, 0.002566321985796094, 0.00016168280853889883, 0.13817834854125977, -0.0010485704988241196, 0.03795786574482918, -0.05177360028028488, 0.04081299155950546, -0.034957047551870346, 0.01450793631374836, 0.09004251658916473, -0.000576441758312285, -0.06362977623939514, 0.15637962520122528, -0.14581918716430664, 0.35973721742630005, 0.19387078285217285, -0.3088320195674896, -0.016066158190369606, 0.01958218589425087, -0.01481733750551939, -0.0028315566014498472, 0.056414127349853516, -0.015269504860043526, 0.04143389314413071, 0.014644528739154339, 0.15166911482810974, -0.015120322816073895, -0.02077334001660347, 0.027502890676259995, -0.0772947371006012, -0.04431246966123581, 0.03279697522521019, 0.09859511256217957, -0.13104848563671112, 0.17962734401226044, 0.2618531882762909, 0.004645867273211479, 0.13293692469596863, 0.01004520058631897, -0.0017370838904753327, 0.012384308502078056, -0.03448771312832832, -0.02204137109220028, 0.036397550255060196, -0.19078975915908813, -0.037138842046260834, 0.07815047353506088, -0.030133357271552086, 0.05545393377542496, -0.11835511028766632, -0.03323771432042122, 0.029111113399267197, 0.05119411274790764, -0.07707978785037994, 0.12659992277622223, 0.04097466543316841, 0.0710253193974495, 0.0037192106246948242, -0.07951492071151733, 0.11071927845478058, 0.007798798382282257, -0.038606591522693634, 0.15219268202781677, -0.13388566672801971, -0.3540363311767578, -0.1352192908525467, -0.186979740858078, 0.010174541734158993, 0.04617423936724663, 0.07225015014410019, -0.08286191523075104, -0.05899273604154587, 0.09581182152032852, -0.003480511251837015, -0.02892324887216091, 0.06940968334674835, -0.06169416382908821, 0.011217288672924042, -0.027349013835191727, -0.06347832828760147, -0.07560451328754425, -0.028934668749570847, -0.02698061801493168, 0.15005719661712646, -0.09269136935472488, 0.08664495497941971, 0.13057461380958557, 0.0057759047485888, 0.07016542553901672, -0.0002483248827047646, 0.18727800250053406, -0.06556744873523712, -0.005412220023572445, 0.18072476983070374, -0.05880381539463997, 0.1026553139090538, 0.1556575745344162, 0.020712751895189285, -0.05158966779708862, 0.00875561498105526, -0.05700365826487541, -0.11636948585510254, -0.1564129889011383, -0.11075278371572495, -0.13123051822185516, -0.011434734798967838, 0.05559059977531433, 0.04917698726058006, 0.13644592463970184, 0.08514466881752014, 0.03654884546995163, -0.018586870282888412, -0.06805557757616043, 0.0498523935675621, 0.17366138100624084, -0.030056441202759743, 0.1334504783153534, -0.036830224096775055, -0.14371523261070251, 0.059510327875614166, 0.0252390094101429, 0.12022719532251358, 0.10808205604553223, -0.004712763242423534, 0.03895212337374687, 0.16281089186668396, 0.1563887745141983, 0.16660696268081665, 0.025009524077177048, -0.057338543236255646, -0.004954719450324774, -0.009356440976262093, -0.058457158505916595, 0.02018333598971367, 0.15226905047893524, -0.1055486798286438, -0.051534514874219894, -0.145093634724617, 0.05207017809152603, 0.09619975835084915, 0.06738487631082535, -0.22444024682044983, 0.012990519404411316, 0.06385935842990875, 0.007989094592630863, -0.06883342564105988, 0.03757710009813309, -0.02228686586022377, -0.13463854789733887, 0.06749572604894638, -0.05030853673815727, 0.09488040208816528, 0.03667333722114563, 0.07960424572229385, -0.03426273167133331, -0.06298200786113739, 0.04128245636820793, 0.0669965147972107, -0.2517971694469452, 0.2858309745788574, -0.008294520899653435, -0.051533956080675125, -0.08108772337436676, -0.009787647053599358, 0.04465258866548538, 0.12031106650829315, 0.0992002934217453, 0.032960955053567886, -0.021231580525636673, -0.15835201740264893, -0.012746589258313179, 0.028594577684998512, 0.10843918472528458, -0.02854795753955841, -0.016072293743491173, -0.02141297422349453, -0.054353177547454834, -0.007548002991825342, 0.09288700670003891, 0.00021381601982284337, -0.13055965304374695, 0.0781245231628418, 0.056197553873062134, 0.0030072317458689213, -0.010090996511280537, -0.05736343935132027, -0.11168934404850006, 0.18835410475730896, -0.02566578984260559, -0.054508499801158905, -0.10566588491201401, -0.11198879778385162, 0.09742310643196106, -0.10951992124319077, 0.1106313019990921, -0.09603893011808395, 0.004723524209111929, -0.09463068842887878, -0.18368598818778992, 0.1582668572664261, -0.1269671618938446, -0.006225429475307465, -0.07936962693929672, 0.15473303198814392, -0.0639534443616867, 0.02866891399025917, 0.003773587988689542, 0.028899380937218666, -0.10591752827167511, -0.05296826362609863, 0.030782422050833702, -0.05678727477788925, 0.04187817499041557, 0.044521696865558624, -0.06555546075105667, -0.01695936545729637, 0.019335398450493813, 0.04292288422584534, 0.23622342944145203, 0.2353804111480713, -0.052708715200424194, 0.1417168378829956, 0.1806049793958664, -0.028383145108819008, -0.3410240709781647, -0.11411335319280624, -0.13666872680187225, -0.003915437962859869, 0.007809142116457224, -0.1327342689037323, 0.09345895051956177, -0.032195452600717545, -0.04637759178876877, 0.12031539529561996, -0.15053622424602509, -0.09246959537267685, 0.2436363250017166, 0.008315314538776875, 0.4863871932029724, -0.09246446192264557, -0.06652036309242249, -0.03995967283844948, -0.14584210515022278, 0.05183078721165657, 0.024809755384922028, 0.08875752240419388, -0.015901152044534683, 0.08785346150398254, 0.03374331444501877, -0.09186475723981857, 0.09677482396364212, -0.03436388820409775, 0.01234909426420927, -0.10329624265432358, -0.09800854325294495, 0.06808411329984665, -0.01401363592594862, -0.01322801224887371, 0.015540778636932373, 0.007425607182085514, -0.04579975828528404, -0.020523425191640854, -0.10680554807186127, 0.10987795889377594, 0.03320621699094772, -0.062224309891462326, 0.03879779577255249, -0.017917169257998466, -0.009515928104519844, 0.0034782900474965572, 0.1910327970981598, -0.008325624279677868, 0.17571797966957092, 0.08782124519348145, 0.0300945732742548, -0.16413554549217224, -0.0698731392621994, -0.050175994634628296, -0.0846821516752243, 0.08663877099752426, 0.008863678202033043, 0.05756894871592522, 0.11674199998378754, -0.021469993516802788, 0.040903765708208084, 0.11679863929748535, 0.013281558640301228, -0.03635825589299202, 0.15106870234012604, -0.2260168492794037, 0.040877439081668854, -0.024700431153178215, -0.002281648339703679, 0.06495176255702972, 0.0602131113409996, 0.08886897563934326, 0.04362958297133446, -0.03604341670870781, -0.0080631198361516, -0.011103777214884758, -0.059563565999269485, 0.05411487817764282, 0.060502372682094574, 0.05677267909049988, -0.13078919053077698, 0.0061960369348526, -0.020739618688821793, -0.2086004763841629, -0.016145547851920128, 0.07876262068748474, -0.12113361060619354, -0.10942773520946503, 0.0038382872007787228, 0.09838655591011047, -0.08085829019546509, -0.03981052711606026, -0.06243035942316055, -0.11349830776453018, 0.05747007206082344, 0.2176428735256195, 0.1169067993760109, 0.0780315026640892, -0.01989174261689186, -0.01007353700697422, -0.002601395593956113, -0.015962328761816025, 0.02512223646044731, 0.033555783331394196, -0.08247660100460052, 0.01702079549431801, -0.008670814335346222, 0.16094514727592468, -0.11036427319049835, -0.05973701551556587, -0.1687975972890854, 0.04017099365592003, -0.06963387876749039, -0.10318976640701294, -0.09188957512378693, -0.07771022617816925, 0.01973199099302292, -0.07843679189682007, -0.04138858988881111, -0.03797203674912453, -0.1261909008026123, 0.025888055562973022, 0.036669645458459854, -0.015996644273400307, -0.06865283101797104, -0.044388484209775925, 0.13997533917427063, -0.050470441579818726, 0.06897341459989548, 0.14721760153770447, -0.08223868906497955, 0.08987827599048615, -0.11864562332630157, -0.14169776439666748, 0.09844960272312164, 0.024490095674991608, 0.09209379553794861, 0.06073470786213875, 0.01991713047027588, 0.054184310138225555, 0.03840716555714607, 0.039452992379665375, 0.08403609693050385, -0.11287132650613785, 0.06809459626674652, 0.011329096741974354, -0.1869479864835739, -0.02397647127509117, -0.09611000120639801, 0.07828033715486526, 0.0018079385627061129, 0.11844782531261444, -0.0382930189371109, 0.10906048864126205, -0.0436384454369545, 0.014289634302258492, -0.02247670851647854, -0.16372942924499512, -0.004627579357475042, -0.048289380967617035, 0.012862684205174446, -0.013447915203869343, 0.23876222968101501, -0.024661000818014145, 0.024913061410188675, 0.03820062428712845, 0.0719211995601654, -0.003087579505518079, 0.0022083136718720198, 0.15241484344005585, 0.09013786166906357, -0.05284610390663147, -0.0749572142958641, 0.09104806929826736, 0.019679788500070572, -0.05150250345468521, 0.13582676649093628, 0.06253648549318314, 0.04935529828071594, 0.09676174819469452, 0.00193702126853168, 0.04410434886813164, -0.13451460003852844, -0.2456214725971222, -0.04142381623387337, 0.06802476942539215, 0.022965481504797935, 0.02864265814423561, 0.12449731677770615, -0.011933309026062489, 0.057093679904937744, -0.02881103754043579, -0.022149965167045593, -0.1927638053894043, -0.12258896976709366, -0.08218653500080109, -0.07139991223812103, 0.023771436884999275, -0.02313394285738468, -0.020754177123308182, 0.09821733087301254, 0.034732282161712646, -0.026418423280119896, 0.15178021788597107, -0.003468479262664914, -0.011058829724788666, 0.016801699995994568, -0.01001247763633728, 0.0172751322388649, 0.032349079847335815, -0.03294634073972702, -0.16857078671455383, 0.004473234061151743, -0.05259554460644722, 0.0047274017706513405, -0.08785852044820786, 0.02359730750322342, -0.09015554189682007, -0.13330627977848053, -0.07091958820819855, 0.0264219231903553, -0.04996372386813164, 0.09263461828231812, -0.013066912069916725, 0.05031539872288704, 0.0013845227658748627, 0.1200626865029335, -0.07606708258390427, -0.09816689789295197, -0.04547613114118576, 0.1901932656764984, 0.041288163512945175, 0.0920717865228653, -0.015353480353951454, 0.030952494591474533, -0.11943032592535019, 0.34167152643203735, 0.314802885055542, -0.049354273825883865, 0.0750916451215744, 0.054602526128292084, 0.03442682698369026, 0.07451198995113373, 0.1279372125864029, 0.0763775110244751, 0.2879911959171295, -0.09316780418157578, -0.04345858469605446, -0.044293951243162155, -0.03673816844820976, -0.1208759993314743, 0.01128399558365345, 0.03953966125845909, -0.03837299346923828, -0.0634862631559372, 0.07261399179697037, -0.17381651699543, 0.12662146985530853, 0.057949863374233246, -0.21046149730682373, -0.04841303452849388, -0.027771536260843277, 0.17428803443908691, 0.017816947773098946, 0.1136963814496994, -0.03833884000778198, -0.08398560434579849, 0.062350668013095856, 0.022619010880589485, -0.20338550209999084, -0.06756751984357834, 0.10970646142959595, -0.012227135710418224, 0.05940033122897148, -0.017002668231725693, 0.031783878803253174, 0.0780811533331871, 0.07013798505067825, -0.014899644069373608, 0.02075999788939953, 0.023412270471453667, -0.10955478996038437, -0.07060349732637405, 0.01478694099932909, -0.0013840675819665194, -0.11833599954843521, 0.02185012586414814, -0.16461415588855743, 0.04151973873376846, -0.09669603407382965, -0.027114197611808777, -0.0026749002281576395, 0.05793723464012146, -0.04355005547404289, 0.04500356316566467, 0.06464733183383942, 0.018565697595477104, -0.0383153110742569, -0.05022261664271355, -0.011393008753657341, 0.0629846602678299, -0.11954975128173828, -0.17594216763973236, -0.08240210264921188, -0.07172682136297226, 0.04485165327787399, -0.010793168097734451, -0.13988232612609863, -0.04391428083181381, -0.10527841746807098, 0.032555706799030304, -0.15290100872516632, 0.04201599210500717, 0.04696520045399666, 0.04337937757372856, 0.017507996410131454, -0.04434172064065933, 0.04486740753054619, 0.049446675926446915, -0.155558243393898, -0.09162718802690506 ]
null
null
null
#Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
TheReverendWes/DialoGPT-small-rick
[ "conversational", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #conversational #region-us
#Rick DialoGPT Model
[]
[ "TAGS\n#conversational #region-us \n" ]
[ 10 ]
[ "passage: TAGS\n#conversational #region-us \n" ]
[ 0.04639962688088417, 0.010033470578491688, -0.010517087765038013, -0.09196841716766357, 0.07825888693332672, 0.025966141372919083, 0.0816626027226448, 0.03981694206595421, 0.1679982990026474, -0.043665021657943726, 0.11948301643133163, 0.05959230661392212, -0.03424782678484917, -0.034178510308265686, -0.03257700800895691, -0.1518038958311081, 0.018241867423057556, -0.03490595519542694, 0.09715951234102249, 0.046818334609270096, -0.022061990574002266, -0.08366407454013824, 0.008475017733871937, -0.06431017816066742, -0.04472750052809715, 0.10980460792779922, 0.019003495573997498, -0.011012797243893147, 0.15410423278808594, -0.0074986726976931095, 0.14888158440589905, 0.009007624350488186, -0.1188141256570816, -0.28230994939804077, 0.02435300685465336, -0.021203843876719475, -0.07150904089212418, 0.0029600884299725294, 0.03619120270013809, -0.10715486854314804, 0.004403713159263134, 0.13426031172275543, 0.04114455729722977, 0.10832296311855316, -0.2866811156272888, -0.07511094957590103, -0.01938454620540142, -0.07511914521455765, 0.0601775124669075, 0.018052373081445694, -0.038240283727645874, 0.1376611739397049, -0.2073964774608612, 0.014560118317604065, -0.006958445999771357, -0.24119918048381805, 0.02869522012770176, 0.1752537488937378, 0.009645363315939903, 0.1909479796886444, -0.06857001781463623, 0.11254259198904037, 0.02171272039413452, -0.030739247798919678, -0.2002624124288559, -0.06604453176259995, -0.07298440486192703, 0.1499089151620865, -0.045723117887973785, -0.0578390471637249, 0.34621670842170715, 0.040796760469675064, 0.04295415058732033, 0.07716298848390579, -0.04492316022515297, -0.055111076682806015, 0.04104352369904518, -0.046185605227947235, -0.031033141538500786, 0.15494981408119202, 0.09487586468458176, -0.09688284248113632, -0.14496852457523346, 0.03130095824599266, -0.21760596334934235, 0.1465475857257843, -0.02235398069024086, 0.11142805963754654, -0.2653426229953766, -0.05278157815337181, -0.14670948684215546, -0.002750956919044256, 0.02518310956656933, -0.09457869827747345, -0.04452421888709068, -0.026268228888511658, 0.0005124040762893856, 0.050814010202884674, 0.048315394669771194, 0.07558848708868027, -0.06942778080701828, 0.05394355580210686, -0.06892558932304382, 0.12330366671085358, 0.11638157814741135, 0.05569762736558914, 0.13839077949523926, 0.022933602333068848, -0.11806239187717438, -0.17838133871555328, -0.019715335220098495, -0.0601036474108696, -0.10126364231109619, 0.08322658389806747, -0.1737145632505417, 0.1338171660900116, 0.0012900691945105791, -0.049971867352724075, -0.12574702501296997, 0.08353690057992935, -0.10762350261211395, 0.015366755425930023, -0.07289839535951614, 0.014196229167282581, 0.014544172212481499, 0.09311159700155258, -0.14271733164787292, 0.045371901243925095, 0.08196624368429184, 0.008659054525196552, -0.10070403665304184, -0.020334109663963318, -0.061532121151685715, 0.07091420143842697, 0.0486479289829731, -0.06415147334337234, 0.032452572137117386, -0.09036554396152496, -0.024567680433392525, -0.027267752215266228, -0.025782402604818344, -0.021218160167336464, 0.07835555076599121, -0.055066075176000595, 0.09253078699111938, -0.04640072211623192, -0.041711848229169846, -0.11547397822141647, -0.08965431153774261, 0.08147980272769928, 0.027172693982720375, 0.06959657371044159, -0.12756861746311188, 0.02954922616481781, -0.07777036726474762, 0.09570813924074173, -0.006574113853275776, -0.0012808392057195306, 0.004620495717972517, 0.1427043229341507, 0.08222948759794235, 0.09464042633771896, -0.22559843957424164, 0.03648834675550461, -0.12657727301120758, 0.24771882593631744, -0.12381736189126968, -0.044696640223264694, 0.2730959355831146, -0.02501245029270649, -0.1168116107583046, 0.06332620233297348, 0.0016639905516058207, 0.08099539577960968, 0.11538345366716385, 0.41944384574890137, -0.22503520548343658, -0.10161785036325455, 0.09927807748317719, 0.24778489768505096, -0.14139696955680847, -0.0006701856036670506, 0.06758461147546768, -0.15533412992954254, -0.136672705411911, -0.006923824083060026, 0.1993810385465622, 0.04563012346625328, -0.09049045294523239, -0.0581219419836998, 0.07278088480234146, 0.00251517235301435, 0.13227328658103943, 0.04847939684987068, 0.010761215351521969, -0.09316329658031464, 0.046553950756788254, -0.037219900637865067, 0.036988820880651474, 0.1257375329732895, -0.011618656106293201, -0.05261800438165665, 0.03806666284799576, 0.013964165933430195, 0.033028051257133484, -0.1064353734254837, -0.12926249206066132, -0.05708497390151024, 0.1741386204957962, 0.1096852496266365, 0.20943976938724518, 0.08182037621736526, -0.12570415437221527, 0.0029703727923333645, 0.045532144606113434, 0.05547904968261719, 0.04228522256016731, 0.019039174541831017, -0.04716009274125099, 0.13804899156093597, -0.0858609527349472, 0.010859129019081593, -0.09182798862457275, -0.042282480746507645, 0.13651718199253082, 0.041210491210222244, 0.07498065382242203, -0.010899536311626434, 0.015351326204836369, 0.028546204790472984, 0.08829564601182938, -0.004360926803201437, 0.10361789911985397, -0.01836715266108513, -0.07148222625255585, 0.15339210629463196, -0.13760370016098022, 0.13399995863437653, 0.11577713489532471, -0.25445905327796936, 0.024489950388669968, -0.16331978142261505, -0.048566605895757675, -0.0037442597094923258, 0.09262824058532715, -0.07037632167339325, 0.1059286817908287, 0.009663842618465424, -0.008387367241084576, -0.007202888373285532, 0.011079453863203526, -0.11152531206607819, -0.05292370170354843, -0.10301605612039566, 0.10126874595880508, 0.05541692301630974, -0.14166110754013062, 0.16527962684631348, 0.3414488136768341, 0.17333562672138214, 0.27744242548942566, -0.057956866919994354, -0.03626478835940361, 0.010029622353613377, -0.00044385663932189345, -0.09770774841308594, 0.09110020101070404, -0.31978389620780945, -0.03541385754942894, 0.02267313003540039, 0.007412234786897898, 0.1255423128604889, -0.13101543486118317, -0.09881267696619034, -0.010800042189657688, 0.025675276294350624, -0.03900112956762314, 0.03929384797811508, -0.014210461638867855, 0.08690384775400162, 0.0927920937538147, -0.036249399185180664, 0.14510478079319, -0.011207361705601215, -0.05273498222231865, 0.03845807909965515, -0.19859567284584045, -0.2588069438934326, -0.03773140534758568, -0.13656504452228546, -0.0028873272240161896, 0.04133884236216545, 0.03800595924258232, -0.1847713142633438, -0.0074713281355798244, 0.11246740072965622, 0.11249840259552002, -0.2133566290140152, -0.06725399941205978, -0.004905305802822113, 0.07729097455739975, -0.13444942235946655, -0.017578812316060066, -0.031222449615597725, -0.08281540870666504, -0.04920298978686333, 0.03066551499068737, -0.13418962061405182, 0.06677845120429993, 0.2178623527288437, 0.12527887523174286, 0.049752127379179, -0.0385160967707634, 0.16139256954193115, -0.15277819335460663, -0.1438697725534439, 0.042516376823186874, -0.07740364223718643, 0.05806797742843628, 0.21390840411186218, 0.032026711851358414, -0.07256529480218887, -0.0132212582975626, -0.012072612531483173, -0.07205180823802948, -0.24367475509643555, -0.10030107945203781, -0.09424323588609695, 0.19197365641593933, -0.0990254282951355, 0.03203873708844185, 0.14764715731143951, -0.06457089632749557, 0.08433501422405243, -0.19763901829719543, -0.010215999558568, 0.01770659349858761, 0.22750094532966614, -0.15916487574577332, 0.00014442045358009636, -0.04882880300283432, -0.05247480422258377, 0.09052883088588715, 0.11802905797958374, -0.02051357924938202, 0.273624449968338, 0.16127364337444305, 0.06911300867795944, 0.07706662267446518, 0.10484999418258667, -0.04469823092222214, 0.0611993744969368, -0.05855664238333702, -0.006833828054368496, 0.004713037051260471, -0.047871965914964676, 0.016841065138578415, 0.2382238805294037, -0.24595330655574799, 0.03640567511320114, -0.16953878104686737, 0.13202151656150818, -0.11020241677761078, 0.08590279519557953, 0.07235612720251083, 0.0316399447619915, 0.1150963231921196, 0.030863238498568535, -0.08577798306941986, 0.16981296241283417, 0.10846661031246185, -0.12081541866064072, -0.06076256185770035, 0.06473146378993988, 0.08517883718013763, -0.04448635131120682, 0.12020564824342728, -0.21790917217731476, -0.14890499413013458, 0.02830875851213932, 0.09715487062931061, -0.20258614420890808, 0.30610308051109314, 0.03891199454665184, -0.15730910003185272, -0.0673779845237732, -0.12655381858348846, -0.05232610926032066, 0.05670171231031418, 0.10477700084447861, 0.042930278927087784, -0.0985770970582962, -0.04290907457470894, 0.04275950416922569, -0.004747000988572836, 0.19975899159908295, 0.003670648904517293, -0.15413632988929749, -0.04198495298624039, 0.03424621373414993, -0.06237080693244934, -0.0023813066072762012, 0.003565198974683881, -0.1303248107433319, 0.024640655145049095, 0.050463344901800156, -0.016641467809677124, 0.040866199880838394, 0.10756327211856842, -0.014962024055421352, 0.07353220880031586, 0.038472678512334824, 0.04593467339873314, -0.07964198291301727, -0.15523113310337067, 0.016211804002523422, -0.023164959624409676, -0.022165657952427864, -0.09395032376050949, -0.08139438927173615, -0.13410617411136627, -0.09676485508680344, 0.10384535789489746, -0.06187068298459053, 0.1079651489853859, -0.04443218186497688, 0.22777260839939117, -0.01876998320221901, 0.0707821175456047, -0.0014519646065309644, 0.017383376136422157, -0.04173330217599869, -0.05079682916402817, 0.13796241581439972, -0.16388940811157227, 0.03631523996591568, 0.1287132054567337, 0.020674366503953934, -0.011654446832835674, -0.020724603906273842, -0.10179019719362259, 0.2584770619869232, 0.2532082200050354, 0.008431713096797466, 0.20354236662387848, 0.2779310643672943, -0.03405376151204109, -0.23847854137420654, -0.06443439424037933, -0.24608860909938812, -0.10001913458108902, 0.11060019582509995, -0.17335651814937592, 0.048826683312654495, 0.04266653582453728, -0.057426001876592636, 0.15894554555416107, -0.26584717631340027, 0.018543260172009468, 0.16676761209964752, -0.08710185438394547, 0.556063711643219, -0.08401168882846832, -0.1706315577030182, 0.028705457225441933, -0.11849171668291092, 0.1369921863079071, -0.059715449810028076, 0.05587036535143852, 0.06141930818557739, 0.1030082255601883, 0.0791819840669632, 0.024286393076181412, 0.2086247056722641, -0.030721409246325493, -0.011694102548062801, -0.08707722276449203, -0.2644178867340088, 0.022543715313076973, 0.014050757512450218, -0.15220579504966736, 0.06714692711830139, -0.03763264790177345, -0.12996013462543488, -0.00833086110651493, -0.09469889849424362, -0.03442717716097832, 0.05498296394944191, -0.05582961067557335, -0.04872966185212135, -0.02503621205687523, -0.12678851187229156, 0.0248456709086895, 0.2782087028026581, -0.12460757046937943, 0.20962512493133545, 0.03189510107040405, 0.0826069712638855, -0.11556048691272736, -0.040044378489255905, -0.08514855802059174, -0.04452597722411156, 0.06780480593442917, -0.04552831873297691, 0.01640397682785988, 0.13416710495948792, -0.0347602553665638, 0.11645430326461792, 0.054678838700056076, -0.04116342216730118, 0.0018401920096948743, 0.12186210602521896, -0.19740338623523712, -0.20969319343566895, -0.04371960833668709, 0.03845932334661484, 0.13964368402957916, 0.008396233431994915, 0.07325775921344757, 0.15447303652763367, -0.012220986187458038, 0.017707353457808495, 0.0063921562395989895, -0.10938490182161331, -0.10873667150735855, 0.054379791021347046, 0.013983300887048244, -0.09227976948022842, 0.18084652721881866, 0.03675472363829613, -0.22814933955669403, -0.07893285900354385, 0.202446848154068, -0.030374113470315933, -0.05819692462682724, -0.21532276272773743, 0.09139268845319748, -0.01710049994289875, -0.04101932793855667, 0.09945792704820633, -0.04600068926811218, -0.011849126778542995, 0.2088441699743271, 0.005288805812597275, 0.11521650105714798, 0.02289087511599064, -0.014231379143893719, 0.18881471455097198, -0.05520625784993172, -0.1449955552816391, -0.09115351736545563, -0.029631074517965317, -0.0884295105934143, -0.029015889391303062, 0.16390375792980194, -0.09958739578723907, -0.19185857474803925, -0.27840521931648254, 0.10097097605466843, -0.09882879257202148, -0.14626872539520264, -0.06603177636861801, -0.08046457916498184, 0.06351024657487869, 0.0007621019030921161, -0.021881122142076492, -0.08205366134643555, -0.1492452621459961, 0.13080784678459167, 0.1057455912232399, 0.08206558227539062, -0.016450341790914536, 0.016596172004938126, 0.19690342247486115, 0.026534590870141983, 0.14594069123268127, 0.17451751232147217, -0.05074344202876091, 0.15319328010082245, -0.20988412201404572, -0.07780496776103973, 0.11590725928544998, -0.025719670578837395, 0.04735324904322624, 0.19499944150447845, -0.11897840350866318, -0.006798566784709692, 0.019707852974534035, 0.05558319017291069, -0.0690290778875351, -0.07785819470882416, 0.07048150897026062, 0.04877069592475891, -0.25241997838020325, -0.007160451728850603, -0.17783494293689728, 0.10817551612854004, -0.04739189147949219, -0.0037109223194420338, 0.0740538164973259, 0.08902791887521744, 0.06466685980558395, 0.05149034038186073, 0.03837009146809578, -0.11509545892477036, 0.045814137905836105, -0.08034229278564453, 0.009427596814930439, -0.0007844272186048329, 0.3414205014705658, -0.04865121468901634, -0.012500427663326263, 0.060768552124500275, 0.13266195356845856, -0.040937576442956924, -0.004120932426303625, 0.07744668424129486, 0.11807578802108765, -0.07814747095108032, -0.13197903335094452, 0.0416797399520874, -0.044970154762268066, -0.03262122720479965, 0.10802089422941208, 0.04302893206477165, 0.08631748706102371, 0.037648510187864304, -0.020762383937835693, -0.009974390268325806, 0.06859339028596878, -0.17212650179862976, 0.037296079099178314, -0.045919448137283325, -0.1130448579788208, 0.08897913247346878, 0.16728170216083527, -0.00013685932208318263, 0.05126078054308891, -0.09991825371980667, -0.01692856475710869, -0.12863412499427795, -0.03461017832159996, 0.042484767735004425, -0.11316732317209244, 0.051238011568784714, -0.04773739352822304, 0.047609876841306686, 0.19828583300113678, 0.02608226239681244, -0.07328592985868454, 0.11490452289581299, -0.07990892231464386, -0.14335277676582336, -0.0557478666305542, 0.0005818892968818545, 0.15513694286346436, -0.12246192991733551, -0.07545425742864609, -0.12798281013965607, -0.088837631046772, -0.08355767279863358, 0.0524747408926487, -0.04950229078531265, -0.11297126859426498, -0.17672379314899445, -0.03879760950803757, -0.02510312758386135, 0.11135838180780411, -0.112035371363163, 0.23329482972621918, -0.01199720986187458, 0.05557756870985031, 0.02991287223994732, 0.24918290972709656, -0.022521326318383217, 0.10415615141391754, -0.02151179313659668, 0.05253418907523155, -0.10356061160564423, 0.14413990080356598, -0.0780073031783104, -0.022134484723210335, -0.07592874020338058, 0.26220473647117615, 0.24513402581214905, -0.07298863679170609, -0.015757491812109947, -0.050771016627550125, 0.0689423605799675, 0.1046677827835083, 0.06776474416255951, 0.01116007100790739, 0.30758199095726013, -0.07274506241083145, 0.028703520074486732, 0.05941295251250267, 0.025450630113482475, -0.009023242630064487, -0.00031586099066771567, 0.07820562273263931, -0.02096210978925228, -0.08039145916700363, 0.15984933078289032, -0.2520323693752289, 0.12485187500715256, -0.00880131684243679, -0.2363835871219635, -0.03988468647003174, -0.07471023499965668, 0.1589323729276657, -0.03234702721238136, 0.1501270979642868, -0.02978230081498623, -0.21741677820682526, -0.12460041046142578, 0.03790215402841568, -0.33398324251174927, -0.20619212090969086, 0.13948045670986176, 0.0760318860411644, 0.023805538192391396, -0.021741479635238647, 0.025529982522130013, 0.0032104600686579943, 0.04961394891142845, 0.03460799530148506, 0.02477840706706047, 0.08047868311405182, -0.07015020400285721, -0.22745169699192047, 0.017628446221351624, 0.04063417389988899, -0.024304617196321487, 0.08310901373624802, -0.1729861944913864, -0.011919168755412102, 0.1467619687318802, -0.04285425320267677, 0.047341711819171906, 0.06456191837787628, -0.14956869184970856, 0.022001322358846664, 0.02662065252661705, 0.04635908454656601, -0.03859921917319298, 0.035746656358242035, -0.052021801471710205, 0.009805927984416485, -0.16483484208583832, -0.14164559543132782, 0.07857505232095718, -0.07611528784036636, 0.14186875522136688, -0.05144434794783592, -0.03638307377696037, 0.02091086283326149, 0.01707182452082634, 0.19947703182697296, -0.05914916470646858, 0.018417075276374817, 0.1404166966676712, 0.018141740933060646, 0.03283080831170082, -0.22961781919002533, 0.11031536012887955, 0.013199768029153347, -0.014010419137775898, -0.01816931739449501 ]
null
null
transformers
# Hemione Chat Bot
{"tags": ["conversational"]}
text-generation
TheTUFGuy/HermioneChatBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Hemione Chat Bot
[ "# Hemione Chat Bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Hemione Chat Bot" ]
[ 51, 5 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Hemione Chat Bot" ]
[ 0.006759597919881344, 0.03342914581298828, -0.006650565192103386, 0.010154136456549168, 0.1318630874156952, -0.009665263816714287, 0.1456747055053711, 0.15045636892318726, 0.04800046607851982, -0.03998596593737602, 0.09165932238101959, 0.22649279236793518, -0.0031150737777352333, 0.11982857435941696, -0.0666850358247757, -0.2163631021976471, 0.08983873575925827, 0.015906868502497673, -0.03127824887633324, 0.10354645550251007, 0.07546485215425491, -0.03481137007474899, 0.09815918654203415, 0.00893673300743103, -0.21205276250839233, 0.013070422224700451, 0.032054778188467026, -0.08557461202144623, 0.11390481144189835, 0.08447756618261337, 0.024841608479619026, 0.00035079949884675443, -0.07912292331457138, -0.14080041646957397, 0.04656381905078888, 0.006355930585414171, -0.05209266394376755, 0.053691599518060684, -0.009646638296544552, -0.10208267718553543, 0.17773059010505676, 0.09986759722232819, 0.0012343352427706122, 0.09185320883989334, -0.1098453477025032, 0.03368426486849785, -0.007794629316776991, 0.03644996136426926, 0.05128374323248863, 0.12218354642391205, -0.04356246069073677, 0.19259615242481232, -0.07811827957630157, 0.08426006883382797, 0.14725326001644135, -0.3374481797218323, -0.035872068256139755, 0.09328003227710724, 0.05441392958164215, 0.049009475857019424, -0.07502362132072449, 0.061292052268981934, 0.014893729239702225, 0.020499439910054207, -0.06516693532466888, -0.06041812151670456, -0.12140869349241257, -0.02441622130572796, -0.07603391259908676, -0.001571947243064642, 0.2361076921224594, -0.040574900805950165, 0.07119665294885635, -0.023081453517079353, -0.11311648041009903, 0.023380743339657784, -0.04652426764369011, -0.033436164259910583, -0.06196790561079979, 0.07796429097652435, -0.015924228355288506, -0.1034320667386055, -0.12053202092647552, 0.0032743073534220457, -0.14202912151813507, 0.12859110534191132, 0.05075971409678459, 0.04063326120376587, -0.2323615700006485, 0.06603165715932846, 0.07383480668067932, -0.07089649140834808, 0.014042058028280735, -0.1010170429944992, 0.012060623615980148, 0.025159602984786034, -0.030501307919621468, -0.061380092054605484, 0.12830868363380432, 0.13332848250865936, -0.08955565094947815, 0.03611837327480316, -0.03194303810596466, 0.06700915843248367, 0.046472739428281784, -0.011304344981908798, 0.021220700815320015, -0.0010507752886041999, 0.06596282124519348, -0.11748630553483963, 0.01757044717669487, -0.04399357736110687, -0.16031718254089355, 0.005553936120122671, 0.020873481407761574, 0.0549272857606411, 0.031606145203113556, 0.1056489422917366, 0.0019769398495554924, -0.03529173880815506, 0.04418130964040756, -0.01777646690607071, -0.014001025818288326, 0.02584291808307171, -0.01669340953230858, 0.08313941210508347, 0.030289679765701294, 0.02683134935796261, -0.12347984313964844, -0.03763848915696144, -0.07940266281366348, 0.019910434260964394, -0.02341526933014393, -0.000004652142706618179, 0.028538711369037628, 0.052564144134521484, -0.02450903318822384, -0.17114302515983582, -0.0231804009526968, -0.006509309634566307, -0.009166333824396133, -0.06251326203346252, -0.06295055150985718, -0.07970049977302551, -0.015358160249888897, 0.04864250123500824, -0.028313452377915382, -0.07313671708106995, -0.041396062821149826, 0.08520474284887314, -0.07603299617767334, 0.10998497158288956, -0.10269961506128311, 0.05870014429092407, -0.08586810529232025, -0.052818413823843, -0.09601300209760666, 0.09043563157320023, -0.02375292032957077, 0.1380036175251007, -0.005901239346712828, 0.01389186643064022, -0.08543050289154053, 0.047555506229400635, -0.05316462740302086, 0.26339519023895264, -0.09145283699035645, -0.1276387721300125, 0.314399778842926, -0.05074576660990715, -0.1601686179637909, 0.12899821996688843, -0.005083972122520208, 0.054805539548397064, 0.11216507852077484, 0.21479234099388123, -0.06918948143720627, 0.03481947258114815, 0.03612176328897476, 0.07501782476902008, -0.14408789575099945, -0.002887994982302189, -0.021837150678038597, -0.0003178491024300456, -0.0172109492123127, 0.013625218532979488, 0.18759141862392426, 0.07699309289455414, -0.04650285467505455, -0.03264838829636574, -0.00003147621828247793, -0.006603703834116459, 0.033749449998140335, 0.0017734348075464368, 0.09750784188508987, -0.07299503684043884, -0.04593551531434059, -0.038864970207214355, 0.03056575544178486, -0.014955871738493443, 0.03367253392934799, -0.09846443682909012, 0.057576823979616165, 0.08369803428649902, 0.08408263325691223, -0.1252557784318924, -0.09815903007984161, -0.035358406603336334, 0.1088080182671547, 0.08933695405721664, 0.12960082292556763, 0.05770048126578331, -0.045339588075876236, 0.0031590317375957966, 0.04318149387836456, 0.1666887104511261, -0.024582667276263237, -0.0730392187833786, -0.13609497249126434, 0.0900663286447525, -0.04602237418293953, 0.20247142016887665, -0.0816589966416359, 0.029803724959492683, 0.03755401819944382, 0.15596026182174683, -0.009812341071665287, 0.02178659848868847, 0.018970446661114693, -0.07047225534915924, -0.06931117922067642, -0.015688544139266014, 0.07499492913484573, -0.0008318622712977231, -0.08588479459285736, 0.2015846222639084, -0.10238110274076462, 0.13920222222805023, 0.19128981232643127, -0.20332805812358856, -0.0035160973202437162, -0.051687344908714294, -0.044072557240724564, 0.0031969284173101187, 0.06314722448587418, -0.02464328147470951, 0.19281774759292603, -0.023134330287575722, 0.16055400669574738, -0.02177630178630352, -0.03434906527400017, -0.029653044417500496, -0.08244994282722473, -0.007068306673318148, 0.0772673636674881, 0.0970916748046875, -0.22969265282154083, 0.14900383353233337, 0.10645430535078049, 0.05941719189286232, 0.2237110733985901, 0.05922330170869827, 0.057087525725364685, 0.06238583102822304, 0.0031527169048786163, -0.047810621559619904, -0.09233922511339188, -0.3052661120891571, -0.03748394921422005, 0.04128972068428993, 0.010101813822984695, 0.11242461204528809, -0.06802541762590408, -0.03768123686313629, -0.048716649413108826, -0.007584990002214909, 0.09239967912435532, 0.11232956498861313, 0.05428018420934677, 0.1529797613620758, 0.007731962483376265, -0.05327422544360161, 0.05963063985109329, 0.011001411825418472, -0.08487537503242493, 0.16045533120632172, -0.15033040940761566, -0.37709346413612366, -0.06331340223550797, -0.12367216497659683, -0.0718684196472168, 0.06042347848415375, 0.13671304285526276, -0.17781125009059906, -0.007589255925267935, 0.036843035370111465, 0.09769225865602493, -0.03757370263338089, -0.01277126744389534, -0.03425556793808937, 0.038446951657533646, -0.07393985241651535, -0.1084299311041832, -0.05599620193243027, -0.053231239318847656, -0.08864174038171768, 0.1477624624967575, -0.13283784687519073, 0.033153411000967026, 0.1771746128797531, 0.03863171115517616, 0.06065550819039345, 0.002840558299794793, 0.19641144573688507, -0.11427833139896393, 0.016275528818368912, 0.14148519933223724, 0.021013982594013214, 0.05385780707001686, 0.11127658933401108, 0.00392972631379962, -0.1109849065542221, 0.03383876010775566, -0.01604282297194004, -0.05301002413034439, -0.24923187494277954, -0.16085907816886902, -0.09843834489583969, 0.0803295224905014, -0.012364691123366356, 0.07795754820108414, 0.13778604567050934, 0.017408056184649467, -0.0558786615729332, -0.01143475528806448, 0.06801388412714005, 0.08025949448347092, 0.18393491208553314, -0.06935705244541168, 0.1416284441947937, -0.025504877790808678, -0.11719668656587601, 0.0891122817993164, -0.031980060040950775, 0.07150591164827347, 0.05898038670420647, 0.053400635719299316, 0.009472201578319073, 0.07665706425905228, 0.12982693314552307, 0.011353788897395134, 0.05141052231192589, -0.05486134812235832, -0.02304036356508732, -0.022822344675660133, -0.11494123935699463, 0.04375718906521797, 0.05718228965997696, -0.17044541239738464, -0.01206969190388918, 0.03539765998721123, 0.11652863770723343, 0.06044245511293411, 0.06322527676820755, -0.13961388170719147, -0.04844285920262337, 0.07953765988349915, -0.05770076811313629, -0.12840913236141205, 0.09115950018167496, 0.060541510581970215, -0.1525936871767044, 0.017928190529346466, -0.01704324409365654, 0.10047236829996109, -0.13185591995716095, 0.10510732233524323, -0.11601679027080536, -0.06234676018357277, 0.029316116124391556, 0.11849270015954971, -0.22860713303089142, 0.14168405532836914, -0.017031701281666756, -0.08207728713750839, -0.10487263649702072, -0.02077643945813179, 0.026447409763932228, 0.08574087917804718, 0.0804450511932373, 0.01777932047843933, 0.04323609545826912, 0.010845644399523735, -0.022110622376203537, 0.03004707582294941, 0.09100163727998734, -0.021471219137310982, -0.05844892933964729, -0.05631230026483536, -0.034517548978328705, -0.04449563845992088, -0.07563245296478271, -0.008760830387473106, -0.18111443519592285, 0.09858589619398117, 0.06845768541097641, 0.108160100877285, 0.02629903331398964, -0.013547541573643684, 0.0240405835211277, 0.3320119082927704, 0.034122176468372345, -0.06978017836809158, -0.08437348902225494, 0.014828568324446678, -0.007846656255424023, -0.06953702867031097, 0.006483450997620821, -0.06690311431884766, 0.07952681183815002, -0.09131772071123123, -0.1771310418844223, 0.12567059695720673, -0.10687121003866196, -0.013723471201956272, -0.02477649226784706, 0.2010333091020584, 0.02542310580611229, 0.01324098464101553, 0.0532623790204525, -0.0300667192786932, -0.11620569229125977, -0.06972324103116989, 0.014760706573724747, 0.07999539375305176, -0.006226771976798773, 0.020861715078353882, -0.06355918943881989, -0.09786625951528549, -0.07861402630805969, -0.009120743721723557, 0.32886436581611633, 0.11557170748710632, -0.03227873891592026, 0.14106014370918274, 0.11837342381477356, -0.03862576559185982, -0.2611349821090698, -0.10974539071321487, -0.10888836532831192, -0.08050373941659927, -0.12136964499950409, -0.1788536161184311, 0.07520496100187302, 0.0032268271315842867, -0.00732045155018568, 0.11440302431583405, -0.25840815901756287, -0.06759846955537796, 0.12795516848564148, -0.049723751842975616, 0.4256719946861267, -0.08298549056053162, -0.09336268156766891, -0.06971237808465958, -0.16359804570674896, 0.13600873947143555, -0.08026015013456345, 0.1108023002743721, -0.01782842166721821, 0.14642010629177094, 0.03661051020026207, 0.007815241813659668, 0.05408414080739021, 0.05080032721161842, -0.05467808246612549, -0.11454784125089645, -0.05893450602889061, -0.019051523879170418, 0.016357917338609695, 0.055691298097372055, -0.04567055031657219, -0.003012046217918396, -0.09700746834278107, -0.008079505525529385, -0.1081109493970871, 0.04166172072291374, 0.01644350215792656, -0.036927152425050735, -0.03125907853245735, -0.039303939789533615, -0.023339390754699707, 0.052990078926086426, 0.2005625069141388, -0.07519330084323883, 0.19767455756664276, 0.08963776379823685, 0.09967540204524994, -0.24049542844295502, -0.00024189775285776705, -0.04945435747504234, -0.03263431042432785, 0.05606613680720329, -0.10713264346122742, 0.05470944568514824, 0.09260160475969315, -0.051380179822444916, 0.10657601058483124, 0.06460466980934143, -0.04614735394716263, 0.009783911518752575, 0.1076173260807991, -0.29019153118133545, -0.1014910489320755, -0.044123195111751556, 0.13981954753398895, 0.10454627871513367, 0.10984419286251068, 0.23144634068012238, -0.00012188764958409593, -0.07329598814249039, 0.01630857028067112, 0.047161877155303955, -0.04267137125134468, 0.0378442220389843, -0.03308404982089996, 0.0021330052986741066, -0.16848449409008026, 0.04830294847488403, 0.009619934484362602, -0.11610223352909088, 0.047638919204473495, 0.228315532207489, -0.13863414525985718, -0.1581505835056305, -0.057859521359205246, 0.10943301022052765, -0.1275167167186737, 0.012410356663167477, -0.04414646700024605, -0.11930172145366669, 0.05062000826001167, 0.0743321105837822, 0.04652971401810646, 0.08039884269237518, -0.048035524785518646, -0.03630910441279411, -0.013631133362650871, -0.02984427846968174, 0.015345100313425064, -0.02125987969338894, -0.025026291608810425, 0.010962581261992455, -0.007374901790171862, 0.11562204360961914, -0.0834515169262886, -0.11397283524274826, -0.16317208111286163, 0.016041656956076622, -0.12884922325611115, -0.11438602954149246, -0.09226600080728531, -0.054851070046424866, 0.002574664307758212, -0.02575705014169216, -0.02767465077340603, -0.056242845952510834, -0.10929418355226517, -0.007023382466286421, -0.04453349858522415, 0.024703312665224075, -0.12575584650039673, 0.05288040637969971, 0.06475522369146347, -0.034086961299180984, 0.18056811392307281, 0.1930522322654724, -0.09058486670255661, 0.08252023160457611, -0.04937499389052391, -0.11405172944068909, 0.12237135320901871, 0.015206176787614822, 0.11740420758724213, 0.06847050040960312, -0.018126938492059708, 0.04590585455298424, 0.07818170636892319, 0.05760417506098747, 0.08074507862329483, -0.08932553976774216, 0.07011718302965164, -0.031071458011865616, -0.15507756173610687, -0.04378299042582512, -0.04778728261590004, 0.059332381933927536, 0.014260522089898586, 0.11506318300962448, -0.05262702703475952, 0.06903056055307388, -0.04056621715426445, 0.03241138160228729, 0.03764229640364647, -0.16687187552452087, 0.04368448257446289, -0.06394913047552109, 0.029725169762969017, -0.01328454352915287, 0.08964861184358597, 0.031163552775979042, 0.017496151849627495, 0.06066284701228142, 0.0344284363090992, -0.039100758731365204, -0.005275094881653786, -0.017296582460403442, 0.08987691253423691, -0.05330488830804825, -0.07124447822570801, 0.0449780635535717, 0.06681612879037857, -0.015152815729379654, 0.16275161504745483, -0.0364946611225605, 0.059074077755212784, 0.0804060772061348, 0.02585170418024063, 0.022700529545545578, -0.16209112107753754, -0.10139314085245132, -0.08761243522167206, 0.03740913048386574, -0.04538862034678459, 0.05970960110425949, 0.18100039660930634, -0.013452011160552502, -0.021319063380360603, -0.06552066653966904, -0.04533790796995163, -0.1444818526506424, -0.07801778614521027, -0.07514658570289612, -0.17001557350158691, 0.000017665575796854682, -0.10173029452562332, 0.04528072848916054, 0.019289633259177208, 0.08148788660764694, -0.06501669436693192, 0.11298782378435135, 0.06112139672040939, -0.10592681914567947, 0.03128229081630707, -0.013345379382371902, 0.020838208496570587, -0.026859698817133904, 0.010267321020364761, -0.09952553361654282, 0.03943101316690445, -0.0005961373681202531, 0.08977273851633072, -0.019937213510274887, 0.035338178277015686, -0.1320337951183319, -0.10332328826189041, -0.050692155957221985, 0.0733414739370346, -0.07390490919351578, 0.11999932676553726, 0.038077812641859055, -0.00827127043157816, 0.02486657164990902, 0.2373623251914978, -0.0738128051161766, -0.027555791661143303, -0.0641702264547348, 0.22733190655708313, 0.03280805051326752, 0.08876993507146835, -0.06329432874917984, -0.002584239235147834, -0.13715678453445435, 0.3135948181152344, 0.330625057220459, -0.10789401084184647, 0.015943467617034912, -0.005487540271133184, 0.04295368120074272, 0.05429064854979515, 0.08842884749174118, 0.16434338688850403, 0.24723710119724274, -0.054550155997276306, -0.009445267729461193, -0.012647134251892567, -0.04267424717545509, -0.09151675552129745, 0.033757682889699936, 0.015689527615904808, -0.019282761961221695, -0.0035889185965061188, 0.06576254218816757, -0.2427159696817398, -0.01819642446935177, -0.1433277130126953, -0.1847398430109024, -0.06681520491838455, 0.009125787764787674, 0.10382111370563507, 0.02922249212861061, 0.14303714036941528, 0.020442333072423935, -0.1017446294426918, 0.12728461623191833, 0.025403207167983055, -0.2350284308195114, -0.07855360954999924, 0.09872455894947052, -0.19327183067798615, 0.02199491113424301, -0.03438195213675499, 0.008690875954926014, 0.07353121787309647, 0.04632321372628212, -0.03575993329286575, 0.0170797947794199, -0.001503319013863802, -0.040500275790691376, -0.02537437342107296, 0.10699184983968735, 0.014386707916855812, -0.00009398857946507633, 0.0968945175409317, -0.1849961280822754, -0.00011115794040961191, -0.06907200068235397, 0.03005165234208107, -0.003544936189427972, 0.09130559116601944, -0.06129004433751106, 0.05183113366365433, 0.12698064744472504, -0.011463994160294533, 0.006029243115335703, -0.011442077346146107, -0.032775379717350006, -0.022047068923711777, -0.11180436611175537, -0.13523949682712555, -0.20194096863269806, -0.09337946027517319, -0.005918492097407579, 0.024372953921556473, -0.15456709265708923, -0.01179568562656641, -0.11994865536689758, 0.0610402412712574, -0.13501787185668945, 0.12088637053966522, 0.07850570231676102, 0.024675972759723663, -0.0028384157922118902, 0.06411529332399368, 0.0541076734662056, 0.09296920150518417, -0.09588596969842911, -0.07649633288383484 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-twitter_sentiment This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6907 - Accuracy: 0.7132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8901 | 1.0 | 1387 | 0.8592 | 0.6249 | | 0.8085 | 2.0 | 2774 | 0.7600 | 0.6822 | | 0.7336 | 3.0 | 4161 | 0.7170 | 0.6915 | | 0.6938 | 4.0 | 5548 | 0.7018 | 0.7016 | | 0.6738 | 5.0 | 6935 | 0.6926 | 0.7067 | | 0.6496 | 6.0 | 8322 | 0.6910 | 0.7088 | | 0.6599 | 7.0 | 9709 | 0.6902 | 0.7088 | | 0.631 | 8.0 | 11096 | 0.6910 | 0.7095 | | 0.6327 | 9.0 | 12483 | 0.6925 | 0.7146 | | 0.6305 | 10.0 | 13870 | 0.6907 | 0.7132 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-twitter_sentiment", "results": []}]}
text-classification
Theivaprakasham/bert-base-cased-twitter_sentiment
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-twitter\_sentiment ================================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6907 * Accuracy: 0.7132 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10263989120721817, 0.07098277658224106, -0.0018128122901543975, 0.12231167405843735, 0.1823665052652359, 0.030975231900811195, 0.11722028255462646, 0.12151440978050232, -0.0977928563952446, 0.01328061893582344, 0.12270247936248779, 0.18993131816387177, 0.009396754205226898, 0.08467759937047958, -0.05259673297405243, -0.25263819098472595, -0.01470076385885477, 0.047292739152908325, -0.07934579998254776, 0.13938774168491364, 0.09092199057340622, -0.1366654634475708, 0.08365216106176376, 0.000318219157634303, -0.21820497512817383, 0.0160882156342268, 0.01878243125975132, -0.05944043770432472, 0.15659736096858978, 0.017036400735378265, 0.12782873213291168, 0.0039946832694113255, 0.07891673594713211, -0.18160249292850494, 0.011099881492555141, 0.053132470697164536, 0.004551421385258436, 0.08922013640403748, 0.058347150683403015, -0.006895949598401785, 0.115194171667099, -0.08632981777191162, 0.05188746377825737, 0.022064292803406715, -0.12358515709638596, -0.21455246210098267, -0.08056692034006119, 0.008830666542053223, 0.06351929157972336, 0.10670331120491028, -0.0004334635741543025, 0.1336299329996109, -0.0989304706454277, 0.09434211999177933, 0.23812264204025269, -0.29390081763267517, -0.06476068496704102, 0.03313703462481499, 0.007802894804626703, 0.08405441045761108, -0.11051040142774582, -0.01712370291352272, 0.05238303542137146, 0.04541592672467232, 0.1284300833940506, -0.03895023837685585, -0.12639230489730835, 0.02864541858434677, -0.14264382421970367, -0.02582887001335621, 0.1288720965385437, 0.027092749252915382, -0.0289752334356308, -0.034480981528759, -0.05988501384854317, -0.16678638756275177, -0.03545809164643288, -0.008176940493285656, 0.04730420932173729, -0.0340365506708622, -0.059718430042266846, -0.0014839315554127097, -0.10668415576219559, -0.0748390406370163, -0.07369313389062881, 0.14414802193641663, 0.03933936357498169, 0.01483941450715065, -0.03201683983206749, 0.1114356592297554, 0.012882308103144169, -0.13028812408447266, 0.03361215814948082, 0.03648161515593529, -0.0026140788104385138, -0.04282715544104576, -0.0702284723520279, -0.06659113615751266, 0.012350114993751049, 0.09641239047050476, -0.04176316037774086, 0.049404680728912354, 0.03309188038110733, 0.04537923261523247, -0.10910447686910629, 0.19771786034107208, -0.03413195535540581, -0.01755855418741703, 0.004917954560369253, 0.04349304735660553, 0.007107829209417105, -0.011257157661020756, -0.12215506285429001, -0.0038951346650719643, 0.10434245318174362, 0.01860021986067295, -0.07384080439805984, 0.07302923500537872, -0.056308697909116745, -0.027753308415412903, 0.007753143552690744, -0.10026118159294128, 0.03368242457509041, -0.0009569876710884273, -0.08231759071350098, -0.024637795984745026, 0.02279682271182537, 0.01687650941312313, -0.02832210808992386, 0.12150152772665024, -0.07962313294410706, 0.041689544916152954, -0.10367252677679062, -0.11018899083137512, 0.009360174648463726, -0.08948890119791031, 0.024997472763061523, -0.0923795998096466, -0.1620800644159317, -0.015548278577625751, 0.05645004287362099, -0.02074870467185974, -0.055463749915361404, -0.04879837855696678, -0.06854107975959778, 0.007001569960266352, -0.01574655994772911, 0.16624362766742706, -0.059330761432647705, 0.10820988565683365, 0.03258674591779709, 0.06454845517873764, -0.05903876945376396, 0.06434524804353714, -0.0951453223824501, -0.00487169623374939, -0.18109756708145142, 0.04168565571308136, -0.04719051718711853, 0.07687465101480484, -0.0887373611330986, -0.10255394130945206, 0.012062749825417995, -0.0022506301756948233, 0.0671127513051033, 0.08863281458616257, -0.1747237890958786, -0.07765272259712219, 0.1521495133638382, -0.05759091675281525, -0.11282718181610107, 0.11337006092071533, -0.06226605176925659, 0.05030953884124756, 0.07893785089254379, 0.16141532361507416, 0.08167532831430435, -0.060412243008613586, 0.038119468837976456, 0.005060939583927393, 0.05293142795562744, -0.07968301326036453, 0.06251237541437149, -0.0033737823832780123, -0.016002707183361053, 0.03629140928387642, -0.02865077368915081, 0.058564264327287674, -0.09024914354085922, -0.09836389869451523, -0.04044914245605469, -0.1014118567109108, 0.05335647985339165, 0.07982476055622101, 0.0890268012881279, -0.0970359817147255, -0.06861038506031036, 0.06012333929538727, 0.0705309510231018, -0.05591927841305733, 0.031584132462739944, -0.045887380838394165, 0.05088590085506439, -0.03527652099728584, -0.020343797281384468, -0.19856904447078705, -0.0009017926640808582, 0.009828097186982632, 0.005035338923335075, 0.024206755682826042, 0.03180219233036041, 0.06996526569128036, 0.0496981181204319, -0.05591579154133797, -0.01070492248982191, -0.01389921735972166, -0.007706399541348219, -0.1453588902950287, -0.19931088387966156, -0.02004486881196499, -0.015553739853203297, 0.12315594404935837, -0.2056826949119568, 0.037102218717336655, -0.01720481365919113, 0.052920710295438766, 0.0010101374937221408, -0.0032985087018460035, -0.04879019036889076, 0.09524130821228027, -0.034399695694446564, -0.04301656410098076, 0.0840982124209404, -0.002215917920693755, -0.09203914552927017, -0.041440874338150024, -0.09188038110733032, 0.17860786616802216, 0.141185462474823, -0.13986654579639435, -0.07374902069568634, 0.0014047060394659638, -0.051352303475141525, -0.02980971895158291, -0.045513082295656204, 0.04213773086667061, 0.19932417571544647, -0.011451208032667637, 0.15498024225234985, -0.06784926354885101, -0.04538886621594429, 0.018782343715429306, -0.027407601475715637, 0.04174123704433441, 0.12978018820285797, 0.11801514029502869, -0.07424671202898026, 0.1396368443965912, 0.16036288440227509, -0.09984127432107925, 0.1275331825017929, -0.04141903668642044, -0.06732229143381119, -0.005207553040236235, -0.019765889272093773, 0.0017979334807023406, 0.08448884636163712, -0.158269003033638, -0.015352517366409302, 0.01921255514025688, 0.02032727748155594, 0.024960355833172798, -0.23507384955883026, -0.04063260555267334, 0.030796414241194725, -0.04036335274577141, -0.005509110167622566, -0.025227991864085197, 0.007049107924103737, 0.10958573967218399, -0.0011886208085343242, -0.08430404216051102, 0.041801225394010544, 0.0018225802341476083, -0.07962629199028015, 0.22118701040744781, -0.08315897732973099, -0.15066953003406525, -0.12784351408481598, -0.08250147849321365, -0.04720848426222801, 0.009602372534573078, 0.06363192200660706, -0.10454001277685165, -0.023615175858139992, -0.05222220718860626, 0.013918613083660603, -0.00801664125174284, 0.040037717670202255, -0.006460495293140411, 0.0023017965722829103, 0.06746591627597809, -0.11224254220724106, -0.00957385916262865, -0.05515341833233833, -0.07858370244503021, 0.049061279743909836, 0.034951310604810715, 0.10983884334564209, 0.1639862060546875, -0.023144414648413658, 0.0056053269654512405, -0.028183693066239357, 0.2109598070383072, -0.06418360024690628, -0.03242454305291176, 0.13051141798496246, -0.009069179184734821, 0.0541527159512043, 0.10100790858268738, 0.07721243053674698, -0.08660325407981873, 0.010157392360270023, 0.029165709391236305, -0.03961274027824402, -0.23892773687839508, -0.041617896407842636, -0.05889998376369476, -0.03026179037988186, 0.09720441699028015, 0.03303946182131767, 0.050743717700242996, 0.07302320748567581, 0.04914107546210289, 0.09214860200881958, -0.042624861001968384, 0.04685763642191887, 0.10784265398979187, 0.0478554405272007, 0.12564069032669067, -0.05064602568745613, -0.06712756305932999, 0.03399652615189552, -0.01686515286564827, 0.22218720614910126, 0.010241016745567322, 0.14382939040660858, 0.05864138528704643, 0.18668697774410248, 0.00026570537011139095, 0.09159436821937561, -0.007560631725937128, -0.044832099229097366, -0.013402394950389862, -0.0422406829893589, -0.04413764178752899, 0.012767319567501545, -0.06724890321493149, 0.05831684544682503, -0.11484969407320023, -0.025065645575523376, 0.04992377758026123, 0.2560082972049713, 0.026119207963347435, -0.314424991607666, -0.07165611535310745, 0.0006054752157069743, -0.02745223045349121, -0.015742337331175804, 0.022658465430140495, 0.08940166234970093, -0.09353331476449966, 0.02857077680528164, -0.06807128340005875, 0.1002991795539856, -0.04491761699318886, 0.050424858927726746, 0.06973852217197418, 0.08017479628324509, 0.009274081327021122, 0.08915027230978012, -0.328122079372406, 0.27164945006370544, 0.007033083587884903, 0.06841891258955002, -0.08757016062736511, -0.0035924080293625593, 0.040471769869327545, 0.06370268762111664, 0.05258950591087341, -0.014799565076828003, -0.006346283946186304, -0.19180798530578613, -0.050795283168554306, 0.03292735293507576, 0.09101703763008118, -0.03336822986602783, 0.08241531997919083, -0.029432186856865883, 0.005546639207750559, 0.07525268942117691, -0.011987444013357162, -0.046819135546684265, -0.09906309098005295, -0.01403035968542099, 0.027805877849459648, -0.05301087722182274, -0.05934084951877594, -0.1103769913315773, -0.13679440319538116, 0.15488533675670624, -0.017615795135498047, -0.028635626658797264, -0.11086077243089676, 0.07993067055940628, 0.07069175690412521, -0.08812028169631958, 0.04292432591319084, 0.004228574689477682, 0.0496944934129715, 0.033692166209220886, -0.07788416743278503, 0.11267083138227463, -0.05438252165913582, -0.1556285321712494, -0.06001114845275879, 0.10032981634140015, 0.03200472891330719, 0.06158066168427467, -0.012690325267612934, 0.011935037560760975, -0.04517349973320961, -0.09397128224372864, 0.01918145827949047, -0.021616347134113312, 0.07768572121858597, 0.026195771992206573, -0.0677792951464653, 0.006525751203298569, -0.06695606559515, -0.03863976523280144, 0.19797538220882416, 0.21215297281742096, -0.09819032996892929, 0.01920994184911251, 0.03862392529845238, -0.07166368514299393, -0.20574669539928436, 0.0494585782289505, 0.05813769996166229, 0.0015329256420955062, 0.04251539707183838, -0.18342095613479614, 0.1449381560087204, 0.10561034828424454, -0.00957366544753313, 0.11812586337327957, -0.32842376828193665, -0.13080956041812897, 0.12713003158569336, 0.15556980669498444, 0.1378086507320404, -0.1519421488046646, -0.02485240437090397, -0.033262528479099274, -0.1192924976348877, 0.09915546327829361, -0.10230416804552078, 0.12360876798629761, -0.034308284521102905, 0.08431976288557053, 0.0014698775485157967, -0.058837827295064926, 0.11833921074867249, 0.027017034590244293, 0.10099313408136368, -0.062093961983919144, -0.0456053800880909, 0.03964391350746155, -0.033159028738737106, 0.006060405168682337, -0.09379664808511734, 0.024544835090637207, -0.0987243726849556, -0.018060624599456787, -0.07968863099813461, 0.0402204804122448, -0.035009052604436874, -0.0557594895362854, -0.032380398362874985, 0.014220770448446274, 0.03975847363471985, -0.013986187987029552, 0.13553887605667114, 0.01449319627135992, 0.15221069753170013, 0.10909011960029602, 0.0743703544139862, -0.06399569660425186, -0.062076669186353683, -0.019255006685853004, -0.01315863523632288, 0.06081691384315491, -0.14559371769428253, 0.028437061235308647, 0.1394268125295639, 0.02178027294576168, 0.1317831426858902, 0.0866967961192131, -0.01474402379244566, 0.006474966648966074, 0.06406199932098389, -0.15782752633094788, -0.07408532500267029, -0.00568932481110096, -0.061884429305791855, -0.10245177894830704, 0.057782307267189026, 0.07996099442243576, -0.06024029850959778, -0.012625555507838726, -0.009600282646715641, -0.003649650141596794, -0.06793362647294998, 0.20592884719371796, 0.06585326045751572, 0.04866372048854828, -0.11101788282394409, 0.07300549745559692, 0.061694178730249405, -0.0720316469669342, -0.008739523589611053, 0.07510841637849808, -0.08594512194395065, -0.047991007566452026, 0.11441388726234436, 0.1906803399324417, -0.04849017783999443, -0.042685385793447495, -0.13437621295452118, -0.1236652210354805, 0.07710526138544083, 0.15963493287563324, 0.12154366821050644, 0.011939063668251038, -0.0626264289021492, 0.005449716467410326, -0.11431699246168137, 0.07439196109771729, 0.029614942148327827, 0.07157357782125473, -0.13110244274139404, 0.1623346358537674, 0.01420512329787016, 0.046628955751657486, -0.01991666853427887, 0.02609349973499775, -0.10212745517492294, 0.019038448110222816, -0.12157260626554489, -0.02544114924967289, -0.01077282428741455, 0.004667248111218214, -0.005640521179884672, -0.058692384511232376, -0.053597550839185715, 0.012606356292963028, -0.12300634384155273, -0.025124242529273033, 0.028474995866417885, 0.056658368557691574, -0.11524414271116257, -0.041177745908498764, 0.024507170543074608, -0.055871251970529556, 0.05864488705992699, 0.049389034509658813, 0.011413678526878357, 0.0700811818242073, -0.15081530809402466, 0.0032554082572460175, 0.07151554524898529, 0.016939710825681686, 0.06806574761867523, -0.06910829991102219, -0.007610891479998827, 0.003174501471221447, 0.07703611254692078, 0.02389945276081562, 0.08141115307807922, -0.1457936018705368, 0.002393389819189906, -0.0312890000641346, -0.09424810856580734, -0.06598634272813797, 0.0324828214943409, 0.08833462744951248, 0.009816695004701614, 0.19839245080947876, -0.0770958662033081, 0.03988548740744591, -0.21065522730350494, 0.0028036748990416527, -0.018524613231420517, -0.11822053045034409, -0.1257547289133072, -0.07330130785703659, 0.0651838555932045, -0.0515790730714798, 0.14047867059707642, 0.0361810103058815, 0.04273977503180504, 0.02324359118938446, -0.0067673721350729465, 0.011998853646218777, 0.02431350201368332, 0.21842427551746368, 0.042315926402807236, -0.03396990895271301, 0.06597071141004562, 0.06014638766646385, 0.09586852043867111, 0.12999935448169708, 0.19810332357883453, 0.15588484704494476, -0.013254541903734207, 0.09028699994087219, 0.017382275313138962, -0.04907253384590149, -0.14161820709705353, 0.039195459336042404, -0.05257357656955719, 0.09936726838350296, -0.02355414442718029, 0.22744572162628174, 0.054789941757917404, -0.16954171657562256, 0.05265694484114647, -0.05675214156508446, -0.0911136344075203, -0.1118866577744484, -0.0361778549849987, -0.08326657116413116, -0.1351793259382248, -0.005357112269848585, -0.1013142466545105, 0.019741825759410858, 0.12614630162715912, 0.004574904218316078, -0.024003153666853905, 0.16066639125347137, 0.031821124255657196, 0.022099265828728676, 0.061825793236494064, 0.0018020495772361755, -0.025435401126742363, -0.11033918708562851, -0.05908637121319771, -0.021701151505112648, -0.016090767458081245, 0.035014837980270386, -0.06182027980685234, -0.07395370304584503, 0.037085313349962234, -0.026062823832035065, -0.10028821974992752, 0.01974753476679325, 0.011936959810554981, 0.06647509336471558, 0.05187838152050972, 0.00976470299065113, 0.01510701235383749, -0.01087567862123251, 0.21923665702342987, -0.07982001453638077, -0.08267904072999954, -0.0795220360159874, 0.2605022192001343, 0.047787588089704514, -0.007543830666691065, 0.02805176191031933, -0.06156567111611366, 0.010828903876245022, 0.26399117708206177, 0.21061645448207855, -0.09805107116699219, -0.007833455689251423, 0.008799380622804165, -0.00900433398783207, -0.011251370422542095, 0.12498048692941666, 0.1366828978061676, 0.03945573419332504, -0.10404231399297714, -0.034952759742736816, -0.04903591796755791, -0.01195110846310854, -0.05378895625472069, 0.06989964097738266, 0.0468328483402729, -0.0003070710226893425, -0.04003104194998741, 0.05957164987921715, -0.051910337060689926, -0.09841689467430115, 0.07006604224443436, -0.2046823352575302, -0.1649724394083023, -0.020268850028514862, 0.1157485768198967, -0.001796652446500957, 0.06035630777478218, -0.02500489354133606, 0.002846409333869815, 0.055325452238321304, -0.0222068652510643, -0.09790322929620743, -0.08169695734977722, 0.0981658399105072, -0.12319675087928772, 0.19032126665115356, -0.04414958134293556, 0.06086600944399834, 0.12240754812955856, 0.0715043768286705, -0.06100274622440338, 0.06505557894706726, 0.03183973208069801, -0.07948220521211624, 0.03694472089409828, 0.07203473895788193, -0.032289210706949234, 0.032004717737436295, 0.03438733145594597, -0.10897010564804077, 0.035303857177495956, -0.06842654943466187, -0.05378527566790581, -0.040491554886102676, -0.04820612072944641, -0.0582134984433651, 0.12205550819635391, 0.2192804366350174, -0.020563693717122078, 0.015092634595930576, -0.07854697853326797, -0.0025902248453348875, 0.05072956159710884, 0.020827269181609154, -0.08764966577291489, -0.21699118614196777, 0.0072594997473061085, 0.06888319551944733, -0.020392635837197304, -0.24339191615581512, -0.08529505133628845, 0.002796238986775279, -0.07495584338903427, -0.09782025963068008, 0.07399633526802063, 0.07479277998209, 0.052884358912706375, -0.05110862851142883, -0.09640809893608093, -0.07729246467351913, 0.15873472392559052, -0.15508423745632172, -0.09453780204057693 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-sroie This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0291 - Address Precision: 0.9341 - Address Recall: 0.9395 - Address F1: 0.9368 - Address Number: 347 - Company Precision: 0.9570 - Company Recall: 0.9625 - Company F1: 0.9598 - Company Number: 347 - Date Precision: 0.9885 - Date Recall: 0.9885 - Date F1: 0.9885 - Date Number: 347 - Total Precision: 0.9253 - Total Recall: 0.9280 - Total F1: 0.9266 - Total Number: 347 - Overall Precision: 0.9512 - Overall Recall: 0.9546 - Overall F1: 0.9529 - Overall Accuracy: 0.9961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Company Precision | Company Recall | Company F1 | Company Number | Date Precision | Date Recall | Date F1 | Date Number | Total Precision | Total Recall | Total F1 | Total Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------:|:--------------:|:----------:|:--------------:|:--------------:|:-----------:|:-------:|:-----------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 0.05 | 157 | 0.8162 | 0.3670 | 0.7233 | 0.4869 | 347 | 0.0617 | 0.0144 | 0.0234 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.3346 | 0.1844 | 0.2378 | 0.9342 | | No log | 1.05 | 314 | 0.3490 | 0.8564 | 0.8934 | 0.8745 | 347 | 0.8610 | 0.9280 | 0.8932 | 347 | 0.7297 | 0.8559 | 0.7878 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8128 | 0.6693 | 0.7341 | 0.9826 | | No log | 2.05 | 471 | 0.1845 | 0.7970 | 0.9049 | 0.8475 | 347 | 0.9211 | 0.9424 | 0.9316 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8978 | 0.7089 | 0.7923 | 0.9835 | | 0.7027 | 3.05 | 628 | 0.1194 | 0.9040 | 0.9222 | 0.9130 | 347 | 0.8880 | 0.9135 | 0.9006 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.9263 | 0.7061 | 0.8013 | 0.9853 | | 0.7027 | 4.05 | 785 | 0.0762 | 0.9397 | 0.9424 | 0.9410 | 347 | 0.8889 | 0.9222 | 0.9052 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7740 | 0.9078 | 0.8355 | 347 | 0.8926 | 0.9402 | 0.9158 | 0.9928 | | 0.7027 | 5.05 | 942 | 0.0564 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9296 | 0.9510 | 0.9402 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7801 | 0.8588 | 0.8176 | 347 | 0.9036 | 0.9323 | 0.9177 | 0.9946 | | 0.0935 | 6.05 | 1099 | 0.0548 | 0.9222 | 0.9222 | 0.9222 | 347 | 0.6975 | 0.7378 | 0.7171 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.8608 | 0.8732 | 0.8670 | 347 | 0.8648 | 0.8804 | 0.8725 | 0.9921 | | 0.0935 | 7.05 | 1256 | 0.0410 | 0.92 | 0.9280 | 0.9240 | 347 | 0.9486 | 0.9568 | 0.9527 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9091 | 0.9222 | 0.9156 | 347 | 0.9414 | 0.9488 | 0.9451 | 0.9961 | | 0.0935 | 8.05 | 1413 | 0.0369 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9569 | 0.9597 | 0.9583 | 347 | 0.9772 | 0.9885 | 0.9828 | 347 | 0.9143 | 0.9222 | 0.9182 | 347 | 0.9463 | 0.9524 | 0.9494 | 0.9960 | | 0.038 | 9.05 | 1570 | 0.0343 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9624 | 0.9597 | 0.9610 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9206 | 0.9020 | 0.9112 | 347 | 0.9500 | 0.9452 | 0.9476 | 0.9958 | | 0.038 | 10.05 | 1727 | 0.0317 | 0.9395 | 0.9395 | 0.9395 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9280 | 0.9280 | 0.9280 | 347 | 0.9539 | 0.9546 | 0.9543 | 0.9963 | | 0.038 | 11.05 | 1884 | 0.0312 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9514 | 0.9597 | 0.9555 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9226 | 0.9280 | 0.9253 | 347 | 0.9498 | 0.9539 | 0.9518 | 0.9960 | | 0.0236 | 12.05 | 2041 | 0.0318 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9043 | 0.8991 | 0.9017 | 347 | 0.9467 | 0.9474 | 0.9471 | 0.9956 | | 0.0236 | 13.05 | 2198 | 0.0291 | 0.9337 | 0.9337 | 0.9337 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9164 | 0.9164 | 0.9164 | 347 | 0.9496 | 0.9503 | 0.9499 | 0.9960 | | 0.0236 | 14.05 | 2355 | 0.0300 | 0.9286 | 0.9366 | 0.9326 | 347 | 0.9459 | 0.9568 | 0.9513 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9476 | 0.9510 | 0.9493 | 0.9959 | | 0.0178 | 15.05 | 2512 | 0.0307 | 0.9366 | 0.9366 | 0.9366 | 347 | 0.9513 | 0.9568 | 0.9540 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9510 | 0.9510 | 0.9510 | 0.9959 | | 0.0178 | 16.05 | 2669 | 0.0300 | 0.9312 | 0.9366 | 0.9339 | 347 | 0.9543 | 0.9625 | 0.9584 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9171 | 0.9251 | 0.9211 | 347 | 0.9477 | 0.9532 | 0.9504 | 0.9959 | | 0.0178 | 17.05 | 2826 | 0.0292 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9519 | 0.9546 | 0.9532 | 0.9961 | | 0.0178 | 18.05 | 2983 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 | | 0.0149 | 19.01 | 3000 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.0+cu101 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "datasets": ["sroie"], "model-index": [{"name": "layoutlmv2-finetuned-sroie", "results": []}]}
token-classification
Theivaprakasham/layoutlmv2-finetuned-sroie
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:sroie", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
layoutlmv2-finetuned-sroie ========================== This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the sroie dataset. It achieves the following results on the evaluation set: * Loss: 0.0291 * Address Precision: 0.9341 * Address Recall: 0.9395 * Address F1: 0.9368 * Address Number: 347 * Company Precision: 0.9570 * Company Recall: 0.9625 * Company F1: 0.9598 * Company Number: 347 * Date Precision: 0.9885 * Date Recall: 0.9885 * Date F1: 0.9885 * Date Number: 347 * Total Precision: 0.9253 * Total Recall: 0.9280 * Total F1: 0.9266 * Total Number: 347 * Overall Precision: 0.9512 * Overall Recall: 0.9546 * Overall F1: 0.9529 * Overall Accuracy: 0.9961 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 3000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.8.0+cu101 * Datasets 1.18.4.dev0 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 3000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.0+cu101\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 3000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.0+cu101\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.6" ]
[ 76, 130, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 3000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.0+cu101\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.6" ]
[ -0.12477484345436096, 0.10817142575979233, -0.003016418544575572, 0.09995300322771072, 0.13865256309509277, 0.02918768860399723, 0.11456165462732315, 0.1297980099916458, -0.06576530635356903, 0.06681523472070694, 0.10173116624355316, 0.09392865002155304, 0.051218412816524506, 0.1278683990240097, -0.03796606510877609, -0.2877606749534607, 0.005540395621210337, 0.05349268764257431, -0.11316809803247452, 0.13245998322963715, 0.09471298009157181, -0.11872568726539612, 0.07253927737474442, 0.028967171907424927, -0.1645502746105194, -0.02868833765387535, 0.005916130263358355, -0.07715867459774017, 0.12429335713386536, 0.016291029751300812, 0.1413721889257431, 0.02408311888575554, 0.09358512610197067, -0.1414986401796341, 0.008870302699506283, 0.07119391858577728, 0.014313832856714725, 0.11138822883367538, 0.07998362183570862, 0.014486423693597317, 0.0985807478427887, -0.07944808900356293, 0.07526242733001709, 0.02603631094098091, -0.12112055718898773, -0.2706168293952942, -0.09214194118976593, 0.07962561398744583, 0.09236253798007965, 0.07377178966999054, 0.011703157797455788, 0.1186433881521225, -0.05875237658619881, 0.08392879366874695, 0.22562208771705627, -0.26726165413856506, -0.07494615018367767, 0.003712552832439542, 0.05489761009812355, 0.029404807835817337, -0.10181402415037155, -0.0409834086894989, 0.010782714001834393, 0.037844594568014145, 0.14525629580020905, 0.0027715128380805254, -0.03555788844823837, 0.0034587522968649864, -0.15032190084457397, -0.06272867321968079, 0.11898576468229294, 0.03434963524341583, -0.02663242630660534, -0.06591317057609558, -0.06321900337934494, -0.19603770971298218, -0.03984297066926956, 0.031306907534599304, 0.02207956835627556, -0.05842524766921997, -0.09233921021223068, -0.005673763807862997, -0.08847621828317642, -0.07962595671415329, -0.022683270275592804, 0.18406036496162415, 0.044321753084659576, 0.017007669433951378, -0.020521508529782295, 0.13207171857357025, 0.04582939296960831, -0.16497854888439178, 0.016918549314141273, 0.021426023915410042, -0.043744076043367386, -0.028852295130491257, -0.03962741047143936, -0.015393630601465702, -0.011830593459308147, 0.1361975371837616, -0.07326678186655045, 0.03959347680211067, 0.033917490392923355, 0.03845973312854767, -0.09926088154315948, 0.19809742271900177, -0.07016878575086594, 0.012644135393202305, -0.005676883272826672, 0.1061834767460823, 0.025208327919244766, -0.018385328352451324, -0.10288084298372269, -0.007515932433307171, 0.11160232126712799, 0.03358687087893486, -0.007428481709212065, 0.04488518834114075, -0.053380466997623444, -0.036359235644340515, 0.09652066230773926, -0.0881180465221405, 0.03519420325756073, 0.019332844763994217, -0.09724719077348709, -0.013216652907431126, 0.01926414854824543, -0.007981613278388977, -0.01509827934205532, 0.1317235678434372, -0.09795863926410675, 0.006900229025632143, -0.1092010959982872, -0.11266399174928665, 0.03222322836518288, -0.0735650360584259, 0.00032309661037288606, -0.09273834526538849, -0.1403941959142685, -0.018817787989974022, 0.04625243321061134, -0.04159123823046684, -0.06963985413312912, -0.0006036819540895522, -0.09880077093839645, 0.04501382261514664, -0.02247496135532856, 0.14989416301250458, -0.051753003150224686, 0.11994392424821854, 0.023390650749206543, 0.052073147147893906, -0.0036014067009091377, 0.05260016396641731, -0.07544717192649841, 0.05340553820133209, -0.16831476986408234, 0.024429641664028168, -0.06667366623878479, 0.04656684398651123, -0.10749601572751999, -0.1330663561820984, 0.036843959242105484, -0.031782567501068115, 0.09411446005105972, 0.09002915769815445, -0.12982898950576782, -0.07121316343545914, 0.11536893248558044, -0.07876554876565933, -0.11110987514257431, 0.10384511202573776, -0.02084127627313137, -0.04153689369559288, 0.016213100403547287, 0.13264881074428558, 0.12092028558254242, -0.11027990281581879, -0.023510783910751343, -0.0041061569936573505, 0.0775722861289978, -0.06330712139606476, 0.10287235677242279, 0.03155798092484474, 0.034503426402807236, 0.012284697033464909, -0.07679814100265503, 0.07124163210391998, -0.09132072329521179, -0.08337827026844025, -0.04114746302366257, -0.07268110662698746, 0.07096804678440094, 0.07421867549419403, 0.043107762932777405, -0.06459378451108932, -0.12211155146360397, 0.08065459132194519, 0.10953812301158905, -0.06372580677270889, 0.02503257431089878, -0.07491998374462128, 0.10065877437591553, -0.05450127273797989, -0.025768017396330833, -0.19367259740829468, -0.09170453250408173, 0.02023301273584366, -0.05388915166258812, -0.0008155581308528781, -0.03541063889861107, 0.06723088771104813, 0.07743105292320251, -0.05078015476465225, -0.06496559828519821, -0.08256485313177109, -0.00782034732401371, -0.10274133831262589, -0.19920143485069275, -0.11514386534690857, -0.01657254435122013, 0.1302500218153, -0.1645539402961731, 0.03387153148651123, 0.029027890413999557, 0.1332934945821762, 0.03146819397807121, -0.02031741477549076, -0.014360770583152771, 0.09015198051929474, -0.027070576325058937, -0.07042605429887772, 0.06170343607664108, 0.01863441988825798, -0.09499762207269669, 0.0017594360979273915, -0.12626750767230988, 0.1348920613527298, 0.11379623413085938, -0.021546579897403717, -0.07476762682199478, -0.013907309621572495, -0.0768086314201355, -0.0441371388733387, -0.029078587889671326, 0.013934441842138767, 0.1340881735086441, 0.030092673376202583, 0.1501462310552597, -0.07518288493156433, -0.06485454738140106, 0.03648989275097847, 0.005094863008707762, -0.011371316388249397, 0.11854151636362076, 0.09057945013046265, -0.04737862944602966, 0.14376457035541534, 0.13609863817691803, -0.08877754211425781, 0.12511076033115387, -0.06747017055749893, -0.08204874396324158, -0.04250997677445412, -0.014154253527522087, 0.025697024539113045, 0.13816674053668976, -0.0790279358625412, -0.00465695234015584, 0.04109116643667221, 0.00558833684772253, 0.014860695227980614, -0.2235652506351471, -0.010541364550590515, 0.023317264392971992, -0.04358368366956711, -0.04069207236170769, 0.0004410581022966653, 0.026768215000629425, 0.10086902230978012, 0.02516854740679264, -0.06537392735481262, 0.01894504949450493, 0.004172095563262701, -0.05602291226387024, 0.20287403464317322, -0.08027303963899612, -0.14398092031478882, -0.16265901923179626, -0.026551302522420883, -0.047060366719961166, -0.015396267175674438, 0.02172037772834301, -0.057417213916778564, -0.02952687069773674, -0.05298461765050888, -0.011547297239303589, -0.025017887353897095, 0.0328943245112896, -0.021707650274038315, 0.006825215183198452, 0.07677061855792999, -0.09735532104969025, 0.00938386656343937, -0.01999310962855816, -0.02867264859378338, 0.03789611533284187, 0.06487654894590378, 0.09906084835529327, 0.15585149824619293, -0.014123713597655296, 0.009031495079398155, -0.03348333761096001, 0.18152227997779846, -0.08956470340490341, -0.014977497979998589, 0.17039944231510162, -0.010930278338491917, 0.07283178716897964, 0.11663002520799637, 0.07062765210866928, -0.04608556628227234, -0.010178126394748688, 0.007495073601603508, -0.03866724297404289, -0.21951159834861755, -0.04976159706711769, -0.05628329515457153, -0.00602584658190608, 0.11658504605293274, 0.028118295595049858, -0.0056505268439650536, 0.05295568332076073, -0.012366808019578457, 0.04401016980409622, -0.04466050863265991, 0.08874072134494781, 0.11818601191043854, 0.05471758171916008, 0.12942424416542053, -0.02777860499918461, -0.040261127054691315, 0.026570571586489677, 0.024891402572393417, 0.2146809846162796, -0.04682682082056999, 0.15518929064273834, 0.029030898585915565, 0.17315466701984406, 0.022127555683255196, 0.07241857051849365, 0.009355961345136166, -0.011945163831114769, 0.016600510105490685, -0.043197307735681534, -0.019425783306360245, 0.008989357389509678, -0.008613302372395992, 0.04971567913889885, -0.12235213071107864, -0.026180217042565346, 0.016360105946660042, 0.29377588629722595, 0.04642510786652565, -0.345048189163208, -0.11758019775152206, -0.003443734021857381, -0.030937060713768005, -0.05278279632329941, -0.0003372894716449082, 0.10376928746700287, -0.0915195494890213, 0.03969914838671684, -0.09419605880975723, 0.09013701230287552, -0.06255050003528595, 0.0019535112660378218, 0.12224841117858887, 0.11023295670747757, 0.011330006644129753, 0.06341441720724106, -0.22290024161338806, 0.2764914631843567, 0.010496430099010468, 0.053239740431308746, -0.05672450736165047, 0.017077598720788956, 0.018490128219127655, 0.03537731245160103, 0.0463799349963665, -0.01128435879945755, -0.0710621178150177, -0.22297078371047974, -0.09706033766269684, 0.0011452469043433666, 0.09571319818496704, -0.037443168461322784, 0.11799514293670654, -0.03385309875011444, -0.021347366273403168, 0.049558404833078384, -0.06498156487941742, -0.03517376631498337, -0.08139368891716003, 0.04446704685688019, 0.020141296088695526, 0.01196513045579195, -0.09248345345258713, -0.12365221977233887, -0.05658681318163872, 0.12271350622177124, -0.09016428142786026, -0.0639251098036766, -0.14181385934352875, 0.07759778946638107, 0.14992569386959076, -0.08769460022449493, 0.049130070954561234, -0.009925405494868755, 0.13426196575164795, 0.022887999191880226, -0.05783291161060333, 0.09880238771438599, -0.07501896470785141, -0.21380972862243652, -0.047322388738393784, 0.14038188755512238, 0.011911110021173954, 0.06889409571886063, -0.032828908413648605, 0.04123866185545921, -0.04548526555299759, -0.07919445633888245, 0.021874211728572845, -0.016739407554268837, 0.05786661431193352, 0.02013688161969185, -0.028800280764698982, 0.02895422652363777, -0.03750142827630043, -0.015618875622749329, 0.12012393772602081, 0.2311399132013321, -0.10832077264785767, 0.020518768578767776, 0.035727933049201965, -0.04155636951327324, -0.18032340705394745, 0.010382506065070629, 0.10112758725881577, 0.018085209652781487, 0.0015113038243725896, -0.18362757563591003, 0.053034231066703796, 0.0863470733165741, -0.03783874958753586, 0.11005212366580963, -0.3024292588233948, -0.1260415017604828, 0.07867155969142914, 0.11504816263914108, 0.029499443247914314, -0.15482428669929504, -0.042437851428985596, 0.011878294870257378, -0.12490133941173553, 0.1318257749080658, -0.03569557145237923, 0.1128835454583168, -0.04976072907447815, 0.08729569613933563, 0.01510277297347784, -0.07016456872224808, 0.13633807003498077, -0.01638295315206051, 0.07195192575454712, -0.0257764533162117, -0.014266161248087883, 0.08662056177854538, -0.06317929178476334, 0.012603173963725567, -0.04746861383318901, 0.0395655557513237, -0.1286681741476059, -0.001372061320580542, -0.10970548540353775, 0.030574725940823555, -0.04245825111865997, -0.03638431057333946, -0.023191004991531372, 0.04821740835905075, 0.02379431016743183, -0.02755853533744812, 0.16385434567928314, 0.03319495916366577, 0.16465024650096893, 0.1274593323469162, 0.06786099821329117, -0.020685801282525063, -0.10846003890037537, -0.014375727623701096, -0.020497990772128105, 0.07195210456848145, -0.14488953351974487, 0.010906487703323364, 0.14842815697193146, 0.05160059779882431, 0.10275065153837204, 0.07925666868686676, -0.047974467277526855, 0.013215089216828346, 0.06981072574853897, -0.14199718832969666, -0.07225504517555237, -0.02246174030005932, 0.02978118322789669, -0.15857090055942535, 0.02578628808259964, 0.11014978587627411, -0.07817618548870087, -0.015202216804027557, 0.02226545475423336, 0.004921315237879753, -0.017529834061861038, 0.19996854662895203, 0.07331036776304245, 0.0829542875289917, -0.0983152985572815, 0.06281285732984543, 0.07328569889068604, -0.12820518016815186, -0.008319312706589699, 0.08771194517612457, -0.08377417176961899, -0.029501287266612053, 0.010379600338637829, 0.062254659831523895, -0.078793004155159, -0.04951706528663635, -0.14346154034137726, -0.12933455407619476, 0.08266738057136536, 0.1411847025156021, 0.06691023707389832, 0.02813384309411049, -0.03140198066830635, 0.022275522351264954, -0.11689634621143341, 0.11167088150978088, 0.039814356714487076, 0.09464581310749054, -0.15492215752601624, 0.16541969776153564, 0.0017335480079054832, 0.05876319110393524, -0.011748076416552067, 0.02809782326221466, -0.10286729782819748, 0.004300462547689676, -0.09873847663402557, -0.019600272178649902, -0.03260669484734535, -0.0016328865895047784, -0.01795768178999424, -0.06121131032705307, -0.04944399744272232, 0.02861124277114868, -0.10502386838197708, -0.03874640539288521, 0.0036044397857040167, 0.036436278373003006, -0.11784455180168152, -0.027683526277542114, 0.03373165428638458, -0.09978931397199631, 0.08017148077487946, 0.03449330851435661, 0.04289089888334274, 0.030439050868153572, -0.0416792631149292, -0.002312726341187954, 0.02410595305263996, 0.012475119903683662, 0.06178902089595795, -0.1246994212269783, 0.00984878744930029, -0.039419617503881454, 0.010999300517141819, 0.006693806033581495, 0.06689050793647766, -0.140719935297966, 0.004910520743578672, 0.0009317295625805855, -0.03784535080194473, -0.07350056618452072, 0.04823964834213257, 0.08342143148183823, 0.03809160739183426, 0.1673920452594757, -0.05942710489034653, 0.04675367474555969, -0.21792404353618622, 0.0005883161793462932, -0.026599658653140068, -0.10838301479816437, -0.07527388632297516, -0.026492130011320114, 0.07986058294773102, -0.052306875586509705, 0.08595381677150726, 0.010093525052070618, 0.08773213624954224, 0.044246524572372437, 0.006074170116335154, -0.004429453518241644, 0.044895634055137634, 0.159264475107193, 0.03367142006754875, -0.02336570993065834, 0.09174962341785431, 0.022678768262267113, 0.05251486599445343, 0.10611612349748611, 0.1736874133348465, 0.11592027544975281, 0.03556663542985916, 0.07679082453250885, 0.06501177698373795, -0.06687043607234955, -0.20335890352725983, 0.03175777196884155, -0.04499150812625885, 0.13214340806007385, -0.026531226933002472, 0.19982653856277466, 0.07911653816699982, -0.1746373027563095, 0.04278244078159332, -0.03249948471784592, -0.07499178498983383, -0.08855292946100235, -0.04769033566117287, -0.05695343762636185, -0.1326156109571457, -0.0010925361420959234, -0.10320792347192764, 0.022500472143292427, 0.11210528016090393, 0.004858487285673618, 0.0147793497890234, 0.12954770028591156, 0.06825585663318634, 0.02363201044499874, 0.07254573702812195, 0.040323518216609955, -0.0003591952845454216, -0.04590310528874397, -0.07723186910152435, 0.004031348042190075, -0.029914047569036484, 0.040897443890571594, -0.05139124020934105, -0.0598725751042366, 0.050515033304691315, 0.013681336306035519, -0.11119602620601654, 0.020007554441690445, 0.007768811192363501, 0.0689438208937645, 0.05899636074900627, -0.00712836068123579, 0.03220078721642494, -0.03558715432882309, 0.23696966469287872, -0.08586495369672775, -0.04285628721117973, -0.10814962536096573, 0.2588697075843811, -0.004936049226671457, -0.06665169447660446, 0.05246593430638313, -0.06503323465585709, -0.027775026857852936, 0.16903135180473328, 0.1394682079553604, -0.04994731396436691, -0.011253873817622662, 0.022309867665171623, -0.016889413818717003, -0.03337544947862625, 0.12236563116312027, 0.11357803642749786, 0.07892194390296936, -0.09117122739553452, -0.04218045249581337, -0.06512676924467087, -0.018572693690657616, -0.03704618662595749, 0.057424139231443405, 0.008563746698200703, -0.015390170738101006, -0.04654195159673691, 0.05791937932372093, -0.04902665317058563, -0.10111379623413086, 0.07434883713722229, -0.21258099377155304, -0.18470029532909393, -0.026051929220557213, 0.09802152216434479, -0.003634049091488123, 0.060527946799993515, -0.00862343143671751, -0.0041233752854168415, 0.087749183177948, -0.01576095074415207, -0.054813921451568604, -0.08759871870279312, 0.1039179116487503, -0.058813247829675674, 0.19858618080615997, -0.04668668285012245, 0.06137654930353165, 0.12421168386936188, 0.04941312223672867, -0.12765884399414062, 0.01118481531739235, 0.07356998324394226, -0.12609295547008514, 0.03149466589093208, 0.14884242415428162, -0.028766723349690437, 0.07823891937732697, 0.018872559070587158, -0.1268850862979889, -0.007380671799182892, -0.07257872074842453, -0.030867580324411392, -0.04284755140542984, -0.03356097266077995, -0.022712433710694313, 0.14255139231681824, 0.21812443435192108, -0.05083620175719261, -0.03774285688996315, -0.06513914465904236, -0.006580903194844723, 0.062315311282873154, 0.06463326513767242, -0.04453542083501816, -0.21703271567821503, 0.013543025590479374, 0.0286135021597147, -0.00412418507039547, -0.21539650857448578, -0.07961023598909378, 0.03317610174417496, -0.0703597217798233, -0.0863490030169487, 0.09292192757129669, 0.03943736478686333, 0.0426328144967556, -0.0498727485537529, -0.005546176340430975, -0.06849800050258636, 0.14212635159492493, -0.18400195240974426, -0.07009827345609665 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-sroie_mod This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.0+cu101 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "layoutlmv2-finetuned-sroie_mod", "results": []}]}
token-classification
Theivaprakasham/layoutlmv2-finetuned-sroie_mod
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# layoutlmv2-finetuned-sroie_mod This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.0+cu101 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# layoutlmv2-finetuned-sroie_mod\n\nThis model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 3000\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.8.0+cu101\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# layoutlmv2-finetuned-sroie_mod\n\nThis model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 3000\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.8.0+cu101\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 69, 45, 6, 12, 8, 3, 117, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# layoutlmv2-finetuned-sroie_mod\n\nThis model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 3000\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.8.0+cu101\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.11492462456226349, 0.15088385343551636, -0.0017886001151055098, 0.08229848742485046, 0.1438184380531311, 0.026682887226343155, 0.07023587822914124, 0.15668612718582153, -0.11675651371479034, 0.05319885537028313, 0.05612390860915184, 0.033517688512802124, 0.06838316470384598, 0.12606465816497803, -0.020016994327306747, -0.26900514960289, -0.005851583555340767, 0.012117881327867508, -0.08446924388408661, 0.10016556829214096, 0.11259027570486069, -0.07753439247608185, 0.06968007236719131, 0.010738922283053398, -0.13676853477954865, 0.021042464300990105, -0.05401313677430153, -0.06293271481990814, 0.07367381453514099, 0.018003644421696663, 0.0731508880853653, 0.012992109172046185, 0.129837304353714, -0.19124522805213928, -0.003956410102546215, 0.07915263622999191, 0.03687341883778572, 0.08900132030248642, 0.06651818007230759, -0.016061414033174515, 0.09156495332717896, -0.1637077033519745, 0.09271400421857834, 0.03999616950750351, -0.06911929696798325, -0.18979859352111816, -0.09060892462730408, 0.11028449982404709, 0.0861748456954956, 0.10099150240421295, 0.028100907802581787, 0.14198946952819824, -0.05792849138379097, 0.07964225113391876, 0.1843613237142563, -0.23402392864227295, -0.06380341947078705, 0.0441153310239315, 0.06683480739593506, 0.05094277486205101, -0.11551771312952042, 0.0006952016265131533, 0.03503560274839401, 0.02697671949863434, 0.08914445340633392, -0.011248319409787655, -0.10948905348777771, -0.006392701528966427, -0.12363345175981522, -0.02734380029141903, 0.19060176610946655, 0.04032469913363457, -0.03944221884012222, -0.11297900229692459, -0.02041918970644474, -0.10922766476869583, -0.011524301022291183, -0.033911168575286865, 0.03192037343978882, -0.059617508202791214, -0.05960777774453163, -0.08973539620637894, -0.07806294411420822, -0.06815561652183533, 0.026802293956279755, 0.10689612478017807, 0.02601122483611107, 0.02096298336982727, -0.029710618779063225, 0.1263832300901413, 0.004922828171402216, -0.12363361567258835, -0.04664815589785576, -0.012035469524562359, -0.09955163300037384, -0.0663166418671608, -0.030293051153421402, 0.005330383311957121, -0.0376368910074234, 0.13745881617069244, -0.06019163131713867, 0.057483822107315063, 0.02618434466421604, -0.0012973828706890345, -0.024469932541251183, 0.1623930186033249, -0.060035254806280136, -0.03258424624800682, -0.011151905171573162, 0.08797997981309891, -0.005982451140880585, -0.00899974163621664, -0.09270478785037994, -0.06052965298295021, 0.09625768661499023, 0.07801777869462967, -0.01526201143860817, 0.03175253048539162, -0.029776470735669136, -0.04835733398795128, 0.05927502363920212, -0.13769568502902985, 0.04339400678873062, -0.01693147048354149, -0.11107991635799408, -0.038790974766016006, 0.06212133914232254, -0.007243253290653229, -0.05014701560139656, 0.02770950458943844, -0.06844258308410645, 0.0018827422754839063, -0.08541429042816162, -0.04789812117815018, 0.02935686521232128, -0.10335994511842728, 0.0025718517135828733, -0.052451495081186295, -0.23355087637901306, -0.050173308700323105, 0.03152042627334595, -0.07461809366941452, -0.04381133243441582, -0.008780882693827152, -0.07215593755245209, 0.006847197189927101, -0.011864482425153255, 0.1410202980041504, -0.03583533316850662, 0.06519113481044769, 0.012332398444414139, 0.020188255235552788, 0.043934501707553864, 0.06539592146873474, -0.08503735810518265, 0.02655789442360401, -0.09774938225746155, 0.09813528507947922, -0.09585563093423843, 0.027326833456754684, -0.12193340808153152, -0.114446260035038, 0.0010868757963180542, -0.03133215755224228, 0.05002520978450775, 0.13341876864433289, -0.1364075392484665, -0.015544061549007893, 0.10910399258136749, -0.07175299525260925, -0.08161064237356186, 0.05528978258371353, -0.01992705464363098, 0.051186200231313705, 0.04393250122666359, 0.11108339577913284, 0.1727890521287918, -0.13940055668354034, -0.01821744255721569, 0.04851824790239334, 0.05613598972558975, -0.010773928835988045, 0.07534907758235931, 0.0043799253180623055, 0.0642499178647995, 0.020305417478084564, -0.08074197918176651, -0.027541272342205048, -0.08056821674108505, -0.08951879292726517, -0.058561645448207855, -0.0884091854095459, 0.05981528386473656, 0.05191658064723015, 0.03949451446533203, -0.04018620401620865, -0.13212421536445618, 0.13395433127880096, 0.1487611085176468, -0.048003263771533966, 0.010719996877014637, -0.06608285754919052, -0.007819470018148422, -0.019801819697022438, -0.033587496727705, -0.2164059430360794, -0.13296818733215332, 0.023527247831225395, -0.06568090617656708, 0.026920916512608528, 0.011397105641663074, 0.07296162843704224, 0.056051187217235565, -0.04507727921009064, -0.03282999247312546, -0.09647529572248459, 0.0005826303386129439, -0.09074313938617706, -0.1600201576948166, -0.11071484535932541, -0.030691441148519516, 0.1652173101902008, -0.22864492237567902, 0.03461030125617981, 0.029173191636800766, 0.14966511726379395, 0.025553196668624878, -0.05278412997722626, 0.039033886045217514, 0.03500296175479889, -0.004977285861968994, -0.11123386770486832, 0.03786681964993477, 0.006018934305757284, -0.09455502778291702, -0.032247476279735565, -0.11495625227689743, 0.04960174113512039, 0.053483523428440094, 0.09524084627628326, -0.09731993824243546, -0.03264659643173218, -0.05812138319015503, -0.06268423050642014, -0.06336352974176407, -0.004047458525747061, 0.18009963631629944, 0.02297849766910076, 0.11486532539129257, -0.050599485635757446, -0.08607891947031021, 0.005875037983059883, 0.01482742466032505, -0.03497317060828209, 0.07744483649730682, 0.008044643327593803, -0.09022022783756256, 0.10145898163318634, 0.06513241678476334, -0.03989306092262268, 0.15265803039073944, -0.05302486568689346, -0.09387726336717606, -0.02324366569519043, 0.007423447910696268, -0.009979795664548874, 0.11620438098907471, -0.09467927366495132, -0.013275478035211563, 0.03715338930487633, 0.008759523741900921, 0.040862761437892914, -0.16412082314491272, 0.000493604049552232, 0.03184884786605835, -0.04244939237833023, 0.004384869243949652, -0.023957476019859314, 0.027344105765223503, 0.06183808296918869, 0.03311054781079292, 0.011315828189253807, 0.037226803600788116, -0.006776873022317886, -0.08385247737169266, 0.1797579675912857, -0.10338224470615387, -0.18292710185050964, -0.15361282229423523, 0.0839020162820816, -0.05981212109327316, -0.03651835024356842, -0.007157923653721809, -0.05931771174073219, -0.04101467877626419, -0.07063328474760056, -0.03825856000185013, -0.05884353816509247, -0.03001711517572403, 0.025296606123447418, 0.03827721253037453, 0.08801306784152985, -0.12411132454872131, 0.027540063485503197, -0.0014213408576324582, -0.10418656468391418, -0.01842564158141613, 0.03400738164782524, 0.09855984896421432, 0.1167098730802536, -0.02538205124437809, 0.023412087932229042, -0.04317445307970047, 0.17004896700382233, -0.08805712312459946, 0.005626151338219643, 0.15977132320404053, 0.023759443312883377, 0.05527789145708084, 0.08970192819833755, 0.028027046471834183, -0.057377882301807404, 0.011923016980290413, 0.047961391508579254, -0.023064417764544487, -0.25091424584388733, -0.04147883504629135, -0.01994228921830654, -0.06674721837043762, 0.09908604621887207, 0.04663620889186859, 0.040814340114593506, 0.04982709884643555, -0.030959708616137505, 0.021315893158316612, -0.013370854780077934, 0.08340520411729813, 0.08847981691360474, 0.03125689923763275, 0.09645067900419235, -0.034823767840862274, -0.00313771516084671, 0.05637774243950844, 0.05803365260362625, 0.24943435192108154, -0.04347389563918114, 0.1297728717327118, 0.004970667418092489, 0.14392007887363434, -0.030010618269443512, 0.033059973269701004, 0.04468115419149399, 0.010404589585959911, 0.03778720274567604, -0.06908484548330307, -0.027903515845537186, 0.03925056755542755, -0.013714349828660488, 0.049188680946826935, -0.10724068433046341, 0.01314564235508442, 0.002121339552104473, 0.27634796500205994, 0.03867848590016365, -0.3034403324127197, -0.10632933676242828, 0.004270715173333883, -0.004607222508639097, -0.07516329735517502, -0.014352512545883656, 0.10207873582839966, -0.1579386293888092, 0.07763253152370453, -0.059859421104192734, 0.09634031355381012, -0.052008580416440964, -0.016954878345131874, 0.0766352117061615, 0.09742887318134308, 0.012585092335939407, 0.10672423243522644, -0.16323278844356537, 0.2055397927761078, 0.02782164327800274, 0.10925878584384918, -0.07027069479227066, 0.04240789636969566, 0.014937963336706161, 0.12010888010263443, 0.11642955988645554, -0.011774781160056591, -0.05502813309431076, -0.16820412874221802, -0.09523458778858185, 0.004254389088600874, 0.11057521402835846, -0.03922126814723015, 0.07841747999191284, -0.04489129036664963, -0.0038341658655554056, 0.039133645594120026, -0.11601074784994125, -0.15178094804286957, -0.1230662390589714, 0.04969276860356331, -0.008433129638433456, 0.011966366320848465, -0.08074162900447845, -0.12151002883911133, 0.01606011390686035, 0.18772479891777039, -0.03021947853267193, -0.07139706611633301, -0.16766205430030823, 0.07743801921606064, 0.15099602937698364, -0.06482211500406265, 0.012629564851522446, 0.01205248199403286, 0.16162794828414917, 0.04786220192909241, -0.09045680612325668, 0.033858522772789, -0.06884526461362839, -0.16675177216529846, -0.02236945368349552, 0.13367141783237457, 0.0474008284509182, 0.04624688997864723, -0.00009334380592918023, 0.02376442402601242, 0.0019481141353026032, -0.07860855013132095, 0.018634453415870667, 0.06477931886911392, 0.08507263660430908, 0.06993148475885391, -0.0808316022157669, 0.02012859284877777, -0.03406578302383423, 0.0014308736426755786, 0.11416596174240112, 0.13924872875213623, -0.10473231226205826, 0.08046320825815201, 0.04427790641784668, -0.09115619212388992, -0.2010941505432129, 0.08155226707458496, 0.12423241138458252, 0.019441673532128334, 0.055462609976530075, -0.21114599704742432, 0.08528251945972443, 0.11191319674253464, -0.03383323922753334, 0.06648814678192139, -0.29551851749420166, -0.12017451971769333, 0.07678890228271484, 0.07474813610315323, -0.059405628591775894, -0.13980722427368164, -0.04972830042243004, -0.008212692104279995, -0.1363498717546463, 0.09890871495008469, -0.07234945148229599, 0.10429544746875763, -0.019635139033198357, 0.08953792601823807, 0.033746737986803055, -0.029037531465291977, 0.14292767643928528, 0.03329786658287048, 0.06893838196992874, -0.047218505293130875, 0.0406486839056015, 0.11575333774089813, -0.09107629209756851, 0.08641210943460464, -0.004332968033850193, 0.07264281809329987, -0.19088847935199738, -0.01037594024091959, -0.07678668200969696, 0.09369727224111557, -0.05366166681051254, -0.050323035567998886, -0.02077406272292137, 0.06940506398677826, 0.028392788022756577, -0.03746100142598152, 0.10819531977176666, 0.014746792614459991, 0.11314714699983597, 0.15451790392398834, 0.10157285630702972, 0.013517363928258419, -0.13281799852848053, -0.01578979380428791, -0.015901979058980942, 0.05799286067485809, -0.12887071073055267, 0.021549377590417862, 0.12668010592460632, 0.06691867113113403, 0.12426750361919403, 0.019705941900610924, -0.05479451268911362, -0.009616642259061337, 0.03185548633337021, -0.06961257010698318, -0.11340469866991043, -0.045477915555238724, -0.02928299829363823, -0.15739820897579193, 0.045712120831012726, 0.10095906257629395, -0.07471425831317902, -0.012427568435668945, -0.021165985614061356, 0.02915189415216446, -0.018485117703676224, 0.18602079153060913, 0.05993235856294632, 0.07955436408519745, -0.07278687506914139, 0.13905581831932068, 0.08489661663770676, -0.07479508966207504, 0.05066769942641258, 0.07034540921449661, -0.07592841237783432, -0.036970920860767365, 0.05195446312427521, 0.0787186399102211, -0.05684003233909607, -0.05905669182538986, -0.060601506382226944, -0.07680100947618484, 0.043685995042324066, 0.10630698502063751, 0.044159743934869766, -0.0064098648726940155, -0.016546817496418953, 0.015310542657971382, -0.13904328644275665, 0.0995108112692833, 0.03892657160758972, 0.0606507733464241, -0.1730857789516449, 0.11371663957834244, 0.02022535167634487, 0.08114034682512283, -0.020976202562451363, -0.004556445404887199, -0.06880270689725876, -0.013113406486809254, -0.12855647504329681, -0.0199273731559515, -0.027818849310278893, 0.013202346861362457, -0.026125337928533554, -0.05525476485490799, -0.032576318830251694, 0.0667463019490242, -0.05522923171520233, -0.07081938534975052, -0.0030486667528748512, 0.058248721063137054, -0.1306675374507904, -0.013404592871665955, 0.022071005776524544, -0.09453298896551132, 0.06363732367753983, 0.05535009503364563, 0.035553205758333206, 0.01216068584471941, -0.021876154467463493, -0.0019298037514090538, 0.00940866582095623, 0.030617132782936096, 0.060530148446559906, -0.10322783142328262, -0.006162162870168686, -0.03467046841979027, 0.029850369319319725, 0.012751737609505653, 0.06463780254125595, -0.12630410492420197, -0.03159511834383011, -0.056072868406772614, -0.015685712918639183, -0.06447353959083557, 0.08440353721380234, 0.11286745220422745, 0.03686085343360901, 0.13281962275505066, -0.05463350564241409, 0.053229086101055145, -0.19755931198596954, -0.034340955317020416, -0.01987938955426216, -0.027017293497920036, -0.03316080570220947, -0.019066818058490753, 0.08254236727952957, -0.045080509036779404, 0.10470306128263474, 0.008428065106272697, 0.13466985523700714, 0.04018203169107437, -0.03256775811314583, -0.027316946536302567, 0.015117998234927654, 0.13985444605350494, 0.0724349245429039, -0.0021423641592264175, 0.141749769449234, 0.00706561841070652, 0.029888669028878212, 0.026491934433579445, 0.15936493873596191, 0.11730843037366867, -0.053468409925699234, 0.07812953740358353, 0.09280053526163101, -0.11513473093509674, -0.16459719836711884, 0.061649661511182785, 0.008411286398768425, 0.11486422270536423, -0.0702405646443367, 0.09499642252922058, 0.10611135512590408, -0.17544062435626984, 0.05773904547095299, -0.051694102585315704, -0.1146908849477768, -0.10101412236690521, -0.06151285022497177, -0.0605340301990509, -0.11750733107328415, 0.005552015732973814, -0.11468282341957092, 0.02283462882041931, 0.08953464776277542, -0.0007705962052568793, 0.010809501633048058, 0.14739742875099182, -0.046384990215301514, 0.005155707709491253, 0.06562402099370956, 0.01265560369938612, 0.021513985469937325, -0.07480962574481964, -0.031326744705438614, 0.07485897839069366, 0.02791280671954155, 0.0789024829864502, -0.05572843551635742, 0.006833215709775686, 0.03633615002036095, -0.01059158518910408, -0.08259035646915436, 0.012510387226939201, 0.03776317834854126, 0.03599408268928528, 0.03466933220624924, 0.04518887400627136, -0.0024183434434235096, -0.051163677126169205, 0.29758337140083313, -0.08519119024276733, -0.07076237350702286, -0.1331205815076828, 0.20098134875297546, 0.02878216654062271, -0.03915698081254959, 0.07128650695085526, -0.12151020020246506, -0.005901701748371124, 0.14303238689899445, 0.12999294698238373, -0.020972840487957, -0.0159778855741024, -0.0037204280961304903, -0.015501759946346283, -0.032517362385988235, 0.09797912836074829, 0.09571998566389084, 0.02158479578793049, -0.07005554437637329, -0.008576914668083191, 0.015541578643023968, -0.058784641325473785, -0.08992458134889603, 0.06528465449810028, -0.01356249675154686, 0.016818026080727577, -0.018629174679517746, 0.08652050048112869, -0.0026318151503801346, -0.18421724438667297, 0.07129450142383575, -0.16668200492858887, -0.18282930552959442, -0.03640999272465706, 0.06764120608568192, -0.01944163255393505, 0.04725797101855278, 0.008066173642873764, -0.012016021646559238, 0.1431902050971985, -0.007808604743331671, -0.06676103919744492, -0.11359836906194687, 0.09413355588912964, -0.0703824833035469, 0.20564289391040802, -0.020484771579504013, 0.05953804403543472, 0.0915365219116211, 0.001106854877434671, -0.1703377217054367, 0.008195198141038418, 0.06984560936689377, -0.050463516265153885, 0.04588573798537254, 0.16532479226589203, -0.05206216126680374, 0.08180880546569824, 0.01942162960767746, -0.14259737730026245, -0.038300853222608566, -0.02797495387494564, -0.0037013539113104343, -0.076631098985672, 0.0014796038158237934, -0.034771308302879333, 0.16627615690231323, 0.20241664350032806, -0.05015748366713524, -0.020806124433875084, -0.08027670532464981, 0.017027806490659714, 0.05446973815560341, 0.0813824012875557, -0.01596459373831749, -0.17606493830680847, 0.01649293676018715, -0.0017535991501063108, 0.03447067737579346, -0.1990082859992981, -0.07653742283582687, 0.0722908228635788, -0.06910309195518494, -0.023322293534874916, 0.10871066898107529, 0.056560028344392776, 0.027500731870532036, -0.031598396599292755, -0.085264191031456, -0.0428045429289341, 0.12976208329200745, -0.1889045238494873, -0.03511922061443329 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment This model is a fine-tuned version of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6954 - Accuracy: 0.7146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8892 | 1.0 | 1387 | 0.8472 | 0.6180 | | 0.7965 | 2.0 | 2774 | 0.7797 | 0.6609 | | 0.7459 | 3.0 | 4161 | 0.7326 | 0.6872 | | 0.7096 | 4.0 | 5548 | 0.7133 | 0.6995 | | 0.6853 | 5.0 | 6935 | 0.6998 | 0.7002 | | 0.6561 | 6.0 | 8322 | 0.6949 | 0.7059 | | 0.663 | 7.0 | 9709 | 0.6956 | 0.7077 | | 0.6352 | 8.0 | 11096 | 0.6890 | 0.7164 | | 0.6205 | 9.0 | 12483 | 0.6888 | 0.7117 | | 0.6203 | 10.0 | 13870 | 0.6871 | 0.7121 | | 0.6005 | 11.0 | 15257 | 0.6879 | 0.7171 | | 0.5985 | 12.0 | 16644 | 0.6870 | 0.7139 | | 0.5839 | 13.0 | 18031 | 0.6882 | 0.7164 | | 0.5861 | 14.0 | 19418 | 0.6910 | 0.7124 | | 0.5732 | 15.0 | 20805 | 0.6916 | 0.7153 | | 0.5797 | 16.0 | 22192 | 0.6947 | 0.7110 | | 0.5565 | 17.0 | 23579 | 0.6930 | 0.7175 | | 0.5636 | 18.0 | 24966 | 0.6959 | 0.7106 | | 0.5642 | 19.0 | 26353 | 0.6952 | 0.7132 | | 0.5717 | 20.0 | 27740 | 0.6954 | 0.7146 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment", "results": []}]}
text-classification
Theivaprakasham/sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
sentence-transformers-msmarco-distilbert-base-tas-b-twitter\_sentiment ====================================================================== This model is a fine-tuned version of sentence-transformers/msmarco-distilbert-base-tas-b on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6954 * Accuracy: 0.7146 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 20 ### Training results ### Framework versions * Transformers 4.13.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10135777294635773, 0.08274046331644058, -0.0018859024858102202, 0.11577139794826508, 0.17630377411842346, 0.017339374870061874, 0.11143670231103897, 0.12665876746177673, -0.10778526216745377, 0.01680765673518181, 0.12586572766304016, 0.18338774144649506, 0.007963022217154503, 0.11285215616226196, -0.06218113750219345, -0.25448787212371826, -0.0033404522109776735, 0.055017564445734024, -0.05944382771849632, 0.13821859657764435, 0.09592437744140625, -0.13507016003131866, 0.07788726687431335, 0.0035198391415178776, -0.2223058044910431, 0.000758227426558733, 0.006498891860246658, -0.07050269097089767, 0.14519457519054413, 0.017821673303842545, 0.12490711361169815, 0.006678563542664051, 0.07608069479465485, -0.18295112252235413, 0.008831116370856762, 0.04882197827100754, 0.0054170829243958, 0.08499220758676529, 0.05219454690814018, -0.014087320305407047, 0.12250002473592758, -0.09279590100049973, 0.05507567524909973, 0.019323760643601418, -0.11586278676986694, -0.21622221171855927, -0.08855557441711426, 0.03753415867686272, 0.0714605376124382, 0.11428555846214294, 0.004037012346088886, 0.12782643735408783, -0.08726329356431961, 0.09775740653276443, 0.21283535659313202, -0.2801543176174164, -0.06446526199579239, 0.03048173151910305, 0.010446135886013508, 0.06894373893737793, -0.10626594722270966, -0.029595285654067993, 0.05412504822015762, 0.0546782910823822, 0.13788236677646637, -0.031114552170038223, -0.12217189371585846, 0.008877553977072239, -0.1414124220609665, -0.041686464101076126, 0.14180724322795868, 0.022884877398610115, -0.02862837351858616, -0.05017169192433357, -0.0579412579536438, -0.16854025423526764, -0.04533573240041733, -0.005999318324029446, 0.042564209550619125, -0.029634688049554825, -0.0430167093873024, 0.005808807443827391, -0.10857228934764862, -0.061213184148073196, -0.07812034338712692, 0.1322706788778305, 0.04102922976016998, 0.011109068989753723, -0.0379050150513649, 0.10843020677566528, 0.025221969932317734, -0.13420376181602478, 0.02009890042245388, 0.026084821671247482, 0.016005700454115868, -0.04965280741453171, -0.06821724027395248, -0.057812292128801346, 0.009931718930602074, 0.11071579158306122, -0.06932491809129715, 0.05513807386159897, 0.0207255519926548, 0.045096512883901596, -0.10116790980100632, 0.20037446916103363, -0.026344504207372665, -0.002757474547252059, 0.019034190103411674, 0.04359889775514603, 0.011341211386024952, -0.008439677767455578, -0.11990704387426376, -0.004098886623978615, 0.12477576732635498, 0.020250629633665085, -0.0674668401479721, 0.08038908243179321, -0.04627610743045807, -0.0238846056163311, 0.02518320642411709, -0.10357148945331573, 0.028974616900086403, -0.00024357634538318962, -0.0777348205447197, -0.004234520718455315, 0.03487483784556389, 0.008128906600177288, -0.0432061068713665, 0.10718505084514618, -0.07377047836780548, 0.04046711325645447, -0.0973447933793068, -0.10242876410484314, 0.023014172911643982, -0.08067553490400314, 0.0250324085354805, -0.10779548436403275, -0.16086848080158234, -0.018510989844799042, 0.06071991100907326, -0.019287437200546265, -0.05934726819396019, -0.054215677082538605, -0.07961788028478622, 0.015002906322479248, -0.02168322168290615, 0.14087989926338196, -0.062320414930582047, 0.10663479566574097, 0.03318265825510025, 0.06091424822807312, -0.05563826486468315, 0.06355292350053787, -0.08767721801996231, 0.0029517565853893757, -0.1980956792831421, 0.055645737797021866, -0.048271551728248596, 0.08719204366207123, -0.09143605083227158, -0.11812824010848999, 0.018719470128417015, -0.009311552159488201, 0.0698896273970604, 0.0922938883304596, -0.1635281890630722, -0.06778517365455627, 0.146975576877594, -0.06460265070199966, -0.11833538860082626, 0.11121067404747009, -0.05883621424436569, 0.04896925762295723, 0.07883192598819733, 0.16520841419696808, 0.0853252187371254, -0.066966213285923, 0.01953929103910923, 0.007101478520780802, 0.047216396778821945, -0.08884579688310623, 0.054055146872997284, 0.009367645718157291, 0.004361837171018124, 0.04002015292644501, -0.03090701624751091, 0.06919955462217331, -0.0849560871720314, -0.09188736230134964, -0.046559784561395645, -0.09489192068576813, 0.04316055402159691, 0.07696464657783508, 0.0928557813167572, -0.08701369166374207, -0.06700504571199417, 0.07013801485300064, 0.07348611950874329, -0.06908822804689407, 0.039984963834285736, -0.056522954255342484, 0.06572785973548889, -0.03424917906522751, -0.014290829189121723, -0.20691825449466705, 0.004245452117174864, 0.007925033569335938, 0.010865378193557262, 0.011183997616171837, 0.005041860044002533, 0.064338818192482, 0.04442984238266945, -0.053524404764175415, -0.01665395498275757, -0.009434319101274014, -0.004364530090242624, -0.13897424936294556, -0.1811414361000061, -0.02109309658408165, -0.019906770437955856, 0.11645442992448807, -0.189176544547081, 0.039406340569257736, 0.00006925393972778693, 0.060390423983335495, -0.006955599412322044, 0.0038149578031152487, -0.04200899228453636, 0.08686453849077225, -0.037505216896533966, -0.050849687308073044, 0.08387774974107742, 0.013041810132563114, -0.08397908508777618, -0.03579365089535713, -0.08874513953924179, 0.1600094735622406, 0.14804130792617798, -0.11721186339855194, -0.07192570716142654, -0.0054693883284926414, -0.058365412056446075, -0.031234314665198326, -0.028493808582425117, 0.05123109370470047, 0.19891096651554108, -0.008957705460488796, 0.15929508209228516, -0.07101612538099289, -0.04994869604706764, 0.02199174091219902, -0.02133304812014103, 0.02927567809820175, 0.11898951977491379, 0.10807547718286514, -0.0757303535938263, 0.14050491154193878, 0.15066640079021454, -0.0942881852388382, 0.11144840717315674, -0.0511794351041317, -0.060196831822395325, 0.001286001643165946, -0.01643642969429493, 0.0003551118425093591, 0.07511655241250992, -0.1489751636981964, -0.011482013389468193, 0.022337451577186584, 0.02918325923383236, 0.031271543353796005, -0.2242160141468048, -0.028247782960534096, 0.022009532898664474, -0.041791412979364395, -0.011156024411320686, -0.017699476331472397, 0.010478290729224682, 0.10197334736585617, 0.004163053818047047, -0.08572139590978622, 0.049709752202034, 0.0033814897760748863, -0.0850231721997261, 0.22269387543201447, -0.09607120603322983, -0.16963908076286316, -0.11876726895570755, -0.08452726155519485, -0.04025683552026749, 0.009025831706821918, 0.06632628291845322, -0.09395311027765274, -0.028159653767943382, -0.0573306605219841, 0.0034268349409103394, -0.004703223239630461, 0.03925714269280434, 0.017753643915057182, 0.008383272215723991, 0.06702878326177597, -0.10943154245615005, -0.014278898015618324, -0.049535296857357025, -0.051876455545425415, 0.055067289620637894, 0.02584192343056202, 0.10225822031497955, 0.1642504632472992, -0.02324002981185913, 0.012210014276206493, -0.03217116743326187, 0.21775531768798828, -0.06452099233865738, -0.02976987138390541, 0.14251753687858582, -0.008710840716958046, 0.05361122265458107, 0.10770805180072784, 0.06304803490638733, -0.09113419055938721, 0.011926288716495037, 0.008003761060535908, -0.03673265874385834, -0.2353358268737793, -0.05596330761909485, -0.06333594769239426, -0.021663695573806763, 0.10027781873941422, 0.032105475664138794, 0.043923184275627136, 0.0662444531917572, 0.043814562261104584, 0.09218364953994751, -0.03073686547577381, 0.056343674659729004, 0.13504822552204132, 0.04701776057481766, 0.12318012863397598, -0.05074577406048775, -0.05613057315349579, 0.028274066746234894, -0.00834448542445898, 0.2194543480873108, -0.0016671590274199843, 0.1307802051305771, 0.054953087121248245, 0.1806854009628296, 0.005985770840197802, 0.09113761782646179, -0.005022110883146524, -0.03715945780277252, -0.008318683132529259, -0.03480607643723488, -0.05839169770479202, 0.008205308578908443, -0.07782135158777237, 0.05012594908475876, -0.12540210783481598, -0.011183738708496094, 0.05347880348563194, 0.2686105966567993, 0.018404867500066757, -0.32904890179634094, -0.0907854363322258, -0.0002117483818437904, -0.03966803103685379, -0.028076468035578728, 0.02405385486781597, 0.07689426839351654, -0.09801215678453445, 0.03415685519576073, -0.06924712657928467, 0.09988623112440109, -0.04805406555533409, 0.04794660210609436, 0.0677822157740593, 0.06885331124067307, 0.018675029277801514, 0.08736919611692429, -0.3292672336101532, 0.26181837916374207, -0.0008645812631584704, 0.07517562061548233, -0.08915988355875015, 0.002272876910865307, 0.033943478018045425, 0.07552120089530945, 0.06242944672703743, -0.017481163144111633, -0.037393782287836075, -0.17387066781520844, -0.06251607835292816, 0.031284503638744354, 0.07766426354646683, -0.010456360876560211, 0.08545082807540894, -0.028195856139063835, 0.007033161818981171, 0.07391080260276794, -0.033826254308223724, -0.04460778087377548, -0.10725757479667664, -0.00847543403506279, 0.021508868783712387, -0.03437408059835434, -0.0604880265891552, -0.11111851036548615, -0.12727531790733337, 0.15510739386081696, -0.028706444427371025, -0.043751996010541916, -0.11138598620891571, 0.07848194986581802, 0.07189948111772537, -0.0887453481554985, 0.05302527919411659, 0.004426827188581228, 0.06421996653079987, 0.028935885056853294, -0.08600321412086487, 0.09875943511724472, -0.06389907747507095, -0.15066687762737274, -0.04527116194367409, 0.10481420159339905, 0.031757671386003494, 0.05896678566932678, -0.004723235033452511, 0.009615088813006878, -0.04315736144781113, -0.09567835181951523, 0.0004889480769634247, 0.0026192308869212866, 0.10075151920318604, 0.010224567726254463, -0.06533318758010864, -0.00354822282679379, -0.06689343601465225, -0.03282097354531288, 0.20560240745544434, 0.19457757472991943, -0.09553246200084686, 0.03078821301460266, 0.03673442080616951, -0.07244722545146942, -0.20908279716968536, 0.04003703594207764, 0.0627066120505333, 0.0027863834984600544, 0.012769892811775208, -0.17305365204811096, 0.129233255982399, 0.09215070307254791, -0.00927950069308281, 0.10244367271661758, -0.3294859230518341, -0.12664926052093506, 0.1258442997932434, 0.13966387510299683, 0.12121931463479996, -0.14551366865634918, -0.020141009241342545, -0.03416813537478447, -0.1278398036956787, 0.10521218925714493, -0.07775252312421799, 0.11659105867147446, -0.03721826896071434, 0.08334612101316452, -0.00030493599479086697, -0.0630183070898056, 0.11180002242326736, 0.031116684898734093, 0.09145393967628479, -0.06497179716825485, -0.028690947219729424, 0.039352256804704666, -0.04548254981637001, 0.022065162658691406, -0.08204199373722076, 0.029309477657079697, -0.10072041302919388, -0.02337493747472763, -0.08124443143606186, 0.03554081171751022, -0.032470908015966415, -0.045979272574186325, -0.0314498245716095, 0.01860073208808899, 0.061441466212272644, -0.011086729355156422, 0.13964396715164185, 0.023406071588397026, 0.14284080266952515, 0.1215900257229805, 0.08294342458248138, -0.07971552759408951, -0.054519083350896835, -0.017041947692632675, -0.017511412501335144, 0.054058704525232315, -0.15697570145130157, 0.03200044855475426, 0.14969085156917572, 0.014461158774793148, 0.1283344179391861, 0.08889620751142502, -0.010089865885674953, 0.0010435037547722459, 0.06023816391825676, -0.15942254662513733, -0.07680007070302963, -0.0007556575583294034, -0.0442303828895092, -0.1038719192147255, 0.05273529514670372, 0.07936101406812668, -0.07154494524002075, -0.013955001719295979, -0.007109819911420345, 0.005290594883263111, -0.058315813541412354, 0.19909381866455078, 0.05885534733533859, 0.04775899276137352, -0.11097362637519836, 0.08020130544900894, 0.06032022833824158, -0.09087558090686798, 0.004001587629318237, 0.07916022837162018, -0.09938009828329086, -0.05344192311167717, 0.11112788319587708, 0.15920153260231018, -0.05199238285422325, -0.04854826629161835, -0.1318187266588211, -0.13332003355026245, 0.08879738301038742, 0.16085723042488098, 0.12112895399332047, 0.017295902594923973, -0.0647297352552414, -0.0003931059327442199, -0.12489212304353714, 0.07905107736587524, 0.034742288291454315, 0.06360327452421188, -0.13626883924007416, 0.16363756358623505, 0.010646659880876541, 0.055751655250787735, -0.02048797719180584, 0.026959946379065514, -0.09448882937431335, 0.025454740971326828, -0.13075831532478333, -0.00790505949407816, -0.024571973830461502, 0.010360374115407467, -0.009896098636090755, -0.04500517249107361, -0.050222139805555344, 0.020293017849326134, -0.11891980469226837, -0.02054501324892044, 0.018223702907562256, 0.05521858111023903, -0.10734119266271591, -0.042391691356897354, 0.018146181479096413, -0.06443040817975998, 0.06732083112001419, 0.05542875826358795, 0.002151757013052702, 0.06772201508283615, -0.12970450520515442, -0.012066740542650223, 0.08244536072015762, 0.01623448170721531, 0.06643139570951462, -0.08941607177257538, -0.004016763065010309, 0.02253030799329281, 0.05617377534508705, 0.027232274413108826, 0.07710752636194229, -0.14152072370052338, -0.002556337509304285, -0.03372864052653313, -0.07097069174051285, -0.0713062509894371, 0.03462457284331322, 0.09417925775051117, 0.016782911494374275, 0.1934307962656021, -0.07716746628284454, 0.038428571075201035, -0.1994265764951706, 0.002166219986975193, -0.020452294498682022, -0.12082858383655548, -0.12224387377500534, -0.06584741920232773, 0.06701700389385223, -0.04688705503940582, 0.13239164650440216, 0.022808263078331947, 0.041443001478910446, 0.028606576845049858, -0.01690308004617691, -0.005113750696182251, 0.02845112793147564, 0.21927714347839355, 0.03190941736102104, -0.033091697841882706, 0.07998703420162201, 0.05466098710894585, 0.09886053949594498, 0.12874607741832733, 0.20073440670967102, 0.15984003245830536, -0.009929084219038486, 0.10085826367139816, 0.012346209958195686, -0.041794486343860626, -0.14766250550746918, 0.04933306574821472, -0.05495171248912811, 0.10318170487880707, -0.026486234739422798, 0.20936429500579834, 0.05493492633104324, -0.16826948523521423, 0.04966076835989952, -0.06314503401517868, -0.09349086135625839, -0.10060113668441772, -0.03989967331290245, -0.08123365789651871, -0.13858309388160706, -0.004650390241295099, -0.1082819253206253, 0.008946124464273453, 0.1034444123506546, 0.010258267633616924, -0.030881986021995544, 0.14766168594360352, 0.03177231550216675, 0.014626555144786835, 0.06937221437692642, -0.0019193195039406419, -0.028432555496692657, -0.10102250427007675, -0.0576116144657135, -0.018341287970542908, -0.012989471666514874, 0.043385881930589676, -0.04652022197842598, -0.059514742344617844, 0.041283391416072845, -0.03050289861857891, -0.09180235862731934, 0.016825735569000244, 0.024785257875919342, 0.06964118778705597, 0.06851114332675934, 0.011215103790163994, 0.008019281551241875, -0.005749352741986513, 0.20784586668014526, -0.07422583550214767, -0.09081826359033585, -0.09604065865278244, 0.26267096400260925, 0.05589833855628967, -0.016176005825400352, 0.03407539799809456, -0.058005329221487045, -0.0043289377354085445, 0.26143157482147217, 0.19312059879302979, -0.08127182722091675, -0.008592027239501476, 0.005035127513110638, -0.008317729458212852, -0.013019554316997528, 0.12320748716592789, 0.15979567170143127, 0.044372618198394775, -0.10289064049720764, -0.04661485180258751, -0.05328579619526863, -0.015373779460787773, -0.0518922321498394, 0.05997927859425545, 0.025713903829455376, -0.002505056094378233, -0.033712755888700485, 0.05833606794476509, -0.0779862180352211, -0.0918317586183548, 0.053561240434646606, -0.20738600194454193, -0.1595872938632965, -0.01168893650174141, 0.10390384495258331, -0.003047036239877343, 0.054230011999607086, -0.02053985558450222, 0.005569125059992075, 0.07714027911424637, -0.02675684355199337, -0.08544744551181793, -0.06112229824066162, 0.09169352799654007, -0.1022702306509018, 0.18071740865707397, -0.040347304195165634, 0.06770633906126022, 0.12370099872350693, 0.07870785892009735, -0.07530255615711212, 0.058494728058576584, 0.03042885661125183, -0.05610785633325577, 0.04522054269909859, 0.07646949589252472, -0.03331485390663147, 0.02947806380689144, 0.034876853227615356, -0.11221297830343246, 0.02383114956319332, -0.0764397457242012, -0.04836144298315048, -0.04555441439151764, -0.046444009989500046, -0.05522444099187851, 0.12174031138420105, 0.21373692154884338, -0.028258144855499268, 0.009163696318864822, -0.07545559853315353, 0.0032780959736555815, 0.035525884479284286, 0.012546288780868053, -0.07991804927587509, -0.22866545617580414, 0.007072549778968096, 0.049910783767700195, -0.01915188506245613, -0.219326913356781, -0.08749385923147202, 0.0006203445955179632, -0.07693479210138321, -0.10567264258861542, 0.08385667949914932, 0.06567512452602386, 0.04579499363899231, -0.05789361894130707, -0.05476092919707298, -0.08473742008209229, 0.15428486466407776, -0.15388844907283783, -0.09079571813344955 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4475 - Wer: 0.3400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6929 | 4.0 | 500 | 2.4485 | 1.0009 | | 0.9441 | 8.0 | 1000 | 0.4848 | 0.4758 | | 0.3016 | 12.0 | 1500 | 0.4464 | 0.4016 | | 0.1715 | 16.0 | 2000 | 0.4666 | 0.3765 | | 0.1277 | 20.0 | 2500 | 0.4340 | 0.3515 | | 0.1082 | 24.0 | 3000 | 0.4544 | 0.3495 | | 0.0819 | 28.0 | 3500 | 0.4475 | 0.3400 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
Theivaprakasham/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4475 * Wer: 0.3400 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10822959244251251, 0.099675752222538, -0.003300065640360117, 0.06340761482715607, 0.10860926657915115, -0.020167825743556023, 0.1288769543170929, 0.15049001574516296, -0.09271349757909775, 0.07457399368286133, 0.12636904418468475, 0.1505885273218155, 0.04232662543654442, 0.1459311991930008, -0.05005314201116562, -0.2829117476940155, 0.046162717044353485, 0.0348406657576561, -0.0121766971424222, 0.12717968225479126, 0.08421128243207932, -0.12457819283008575, 0.057947319000959396, 0.034365277737379074, -0.1584104299545288, -0.003970644436776638, -0.005117249675095081, -0.10462873429059982, 0.12317385524511337, 0.006251727696508169, 0.07064329087734222, 0.04838201776146889, 0.06631770730018616, -0.2193475365638733, 0.006690362934023142, 0.043937861919403076, 0.028387419879436493, 0.07415802031755447, 0.0581994503736496, -0.02945130504667759, 0.10399823635816574, -0.07501231133937836, 0.08020306378602982, 0.03743743896484375, -0.10571174323558807, -0.29113149642944336, -0.08603336662054062, 0.04763360694050789, 0.06857916712760925, 0.08891522884368896, -0.012067495845258236, 0.144022136926651, -0.05461663380265236, 0.11053165048360825, 0.28164494037628174, -0.31383398175239563, -0.04501998424530029, -0.03997642174363136, 0.05645865947008133, 0.060465965420007706, -0.09994802623987198, -0.017910847440361977, 0.015012132935225964, 0.044832006096839905, 0.13800188899040222, -0.016268642619252205, -0.05933629348874092, -0.006875182036310434, -0.149040088057518, -0.060275666415691376, 0.11524058878421783, 0.022648070007562637, -0.039792802184820175, -0.09874942153692245, -0.055090054869651794, -0.21280622482299805, -0.06727685779333115, -0.01608140580356121, 0.04322221875190735, -0.0424761027097702, -0.10445226728916168, -0.011462483555078506, -0.067214734852314, -0.07468024641275406, -0.04020216315984726, 0.19049659371376038, 0.0569683313369751, -0.0015599278267472982, -0.03913375735282898, 0.07671435922384262, -0.02081478387117386, -0.13849472999572754, -0.024057583883404732, 0.036882609128952026, -0.020599735900759697, -0.01540920790284872, -0.041751619428396225, -0.059525419026613235, 0.02147202007472515, 0.16159066557884216, -0.10229084640741348, 0.09610845148563385, -0.02040909230709076, 0.03964505344629288, -0.1023506298661232, 0.20751461386680603, -0.04149479418992996, 0.017300888895988464, -0.01036039274185896, 0.055753905326128006, 0.029493195936083794, -0.026112813502550125, -0.0944448858499527, 0.03134589642286301, 0.1209908202290535, 0.04713206738233566, -0.04747193679213524, 0.06453514844179153, -0.034078627824783325, -0.00976975541561842, 0.0015425614546984434, -0.1116979643702507, 0.036166802048683167, 0.019734438508749008, -0.06563939899206161, 0.004243024159222841, 0.014517679810523987, 0.007364774588495493, -0.054604124277830124, 0.08333495259284973, -0.06161367520689964, 0.03338611125946045, -0.05673642084002495, -0.1255759745836258, 0.0254832673817873, -0.11468040943145752, -0.003398764180019498, -0.09991598129272461, -0.10067108273506165, -0.011766123585402966, 0.03731279447674751, -0.03822978585958481, -0.02582731656730175, -0.07831884920597076, -0.0903376117348671, 0.045774877071380615, -0.03446253389120102, 0.07107189297676086, -0.07455966621637344, 0.09409195184707642, 0.03365432471036911, 0.08763306587934494, -0.01564944162964821, 0.06029713898897171, -0.07134567946195602, 0.026744363829493523, -0.19970214366912842, 0.07492507249116898, -0.08829209953546524, 0.05765917897224426, -0.12506166100502014, -0.11516561359167099, 0.02212962694466114, -0.007345497142523527, 0.09889665991067886, 0.0976170003414154, -0.17107638716697693, -0.08861831575632095, 0.20791228115558624, -0.08212082087993622, -0.08377639949321747, 0.12448340654373169, -0.02486608363687992, -0.00034487590892240405, 0.05570755526423454, 0.25771892070770264, 0.04567098990082741, -0.12561871111392975, 0.007944315671920776, -0.040438469499349594, 0.0426238514482975, -0.035683345049619675, 0.058901671320199966, -0.028174052014946938, 0.06841765344142914, 0.01783875562250614, -0.004300459288060665, 0.0377449095249176, -0.08730132132768631, -0.0771728903055191, -0.043716900050640106, -0.07817266881465912, 0.029336441308259964, 0.032532043755054474, 0.06398753076791763, -0.11690137535333633, -0.10784720629453659, 0.03895878419280052, 0.0814940482378006, -0.10364940762519836, 0.07184524834156036, -0.1202312484383583, 0.08338981866836548, -0.01493844948709011, -0.005216938443481922, -0.19063900411128998, 0.03534865006804466, 0.03775133937597275, -0.028579330071806908, 0.04033041372895241, -0.06452071666717529, 0.07755736261606216, 0.045356228947639465, -0.026059629395604134, -0.04673822969198227, -0.009306485764682293, 0.010259725153446198, -0.08931370079517365, -0.20704664289951324, -0.03785887360572815, -0.038044244050979614, 0.07835710793733597, -0.13819026947021484, 0.034040216356515884, 0.07705976814031601, 0.0922568067908287, 0.032501887530088425, -0.03155825659632683, -0.0013533032033592463, 0.08992743492126465, -0.020763428881764412, -0.06439613550901413, 0.05805477127432823, 0.020028982311487198, -0.08660950511693954, 0.03891601413488388, -0.14935077726840973, 0.12675049901008606, 0.14704614877700806, -0.015051227062940598, -0.06689473241567612, 0.00010667734750313684, -0.04766694828867912, -0.03477296233177185, -0.0042805140838027, 0.03377611190080643, 0.2151905596256256, 0.013937880285084248, 0.14332830905914307, -0.0892372876405716, -0.04220341518521309, 0.04966939240694046, -0.02212832309305668, -0.0064864978194236755, 0.11720538139343262, 0.0451214499771595, -0.05501340702176094, 0.11844924837350845, 0.0907815545797348, -0.0788188949227333, 0.12142251431941986, -0.06029483675956726, -0.07461198419332504, -0.020842645317316055, 0.005617763847112656, 0.023748908191919327, 0.09859650582075119, -0.16244098544120789, -0.039806708693504333, 0.025940977036952972, 0.025764435529708862, 0.020472196862101555, -0.20870044827461243, 0.014138329774141312, 0.02901417203247547, -0.08571688830852509, -0.04336029291152954, 0.0030441186390817165, 0.012708943337202072, 0.09419949352741241, 0.01257222518324852, -0.0939040407538414, 0.01075243204832077, 0.003870375920087099, -0.07392288744449615, 0.1760009527206421, -0.11667042225599289, -0.17668895423412323, -0.10546509921550751, -0.09277024120092392, -0.03984987363219261, -0.002946222200989723, 0.08907544612884521, -0.09253612160682678, -0.03951948508620262, -0.08322479575872421, -0.015800848603248596, -0.02584817260503769, 0.041999366134405136, 0.0313355028629303, -0.011593472212553024, 0.06448721885681152, -0.11675503849983215, -0.021844986826181412, -0.0398770235478878, -0.0008108904585242271, 0.05417420715093613, 0.03741366043686867, 0.10862545669078827, 0.15839046239852905, -0.01037275604903698, 0.050479814410209656, -0.0457041934132576, 0.18834930658340454, -0.07471095770597458, -0.03741134703159332, 0.11121487617492676, -0.0058354721404612064, 0.06876740604639053, 0.11724447458982468, 0.048488009721040726, -0.09788484871387482, -0.012771572917699814, 0.004045606590807438, -0.04586487263441086, -0.21520774066448212, -0.03567230701446533, -0.04488169774413109, -0.0015765558928251266, 0.10597339272499084, 0.04105941206216812, 0.03757038712501526, 0.021633010357618332, 0.03250035271048546, 0.0055378032848238945, 0.0024906140752136707, 0.09663364291191101, 0.1290869563817978, 0.040204159915447235, 0.13291816413402557, -0.03813957795500755, -0.03726104274392128, 0.030234666541218758, 0.00462446128949523, 0.23055092990398407, 0.019664591178297997, 0.19055898487567902, 0.056628961116075516, 0.17497165501117706, 0.04161965847015381, 0.06674608588218689, -0.001665950519964099, -0.011428255587816238, 0.011377641931176186, -0.05277388170361519, -0.039488013833761215, 0.024215510115027428, 0.024078506976366043, 0.010328367352485657, -0.11433999240398407, -0.011104782111942768, 0.046694785356521606, 0.35245031118392944, 0.028211859986186028, -0.33761468529701233, -0.09064370393753052, -0.012201257050037384, -0.08551396429538727, -0.030578618869185448, 0.04586395248770714, 0.08793317526578903, -0.08076810091733932, 0.06415379047393799, -0.062390632927417755, 0.08992937952280045, -0.0642600953578949, 0.03401235491037369, 0.03723759949207306, 0.07146970927715302, 0.004128440748900175, 0.03326454013586044, -0.29203230142593384, 0.28165560960769653, 0.005191357806324959, 0.07652265578508377, -0.06112175062298775, 0.008107251487672329, 0.025618722662329674, 0.01830456405878067, 0.08772759884595871, -0.025723259896039963, -0.11981545388698578, -0.17462708055973053, -0.09302173554897308, 0.011321182362735271, 0.12884265184402466, 0.01404081005603075, 0.11067666113376617, -0.011263678781688213, -0.016661478206515312, 0.049431778490543365, -0.09618551284074783, -0.06534599512815475, -0.09206702560186386, 0.011860211379826069, 0.08234149217605591, 0.03347118943929672, -0.07286433130502701, -0.10325606167316437, -0.08850222080945969, 0.14942961931228638, -0.05208592489361763, -0.042645301669836044, -0.11885630339384079, 0.008311794139444828, 0.109124094247818, -0.07936578243970871, 0.06090658903121948, 0.009680752642452717, 0.10459772497415543, 0.011390188708901405, -0.06779034435749054, 0.11945819109678268, -0.06419113278388977, -0.16671337187290192, -0.028847509995102882, 0.14494214951992035, 0.03056386671960354, 0.060433026403188705, -0.008058210834860802, 0.038120876997709274, -0.021853651851415634, -0.0774228423833847, 0.0406605489552021, 0.026499440893530846, 0.0439123660326004, -0.013164152391254902, -0.018967239186167717, -0.006070209201425314, -0.09074874222278595, -0.01814614050090313, 0.2064867615699768, 0.24344108998775482, -0.09640686959028244, 0.09291441738605499, 0.06943506747484207, -0.042097147554159164, -0.17234089970588684, -0.0038790483959019184, 0.06509050726890564, 0.000005351470463210717, -0.0248651634901762, -0.1938454508781433, 0.023908907547593117, 0.06926876306533813, -0.020998604595661163, 0.08171622455120087, -0.3183232247829437, -0.1406307816505432, 0.1374066323041916, 0.11396436393260956, 0.059524938464164734, -0.14593273401260376, -0.05537234991788864, -0.010357857681810856, -0.1036871075630188, 0.09447412192821503, -0.07449747622013092, 0.1356905996799469, -0.02407083474099636, 0.09048546850681305, 0.011327960528433323, -0.05825302377343178, 0.10642484575510025, 0.012443309649825096, 0.059944190084934235, -0.045728690922260284, 0.017388567328453064, 0.04785845801234245, -0.06322921067476273, 0.055156588554382324, -0.08024109899997711, 0.02839946746826172, -0.08033619076013565, -0.03248301148414612, -0.08508959412574768, 0.01420549862086773, -0.009605566039681435, -0.0333847776055336, -0.037120092660188675, 0.0018844814039766788, 0.06282699108123779, -0.010366815142333508, 0.15573710203170776, -0.027310438454151154, 0.12642912566661835, 0.16214096546173096, 0.10141889750957489, -0.10404428839683533, -0.07683391124010086, 0.005353863351047039, -0.03425366058945656, 0.05507161468267441, -0.11772949248552322, 0.0374416708946228, 0.1360854059457779, 0.031792279332876205, 0.1228531077504158, 0.06948218494653702, -0.06524974852800369, 0.03323432430624962, 0.04207287356257439, -0.13784939050674438, -0.12749193608760834, 0.013279353268444538, 0.02333078719675541, -0.07195265591144562, 0.07305441796779633, 0.11555314809083939, -0.055095698684453964, -0.013801833614706993, -0.0019095407333225012, 0.013798229396343231, -0.04101138189435005, 0.19526535272598267, 0.03678850829601288, 0.06154259294271469, -0.1245705634355545, 0.08053390681743622, 0.038583576679229736, -0.1331944614648819, 0.060929812490940094, 0.10616770386695862, -0.09484384208917618, -0.02851886674761772, 0.028711074963212013, 0.11185205727815628, -0.028263479471206665, -0.07390765845775604, -0.14269445836544037, -0.1429070234298706, 0.10887688398361206, 0.20547187328338623, 0.056251514703035355, 0.016643211245536804, -0.05918126553297043, 0.016913002356886864, -0.11840061843395233, 0.06926038861274719, 0.04077918455004692, 0.06004178896546364, -0.1290147453546524, 0.14634470641613007, 0.01732582412660122, 0.03992059826850891, -0.014602077193558216, -0.011380162090063095, -0.11204449087381363, 0.03977004438638687, -0.12899863719940186, 0.004968761000782251, -0.06649181246757507, 0.0010107652051374316, 0.003637960646301508, -0.04961981624364853, -0.06380630284547806, 0.034933269023895264, -0.11994827538728714, -0.023454628884792328, 0.0013668711762875319, 0.03702240437269211, -0.12869490683078766, -0.00937681831419468, 0.01491378154605627, -0.09351558983325958, 0.09738873690366745, 0.08695000410079956, -0.03262457251548767, 0.05093376338481903, -0.060065679252147675, -0.026180030778050423, 0.07850224524736404, -0.006546197924762964, 0.05116262659430504, -0.13098447024822235, -0.019763074815273285, 0.011079980991780758, 0.034322094172239304, 0.024183884263038635, 0.11216950416564941, -0.11596840620040894, 0.0009172951686196029, -0.027726253494620323, -0.05208310857415199, -0.06831369549036026, 0.05034910887479782, 0.10944218933582306, 0.027158264070749283, 0.16378004848957062, -0.09329521656036377, 0.02864367887377739, -0.1659409999847412, 0.006244651973247528, -0.015402473509311676, -0.12141422927379608, -0.05091831088066101, -0.031923726201057434, 0.07782353460788727, -0.06372612714767456, 0.12926429510116577, -0.0302314143627882, 0.02521517500281334, 0.03747618943452835, -0.07651915401220322, -0.05347057059407234, 0.039878156036138535, 0.20521073043346405, 0.038992080837488174, -0.04332895576953888, 0.0748397707939148, 0.020881792530417442, 0.08104509860277176, 0.12795478105545044, 0.17392674088478088, 0.16054309904575348, 0.06415445357561111, 0.11675389856100082, 0.0548175610601902, -0.05325957387685776, -0.17404964566230774, 0.09129635989665985, -0.05973295867443085, 0.1303301602602005, -0.013782957568764687, 0.2406129240989685, 0.12073571979999542, -0.15380768477916718, 0.06590574234724045, -0.019002273678779602, -0.08930869400501251, -0.11625064164400101, -0.0640975832939148, -0.08643919974565506, -0.17592790722846985, 0.009026954881846905, -0.10206138342618942, 0.06300023943185806, 0.046582844108343124, 0.037413351237773895, 0.016993701457977295, 0.1380058079957962, 0.015221303328871727, 0.0026881019584834576, 0.09175070375204086, -0.003382439725100994, -0.055894702672958374, -0.07345172762870789, -0.0844438374042511, 0.03444278612732887, -0.013464136980473995, 0.0579255074262619, -0.0041413637809455395, -0.06932219862937927, 0.04745379090309143, -0.038733821362257004, -0.09639431536197662, 0.023092305287718773, 0.02144113928079605, 0.06993499398231506, 0.050396792590618134, 0.03458376228809357, -0.041390322148799896, -0.0023561420384794474, 0.19505612552165985, -0.09454663842916489, -0.09351488947868347, -0.10949129611253738, 0.25379374623298645, 0.039379071444272995, -0.015554843470454216, 0.02151809260249138, -0.060560062527656555, -0.03180092200636864, 0.2114194929599762, 0.1723226010799408, -0.01116170920431614, 0.004614291246980429, -0.01414461899548769, -0.006181462202221155, -0.03659471869468689, 0.07935505360364914, 0.14721040427684784, 0.0624801442027092, -0.06336896121501923, -0.051964882761240005, -0.05117638781666756, -0.03481784462928772, -0.06592334061861038, 0.07547760754823685, 0.006828696001321077, -0.025172237306833267, -0.044893521815538406, 0.06380100548267365, -0.09479472041130066, -0.08201537281274796, 0.024797851219773293, -0.19570329785346985, -0.14996619522571564, 0.006833694875240326, 0.07076682895421982, 0.011772987432777882, 0.034874558448791504, 0.003135041566565633, -0.009663884527981281, 0.08166079223155975, -0.0014469854068011045, -0.08074266463518143, -0.06594680994749069, 0.08451119065284729, -0.1334533542394638, 0.1663215011358261, -0.04209939017891884, 0.04780808091163635, 0.12325333803892136, 0.08858786523342133, -0.08054462820291519, 0.08672730624675751, 0.04238315671682358, -0.10697498172521591, 0.021263642236590385, 0.1536252200603485, -0.033488329499959946, 0.09508569538593292, 0.030688641592860222, -0.11497800052165985, 0.014703071676194668, -0.08972270041704178, -0.03808770328760147, -0.04114031791687012, -0.050166599452495575, -0.044312071055173874, 0.10966888070106506, 0.1632404923439026, -0.04387403652071953, 0.003933595027774572, -0.05213035270571709, 0.011972117237746716, 0.04762331768870354, -0.0004025105736218393, -0.061575230211019516, -0.27876561880111694, 0.011589550413191319, 0.036713045090436935, 0.0030818863306194544, -0.2576640844345093, -0.09719633311033249, 0.013703498058021069, -0.04294035583734512, -0.08798902481794357, 0.08574584126472473, 0.07478064298629761, 0.04632873460650444, -0.0524776466190815, -0.057823486626148224, -0.03551657870411873, 0.18890078365802765, -0.1751941740512848, -0.05986809358000755 ]
null
null
transformers
#Stewie DialoGPT Model
{"tags": ["conversational"]}
text-generation
Thejas/DialoGPT-small-Stewei
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Stewie DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
#Elon Musk DialoGPT Model
{"tags": ["conversational"]}
text-generation
Thejas/DialoGPT-small-elon
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Elon Musk DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"]}
question-answering
Thitaree/distilbert-base-uncased-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ 56, 43, 6, 12, 8, 3, 90, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ -0.08047643303871155, 0.0798727497458458, -0.0020328648388385773, 0.0738966092467308, 0.1679612696170807, 0.03264133632183075, 0.1419929563999176, 0.08703084290027618, -0.10741087794303894, 0.04887590929865837, 0.0731196478009224, 0.09050268679857254, 0.018305547535419464, 0.08604337275028229, -0.038273535668849945, -0.24824775755405426, 0.013768399134278297, 0.030471378937363625, -0.11249108612537384, 0.09573423117399216, 0.10203564912080765, -0.1147981807589531, 0.06554830819368362, 0.02132420241832733, -0.18830928206443787, 0.03329838812351227, -0.022348038852214813, -0.04354379326105118, 0.10283660888671875, 0.019209058955311775, 0.1255597323179245, 0.0024700243957340717, 0.12496186792850494, -0.2003648281097412, 0.0026692873798310757, 0.08372005820274353, 0.03263917937874794, 0.07165613025426865, 0.01656341925263405, 0.022062236443161964, 0.09330306947231293, -0.1106434091925621, 0.09425242245197296, 0.02436327189207077, -0.07157745957374573, -0.18118305504322052, -0.09026733785867691, 0.058118388056755066, 0.08167921751737595, 0.10535447299480438, 0.008405005559325218, 0.13563795387744904, -0.08507724851369858, 0.07227441668510437, 0.20956526696681976, -0.2783285081386566, -0.08818479627370834, 0.06314776837825775, 0.04846598580479622, 0.05519571527838707, -0.08378615230321884, -0.023416992276906967, 0.05133245512843132, 0.058286841958761215, 0.10238714516162872, -0.03516894951462746, -0.08576596528291702, -0.01239761896431446, -0.14653877913951874, 0.006941546685993671, 0.18827363848686218, 0.03130389377474785, -0.04718466103076935, -0.05645308643579483, -0.07791630923748016, -0.0592593289911747, -0.01819414272904396, -0.07723923027515411, 0.04879908636212349, -0.03726270794868469, -0.0788162499666214, -0.0679614469408989, -0.07934039831161499, -0.055574458092451096, -0.02587059885263443, 0.13455848395824432, 0.047330524772405624, 0.022338515147566795, -0.0576055571436882, 0.08810073882341385, -0.024672621861100197, -0.11602120101451874, 0.0005212913383729756, -0.0141531303524971, -0.03849062696099281, -0.05344432592391968, -0.07024980336427689, -0.018665889278054237, 0.00897636916488409, 0.2066795974969864, -0.08095656335353851, 0.058887872844934464, 0.03648534417152405, 0.008566832169890404, -0.024935174733400345, 0.13503076136112213, -0.0536390021443367, -0.0447077676653862, 0.0019638421945273876, 0.07170520722866058, 0.01497782301157713, -0.005758368875831366, -0.0932597890496254, -0.0015311635797843337, 0.07142931967973709, 0.020888160914182663, -0.05138082429766655, 0.03925421088933945, -0.006211790721863508, -0.04911872372031212, -0.007028784602880478, -0.11097855120897293, 0.03386720269918442, -0.024299290031194687, -0.06968683004379272, 0.03854622691869736, 0.01866026408970356, 0.014867277815937996, -0.019563091918826103, 0.11129433661699295, -0.10195542126893997, 0.010835480876266956, -0.10705311596393585, -0.08644795417785645, 0.0033302789088338614, -0.09341813623905182, 0.0053001586347818375, -0.0831461101770401, -0.191583514213562, -0.027629289776086807, 0.06883709132671356, -0.032931264489889145, -0.029668450355529785, -0.02480902522802353, -0.06645606458187103, 0.007847955450415611, -0.013090487569570541, 0.09281863272190094, -0.041920553892850876, 0.06221640482544899, 0.02716519683599472, 0.031319230794906616, -0.044513288885354996, 0.043613266199827194, -0.0975215807557106, 0.023962538689374924, -0.15541721880435944, 0.04985333979129791, -0.08148932456970215, 0.032524921000003815, -0.09012535214424133, -0.11834052205085754, -0.012647399678826332, -0.0039240512996912, 0.06950833648443222, 0.08196081966161728, -0.17920047044754028, -0.0427309051156044, 0.12390556186437607, -0.07973937690258026, -0.0921923965215683, 0.09182938933372498, -0.0521889291703701, 0.054271042346954346, 0.05387332662940025, 0.12432754784822464, 0.09094905853271484, -0.12397434562444687, -0.03635578230023384, -0.002158762188628316, 0.06592559069395065, 0.0007797721773386002, 0.042244140058755875, -0.004252391867339611, 0.03921179845929146, 0.014910007826983929, -0.0800037607550621, -0.012686705216765404, -0.09086547046899796, -0.08082088083028793, -0.06227301061153412, -0.08637288212776184, 0.03791527822613716, 0.037351835519075394, 0.053725335747003555, -0.06806871294975281, -0.09560063481330872, 0.1789265125989914, 0.11167436093091965, -0.06736350804567337, 0.024057775735855103, -0.07164981216192245, 0.04329947754740715, -0.025285521522164345, -0.021503839641809464, -0.21157458424568176, -0.11372076719999313, 0.017030127346515656, -0.021964825689792633, 0.050889790058135986, 0.04506829380989075, 0.053835753351449966, 0.062281135469675064, -0.047540660947561264, 0.002887548180297017, -0.09874526411294937, -0.0037284386344254017, -0.09713383764028549, -0.17663301527500153, -0.06421148777008057, -0.021505406126379967, 0.14308908581733704, -0.20137222111225128, 0.03217710554599762, -0.04751772806048393, 0.13118062913417816, 0.006213376764208078, -0.03255164250731468, -0.06177991256117821, 0.07004079222679138, -0.026137985289096832, -0.08329082280397415, 0.05130530893802643, 0.01627190038561821, -0.05784204229712486, -0.127603217959404, -0.12957115471363068, 0.06392744928598404, 0.10261403024196625, -0.033151838928461075, -0.06812028586864471, -0.0006603188812732697, -0.06795384734869003, -0.04032094031572342, -0.0671931579709053, -0.0029763090424239635, 0.16459161043167114, -0.012266338802874088, 0.12028221040964127, -0.0642053484916687, -0.04823839291930199, 0.0006835149833932519, -0.016944412142038345, -0.0013701282441616058, 0.03836821764707565, 0.12694138288497925, -0.07822784036397934, 0.10829164832830429, 0.12951253354549408, -0.0953630581498146, 0.13736389577388763, -0.03543955087661743, -0.06897184252738953, -0.024610476568341255, -0.025999901816248894, -0.02231522649526596, 0.11283793300390244, -0.12405551970005035, 0.007528841495513916, 0.025874538347125053, 0.024418221786618233, 0.05295955017209053, -0.17986425757408142, 0.005273047834634781, 0.017342744395136833, -0.01938435062766075, -0.012013976462185383, -0.019633179530501366, 0.022203082218766212, 0.07707266509532928, 0.02080909162759781, -0.022140836343169212, 0.0322597436606884, 0.008594420738518238, -0.07261714339256287, 0.1921933889389038, -0.1263907551765442, -0.13039842247962952, -0.11119376868009567, 0.004170444793999195, -0.08322235196828842, -0.015056965872645378, 0.03797343000769615, -0.08443038165569305, -0.05545174330472946, -0.05280837044119835, 0.01635356992483139, -0.02451781928539276, -0.004091543145477772, 0.07667329162359238, 0.0014809283893555403, 0.08396846801042557, -0.14011210203170776, 0.00038490796578116715, -0.033873867243528366, -0.10509665310382843, -0.004492676351219416, 0.059827353805303574, 0.10222356766462326, 0.126530721783638, -0.014841257594525814, 0.012315220199525356, -0.017070196568965912, 0.2701016068458557, -0.056859154254198074, -0.012174298986792564, 0.15044604241847992, 0.01667371205985546, 0.049661848694086075, 0.09732899069786072, 0.06071072071790695, -0.10423669219017029, 0.029385654255747795, 0.09509587287902832, -0.030239656567573547, -0.2201620191335678, -0.04675277695059776, -0.03557620197534561, -0.08423035591840744, 0.09040579944849014, 0.0314636193215847, 0.043917156755924225, 0.07271856814622879, -0.004195592366158962, 0.08794811367988586, -0.037606753408908844, 0.08837080746889114, 0.14374122023582458, 0.04246000945568085, 0.1214417815208435, -0.025314243510365486, -0.04368716478347778, 0.05902187526226044, -0.007022252306342125, 0.28119051456451416, 0.011218981817364693, 0.05435619130730629, 0.07336914539337158, 0.14260955154895782, -0.029230108484625816, 0.06307782232761383, -0.004051588475704193, -0.022448673844337463, -0.0005655494169332087, -0.053800106048583984, -0.023198427632451057, 0.015488287433981895, -0.05289449542760849, 0.055175162851810455, -0.07917895168066025, 0.05814305692911148, 0.04539363086223602, 0.2793692350387573, 0.006923760753124952, -0.2857930660247803, -0.0956314280629158, 0.002728472463786602, -0.020534439012408257, -0.04901008680462837, 0.024213001132011414, 0.09849933534860611, -0.10876122862100601, 0.052452851086854935, -0.07059399038553238, 0.0933416336774826, 0.0038796376902610064, 0.027158154174685478, 0.09667696058750153, 0.15145598351955414, 0.014509353786706924, 0.06748905032873154, -0.23527559638023376, 0.18847022950649261, 0.018846087157726288, 0.12498725205659866, -0.055649641901254654, 0.029659682884812355, 0.016760434955358505, 0.08565276116132736, 0.06301683932542801, -0.003048180602490902, -0.02201014757156372, -0.1358485370874405, -0.030216854065656662, 0.044109515845775604, 0.12683884799480438, -0.02017870731651783, 0.10216878354549408, -0.05011485144495964, 0.02257167547941208, 0.06133968383073807, -0.03318566083908081, -0.17622700333595276, -0.13150829076766968, 0.014514331705868244, 0.01995021663606167, -0.06599459797143936, -0.07402023673057556, -0.1005977988243103, -0.054467201232910156, 0.1736709177494049, -0.020583370700478554, -0.04107684642076492, -0.12731441855430603, 0.08784066885709763, 0.12123000621795654, -0.0567692369222641, 0.03754974529147148, 0.015025346539914608, 0.10063270479440689, 0.028413640335202217, -0.11026696860790253, 0.04830650985240936, -0.09164360910654068, -0.15162496268749237, -0.03694617375731468, 0.0950770378112793, 0.05557361990213394, 0.03286612033843994, -0.0036559998989105225, 0.02426055446267128, 0.002380490768700838, -0.10433763265609741, -0.017523065209388733, 0.05114084854722023, 0.08377590030431747, 0.047723300755023956, -0.09441956132650375, 0.033042725175619125, -0.0335560217499733, 0.00988925900310278, 0.11598003655672073, 0.18051916360855103, -0.08609557151794434, 0.015625186264514923, 0.07902079820632935, -0.08256163448095322, -0.16946204006671906, 0.06943006813526154, 0.1018846333026886, -0.011955054476857185, 0.041509728878736496, -0.21667882800102234, 0.17400206625461578, 0.1460469514131546, -0.011328917928040028, 0.07349775731563568, -0.31219401955604553, -0.13305284082889557, 0.08651546388864517, 0.109655000269413, 0.06961104273796082, -0.15170890092849731, -0.02804682031273842, -0.047774676233530045, -0.17732878029346466, 0.14878679811954498, -0.14552012085914612, 0.10277223587036133, -0.002462282544001937, 0.0917569026350975, 0.0035570363979786634, -0.040548376739025116, 0.13570481538772583, 0.05081174895167351, 0.0994282141327858, -0.05012279376387596, 0.0030122832395136356, 0.10735480487346649, -0.04652758687734604, 0.03995385393500328, -0.010794833302497864, 0.05688806250691414, -0.08500469475984573, -0.025165092200040817, -0.07211010158061981, 0.0585082545876503, -0.05698564276099205, -0.07386212795972824, -0.053622569888830185, 0.04003475233912468, 0.04038715735077858, -0.03030412830412388, 0.10164892673492432, 0.03580616042017937, 0.12746508419513702, 0.07626984268426895, 0.09465501457452774, -0.0733388289809227, -0.10310104489326477, -0.0029689117800444365, -0.012894787825644016, 0.07640089839696884, -0.09574219584465027, 0.028001368045806885, 0.13446258008480072, 0.04645249620079994, 0.1329880803823471, 0.06861802935600281, -0.0343543216586113, 0.006967971567064524, 0.04390531778335571, -0.12806959450244904, -0.172941192984581, 0.0020818072371184826, -0.05839552357792854, -0.12871448695659637, 0.07512716948986053, 0.12054014205932617, -0.04706487059593201, -0.0069126831367611885, -0.009345411323010921, -0.0010267526376992464, -0.04322592169046402, 0.18726779520511627, 0.039082132279872894, 0.046749942004680634, -0.09166531264781952, 0.11629632860422134, 0.05492888391017914, -0.06388657540082932, 0.028827369213104248, 0.057978350669145584, -0.085850790143013, -0.019088996574282646, 0.038049742579460144, 0.13681018352508545, -0.10098369419574738, -0.04725639149546623, -0.11232992261648178, -0.09631781280040741, 0.04503485932946205, 0.12860266864299774, 0.07231328636407852, -0.025999147444963455, -0.060150448232889175, 0.05909508094191551, -0.14155761897563934, 0.0689646527171135, 0.028845250606536865, 0.08538610488176346, -0.15474261343479156, 0.1136602833867073, 0.02234657295048237, 0.03623337298631668, -0.02160927839577198, 0.01789555884897709, -0.09960155189037323, -0.02137414738535881, -0.1564694195985794, -0.042656060308218, -0.04383818060159683, -0.00030065124155953526, 0.0010975595796480775, -0.040469083935022354, -0.07476874440908432, 0.04966270923614502, -0.06972832977771759, -0.04627109691500664, 0.029178548604249954, 0.030606715008616447, -0.1481238454580307, 0.01723323203623295, 0.018002362921833992, -0.08976970613002777, 0.0672028660774231, 0.0735156238079071, 0.024597885087132454, 0.048384130001068115, -0.10901463776826859, -0.03207259997725487, 0.03835532069206238, 0.04248013347387314, 0.08441950380802155, -0.06868980079889297, -0.020959509536623955, -0.003106310497969389, 0.08441295474767685, 0.012095573358237743, 0.0638594999909401, -0.12315236777067184, -0.0068717761896550655, -0.053142249584198, -0.053647466003894806, -0.06468898802995682, 0.0179060697555542, 0.12140946090221405, 0.05207731947302818, 0.19494859874248505, -0.07556226849555969, 0.02543177269399166, -0.192147359251976, -0.026066968217492104, -0.0006889516371302307, -0.0422392301261425, -0.03358370438218117, -0.03653230890631676, 0.0572897307574749, -0.056592974811792374, 0.1346912980079651, -0.026790952309966087, 0.10193662345409393, 0.037341874092817307, -0.02659437246620655, -0.03522845730185509, -0.002844890346750617, 0.20181183516979218, 0.0613396093249321, -0.014600127935409546, 0.04737675562500954, 0.02583727240562439, 0.07486505806446075, 0.06482678651809692, 0.22160392999649048, 0.14213137328624725, -0.053166765719652176, 0.06648536771535873, 0.0719190463423729, -0.08659647405147552, -0.1519106775522232, 0.08644784986972809, -0.013728015124797821, 0.10466848313808441, -0.040102727711200714, 0.16347438097000122, 0.10798094421625137, -0.164961576461792, 0.04825151339173317, -0.06294634193181992, -0.1019567996263504, -0.12315727025270462, -0.026391375809907913, -0.07263040542602539, -0.14736776053905487, 0.015421396121382713, -0.14870937168598175, 0.021803244948387146, 0.10753375291824341, 0.008364995941519737, -0.0017247627256438136, 0.17433497309684753, -0.051344919949769974, 0.011692081578075886, 0.031182311475276947, 0.0032959547825157642, -0.02017977088689804, -0.0674581304192543, -0.06046277657151222, 0.01768803969025612, 0.007021639496088028, 0.07777976244688034, -0.05467160418629646, -0.023506419733166695, 0.02403157576918602, -0.014580506831407547, -0.04693831875920296, 0.015425333753228188, 0.02845091000199318, 0.024484019726514816, 0.043234698474407196, 0.021308615803718567, -0.00784735381603241, -0.03632441535592079, 0.25171127915382385, -0.08602457493543625, -0.11704521626234055, -0.14904363453388214, 0.19648048281669617, 0.04244905710220337, -0.007090369705110788, 0.05773625522851944, -0.09927988797426224, -0.0259566567838192, 0.1881798952817917, 0.16670267283916473, -0.07571741938591003, -0.024017471820116043, 0.00908350944519043, -0.014746868051588535, -0.07834140211343765, 0.11554963886737823, 0.1319853812456131, 0.08171184360980988, -0.04621537774801254, -0.04045505449175835, -0.029696770012378693, -0.018752049654722214, -0.09234040975570679, 0.04260042682290077, 0.031803105026483536, 0.003758222796022892, -0.02167367935180664, 0.05840298905968666, -0.005959904752671719, -0.16034258902072906, 0.0524398498237133, -0.1340971291065216, -0.16312435269355774, -0.023046357557177544, 0.07849103212356567, -0.043550122529268265, 0.0639834851026535, -0.022406144067645073, -0.02726510353386402, 0.1452154666185379, -0.02125280722975731, -0.052747443318367004, -0.10299725085496902, 0.11489908397197723, -0.07366270571947098, 0.20904967188835144, -0.019258486106991768, 0.0756073072552681, 0.11995077133178711, 0.047125693410634995, -0.09917940199375153, 0.041938215494155884, 0.06214825063943863, -0.07945818454027176, 0.010579567402601242, 0.10434351861476898, -0.04521356523036957, 0.08521360158920288, 0.04179168865084648, -0.16224542260169983, -0.009279659949243069, 0.018814511597156525, -0.037666283547878265, -0.07555142045021057, -0.009927111677825451, -0.09236600995063782, 0.13598698377609253, 0.20896334946155548, -0.02734488435089588, 0.005784830544143915, -0.0730019211769104, 0.047115687280893326, 0.06374119222164154, 0.10158255696296692, -0.05190281569957733, -0.23546646535396576, 0.030575113371014595, 0.010664103552699089, -0.010358399711549282, -0.21593116223812103, -0.09156552702188492, 0.059171345084905624, -0.04945741221308708, -0.05097834765911102, 0.08312518149614334, 0.07319770753383636, 0.04987344518303871, -0.050095267593860626, -0.112176813185215, -0.08996336907148361, 0.15345223248004913, -0.1592928171157837, -0.0613580048084259 ]
null
null
transformers
# t5-qa_squad2neg-en ## Model description This model is a *Question Answering* model based on T5-small. It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is, for QA only. ## How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qa_squad2neg-en") model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qa_squad2neg-en") ``` You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): `text_input = "{QUESTION} </s> {CONTEXT}"` ## Training data The model was trained on: - SQuAD-v2 - SQuAD-v2 neg: in addition to the training data of SQuAD-v2, for each answerable example, a negative sampled example has been added with the label *unanswerable* to help the model learning when the question is not answerable given the context. For more details, see the [paper](https://arxiv.org/abs/2103.12693). ### Citation info ```bibtex @article{scialom2020QuestEval, title={QuestEval: Summarization Asks for Fact-based Evaluation}, author={Scialom, Thomas and Dray, Paul-Alexis and Gallinari, Patrick and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo and Wang, Alex}, journal={arXiv preprint arXiv:2103.12693}, year={2021} } ```
{"language": "en", "license": "mit", "tags": ["qa", "question", "answering", "SQuAD", "metric", "nlg", "t5-small"], "datasets": ["squad_v2"], "widget": [{"text": "Who was Louis 14? </s> Louis 14 was a French King."}]}
text2text-generation
ThomasNLG/t5-qa_squad2neg-en
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "qa", "question", "answering", "SQuAD", "metric", "nlg", "t5-small", "en", "dataset:squad_v2", "arxiv:2103.12693", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2103.12693" ]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# t5-qa_squad2neg-en ## Model description This model is a *Question Answering* model based on T5-small. It is actually a component of QuestEval metric but can be used independently as it is, for QA only. ## How to use You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): 'text_input = "{QUESTION} </s> {CONTEXT}"' ## Training data The model was trained on: - SQuAD-v2 - SQuAD-v2 neg: in addition to the training data of SQuAD-v2, for each answerable example, a negative sampled example has been added with the label *unanswerable* to help the model learning when the question is not answerable given the context. For more details, see the paper. info
[ "# t5-qa_squad2neg-en", "## Model description\nThis model is a *Question Answering* model based on T5-small. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on: \n- SQuAD-v2\n- SQuAD-v2 neg: in addition to the training data of SQuAD-v2, for each answerable example, a negative sampled example has been added with the label *unanswerable* to help the model learning when the question is not answerable given the context. For more details, see the paper.\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# t5-qa_squad2neg-en", "## Model description\nThis model is a *Question Answering* model based on T5-small. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on: \n- SQuAD-v2\n- SQuAD-v2 neg: in addition to the training data of SQuAD-v2, for each answerable example, a negative sampled example has been added with the label *unanswerable* to help the model learning when the question is not answerable given the context. For more details, see the paper.\n\n\ninfo" ]
[ 101, 12, 47, 56, 89 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# t5-qa_squad2neg-en## Model description\nThis model is a *Question Answering* model based on T5-small. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'## Training data\nThe model was trained on: \n- SQuAD-v2\n- SQuAD-v2 neg: in addition to the training data of SQuAD-v2, for each answerable example, a negative sampled example has been added with the label *unanswerable* to help the model learning when the question is not answerable given the context. For more details, see the paper.\n\n\ninfo" ]
[ -0.10060474276542664, 0.06219472736120224, -0.0011928468011319637, 0.09506002068519592, 0.08080282062292099, 0.04180106893181801, 0.0964585542678833, 0.13211622834205627, -0.021263809874653816, 0.05294686183333397, 0.0786391869187355, 0.08139506727457047, 0.024946069344878197, 0.08506937325000763, 0.011909499764442444, -0.14100602269172668, 0.037325095385313034, -0.017121804878115654, 0.03849697485566139, 0.1132158637046814, 0.06612730026245117, -0.07816722244024277, 0.04170786961913109, 0.029352227225899696, -0.05830727517604828, 0.013105236925184727, 0.025442004203796387, -0.033886030316352844, 0.08822502940893173, 0.07324809581041336, 0.07003997266292572, 0.006412992719560862, 0.034408438950777054, -0.21279263496398926, 0.03298172727227211, 0.05766264721751213, -0.005905217956751585, 0.06420368701219559, 0.023414280265569687, -0.045990973711013794, 0.03911184147000313, 0.023303581401705742, 0.062434446066617966, 0.0897984728217125, -0.14666253328323364, -0.15653422474861145, -0.058546487241983414, 0.0922849029302597, 0.0928875133395195, 0.14220504462718964, -0.059440478682518005, 0.1422075778245926, -0.08757100999355316, 0.037814076989889145, 0.15689322352409363, -0.23847687244415283, -0.031365785747766495, 0.1309308111667633, 0.0364583283662796, 0.05563861131668091, -0.0933322086930275, 0.010937448590993881, 0.04021628573536873, 0.021386893466114998, 0.01378072053194046, -0.009820054285228252, -0.10722032189369202, 0.05635503679513931, -0.11690111458301544, -0.08127675950527191, 0.1350134313106537, 0.009226122871041298, -0.04084888845682144, -0.09778202325105667, -0.0020131729543209076, -0.01243381667882204, 0.014795205555856228, -0.08896194398403168, -0.0045293536968529224, 0.06372712552547455, -0.04251417890191078, -0.10888690501451492, -0.07825305312871933, -0.08172179758548737, -0.014601349830627441, -0.01601564697921276, 0.009150720201432705, 0.006740019656717777, -0.1278068572282791, 0.10091906040906906, -0.16471600532531738, -0.008840200491249561, -0.06106606498360634, -0.0565824881196022, -0.1017034500837326, -0.03458217531442642, -0.06301851570606232, -0.15880902111530304, 0.018732251599431038, 0.06672035902738571, -0.06803379207849503, 0.03910120576620102, -0.04759424552321434, 0.04136592149734497, 0.03868568688631058, 0.10600725561380386, -0.06523487716913223, 0.032466545701026917, -0.03406212106347084, 0.0400971993803978, -0.0613529197871685, -0.07809406518936157, -0.08277574181556702, -0.0636315867304802, 0.009513746947050095, 0.050449758768081665, 0.057583220303058624, 0.08699215203523636, -0.09083887189626694, -0.046772342175245285, -0.04762016236782074, -0.06015906110405922, -0.010228928178548813, 0.040488261729478836, -0.07187889516353607, 0.005308846943080425, 0.05162127688527107, 0.00929178949445486, -0.07533037662506104, -0.056540634483098984, -0.07858746498823166, -0.026224838569760323, -0.07334588468074799, -0.104562908411026, 0.013242906890809536, -0.008497504517436028, -0.04440411180257797, -0.09007494896650314, -0.20238231122493744, -0.014382529072463512, 0.042656175792217255, -0.017241358757019043, 0.03699633479118347, -0.07987906038761139, -0.05666299909353256, 0.0017787315882742405, 0.010202735662460327, 0.0005427782307378948, -0.030411425977945328, 0.021982043981552124, -0.023781990632414818, 0.07397758215665817, 0.01809578388929367, 0.0159873329102993, -0.08518540859222412, 0.041845016181468964, -0.04255913570523262, 0.1998501867055893, -0.02580658532679081, -0.06374464184045792, -0.13679896295070648, -0.04708589240908623, 0.002027086680755019, -0.00783403031527996, 0.1043776348233223, 0.1719062775373459, -0.2191619873046875, -0.018768658861517906, 0.15155243873596191, -0.11123859137296677, -0.12716300785541534, 0.09531046450138092, -0.07440609484910965, 0.08183582872152328, 0.036821939051151276, 0.17649489641189575, 0.09987851232290268, -0.18752597272396088, -0.08447328954935074, 0.021958081051707268, -0.11059991270303726, 0.07331035286188126, 0.018476048484444618, -0.029282037168741226, -0.058817293494939804, -0.004331886302679777, -0.08247001469135284, 0.012383428402245045, -0.060950059443712234, -0.09038832038640976, -0.03845789656043053, -0.030540717765688896, 0.16418033838272095, -0.007182286120951176, 0.001876257942058146, 0.05667366087436676, -0.09324382990598679, 0.0517362505197525, 0.05483289435505867, -0.08946436643600464, 0.0061593553982675076, -0.11558185517787933, 0.16990253329277039, -0.124915711581707, -0.0005960558773949742, -0.2093478888273239, -0.13745221495628357, -0.018095890060067177, -0.12835192680358887, 0.023616908118128777, 0.11945341527462006, 0.04050544276833534, 0.01741109788417816, -0.034969475120306015, -0.047398049384355545, -0.07002506405115128, 0.021105440333485603, -0.10741923749446869, -0.14462563395500183, -0.06485998630523682, -0.01979118213057518, 0.170876607298851, -0.24140705168247223, 0.044207051396369934, 0.013837704434990883, -0.012886736541986465, 0.04645322635769844, -0.003735488746315241, 0.032201070338487625, 0.0006710403831675649, -0.007170684635639191, -0.020661773160099983, 0.04221777617931366, 0.03397618979215622, -0.18840938806533813, 0.02845708280801773, -0.1545058637857437, -0.18996067345142365, 0.056188710033893585, -0.05291607975959778, -0.11500021070241928, -0.08874347060918808, -0.05856136605143547, -0.02497539296746254, -0.08183542639017105, -0.009106217883527279, 0.22042430937290192, 0.06644857674837112, 0.09152399748563766, -0.058644380420446396, -0.004615347366780043, 0.0058914609253406525, -0.097811758518219, -0.010218579322099686, 0.06115812063217163, -0.0210551917552948, -0.04015522077679634, 0.03448311984539032, 0.09892778843641281, -0.06328844279050827, 0.20157156884670258, 0.04658927023410797, -0.07273808866739273, -0.07249370962381363, -0.012857034802436829, 0.040331315249204636, 0.07478361576795578, -0.031383637338876724, 0.0777578055858612, 0.06334247440099716, 0.05949718505144119, 0.021076451987028122, -0.1278909593820572, 0.0026990403421223164, 0.040038593113422394, -0.06539422273635864, -0.0889747217297554, 0.05041354149580002, 0.007397758774459362, 0.060571566224098206, 0.034726474434137344, 0.08853092044591904, 0.04322437942028046, -0.0388529933989048, -0.15341880917549133, 0.1830397993326187, -0.10519590228796005, -0.14230385422706604, -0.07803939282894135, 0.0747685581445694, -0.05656076595187187, -0.0010758651187643409, 0.05167264863848686, -0.0709221288561821, 0.0004530254809651524, -0.08494341373443604, 0.03677895665168762, -0.0011306467931717634, -0.06372565031051636, -0.13139837980270386, 0.003091610036790371, 0.0641789585351944, -0.11161065846681595, 0.015649983659386635, -0.032668497413396835, -0.10965393483638763, 0.04144781082868576, -0.07808694988489151, 0.05812758579850197, 0.1525336354970932, -0.04109970107674599, 0.015471065416932106, -0.044266678392887115, 0.265237033367157, -0.05926605314016342, 0.00668102502822876, 0.14951732754707336, 0.012627522461116314, 0.046246469020843506, 0.09235645830631256, -0.006839021574705839, -0.07477070391178131, 0.03385254740715027, 0.08032624423503876, -0.07741756737232208, -0.23141440749168396, -0.027298523113131523, -0.07441533356904984, -0.010547623969614506, 0.06528576463460922, -0.025701850652694702, 0.1477498561143875, 0.09092897176742554, 0.005896382033824921, -0.0033921694848686457, -0.007708399556577206, 0.11185280233621597, 0.11573097109794617, 0.008745298720896244, 0.07523205876350403, -0.025304552167654037, 0.03750040754675865, 0.05202939733862877, 0.08231787383556366, 0.2178451269865036, -0.06749264150857925, 0.04005836695432663, 0.12549786269664764, 0.11341876536607742, 0.04477997496724129, -0.030119705945253372, -0.03116871416568756, -0.022194501012563705, -0.011691047810018063, -0.10194332897663116, -0.096624456346035, 0.07691045850515366, 0.061892859637737274, 0.03453749418258667, -0.11885207891464233, 0.05598587915301323, 0.0714525654911995, 0.14124424755573273, 0.09192764759063721, -0.1923394501209259, -0.1304730325937271, -0.01441703736782074, 0.06577575951814651, -0.0463157556951046, -0.0053641009144485, 0.09153474867343903, -0.13788428902626038, -0.05138758569955826, -0.04838982969522476, 0.11645502597093582, -0.044008009135723114, 0.05196452885866165, -0.030973954126238823, 0.036640703678131104, -0.0016952940495684743, 0.0790586769580841, -0.2208034098148346, 0.16574980318546295, 0.03362719342112541, 0.09904823452234268, -0.046740833669900894, 0.004387968685477972, 0.0013519107596948743, 0.04917962849140167, 0.13750194013118744, 0.050313662737607956, -0.026630712673068047, -0.13373620808124542, -0.010546213947236538, 0.023055225610733032, -0.0008818365749903023, -0.014221295714378357, 0.06810402870178223, -0.02058873511850834, 0.042131125926971436, 0.0021801486145704985, 0.19465288519859314, -0.12859749794006348, -0.14867649972438812, 0.0538688562810421, 0.05777984485030174, 0.06867701560258865, -0.043609268963336945, -0.03723539784550667, 0.09536855667829514, 0.11900455504655838, -0.07552862167358398, -0.048807308077812195, -0.1285371482372284, 0.10694336146116257, 0.05251944810152054, -0.08596563339233398, -0.014619763009250164, -0.006240605376660824, 0.11643137037754059, -0.012709265574812889, -0.04478629678487778, 0.0956917256116867, -0.07345645874738693, -0.11274402588605881, -0.061434000730514526, -0.0182847511023283, 0.10613075643777847, 0.06689672917127609, 0.07532742619514465, 0.015036530792713165, 0.00034542553476057947, -0.11502357572317123, 0.028356166556477547, 0.1314135640859604, 0.038632772862911224, 0.018834371119737625, -0.023179996758699417, 0.008583834394812584, -0.07449955493211746, 0.024874409660696983, 0.17711412906646729, 0.11775592714548111, -0.09388026595115662, 0.09657808393239975, 0.1477062702178955, -0.11876121163368225, -0.15917274355888367, 0.053740814328193665, 0.11349029839038849, 0.021241210401058197, 0.05954686179757118, -0.13335365056991577, 0.03738047555088997, 0.053058378398418427, -0.006992556154727936, -0.12892916798591614, -0.3752143979072571, -0.08138597011566162, 0.04287589713931084, 0.07739889621734619, 0.028126591816544533, -0.09995448589324951, -0.008101933635771275, 0.023133449256420135, -0.15012845396995544, 0.11605890095233917, -0.11331670731306076, 0.07963799685239792, -0.0015275340992957354, 0.08811022341251373, 0.06288327276706696, -0.05538473278284073, 0.1046098843216896, 0.04049370437860489, 0.05205853283405304, -0.03787706792354584, 0.0021256362088024616, 0.08653351664543152, -0.08600357174873352, 0.0975121259689331, 0.03306027129292488, 0.08266956359148026, -0.13901115953922272, -0.024994295090436935, -0.07303525507450104, 0.0629507303237915, -0.05829695984721184, -0.12905754148960114, 0.008118809200823307, 0.07572975009679794, 0.13247856497764587, 0.007066310383379459, -0.03479815647006035, -0.13792486488819122, 0.14003783464431763, 0.09152566641569138, 0.10111677646636963, 0.08881878107786179, -0.17020708322525024, 0.018162522464990616, 0.013465480878949165, 0.1370847374200821, -0.17104870080947876, 0.06491293758153915, 0.0873597115278244, 0.026256069540977478, 0.16579321026802063, 0.07575738430023193, -0.05952181667089462, 0.08298158645629883, -0.01841156743466854, -0.12237365543842316, -0.11827845126390457, 0.02108428254723549, 0.08724772930145264, -0.1323278397321701, -0.026113199070096016, 0.17258352041244507, -0.07117017358541489, 0.00045428855810314417, 0.0022612675093114376, 0.016067713499069214, -0.04395567625761032, 0.05777021497488022, 0.06150110065937042, 0.055220115929841995, -0.021364586427807808, 0.014537050388753414, 0.07861527055501938, -0.11083120852708817, 0.12908537685871124, -0.0735369324684143, -0.0682111456990242, -0.08181216567754745, -0.04719684273004532, 0.18883518874645233, -0.12879014015197754, -0.058803122490644455, 0.005692486651241779, -0.04178562015295029, 0.02209722250699997, 0.027704725041985512, -0.014427521266043186, 0.0437086746096611, -0.07147630304098129, -0.04060642048716545, -0.13944284617900848, 0.07771530747413635, -0.0187090914696455, -0.010812109336256981, -0.04583459347486496, 0.10851697623729706, 0.032861821353435516, 0.06689780950546265, -0.012501637451350689, -0.08610849827528, -0.1442519724369049, 0.014138994738459587, -0.1749003827571869, 0.025522716343402863, -0.04060550406575203, 0.018435273319482803, -0.007930534891784191, 0.009044335223734379, 0.008013593964278698, 0.03643002361059189, -0.057013723999261856, -0.014218472875654697, 0.048983994871377945, 0.10018417984247208, -0.1666589379310608, -0.003396419808268547, 0.02459363453090191, -0.040994755923748016, 0.0839070975780487, 0.04805136099457741, -0.049313876777887344, 0.033543623983860016, -0.17926061153411865, 0.01835653930902481, -0.06154073774814606, 0.04923873767256737, 0.050095319747924805, -0.07517560571432114, -0.0026214011013507843, -0.033239033073186874, -0.055893126875162125, 0.021249566227197647, 0.002337070181965828, -0.098317950963974, 0.019431615248322487, 0.04004497826099396, -0.005711257457733154, -0.09484357386827469, 0.11246364563703537, 0.0030787892173975706, 0.06447767466306686, 0.10206187516450882, -0.06941402703523636, 0.11707912385463715, -0.11839128285646439, -0.05786489322781563, 0.05314917489886284, 0.05541300028562546, -0.007930365391075611, -0.12105675041675568, 0.05506793037056923, -0.10328471660614014, 0.04571742191910744, 0.004647707566618919, 0.13658195734024048, 0.0013136970810592175, -0.03248543292284012, 0.06426360458135605, -0.021621784195303917, 0.08546808362007141, 0.00896222610026598, 0.004247394856065512, 0.09991485625505447, 0.05519428104162216, -0.035118360072374344, 0.17129439115524292, 0.1377868354320526, 0.026083264499902725, -0.01674538664519787, 0.0297724436968565, -0.0007335692644119263, 0.008972660638391972, -0.043938130140304565, 0.0812312439084053, -0.05328235402703285, 0.08513051271438599, -0.056016091257333755, 0.060155466198921204, 0.1466624140739441, -0.1546405851840973, 0.09581325948238373, -0.036875855177640915, -0.1126447543501854, -0.1137690395116806, -0.21434901654720306, -0.02633601613342762, -0.07387128472328186, 0.014632940292358398, -0.12297456711530685, 0.034824274480342865, 0.04389812424778938, 0.03822185471653938, -0.0038350659888237715, 0.10076320171356201, 0.000620630569756031, -0.011703826487064362, -0.02084030769765377, -0.0430166982114315, 0.04233884438872337, -0.07920727878808975, 0.05732937902212143, 0.12723523378372192, 0.01566495932638645, 0.020141568034887314, 0.05021556466817856, 0.08229093998670578, 0.009296255186200142, -0.06648460775613785, -0.05518309399485588, -0.020216962322592735, 0.0057932413183152676, -0.002331480383872986, 0.09132413566112518, 0.08622081577777863, -0.05271822214126587, -0.04085002839565277, 0.24762168526649475, -0.043110672384500504, -0.10586433112621307, -0.19582456350326538, 0.15620067715644836, 0.005423983093351126, -0.01359709445387125, -0.02164386212825775, -0.09178835153579712, 0.03791630640625954, 0.17521841824054718, 0.16293929517269135, -0.11464105546474457, 0.009564278647303581, 0.005122142843902111, -0.009525062516331673, -0.011605635285377502, 0.03370310366153717, 0.014682803303003311, 0.1674773097038269, -0.0978638306260109, 0.11684566736221313, -0.07143019884824753, -0.018953651189804077, 0.0028960867784917355, 0.15068411827087402, -0.0068381414748728275, -0.03894868865609169, -0.03755734860897064, 0.0819699689745903, -0.10746442526578903, -0.05789869278669357, -0.011506673879921436, -0.05626196786761284, -0.08435311913490295, -0.033669665455818176, 0.031651534140110016, 0.03943820297718048, 0.08961375802755356, -0.03473513573408127, -0.0019317788537591696, 0.13689970970153809, -0.0067600104957818985, -0.025498205795884132, -0.05236759036779404, 0.068682461977005, 0.03145795315504074, 0.159221813082695, 0.015572543255984783, 0.041955746710300446, 0.12041591107845306, 0.03090115636587143, -0.1125791147351265, 0.0707515999674797, 0.04972962290048599, -0.05360336974263191, -0.02076401188969612, 0.07874350994825363, 0.0058590564876794815, 0.08942239731550217, 0.06574030220508575, -0.14990726113319397, 0.066750667989254, -0.08990262448787689, -0.0011880842503160238, -0.06690379977226257, 0.046988025307655334, -0.0062031857669353485, 0.13657362759113312, 0.1756146401166916, -0.04728737846016884, -0.03843427076935768, -0.05429097265005112, 0.021656712517142296, -0.03975697234272957, 0.010087140835821629, -0.02235010266304016, -0.06405402719974518, 0.07002264261245728, 0.048814065754413605, 0.004891046788543463, -0.186930313706398, -0.06246499344706535, 0.056135475635528564, -0.027423514053225517, 0.05858287960290909, 0.1048181876540184, 0.1286497414112091, 0.029838934540748596, -0.04946250095963478, -0.053034160286188126, -0.00029968336457386613, 0.14004604518413544, -0.00819806382060051, -0.0967504158616066 ]
null
null
transformers
# t5-qa_webnlg_synth-en ## Model description This model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input. It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is, for QA only. ## How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en") model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qa_webnlg_synth-en") ``` You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): `text_input = "{QUESTION} </s> {CONTEXT}"` where `CONTEXT` is a structured table that is linearised this way: `CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"` ## Training data The model was trained on synthetic data as described in [Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation](https://arxiv.org/abs/2104.07555). ### Citation info ```bibtex @article{rebuffel2021data, title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation}, author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick}, journal={arXiv preprint arXiv:2104.07555}, year={2021} } ```
{"language": "en", "license": "mit", "tags": ["qa", "question", "answering", "SQuAD", "data2text", "metric", "nlg", "t5-small"], "datasets": ["squad_v2"], "widget": [{"text": "What is the food type at The Eagle? </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ \u00c2\u00a3 2 0 - 2 5 ]"}]}
text2text-generation
ThomasNLG/t5-qa_webnlg_synth-en
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "qa", "question", "answering", "SQuAD", "data2text", "metric", "nlg", "t5-small", "en", "dataset:squad_v2", "arxiv:2104.07555", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.07555" ]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-qa_webnlg_synth-en ## Model description This model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input. It is actually a component of QuestEval metric but can be used independently as it is, for QA only. ## How to use You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): 'text_input = "{QUESTION} </s> {CONTEXT}"' where 'CONTEXT' is a structured table that is linearised this way: 'CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"' ## Training data The model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation. info
[ "# t5-qa_webnlg_synth-en", "## Model description\nThis model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT' is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'", "## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-qa_webnlg_synth-en", "## Model description\nThis model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT' is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'", "## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ 101, 13, 59, 115, 37 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #answering #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-qa_webnlg_synth-en## Model description\nThis model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QA only.## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{QUESTION} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT' is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ -0.013881309889256954, 0.12756504118442535, -0.0047445339150726795, 0.11107732355594635, 0.04994022473692894, -0.006958250422030687, 0.08777717500925064, 0.12350407242774963, -0.05882877856492996, 0.01529745478183031, 0.03194449096918106, 0.11329366266727448, 0.055934153497219086, 0.10952000319957733, 0.008118212223052979, -0.16509275138378143, 0.019047150388360023, -0.013947340659797192, -0.03065851517021656, 0.1407638043165207, 0.10221778601408005, -0.045096930116415024, 0.10405188798904419, 0.01751944236457348, -0.05131617933511734, -0.02191399596631527, -0.006826726719737053, -0.03320919722318649, 0.08187521249055862, 0.09329480677843094, 0.11161976307630539, 0.008239173330366611, 0.004149242769926786, -0.19687046110630035, 0.02146289497613907, 0.07398556917905807, -0.04418647289276123, 0.048272617161273956, 0.01704178750514984, -0.024308903142809868, -0.03526349365711212, -0.039398521184921265, 0.06966632604598999, 0.0903300866484642, -0.1284114122390747, -0.11717978119850159, -0.056137166917324066, 0.06886531412601471, 0.037014350295066833, 0.11504311114549637, -0.027291573584079742, -0.03555663302540779, -0.1264551877975464, 0.08957768976688385, 0.053056247532367706, -0.18993054330348969, -0.05630279332399368, -0.013589432463049889, -0.012502885423600674, 0.15354108810424805, -0.05336315557360649, 0.0019103448139503598, 0.021215002983808517, 0.011808893643319607, -0.02130267024040222, -0.028161270543932915, -0.06402526050806046, -0.01904994063079357, -0.08192640542984009, -0.08536016196012497, 0.1762680560350418, 0.03310825303196907, -0.050892721861600876, -0.07739582657814026, -0.02886463701725006, -0.04269442334771156, -0.01794888637959957, -0.12108012288808823, 0.03320900350809097, 0.055138155817985535, 0.03693312779068947, -0.06928804516792297, -0.08265406638383865, -0.026641735807061195, -0.08052597939968109, -0.025888992473483086, 0.0012905187904834747, 0.020453693345189095, -0.09844443202018738, 0.06776057928800583, -0.07838980108499527, -0.04493442177772522, -0.0702141746878624, -0.01702108234167099, -0.13791674375534058, -0.011329268105328083, 0.005432775244116783, 0.002707292791455984, 0.03144825994968414, 0.043564021587371826, -0.05930785834789276, 0.04571491852402687, -0.08125390112400055, 0.02351130172610283, 0.0073068952187895775, 0.11137063801288605, -0.05037333443760872, -0.07215895503759384, -0.09631567448377609, 0.019115880131721497, -0.08097802847623825, -0.03538608178496361, -0.09143790602684021, -0.02405410259962082, -0.021140867844223976, 0.010995211079716682, 0.0745803564786911, 0.05047224089503288, -0.09574093669652939, -0.036449138075113297, 0.049945637583732605, -0.055582430213689804, -0.011001679114997387, 0.05643706023693085, -0.03686567023396492, 0.03193223476409912, 0.023751411586999893, 0.045715998858213425, -0.05026574432849884, -0.04934895038604736, -0.05258067697286606, -0.044748589396476746, -0.04084818437695503, -0.04175613075494766, -0.014635150320827961, 0.004099968820810318, -0.07224106043577194, -0.0608874075114727, -0.11838748306035995, -0.06063161417841911, 0.08891791105270386, -0.061462633311748505, -0.02697802148759365, -0.0894530639052391, -0.00804731622338295, 0.009102731943130493, 0.051142577081918716, 0.07803837954998016, -0.043363168835639954, 0.03302674740552902, -0.110802061855793, 0.04142695665359497, 0.029285335913300514, 0.06328120082616806, -0.08398225903511047, 0.01658634841442108, -0.035844556987285614, 0.19052407145500183, -0.026755014434456825, -0.030982838943600655, -0.1542370617389679, -0.04717925190925598, -0.041025303304195404, 0.0011025279527530074, -0.02557547390460968, 0.12618069350719452, -0.19541917741298676, -0.004012326244264841, 0.19639116525650024, -0.059949856251478195, -0.09702103585004807, 0.13280746340751648, -0.04971799626946449, 0.12841077148914337, 0.10171253979206085, 0.11235567182302475, 0.2195616066455841, -0.09748966991901398, -0.011470713652670383, 0.10472660511732101, -0.061799876391887665, 0.08364281803369522, 0.08175831288099289, -0.11012842506170273, -0.1031140461564064, -0.004312452860176563, -0.031741913408041, -0.06882374733686447, -0.012842223979532719, -0.1050402894616127, -0.0036944891326129436, -0.019554970785975456, 0.11596131324768066, -0.030184630304574966, -0.029797563329339027, 0.03074273094534874, -0.08723241835832596, -0.0911598727107048, 0.0239286869764328, -0.026077842339873314, 0.00541155319660902, -0.016187695786356926, 0.08954069018363953, -0.00920801144093275, -0.021942639723420143, -0.15588659048080444, -0.03464200720191002, 0.01773257739841938, -0.030490806326270103, 0.09681377559900284, 0.10607852786779404, 0.029948657378554344, 0.009057394228875637, 0.007103156764060259, -0.011194299906492233, -0.013005776330828667, 0.01653451845049858, -0.08394677191972733, -0.16677726805210114, 0.02208305522799492, -0.05410197749733925, 0.2091526985168457, -0.0707969069480896, 0.01430255826562643, 0.10669765621423721, 0.013095053844153881, 0.03963077440857887, 0.007649789564311504, -0.007932196371257305, -0.017371073365211487, 0.03456256911158562, 0.022149497643113136, 0.04456821829080582, 0.023790836334228516, -0.09998870640993118, 0.03895844146609306, -0.09652504324913025, -0.12500596046447754, 0.04005768895149231, 0.03491693362593651, -0.12819184362888336, -0.13989441096782684, -0.05607440695166588, -0.04092800244688988, -0.04648539423942566, -0.030900834128260612, 0.27644994854927063, 0.046801578253507614, 0.0727248564362526, -0.08117780834436417, -0.021068627014756203, -0.003954776097089052, -0.03651336953043938, -0.03435030207037926, 0.09505107253789902, -0.042966485023498535, -0.13335195183753967, 0.0653853565454483, 0.13013632595539093, 0.09655049443244934, 0.19927538931369781, 0.05200275033712387, -0.04358772560954094, -0.0812070220708847, 0.08284535259008408, -0.007915479131042957, 0.029948044568300247, -0.07851748168468475, 0.07543553411960602, 0.051831308752298355, 0.021635955199599266, 0.023497553542256355, -0.12974806129932404, 0.025189928710460663, 0.06233607605099678, -0.08782122284173965, 0.01354952622205019, -0.012625341303646564, 0.027789564803242683, 0.09233681857585907, 0.0803513377904892, -0.032920073717832565, 0.054076001048088074, -0.04969869181513786, -0.09630590677261353, 0.17352299392223358, -0.1477053463459015, -0.16468721628189087, -0.09734393656253815, -0.030923768877983093, -0.022119684144854546, 0.011112352833151817, 0.05360080674290657, -0.10260442644357681, -0.01803089864552021, -0.0469682440161705, -0.07398760318756104, -0.012066719122231007, -0.048351649194955826, -0.09546110779047012, 0.010799825191497803, -0.020645176991820335, -0.11273910105228424, -0.006377540994435549, -0.03350197151303291, -0.09249547123908997, 0.00013650613254867494, -0.10726053267717361, 0.0656360611319542, 0.19911053776741028, -0.012162918224930763, 0.028264706954360008, -0.03896671533584595, 0.2475123554468155, -0.07817912846803665, 0.05293241888284683, 0.04055829346179962, 0.060482997447252274, 0.10427053272724152, 0.21722476184368134, 0.03894102945923805, -0.03467975929379463, 0.026996273547410965, 0.03557164594531059, -0.04877934232354164, -0.23373404145240784, -0.058825839310884476, -0.05499947816133499, -0.029558023437857628, 0.05343671515583992, 0.02469930239021778, 0.12908492982387543, 0.06590904295444489, -0.023418055847287178, 0.05988934636116028, 0.08167235553264618, 0.020525211468338966, 0.10924462229013443, -0.011496494524180889, 0.08080888539552689, -0.02949487790465355, -0.01019999384880066, 0.10066557675600052, 0.11105608940124512, 0.17534179985523224, 0.00039454540819860995, 0.1445264220237732, 0.11869177967309952, 0.03945634514093399, 0.008260206319391727, -0.026126231998205185, 0.0061186496168375015, 0.05028700456023216, -0.07085450738668442, -0.10231658071279526, -0.03861422836780548, 0.06532391905784607, 0.08846595138311386, -0.016808031126856804, -0.049710359424352646, 0.11836174875497818, 0.08575648814439774, 0.13406503200531006, 0.037117887288331985, -0.13101167976856232, -0.04856405407190323, 0.011269085109233856, 0.06361513584852219, -0.05511929467320442, 0.022414907813072205, 0.029729826375842094, -0.15589258074760437, -0.05026901140809059, -0.02190566435456276, 0.11465316265821457, -0.03452642261981964, 0.054662883281707764, 0.07513727992773056, 0.02311830408871174, -0.013849467039108276, 0.09520973265171051, -0.2651851773262024, 0.19662170112133026, 0.030800670385360718, 0.041710369288921356, -0.08420481532812119, 0.030343109741806984, -0.023737793788313866, 0.09328662604093552, 0.2057592123746872, 0.04077967256307602, -0.01664368435740471, -0.049697864800691605, -0.09525301307439804, 0.01707015186548233, 0.07816297560930252, -0.04921064153313637, 0.01632997766137123, -0.03919534012675285, 0.005176309961825609, 0.0021702121011912823, 0.03314344212412834, -0.08313068747520447, -0.20284289121627808, 0.05915961042046547, -0.04840372875332832, 0.0015256708720698953, -0.0126954335719347, -0.029420260339975357, 0.045079462230205536, 0.17341896891593933, -0.17311474680900574, -0.0810469537973404, -0.12175941467285156, -0.059326328337192535, -0.011500419117510319, -0.0974201187491417, 0.010138798505067825, -0.07217924296855927, 0.045404329895973206, -0.0035150102339684963, -0.060685403645038605, 0.06836612522602081, -0.031285062432289124, -0.10154511779546738, -0.06740520149469376, 0.03996843472123146, 0.0956229493021965, 0.08665630966424942, 0.0631055161356926, 0.014890654943883419, -0.06466949731111526, -0.12281206250190735, -0.05264810100197792, 0.04379640147089958, 0.05211132764816284, 0.14489884674549103, -0.037564508616924286, -0.08515281230211258, -0.11896608769893646, 0.03296073526144028, 0.12589392066001892, 0.03347735106945038, -0.1167173981666565, 0.1259920746088028, 0.13391722738742828, -0.09746388345956802, -0.15042781829833984, -0.02562611922621727, 0.05963513255119324, -0.03775867074728012, -0.027879174798727036, -0.14006127417087555, 0.06204690784215927, 0.0387694388628006, -0.023945311084389687, -0.1036922037601471, -0.315890908241272, -0.09215546399354935, 0.0528889037668705, 0.07524733990430832, -0.026797691360116005, -0.05948718637228012, -0.06976883858442307, 0.03968508914113045, -0.1232108399271965, 0.13770820200443268, -0.11793730407953262, 0.07222720235586166, -0.006443663500249386, 0.019606532528996468, 0.021321240812540054, -0.03429337218403816, 0.10229501128196716, 0.09858699142932892, 0.035009026527404785, -0.04503977671265602, -0.030491596087813377, 0.07087729126214981, -0.015160192735493183, 0.03934095427393913, 0.0006273385370150208, 0.05461111292243004, -0.14543317258358002, 0.022116148844361305, -0.08219144493341446, 0.03172465041279793, -0.12059318274259567, -0.09345182031393051, -0.07642531394958496, 0.08219034969806671, 0.15468889474868774, 0.003389170626178384, -0.007225398439913988, -0.0667538270354271, 0.09873905032873154, 0.21531447768211365, 0.0867571011185646, 0.051961641758680344, -0.18374857306480408, -0.051071442663669586, -0.002861941931769252, 0.06652089953422546, -0.11284711956977844, 0.042240407317876816, 0.10942249745130539, -0.001069162506610155, 0.17852188646793365, 0.05757373943924904, -0.06545774638652802, -0.011664017103612423, 0.035042569041252136, -0.08940946310758591, -0.18648697435855865, -0.015869617462158203, -0.07319378107786179, -0.12449076026678085, -0.1004391610622406, 0.11624030768871307, -0.005031494423747063, 0.012067683041095734, 0.008072474040091038, 0.03236638754606247, -0.0357833094894886, 0.09078789502382278, 0.05856400355696678, 0.03921889513731003, -0.06187400594353676, 0.026026513427495956, 0.15102167427539825, -0.06580068916082382, 0.05402224138379097, 0.016708703711628914, -0.06460151076316833, -0.08315830677747726, 0.09082622826099396, 0.11707969754934311, -0.04478796571493149, -0.02875310182571411, -0.02371092513203621, -0.08737890422344208, 0.06863456964492798, 0.003328504739329219, 0.017663300037384033, 0.06641878932714462, -0.044842761009931564, -0.06021231412887573, -0.02458837442100048, 0.12936794757843018, -0.029136694967746735, -0.02666785567998886, -0.013795169070363045, 0.05912669748067856, -0.001258553471416235, 0.09784090518951416, -0.010537134483456612, -0.07102139294147491, -0.09326335042715073, -0.005835650023072958, -0.09976914525032043, 0.1026720479130745, -0.005431165918707848, 0.048964522778987885, -0.049013976007699966, -0.007451147772371769, -0.0005140433786436915, 0.010895887389779091, -0.04579668864607811, 0.009182540699839592, 0.037404969334602356, 0.1092122346162796, -0.21220430731773376, 0.0010310588404536247, 0.05610473453998566, -0.01303491648286581, 0.03781675919890404, -0.02276584692299366, -0.06609312444925308, -0.0031228535808622837, -0.1312669813632965, 0.026009801775217056, -0.08036046475172043, 0.04693349450826645, 0.060100775212049484, -0.07171379029750824, -0.020546266809105873, -0.03126044571399689, -0.03256337717175484, 0.03328567370772362, 0.09057078510522842, -0.0760241225361824, 0.0900568813085556, -0.0021631948184221983, -0.023215731605887413, -0.10732179880142212, 0.12548814713954926, -0.02901523746550083, -0.00006778233364457265, 0.11148753762245178, -0.05498436838388443, 0.08333691209554672, -0.11341772973537445, -0.046983931213617325, 0.07761447131633759, 0.01295784767717123, -0.017666207626461983, -0.1222994476556778, 0.015613061375916004, -0.03226163610816002, 0.09196737408638, 0.054069094359874725, 0.16046637296676636, 0.019136978313326836, -0.008636530488729477, 0.026744026690721512, -0.010675842873752117, 0.021334080025553703, -0.010003156028687954, -0.01161955390125513, 0.09474843740463257, -0.005117763765156269, -0.042722608894109726, 0.07841819524765015, 0.16720983386039734, 0.09658154845237732, 0.0724286139011383, -0.015197448432445526, 0.047853872179985046, 0.028364799916744232, -0.11600957065820694, 0.020165935158729553, 0.01059126015752554, 0.03235176205635071, -0.055386703461408615, -0.028048241510987282, 0.07604558765888214, -0.21186751127243042, 0.12517111003398895, 0.00018797868688125163, -0.11026819050312042, -0.11045035719871521, -0.18779094517230988, -0.04623553901910782, -0.04671988636255264, -0.0260603167116642, -0.1274774968624115, 0.07472999393939972, 0.006381967570632696, 0.04619615152478218, 0.025400785729289055, 0.11127613484859467, -0.13404417037963867, -0.0008359652129001915, 0.04759936034679413, -0.010779920034110546, 0.09470551460981369, -0.09868550300598145, 0.04674413055181503, 0.05158308148384094, 0.04112239554524422, 0.017210548743605614, 0.06433764100074768, 0.03643839433789253, -0.03241565451025963, -0.0583852156996727, -0.04096093401312828, 0.003675007028505206, 0.005069161299616098, -0.04682067409157753, 0.09723485261201859, 0.08329302817583084, -0.07274778932332993, 0.028170140460133553, 0.20755140483379364, -0.04597897827625275, -0.10030360519886017, -0.1589026004076004, 0.14305144548416138, 0.006176947150379419, 0.02617981843650341, 0.055240269750356674, -0.04701608419418335, 0.0151713527739048, 0.1964636892080307, 0.2060977816581726, -0.10625697672367096, 0.04289407655596733, 0.02881866693496704, 0.020821280777454376, 0.07112541049718857, 0.06991681456565857, 0.041526541113853455, 0.1702379435300827, -0.07121437788009644, 0.09116052091121674, 0.0054712616838514805, -0.04245184734463692, -0.08309371769428253, 0.05396410822868347, 0.017717057839035988, -0.03184989467263222, -0.04125499725341797, 0.13323208689689636, -0.09494581073522568, -0.09649895131587982, -0.055583320558071136, -0.05626286193728447, -0.11098206788301468, -0.07531962543725967, 0.023925531655550003, 0.04058896377682686, 0.043029915541410446, 0.016102347522974014, -0.06727658212184906, 0.155686616897583, 0.015826184302568436, -0.11011835932731628, -0.0411442406475544, 0.044543612748384476, -0.10531935840845108, 0.20747236907482147, 0.07979626208543777, 0.0072834729216992855, 0.1138618215918541, -0.0018085859483107924, -0.057105083018541336, 0.028391389176249504, 0.059500981122255325, 0.0563652440905571, 0.002625380177050829, 0.003962256945669651, 0.006516465451568365, 0.003881177632138133, 0.08924420177936554, -0.07157618552446365, 0.09432269632816315, 0.032947421073913574, 0.0021128389053046703, -0.0903405100107193, 0.03247889131307602, -0.0657522901892662, 0.13233047723770142, 0.2425001710653305, -0.00399331608787179, 0.03158193826675415, -0.018718978390097618, -0.00637636287137866, -0.01979641802608967, 0.035582415759563446, -0.04765228554606438, -0.02328563667833805, 0.005640277173370123, 0.02895568683743477, 0.05142319202423096, -0.1881798505783081, -0.12263458967208862, -0.005798977334052324, -0.013043920509517193, 0.0026783221401274204, 0.12917460501194, 0.09129031002521515, 0.018764544278383255, -0.04081781953573227, -0.0703125, -0.060802213847637177, 0.14283674955368042, -0.07581605762243271, -0.022362422198057175 ]
null
null
transformers
# t5-qg_squad1-en ## Model description This model is a *Question Generation* model based on T5-small. It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is, for QG only. ## How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qg_squad1-en") model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qg_squad1-en") ``` You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): `text_input = "sv1 </s> {ANSWER} </s> {CONTEXT}"` ## Training data The model was trained on SQuAD. ### Citation info ```bibtex @article{scialom2020QuestEval, title={QuestEval: Summarization Asks for Fact-based Evaluation}, author={Scialom, Thomas and Dray, Paul-Alexis and Gallinari, Patrick and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo and Wang, Alex}, journal={arXiv preprint arXiv:2103.12693}, year={2021} } ```
{"language": "en", "license": "mit", "tags": ["qg", "question", "generation", "SQuAD", "metric", "nlg", "t5-small"], "datasets": ["squad"], "widget": [{"text": "sv1 </s> Louis 14 </s> Louis 14 was a French King."}]}
text2text-generation
ThomasNLG/t5-qg_squad1-en
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "qg", "question", "generation", "SQuAD", "metric", "nlg", "t5-small", "en", "dataset:squad", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #qg #question #generation #SQuAD #metric #nlg #t5-small #en #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# t5-qg_squad1-en ## Model description This model is a *Question Generation* model based on T5-small. It is actually a component of QuestEval metric but can be used independently as it is, for QG only. ## How to use You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): 'text_input = "sv1 </s> {ANSWER} </s> {CONTEXT}"' ## Training data The model was trained on SQuAD. info
[ "# t5-qg_squad1-en", "## Model description\nThis model is a *Question Generation* model based on T5-small.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"sv1 </s> {ANSWER} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on SQuAD.\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qg #question #generation #SQuAD #metric #nlg #t5-small #en #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# t5-qg_squad1-en", "## Model description\nThis model is a *Question Generation* model based on T5-small.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"sv1 </s> {ANSWER} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on SQuAD.\n\n\ninfo" ]
[ 91, 10, 46, 58, 14 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qg #question #generation #SQuAD #metric #nlg #t5-small #en #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# t5-qg_squad1-en## Model description\nThis model is a *Question Generation* model based on T5-small.\nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"sv1 </s> {ANSWER} </s> {CONTEXT}\"'## Training data\nThe model was trained on SQuAD.\n\n\ninfo" ]
[ -0.099992536008358, 0.057452574372291565, -0.0012379246763885021, 0.11745311319828033, 0.12895053625106812, 0.02075917273759842, 0.09543704241514206, 0.1267959177494049, -0.010100937448441982, 0.003623350290581584, 0.06367392838001251, 0.0873914361000061, 0.03268372640013695, 0.10248146951198578, -0.031181996688246727, -0.20153197646141052, -0.007969602942466736, 0.0240718275308609, -0.07238180935382843, 0.1329941302537918, 0.09927861392498016, -0.09110035747289658, 0.09446139633655548, 0.029725683853030205, -0.1434154510498047, -0.016021810472011566, 0.0331362709403038, -0.06596804410219193, 0.0874219760298729, 0.04314568266272545, 0.052531614899635315, 0.05836675688624382, 0.07966911047697067, -0.0948539674282074, 0.0420486144721508, 0.0537262000143528, -0.03075356036424637, 0.08995813876390457, 0.020293088629841805, 0.009469665586948395, 0.035493239760398865, 0.01492927223443985, 0.03414786979556084, 0.05934801325201988, -0.10836143791675568, -0.06654416024684906, -0.013370825909078121, 0.04363710805773735, 0.09886030107736588, 0.13912250101566315, -0.01940302550792694, 0.09034764766693115, -0.11235128343105316, 0.09002112597227097, 0.12561970949172974, -0.3360154926776886, -0.034759823232889175, 0.15980659425258636, 0.07737502455711365, 0.1033463329076767, -0.06207331642508507, 0.0382467657327652, 0.01216890849173069, 0.05926325544714928, 0.12773266434669495, -0.05495342239737511, -0.06546513736248016, 0.028411975130438805, -0.13013030588626862, -0.04189362749457359, 0.22818657755851746, -0.006382510531693697, -0.029668670147657394, -0.047166064381599426, -0.04124883562326431, -0.0500352568924427, -0.015748891979455948, -0.09039874374866486, 0.005875981412827969, 0.05210786312818527, -0.04493296518921852, -0.10959789156913757, -0.1187930703163147, -0.12958548963069916, -0.0474666990339756, -0.006234728265553713, -0.006045935209840536, 0.024025991559028625, -0.22698883712291718, 0.13624854385852814, -0.13620977103710175, -0.04353639855980873, -0.08202503621578217, -0.08423024415969849, -0.1094973087310791, -0.03361106663942337, -0.045959994196891785, -0.1394806206226349, 0.04006855934858322, 0.01397815253585577, 0.0058090961538255215, 0.02679002657532692, 0.04095989465713501, 0.052108101546764374, 0.05799754709005356, 0.14564047753810883, -0.051863741129636765, -0.03385724499821663, 0.050977665930986404, 0.014528376050293446, -0.09953334182500839, -0.06411156058311462, -0.14781714975833893, -0.07999652624130249, 0.059772662818431854, 0.028769822791218758, 0.026740260422229767, 0.1160467192530632, 0.0237908773124218, -0.07526042312383652, -0.009682915173470974, -0.06288786232471466, -0.02263225056231022, 0.018337389454245567, -0.06906264275312424, 0.02896997518837452, 0.046557098627090454, 0.01033202838152647, -0.08481427282094955, -0.1144927591085434, -0.08253742009401321, -0.03882618993520737, -0.04378117620944977, -0.12678559124469757, -0.018492205068469048, -0.06165030971169472, -0.0034716445952653885, -0.15901242196559906, -0.2384226769208908, -0.03908945247530937, 0.03589356318116188, -0.001296091009862721, -0.045943744480609894, -0.08864592760801315, -0.028969237580895424, -0.010607702657580376, -0.0031995647586882114, 0.061938121914863586, -0.04055825248360634, 0.04714806750416756, -0.057844650000333786, 0.07620244473218918, -0.04946986213326454, 0.07194775342941284, -0.09300892800092697, 0.015683209523558617, -0.05324456840753555, 0.19031013548374176, 0.001357872853986919, -0.01662248559296131, -0.10396596789360046, -0.08981762081384659, -0.017697138711810112, -0.012167800217866898, 0.041886571794748306, 0.14932148158550262, -0.18351979553699493, -0.02814435586333275, 0.2161376029253006, -0.07191765308380127, -0.17127114534378052, 0.09581033140420914, -0.04777345433831215, 0.1542288362979889, 0.0911865383386612, 0.17309793829917908, 0.2450593113899231, -0.10960611701011658, 0.004294403828680515, 0.08945199847221375, -0.07767593115568161, -0.0600636787712574, 0.058133337646722794, 0.03072158247232437, -0.10870867222547531, 0.029285091906785965, -0.12905532121658325, 0.036354631185531616, -0.04005122557282448, -0.0775015726685524, -0.042421936988830566, -0.06817352771759033, 0.12356815487146378, -0.01747700572013855, 0.08982532471418381, 0.05113576725125313, -0.04138663411140442, 0.008299599401652813, 0.07266614586114883, -0.0664050430059433, -0.004881493281573057, -0.08615899831056595, 0.15665321052074432, -0.11418468505144119, 0.03332410752773285, -0.20506209135055542, -0.07134563475847244, 0.004137374926358461, 0.0629711002111435, 0.04881616309285164, 0.12762917578220367, 0.08235593885183334, 0.029166586697101593, -0.02786364033818245, -0.039862535893917084, -0.041045740246772766, 0.0016221635742112994, -0.12412790209054947, -0.09588000178337097, -0.09191979467868805, -0.08208395540714264, 0.13458679616451263, -0.17712455987930298, 0.05279652774333954, -0.00020682811737060547, -0.046101126819849014, 0.02861069142818451, 0.034762945026159286, 0.025680001825094223, -0.01728746108710766, -0.011253802105784416, -0.018781891092658043, 0.048821866512298584, 0.05903041362762451, -0.10559773445129395, 0.007288958877325058, -0.10200157016515732, 0.01949375495314598, 0.06700948625802994, -0.030153291299939156, -0.0563177615404129, -0.15056346356868744, -0.05031116306781769, 0.012498007155954838, -0.06005239859223366, -0.036756739020347595, 0.20562484860420227, 0.018347902223467827, 0.10255387425422668, -0.10541580617427826, -0.05088073015213013, 0.016886984929442406, -0.04934960603713989, 0.04394206404685974, 0.071206234395504, 0.035661060363054276, -0.14734004437923431, 0.0506146103143692, 0.10252884030342102, -0.02986667864024639, 0.20131558179855347, 0.024188905954360962, -0.046331893652677536, -0.033637892454862595, -0.013115080073475838, -0.0185832642018795, 0.0453166626393795, -0.11717084050178528, -0.004377488978207111, 0.05355218052864075, 0.07001432776451111, 0.03700605779886246, -0.10712255537509918, -0.027035517618060112, 0.02018551342189312, -0.05212387070059776, -0.11262154579162598, 0.052998580038547516, -0.01585131138563156, 0.09984233975410461, 0.07709496468305588, 0.05727078393101692, 0.06689020246267319, -0.02288413979113102, -0.1376510113477707, 0.1939554065465927, -0.08906491100788116, -0.1280452013015747, -0.042115338146686554, 0.051885221153497696, -0.0666453093290329, 0.01953727938234806, 0.061969272792339325, -0.10941748321056366, 0.027088535949587822, -0.055151984095573425, -0.0005446105496957898, -0.029712524265050888, 0.0011657553259283304, -0.083976149559021, 0.004358064848929644, -0.014885121956467628, -0.11817387491464615, -0.006775388494133949, -0.03431478515267372, -0.0960620790719986, 0.0490424744784832, -0.09650041162967682, 0.0722384974360466, 0.21858125925064087, -0.05307837575674057, 0.08072618395090103, -0.05202747881412506, 0.2920563817024231, -0.02541523054242134, 0.07580850273370743, 0.150542750954628, 0.10045479983091354, 0.03683346509933472, 0.06264058500528336, 0.0027170281391590834, -0.026958312839269638, 0.04080270975828171, 0.008176497183740139, -0.09438525140285492, -0.22149179875850677, -0.050739042460918427, -0.07696852833032608, 0.005810598377138376, 0.05636850744485855, 0.04385699704289436, 0.13933998346328735, 0.09891925007104874, 0.041418518871068954, 0.05773843824863434, 0.036069080233573914, 0.049516722559928894, 0.035110339522361755, 0.0142642417922616, 0.08297949284315109, -0.028009846806526184, 0.029571102932095528, 0.054696500301361084, 0.09967352449893951, 0.16694211959838867, -0.07712842524051666, -0.006574032362550497, 0.08723029494285583, 0.14548373222351074, 0.06257681548595428, 0.10484854131937027, -0.018750591203570366, 0.002220296999439597, -0.014910734258592129, -0.07763063907623291, -0.059103019535541534, 0.058633677661418915, 0.014363122172653675, 0.002289369935169816, -0.1389179825782776, 0.11700527369976044, 0.04169267416000366, 0.15151110291481018, 0.07027973234653473, -0.21755476295948029, -0.1359759420156479, 0.007784335408359766, 0.07513821870088577, -0.048018086701631546, 0.05794477090239525, 0.13316801190376282, -0.1512383669614792, -0.06679440289735794, -0.03539752960205078, 0.14106416702270508, 0.03414103761315346, 0.038852088153362274, 0.02193053625524044, 0.05968104675412178, -0.013966417871415615, 0.10101749747991562, -0.28698766231536865, 0.15663084387779236, 0.02333063818514347, 0.08999723196029663, -0.08667495101690292, -0.02336394041776657, 0.024923454970121384, 0.1573590636253357, 0.14604762196540833, 0.042880408465862274, 0.017389602959156036, -0.11919500678777695, -0.011403197422623634, 0.0458969809114933, -0.011365516111254692, -0.047893915325403214, 0.07279746979475021, -0.025940831750631332, 0.01566106267273426, 0.017019029706716537, 0.0690351352095604, -0.10689754039049149, -0.08124731481075287, 0.015621614642441273, 0.037930265069007874, 0.07847356051206589, -0.018217086791992188, -0.037698060274124146, -0.048519544303417206, 0.06684836000204086, -0.03929362818598747, -0.11339818686246872, -0.13513319194316864, 0.025819694623351097, -0.017742253839969635, -0.12093701213598251, 0.008829914964735508, -0.004081277176737785, 0.10736905038356781, 0.006170307751744986, -0.13719916343688965, 0.07704593241214752, -0.07709387689828873, -0.07719385623931885, 0.0132431760430336, 0.02288231812417507, 0.0710972473025322, 0.04714903607964516, 0.09768342226743698, -0.029672622680664062, -0.05956292897462845, -0.1312934309244156, 0.04248882457613945, 0.053222086280584335, 0.0079296063631773, 0.024977391585707664, -0.03762739151716232, -0.0067933290265500546, -0.04863892123103142, 0.08584970980882645, 0.22977933287620544, 0.010150718502700329, -0.12418084591627121, 0.09375765174627304, 0.12794096767902374, -0.09102419763803482, -0.2096787691116333, 0.054707106202840805, 0.047403208911418915, 0.029565583914518356, 0.017878545448184013, -0.1558454930782318, 0.04691224917769432, -0.015447825193405151, -0.01081030908972025, -0.06305746734142303, -0.3339274823665619, -0.07002180069684982, 0.055979397147893906, 0.09527647495269775, 0.0954495221376419, -0.0789070799946785, -0.034766919910907745, 0.05123760551214218, -0.17453551292419434, 0.16132797300815582, -0.24558475613594055, 0.0880095437169075, -0.017516901716589928, 0.10654862225055695, 0.021543068811297417, -0.0510685034096241, 0.05943671241402626, 0.06173577904701233, 0.042643092572689056, -0.042336657643318176, -0.04397052899003029, 0.1273595541715622, -0.07501813769340515, 0.12268013507127762, -0.0025225593708455563, 0.11217822879552841, -0.14896519482135773, -0.023161735385656357, -0.13362209498882294, 0.03579917550086975, -0.024962246417999268, -0.1419496238231659, 0.013506905175745487, 0.036163102835416794, 0.10477147251367569, -0.007467163726687431, 0.01536858081817627, -0.08372238278388977, 0.13455547392368317, 0.15718716382980347, 0.15296199917793274, 0.005242935847491026, -0.10839027911424637, 0.0026346370577812195, -0.0030098066199570894, 0.11609162390232086, -0.19420619308948517, 0.0440424419939518, 0.10353126376867294, 0.04913249984383583, 0.14131799340248108, 0.09683533757925034, -0.021346746012568474, 0.08439607173204422, 0.008293436840176582, -0.13371776044368744, -0.17817245423793793, -0.06768785417079926, -0.026639435440301895, -0.09646614640951157, 0.07511657476425171, 0.10626708716154099, -0.095255546271801, -0.01459954772144556, -0.01552396547049284, 0.01358420867472887, -0.08027872443199158, 0.08919137716293335, 0.08266397565603256, 0.06342952698469162, -0.07203752547502518, 0.04289751127362251, 0.06688230484724045, -0.036708079278469086, 0.07654664665460587, 0.03616391122341156, -0.1329287737607956, -0.11214839667081833, 0.0012867958284914494, 0.16001999378204346, -0.049736883491277695, -0.03797692432999611, -0.022062573581933975, -0.08863755315542221, 0.039691753685474396, 0.08030711114406586, 0.0019965528044849634, 0.035704102367162704, -0.08473630249500275, 0.003011060180142522, -0.11537488549947739, 0.07272178679704666, 0.015942513942718506, -0.013647196814417839, -0.1453598439693451, 0.12946005165576935, -0.023257283493876457, 0.17310909926891327, -0.05958351492881775, -0.08960752934217453, -0.11890523135662079, 0.026685072109103203, -0.19839227199554443, 0.022870566695928574, -0.06328799575567245, 0.01899968460202217, -0.07704377174377441, -0.016386613249778748, -0.02935134619474411, 0.04495351389050484, -0.08030642569065094, 0.015169477090239525, 0.016040490940213203, 0.06998375058174133, -0.09398067742586136, -0.015414451248943806, -0.02931039035320282, -0.018244285136461258, 0.1063992977142334, 0.054555743932724, -0.08077391982078552, 0.06053893268108368, -0.11439619958400726, 0.026672091335058212, -0.0335967130959034, 0.016183728352189064, 0.07554049789905548, -0.02287466824054718, 0.018634876236319542, -0.036522313952445984, -0.036883026361465454, 0.02212146297097206, 0.04754699394106865, -0.065000519156456, 0.07949932664632797, -0.005473262630403042, 0.030268557369709015, -0.11648736149072647, 0.1062767505645752, 0.020693836733698845, 0.06675367057323456, 0.08157873898744583, -0.06712084263563156, 0.10504510998725891, -0.16351865231990814, -0.026872850954532623, 0.04343833774328232, -0.014797370880842209, -0.06708008050918579, -0.09714866429567337, 0.05505949258804321, -0.07059500366449356, 0.04642966389656067, 0.06806330382823944, 0.05726461112499237, -0.018328668549656868, 0.049365196377038956, 0.048973727971315384, -0.03897624835371971, 0.1260191649198532, 0.006766646169126034, -0.032221052795648575, 0.0645560473203659, 0.11170108616352081, 0.0050818040035665035, 0.14837025105953217, 0.15593187510967255, -0.0064974576234817505, 0.018610315397381783, 0.05983256548643112, 0.02540362998843193, 0.029968032613396645, -0.12162382155656815, -0.02072273939847946, 0.0032801644410938025, 0.04729025438427925, -0.11205214262008667, 0.023609669879078865, 0.1276247203350067, -0.12237059324979782, 0.06823519617319107, -0.03744983300566673, -0.09903791546821594, -0.11260905116796494, -0.2347513884305954, -0.04629233479499817, -0.11340679973363876, -0.048737525939941406, -0.14313927292823792, 0.009405585937201977, -0.04435667395591736, 0.027278464287519455, -0.02489486150443554, 0.11538764834403992, -0.0277099646627903, -0.030764728784561157, 0.0755719318985939, -0.03925716504454613, 0.042404040694236755, -0.07343053072690964, 0.06899938732385635, 0.08784991502761841, -0.004386895336210728, 0.016668017953634262, 0.02619682252407074, 0.01021021418273449, 0.016157180070877075, -0.052170656621456146, -0.06134779751300812, -0.031748685985803604, 0.054876137524843216, -0.008407184854149818, 0.061501506716012955, 0.059563133865594864, -0.096734918653965, -0.009024620056152344, 0.29503971338272095, -0.06811011582612991, -0.061578232795000076, -0.15944255888462067, 0.13949978351593018, 0.01269228383898735, -0.0018788111628964543, 0.05087687820196152, -0.08251535892486572, 0.011279064230620861, 0.26547005772590637, 0.21592581272125244, -0.06680461019277573, 0.028758833184838295, 0.0037186883855611086, 0.0032122619450092316, 0.015273524448275566, 0.11805280297994614, 0.029417678713798523, 0.1790456920862198, -0.10121796280145645, 0.10134247690439224, -0.04678032174706459, -0.024948706850409508, 0.006224676035344601, 0.0614648275077343, 0.02736566960811615, -0.027310213074088097, -0.026942746713757515, 0.08204640448093414, -0.17946882545948029, 0.013033839873969555, -0.10104037821292877, -0.04396591708064079, -0.10153457522392273, -0.06652205437421799, -0.011459234170615673, 0.05893329530954361, 0.08737056702375412, -0.03404663875699043, 0.026683475822210312, 0.1374109834432602, -0.002002487890422344, -0.043546076864004135, -0.03526165336370468, 0.1476377248764038, 0.025606509298086166, 0.10068344324827194, -0.013364465907216072, 0.021918198093771935, 0.10038408637046814, 0.027199270203709602, -0.12351644784212112, 0.05856956169009209, 0.015706177800893784, -0.007472916506230831, -0.011953655630350113, 0.034901730716228485, -0.004375780932605267, 0.005342054180800915, 0.022621499374508858, -0.13315579295158386, 0.013531910255551338, -0.02002968266606331, 0.012015613727271557, -0.08992717415094376, 0.05663623660802841, -0.0025009792298078537, 0.13038115203380585, 0.13491874933242798, -0.05445561930537224, -0.021857324987649918, -0.0683765634894371, 0.038667358458042145, 0.0035478058271110058, -0.019017064943909645, -0.05100578814744949, -0.08240551501512527, -0.010751953348517418, 0.03038663975894451, -0.005527934525161982, -0.2405783087015152, -0.03563767671585083, -0.002752813510596752, -0.024900877848267555, -0.009526047855615616, 0.11201188713312149, 0.1707562357187271, 0.03800709918141365, -0.030903885141015053, -0.0006777652306482196, -0.04687265679240227, 0.14554493129253387, -0.13868263363838196, -0.09899081289768219 ]
null
null
transformers
# t5-qg_webnlg_synth-en ## Model description This model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is, for QG only. ## How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en") model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en") ``` You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): `text_input = "{ANSWER} </s> {CONTEXT}"` where `CONTEXT is a structured table that is linearised this way: `CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"` ## Training data The model was trained on synthetic data as described in [Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation](https://arxiv.org/abs/2104.07555). ### Citation info ```bibtex @article{rebuffel2021data, title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation}, author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick}, journal={arXiv preprint arXiv:2104.07555}, year={2021} } ```
{"language": "en", "license": "mit", "tags": ["qa", "question", "generation", "SQuAD", "data2text", "metric", "nlg", "t5-small"], "datasets": ["squad_v2"], "widget": [{"text": "The Eagle </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ \u00c2\u00a3 2 0 - 2 5 ]"}]}
text2text-generation
ThomasNLG/t5-qg_webnlg_synth-en
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "qa", "question", "generation", "SQuAD", "data2text", "metric", "nlg", "t5-small", "en", "dataset:squad_v2", "arxiv:2104.07555", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.07555" ]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #qa #question #generation #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-qg_webnlg_synth-en ## Model description This model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. It is actually a component of QuestEval metric but can be used independently as it is, for QG only. ## How to use You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): 'text_input = "{ANSWER} </s> {CONTEXT}"' where 'CONTEXT is a structured table that is linearised this way: 'CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"' ## Training data The model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation. info
[ "# t5-qg_webnlg_synth-en", "## Model description\nThis model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'", "## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #generation #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-qg_webnlg_synth-en", "## Model description\nThis model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'", "## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ 101, 14, 64, 113, 37 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #question #generation #SQuAD #data2text #metric #nlg #t5-small #en #dataset-squad_v2 #arxiv-2104.07555 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-qg_webnlg_synth-en## Model description\nThis model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. \nIt is actually a component of QuestEval metric but can be used independently as it is, for QG only.## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {CONTEXT}\"'\n\nwhere 'CONTEXT is a structured table that is linearised this way:\n\n'CONTEXT = \"name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]\"'## Training data\nThe model was trained on synthetic data as described in Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation.\n\ninfo" ]
[ -0.011739615350961685, 0.11406005918979645, -0.004709675442427397, 0.09531009942293167, 0.03845373913645744, -0.005125371273607016, 0.10628505051136017, 0.1149795725941658, -0.05271359160542488, 0.02397245541214943, 0.027802200987935066, 0.12033268064260483, 0.06742335855960846, 0.09464901685714722, 0.0011321980273351073, -0.1776665896177292, 0.030651506036520004, -0.018187500536441803, -0.04284558445215225, 0.13623827695846558, 0.09780801832675934, -0.041010115295648575, 0.09403046220541, 0.03063344396650791, -0.04541380703449249, -0.025516942143440247, -0.009960724972188473, -0.029293809086084366, 0.08502877503633499, 0.09656795859336853, 0.0997963398694992, 0.03813239559531212, 0.010778763331472874, -0.1757236272096634, 0.020398421213030815, 0.07343495637178421, -0.02782418392598629, 0.04579556733369827, 0.03362353518605232, -0.0116885332390666, -0.04147116467356682, -0.015598240308463573, 0.07554448395967484, 0.09186088293790817, -0.13091954588890076, -0.12591668963432312, -0.05049387738108635, 0.08669053763151169, 0.0730426087975502, 0.11586423218250275, -0.03383926674723625, -0.03530409187078476, -0.11713720858097076, 0.08432174474000931, 0.04423670098185539, -0.2077668458223343, -0.05548997223377228, 0.00373403774574399, -0.008995059877634048, 0.15762360394001007, -0.03870149329304695, -0.005943243391811848, 0.024329522624611855, 0.00961479265242815, -0.025007029995322227, -0.016994930803775787, -0.004789282102137804, -0.024740122258663177, -0.0814131572842598, -0.08681908994913101, 0.1664849817752838, 0.03688086196780205, -0.04699878394603729, -0.08817237615585327, -0.027911951765418053, -0.030297182500362396, -0.013279907405376434, -0.11760970205068588, 0.028202250599861145, 0.07435594499111176, 0.044250357896089554, -0.08267005532979965, -0.08844860643148422, -0.03188689425587654, -0.06579632312059402, -0.026109840720891953, -0.004018016625195742, 0.010515722446143627, -0.09623449295759201, 0.09467824548482895, -0.06066553294658661, -0.04435622692108154, -0.07759140431880951, -0.01888354867696762, -0.15481731295585632, -0.01899307779967785, 0.0019894284196197987, 0.017662767320871353, 0.030161133036017418, 0.05889878794550896, -0.05126717686653137, 0.05341480299830437, -0.06368408352136612, 0.023993924260139465, -0.004695017356425524, 0.09856399893760681, -0.03701769560575485, -0.07483038306236267, -0.09495379030704498, 0.028583835810422897, -0.08310002833604813, -0.04010137543082237, -0.08791752904653549, -0.02597378008067608, -0.023831423372030258, 0.014502798207104206, 0.06309398263692856, 0.05685209110379219, -0.08610347658395767, -0.03670601546764374, 0.06428458541631699, -0.060328830033540726, -0.018230615183711052, 0.0691152885556221, -0.029268134385347366, 0.027971094474196434, 0.014968333765864372, 0.057667892426252365, -0.05123291537165642, -0.05892947316169739, -0.05604064464569092, -0.06755746901035309, -0.033281274139881134, -0.02251599356532097, -0.033306460827589035, 0.0066944630816578865, -0.07465020567178726, -0.059291522949934006, -0.1326017826795578, -0.062155596911907196, 0.08843602240085602, -0.07109171152114868, -0.04915337264537811, -0.08886269479990005, 0.00036758786882273853, 0.01721625030040741, 0.05034523829817772, 0.09831980615854263, -0.03394702076911926, 0.026091579347848892, -0.09591652452945709, 0.0343455895781517, 0.05189787596464157, 0.05874841660261154, -0.0788506343960762, 0.02998407743871212, -0.053902287036180496, 0.1953885406255722, -0.023224378004670143, -0.0134699372574687, -0.16182267665863037, -0.04022710770368576, -0.05239446833729744, -0.0019336030818521976, -0.03634271398186684, 0.12566743791103363, -0.17145951092243195, -0.0089594516903162, 0.17780351638793945, -0.06377991288900375, -0.10226265341043472, 0.12135043740272522, -0.04138558357954025, 0.12301076948642731, 0.08710101991891861, 0.1156604140996933, 0.2199050337076187, -0.0885431170463562, 0.014856760390102863, 0.10727033019065857, -0.0671803280711174, 0.08734423667192459, 0.08609163016080856, -0.12212090194225311, -0.1075870618224144, -0.009548120200634003, -0.0574117973446846, -0.061442796140909195, 0.0006220735376700759, -0.09076060354709625, -0.0056941574439406395, -0.01718817837536335, 0.07893761992454529, -0.04213608801364899, -0.022573668509721756, 0.023450156673789024, -0.08997835218906403, -0.07879168540239334, 0.03861081227660179, -0.029427364468574524, 0.0005258041201159358, -0.028773555532097816, 0.08394007384777069, -0.01323763094842434, -0.019538117572665215, -0.1605827659368515, -0.009533664211630821, 0.017706608399748802, -0.056265201419591904, 0.10231679677963257, 0.13463319838047028, 0.03767472133040428, 0.007847796194255352, 0.014281131327152252, -0.03232572600245476, -0.003820762736722827, 0.014017329551279545, -0.08212986588478088, -0.1690491884946823, 0.023235443979501724, -0.049235474318265915, 0.22790773212909698, -0.08702550828456879, 0.020607920363545418, 0.10149560868740082, 0.025514665991067886, 0.03666115552186966, 0.010496032424271107, -0.0034557098988443613, -0.049493879079818726, 0.016375068575143814, 0.005380748771131039, 0.03920243680477142, 0.039902277290821075, -0.10756971687078476, 0.06678854674100876, -0.12255790084600449, -0.13651956617832184, 0.03996075317263603, 0.045550718903541565, -0.1085757166147232, -0.12549927830696106, -0.06440513581037521, -0.0450785830616951, -0.037258122116327286, -0.04895776882767677, 0.27313432097435, 0.04573126137256622, 0.0748865008354187, -0.09441595524549484, -0.040273502469062805, -0.01093366276472807, -0.030876267701387405, -0.0437285341322422, 0.08605898916721344, -0.03182493895292282, -0.13078439235687256, 0.05323832854628563, 0.12978176772594452, 0.10730212181806564, 0.21119892597198486, 0.04911252483725548, -0.04016272351145744, -0.07577122747898102, 0.07580947130918503, -0.006925471592694521, 0.00030352245084941387, -0.08691312372684479, 0.08450157940387726, 0.05037069320678711, 0.028008142486214638, 0.034304097294807434, -0.13268624246120453, 0.026460783556103706, 0.06791624426841736, -0.08346489816904068, 0.05314726382493973, -0.00827270932495594, 0.014943772926926613, 0.09145769476890564, 0.08380238711833954, -0.04194603115320206, 0.047757238149642944, -0.049107857048511505, -0.10687997192144394, 0.1626446396112442, -0.12730056047439575, -0.15060579776763916, -0.10321406275033951, -0.01648164726793766, -0.01866433583199978, 0.016757896170020103, 0.06109656020998955, -0.09781042486429214, -0.011814680881798267, -0.07017850875854492, -0.05917070060968399, -0.018703868612647057, -0.037045110017061234, -0.047901544719934464, 0.022220997139811516, -0.01865779608488083, -0.11408132314682007, -0.004271718207746744, -0.0224120132625103, -0.09228182584047318, -0.009774915874004364, -0.11991257965564728, 0.049673374742269516, 0.23364503681659698, 0.010305533185601234, 0.03264109790325165, -0.03214966878294945, 0.2796165347099304, -0.08407680690288544, 0.0843309611082077, 0.04967362433671951, 0.06564691662788391, 0.10281211137771606, 0.21172210574150085, 0.029284749180078506, -0.0440879762172699, 0.03647983446717262, 0.03470325097441673, -0.03749510645866394, -0.243143692612648, -0.040083643049001694, -0.052675191313028336, -0.028687868267297745, 0.051784712821245193, 0.03353697806596756, 0.1306467354297638, 0.06717037409543991, -0.0422360822558403, 0.06617703288793564, 0.10269713401794434, 0.02003108523786068, 0.08198057860136032, -0.0058675711043179035, 0.07883022725582123, -0.03731709346175194, -0.01486183237284422, 0.10978377610445023, 0.10419128090143204, 0.16103176772594452, 0.010937531478703022, 0.15067441761493683, 0.1112927794456482, 0.006839378271251917, 0.013128222897648811, -0.007869608700275421, -0.00025017684674821794, 0.04408549144864082, -0.06978300213813782, -0.11033109575510025, -0.014468158595263958, 0.07334227114915848, 0.09571652114391327, -0.0231992918998003, -0.0345643125474453, 0.11618636548519135, 0.07606586068868637, 0.16271987557411194, 0.05682290345430374, -0.13399608433246613, -0.056559138000011444, 0.022824153304100037, 0.04640438035130501, -0.055230993777513504, 0.013231870718300343, 0.023846711963415146, -0.14057962596416473, -0.03843562677502632, -0.013803677633404732, 0.11660929024219513, -0.02909541130065918, 0.052943889051675797, 0.06772886961698532, 0.018081070855259895, -0.028867598623037338, 0.09638358652591705, -0.24979791045188904, 0.18463103473186493, 0.020593935623764992, 0.05571683123707771, -0.0838722214102745, 0.03873828053474426, -0.01735583133995533, 0.10334412008523941, 0.19675830006599426, 0.03482455387711525, -0.04215993732213974, -0.03624257445335388, -0.09884089231491089, 0.009226319380104542, 0.06834064424037933, -0.0771498829126358, 0.022476106882095337, -0.04436557739973068, 0.0014484249986708164, 0.005493611097335815, 0.03476190194487572, -0.1115102544426918, -0.19564440846443176, 0.06457559019327164, -0.044257357716560364, -0.018693307414650917, -0.014931651763617992, -0.02017170563340187, 0.04680619761347771, 0.16287724673748016, -0.2050027847290039, -0.08431097120046616, -0.1262858659029007, -0.07916339486837387, -0.004464285913854837, -0.09799428284168243, -0.008372731506824493, -0.0722484439611435, 0.08340366929769516, -0.008741911500692368, -0.06056767329573631, 0.05917186290025711, -0.03616238012909889, -0.13527323305606842, -0.06703482568264008, 0.04509307071566582, 0.075018011033535, 0.08758682012557983, 0.06699653714895248, 0.008798204362392426, -0.06570293009281158, -0.12170294672250748, -0.03465257212519646, 0.023809099569916725, 0.04123701527714729, 0.11434684693813324, -0.02163289487361908, -0.06862325966358185, -0.11351669579744339, 0.020559171214699745, 0.09831172227859497, 0.07664424180984497, -0.1023276224732399, 0.11281090974807739, 0.12944595515727997, -0.09304586052894592, -0.12987324595451355, -0.031701069325208664, 0.051298391073942184, -0.03132685646414757, -0.020122036337852478, -0.1354862004518509, 0.04732067510485649, 0.04433053731918335, -0.03450503945350647, -0.1115797832608223, -0.31290191411972046, -0.09997496008872986, 0.0548371747136116, 0.07583843171596527, -0.030962159857153893, -0.06190893054008484, -0.07843638956546783, 0.028330495581030846, -0.12743040919303894, 0.12319747358560562, -0.11811014264822006, 0.07045365869998932, -0.005550139583647251, -0.0048124948516488075, 0.02441062219440937, -0.03788302093744278, 0.11362791061401367, 0.09638708829879761, 0.04585449397563934, -0.05655462294816971, -0.019257470965385437, 0.05375050753355026, -0.02837328612804413, 0.04277866706252098, -0.014227823354303837, 0.061693225055933, -0.1474677473306656, 0.009227452799677849, -0.07357960939407349, 0.030110370367765427, -0.12293501943349838, -0.10214134305715561, -0.07473631203174591, 0.07944361120462418, 0.1506512314081192, 0.00566864712163806, -0.004847100004553795, -0.07516075670719147, 0.07296141237020493, 0.2069791853427887, 0.09134174883365631, 0.06745925545692444, -0.1805802583694458, -0.0583357997238636, 0.01002995204180479, 0.05065010115504265, -0.12573005259037018, 0.04410303384065628, 0.10148932784795761, -0.007633722387254238, 0.18674664199352264, 0.0587647520005703, -0.08172594010829926, -0.010245240293443203, 0.03611823916435242, -0.08521471917629242, -0.19370919466018677, -0.030111849308013916, -0.0690155178308487, -0.10809439420700073, -0.10643486678600311, 0.12116872519254684, -0.004098380450159311, 0.019498342648148537, 0.011884380131959915, 0.029882263392210007, -0.03501718118786812, 0.10229374468326569, 0.04520697146654129, 0.04528949782252312, -0.0550345815718174, 0.03445076197385788, 0.1534121185541153, -0.06197422370314598, 0.04785368591547012, 0.030592331662774086, -0.06711994111537933, -0.081169493496418, 0.0987902358174324, 0.12404023855924606, -0.03617674112319946, -0.025219032540917397, -0.04051981493830681, -0.09682697057723999, 0.08400101959705353, -0.026988506317138672, 0.00987378228455782, 0.07533054798841476, -0.03529617562890053, -0.05484338477253914, -0.020553532987833023, 0.1293090432882309, -0.03263740614056587, -0.0232030488550663, -0.027536718174815178, 0.05654698982834816, 0.008278937079012394, 0.08201028406620026, -0.009309669025242329, -0.06984657049179077, -0.08267658948898315, -0.011075827293097973, -0.1170220747590065, 0.08856882154941559, -0.0030727162957191467, 0.04038706421852112, -0.0437237024307251, -0.001182075939141214, -0.00116148020606488, 0.013092981651425362, -0.05310497805476189, 0.00860286783427, 0.019195104017853737, 0.10465024411678314, -0.1873524785041809, 0.007177765015512705, 0.055095650255680084, -0.03473668918013573, 0.05337855964899063, -0.02253061532974243, -0.07510112226009369, -0.012842219322919846, -0.11989881843328476, 0.040152229368686676, -0.08881579339504242, 0.04525965079665184, 0.05537446215748787, -0.06290785223245621, -0.022106008604168892, -0.03474185988306999, -0.02701171301305294, 0.022708280012011528, 0.07061810046434402, -0.07640639692544937, 0.09860552847385406, 0.000411144777899608, -0.030010167509317398, -0.09999843686819077, 0.1179259866476059, -0.013303830288350582, -0.0084851598367095, 0.11461123824119568, -0.050848085433244705, 0.08283322304487228, -0.13663144409656525, -0.044419415295124054, 0.09025666862726212, 0.026604635640978813, -0.01021441351622343, -0.12638893723487854, 0.010472171939909458, -0.029222849756479263, 0.0853847861289978, 0.038999252021312714, 0.1412886679172516, 0.02266586199402809, -0.020834287628531456, 0.043121568858623505, -0.0008563927840441465, 0.04894004389643669, -0.01075675617903471, 0.0007919223280623555, 0.09971640259027481, -0.02740265615284443, -0.02625136449933052, 0.07770286500453949, 0.1695437729358673, 0.09196523576974869, 0.07684428244829178, -0.0012062476016581059, 0.0734148845076561, 0.026183675974607468, -0.13985346257686615, 0.041006650775671005, 0.009185153990983963, 0.04089029133319855, -0.048833880573511124, -0.028854455798864365, 0.10142822563648224, -0.21175171434879303, 0.1022108644247055, 0.00034144235542044044, -0.097452312707901, -0.11488433182239532, -0.19780020415782928, -0.0535048171877861, -0.055696673691272736, -0.02528921701014042, -0.12139829248189926, 0.059574611485004425, -0.01813952811062336, 0.045869555324316025, 0.017078015953302383, 0.09441705048084259, -0.11862299591302872, 0.002741418546065688, 0.049477458000183105, -0.013524496927857399, 0.07529468834400177, -0.09421630948781967, 0.03410753980278969, 0.061899587512016296, 0.04575195908546448, 0.010022942908108234, 0.06263845413923264, 0.01586266979575157, -0.03173699229955673, -0.03408173471689224, -0.041560977697372437, 0.007651838473975658, -0.005675551947206259, -0.060738272964954376, 0.07211002707481384, 0.08508170396089554, -0.07109487801790237, 0.021779797971248627, 0.19823716580867767, -0.04792379215359688, -0.0999196395277977, -0.15067118406295776, 0.12704281508922577, 0.000418805459048599, 0.037737634032964706, 0.06807749718427658, -0.05708884075284004, 0.007119669113308191, 0.20892542600631714, 0.17737892270088196, -0.11018868535757065, 0.03839632868766785, 0.027820149436593056, 0.019633227959275246, 0.05691515654325485, 0.07275526970624924, 0.04275006428360939, 0.14689692854881287, -0.06367819756269455, 0.09517005831003189, 0.01625845581293106, -0.043256793171167374, -0.07594417035579681, 0.07980702072381973, 0.00748702185228467, -0.0280004795640707, -0.031229903921484947, 0.13730938732624054, -0.09183439612388611, -0.10159889608621597, -0.060496147722005844, -0.01874231919646263, -0.11164520680904388, -0.06739147752523422, 0.032175902277231216, 0.021403446793556213, 0.044277384877204895, 0.016010040417313576, -0.07234548032283783, 0.1473512500524521, 0.0101442476734519, -0.1072845607995987, -0.03450406342744827, 0.043832384049892426, -0.0898384377360344, 0.21489384770393372, 0.08353913575410843, -0.002984199207276106, 0.11546657234430313, -0.004266394767910242, -0.07862483710050583, 0.044216498732566833, 0.05919744446873665, 0.06216570362448692, 0.01742767170071602, 0.01656421832740307, 0.007208341732621193, -0.004783266689628363, 0.0920640379190445, -0.10984474420547485, 0.09420605003833771, 0.06310302764177322, -0.0068140653893351555, -0.10424676537513733, 0.03350368142127991, -0.07275696843862534, 0.12799793481826782, 0.22475957870483398, -0.010784037411212921, 0.024149516597390175, -0.007580132689327002, 0.0006793776410631835, -0.026562843471765518, 0.07176683843135834, -0.038639575242996216, -0.04756297543644905, 0.0036652577109634876, 0.010717730037868023, 0.06019783020019531, -0.19759230315685272, -0.1309494823217392, -0.0201282799243927, -0.018931251019239426, -0.0029636649414896965, 0.13863074779510498, 0.10025011748075485, 0.021822934970259666, -0.04126439616084099, -0.05597918853163719, -0.06725890189409256, 0.14963535964488983, -0.0780007466673851, -0.022405343130230904 ]
null
null
transformers
# t5-weighter_cnndm-en ## Model description This model is a *Classifier* model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?). It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is. ## How to use ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-weighter_cnndm-en") model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-weighter_cnndm-en") ``` You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): `text_input = "{ANSWER} </s> {QUESTION} </s> {CONTEXT}"` ## Training data The model was trained on synthetic data as described in [Questeval: Summarization asks for fact-based evaluation](https://arxiv.org/abs/2103.12693). ### Citation info ```bibtex @article{scialom2021questeval, title={Questeval: Summarization asks for fact-based evaluation}, author={Scialom, Thomas and Dray, Paul-Alexis and Gallinari, Patrick and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo and Wang, Alex}, journal={arXiv preprint arXiv:2103.12693}, year={2021} } ```
{"language": "en", "license": "mit", "tags": ["qa", "classification", "question", "answering", "SQuAD", "metric", "nlg", "t5-small"], "datasets": ["squad", "cnndm"], "widget": [{"text": "a Buckingham Palace guard </s> Who felt on a manhole? </s> This is the embarrassing moment a Buckingham Palace guard slipped and fell on a manhole cover in front of hundreds of shocked tourists as he took up position in his sentry box. [...] The Guard comprises two detachments, one each for Buckingham Palace and St James\u2019s Palace, under the command of the Captain of The Queen\u2019s Guard."}]}
text2text-generation
ThomasNLG/t5-weighter_cnndm-en
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "qa", "classification", "question", "answering", "SQuAD", "metric", "nlg", "t5-small", "en", "dataset:squad", "dataset:cnndm", "arxiv:2103.12693", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2103.12693" ]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #qa #classification #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad #dataset-cnndm #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-weighter_cnndm-en ## Model description This model is a *Classifier* model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?). It is actually a component of QuestEval metric but can be used independently as it is. ## How to use You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model): 'text_input = "{ANSWER} </s> {QUESTION} </s> {CONTEXT}"' ## Training data The model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation. info
[ "# t5-weighter_cnndm-en", "## Model description\nThis model is a *Classifier* model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?).\nIt is actually a component of QuestEval metric but can be used independently as it is.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {QUESTION} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation.\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #classification #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad #dataset-cnndm #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-weighter_cnndm-en", "## Model description\nThis model is a *Classifier* model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?).\nIt is actually a component of QuestEval metric but can be used independently as it is.", "## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {QUESTION} </s> {CONTEXT}\"'", "## Training data\nThe model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation.\n\ninfo" ]
[ 104, 11, 71, 61, 31 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #qa #classification #question #answering #SQuAD #metric #nlg #t5-small #en #dataset-squad #dataset-cnndm #arxiv-2103.12693 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-weighter_cnndm-en## Model description\nThis model is a *Classifier* model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?).\nIt is actually a component of QuestEval metric but can be used independently as it is.## How to use\n\n\nYou can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):\n\n'text_input = \"{ANSWER} </s> {QUESTION} </s> {CONTEXT}\"'## Training data\nThe model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation.\n\ninfo" ]
[ -0.060154255479574203, 0.06707889586687088, -0.004300910513848066, 0.07260017096996307, 0.07985035330057144, 0.016537008807063103, 0.10753308981657028, 0.09016841650009155, -0.053606413304805756, 0.03754522651433945, 0.06714001297950745, 0.05697963759303093, 0.0655742734670639, 0.06368913501501083, -0.04336690530180931, -0.17749345302581787, 0.0008170171058736742, 0.015761179849505424, 0.03692755103111267, 0.15016469359397888, 0.1026432067155838, -0.0943136215209961, 0.06827960163354874, 0.05121628940105438, -0.1418873369693756, -0.014517407864332199, 0.03007279708981514, -0.07144767045974731, 0.07765422016382217, 0.08522134274244308, 0.05852828547358513, 0.04913469776511192, 0.028829393908381462, -0.1873292475938797, 0.02483390085399151, 0.03206212818622589, 0.02313637174665928, 0.07978133857250214, 0.04102763533592224, -0.0020706900395452976, 0.06312219798564911, -0.027567826211452484, 0.07118389755487442, 0.05501139163970947, -0.11360692977905273, -0.06893833726644516, -0.010833275504410267, 0.07643983513116837, 0.118675597012043, 0.11957571655511856, -0.05544383451342583, 0.10908009856939316, -0.10409637540578842, 0.08146660774946213, 0.006706110667437315, -0.15395991504192352, -0.05464785546064377, 0.1481749713420868, 0.003401281079277396, 0.051516782492399216, -0.0678018257021904, 0.012698981910943985, 0.05098727345466614, 0.01851823553442955, 0.08320295065641403, -0.03339766710996628, -0.013140195049345493, 0.006521292962133884, -0.12783244252204895, -0.04827816039323807, 0.2654021382331848, 0.028893424198031425, -0.03579834848642349, -0.06707102060317993, -0.0015978262526914477, 0.061946433037519455, 0.037359848618507385, -0.1281118392944336, -0.013412078842520714, 0.037361759692430496, 0.023997239768505096, -0.044865626841783524, -0.08847565948963165, -0.08025046437978745, -0.07151399552822113, 0.015718620270490646, -0.03012155182659626, 0.04322010278701782, -0.1740719974040985, 0.13413091003894806, -0.146795392036438, -0.0969209298491478, -0.03578219190239906, -0.03478153049945831, -0.11245149374008179, -0.08844874799251556, -0.044311489909887314, -0.10288487374782562, 0.0035614732187241316, -0.024587878957390785, -0.08142639696598053, 0.04528762027621269, -0.033496253192424774, 0.05177472531795502, 0.13605819642543793, 0.09518387168645859, -0.09347037971019745, -0.04806596040725708, -0.012558631598949432, 0.04268905892968178, -0.0335436686873436, -0.024584852159023285, -0.06885544955730438, -0.005629885010421276, 0.04968370124697685, 0.03051246516406536, 0.010481842793524265, 0.0887913852930069, -0.05633414536714554, -0.04551445320248604, -0.09315650165081024, -0.0892924964427948, -0.033273134380578995, 0.006142071448266506, -0.11941739916801453, 0.06805568933486938, 0.05505216121673584, 0.0008261810289695859, -0.07776220887899399, 0.0016138168284669518, -0.10233041644096375, -0.02112923376262188, -0.06004589796066284, -0.08063782006502151, 0.02837216854095459, -0.02006114087998867, -0.02359672077000141, -0.07945407927036285, -0.16290320456027985, -0.031248684972524643, 0.06062490865588188, -0.05443563312292099, -0.010152327828109264, -0.09476479887962341, -0.038672227412462234, -0.00389124290086329, 0.0054948474280536175, 0.02067151851952076, -0.05149007588624954, 0.02782416343688965, -0.01064366940408945, 0.047309789806604385, 0.021711627021431923, 0.06016504392027855, -0.12075579166412354, 0.04493512958288193, -0.0547776035964489, 0.17865987122058868, -0.018900008872151375, -0.03360994905233383, -0.12338443100452423, -0.08841577917337418, -0.019728295505046844, -0.010308101773262024, 0.0331980437040329, 0.13640238344669342, -0.1653672158718109, -0.004611286334693432, 0.16971786320209503, -0.10001488775014877, -0.18598869442939758, 0.09539646655321121, -0.08101493865251541, 0.15244993567466736, 0.09558192640542984, 0.05013144016265869, 0.15572525560855865, -0.037747565656900406, 0.020733043551445007, 0.08810418844223022, -0.03409641608595848, 0.12641799449920654, 0.0689522922039032, 0.021567149087786674, -0.15545235574245453, 0.021165180951356888, -0.06094431132078171, 0.004933414980769157, -0.054115179926157, -0.08347205072641373, -0.018432093784213066, 0.023557279258966446, 0.07529182732105255, 0.004520403686910868, -0.017092032358050346, 0.009667542763054371, -0.09180125594139099, 0.053544219583272934, 0.05923818051815033, -0.006722320802509785, -0.04123825952410698, -0.09279787540435791, 0.059404004365205765, -0.1031719520688057, 0.008775978349149227, -0.20584341883659363, -0.05573701485991478, -0.008246807381510735, 0.02055968903005123, 0.0418601892888546, 0.17192666232585907, -0.015556545928120613, 0.03912944719195366, -0.018438279628753662, 0.007332836277782917, -0.01878400705754757, 0.02243169955909252, -0.052275050431489944, -0.17454180121421814, 0.005174051970243454, -0.05943674594163895, 0.18042227625846863, -0.17147861421108246, 0.04179390147328377, 0.1022702157497406, 0.009251034818589687, 0.030304718762636185, 0.025673935189843178, 0.025369899347424507, -0.02084393985569477, -0.04411254823207855, -0.009868561290204525, 0.044720303267240524, 0.05475243180990219, -0.11758970469236374, 0.003638720139861107, -0.13728414475917816, -0.10125552862882614, 0.06775256246328354, -0.009496924467384815, -0.13178765773773193, -0.1736566573381424, -0.04156068339943886, -0.028192594647407532, -0.0845908373594284, -0.04788399860262871, 0.26291462779045105, 0.05395170673727989, 0.08011166751384735, -0.09273907542228699, -0.05046535283327103, 0.008619911037385464, -0.08852250128984451, 0.010540634393692017, 0.04589472711086273, 0.05567466467618942, -0.21727491915225983, 0.05066339671611786, 0.06196356564760208, -0.024585921317338943, 0.18637685477733612, 0.02643420174717903, -0.04247523099184036, -0.07405997812747955, 0.0162573903799057, -0.04502463340759277, 0.06964508444070816, -0.19309255480766296, 0.02470376156270504, 0.041566647589206696, 0.04194863140583038, 0.028562063351273537, -0.13474608957767487, 0.03877229243516922, 0.06543010473251343, -0.029142623767256737, -0.11621303856372833, -0.010259633883833885, 0.027123328298330307, 0.11159180849790573, 0.053095944225788116, 0.0385248176753521, 0.047872286289930344, -0.05511253699660301, -0.15146945416927338, 0.19637757539749146, -0.06541509926319122, -0.2091377079486847, -0.08779232949018478, 0.06310853362083435, -0.05747773125767708, 0.010728145018219948, 0.028113264590501785, -0.043800193816423416, -0.015039857476949692, -0.06553882360458374, 0.06862058490514755, -0.021638227626681328, -0.0713035985827446, -0.08092276006937027, 0.046338606625795364, -0.006165558006614447, -0.09043263643980026, -0.007955719716846943, -0.011950046755373478, -0.029476989060640335, 0.028069447726011276, -0.07754306495189667, 0.058067288249731064, 0.18882803618907928, -0.05748209357261658, 0.02262749895453453, -0.06395947188138962, 0.21113280951976776, -0.048728976398706436, 0.07093966007232666, 0.14243276417255402, 0.029554590582847595, 0.057956721633672714, 0.12907123565673828, 0.02103433571755886, -0.04849716275930405, 0.07247021049261093, 0.034628644585609436, -0.06529523432254791, -0.23717400431632996, -0.08522655814886093, -0.0499207079410553, -0.05689976364374161, 0.059153828769922256, -0.031116683036088943, 0.09443950653076172, 0.12566398084163666, -0.010695134289562702, 0.024070927873253822, 0.043476350605487823, 0.0609060600399971, 0.13531382381916046, -0.02567126229405403, 0.11358697712421417, 0.025942103937268257, -0.023643221706151962, 0.04870948567986488, 0.060597240924835205, 0.15793399512767792, -0.07188114523887634, -0.021946197375655174, 0.1077292412519455, 0.03367958962917328, 0.0002135387621819973, 0.04061436653137207, -0.012414982542395592, 0.015417704358696938, -0.07007387280464172, -0.07279329001903534, -0.08894293010234833, 0.07226493209600449, 0.015276074409484863, 0.10817412286996841, -0.08806122094392776, 0.1241663247346878, 0.07524329423904419, 0.11395218223333359, 0.06002353876829147, -0.2585241496562958, -0.12470287829637527, 0.02381223440170288, 0.0736432895064354, -0.08401230722665787, 0.03955180570483208, 0.10903316736221313, -0.12274791300296783, -0.011082058772444725, -0.02309267409145832, 0.12457307428121567, 0.0005270204273983836, 0.01581314019858837, 0.0122829033061862, 0.055268172174692154, -0.0343240350484848, 0.14373788237571716, -0.2033422589302063, 0.18403968214988708, 0.021985644474625587, 0.02090241201221943, -0.0853724554181099, 0.030177943408489227, -0.011018873192369938, 0.19835570454597473, 0.1497597098350525, 0.01586952991783619, 0.026413962244987488, -0.12718196213245392, -0.0020055745262652636, 0.04374977573752403, 0.03795937821269035, -0.06404054909944534, 0.05999879539012909, -0.027821239084005356, 0.071253202855587, 0.026988718658685684, -0.0027540407609194517, -0.08866025507450104, -0.10960366576910019, 0.0384543351829052, -0.0018649043049663305, 0.022632261738181114, -0.04340852051973343, -0.05764548480510712, 0.09738428145647049, 0.16036421060562134, -0.07499545812606812, -0.11907762289047241, -0.13264939188957214, 0.08605026453733444, 0.03447279706597328, -0.07263091951608658, -0.05465425178408623, -0.03519781678915024, 0.17707999050617218, 0.01744232326745987, -0.0435357503592968, 0.08822774142026901, -0.0798564925789833, -0.06275833398103714, -0.07841794937849045, 0.0823015421628952, 0.07770112156867981, 0.06441815197467804, 0.07223768532276154, -0.02681889757514, -0.009965481236577034, -0.1275215744972229, -0.034572944045066833, 0.10701998323202133, 0.0002696781884878874, 0.07718104869127274, -0.01397491991519928, -0.03228408098220825, -0.10273532569408417, 0.0393022745847702, 0.15550047159194946, 0.01753762550652027, -0.11024010181427002, 0.03549284115433693, 0.15526050329208374, -0.09255682677030563, -0.19411855936050415, 0.12400223314762115, 0.08590786159038544, 0.009327314794063568, -0.010434216819703579, -0.09562622755765915, 0.13178123533725739, 0.014677722007036209, 0.027382152155041695, -0.09473848342895508, -0.2631746828556061, -0.056337885558605194, 0.05727251246571541, 0.04294053465127945, -0.009364103898406029, -0.07098320126533508, -0.03809288889169693, 0.028656313195824623, -0.07287099212408066, 0.1480749547481537, -0.15078359842300415, 0.04258314520120621, 0.021308906376361847, 0.08548185974359512, 0.04847557842731476, -0.03901560232043266, 0.11492782086133957, 0.06585854291915894, 0.0656304806470871, -0.048282869160175323, -0.05830071493983269, 0.11668814718723297, -0.052980195730924606, 0.16186347603797913, 0.03436950221657753, 0.12900418043136597, -0.10440473258495331, -0.052336275577545166, -0.08128147572278976, 0.05742998793721199, -0.05969934165477753, -0.14397020637989044, -0.047907374799251556, 0.0562124140560627, 0.11263352632522583, -0.06825942546129227, -0.015020250342786312, -0.09557179361581802, 0.08496610075235367, 0.1954997479915619, 0.15285702049732208, -0.08154457062482834, -0.11765159666538239, 0.015238268300890923, 0.014108462259173393, 0.1180448830127716, -0.21910910308361053, 0.045995570719242096, 0.11720974743366241, 0.05369734391570091, 0.19453753530979156, 0.06356027722358704, -0.04968715086579323, 0.04670638591051102, 0.0034748325124382973, -0.12069302052259445, -0.10971664637327194, -0.07795698195695877, 0.0979018434882164, -0.13384822010993958, -0.019203247502446175, 0.1261201947927475, -0.09745650738477707, 0.0435643196105957, 0.009373697452247143, 0.03715434670448303, -0.03423333913087845, 0.10768351703882217, 0.011030449531972408, 0.08833987265825272, -0.04124850407242775, 0.05209089443087578, 0.07722900807857513, -0.11990203708410263, 0.04253116995096207, -0.042283881455659866, -0.12050065398216248, -0.07103097438812256, -0.08095777779817581, 0.08043427020311356, -0.04301808774471283, -0.08584800362586975, -0.02523893676698208, -0.12913364171981812, 0.007593919523060322, 0.07674677670001984, 0.020906949415802956, 0.054335691034793854, -0.1202649399638176, -0.035298727452754974, -0.08995940536260605, 0.11082528531551361, 0.05483673885464668, 0.0031773170921951532, -0.08798443526029587, 0.15192410349845886, 0.04741479456424713, 0.08939450234174728, -0.05756157264113426, -0.07095232605934143, -0.08816498517990112, 0.04248072952032089, -0.1424759477376938, 0.08579053729772568, -0.060959719121456146, 0.0331728495657444, -0.014924568124115467, -0.025313084945082664, -0.022565148770809174, 0.026803480461239815, -0.02188173122704029, 0.023860562592744827, 0.03788905590772629, 0.10560562461614609, -0.09863092750310898, -0.01832875795662403, 0.04962049052119255, -0.0450277179479599, 0.06360942870378494, 0.01358714234083891, -0.055552102625370026, 0.03397722169756889, -0.20857283473014832, 0.0549318827688694, 0.018546191975474358, 0.06389513611793518, 0.041294410824775696, -0.15345589816570282, 0.04017363861203194, -0.016952477395534515, -0.04301752522587776, 0.008134261704981327, -0.039123695343732834, -0.08861962705850601, -0.01791674643754959, 0.0026569319888949394, -0.05985747277736664, -0.09784679114818573, 0.08308594673871994, 0.04073449224233627, 0.049798496067523956, 0.11181050539016724, -0.03895892575383186, 0.0970989465713501, -0.15523883700370789, -0.019598064944148064, 0.025890225544571877, 0.05905552953481674, -0.06711257994174957, -0.0959184542298317, 0.05200890824198723, -0.07547885924577713, 0.0951884388923645, 0.07320389151573181, 0.10142967849969864, 0.02365107461810112, -0.007358296774327755, 0.07850003987550735, -0.024117952212691307, 0.07764697074890137, 0.02207578346133232, -0.023393865674734116, 0.001083955867215991, 0.04825558140873909, -0.024737313389778137, -0.0035116998478770256, 0.10268820077180862, 0.02092886157333851, -0.01261487603187561, 0.007338528987020254, 0.1022246778011322, 0.03409547731280327, -0.006469047162681818, 0.06408035755157471, 0.04330401495099068, -0.007737224921584129, -0.03756985440850258, 0.10785816609859467, 0.11631334573030472, -0.13006460666656494, 0.0641375258564949, -0.0831453874707222, -0.12134083360433578, -0.07755334675312042, -0.1317126750946045, -0.051795974373817444, -0.06911994516849518, -0.028507426381111145, -0.17570604383945465, -0.03437354788184166, 0.03671405091881752, 0.03303631395101547, -0.02873377501964569, 0.12260949611663818, -0.06890372931957245, -0.1015913337469101, 0.05931418389081955, 0.01093841902911663, 0.047240402549505234, -0.11415019631385803, 0.06811897456645966, 0.11199519038200378, 0.04784165322780609, 0.030115094035863876, 0.04238708317279816, 0.043579984456300735, -0.03504611924290657, -0.06950315833091736, -0.03999688848853111, -0.012659117579460144, 0.0020180908031761646, -0.048333749175071716, 0.002087476896122098, 0.03586519509553909, -0.03894008323550224, -0.02681620605289936, 0.23467852175235748, -0.07420871406793594, -0.0490628257393837, -0.19852286577224731, 0.23976746201515198, -0.027810117229819298, 0.05030771717429161, 0.06158969923853874, -0.1025344580411911, 0.004138784948736429, 0.12068738788366318, 0.17302142083644867, -0.04875132068991661, -0.010850978083908558, 0.0031645235139876604, 0.019970592111349106, -0.04258105903863907, 0.04311252012848854, 0.02516983449459076, 0.13873039186000824, -0.05379408970475197, 0.14193226397037506, -0.054265547543764114, -0.007507030386477709, 0.11461185663938522, 0.018859775736927986, 0.050681713968515396, 0.018285490572452545, -0.06738081574440002, 0.13517794013023376, -0.07284368574619293, -0.10558421164751053, -0.03798135742545128, -0.06291170418262482, -0.09266185760498047, -0.02043318748474121, -0.047151725739240646, 0.007031511981040239, 0.08414039760828018, -0.032464832067489624, -0.005067181307822466, 0.11040530353784561, 0.022850900888442993, -0.08309606462717056, -0.05759286880493164, 0.08723501861095428, 0.040657952427864075, 0.12150583416223526, -0.00023297060397453606, 0.06969082355499268, 0.12789641320705414, 0.029082121327519417, -0.06541574746370316, 0.07098035514354706, 0.06060479208827019, 0.04992957040667534, 0.009792649187147617, 0.02896956354379654, 0.024059917777776718, 0.11487720906734467, 0.10599002242088318, -0.15289311110973358, 0.001291000167839229, -0.10898860543966293, -0.01772281527519226, -0.15390388667583466, 0.05962993577122688, -0.011233371682465076, 0.12303611636161804, 0.21154285967350006, -0.047385625541210175, -0.03940332680940628, -0.06402519345283508, 0.05759719759225845, -0.018587788566946983, 0.03408509120345116, 0.01837719976902008, -0.0813092291355133, 0.04709439352154732, -0.0075527667067945, 0.02134169451892376, -0.28139349818229675, -0.06365589052438736, 0.04259949177503586, -0.018310274928808212, 0.04395733401179314, 0.0864054411649704, 0.05435595288872719, 0.07373959571123123, -0.0577935054898262, -0.1579863429069519, -0.020347481593489647, 0.1577831655740738, -0.08721479028463364, -0.06979820132255554 ]
null
null
ml-agents
# Snowball Fight ☃️, a multi-agent environment for ML-Agents made by Hugging Face ![Snowball Fight 1vs1](http://simoninithomas.com/hf/snowballfight.gif) A multi-agent environment using Unity ML-Agents Toolkit where two agents compete in a 1vs1 snowball fight game. 👉 You can [play it online at this link](https://huggingface.co/spaces/ThomasSimonini/SnowballFight). ⚠️ You need to have some skills in ML-Agents if you want to use it if it's not the case [check the documentation](https://github.com/Unity-Technologies/ml-agents/tree/main/docs) ## The Environment - Two agents compete **in a 1 vs 1 snowball fight game**. - The goal is to **hit the opponent team while avoiding the opponent's snowballs ❄️**. ### Observation Space - Ray-casts: - **10 ray-casts forward** distributed over 100 degrees: detecting opponent. - **10 ray-casts forward** distributed over 100 degrees: detecting walls, shelter and frontier. - **10 ray-casts forward** distributed over 100 degrees: detecting snowballs. - **3 ray-casts backward** distributed over 45 degrees: detecting wall and shelter. - Vector Observations: - **Bool canShoot** (you can only shoot a snowball every 2 seconds). - **Float currentHealth**: normalized [0, 1] - **Vector3 vertical speed** - **Vector3 horizontal speed** - **Vector3 "home" position** ### Action Space (Discrete) - Vector Action space: - **Four branched actions** corresponding to forward, backward, sideways movement, rotation, and snowball shoot. ### Agent Reward Function (dependant): - If the team is **injured**: - 0.1 to the shooter. - If the team is **dead**: - (1 - accumulated time penalty): when a snowball hits the opponent, the accumulated time penalty decreases by (1 / MaxStep) every fixed update and is reset to 0 at the beginning of an episode. - (-1) When a snowball hit our team. ### Addendum - There **is no friendly fire**, which means that an agent can't shoot himself, or in the future, in a 2vs2 game can't shoot a teammate. ## How to use it ### Set-up the environment 1. Clone this project `git clone https://huggingface.co/ThomasSimonini/ML-Agents-SnowballFight-1vs1` 2. Open Unity Hub and create a new 3D Project 3. In the cloned project folder, open `.\ML-Agents-SnowballFight-1vs1\packages` and copy manifest.json and package.lock.json 4. Paste these two files in `Your Unity Project\Packages` => this will install the required packages. 5. Drop the SnowballFight-1vs1 unity package to your Unity Project. ### Watch the trained agents 6. If you want to watch the trained agents, open `Assets\1vs1\Scenes\1vs1_v2_Training.` place the `\ML-Agents-SnowballFight-1vs1\saved_model\SnowballFight1vs1-4999988.onnx` into BlueAgent and PurpleAgent Model. ### Train, the agent 6. If you want to train it again, the scene is `Assets\1vs1\Scenes\1vs1_v2_Training.` ## Training info - SnowballFight1vs1 was trained with 5100000 steps. - The final ELO score was 1766.452. ### Config File `behaviors: SnowballFight1vs1: trainer_type: ppo hyperparameters: batch_size: 2048 buffer_size: 20480 learning_rate: 0.0003 beta: 0.005 epsilon: 0.2 lambd: 0.95 num_epoch: 3 learning_rate_schedule: constant network_settings: normalize: false hidden_units: 512 num_layers: 2 vis_encode_type: simple reward_signals: extrinsic: gamma: 0.99 strength: 1.0 keep_checkpoints: 40 checkpoint_interval: 200000 max_steps: 50000000 time_horizon: 1000 summary_freq: 50000 self_play: save_steps: 50000 team_change: 200000 swap_steps: 2000 window: 10 play_against_latest_model_ratio: 0.5 initial_elo: 1200.0 `
{"license": "apache-2.0", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "ml-agents"], "environment": ["SnowballFight-1vs1"]}
reinforcement-learning
ThomasSimonini/ML-Agents-SnowballFight-1vs1
[ "ml-agents", "onnx", "deep-reinforcement-learning", "reinforcement-learning", "license:apache-2.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #ml-agents #onnx #deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #region-us
# Snowball Fight ️, a multi-agent environment for ML-Agents made by Hugging Face !Snowball Fight 1vs1 A multi-agent environment using Unity ML-Agents Toolkit where two agents compete in a 1vs1 snowball fight game. You can play it online at this link. ️ You need to have some skills in ML-Agents if you want to use it if it's not the case check the documentation ## The Environment - Two agents compete in a 1 vs 1 snowball fight game. - The goal is to hit the opponent team while avoiding the opponent's snowballs ️. ### Observation Space - Ray-casts: - 10 ray-casts forward distributed over 100 degrees: detecting opponent. - 10 ray-casts forward distributed over 100 degrees: detecting walls, shelter and frontier. - 10 ray-casts forward distributed over 100 degrees: detecting snowballs. - 3 ray-casts backward distributed over 45 degrees: detecting wall and shelter. - Vector Observations: - Bool canShoot (you can only shoot a snowball every 2 seconds). - Float currentHealth: normalized [0, 1] - Vector3 vertical speed - Vector3 horizontal speed - Vector3 "home" position ### Action Space (Discrete) - Vector Action space: - Four branched actions corresponding to forward, backward, sideways movement, rotation, and snowball shoot. ### Agent Reward Function (dependant): - If the team is injured: - 0.1 to the shooter. - If the team is dead: - (1 - accumulated time penalty): when a snowball hits the opponent, the accumulated time penalty decreases by (1 / MaxStep) every fixed update and is reset to 0 at the beginning of an episode. - (-1) When a snowball hit our team. ### Addendum - There is no friendly fire, which means that an agent can't shoot himself, or in the future, in a 2vs2 game can't shoot a teammate. ## How to use it ### Set-up the environment 1. Clone this project 'git clone URL 2. Open Unity Hub and create a new 3D Project 3. In the cloned project folder, open '.\ML-Agents-SnowballFight-1vs1\packages' and copy URL and URL 4. Paste these two files in 'Your Unity Project\Packages' => this will install the required packages. 5. Drop the SnowballFight-1vs1 unity package to your Unity Project. ### Watch the trained agents 6. If you want to watch the trained agents, open 'Assets\1vs1\Scenes\1vs1_v2_Training.' place the '\ML-Agents-SnowballFight-1vs1\saved_model\URL' into BlueAgent and PurpleAgent Model. ### Train, the agent 6. If you want to train it again, the scene is 'Assets\1vs1\Scenes\1vs1_v2_Training.' ## Training info - SnowballFight1vs1 was trained with 5100000 steps. - The final ELO score was 1766.452. ### Config File 'behaviors: SnowballFight1vs1: trainer_type: ppo hyperparameters: batch_size: 2048 buffer_size: 20480 learning_rate: 0.0003 beta: 0.005 epsilon: 0.2 lambd: 0.95 num_epoch: 3 learning_rate_schedule: constant network_settings: normalize: false hidden_units: 512 num_layers: 2 vis_encode_type: simple reward_signals: extrinsic: gamma: 0.99 strength: 1.0 keep_checkpoints: 40 checkpoint_interval: 200000 max_steps: 50000000 time_horizon: 1000 summary_freq: 50000 self_play: save_steps: 50000 team_change: 200000 swap_steps: 2000 window: 10 play_against_latest_model_ratio: 0.5 initial_elo: 1200.0 '
[ "# Snowball Fight ️, a multi-agent environment for ML-Agents made by Hugging Face \n!Snowball Fight 1vs1\nA multi-agent environment using Unity ML-Agents Toolkit where two agents compete in a 1vs1 snowball fight game.\n\n You can play it online at this link.\n\n️ You need to have some skills in ML-Agents if you want to use it if it's not the case check the documentation", "## The Environment\n- Two agents compete in a 1 vs 1 snowball fight game.\n- The goal is to hit the opponent team while avoiding the opponent's snowballs ️.", "### Observation Space\n- Ray-casts:\n\t- 10 ray-casts forward distributed over 100 degrees: detecting opponent.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting walls, shelter and frontier.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting snowballs.\n\t- 3 ray-casts backward distributed over 45 degrees: detecting wall and shelter.\n\n- Vector Observations:\n\t- Bool canShoot (you can only shoot a snowball every 2 seconds).\n\t- Float currentHealth: normalized [0, 1]\n\t- Vector3 vertical speed\n\t- Vector3 horizontal speed\n\t- Vector3 \"home\" position", "### Action Space (Discrete) \n- Vector Action space:\n - Four branched actions corresponding to forward, backward, sideways movement, rotation, and snowball shoot.", "### Agent Reward Function (dependant):\n- If the team is injured:\n - 0.1 to the shooter.\n- If the team is dead:\n - (1 - accumulated time penalty): when a snowball hits the\n opponent, the accumulated time penalty decreases by (1 / MaxStep) every fixed update and is reset to 0 at the beginning of an episode.\n - (-1) When a snowball hit our team.", "### Addendum\n- There is no friendly fire, which means that an agent can't shoot himself, or in the future, in a 2vs2 game can't shoot a teammate.", "## How to use it", "### Set-up the environment\n1. Clone this project 'git clone URL\n2. Open Unity Hub and create a new 3D Project\n3. In the cloned project folder, open '.\\ML-Agents-SnowballFight-1vs1\\packages' and copy URL and URL\n4. Paste these two files in 'Your Unity Project\\Packages' => this will install the required packages.\n5. Drop the SnowballFight-1vs1 unity package to your Unity Project.", "### Watch the trained agents\n6. If you want to watch the trained agents, open 'Assets\\1vs1\\Scenes\\1vs1_v2_Training.' place the '\\ML-Agents-SnowballFight-1vs1\\saved_model\\URL' into BlueAgent and PurpleAgent Model.", "### Train, the agent\n6. If you want to train it again, the scene is 'Assets\\1vs1\\Scenes\\1vs1_v2_Training.'", "## Training info\n- SnowballFight1vs1 was trained with 5100000 steps.\n- The final ELO score was 1766.452.", "### Config File\n'behaviors:\n SnowballFight1vs1:\n trainer_type: ppo\n hyperparameters:\n batch_size: 2048\n buffer_size: 20480\n learning_rate: 0.0003\n beta: 0.005\n epsilon: 0.2\n lambd: 0.95\n num_epoch: 3\n learning_rate_schedule: constant\n network_settings:\n normalize: false\n hidden_units: 512\n num_layers: 2\n vis_encode_type: simple\n reward_signals:\n extrinsic:\n gamma: 0.99\n strength: 1.0\n keep_checkpoints: 40\n checkpoint_interval: 200000\n max_steps: 50000000\n time_horizon: 1000\n summary_freq: 50000\n self_play:\n save_steps: 50000\n team_change: 200000\n swap_steps: 2000\n window: 10\n play_against_latest_model_ratio: 0.5\n initial_elo: 1200.0\n'" ]
[ "TAGS\n#ml-agents #onnx #deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #region-us \n", "# Snowball Fight ️, a multi-agent environment for ML-Agents made by Hugging Face \n!Snowball Fight 1vs1\nA multi-agent environment using Unity ML-Agents Toolkit where two agents compete in a 1vs1 snowball fight game.\n\n You can play it online at this link.\n\n️ You need to have some skills in ML-Agents if you want to use it if it's not the case check the documentation", "## The Environment\n- Two agents compete in a 1 vs 1 snowball fight game.\n- The goal is to hit the opponent team while avoiding the opponent's snowballs ️.", "### Observation Space\n- Ray-casts:\n\t- 10 ray-casts forward distributed over 100 degrees: detecting opponent.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting walls, shelter and frontier.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting snowballs.\n\t- 3 ray-casts backward distributed over 45 degrees: detecting wall and shelter.\n\n- Vector Observations:\n\t- Bool canShoot (you can only shoot a snowball every 2 seconds).\n\t- Float currentHealth: normalized [0, 1]\n\t- Vector3 vertical speed\n\t- Vector3 horizontal speed\n\t- Vector3 \"home\" position", "### Action Space (Discrete) \n- Vector Action space:\n - Four branched actions corresponding to forward, backward, sideways movement, rotation, and snowball shoot.", "### Agent Reward Function (dependant):\n- If the team is injured:\n - 0.1 to the shooter.\n- If the team is dead:\n - (1 - accumulated time penalty): when a snowball hits the\n opponent, the accumulated time penalty decreases by (1 / MaxStep) every fixed update and is reset to 0 at the beginning of an episode.\n - (-1) When a snowball hit our team.", "### Addendum\n- There is no friendly fire, which means that an agent can't shoot himself, or in the future, in a 2vs2 game can't shoot a teammate.", "## How to use it", "### Set-up the environment\n1. Clone this project 'git clone URL\n2. Open Unity Hub and create a new 3D Project\n3. In the cloned project folder, open '.\\ML-Agents-SnowballFight-1vs1\\packages' and copy URL and URL\n4. Paste these two files in 'Your Unity Project\\Packages' => this will install the required packages.\n5. Drop the SnowballFight-1vs1 unity package to your Unity Project.", "### Watch the trained agents\n6. If you want to watch the trained agents, open 'Assets\\1vs1\\Scenes\\1vs1_v2_Training.' place the '\\ML-Agents-SnowballFight-1vs1\\saved_model\\URL' into BlueAgent and PurpleAgent Model.", "### Train, the agent\n6. If you want to train it again, the scene is 'Assets\\1vs1\\Scenes\\1vs1_v2_Training.'", "## Training info\n- SnowballFight1vs1 was trained with 5100000 steps.\n- The final ELO score was 1766.452.", "### Config File\n'behaviors:\n SnowballFight1vs1:\n trainer_type: ppo\n hyperparameters:\n batch_size: 2048\n buffer_size: 20480\n learning_rate: 0.0003\n beta: 0.005\n epsilon: 0.2\n lambd: 0.95\n num_epoch: 3\n learning_rate_schedule: constant\n network_settings:\n normalize: false\n hidden_units: 512\n num_layers: 2\n vis_encode_type: simple\n reward_signals:\n extrinsic:\n gamma: 0.99\n strength: 1.0\n keep_checkpoints: 40\n checkpoint_interval: 200000\n max_steps: 50000000\n time_horizon: 1000\n summary_freq: 50000\n self_play:\n save_steps: 50000\n team_change: 200000\n swap_steps: 2000\n window: 10\n play_against_latest_model_ratio: 0.5\n initial_elo: 1200.0\n'" ]
[ 37, 98, 44, 156, 40, 91, 41, 5, 105, 78, 41, 31, 207 ]
[ "passage: TAGS\n#ml-agents #onnx #deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #region-us \n# Snowball Fight ️, a multi-agent environment for ML-Agents made by Hugging Face \n!Snowball Fight 1vs1\nA multi-agent environment using Unity ML-Agents Toolkit where two agents compete in a 1vs1 snowball fight game.\n\n You can play it online at this link.\n\n️ You need to have some skills in ML-Agents if you want to use it if it's not the case check the documentation## The Environment\n- Two agents compete in a 1 vs 1 snowball fight game.\n- The goal is to hit the opponent team while avoiding the opponent's snowballs ️.### Observation Space\n- Ray-casts:\n\t- 10 ray-casts forward distributed over 100 degrees: detecting opponent.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting walls, shelter and frontier.\n\t- 10 ray-casts forward distributed over 100 degrees: detecting snowballs.\n\t- 3 ray-casts backward distributed over 45 degrees: detecting wall and shelter.\n\n- Vector Observations:\n\t- Bool canShoot (you can only shoot a snowball every 2 seconds).\n\t- Float currentHealth: normalized [0, 1]\n\t- Vector3 vertical speed\n\t- Vector3 horizontal speed\n\t- Vector3 \"home\" position### Action Space (Discrete) \n- Vector Action space:\n - Four branched actions corresponding to forward, backward, sideways movement, rotation, and snowball shoot.### Agent Reward Function (dependant):\n- If the team is injured:\n - 0.1 to the shooter.\n- If the team is dead:\n - (1 - accumulated time penalty): when a snowball hits the\n opponent, the accumulated time penalty decreases by (1 / MaxStep) every fixed update and is reset to 0 at the beginning of an episode.\n - (-1) When a snowball hit our team.### Addendum\n- There is no friendly fire, which means that an agent can't shoot himself, or in the future, in a 2vs2 game can't shoot a teammate." ]
[ -0.05417689308524132, -0.011218528263270855, -0.006240031681954861, 0.046996522694826126, 0.05579867586493492, -0.03839392587542534, 0.04485226422548294, 0.06558993458747864, 0.04241692274808884, 0.11185503751039505, 0.05485085770487785, -0.01944967545568943, 0.06758652627468109, 0.04938654229044914, 0.03587145730853081, -0.0976288765668869, 0.013598033227026463, -0.09843138605356216, -0.05902690440416336, 0.0936964750289917, 0.04548577591776848, -0.04898799583315849, 0.02093682438135147, -0.0048947748728096485, 0.04078492522239685, -0.06581094861030579, 0.016850903630256653, -0.07393764704465866, 0.081984743475914, 0.06850555539131165, 0.038887571543455124, -0.04618362337350845, -0.004525839816778898, -0.21292288601398468, -0.001234477385878563, 0.07198197394609451, -0.05240120366215706, -0.002144146477803588, 0.039772190153598785, 0.028779495507478714, 0.09991789609193802, -0.17605476081371307, 0.11200442910194397, 0.040244102478027344, -0.12164671719074249, -0.22455663979053497, -0.061096176505088806, -0.0002776116889435798, 0.09099254757165909, 0.022726884111762047, -0.04315032437443733, 0.09354427456855774, 0.006093192379921675, 0.0383794829249382, 0.13626576960086823, -0.3491537272930145, -0.08186844736337662, 0.04492459073662758, 0.022913793101906776, 0.1518687754869461, -0.1028674989938736, 0.04090502858161926, -0.03275894373655319, 0.04633739963173866, 0.07651737332344055, 0.0279733594506979, 0.2229471355676651, 0.058490101248025894, -0.14610277116298676, -0.03400445356965065, -0.03330979123711586, -0.0035926029086112976, -0.08481744676828384, -0.2171296328306198, 0.014622949063777924, 0.006290842313319445, -0.017962193116545677, -0.07909465581178665, 0.035594113171100616, -0.02052328549325466, -0.10411268472671509, -0.019618067890405655, -0.05746650695800781, -0.00682705407962203, -0.06801202148199081, 0.24884463846683502, -0.035184673964977264, 0.05225486308336258, 0.031900856643915176, 0.07520730793476105, 0.12187205255031586, -0.041546497493982315, -0.08985181152820587, -0.058153972029685974, -0.21296526491641998, -0.02411038428544998, -0.03212679177522659, -0.041812166571617126, 0.04477090761065483, 0.2522633671760559, 0.08401546627283096, 0.06370516121387482, -0.025239359587430954, 0.016836605966091156, 0.028331313282251358, 0.08930683135986328, 0.011107664555311203, -0.040125664323568344, -0.07397390156984329, -0.004306860268115997, 0.055273137986660004, -0.1101883128285408, -0.024839885532855988, 0.04228009283542633, 0.10293290764093399, 0.05602319538593292, 0.09050966799259186, -0.00036636515869759023, -0.013371146284043789, -0.038663532584905624, 0.035002656280994415, -0.10429751873016357, 0.0531158372759819, 0.03430357947945595, 0.04838218167424202, 0.008807847276329994, -0.07487008720636368, 0.0342126227915287, 0.026752930134534836, 0.02575088106095791, -0.05105552822351456, 0.001522490638308227, -0.0038029199931770563, -0.10556872934103012, 0.038437433540821075, -0.06769399344921112, -0.07829395681619644, -0.14291639626026154, 0.10691262036561966, -0.06099465861916542, 0.04190785810351372, -0.07005748152732849, 0.02107180655002594, -0.06794106215238571, -0.05478950962424278, 0.04640025272965431, 0.06548502296209335, 0.006962120532989502, -0.02056022360920906, 0.02205970697104931, -0.12460100650787354, 0.07169265300035477, 0.12889136373996735, -0.01579524204134941, -0.045954830944538116, 0.0498519204556942, -0.16031359136104584, 0.12680979073047638, -0.14363496005535126, -0.017994875088334084, -0.08893555402755737, 0.03261864185333252, 0.08188995718955994, 0.017536962404847145, 0.02092980034649372, 0.17178009450435638, -0.218288391828537, -0.049732692539691925, 0.03268470987677574, -0.1449395716190338, -0.04904818907380104, 0.0802718997001648, -0.01291243638843298, -0.047466643154621124, 0.08484886586666107, 0.10273595154285431, 0.013279573060572147, -0.17547357082366943, 0.04402899369597435, -0.004238456021994352, -0.17157581448554993, 0.161034494638443, 0.12167011946439743, -0.05317629873752594, 0.011719548143446445, -0.021311184391379356, -0.10517879575490952, -0.024096062406897545, -0.019652333110570908, -0.05615381523966789, 0.03593149036169052, 0.021912582218647003, 0.06111948564648628, -0.052108727395534515, -0.061265263706445694, -0.08653935045003891, -0.11773423105478287, -0.05537768825888634, -0.027810316532850266, -0.009190292097628117, 0.07564651221036911, -0.09800858050584793, 0.026258153840899467, -0.0163385309278965, -0.020183617249131203, -0.08743732422590256, -0.1154874637722969, 0.005152586381882429, -0.027476277202367783, 0.06158122047781944, 0.04400382936000824, 0.12421301752328873, 0.0766129195690155, 0.017803795635700226, -0.010078389197587967, -0.02231210470199585, 0.022416073828935623, -0.07360862195491791, -0.17292042076587677, -0.0570983849465847, -0.03236622363328934, 0.07360996305942535, -0.08573100715875626, -0.009818287566304207, 0.15062515437602997, 0.035736653953790665, 0.06510750949382782, -0.06886011362075806, -0.056919340044260025, 0.005700284149497747, 0.02438073232769966, -0.04950346797704697, 0.04234672337770462, 0.01902146451175213, -0.18342021107673645, 0.11975721269845963, -0.046708423644304276, -0.07635939866304398, 0.06154480203986168, 0.07416509091854095, -0.07652787119150162, -0.09978247433900833, -0.006263305898755789, -0.021690694615244865, -0.009139093570411205, -0.0207972414791584, 0.14208722114562988, 0.09254159778356552, 0.00794718973338604, -0.050988033413887024, -0.05219762399792671, 0.01650194451212883, -0.029396673664450645, -0.045545466244220734, 0.01702132262289524, -0.040805067867040634, -0.15562397241592407, 0.04035337641835213, 0.05826061591506004, 0.05911076068878174, 0.09760012477636337, 0.02979036048054695, -0.0524040050804615, -0.10477165132761002, 0.04188048839569092, 0.05862027406692505, 0.05562533065676689, 0.08837764710187912, 0.03512236103415489, -0.0027049751952290535, 0.007719338405877352, -0.0627976804971695, -0.08624234050512314, -0.027774175629019737, 0.07339251041412354, 0.015286242589354515, 0.10846375674009323, 0.015440672636032104, -0.025539251044392586, 0.0919906422495842, 0.07402145117521286, -0.003225829917937517, 0.04625246673822403, -0.0669451579451561, -0.09581664204597473, 0.09365621954202652, -0.08967266231775284, -0.2762274444103241, -0.11419312655925751, -0.051302097737789154, -0.011382069438695908, 0.0004521589435171336, 0.01803390309214592, -0.07666987925767899, -0.032290130853652954, -0.10023882985115051, 0.007924939505755901, -0.02927735261619091, -0.016797637566924095, -0.04419443756341934, 0.0729120522737503, -0.010309092700481415, -0.07583531737327576, 0.004352213814854622, -0.05964665487408638, -0.09857980906963348, 0.03186764568090439, 0.10736776143312454, 0.10105855762958527, 0.08398937433958054, 0.08206522464752197, -0.0009718103101477027, -0.050526563078165054, 0.12166514247655869, -0.07762502133846283, 0.10265117883682251, -0.03711533918976784, -0.0814400315284729, 0.09439118206501007, 0.03420629724860191, 0.04150879383087158, -0.008279221132397652, -0.042798638343811035, 0.009571442380547523, -0.08408258855342865, -0.15042363107204437, -0.05600464344024658, -0.01594797521829605, 0.015886593610048294, 0.09136851876974106, 0.03776346892118454, -0.013461609371006489, -0.013321952894330025, -0.017033783718943596, -0.0867122933268547, 0.11707745492458344, 0.10854478925466537, 0.029368596151471138, 0.02310503087937832, 0.09713907539844513, 0.009869875386357307, 0.04480588808655739, 0.0677095353603363, -0.0034437915310263634, 0.20136329531669617, 0.04980791360139847, -0.011009003967046738, 0.07114392518997192, -0.027020692825317383, 0.01935848779976368, -0.016256242990493774, 0.02246006764471531, 0.016581209376454353, -0.04627654701471329, -0.0873018428683281, -0.01254059374332428, 0.11217033118009567, 0.05447133630514145, -0.07928639650344849, 0.02452121116220951, 0.0264905858784914, 0.08558312058448792, 0.10985392332077026, 0.029441606253385544, 0.00024258614575956017, -0.0077847265638411045, 0.04350683093070984, -0.05880700796842575, -0.03602154552936554, 0.04941302910447121, 0.1228456050157547, -0.14962570369243622, 0.025946568697690964, -0.07746051251888275, 0.036737896502017975, -0.031335461884737015, -0.024063823744654655, 0.06552523374557495, 0.04226280748844147, -0.03460261598229408, -0.0014678597217425704, -0.19242990016937256, -0.0013913796283304691, -0.009905468672513962, 0.02066097967326641, -0.05368329584598541, -0.019147828221321106, -0.018570801243185997, -0.054833248257637024, 0.1458885669708252, 0.058561116456985474, -0.07754367589950562, -0.06639723479747772, 0.0044374605640769005, -0.01229740958660841, 0.1333196610212326, -0.0512070395052433, 0.11812588572502136, 0.0076341102831065655, 0.018167970702052116, -0.05450423061847687, 0.03932357206940651, 0.0025986353866755962, -0.13530191779136658, -0.014862515032291412, -0.10876461863517761, 0.0036823514383286238, -0.0670815110206604, -0.02353433519601822, -0.19373223185539246, 0.04807722195982933, -0.21061015129089355, -0.07519492506980896, -0.08306942135095596, -0.029055489227175713, 0.05678500607609749, -0.03473504260182381, 0.14944496750831604, 0.006765380501747131, 0.08870775997638702, -0.1000133603811264, -0.052013788372278214, 0.04464968666434288, -0.03366377577185631, -0.14860445261001587, -0.02961716242134571, 0.17187845706939697, 0.11776687949895859, 0.04304714873433113, -0.026465680450201035, 0.16056224703788757, -0.007281836587935686, -0.07826288789510727, 0.12125340849161148, 0.0376143679022789, -0.12922310829162598, 0.021297402679920197, 0.07924217730760574, -0.0583467036485672, -0.12856286764144897, -0.001513084047473967, 0.14042101800441742, 0.24000008404254913, -0.11271311342716217, 0.22051022946834564, -0.0254630446434021, -0.04344283789396286, -0.18022289872169495, -0.10844743251800537, 0.0256982259452343, -0.03375217691063881, 0.11608690023422241, -0.11515254527330399, 0.053414236754179, 0.059730853885412216, 0.0034191315062344074, 0.1366361826658249, -0.19346369802951813, -0.07280360907316208, -0.025103388354182243, 0.061535775661468506, -0.05297786369919777, -0.09618636965751648, -0.07747708261013031, 0.06789053976535797, -0.055128391832113266, 0.0635523870587349, -0.023758891969919205, 0.09273772686719894, 0.011410967446863651, -0.09473255276679993, 0.05765131115913391, -0.04506376385688782, 0.12354946881532669, 0.01603899896144867, 0.05214549973607063, -0.06738640367984772, -0.13491442799568176, 0.050155069679021835, -0.020994268357753754, -0.07603271305561066, -0.07951813191175461, -0.037661004811525345, -0.0400073416531086, -0.01792881451547146, -0.044343482702970505, 0.001999516738578677, -0.0666113868355751, -0.022805675864219666, -0.07435591518878937, 0.12354184687137604, 0.045113224536180496, -0.00482229283079505, 0.14868932962417603, -0.07676132768392563, 0.06162901595234871, 0.1401921510696411, 0.04118415340781212, 0.08142119646072388, -0.16207610070705414, -0.03960680589079857, -0.028138790279626846, 0.08348596096038818, -0.07858118414878845, 0.024701779708266258, 0.0436750203371048, 0.046847134828567505, 0.04239653795957565, 0.023081382736563683, -0.11324969679117203, -0.004471474327147007, 0.04123615473508835, -0.05152014642953873, -0.1044183149933815, 0.003316529793664813, 0.036455437541007996, -0.0039249747060239315, 0.009205582551658154, 0.1352819800376892, -0.025708498433232307, -0.003271062858402729, -0.0059438603930175304, 0.08527859300374985, -0.009437779895961285, -0.01706094853579998, 0.04904798045754433, 0.04591815546154976, -0.07395946979522705, 0.07649645209312439, 0.009027902036905289, 0.005030666012316942, 0.07132308185100555, 0.08403695374727249, -0.08276264369487762, -0.030538031831383705, -0.01894470676779747, 0.06810884922742844, 0.002303948625922203, 0.010940201580524445, 0.06401755660772324, -0.1514849066734314, 0.08351990580558777, 0.06971122324466705, 0.012465239502489567, 0.03972138464450836, -0.012594128958880901, 0.023789143189787865, 0.07927671074867249, 0.09400589019060135, -0.05279875174164772, -0.04391017183661461, -0.02445613220334053, 0.085035540163517, 0.04579480364918709, -0.07054926455020905, -0.009722437709569931, -0.07179427891969681, -0.15049833059310913, 0.0174988005310297, 0.008572850376367569, -0.02486511878669262, -0.049809057265520096, 0.015832841396331787, 0.01004941388964653, 0.018316959962248802, 0.04552070051431656, 0.014479074627161026, 0.014444456435739994, -0.0240180641412735, -0.03233605995774269, 0.024661120027303696, -0.15000447630882263, -0.04110492020845413, 0.023476190865039825, -0.1271904855966568, 0.06030833721160889, 0.002359971171244979, -0.026235029101371765, -0.010658135637640953, -0.07161299884319305, 0.08638510853052139, -0.06270233541727066, -0.03951270133256912, -0.0009998608147725463, -0.14425882697105408, -0.0330042690038681, -0.053094275295734406, -0.07606599479913712, 0.051897745579481125, 0.05986332148313522, -0.04782024025917053, 0.09960069507360458, 0.068354532122612, -0.09672077745199203, -0.09423425793647766, 0.024859098717570305, 0.07124990969896317, 0.0373975895345211, 0.13118876516819, -0.042225755751132965, 0.08063449710607529, -0.1256110668182373, -0.07365764677524567, 0.040835049003362656, 0.04553781449794769, -0.04907817021012306, -0.05103122442960739, 0.04378454014658928, -0.003356296569108963, 0.05434437096118927, -0.019642198458313942, -0.05262899026274681, 0.055989377200603485, 0.05523674935102463, -0.11462326347827911, 0.08533504605293274, 0.045309074223041534, -0.003924231976270676, -0.02046511135995388, -0.013253402896225452, -0.06321653723716736, -0.040052711963653564, -0.10198595374822617, 0.05044107511639595, 0.10724937170743942, 0.09541444480419159, 0.050810541957616806, 0.04521334543824196, -0.04443720728158951, -0.06997960060834885, 0.18762178719043732, -0.014470623806118965, -0.014495034702122211, -0.029915867373347282, 0.1299617439508438, 0.12914159893989563, -0.17976708710193634, 0.10394016653299332, -0.004444768186658621, -0.00002640658749442082, 0.019491754472255707, -0.20596058666706085, -0.029981857165694237, -0.09732282161712646, 0.040736790746450424, -0.026836279779672623, 0.090464748442173, 0.03038044087588787, 0.03988084942102432, 0.05255381390452385, 0.07134004682302475, -0.026493316516280174, -0.057892054319381714, 0.08260143548250198, -0.005650086794048548, 0.04429057240486145, 0.15383201837539673, -0.01542997919023037, 0.0015029688365757465, -0.001932727638632059, 0.021114690229296684, 0.05705995485186577, 0.06742220371961594, 0.043204404413700104, -0.03788486868143082, -0.12203048169612885, 0.07149888575077057, -0.04231145977973938, -0.017706742510199547, 0.14463935792446136, 0.08510340005159378, 0.011316434480249882, -0.022134823724627495, 0.16691136360168457, -0.02659572847187519, -0.11774034798145294, -0.11835753172636032, 0.18899205327033997, -0.04382016509771347, 0.05998663231730461, -0.05892528221011162, -0.10994136333465576, 0.06122209504246712, 0.0909145325422287, 0.08212076127529144, -0.06266747415065765, -0.013515688478946686, -0.034580789506435394, -0.010969368740916252, 0.10111481696367264, 0.08448070287704468, -0.01898462139070034, 0.15130141377449036, -0.07829280197620392, 0.05791204422712326, -0.09433940052986145, -0.02563784085214138, -0.0045470260083675385, 0.09846581518650055, 0.013100801035761833, 0.012098981067538261, -0.10343355685472488, 0.11232024431228638, -0.015487480908632278, -0.14935632050037384, 0.1348402351140976, -0.015127007849514484, -0.02541302889585495, -0.010644445195794106, 0.10201140493154526, -0.055460892617702484, 0.09064701199531555, 0.09926678240299225, -0.02054404281079769, 0.0016493304865434766, 0.029071109369397163, 0.017092175781726837, 0.010750271379947662, 0.09307999163866043, -0.10757067799568176, 0.10705779492855072, 0.014937800355255604, 0.1087927594780922, 0.10558997839689255, 0.07704994827508926, -0.04356525465846062, 0.042574442923069, -0.00046112498966977, -0.09828884154558182, -0.024887558072805405, 0.07359513640403748, 0.06228940933942795, 0.12630289793014526, 0.13417933881282806, -0.002132558962330222, 0.0640898048877716, 0.08467366546392441, -0.021289024502038956, -0.014580079354345798, 0.08405751734972, -0.09528720378875732, 0.09597877413034439, 0.08720991015434265, -0.005938473157584667, 0.012873882427811623, -0.024987084791064262, -0.05091913416981697, -0.023683248087763786, 0.07740432024002075, 0.008509776555001736, -0.10232625156641006, 0.003605672623962164, -0.06741448491811752, 0.050149258226156235, -0.15010173618793488, -0.13120071589946747, -0.014051834121346474, -0.017262395471334457, 0.02160182222723961, 0.038484107702970505, 0.06275074183940887, -0.04869149252772331, -0.06223810091614723, -0.01175939291715622, 0.07708898186683655, 0.14955222606658936, -0.017305759713053703, 0.06893268972635269 ]
null
null
stable-baselines3
# **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "236.70 +/- 117.42", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
ThomasSimonini/demo-hf-CartPole-v1
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #CartPole-v1 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing CartPole-v1\nThis is a trained model of a PPO agent playing CartPole-v1\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #CartPole-v1 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing CartPole-v1\nThis is a trained model of a PPO agent playing CartPole-v1\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 39, 17 ]
[ "passage: TAGS\n#stable-baselines3 #CartPole-v1 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing CartPole-v1\nThis is a trained model of a PPO agent playing CartPole-v1\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ -0.03996008262038231, 0.04577098414301872, -0.004702685866504908, 0.018019916489720345, 0.17204108834266663, -0.02068280056118965, 0.14452224969863892, 0.1120380386710167, 0.14496740698814392, 0.0740666314959526, 0.09315486997365952, 0.08177556097507477, 0.08666391670703888, 0.2672099769115448, 0.05526714026927948, -0.3073218762874603, 0.03490824997425079, 0.0024454081431031227, 0.04106088727712631, 0.12107889354228973, 0.05039094388484955, -0.054426632821559906, 0.0336572639644146, 0.059282489120960236, -0.01976381428539753, 0.015312612056732178, -0.03137003630399704, -0.1271708607673645, 0.06824102252721786, -0.05271800979971886, 0.06592295318841934, 0.024400271475315094, 0.11620583385229111, -0.1734885722398758, 0.03253091499209404, 0.06329730153083801, -0.07998184859752655, 0.030025148764252663, 0.0011612488888204098, -0.0694853886961937, 0.10162342339754105, 0.024008531123399734, 0.07489662617444992, 0.004705418366938829, -0.1662103235721588, -0.02086949162185192, 0.027415357530117035, 0.06511478871107101, 0.13826535642147064, 0.06984730064868927, 0.019100449979305267, 0.18200267851352692, -0.11004652082920074, -0.029889550060033798, 0.20541423559188843, -0.39308565855026245, -0.05392773076891899, 0.21770769357681274, 0.06644527614116669, 0.10480087250471115, -0.08364123106002808, -0.046186622232198715, 0.010721729137003422, -0.008887430652976036, -0.01922910287976265, -0.03559083864092827, 0.06767592579126358, 0.03165072202682495, -0.10681331902742386, -0.058478761464357376, 0.21964241564273834, 0.012213613837957382, -0.008856398984789848, -0.023598985746502876, -0.009900033473968506, -0.04798459634184837, -0.04660630226135254, -0.0942804366350174, 0.09314125776290894, 0.08150523155927658, 0.06403494626283646, -0.03729613497853279, -0.07959087193012238, -0.011513168923556805, -0.018249953165650368, 0.1404583901166916, 0.0020870203152298927, 0.0011800731299445033, 0.056609347462654114, 0.0826713964343071, -0.2385956048965454, -0.017684146761894226, -0.02225997857749462, -0.0329260379076004, -0.03236033022403717, -0.07907726615667343, -0.034265659749507904, 0.045414384454488754, 0.10165252536535263, 0.08583688735961914, 0.07763062417507172, 0.050537027418613434, -0.020873114466667175, 0.04356556758284569, 0.10822895169258118, 0.13272857666015625, -0.037846364080905914, 0.10496847331523895, 0.09118936210870743, 0.05747848376631737, -0.003877677721902728, -0.06894716620445251, -0.16552115976810455, 0.1279262900352478, 0.016602646559476852, 0.012143760919570923, 0.026673637330532074, 0.006787036545574665, -0.13330477476119995, -0.030533980578184128, -0.0306449756026268, -0.08448893576860428, -0.04602023586630821, 0.05168497934937477, -0.07780775427818298, 0.047575656324625015, -0.0411551296710968, 0.08163060992956161, -0.06703218817710876, -0.06506679207086563, -0.05650043115019798, -0.03615345060825348, -0.08440610766410828, -0.009984749369323254, 0.051560577005147934, -0.022038817405700684, 0.014730180613696575, -0.10137982666492462, -0.21931983530521393, -0.06279516965150833, 0.06373527646064758, -0.026143573224544525, -0.1447584480047226, -0.12375668436288834, 0.05509757995605469, -0.10286710411310196, 0.02955476939678192, -0.1117800697684288, -0.049211278557777405, 0.03921952471137047, -0.04046466201543808, 0.042283251881599426, 0.025235891342163086, 0.010486389510333538, -0.14643056690692902, 0.00955179426819086, -0.28079351782798767, -0.004618835635483265, -0.0840597078204155, -0.006978156045079231, -0.07152245193719864, -0.013307417742908001, -0.019822092726826668, 0.07391296327114105, -0.046496618539094925, 0.13622519373893738, -0.023565540090203285, -0.08155746757984161, 0.05667199566960335, -0.07199228554964066, -0.09292476624250412, 0.0012595615116879344, -0.016349108889698982, 0.12220492959022522, 0.08431288599967957, 0.21144793927669525, -0.014178364537656307, -0.1685505360364914, 0.11529446393251419, 0.03802042081952095, -0.0794605240225792, -0.05435642600059509, 0.10730904340744019, -0.07178369164466858, -0.018749631941318512, -0.012189355678856373, -0.17171800136566162, -0.017986470833420753, -0.08159461617469788, 0.014605787582695484, 0.06350862234830856, -0.020727351307868958, 0.09357079863548279, 0.06223840266466141, 0.05805927887558937, -0.0265501718968153, -0.13511046767234802, 0.021930497139692307, 0.07472403347492218, -0.013614666648209095, -0.008701435290277004, -0.15358677506446838, 0.23814533650875092, -0.08139041066169739, -0.012205630540847778, -0.09728412330150604, -0.1457156389951706, -0.005956027656793594, 0.16539466381072998, 0.07910360395908356, 0.07107027620077133, 0.0782405212521553, -0.0008514037472195923, 0.05938117951154709, -0.08216296881437302, -0.06118537858128548, 0.02415292337536812, 0.032958388328552246, -0.14181363582611084, -0.04022565856575966, -0.06631087511777878, 0.022682668641209602, -0.056614819914102554, 0.0353744775056839, -0.012503542937338352, 0.057234276086091995, 0.042080413550138474, -0.0395534373819828, -0.005494916345924139, 0.087895967066288, 0.01210856530815363, -0.0778675228357315, 0.10654307156801224, 0.04499271884560585, 0.08076949417591095, -0.03463045135140419, -0.03011070005595684, 0.20489759743213654, 0.16369958221912384, -0.05202631652355194, -0.0550675205886364, -0.010560682974755764, -0.01720653846859932, 0.07350722700357437, -0.00539997685700655, 0.143543541431427, 0.10068035870790482, 0.037338752299547195, 0.06934459507465363, -0.09226921200752258, 0.08815710246562958, 0.002787145087495446, -0.12147442996501923, 0.019534431397914886, 0.01770303212106228, 0.1928846538066864, -0.000046028493670746684, 0.11444135755300522, 0.1050601452589035, 0.08693721890449524, 0.1443089097738266, -0.03367553651332855, -0.08591942489147186, -0.06015666574239731, 0.10138879716396332, 0.011459307745099068, 0.0071744900196790695, -0.14354294538497925, 0.005675119813531637, -0.033980824053287506, -0.05725686252117157, 0.04517749324440956, -0.13096238672733307, -0.06766205281019211, 0.025388726964592934, 0.007439115084707737, 0.039697226136922836, 0.01838688924908638, -0.024273930117487907, 0.030739450827240944, 0.054528847336769104, -0.1422002762556076, 0.09996271878480911, 0.023598313331604004, -0.042834874242544174, 0.12092726677656174, -0.10725708305835724, -0.11723576486110687, -0.0706389844417572, -0.11634503304958344, -0.018794210627675056, 0.11025165766477585, -0.016279209405183792, -0.10191937536001205, 0.030754489824175835, -0.005083146039396524, 0.04644840210676193, 0.001404323847964406, -0.0684766173362732, 0.02816363424062729, 0.08565792441368103, -0.05957967787981033, -0.02872888371348381, -0.052432261407375336, -0.058248236775398254, -0.23207513988018036, 0.009102783165872097, -0.051973920315504074, -0.017847228795289993, 0.22214174270629883, 0.043341778218746185, 0.05186603590846062, -0.012424975633621216, -0.02610604465007782, -0.01926698535680771, -0.06287931650876999, 0.18342822790145874, 0.0034622058738023043, -0.00845953356474638, 0.003045420628041029, 0.0011095392983406782, -0.041879553347826004, -0.009537727572023869, -0.020680954679846764, -0.055643655359745026, -0.16914814710617065, -0.08377949893474579, -0.07332642376422882, 0.12305933237075806, 0.08197914808988571, 0.022250104695558548, -0.059841327369213104, 0.0616636723279953, 0.06667308509349823, -0.07832029461860657, -0.0409339964389801, 0.0492120087146759, 0.10106821358203888, -0.0674496740102768, -0.027906231582164764, 0.01828591339290142, -0.021766511723399162, 0.0467616468667984, 0.05135052651166916, 0.026101896539330482, 0.10885871946811676, 0.041597552597522736, 0.013241049833595753, 0.1351413130760193, 0.029234446585178375, 0.06315238773822784, 0.12021142989397049, -0.10197359323501587, -0.0174051932990551, -0.009355639107525349, -0.1515016406774521, 0.08512525260448456, 0.1759163737297058, -0.009711516089737415, -0.12006034702062607, 0.041662052273750305, -0.036631230264902115, 0.09995917975902557, 0.015702666714787483, -0.2241823822259903, 0.06959459185600281, -0.025111062452197075, 0.015191166661679745, -0.08501387387514114, 0.11064021289348602, -0.14876189827919006, -0.21593047678470612, -0.06988590955734253, 0.06039244309067726, 0.013404606841504574, -0.043024346232414246, -0.04479328170418739, -0.0843324065208435, 0.07875356078147888, -0.03998260572552681, 0.089501291513443, -0.026977045461535454, 0.16856957972049713, -0.045056626200675964, 0.10334324091672897, -0.08129648864269257, -0.017307216301560402, 0.03165024146437645, -0.001675309264101088, 0.17615745961666107, -0.01682293601334095, 0.09387970715761185, -0.09864959865808487, -0.12479288876056671, -0.02861013635993004, -0.0005942033021710813, -0.09887181222438812, 0.04486669972538948, 0.029015270993113518, 0.027447685599327087, -0.027426088228821754, 0.005079054739326239, -0.03984122350811958, -0.0031806903425604105, -0.016011593863368034, -0.09103485941886902, 0.14628230035305023, -0.09214887022972107, -0.06672774255275726, -0.0979425311088562, 0.2688896656036377, 0.22831937670707703, -0.01322976965457201, -0.05357355251908302, 0.0005836103809997439, -0.0684303343296051, -0.024451036006212234, 0.0710797980427742, -0.024252796545624733, 0.11621752381324768, -0.05090286210179329, -0.03673616796731949, 0.15100011229515076, -0.0515737347304821, -0.013561185449361801, -0.02334979549050331, 0.21967370808124542, 0.038291238248348236, 0.014327963814139366, -0.003845119383186102, 0.011026975698769093, 0.08072866499423981, -0.02190440334379673, 0.12995971739292145, -0.0021438372787088156, -0.06414783746004105, 0.09098554402589798, 0.033326368778944016, 0.07447683066129684, 0.023844074457883835, 0.026644391939044, 0.19252309203147888, 0.21582773327827454, 0.03112371638417244, 0.1563236117362976, 0.07557354122400284, -0.052138552069664, -0.11094756424427032, -0.07366476207971573, 0.025718336924910545, 0.010591574013233185, 0.1070290356874466, -0.15907076001167297, 0.04517829045653343, 0.020890969783067703, -0.03804469481110573, -0.0314762145280838, -0.34668803215026855, -0.01616615243256092, 0.22228747606277466, 0.09128107875585556, 0.23703983426094055, -0.11718081682920456, 0.032891809940338135, 0.047114912420511246, -0.08669769018888474, 0.07439658045768738, -0.08965285122394562, 0.09434716403484344, -0.057830195873975754, 0.010140725411474705, 0.05347483605146408, -0.01747290976345539, 0.04397881403565407, -0.1179514229297638, -0.03769245743751526, -0.10040705651044846, -0.01935652643442154, 0.22187961637973785, 0.002462792908772826, -0.07511337101459503, 0.10655317455530167, -0.04765862971544266, -0.246435284614563, -0.06751856952905655, -0.0017790081910789013, 0.05190692096948624, -0.00623889546841383, -0.069523885846138, 0.029988612979650497, 0.09820833057165146, -0.024985365569591522, 0.0818495973944664, 0.0814785286784172, -0.03357568010687828, 0.1110251247882843, 0.2224370390176773, 0.027312958613038063, 0.03405073285102844, -0.1511864811182022, -0.04979522153735161, -0.048371635377407074, 0.03801703080534935, -0.0902867317199707, -0.05588909983634949, 0.057580143213272095, 0.016298728063702583, 0.05720846354961395, 0.07401054352521896, -0.10245860368013382, 0.02712409570813179, 0.04176666587591171, -0.14386935532093048, -0.11467991769313812, -0.012165448628365993, 0.05512635409832001, 0.00671778991818428, -0.010511274449527264, 0.08609631657600403, -0.06823024898767471, -0.046105459332466125, 0.0024828945752233267, -0.0268919188529253, -0.11146321892738342, 0.015245845541357994, 0.06117672473192215, -0.0020731270778924227, -0.07320094108581543, 0.15188080072402954, 0.055357471108436584, 0.0008193675894290209, 0.046166591346263885, 0.0007078063208609819, -0.0203452929854393, -0.09109405428171158, 0.11875326186418533, 0.18929912149906158, 0.008231106214225292, -0.0478193573653698, -0.10169349610805511, -0.12350708991289139, 0.09219027310609818, 0.04302261397242546, 0.08670268207788467, -0.0690804198384285, -0.033096835017204285, 0.02950812503695488, -0.06420385837554932, -0.06898476928472519, 0.09614062309265137, -0.015294922515749931, -0.14051027595996857, 0.026751559227705002, -0.0006496486021205783, 0.017849605530500412, -0.044864486902952194, -0.13828057050704956, -0.16440421342849731, 0.042771998792886734, 0.033413201570510864, -0.08499354124069214, -0.08409923315048218, -0.019442224875092506, 0.016044937074184418, 0.0003221453807782382, -0.05273577570915222, 0.014061518013477325, -0.12732194364070892, 0.04590710252523422, 0.02241579443216324, 0.06951314955949783, -0.04590882360935211, 0.008989449590444565, 0.03201362118124962, -0.0722728967666626, 0.04261741042137146, 0.04407072439789772, 0.019929219037294388, 0.010779911652207375, -0.2993882894515991, -0.001659594476222992, 0.030936770141124725, -0.03199702128767967, 0.033042360097169876, -0.06028815358877182, 0.06961626559495926, 0.03988085687160492, -0.13654707372188568, -0.02072259970009327, 0.07516419142484665, -0.12544845044612885, 0.03593989461660385, 0.024634240195155144, -0.04670216515660286, -0.026375507935881615, -0.03045746497809887, 0.0754556730389595, 0.03520684689283371, 0.09442820399999619, -0.040313366800546646, 0.0809103474020958, -0.11611387133598328, -0.014222076162695885, -0.05089550092816353, 0.09640421718358994, 0.05366013944149017, -0.06798302382230759, -0.006555638741701841, 0.025097114965319633, 0.1728440672159195, 0.018294287845492363, -0.05259173735976219, 0.006703508086502552, -0.021920926868915558, 0.16993647813796997, 0.049585457891225815, 0.13528449833393097, 0.07350482791662216, 0.009660700336098671, 0.04829350486397743, 0.056106943637132645, 0.08821599930524826, -0.15696020424365997, 0.105197012424469, -0.00532549386844039, -0.023109111934900284, 0.07944533973932266, 0.03700513392686844, 0.02320108190178871, -0.005875465925782919, 0.158616840839386, 0.018755456432700157, 0.005175714381039143, 0.017555978149175644, 0.12601807713508606, 0.15953423082828522, -0.0947321206331253, -0.043754350394010544, -0.03070291317999363, -0.012791099958121777, -0.0841471254825592, -0.19516953825950623, -0.08058541268110275, -0.33818352222442627, 0.11245802044868469, -0.0751054510474205, 0.04582763835787773, 0.13443689048290253, 0.0012265469413250685, 0.013588109984993935, 0.05740167200565338, -0.050047632306814194, -0.08315487951040268, 0.03531062230467796, -0.06266443431377411, -0.016332900151610374, -0.14729692041873932, -0.1369583010673523, -0.10414719581604004, -0.1303209364414215, -0.029660046100616455, 0.015834126621484756, 0.018906744197010994, 0.04201240465044975, -0.06454023718833923, -0.004800942726433277, 0.049729157239198685, -0.04361150413751602, -0.0022151798475533724, 0.15499752759933472, 0.01625489629805088, -0.11254817992448807, 0.03689255937933922, 0.2036452442407608, 0.04250345379114151, -0.0949353501200676, -0.05868067592382431, 0.1712513118982315, 0.04846994951367378, 0.028667444363236427, -0.011651010252535343, -0.03388256952166557, 0.029427824541926384, 0.15011315047740936, 0.09707960486412048, -0.06447997689247131, -0.008987602777779102, -0.0425722599029541, -0.015986278653144836, -0.02156030386686325, 0.10740941017866135, 0.055866535753011703, 0.04455254599452019, -0.13802243769168854, -0.04972861334681511, -0.10139410197734833, 0.05223815143108368, -0.1552710384130478, -0.08905089646577835, 0.14740760624408722, -0.039178527891635895, -0.032481931149959564, 0.08338373154401779, -0.15473060309886932, -0.06442467868328094, 0.08889838308095932, -0.13445110619068146, -0.1240917220711708, -0.11685322970151901, 0.03645724058151245, 0.07809886336326599, 0.15523196756839752, -0.0424894243478775, -0.07675161957740784, -0.08468252420425415, 0.0475383996963501, -0.11111944168806076, -0.0701773464679718, 0.052007365971803665, -0.10561685264110565, 0.21514056622982025, -0.051545649766922, 0.07498902827501297, 0.04334703087806702, 0.05923549830913544, -0.0019087943946942687, 0.06409378349781036, 0.015024649910628796, -0.07424512505531311, -0.00725199980661273, -0.04290367290377617, -0.009164133109152317, 0.09968927502632141, 0.05326579511165619, -0.08700444549322128, 0.06975460797548294, 0.02937314473092556, 0.02064884454011917, -0.051454707980155945, 0.07800384610891342, -0.17691507935523987, 0.058438416570425034, 0.017908506095409393, -0.0592932254076004, 0.020411647856235504, -0.04202315956354141, 0.14628317952156067, 0.08212590217590332, -0.024479279294610023, -0.03866774961352348, -0.10153007507324219, -0.017284255474805832, 0.054483622312545776, -0.06791891902685165, -0.09860517829656601, -0.059163160622119904, -0.15653282403945923, 0.002061741892248392, -0.11639836430549622, 0.08301065117120743, 0.039451874792575836, 0.029843397438526154, -0.03768235072493553, 0.11529344320297241, -0.010028712451457977, 0.12246809899806976, -0.09893123805522919, -0.053826071321964264 ]
null
null
null
# mlagents-snowballfight-1vs1-ppo ☃️ This is a saved model of a PPO 1vs1 agent playing Snowball Fight.
{"license": "apache-2.0", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "mlagents"], "environment": [{"MLAgents": "Snowballfight-1vs1-ppo"}]}
reinforcement-learning
ThomasSimonini/mlagents-snowballfight-1vs1-ppo
[ "deep-reinforcement-learning", "reinforcement-learning", "mlagents", "license:apache-2.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #deep-reinforcement-learning #reinforcement-learning #mlagents #license-apache-2.0 #region-us
# mlagents-snowballfight-1vs1-ppo ️ This is a saved model of a PPO 1vs1 agent playing Snowball Fight.
[ "# mlagents-snowballfight-1vs1-ppo ️\nThis is a saved model of a PPO 1vs1 agent playing Snowball Fight." ]
[ "TAGS\n#deep-reinforcement-learning #reinforcement-learning #mlagents #license-apache-2.0 #region-us \n", "# mlagents-snowballfight-1vs1-ppo ️\nThis is a saved model of a PPO 1vs1 agent playing Snowball Fight." ]
[ 32, 35 ]
[ "passage: TAGS\n#deep-reinforcement-learning #reinforcement-learning #mlagents #license-apache-2.0 #region-us \n# mlagents-snowballfight-1vs1-ppo ️\nThis is a saved model of a PPO 1vs1 agent playing Snowball Fight." ]
[ -0.008448288775980473, 0.05296463146805763, -0.003913692198693752, 0.17880499362945557, 0.08888725191354752, -0.008400319144129753, 0.15342101454734802, 0.046305637806653976, -0.061779141426086426, -0.04997910559177399, 0.2192646712064743, 0.029697393998503685, 0.05921744555234909, 0.17019198834896088, 0.1254197508096695, -0.27098116278648376, -0.049217887222766876, -0.0598604716360569, -0.06643231213092804, 0.10284079611301422, 0.06429985165596008, -0.041106026619672775, -0.0009038129355758429, 0.06467551738023758, -0.034551046788692474, -0.012896183878183365, 0.002204627962782979, -0.08159198611974716, 0.10046480596065521, -0.023041944950819016, 0.09562370926141739, -0.013924299739301205, 0.117254339158535, -0.1472804844379425, 0.04589458927512169, -0.03487563878297806, -0.05437755212187767, 0.013558967970311642, -0.0320407971739769, 0.024624137207865715, 0.09170841425657272, -0.0594327338039875, 0.053747862577438354, 0.0699068158864975, -0.15991775691509247, -0.05820610001683235, 0.03553260862827301, 0.11512181162834167, 0.09674438089132309, 0.0993184968829155, 0.009387880563735962, 0.10748057812452316, -0.07442145049571991, -0.028238434344530106, 0.06564567238092422, -0.36837106943130493, -0.07103195041418076, 0.1807040423154831, -0.144377201795578, 0.021551040932536125, -0.03420957550406456, 0.022182296961545944, 0.05192198231816292, -0.021361442282795906, -0.1237424910068512, 0.021799929440021515, 0.23268911242485046, 0.10395196825265884, -0.0739477276802063, -0.05489906296133995, 0.047912195324897766, 0.01479896530508995, -0.0014082613633945584, -0.09074819087982178, 0.07478951662778854, -0.06127717345952988, 0.04435572028160095, -0.02405068837106228, 0.05755890533328056, 0.08510969579219818, -0.09793037921190262, -0.03787806257605553, -0.08310725539922714, 0.04109243303537369, -0.023913221433758736, 0.052573058754205704, -0.06769341230392456, 0.10942339897155762, -0.02151668071746826, 0.05160994827747345, 0.09829674661159515, -0.04646472632884979, 0.010452660731971264, -0.08484280109405518, -0.011127312667667866, 0.0013045769883319736, -0.09342671185731888, 0.06805719435214996, 0.06643175333738327, 0.04568811506032944, 0.13869932293891907, 0.029717570170760155, 0.0639679953455925, 0.0562584325671196, 0.029298141598701477, 0.011571947485208511, 0.10515203326940536, 0.06431463360786438, 0.0164327435195446, 0.032327402383089066, 0.03229745849967003, -0.09877981245517731, -0.16750355064868927, 0.07560274749994278, -0.006298964377492666, 0.046791549772024155, 0.08613333106040955, -0.04652548208832741, -0.08648966997861862, -0.0008264604257419705, -0.03491799160838127, -0.02087772823870182, 0.008842048235237598, 0.040979329496622086, -0.08156950026750565, -0.1387833207845688, -0.06489678472280502, 0.09084521979093552, 0.006217841990292072, -0.050915710628032684, -0.06793950498104095, 0.04056600481271744, -0.04394538700580597, 0.007154454011470079, 0.0688595175743103, -0.03069307468831539, 0.02941317670047283, -0.1406458616256714, -0.06113908067345619, -0.00691156554967165, 0.039238110184669495, 0.013447289355099201, -0.1707783341407776, -0.1484614610671997, 0.045371681451797485, -0.0786074846982956, 0.01835818402469158, -0.0790843591094017, -0.033338528126478195, -0.05003289505839348, -0.11866018921136856, 0.08932512253522873, 0.029110189527273178, -0.047316547483205795, -0.12295153737068176, -0.05764543637633324, -0.13805782794952393, 0.053109969943761826, -0.12077903747558594, -0.020854361355304718, 0.025507325306534767, -0.039947450160980225, 0.022669360041618347, 0.011790097691118717, -0.025903383269906044, 0.19879150390625, -0.15574833750724792, -0.052751004695892334, 0.041128695011138916, -0.124372199177742, -0.08633136749267578, 0.03913314640522003, -0.06672078371047974, -0.09126285463571548, 0.0929672047495842, 0.1792871057987213, -0.11073090881109238, -0.11604305356740952, 0.008090531453490257, 0.039208054542541504, -0.08671470731496811, -0.06508611887693405, 0.1678103655576706, -0.03375094011425972, -0.12586623430252075, -0.05934274196624756, -0.0037475291173905134, 0.06216662377119064, -0.09431148320436478, -0.1156168282032013, 0.05583720654249191, -0.028543895110487938, 0.05553780123591423, 0.009571962058544159, 0.10680727660655975, -0.11226347833871841, -0.07913543283939362, -0.0182196032255888, 0.003374074585735798, 0.11521533131599426, 0.019372977316379547, -0.1340308040380478, -0.02213180623948574, -0.04215049371123314, -0.059660837054252625, -0.0047813476994633675, -0.13563919067382812, -0.07708165794610977, -0.010287856683135033, 0.1220485121011734, 0.1707080453634262, 0.16182014346122742, 0.017456820234656334, 0.02748899720609188, -0.06504841148853302, -0.12250228971242905, 0.023033475503325462, -0.016286127269268036, -0.17860712110996246, -0.016845572739839554, -0.06478110700845718, 0.20977149903774261, -0.05661444738507271, 0.03495195135474205, -0.028997957706451416, 0.04382264241576195, 0.007174688391387463, -0.09510963410139084, 0.008710667490959167, 0.09292180091142654, 0.04779240861535072, -0.07066412270069122, 0.13263991475105286, 0.06413371115922928, -0.1936957687139511, 0.015037677250802517, 0.1225985661149025, 0.15293747186660767, 0.18322721123695374, -0.03259953111410141, 0.03122633881866932, -0.08139379322528839, -0.07560433447360992, 0.054224174469709396, 0.020014189183712006, 0.22765929996967316, 0.29298165440559387, 0.0319078303873539, 0.0029271782841533422, 0.006030915305018425, 0.009623841382563114, -0.026400653645396233, -0.094143807888031, -0.0038460891228169203, -0.0013803570764139295, 0.11770284920930862, -0.1287173628807068, 0.10408445447683334, 0.0950285866856575, 0.12168867886066437, 0.17344404757022858, -0.028295809403061867, -0.0007483543595299125, -0.07770882546901703, 0.006858342327177525, -0.005148451775312424, 0.06120654195547104, 0.02902018092572689, 0.0324801467359066, -0.04648149758577347, -0.07491961121559143, 0.039183661341667175, -0.15734365582466125, -0.16881318390369415, 0.07261606305837631, 0.012440776452422142, -0.11223166435956955, -0.07786259055137634, -0.0877346619963646, 0.024951312690973282, 0.035780955106019974, -0.0845230296254158, 0.10010232776403427, 0.05614662170410156, -0.02360515110194683, 0.0914558619260788, -0.1374719738960266, -0.24155890941619873, -0.12545745074748993, 0.01619119942188263, -0.06816213577985764, 0.05065497010946274, 0.03435540199279785, -0.2051634043455124, 0.08350647985935211, 0.01501952949911356, 0.04005084186792374, -0.07565957307815552, 0.0284995399415493, 0.14760282635688782, 0.0809987410902977, -0.05439262092113495, -0.051360100507736206, -0.02059417963027954, -0.05119696632027626, -0.20182636380195618, 0.036574363708496094, 0.06646121293306351, -0.02832767739892006, 0.12262891232967377, 0.06773563474416733, 0.07769406586885452, -0.06944087892770767, 0.03269606828689575, -0.007033730857074261, -0.05900794640183449, 0.03276767209172249, -0.05093330889940262, -0.024495024234056473, -0.05226825550198555, 0.033149946480989456, -0.012036608532071114, -0.03387337177991867, -0.049128685146570206, -0.0837773010134697, -0.11788850277662277, -0.06284713000059128, 0.029129309579730034, 0.24561768770217896, 0.1640692502260208, 0.026636021211743355, -0.06085542216897011, 0.0761890560388565, 0.10447812080383301, -0.17018738389015198, 0.029936427250504494, -0.016438115388154984, -0.042480964213609695, -0.07286552339792252, 0.07951012998819351, -0.047411516308784485, -0.03187600150704384, 0.07333241403102875, -0.09703072160482407, 0.0004766222555190325, 0.1161842867732048, -0.16062988340854645, 0.014027395285665989, 0.044026006013154984, 0.0493948720395565, 0.13336580991744995, 0.18918848037719727, -0.05733608826994896, -0.05778348818421364, 0.02959279529750347, -0.15399493277072906, 0.1585109829902649, 0.1795385181903839, -0.03049015998840332, -0.05493459478020668, 0.14602228999137878, -0.049081962555646896, 0.1747693568468094, 0.01305000577121973, -0.10452713072299957, -0.020186135545372963, 0.01284131407737732, 0.030179575085639954, 0.011525660753250122, 0.15182021260261536, 0.0115128755569458, -0.09338434785604477, 0.052955541759729385, 0.02735561691224575, 0.0288370531052351, 0.05967114493250847, -0.0187153909355402, -0.1268455535173416, -0.03713131323456764, -0.03863903880119324, 0.06359149515628815, -0.20441633462905884, 0.06997125595808029, -0.03791842237114906, 0.06953313946723938, -0.07584965974092484, -0.049172963947057724, 0.06529755890369415, 0.0017342306673526764, 0.14804618060588837, 0.05481118708848953, -0.08809882402420044, -0.10841365158557892, -0.13212214410305023, -0.007637911941856146, -0.048789042979478836, -0.029427820816636086, 0.01909565180540085, 0.056649189442396164, 0.08842430263757706, 0.021087072789669037, 0.146979421377182, -0.0244339220225811, -0.07205960154533386, -0.08396954834461212, -0.06032485514879227, 0.13505223393440247, -0.10851708054542542, -0.09293044358491898, -0.061403825879096985, 0.054236505180597305, 0.18326887488365173, 0.000021368685338529758, -0.06106099858880043, 0.12593767046928406, -0.1257363110780716, -0.038437455892562866, 0.07599975913763046, 0.0699022188782692, 0.06241985782980919, -0.18863071501255035, -0.02846819907426834, 0.06895714998245239, -0.0599641278386116, -0.006809588987380266, 0.05175130069255829, 0.06760406494140625, 0.038978658616542816, 0.12405277043581009, 0.013310731388628483, 0.060563214123249054, -0.024326954036951065, -0.043148867785930634, 0.18813546001911163, -0.09716431796550751, -0.09056257456541061, 0.010827562771737576, 0.1879916936159134, 0.04043807461857796, -0.01933034509420395, 0.03185266628861427, 0.270013689994812, 0.29259687662124634, -0.10518943518400192, 0.17491883039474487, -0.09938180446624756, -0.02047157846391201, -0.13912813365459442, -0.09924928843975067, -0.02412247657775879, -0.06966868042945862, 0.0960492417216301, -0.13556119799613953, 0.0945541188120842, 0.042508356273174286, -0.005088052246719599, 0.03322478011250496, -0.1702401340007782, -0.014878773130476475, 0.11697084456682205, -0.003239791141822934, 0.3346884846687317, -0.05654892325401306, 0.08139840513467789, 0.05263299494981766, 0.05909765139222145, 0.03321223706007004, -0.023504067212343216, 0.06800127029418945, -0.0016957351472228765, 0.00942325871437788, 0.03905901312828064, -0.038451094180345535, 0.07190599292516708, -0.07490972429513931, -0.025914452970027924, -0.10061071068048477, -0.07854300737380981, -0.0015560354804620147, 0.03986875340342522, -0.11759015172719955, 0.01726227067410946, -0.045880500227212906, -0.26489225029945374, -0.05838482826948166, 0.06989508867263794, 0.051124148070812225, -0.016529899090528488, -0.11150917410850525, -0.021372774615883827, 0.08365985751152039, 0.010364564135670662, 0.06642373651266098, 0.20660409331321716, 0.008983139880001545, 0.16102217137813568, 0.04577944055199623, -0.029382722452282906, 0.04370834305882454, -0.07874172180891037, -0.11564142256975174, -0.07573952525854111, 0.04988059028983116, -0.09605903178453445, -0.10454119741916656, 0.05752089247107506, 0.03659634664654732, 0.022968515753746033, 0.07087159156799316, 0.010312755592167377, 0.0716651976108551, 0.08270502835512161, -0.125467911362648, -0.1266058087348938, -0.05345382168889046, -0.00810877326875925, 0.17497149109840393, -0.04563989117741585, 0.10408226400613785, -0.12193576246500015, -0.019389688968658447, -0.012998390011489391, 0.04520142823457718, -0.09954285621643066, -0.005492605734616518, 0.10572921484708786, 0.02295125648379326, -0.08455806970596313, 0.14292654395103455, -0.02711765095591545, -0.051469601690769196, 0.08812349289655685, 0.010852670297026634, 0.03496439754962921, -0.086329385638237, 0.04759564623236656, 0.1796240508556366, 0.04253142327070236, -0.03248744457960129, -0.1139242947101593, -0.15884914994239807, 0.15103043615818024, -0.11485889554023743, 0.060083650052547455, -0.09399224817752838, -0.015952805057168007, 0.04116164520382881, 0.03341342508792877, -0.04698382318019867, 0.018326900899410248, -0.09255509823560715, -0.07594951242208481, 0.19456331431865692, -0.018180621787905693, 0.006975017953664064, -0.04380381852388382, -0.012010070495307446, -0.12708929181098938, 0.04701104760169983, 0.05738428980112076, -0.07376490533351898, -0.07311810553073883, 0.022078437730669975, 0.025112824514508247, -0.019345883280038834, -0.0137175926938653, 0.015108921565115452, -0.1295923888683319, 0.06067071855068207, 0.008776980452239513, 0.03235305845737457, -0.060317978262901306, -0.02935025654733181, -0.048169828951358795, -0.00708615779876709, 0.018503230065107346, 0.0692196935415268, 0.017728814855217934, -0.01965400204062462, -0.056562639772892, 0.0735674500465393, 0.05029140040278435, -0.03640998899936676, -0.018364422023296356, -0.06078397110104561, 0.034688785672187805, -0.014196119271218777, -0.13070707023143768, 0.06589936465024948, 0.1254526674747467, -0.04238586127758026, -0.04157686606049538, 0.1036384254693985, -0.07340243458747864, -0.043172307312488556, -0.09972766041755676, 0.10065323859453201, 0.048975277692079544, 0.18300001323223114, -0.022463666275143623, 0.1494673639535904, -0.12322722375392914, -0.05253089964389801, -0.018558967858552933, 0.08464973419904709, 0.024345235899090767, -0.024500032886862755, 0.018382983282208443, -0.007357458118349314, 0.08140839636325836, 0.03338984400033951, -0.1935339868068695, 0.047227270901203156, 0.0845329761505127, 0.0605894960463047, 0.017010347917675972, 0.1579190343618393, 0.08940728008747101, -0.0113062784075737, 0.10860142856836319, 0.025165090337395668, 0.0923851728439331, -0.08978847414255142, 0.0518108606338501, -0.017508532851934433, -0.038265109062194824, 0.10062375664710999, 0.06307191401720047, 0.0614190511405468, 0.017683029174804688, 0.12383710592985153, 0.07138820737600327, -0.04172547534108162, 0.018841532990336418, 0.1377188265323639, 0.13563089072704315, -0.07543718814849854, -0.018578331917524338, -0.0015576607547700405, 0.052553482353687286, -0.08931504935026169, -0.07206886261701584, -0.056206997483968735, -0.1571897268295288, 0.09388722479343414, -0.06263794749975204, 0.028565900400280952, 0.0547042153775692, 0.03343360498547554, 0.05479639768600464, 0.024312537163496017, -0.010404566302895546, 0.029828589409589767, 0.040800221264362335, -0.04166121408343315, -0.07335420697927475, -0.14828689396381378, -0.1740543246269226, -0.08317282795906067, -0.12397685647010803, -0.05706914886832237, -0.057340871542692184, -0.02472604066133499, 0.023040007799863815, 0.018412673845887184, -0.03179500624537468, 0.04339294880628586, -0.03174944594502449, 0.10165233910083771, 0.21563056111335754, 0.012016534805297852, -0.00516101997345686, 0.00017992669017985463, 0.07823756337165833, 0.04784354194998741, -0.2471204400062561, -0.05444108322262764, 0.10475531965494156, -0.07095726579427719, 0.046031828969717026, -0.0602116733789444, 0.010106022469699383, 0.0704973116517067, 0.08152180165052414, 0.20130155980587006, -0.09410489350557327, -0.019043002277612686, -0.11871799826622009, 0.0011501392582431436, 0.05605413019657135, 0.14060454070568085, 0.028562646359205246, -0.09115699678659439, -0.1339348703622818, -0.031842488795518875, -0.16427412629127502, 0.032763127237558365, -0.08299068361520767, 0.013349391520023346, 0.13061200082302094, -0.03349741920828819, -0.019103800877928734, 0.07960773259401321, -0.09852387756109238, 0.07531511783599854, 0.07673061639070511, -0.12137774378061295, -0.055083367973566055, -0.05480401590466499, 0.18772757053375244, 0.03121548891067505, 0.1955093890428543, 0.03607931733131409, -0.05385042354464531, -0.13711610436439514, 0.050684262067079544, -0.18477854132652283, -0.04623217508196831, -0.012789447791874409, -0.10282614082098007, 0.14534461498260498, -0.03980055823922157, 0.05283748731017113, 0.1079641580581665, 0.08404576033353806, -0.0070940181612968445, 0.04658258333802223, -0.006178827956318855, -0.0005748494295403361, -0.1292477697134018, -0.10256686061620712, -0.010936561040580273, 0.09025628864765167, 0.06914490461349487, -0.04427994042634964, 0.046819671988487244, 0.19136777520179749, -0.07586551457643509, 0.04713081941008568, 0.1186506524682045, -0.10264682024717331, 0.06217171996831894, 0.044982485473155975, -0.04250248521566391, -0.02024601772427559, -0.04089070111513138, 0.047407347708940506, 0.027308139950037003, -0.08653760701417923, -0.0630500391125679, 0.06067424267530441, -0.07741542905569077, -0.11713176965713501, -0.06446868926286697, -0.05400992929935455, -0.08547260612249374, -0.16436555981636047, -0.10749628394842148, -0.05292026698589325, 0.0034426546189934015, 0.010086314752697945, -0.0290506761521101, 0.007878215983510017, 0.06912020593881607, 0.07150501757860184, 0.026481609791517258, 0.007941731251776218, -0.020636357367038727 ]
null
null
stable-baselines3
# ppo-Walker2DBulletEnv-v0 This is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. ### Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: ``` pip install stable-baselines3 pip install huggingface_sb3 ``` Then, you can use the model like this: ```python import gym import pybullet_envs from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository repo_id = "ThomasSimonini/ppo-AntBulletEnv-v0" checkpoint = load_from_hub(repo_id = repo_id, filename="ppo-AntBulletEnv-v0.zip") model = PPO.load(checkpoint) # Load the saved statistics stats_path = load_from_hub(repo_id = repo_id, filename="vec_normalize.pkl") eval_env = DummyVecEnv([lambda: gym.make("AntBulletEnv-v0")]) eval_env = VecNormalize.load(stats_path, eval_env) # do not update them at test time eval_env.training = False # reward normalization is not needed at test time eval_env.norm_reward = False from stable_baselines3.common.evaluation import evaluate_policy mean_reward, std_reward = evaluate_policy(model, eval_env) print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") ``` ### Evaluation Results Mean_reward: 3547.01 +/- 33.32
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"]}
reinforcement-learning
ThomasSimonini/ppo-AntBulletEnv-v0
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us
# ppo-Walker2DBulletEnv-v0 This is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the stable-baselines3 library. ### Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: Then, you can use the model like this: ### Evaluation Results Mean_reward: 3547.01 +/- 33.32
[ "# ppo-Walker2DBulletEnv-v0\n\nThis is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the stable-baselines3 library.", "### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:", "### Evaluation Results\nMean_reward: 3547.01 +/- 33.32" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us \n", "# ppo-Walker2DBulletEnv-v0\n\nThis is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the stable-baselines3 library.", "### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:", "### Evaluation Results\nMean_reward: 3547.01 +/- 33.32" ]
[ 27, 47, 48, 18 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us \n# ppo-Walker2DBulletEnv-v0\n\nThis is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the stable-baselines3 library.### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:### Evaluation Results\nMean_reward: 3547.01 +/- 33.32" ]
[ -0.09688660502433777, 0.011726834811270237, -0.002515869215130806, 0.003726905444636941, 0.09810670465230942, -0.02748170867562294, 0.10601916909217834, 0.07618347555398941, 0.10466742515563965, 0.05101117864251137, 0.0999736413359642, 0.0665341392159462, 0.058424998074769974, 0.32352519035339355, 0.021069196984171867, -0.25804904103279114, 0.02584274671971798, 0.027215778827667236, 0.08600504696369171, 0.1174800768494606, 0.07766880095005035, -0.1085498258471489, 0.009816303849220276, 0.034843675792217255, -0.07492969185113907, -0.018013231456279755, -0.07852847129106522, -0.0903673842549324, 0.0774257630109787, -0.04530337080359459, 0.06276578456163406, 0.06430618464946747, 0.11710799485445023, -0.17928458750247955, 0.03115542232990265, 0.018822666257619858, -0.01998882368206978, 0.0492708720266819, 0.0452568419277668, -0.028201110661029816, 0.13991880416870117, 0.025525476783514023, 0.004413619637489319, -0.02364208921790123, -0.11360680311918259, -0.11125432699918747, 0.033270008862018585, 0.13242435455322266, 0.1591523140668869, 0.07000140845775604, -0.013828186318278313, 0.14747285842895508, -0.09174466133117676, -0.015734484419226646, 0.13519427180290222, -0.34537479281425476, -0.03863057866692543, 0.13641396164894104, 0.012328507378697395, 0.06444631516933441, -0.04877571016550064, -0.07064762711524963, 0.021043362095952034, 0.008016564883291721, 0.04857877641916275, -0.036082975566387177, 0.15530218183994293, 0.01559471432119608, -0.12436556816101074, -0.04766237735748291, 0.17888422310352325, 0.05563199892640114, -0.07683807611465454, -0.08791497349739075, 0.008377283811569214, 0.059961769729852676, -0.06612720340490341, -0.07786340266466141, 0.04014741629362106, 0.05678611993789673, 0.007488257251679897, -0.04415937140583992, -0.06679429858922958, -0.046705152839422226, 0.018453454598784447, 0.22310644388198853, 0.02666202373802662, -0.013577515259385109, 0.038982052356004715, 0.07095291465520859, -0.21922540664672852, -0.035074397921562195, -0.03759431093931198, -0.10150832682847977, -0.011574607342481613, -0.020317738875746727, -0.05300132557749748, 0.053145669400691986, 0.08303243666887283, 0.07114548236131668, 0.026070160791277885, 0.043264396488666534, -0.03664693608880043, 0.060825247317552567, 0.07765071839094162, 0.06566546112298965, -0.07713261246681213, 0.005429543554782867, 0.08470947295427322, 0.10865305364131927, -0.00686060031875968, 0.00023841024085413665, -0.08565602451562881, 0.07281199097633362, 0.07274243980646133, -0.054118573665618896, -0.003124983049929142, -0.007385955657809973, -0.1253947615623474, -0.06371701508760452, -0.042917437851428986, -0.0823175385594368, -0.06996024399995804, 0.061735570430755615, -0.0848531499505043, -0.031219474971294403, -0.04153542220592499, 0.04968791827559471, -0.04567420855164528, -0.07139356434345245, -0.044766176491975784, -0.059383440762758255, -0.08823901414871216, -0.09619307518005371, -0.042371924966573715, -0.014321260154247284, 0.06946276128292084, -0.11774879693984985, -0.24475820362567902, -0.03473019599914551, 0.059497442096471786, -0.026470806449651718, -0.10569898784160614, -0.12294402718544006, 0.04716102406382561, -0.0957087054848671, -0.029579823836684227, -0.09303132444620132, -0.05209905654191971, 0.019385559484362602, 0.053923171013593674, 0.08193150162696838, 0.03988172486424446, -0.016592364758253098, -0.0924805998802185, 0.0077295019291341305, -0.1874241679906845, 0.035187941044569016, -0.07673513889312744, 0.021828267723321915, -0.06498967856168747, -0.07214724272489548, -0.041374120861291885, 0.08656225353479385, 0.06364496797323227, 0.14096185564994812, -0.014455464668571949, -0.10430049151182175, 0.1430273801088333, -0.09367824345827103, -0.14266455173492432, 0.029555700719356537, -0.02900407649576664, 0.09634066373109818, 0.04189598187804222, 0.1800805926322937, -0.024041475728154182, -0.087495356798172, 0.12442498654127121, 0.02660038322210312, -0.056785859167575836, -0.06702501326799393, 0.07739133387804031, 0.005250443704426289, -0.1524195671081543, 0.0016044522635638714, -0.10959238559007645, 0.04420129954814911, -0.12362033128738403, 0.0022011336404830217, 0.05170625448226929, -0.09765975177288055, 0.032740987837314606, 0.04844846948981285, 0.04604960232973099, -0.05304168909788132, -0.09955431520938873, -0.03185421600937843, 0.1456887423992157, -0.05257140472531319, -0.03611820191144943, -0.1762612909078598, 0.12596140801906586, -0.0958646684885025, -0.007601869758218527, -0.14128378033638, 0.025577908381819725, 0.007707401178777218, 0.20187439024448395, 0.05898413062095642, 0.09803515672683716, 0.09470214694738388, 0.027303282171487808, 0.05071241781115532, -0.15265771746635437, -0.07818691432476044, 0.006344507914036512, 0.020188214257359505, -0.0947110578417778, -0.05553640052676201, -0.10513517260551453, 0.053576767444610596, -0.07612298429012299, 0.019064132124185562, -0.13495217263698578, 0.02928623929619789, 0.028526682406663895, -0.027921991422772408, 0.03339066728949547, 0.08369193226099014, 0.009210003539919853, -0.04755546897649765, 0.12717154622077942, 0.04412243887782097, 0.017993511632084846, -0.04521653801202774, -0.01278658863157034, 0.12421146035194397, 0.14360584318637848, 0.01918681524693966, -0.001105523551814258, -0.027944965288043022, -0.07716459035873413, 0.08061487972736359, 0.020972244441509247, 0.14808189868927002, 0.1501716524362564, 0.053949758410453796, 0.07713029533624649, -0.10541624575853348, 0.12612393498420715, -0.013879522681236267, -0.1258709728717804, 0.03683799132704735, 0.03518489748239517, 0.07439620047807693, -0.0042999726720154285, 0.03438901901245117, -0.009312901645898819, 0.04290906339883804, 0.05296728014945984, -0.002677289769053459, -0.08328524976968765, -0.030611172318458557, 0.06179551035165787, 0.014044993557035923, 0.06854770332574844, -0.04729578644037247, 0.0061864834278821945, 0.01755528524518013, -0.07237474620342255, 0.07176553457975388, -0.13304363191127777, -0.058200057595968246, 0.03972488269209862, 0.02232835255563259, 0.046205878257751465, -0.003570722881704569, -0.03495664894580841, 0.04057719185948372, 0.005926456768065691, -0.16602149605751038, 0.006885182112455368, -0.011021686717867851, -0.06196887791156769, 0.15467756986618042, -0.07666745781898499, -0.2450503706932068, -0.04510078206658363, -0.035736240446567535, -0.06266316026449203, 0.11260819435119629, -0.026611648499965668, -0.059060271829366684, -0.016793739050626755, -0.05977632477879524, 0.011495326645672321, 0.06920617818832397, 0.013901302590966225, 0.13480983674526215, 0.03916879743337631, 0.023870963603258133, -0.02428031526505947, -0.06097988411784172, -0.11791077256202698, -0.0941733866930008, 0.09037508070468903, -0.06651751697063446, -0.008127428591251373, 0.16700145602226257, 0.056032054126262665, 0.05866403132677078, 0.004595295526087284, 0.029134316369891167, 0.03727834299206734, -0.084995798766613, 0.2341861128807068, 0.06304866075515747, -0.019398117437958717, -0.002917047357186675, -0.020753802731633186, -0.08499688655138016, 0.06068040803074837, -0.03737052157521248, -0.04059896618127823, -0.08918856829404831, -0.1266784816980362, -0.08877220749855042, 0.05717235058546066, 0.16689813137054443, -0.0052513545379042625, -0.08059535175561905, 0.10736234486103058, 0.0796818733215332, -0.09225068986415863, -0.02537579834461212, 0.09194325655698776, 0.010204947553575039, -0.02364540472626686, 0.056639403104782104, 0.03593361750245094, -0.019781257957220078, 0.03711000457406044, -0.00257573532871902, 0.03458863124251366, 0.016835572198033333, -0.14055494964122772, 0.05231219157576561, 0.11750900745391846, 0.012069829739630222, 0.12025043368339539, 0.013465612195432186, -0.08826136589050293, -0.05957884341478348, -0.013230454176664352, -0.19385012984275818, 0.10904642194509506, 0.09019769728183746, 0.04312931001186371, -0.14860838651657104, 0.10813544690608978, -0.04306644946336746, 0.08351285010576248, 0.1067407950758934, -0.2642113268375397, 0.0036423751153051853, -0.03326842561364174, 0.028359128162264824, -0.08341172337532043, 0.09038028120994568, -0.06470566987991333, -0.1115608960390091, -0.053854748606681824, 0.06525133550167084, 0.06254604458808899, 0.026750022545456886, -0.004972677677869797, -0.18598012626171112, 0.1481347680091858, -0.02986861951649189, 0.08579276502132416, -0.18543553352355957, 0.15931637585163116, -0.05172941833734512, 0.12537932395935059, -0.022698381915688515, -0.002637258730828762, 0.026867909356951714, -0.03399605304002762, 0.1625255048274994, -0.0409073606133461, 0.15642310678958893, -0.026762813329696655, -0.14874093234539032, 0.012446092441678047, -0.03224608302116394, -0.05365975573658943, 0.07761110365390778, 0.07553143799304962, 0.046440694481134415, 0.001458942424505949, 0.048871174454689026, -0.11025848239660263, 0.04747060313820839, -0.04075581207871437, -0.04985252395272255, 0.08624287694692612, -0.10449808090925217, -0.0511687807738781, -0.02993023209273815, 0.25288864970207214, 0.17034102976322174, -0.028124991804361343, -0.09379451721906662, 0.07859358191490173, -0.03064488060772419, -0.01597987674176693, 0.0412088967859745, 0.011536121368408203, 0.1267804354429245, -0.05502669885754585, -0.0447850227355957, 0.09663673490285873, -0.12159206718206406, -0.018530413508415222, 0.002407568972557783, 0.12857568264007568, 0.07348708808422089, 0.01669606752693653, 0.02860027551651001, -0.04656963422894478, 0.0018204536754637957, -0.08170045167207718, 0.11884095519781113, 0.07160796970129013, -0.016123445704579353, 0.09629114717245102, -0.017119109630584717, -0.0022861286997795105, -0.047503549605607986, 0.0784805491566658, 0.15858936309814453, 0.26214855909347534, 0.0322844572365284, 0.11900454759597778, 0.1258217841386795, 0.003492366522550583, -0.13814705610275269, -0.09850144386291504, 0.08280764520168304, 0.10329670459032059, 0.02300206758081913, -0.20493339002132416, 0.06597665697336197, -0.04755512624979019, -0.015323981642723083, -0.19612976908683777, -0.21520563960075378, -0.05592804402112961, 0.32972949743270874, 0.1255645751953125, 0.27374961972236633, -0.03700410947203636, 0.049674101173877716, 0.04672715440392494, -0.031058654189109802, 0.09224718064069748, -0.036713339388370514, 0.08376426994800568, -0.06319458037614822, 0.01129810232669115, 0.07676895707845688, -0.045062627643346786, 0.04583991691470146, -0.04577665776014328, 0.009134160354733467, -0.04334234818816185, 0.09154178202152252, 0.04793490096926689, -0.017978038638830185, 0.01366831362247467, 0.059250883758068085, 0.013909030705690384, -0.3108117878437042, -0.08843844383955002, -0.03228268399834633, 0.034187521785497665, 0.07044515013694763, -0.08400464802980423, 0.04552198201417923, 0.10525693744421005, 0.031067684292793274, 0.08988678455352783, 0.03283848986029625, -0.03360563889145851, 0.05242898315191269, 0.23304767906665802, 0.028027618303894997, -0.048160772770643234, -0.048917002975940704, -0.02669774368405342, -0.014773254282772541, 0.0499027743935585, -0.0849493220448494, -0.050294991582632065, 0.06169191375374794, -0.011017781682312489, 0.1210239827632904, 0.07479850947856903, -0.07038285583257675, 0.00987644586712122, 0.04732438176870346, -0.17098195850849152, 0.0038032950833439827, -0.00202780868858099, 0.13761094212532043, -0.016773754730820656, 0.006120935548096895, 0.08437280356884003, -0.08233385533094406, -0.02038891799747944, -0.024641627445816994, 0.005009762942790985, -0.10460101068019867, 0.06760076433420181, 0.08084067702293396, 0.027337897568941116, -0.05420425534248352, 0.1193610429763794, -0.033039938658475876, 0.03950437530875206, 0.06597141176462173, -0.07557360827922821, -0.028859084472060204, -0.06685863435268402, 0.10043100267648697, 0.1406954675912857, 0.016379181295633316, -0.04669179022312164, -0.11414129287004471, -0.10710544139146805, 0.08734354376792908, -0.06546417623758316, 0.07892942428588867, -0.07677468657493591, -0.08255546540021896, -0.010517273098230362, -0.09444068372249603, -0.04447844997048378, 0.14797210693359375, -0.026648471131920815, -0.0929340273141861, 0.08044262230396271, -0.015438118018209934, 0.0055185421369969845, -0.05840156599879265, -0.10698007047176361, -0.1628781110048294, 0.059916362166404724, -0.038927264511585236, -0.03962356224656105, -0.13272885978221893, -0.037179745733737946, 0.002477564848959446, -0.017995089292526245, -0.0475023053586483, 0.026429058983922005, -0.11635919660329819, 0.056299880146980286, 0.01953996904194355, 0.040288716554641724, -0.017318999394774437, -0.020099706947803497, -0.02113821916282177, -0.08463560044765472, 0.023866111412644386, 0.06877392530441284, 0.008177416399121284, -0.025448951870203018, -0.1276775300502777, -0.05625737085938454, 0.06482773274183273, 0.008365357294678688, 0.03701959550380707, -0.07845472544431686, 0.0719471350312233, 0.053752440959215164, -0.17868176102638245, -0.05350266396999359, 0.13302956521511078, -0.062374334782361984, 0.019017832353711128, 0.0007651429623365402, 0.00890424009412527, -0.05052490904927254, 0.0047434293664991856, 0.06058851256966591, 0.1491059511899948, 0.07232403010129929, -0.05237719044089317, 0.04028846696019173, -0.1181606873869896, -0.01543267723172903, -0.07514981925487518, 0.0876227393746376, 0.07539303600788116, -0.09654340893030167, 0.03432950749993324, 0.028857648372650146, 0.13421471416950226, -0.02227385900914669, -0.07087045162916183, -0.024413425475358963, -0.0932740792632103, 0.1816822588443756, 0.018025139346718788, 0.1750144064426422, 0.06360404938459396, 0.025980260223150253, 0.08631880581378937, 0.08294340968132019, 0.15788140892982483, -0.039236366748809814, 0.09990602731704712, 0.07841355353593826, 0.02501688525080681, 0.09260602295398712, -0.0010211484041064978, -0.025910647585988045, 0.0014345452655106783, 0.09222637861967087, -0.01653747446835041, -0.031787995249032974, 0.05462580546736717, 0.15426070988178253, 0.11343400925397873, -0.103962242603302, -0.02734813652932644, 0.026323648169636726, -0.025332076475024223, -0.045763373374938965, -0.08595020323991776, -0.07331918179988861, -0.28686967492103577, 0.06320305168628693, -0.12037716805934906, -0.08355093747377396, 0.03685503080487251, 0.010164274834096432, 0.01646699383854866, 0.007802403531968594, 0.009248698130249977, -0.07030624896287918, 0.06776002049446106, -0.07142535597085953, -0.042115502059459686, -0.0783543810248375, -0.13408949971199036, -0.061419904232025146, -0.021140964701771736, 0.04182138666510582, -0.027292590588331223, 0.00486222468316555, 0.04884649068117142, 0.042712561786174774, -0.023913567885756493, 0.014120281673967838, -0.06114206090569496, 0.05018633231520653, 0.12469501048326492, 0.0219395961612463, -0.10633497685194016, 0.019265810027718544, 0.21198487281799316, -0.004999938420951366, -0.10502145439386368, -0.08836928009986877, 0.3049674332141876, 0.06476172059774399, 0.04106021299958229, -0.01361286174505949, -0.01437476184219122, -0.00041659019188955426, 0.14488157629966736, 0.08457684516906738, -0.15814954042434692, 0.0008794564637355506, -0.06264995783567429, -0.015197879634797573, -0.05556768178939819, 0.11675498634576797, 0.08380472660064697, 0.10420957207679749, -0.07129814475774765, -0.01762155443429947, -0.13409608602523804, 0.017142312601208687, -0.057425692677497864, -0.10087604075670242, 0.1338396817445755, -0.05715164169669151, -0.05004504323005676, 0.06525298207998276, -0.1447511911392212, 0.008231217041611671, 0.06065112724900246, -0.08110713958740234, -0.13980525732040405, -0.11640538275241852, -0.03371291607618332, 0.0692720115184784, 0.1508670300245285, -0.08070806413888931, -0.0008083419525064528, -0.07285241037607193, 0.028510792180895805, -0.0025816478300839663, -0.060627277940511703, 0.051284801214933395, -0.023503627628087997, 0.13053905963897705, -0.038751620799303055, 0.04052791744470596, 0.04587004333734512, 0.028946151956915855, -0.05647941306233406, 0.08506221324205399, -0.025729814544320107, -0.045396044850349426, 0.040400125086307526, 0.008014345541596413, -0.04220547527074814, 0.11029570549726486, 0.07213752716779709, -0.14031459391117096, -0.015898456797003746, -0.04708253592252731, -0.010431529954075813, -0.05258002504706383, 0.07149691134691238, -0.1312674731016159, 0.06439293920993805, 0.0029965383000671864, -0.0996989905834198, -0.012033701874315739, -0.00911200512200594, 0.1910649687051773, 0.03190521523356438, 0.06834529340267181, 0.0025197353679686785, -0.13905218243598938, -0.025579677894711494, -0.010881970636546612, -0.07493805885314941, -0.1929207444190979, -0.04978887736797333, -0.11134909093379974, -0.021425949409604073, -0.07780856639146805, 0.09046510607004166, 0.025060277432203293, 0.0046835774555802345, -0.0672236755490303, 0.11925473064184189, -0.012111237272620201, 0.10455512255430222, -0.05764573812484741, -0.09786326438188553 ]
null
null
stable-baselines3
# PPO Agent playing BreakoutNoFrameskip-v4 This is a trained model of a **PPO agent playing BreakoutNoFrameskip-v4 using the [stable-baselines3 library](https://stable-baselines3.readthedocs.io/en/master/index.html)**. The training report: https://wandb.ai/simoninithomas/HFxSB3/reports/Atari-HFxSB3-Benchmark--VmlldzoxNjI3NTIy ## Evaluation Results Mean_reward: `339.0` # Usage (with Stable-baselines3) - You need to use `gym==0.19` since it **includes Atari Roms**. - The Action Space is 6 since we use only **possible actions in this game**. Watch your agent interacts : ```python # Import the libraries import os import gym from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecNormalize from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack from huggingface_sb3 import load_from_hub, push_to_hub # Load the model checkpoint = load_from_hub("ThomasSimonini/ppo-BreakoutNoFrameskip-v4", "ppo-BreakoutNoFrameskip-v4.zip") # Because we using 3.7 on Colab and this agent was trained with 3.8 to avoid Pickle errors: custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } model= PPO.load(checkpoint, custom_objects=custom_objects) env = make_atari_env('BreakoutNoFrameskip-v4', n_envs=1) env = VecFrameStack(env, n_stack=4) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ``` ## Training Code ```python import wandb import gym from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder from stable_baselines3.common.callbacks import CheckpointCallback from wandb.integration.sb3 import WandbCallback from huggingface_sb3 import load_from_hub, push_to_hub config = { "env_name": "BreakoutNoFrameskip-v4", "num_envs": 8, "total_timesteps": int(10e6), "seed": 661550378, } run = wandb.init( project="HFxSB3", config = config, sync_tensorboard = True, # Auto-upload sb3's tensorboard metrics monitor_gym = True, # Auto-upload the videos of agents playing the game save_code = True, # Save the code to W&B ) # There already exists an environment generator # that will make and wrap atari environments correctly. # Here we are also multi-worker training (n_envs=8 => 8 environments) env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"]) #BreakoutNoFrameskip-v4 print("ENV ACTION SPACE: ", env.action_space.n) # Frame-stacking with 4 frames env = VecFrameStack(env, n_stack=4) # Video recorder env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000) model = PPO(policy = "CnnPolicy", env = env, batch_size = 256, clip_range = 0.1, ent_coef = 0.01, gae_lambda = 0.9, gamma = 0.99, learning_rate = 2.5e-4, max_grad_norm = 0.5, n_epochs = 4, n_steps = 128, vf_coef = 0.5, tensorboard_log = f"runs", verbose=1, ) model.learn( total_timesteps = config["total_timesteps"], callback = [ WandbCallback( gradient_save_freq = 1000, model_save_path = f"models/{run.id}", ), CheckpointCallback(save_freq=10000, save_path='./breakout', name_prefix=config["env_name"]), ] ) model.save("ppo-BreakoutNoFrameskip-v4.zip") push_to_hub(repo_id="ThomasSimonini/ppo-BreakoutNoFrameskip-v4", filename="ppo-BreakoutNoFrameskip-v4.zip", commit_message="Added Breakout trained agent") ```
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3", "atari"], "model-index": [{"name": "PPO Agent", "results": [{"task": {"type": "reinforcement-learning"}, "dataset": {"name": "BreakoutNoFrameskip-v4", "type": "BreakoutNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": 339}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-BreakoutNoFrameskip-v4
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "atari", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us
# PPO Agent playing BreakoutNoFrameskip-v4 This is a trained model of a PPO agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library. The training report: URL ## Evaluation Results Mean_reward: '339.0' # Usage (with Stable-baselines3) - You need to use 'gym==0.19' since it includes Atari Roms. - The Action Space is 6 since we use only possible actions in this game. Watch your agent interacts : ## Training Code
[ "# PPO Agent playing BreakoutNoFrameskip-v4\nThis is a trained model of a PPO agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '339.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n", "# PPO Agent playing BreakoutNoFrameskip-v4\nThis is a trained model of a PPO agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '339.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ 34, 50, 15, 52, 3 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n# PPO Agent playing BreakoutNoFrameskip-v4\nThis is a trained model of a PPO agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL## Evaluation Results\nMean_reward: '339.0'# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :## Training Code" ]
[ -0.06185563653707504, 0.04457884654402733, -0.0013184306444600224, 0.05372136831283569, 0.144949272274971, -0.026672732084989548, 0.0511481836438179, 0.11795814335346222, 0.0830492153763771, 0.025964492931962013, 0.012907348573207855, -0.03839511424303055, 0.08412132412195206, 0.386322021484375, 0.05365678668022156, -0.15710009634494781, 0.05219515413045883, 0.03214814513921738, 0.0677170604467392, 0.11516116559505463, 0.0368640199303627, -0.1031256914138794, 0.0374293215572834, 0.07739047706127167, -0.10425315052270889, -0.023806098848581314, -0.0247740987688303, -0.10679938644170761, 0.07449405640363693, -0.06260206550359726, 0.09583573043346405, 0.017504865303635597, 0.04581531509757042, -0.12743645906448364, 0.04340166598558426, 0.07339213788509369, -0.010451952926814556, 0.007821610197424889, 0.033322542905807495, 0.10907866060733795, 0.03584473207592964, -0.016756579279899597, 0.017733585089445114, 0.07154199481010437, -0.12272186577320099, -0.16113050282001495, -0.016998279839754105, 0.05020144581794739, 0.1749800741672516, 0.07645028829574585, -0.006346284411847591, 0.15131397545337677, -0.0755503922700882, -0.027581801638007164, 0.1789989173412323, -0.36302122473716736, -0.08247756958007812, 0.15098229050636292, 0.10217102617025375, 0.11419782787561417, -0.08021292090415955, -0.03145445138216019, 0.00010685725283110514, 0.02536896988749504, 0.014279276132583618, -0.04801558703184128, 0.012002122588455677, 0.01582854427397251, -0.0812343955039978, -0.03309908136725426, 0.2212604582309723, 0.05718177556991577, -0.036593709141016006, -0.10313793271780014, 0.04838414490222931, -0.12727314233779907, 0.0029109392780810595, -0.117606520652771, 0.0878545343875885, 0.03532148525118828, -0.0018197738099843264, 0.0500265434384346, -0.10492595285177231, -0.039161257445812225, 0.0014663956826552749, -0.0051754191517829895, -0.05032666400074959, 0.007288328371942043, 0.00967787392437458, 0.08931344747543335, -0.19417700171470642, -0.012865792028605938, -0.09645627439022064, -0.09014326333999634, -0.12785649299621582, -0.041046805679798126, -0.04844246059656143, 0.1071452870965004, 0.07620351016521454, -0.061438560485839844, -0.040697354823350906, 0.048984792083501816, 0.04412921890616417, 0.025473464280366898, 0.06457839161157608, 0.08442080765962601, 0.02043076977133751, 0.01641957089304924, 0.05921878293156624, 0.0814092755317688, -0.009781657718122005, -0.06563566625118256, -0.1062120571732521, 0.0771915465593338, 0.039242975413799286, -0.012854856438934803, 0.007267357315868139, 0.03679535165429115, -0.13320747017860413, -0.015394285321235657, -0.026341944932937622, -0.0793304368853569, 0.008769485168159008, 0.041908346116542816, -0.10552340745925903, -0.05739816278219223, -0.0325719490647316, 0.03465551510453224, -0.02224130555987358, -0.16462254524230957, -0.08764803409576416, -0.06749804317951202, -0.15562871098518372, -0.031700070947408676, 0.11007585376501083, -0.06396196782588959, 0.004661700688302517, -0.11630145460367203, -0.15023568272590637, -0.009712840430438519, 0.07102404534816742, -0.014579531736671925, -0.15954945981502533, -0.09160742908716202, -0.00999283604323864, -0.09532243013381958, -0.02033401094377041, -0.004136770032346249, -0.02084210142493248, 0.03342250734567642, 0.09970970451831818, 0.11509331315755844, 0.08116812258958817, 0.0012682646047323942, -0.12122488021850586, 0.02283964864909649, -0.2405826598405838, 0.015281403437256813, -0.0520399734377861, -0.02238023467361927, -0.03302618861198425, 0.005574379116296768, 0.06529797613620758, 0.08017165958881378, -0.041252173483371735, 0.08584276586771011, -0.044329456984996796, -0.08464761078357697, 0.09234976768493652, -0.10750259459018707, -0.1907985955476761, -0.04166596382856369, -0.023077882826328278, 0.05694957822561264, 0.0731244832277298, 0.2324252873659134, 0.05772707983851433, -0.14531895518302917, -0.05082554370164871, 0.0015566430520266294, -0.14581218361854553, -0.15672098100185394, 0.10398159176111221, 0.06767269223928452, 0.12567053735256195, 0.0299861878156662, -0.2050718516111374, 0.09879481047391891, -0.07630674540996552, -0.0011106699239462614, 0.0479562021791935, -0.025761961936950684, 0.003351902589201927, 0.056468915194272995, 0.04289141669869423, -0.10615289211273193, -0.12281900644302368, 0.0341910645365715, 0.04671729356050491, 0.013286096975207329, -0.00402069604024291, -0.19863925874233246, 0.1434825360774994, -0.09511356800794601, 0.043847404420375824, -0.10565898567438126, -0.1250125914812088, -0.02238260582089424, 0.1378927379846573, 0.000282389490166679, 0.13943487405776978, 0.1047791987657547, 0.010059036314487457, 0.031490955501794815, -0.1366228312253952, -0.13573111593723297, 0.02280157059431076, 0.015841815620660782, -0.1016383022069931, -0.11984262615442276, -0.1137261614203453, 0.044901032000780106, -0.07074195146560669, 0.0662708505988121, -0.015356537885963917, 0.019861798733472824, 0.03681149706244469, -0.08895570784807205, -0.05886296182870865, 0.08850634843111038, -0.004503183998167515, -0.05378006771206856, 0.09006386995315552, 0.04344363510608673, 0.03971237316727638, 0.00950800534337759, -0.036017052829265594, 0.17411430180072784, 0.1808951497077942, -0.004202613141387701, 0.0007576357456855476, 0.03361614793539047, -0.013755029067397118, 0.046928323805332184, -0.002004076261073351, 0.12269874662160873, 0.11254409700632095, 0.06847772747278214, 0.07848526537418365, -0.07477957010269165, 0.09959754347801208, 0.03530430048704147, -0.10452783107757568, 0.005047496408224106, 0.0022198674269020557, 0.022999268025159836, 0.043835900723934174, 0.14093393087387085, 0.05697820335626602, 0.13597199320793152, 0.17400339245796204, -0.029072124511003494, -0.04269244894385338, -0.058240681886672974, 0.05710180476307869, -0.013175454922020435, 0.05506526306271553, -0.0818130373954773, 0.0244121253490448, 0.007783414330333471, -0.008070179261267185, 0.023988889530301094, -0.14807778596878052, -0.11660374701023102, 0.06540018320083618, 0.01428954303264618, -0.025683995336294174, 0.06016050651669502, -0.03310547396540642, 0.055062949657440186, 0.06182672828435898, -0.042264603078365326, 0.0780501589179039, -0.016748368740081787, -0.04048920422792435, 0.08894554525613785, -0.13187356293201447, -0.230709046125412, -0.026817116886377335, -0.09558682888746262, 0.008083212189376354, 0.10404938459396362, 0.015583431348204613, -0.1745382398366928, 0.05372961238026619, -0.03894732892513275, -0.06579242646694183, -0.09056119620800018, -0.08275199681520462, 0.2195763885974884, 0.06354998052120209, -0.017216388136148453, -0.03584226965904236, -0.03834538906812668, -0.04890313744544983, -0.1824815273284912, 0.07331670075654984, -0.040216002613306046, 0.08953501284122467, 0.18350479006767273, 0.0028748365584760904, 0.06393168121576309, -0.04997217655181885, -0.0844440758228302, -0.0035778977908194065, -0.06948976218700409, 0.24285092949867249, 0.10563492774963379, -0.03992103785276413, -0.0847042053937912, -0.050217438489198685, 0.013579735532402992, 0.01320427842438221, -0.04555375501513481, -0.08144989609718323, -0.12269129604101181, -0.02856414020061493, -0.08616900444030762, 0.160315603017807, -0.02445218339562416, -0.03772804141044617, 0.03747604042291641, 0.0034832414239645004, 0.1358228176832199, -0.056747931987047195, 0.012544520199298859, 0.07005545496940613, 0.1272260844707489, -0.07624800503253937, 0.02003096044063568, 0.010854332707822323, 0.06995300203561783, 0.04174982011318207, -0.022712398320436478, 0.1301945149898529, 0.058213718235492706, -0.030650923028588295, 0.013739550486207008, 0.024063685908913612, 0.017650077119469643, 0.10184755176305771, 0.14794506132602692, -0.09981531649827957, -0.06790892034769058, 0.011109678074717522, -0.1575925052165985, 0.09247428178787231, 0.01896102912724018, 0.044112734496593475, -0.18910953402519226, 0.1657562255859375, 0.000021931529772700742, 0.07335029542446136, -0.007608003914356232, -0.1830136477947235, -0.020617714151740074, -0.008709115907549858, 0.009365713223814964, -0.08696243911981583, 0.025995731353759766, 0.04679350182414055, -0.1434502750635147, -0.05309147760272026, 0.031547851860523224, 0.04531840607523918, 0.087856724858284, 0.020534290000796318, -0.07858820259571075, 0.09168350696563721, -0.023865530267357826, 0.10209138691425323, -0.10091881453990936, 0.0814279317855835, -0.07142245024442673, 0.11009125411510468, -0.018016556277871132, -0.039769142866134644, -0.007647076155990362, 0.006322198547422886, 0.144060418009758, 0.008861229754984379, -0.027977505698800087, -0.14698393642902374, -0.01578175090253353, -0.006357760168612003, -0.05163285881280899, 0.03445527330040932, 0.1032043918967247, 0.0318337008357048, 0.057605065405368805, 0.01695358380675316, 0.15854030847549438, 0.009978221729397774, 0.007912492379546165, -0.07003358006477356, 0.0035207613836973906, 0.1481766551733017, -0.11590596288442612, -0.054028164595365524, 0.004488576669245958, 0.2588486969470978, 0.1104477271437645, -0.03136025741696358, -0.09353040158748627, 0.024860620498657227, -0.08589446544647217, -0.01441686600446701, 0.010188113898038864, -0.024063222110271454, 0.18974599242210388, -0.07894843816757202, -0.010987077839672565, 0.09651476889848709, -0.07751579582691193, -0.04923022910952568, -0.04307674244046211, 0.06504292786121368, 0.054071635007858276, 0.03504783660173416, -0.01903221197426319, -0.0027633230201900005, 0.051693253219127655, -0.01483518909662962, 0.18168455362319946, 0.013349572196602821, -0.023535432294011116, -0.0375489816069603, 0.07826624810695648, 0.042165227234363556, 0.020286863669753075, -0.01654648222029209, 0.09902109950780869, 0.2913370132446289, -0.03623494505882263, 0.15900525450706482, -0.10762127488851547, -0.019625792279839516, -0.05902761220932007, -0.055462609976530075, 0.06411368399858475, 0.018990501761436462, 0.12375301122665405, -0.12125922739505768, 0.04646139219403267, -0.0023915774654597044, -0.02790486440062523, 0.004288665484637022, -0.12635549902915955, 0.013036874122917652, 0.05467388778924942, 0.033395156264305115, 0.24109694361686707, -0.11194466054439545, 0.09653494507074356, 0.06177186220884323, -0.07576249539852142, 0.07824668288230896, -0.03633257746696472, 0.0903245061635971, -0.09492938965559006, 0.03352215141057968, 0.049166079610586166, -0.06299522519111633, 0.06183154508471489, -0.13900232315063477, 0.03904672712087631, -0.06012789160013199, -0.06543781608343124, 0.2066161185503006, -0.06251157820224762, -0.08543546497821808, 0.013578766956925392, -0.09814915060997009, -0.29909294843673706, -0.013659852556884289, -0.07230978459119797, 0.02947225607931614, 0.023606156930327415, -0.04734605923295021, 0.0175340436398983, 0.14490392804145813, -0.02077067643404007, 0.06359256058931351, 0.10091330856084824, -0.04716333746910095, 0.13361257314682007, 0.26709479093551636, -0.01181810162961483, 0.04870394617319107, -0.07420911639928818, -0.05844300240278244, -0.014124570414423943, 0.04544087499380112, -0.11654257774353027, -0.06623999774456024, 0.05912131071090698, -0.014791509136557579, 0.06149677559733391, 0.1089165061712265, -0.15641261637210846, 0.09349486976861954, 0.08527059853076935, -0.09104390442371368, 0.009343366138637066, 0.02014641836285591, 0.07512519508600235, -0.01632567308843136, -0.01417018286883831, 0.03467842563986778, -0.0791647657752037, 0.0025245794095098972, -0.0026227314956486225, 0.025472421199083328, -0.11868171393871307, 0.009097610600292683, -0.008259331807494164, 0.036839984357357025, -0.051639169454574585, 0.1306433379650116, -0.0019556600600481033, -0.03559936583042145, 0.08522479236125946, -0.03162791579961777, -0.04141465201973915, -0.049580853432416916, 0.11684475094079971, 0.12218253314495087, 0.07948429882526398, -0.10196669399738312, -0.09631791710853577, -0.16556014120578766, 0.12653885781764984, -0.020709935575723648, 0.0831407830119133, -0.05735313892364502, -0.008596948347985744, 0.04505755007266998, -0.0925939753651619, -0.011182230897247791, 0.020973145961761475, -0.07151360809803009, -0.1652330607175827, 0.09209555387496948, 0.024713223800063133, 0.006425219122320414, -0.039290882647037506, -0.1064348965883255, -0.1444394886493683, 0.05666558817028999, -0.06396789103746414, -0.1104968935251236, -0.10274598747491837, -0.054470621049404144, -0.024214869365096092, 0.028622692450881004, -0.08162857592105865, 0.028400029987096786, -0.08171176165342331, 0.040491700172424316, 0.006557157728821039, 0.07617584615945816, -0.06783156096935272, -0.05755035951733589, -0.027240723371505737, -0.049844641238451004, -0.024819467216730118, 0.053911108523607254, 0.0426938496530056, -0.0010307645425200462, -0.16297650337219238, 0.0016080796485766768, 0.06695617735385895, -0.04171997308731079, 0.04338353872299194, -0.06554420292377472, 0.005048102233558893, 0.05712871626019478, -0.14445221424102783, -0.0005091376369819045, 0.07346557825803757, -0.07958997040987015, -0.022782396525144577, 0.06402797996997833, -0.031181931495666504, -0.08335933834314346, 0.043561823666095734, 0.19837722182273865, 0.09748761355876923, 0.12109953165054321, -0.008687338791787624, 0.09692536294460297, -0.20968088507652283, -0.03768721967935562, -0.0000025375279619765934, 0.08055347949266434, 0.11496424674987793, -0.045903950929641724, -0.00660115759819746, -0.0044453805312514305, 0.13749860227108002, 0.05285347253084183, -0.04941340163350105, -0.005074227694422007, -0.15077480673789978, 0.09135057032108307, 0.024179134517908096, 0.13669203221797943, 0.034657642245292664, 0.029844552278518677, 0.19816598296165466, 0.12726551294326782, 0.09416224807500839, -0.15761058032512665, 0.12864086031913757, 0.01983288861811161, -0.10224761813879013, 0.12087428569793701, -0.0019313737284392118, -0.03384333476424217, -0.07091717422008514, 0.02688921056687832, -0.02178013324737549, -0.014850454404950142, -0.02799130044877529, 0.15179403126239777, 0.10056717693805695, -0.1366318017244339, 0.011308529414236546, -0.11717037856578827, 0.0414440892636776, -0.021959519013762474, -0.08572079241275787, -0.03487585112452507, -0.34108632802963257, 0.05916586518287659, -0.12570597231388092, 0.09013774245977402, 0.012178551405668259, -0.03188265115022659, 0.008897067978978157, 0.01903953030705452, -0.002052114810794592, -0.016250984743237495, 0.01862642727792263, -0.07074926793575287, -0.05053413659334183, -0.08323146402835846, -0.011235677637159824, -0.017693648114800453, -0.07341132313013077, 0.03379504010081291, 0.032654620707035065, -0.0788227766752243, 0.0640840232372284, 0.0038026447873562574, -0.06291152536869049, -0.004935522563755512, -0.013606259599328041, 0.014669550582766533, 0.0854417085647583, -0.01756465435028076, -0.1010635495185852, -0.00575728714466095, 0.21881982684135437, -0.002435824368149042, -0.0028216347564011812, -0.014177599921822548, 0.21666769683361053, 0.02356228232383728, -0.03396262601017952, -0.0344088077545166, -0.048856817185878754, -0.03510525822639465, 0.18753740191459656, 0.0765809640288353, -0.09000464528799057, -0.039761316031217575, -0.12341644614934921, -0.008915784768760204, -0.09187145531177521, 0.13073155283927917, 0.04414525628089905, 0.05627188831567764, -0.11041804403066635, 0.09922941029071808, -0.08799378573894501, 0.002450241707265377, -0.03319161757826805, -0.07339043915271759, 0.11871695518493652, -0.016061460599303246, -0.05448829382658005, 0.000128074549138546, -0.0693894475698471, -0.05438198894262314, 0.16361330449581146, -0.07858261466026306, -0.04804403334856033, -0.0777505487203598, 0.08816522359848022, 0.010104278102517128, 0.1514856517314911, -0.008392306044697762, 0.03379564732313156, 0.013879108242690563, 0.03315476328134537, -0.07903214544057846, -0.05491679906845093, 0.10521125793457031, -0.12213021516799927, 0.09072908759117126, -0.06278525292873383, 0.06527411192655563, 0.042143288999795914, 0.06224207952618599, -0.04457870125770569, 0.08792901039123535, -0.057259269058704376, -0.05449136346578598, -0.06373858451843262, -0.021860715001821518, -0.014977684244513512, 0.12020711600780487, 0.06211128085851669, -0.11216133832931519, 0.02962731383740902, 0.03454838693141937, 0.0030188013333827257, -0.04442202299833298, 0.07126805931329727, -0.10389818251132965, 0.06839554756879807, 0.07895850390195847, -0.0757523626089096, 0.01908954419195652, -0.030409585684537888, 0.12414123862981796, 0.06607892364263535, 0.058517735451459885, -0.06303729116916656, -0.0444013737142086, 0.009486610069870949, 0.12521299719810486, -0.09087403118610382, -0.16248196363449097, -0.056430649012327194, -0.1911691129207611, -0.10073328018188477, -0.04440314322710037, 0.04777420684695244, 0.041748858988285065, 0.03852361813187599, -0.05954396724700928, 0.154786616563797, 0.07279551774263382, 0.15353040397167206, -0.037225835025310516, -0.03348584100604057 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "-273.72 +/- 71.58", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-LunarLander-v2
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #has_space #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #has_space #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 43, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #has_space #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.033034950494766235, 0.05970261991024017, -0.004670996218919754, 0.025893287733197212, 0.10612103343009949, -0.02927844226360321, 0.10145040601491928, 0.08328273892402649, 0.09811784327030182, 0.05755592882633209, 0.07872316986322403, 0.045881401747465134, 0.05288556218147278, 0.27506154775619507, 0.056657686829566956, -0.23052963614463806, 0.03991077095270157, -0.03627832233905792, 0.11823192983865738, 0.07403969019651413, -0.013458369299769402, -0.07875554263591766, 0.012604630552232265, -0.008119449019432068, 0.0689978078007698, 0.03936253860592842, -0.0402257964015007, -0.08081888407468796, 0.06512090563774109, -0.07696884870529175, 0.07636121660470963, 0.09327474981546402, 0.1229998767375946, -0.14841720461845398, 0.030817270278930664, 0.02920088730752468, -0.08237858861684799, 0.01667744293808937, 0.008989963680505753, 0.055013131350278854, 0.192086860537529, 0.018440058454871178, 0.059122927486896515, -0.014927656389772892, -0.15411832928657532, -0.04200223833322525, 0.045160964131355286, 0.11680570989847183, 0.07841110974550247, 0.057989850640296936, 0.013230614364147186, 0.20032036304473877, -0.04595298692584038, -0.027076903730630875, 0.24481388926506042, -0.27053970098495483, -0.03528568148612976, 0.31520867347717285, 0.09011919051408768, 0.1069083958864212, -0.06915206462144852, -0.052123527973890305, 0.01822168566286564, -0.016871655359864235, -0.022493038326501846, -0.08027844876050949, 0.17845004796981812, 0.05896914750337601, -0.06618133932352066, -0.1224258691072464, 0.19394423067569733, 0.012112732976675034, 0.0010921144858002663, -0.0033901052083820105, 0.00471155671402812, 0.03943970054388046, -0.010666575282812119, -0.07689481973648071, 0.05641617253422737, 0.046907346695661545, 0.022110985592007637, -0.13881996273994446, -0.12700287997722626, -0.014502359554171562, -0.014899903908371925, 0.18782088160514832, -0.009373401291668415, 0.042644202709198, -0.006643983535468578, 0.10190781950950623, -0.10771108418703079, -0.03018086589872837, -0.0390087254345417, -0.07186198979616165, -0.009432865306735039, -0.0158722922205925, -0.04947975277900696, 0.07955717295408249, 0.12194989621639252, 0.002372213639318943, 0.08044705539941788, 0.03656577318906784, -0.02423132210969925, 0.07135516405105591, 0.06015363708138466, 0.14733165502548218, 0.03028685413300991, 0.027284901589155197, 0.11563601344823837, 0.05376247316598892, 0.025942033156752586, -0.04895208030939102, -0.17196159064769745, 0.07992248982191086, -0.05662199854850769, -0.01465695071965456, 0.1382792741060257, -0.03975105658173561, -0.11901277303695679, -0.027320438995957375, -0.020290473476052284, -0.056290220469236374, -0.03234195336699486, 0.04957265406847, -0.032209109514951706, -0.06426789611577988, 0.017169037833809853, 0.09178859740495682, 0.0014727474190294743, -0.1782260686159134, 0.03276842087507248, -0.016486069187521935, -0.11463532596826553, 0.004372776951640844, -0.009174318052828312, 0.0326649434864521, 0.04912431165575981, -0.11963267624378204, -0.2811846137046814, -0.08673854172229767, 0.04926832392811775, -0.0630497857928276, -0.18407127261161804, -0.11042071133852005, 0.016689922660589218, -0.09806643426418304, -0.05171700567007065, -0.13181596994400024, -0.037792205810546875, 0.03023645654320717, 0.011325438506901264, 0.1325894445180893, -0.0009340464021079242, -0.009079040959477425, -0.1656387448310852, 0.004010156262665987, -0.2050737887620926, 0.07438305765390396, -0.01478739082813263, 0.0274655818939209, -0.02923734486103058, -0.0837252289056778, 0.008338836021721363, 0.050638504326343536, -0.004211658611893654, 0.13177886605262756, -0.13383923470973969, -0.03451899439096451, -0.015470032580196857, -0.12788361310958862, -0.05078364163637161, -0.10924837738275528, -0.03134153410792351, 0.14561748504638672, -0.00598627794533968, 0.1415734887123108, -0.10321229696273804, -0.07342702895402908, 0.1856898069381714, -0.010652557015419006, -0.12860359251499176, -0.07804602384567261, 0.10314932465553284, 0.040010713040828705, -0.06391718983650208, -0.03228594362735748, -0.17405058443546295, -0.018983928486704826, -0.05564240738749504, -0.04435695707798004, 0.017199158668518066, -0.013475097715854645, 0.13465042412281036, 0.09926197677850723, 0.056543368846178055, -0.0618852935731411, -0.011249395087361336, 0.08907618373632431, 0.0889892727136612, 0.02080884948372841, 0.022250188514590263, -0.04941245913505554, 0.09212355315685272, -0.0653262734413147, -0.01772953011095524, -0.09418539702892303, -0.016018955036997795, -0.03809044137597084, 0.18198488652706146, 0.0886300802230835, 0.26396462321281433, 0.09530983865261078, 0.03244016319513321, 0.05059562996029854, -0.14667943120002747, -0.14432719349861145, 0.009942536242306232, 0.08957689255475998, -0.12515461444854736, -0.0466044619679451, -0.09474638849496841, -0.17510026693344116, -0.09489563852548599, 0.012659101746976376, -0.16942627727985382, 0.05747257545590401, 0.055557724088430405, -0.032610684633255005, 0.03681007772684097, 0.1355762779712677, -0.02157357707619667, -0.039302367717027664, 0.07054483145475388, 0.046301230788230896, -0.021637002006173134, -0.019984982907772064, 0.10776099562644958, 0.1876276433467865, 0.15928596258163452, -0.04825180768966675, 0.012190589681267738, 0.0929846316576004, -0.03613347187638283, 0.06750360876321793, 0.06697694957256317, 0.2102515548467636, 0.15674333274364471, 0.020914938300848007, 0.0043275742791593075, -0.07108131051063538, 0.09411513805389404, -0.061758991330862045, -0.1493237465620041, -0.07284507900476456, 0.09197802096605301, 0.01653446815907955, 0.0569855235517025, 0.1018514484167099, 0.041046470403671265, 0.08161032944917679, 0.15085919201374054, 0.036763593554496765, -0.10853923112154007, -0.05868322029709816, 0.006812459789216518, 0.025302603840827942, 0.05164114385843277, -0.061384402215480804, -0.012886048294603825, 0.02506096474826336, -0.11751911044120789, 0.047497447580099106, -0.14818260073661804, -0.14656543731689453, 0.05411911383271217, 0.02279868721961975, -0.00032149444450624287, 0.0297200009226799, -0.006993875373154879, 0.02735612541437149, 0.03232697397470474, -0.07792100310325623, 0.04460956156253815, -0.01874651201069355, -0.005681145470589399, 0.02018751949071884, -0.041813675314188004, -0.21566465497016907, -0.1638374924659729, 0.015607071109116077, -0.08980118483304977, 0.10680843144655228, 0.03802011162042618, -0.1218796968460083, 0.06182039529085159, -0.0674511045217514, 0.015323875471949577, -0.021460985764861107, -0.030847711488604546, 0.10482539236545563, 0.14508558809757233, -0.00895498413592577, 0.02735964022576809, -0.055587805807590485, -0.10952331125736237, -0.1963605284690857, 0.09688024967908859, 0.046251170337200165, 0.021866345778107643, 0.09406451135873795, 0.00855918787419796, 0.02151944674551487, -0.0075876107439398766, -0.019919948652386665, -0.01948588341474533, -0.10501264035701752, 0.34101393818855286, 0.07289362698793411, -0.034224461764097214, 0.012517333030700684, -0.011503836140036583, -0.019800707697868347, 0.037036098539829254, -0.11199486255645752, -0.08073998242616653, -0.06963104009628296, -0.050111252814531326, -0.10688438266515732, 0.06124865636229515, 0.05719827860593796, 0.0004623093700502068, -0.06781865656375885, 0.05906130373477936, 0.1109357699751854, -0.0927712693810463, -0.09071315079927444, 0.07188592106103897, 0.07476765662431717, -0.08257105946540833, 0.0014752786373719573, 0.017674261704087257, 0.010292376391589642, 0.03196996450424194, 0.07308870553970337, -0.0533534437417984, 0.07726124674081802, -0.21617601811885834, 0.029547687619924545, 0.1208110824227333, 0.010082620196044445, 0.06313548237085342, 0.09650491178035736, -0.10802645981311798, -0.011804320849478245, -0.03558411821722984, -0.21222220361232758, 0.173801451921463, 0.13902214169502258, 0.0687556341290474, -0.02835696190595627, -0.03336518257856369, -0.07379066199064255, 0.05293881520628929, 0.013105036690831184, -0.16869352757930756, 0.0016010046238079667, 0.04788303002715111, 0.040654897689819336, 0.029019299894571304, 0.07794925570487976, 0.0290463175624609, -0.15651710331439972, -0.03448411822319031, 0.11233589053153992, -0.005793972406536341, 0.01735900714993477, -0.02615610882639885, -0.18547777831554413, 0.05993885546922684, -0.004942248575389385, 0.06928041577339172, -0.17319202423095703, 0.13816925883293152, -0.1105862557888031, 0.061400189995765686, -0.00931440107524395, -0.020139243453741074, 0.017614372074604034, -0.060395754873752594, 0.14664128422737122, -0.0008032167097553611, -0.006030206568539143, -0.13830897212028503, -0.1666138470172882, -0.019462669268250465, -0.12704764306545258, -0.12329994142055511, 0.06506231427192688, 0.07918529957532883, 0.05345873534679413, -0.06194451451301575, 0.18528687953948975, -0.033452264964580536, 0.0829768031835556, -0.05864477902650833, -0.06165916845202446, 0.0525154285132885, -0.12886330485343933, -0.09538360685110092, 0.0335761159658432, 0.17226633429527283, 0.18068288266658783, -0.020800387486815453, -0.036594223231077194, -0.04946591705083847, -0.0021053177770227194, 0.0077032120898365974, 0.018140412867069244, 0.044520795345306396, 0.06488168239593506, -0.07497972249984741, -0.10064643621444702, 0.04352138191461563, -0.07646768540143967, -0.061039768159389496, -0.016715360805392265, 0.1319347470998764, 0.04810499772429466, 0.0827217847108841, -0.03338329493999481, 0.03822769224643707, -0.03380535915493965, -0.048442624509334564, 0.17092402279376984, 0.024141915142536163, -0.007676771376281977, 0.07068914920091629, 0.08408541232347488, 0.05083881691098213, 0.03718160092830658, -0.02378970757126808, 0.17376543581485748, 0.18735235929489136, 0.013920403085649014, 0.20080628991127014, 0.012984244152903557, -0.019011499360203743, -0.1288863867521286, -0.06486223638057709, -0.0027789666783064604, 0.044969674199819565, 0.0944850742816925, -0.15865379571914673, -0.03840262442827225, -0.05407639220356941, -0.04260688275098801, -0.1503782421350479, -0.29032447934150696, -0.046976760029792786, 0.21634800732135773, 0.1431468278169632, 0.2801162302494049, -0.11869446933269501, 0.06551803648471832, 0.033485300838947296, -0.047919128090143204, -0.007699922658503056, -0.015388386324048042, 0.10327591001987457, -0.15577153861522675, 0.10539968311786652, 0.08939670026302338, -0.030695566907525063, 0.013849967159330845, -0.17897753417491913, 0.0029025364201515913, -0.1250687688589096, 0.05650191381573677, 0.1459670513868332, -0.0462120957672596, -0.056885942816734314, 0.15093065798282623, -0.029636040329933167, -0.24594619870185852, -0.04543855041265488, -0.051842059940099716, -0.005944810342043638, 0.031991682946681976, -0.10219234228134155, 0.03737794980406761, 0.130740687251091, -0.00009692446474218741, 0.12075318396091461, 0.11832956969738007, -0.053471628576517105, 0.10977432131767273, 0.24953632056713104, -0.031501516699790955, 0.04108303412795067, -0.13304364681243896, 0.016667863354086876, -0.025582140311598778, 0.029895629733800888, -0.09594975411891937, -0.11233679950237274, 0.016395900398492813, 0.01989678107202053, 0.004937679041177034, 0.09820377826690674, -0.032468099147081375, 0.08409201353788376, 0.06757453083992004, -0.14281637966632843, -0.1581268608570099, 0.018508203327655792, 0.003505005268380046, 0.09566670656204224, 0.019362207502126694, 0.08093781769275665, -0.14695332944393158, -0.01173867005854845, -0.04377402737736702, -0.029763294383883476, -0.12767331302165985, -0.06271930783987045, 0.0715346485376358, 0.02392962947487831, -0.054825931787490845, 0.1332094967365265, 0.03520266339182854, 0.14017930626869202, 0.04478879272937775, -0.007754059508442879, 0.09099229425191879, -0.07058122754096985, 0.12056165933609009, 0.09912184625864029, 0.019273608922958374, -0.05846021696925163, -0.11371026188135147, -0.0872187465429306, 0.09512364119291306, -0.08133497834205627, 0.07993178814649582, -0.1580318808555603, -0.06569679081439972, 0.016456304118037224, 0.012043525464832783, -0.10485195368528366, 0.024528807029128075, -0.010578134097158909, -0.17699208855628967, 0.07200181484222412, -0.054085202515125275, 0.053803957998752594, -0.07176181674003601, -0.11039295047521591, -0.17704787850379944, 0.056152258068323135, 0.10927057266235352, -0.06299483776092529, -0.12907519936561584, 0.0003973120474256575, 0.004046202637255192, -0.07573185116052628, -0.06367643922567368, 0.0952790379524231, -0.1236831471323967, 0.03537451848387718, -0.010787692852318287, 0.09122823923826218, -0.020981498062610626, -0.005456078797578812, 0.042805928736925125, -0.07956003397703171, -0.02080526202917099, 0.03549614176154137, -0.035096507519483566, -0.07293997704982758, -0.2457709014415741, 0.014526505954563618, 0.03475251793861389, 0.020602552220225334, 0.08012402057647705, 0.01786339469254017, 0.023760776966810226, 0.042542994022369385, -0.1665138453245163, -0.02958240546286106, 0.14578773081302643, -0.07244269549846649, -0.022886263206601143, 0.056574273854494095, -0.06756900250911713, 0.015013964846730232, -0.036084044724702835, 0.14005477726459503, 0.02612016163766384, 0.057758186012506485, -0.06612563878297806, 0.09087936580181122, -0.17037983238697052, -0.05378846451640129, -0.016697075217962265, 0.09150818735361099, 0.08336973935365677, -0.10014954209327698, 0.03578079491853714, 0.049885138869285583, 0.18943694233894348, 0.03646441549062729, -0.03956649452447891, -0.04655851796269417, 0.0021909538190811872, 0.2337411642074585, 0.02635437622666359, 0.09389118105173111, 0.0644984319806099, -0.027661895379424095, 0.12118413299322128, 0.10424522310495377, 0.12166732549667358, -0.03867761045694351, 0.11602602154016495, 0.04141949862241745, 0.04652220755815506, 0.07274097949266434, 0.048562996089458466, 0.08725878596305847, -0.016612792387604713, 0.10143627226352692, 0.00887170247733593, -0.017099054530262947, -0.03211123123764992, 0.16585686802864075, 0.11658350378274918, -0.12513253092765808, 0.02801322005689144, -0.02085980772972107, 0.05692583695054054, 0.009195979684591293, -0.15743297338485718, -0.056825414299964905, -0.3491095006465912, 0.11203311383724213, -0.06957917660474777, 0.019690021872520447, 0.03894025459885597, -0.048190873116254807, -0.03505706414580345, -0.043019842356443405, 0.15587812662124634, -0.02367441914975643, -0.030587095767259598, -0.05737672373652458, -0.006905161775648594, -0.13756290078163147, -0.12091942876577377, -0.0007400952163152397, -0.1341152787208557, -0.0026509007439017296, 0.05207345634698868, -0.007465109694749117, 0.024180838838219643, -0.02883283607661724, -0.00005642198084387928, 0.0636054277420044, -0.05730043724179268, 0.05654380843043327, 0.11737369745969772, 0.08119698613882065, -0.1038062646985054, 0.03192654997110367, 0.19965043663978577, 0.037770580500364304, -0.10597841441631317, 0.022040005773305893, 0.17857509851455688, 0.006352068856358528, 0.00888292770832777, -0.01246048603206873, -0.0588051863014698, -0.08300882577896118, 0.11036264896392822, 0.08458882570266724, -0.09702931344509125, 0.031951986253261566, -0.06185349449515343, -0.022269411012530327, -0.07255537062883377, 0.09301583468914032, 0.11724347621202469, 0.04682016372680664, -0.11884068697690964, -0.07265595346689224, -0.11644084751605988, 0.05383598059415817, -0.07850177586078644, -0.081883504986763, 0.09643660485744476, -0.07699533551931381, -0.06586699187755585, 0.014641178771853447, -0.1566888391971588, -0.01974518597126007, 0.19012519717216492, -0.24928636848926544, -0.08830771595239639, -0.09592128545045853, 0.157853901386261, 0.01711384393274784, 0.10655876249074936, -0.01570509932935238, -0.007628097664564848, -0.21622177958488464, 0.02054433524608612, -0.04944758862257004, -0.013014430180191994, 0.07435359805822372, -0.10498958826065063, 0.22337517142295837, -0.09671801328659058, 0.022190161049365997, 0.007258819881826639, 0.0912289246916771, -0.03342974931001663, 0.09751251339912415, -0.0379866398870945, -0.1372314691543579, -0.035385485738515854, 0.012623332440853119, 0.01678459718823433, 0.08002375066280365, 0.10797511041164398, -0.03759554773569107, 0.03676166757941246, 0.08503388613462448, 0.06987646967172623, -0.011579615995287895, 0.024906547740101814, -0.16281482577323914, 0.02411370724439621, -0.027479425072669983, -0.0779392346739769, 0.04016202315688133, -0.06008682772517204, 0.16057801246643066, 0.034063395112752914, 0.07705307006835938, -0.03819284960627556, 0.014564740471541882, -0.015260489657521248, -0.02723086252808571, -0.02124994620680809, -0.14464923739433289, -0.09568983316421509, -0.13074178993701935, -0.025993404909968376, -0.02292408049106598, 0.02411116473376751, 0.007332404609769583, -0.01191167812794447, -0.02301393635571003, -0.07782351970672607, 0.04658731445670128, 0.12103427946567535, -0.054632075130939484, -0.020931344479322433 ]
null
null
stable-baselines3
# PPO Agent playing PongNoFrameskip-v4 This is a trained model of a **PPO agent playing PongNoFrameskip-v4 using the [stable-baselines3 library](https://stable-baselines3.readthedocs.io/en/master/index.html)** (our agent is the 🟢 one). The training report: https://wandb.ai/simoninithomas/HFxSB3/reports/Atari-HFxSB3-Benchmark--VmlldzoxNjI3NTIy ## Evaluation Results Mean_reward: `21.00 +/- 0.0` # Usage (with Stable-baselines3) - You need to use `gym==0.19` since it **includes Atari Roms**. - The Action Space is 6 since we use only **possible actions in this game**. Watch your agent interacts : ```python # Import the libraries import os import gym from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecNormalize from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack from huggingface_sb3 import load_from_hub, push_to_hub # Load the model checkpoint = load_from_hub("ThomasSimonini/ppo-PongNoFrameskip-v4", "ppo-PongNoFrameskip-v4.zip") # Because we using 3.7 on Colab and this agent was trained with 3.8 to avoid Pickle errors: custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } model= PPO.load(checkpoint, custom_objects=custom_objects) env = make_atari_env('PongNoFrameskip-v4', n_envs=1) env = VecFrameStack(env, n_stack=4) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ``` ## Training Code ```python import wandb import gym from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder from stable_baselines3.common.callbacks import CheckpointCallback from wandb.integration.sb3 import WandbCallback from huggingface_sb3 import load_from_hub, push_to_hub config = { "env_name": "PongNoFrameskip-v4", "num_envs": 8, "total_timesteps": int(10e6), "seed": 4089164106, } run = wandb.init( project="HFxSB3", config = config, sync_tensorboard = True, # Auto-upload sb3's tensorboard metrics monitor_gym = True, # Auto-upload the videos of agents playing the game save_code = True, # Save the code to W&B ) # There already exists an environment generator # that will make and wrap atari environments correctly. # Here we are also multi-worker training (n_envs=8 => 8 environments) env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"]) #PongNoFrameskip-v4 print("ENV ACTION SPACE: ", env.action_space.n) # Frame-stacking with 4 frames env = VecFrameStack(env, n_stack=4) # Video recorder env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000) # https://github.com/DLR-RM/rl-trained-agents/blob/10a9c31e806820d59b20d8b85ca67090338ea912/ppo/PongNoFrameskip-v4_1/PongNoFrameskip-v4/config.yml model = PPO(policy = "CnnPolicy", env = env, batch_size = 256, clip_range = 0.1, ent_coef = 0.01, gae_lambda = 0.9, gamma = 0.99, learning_rate = 2.5e-4, max_grad_norm = 0.5, n_epochs = 4, n_steps = 128, vf_coef = 0.5, tensorboard_log = f"runs", verbose=1, ) model.learn( total_timesteps = config["total_timesteps"], callback = [ WandbCallback( gradient_save_freq = 1000, model_save_path = f"models/{run.id}", ), CheckpointCallback(save_freq=10000, save_path='./pong', name_prefix=config["env_name"]), ] ) model.save("ppo-PongNoFrameskip-v4.zip") push_to_hub(repo_id="ThomasSimonini/ppo-PongNoFrameskip-v4", filename="ppo-PongNoFrameskip-v4.zip", commit_message="Added Pong trained agent") ```
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3", "atari"], "model-index": [{"name": "PPO Agent", "results": [{"task": {"type": "reinforcement-learning"}, "dataset": {"name": "PongNoFrameskip-v4", "type": "PongNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": 21}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-PongNoFrameskip-v4
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "atari", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us
# PPO Agent playing PongNoFrameskip-v4 This is a trained model of a PPO agent playing PongNoFrameskip-v4 using the stable-baselines3 library (our agent is the 🟢 one). The training report: URL ## Evaluation Results Mean_reward: '21.00 +/- 0.0' # Usage (with Stable-baselines3) - You need to use 'gym==0.19' since it includes Atari Roms. - The Action Space is 6 since we use only possible actions in this game. Watch your agent interacts : ## Training Code
[ "# PPO Agent playing PongNoFrameskip-v4\nThis is a trained model of a PPO agent playing PongNoFrameskip-v4 using the stable-baselines3 library (our agent is the 🟢 one).\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '21.00 +/- 0.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n", "# PPO Agent playing PongNoFrameskip-v4\nThis is a trained model of a PPO agent playing PongNoFrameskip-v4 using the stable-baselines3 library (our agent is the 🟢 one).\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '21.00 +/- 0.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ 34, 58, 16, 52, 3 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n# PPO Agent playing PongNoFrameskip-v4\nThis is a trained model of a PPO agent playing PongNoFrameskip-v4 using the stable-baselines3 library (our agent is the 🟢 one).\n\nThe training report: URL## Evaluation Results\nMean_reward: '21.00 +/- 0.0'# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :## Training Code" ]
[ -0.027718111872673035, 0.018721982836723328, -0.0002684223582036793, 0.061592452228069305, 0.14993548393249512, -0.021469129249453545, 0.050697918981313705, 0.1353498101234436, 0.03407679870724678, 0.08423275500535965, 0.011936867609620094, -0.08620453625917435, 0.08613061904907227, 0.279257595539093, 0.04594394937157631, -0.1985512673854828, 0.08007553964853287, 0.0431903675198555, 0.057851288467645645, 0.1395411491394043, 0.005366389639675617, -0.09398126602172852, 0.009897989220917225, 0.03838162124156952, -0.07948413491249084, -0.048354621976614, -0.035735685378313065, -0.13433626294136047, 0.06471030414104462, -0.07423736155033112, 0.10852324217557907, 0.0006032882956787944, 0.03423193469643593, -0.12418552488088608, 0.035294145345687866, 0.08076705038547516, -0.022694377228617668, -0.005895254202187061, -0.0001900939387269318, 0.12107697874307632, 0.07936756312847137, 0.03755045682191849, 0.019700532779097557, 0.05430995672941208, -0.14463883638381958, -0.15152409672737122, 0.02130196802318096, 0.005021721124649048, 0.1667383462190628, 0.1072443351149559, -0.014819533564150333, 0.14994879066944122, -0.11010155081748962, -0.057800158858299255, 0.1310649812221527, -0.3506293296813965, -0.07168175280094147, 0.26901063323020935, 0.0598798543214798, 0.14702828228473663, -0.10331035405397415, -0.06906495243310928, 0.024821123108267784, 0.03278627619147301, -0.012878495268523693, -0.017338145524263382, 0.128268763422966, 0.017168374732136726, -0.05659109726548195, -0.08104445040225983, 0.20107007026672363, 0.06920155137777328, -0.03463779389858246, -0.0765303522348404, 0.02969004027545452, -0.16323746740818024, -0.04113662615418434, -0.05531271547079086, 0.08062275499105453, 0.04621081426739693, 0.005252461414784193, 0.09688179939985275, -0.10946576297283173, -0.027954448014497757, 0.01793706603348255, 0.03307880833745003, -0.031068632379174232, 0.005966429132968187, -0.005931433290243149, 0.09348195791244507, -0.25480714440345764, -0.03856349736452103, -0.06826368719339371, -0.06444767117500305, -0.08761758357286453, -0.015575994737446308, -0.04078821465373039, 0.047596752643585205, 0.09044744819402695, -0.09997446089982986, -0.04735131934285164, 0.06297963857650757, 0.004703158512711525, 0.048886749893426895, 0.037982214242219925, 0.10502449423074722, -0.038146235048770905, 0.027775747701525688, 0.03298044577240944, 0.11160874366760254, -0.017324967309832573, -0.0779469758272171, -0.1101669892668724, 0.06540119647979736, 0.036466702818870544, -0.0628054141998291, 0.008844117633998394, 0.030157489702105522, -0.12460561841726303, -0.016796767711639404, 0.009760340675711632, -0.051413875073194504, 0.010585448704659939, 0.05205529183149338, -0.10286129266023636, 0.030465345829725266, -0.05984056368470192, 0.044409312307834625, -0.03901498019695282, -0.10104162245988846, -0.06134728342294693, -0.05156832933425903, -0.16840937733650208, -0.06468571722507477, 0.08862688392400742, -0.02205093763768673, -0.0022517149336636066, -0.08741877228021622, -0.10078340023756027, -0.05934707820415497, 0.0542919784784317, -0.03936080262064934, -0.12521950900554657, -0.07088778913021088, -0.041630275547504425, -0.09887851029634476, 0.007980158552527428, -0.055272795259952545, -0.04664590209722519, 0.0847293809056282, 0.09849769622087479, 0.15279418230056763, 0.028614269569516182, 0.008403878659009933, -0.12708796560764313, 0.032985471189022064, -0.324776291847229, -0.012277147732675076, -0.048811834305524826, -0.011957652866840363, -0.03713780641555786, -0.04043041169643402, -0.04905784875154495, 0.0498017854988575, -0.03527900204062462, 0.05924771726131439, -0.02819511666893959, -0.05031004548072815, 0.10799556970596313, -0.10575846582651138, -0.13997535407543182, -0.014966943301260471, -0.0005014284979552031, 0.01687607169151306, 0.027848264202475548, 0.2167300432920456, 0.040215346962213516, -0.09371469169855118, -0.03923395648598671, -0.03842096030712128, -0.10856812447309494, -0.14969176054000854, 0.13062487542629242, 0.07264024019241333, 0.05972908064723015, 0.04572102800011635, -0.1684739589691162, 0.05010044574737549, -0.06572823226451874, 0.00542018236592412, 0.04355085641145706, -0.01866774819791317, 0.052697859704494476, 0.06245177984237671, 0.05173061415553093, -0.10933195799589157, -0.11088923364877701, 0.019016003236174583, 0.06801414489746094, 0.0057664900086820126, 0.006704485509544611, -0.1615350991487503, 0.17800547182559967, -0.14317110180854797, 0.03036888875067234, -0.11611077189445496, -0.134665846824646, -0.011242972686886787, 0.16604332625865936, 0.00481501966714859, 0.16526252031326294, 0.1311788111925125, 0.014744095504283905, -0.0012212978908792138, -0.13874277472496033, -0.17972804605960846, -0.00023895908088888973, 0.016065582633018494, -0.08077459782361984, -0.11180064082145691, -0.1050477996468544, 0.06872117519378662, -0.04826287180185318, 0.06011326238512993, -0.05094056949019432, 0.026655392721295357, 0.005452998448163271, -0.08554120361804962, -0.013566809706389904, 0.0839032307267189, -0.016495103016495705, -0.04066701978445053, 0.08051653206348419, 0.04013410210609436, 0.07764851301908493, -0.010296232998371124, -0.05126218870282173, 0.24638427793979645, 0.19999143481254578, 0.035453010350465775, 0.014797274023294449, 0.013450847938656807, -0.01440105028450489, 0.05254713445901871, -0.04901803657412529, 0.11854178458452225, 0.06541864573955536, 0.07757613807916641, 0.07841824740171432, -0.09113787114620209, 0.1430463194847107, 0.050759658217430115, -0.11920435726642609, 0.018507035449147224, -0.018110524863004684, 0.09490388631820679, 0.054013218730688095, 0.16104485094547272, 0.0026857582852244377, 0.09543699771165848, 0.15840351581573486, -0.016288936138153076, -0.08804459124803543, -0.03614996001124382, 0.11078981310129166, -0.022571343928575516, 0.06791172176599503, -0.11580178141593933, 0.026205357164144516, 0.024641994386911392, -0.025951538234949112, 0.016880610957741737, -0.1582907736301422, -0.12204241007566452, 0.06330481916666031, 0.013121544383466244, -0.05807226896286011, 0.035213395953178406, -0.009257437661290169, 0.08110535144805908, 0.06700996309518814, -0.06232033669948578, 0.03630868345499039, -0.013997269794344902, -0.0036296863108873367, 0.0625261589884758, -0.06752197444438934, -0.22373159229755402, -0.0338318906724453, -0.03745334595441818, -0.01904875412583351, 0.10240604728460312, 0.019817093387246132, -0.1812548190355301, 0.03497490659356117, -0.04506226256489754, -0.15796950459480286, -0.06106846034526825, -0.06696558743715286, 0.1572200208902359, 0.07854866981506348, 0.006981564220041037, -0.029185952618718147, -0.03970576450228691, -0.0531182698905468, -0.14273099601268768, 0.10306457430124283, -0.03954072669148445, 0.08655282109975815, 0.232444629073143, -0.04506415128707886, 0.0675153136253357, -0.0186685249209404, -0.0734240785241127, -0.01814666949212551, -0.05796381086111069, 0.22019563615322113, 0.1339215338230133, -0.011751496233046055, -0.034164272248744965, -0.04204094782471657, -0.002585959155112505, 0.03703991696238518, -0.031024552881717682, -0.10073872655630112, -0.10536452382802963, -0.012183350510895252, -0.08171626180410385, 0.15777543187141418, 0.031776003539562225, -0.005322900600731373, 0.02275264449417591, 0.036964643746614456, 0.12266971915960312, -0.03432635962963104, -0.008955796249210835, 0.08644284307956696, 0.05731211230158806, -0.05439635366201401, 0.02554483897984028, 0.005352589301764965, 0.043197039514780045, 0.038650501519441605, 0.02973269298672676, 0.03633350506424904, 0.03611696511507034, -0.060507215559482574, 0.006624758709222078, 0.10605207085609436, 0.0470576137304306, 0.06284014880657196, 0.10380211472511292, -0.11627128720283508, -0.07764394581317902, -0.0015947079518809915, -0.1785539984703064, 0.094162717461586, 0.10290578007698059, 0.02848631888628006, -0.1384289711713791, 0.10632791370153427, 0.01076680701225996, 0.018831869587302208, 0.03515467047691345, -0.19851338863372803, -0.014883378520607948, -0.026201309636235237, 0.005417809821665287, -0.10659513622522354, 0.06159158796072006, 0.06242693215608597, -0.13111774623394012, -0.09732376039028168, 0.046087171882390976, 0.06164140999317169, 0.10743357986211777, 0.01438248623162508, -0.04436805099248886, 0.04921594262123108, -0.0457349456846714, 0.0860464796423912, -0.11280355602502823, 0.08002342283725739, -0.0794256404042244, 0.051310427486896515, -0.016104241833090782, -0.0606858916580677, -0.004470632411539555, -0.05378030240535736, 0.09773850440979004, 0.01402998249977827, 0.03926168009638786, -0.1684378981590271, -0.022810176014900208, -0.012970756739377975, -0.0664217472076416, 0.06056356802582741, 0.11360827833414078, 0.058292731642723083, 0.0544692724943161, 0.009589959867298603, 0.14427345991134644, 0.07162006199359894, 0.03180261328816414, -0.07104276120662689, 0.03579212725162506, 0.11934854090213776, -0.09829608350992203, -0.032813794910907745, -0.05374911427497864, 0.2225721925497055, 0.28561317920684814, -0.0028474892023950815, -0.09416622668504715, 0.057528235018253326, -0.045625388622283936, 0.006517031695693731, 0.026700139045715332, -0.04773437976837158, 0.1610904484987259, -0.0705973282456398, 0.0415913425385952, 0.10437797009944916, -0.0425797775387764, -0.014905269257724285, -0.03363746777176857, 0.11022159457206726, -0.014612484723329544, 0.05680161714553833, -0.0450129434466362, -0.020628158003091812, 0.06334737688302994, -0.04766078293323517, 0.17613224685192108, -0.045905135571956635, 0.002851829631254077, -0.04112493619322777, 0.10465981066226959, 0.1033082902431488, 0.017166277393698692, 0.005029717925935984, 0.10407043993473053, 0.25294411182403564, -0.028484327718615532, 0.1039329394698143, -0.03657275065779686, 0.04551250860095024, -0.06632385402917862, -0.04390157759189606, 0.033585354685783386, 0.021248089149594307, 0.09613724797964096, -0.09207701683044434, 0.022939277812838554, -0.021230176091194153, -0.02892550639808178, -0.041533783078193665, -0.21345093846321106, 0.012945136055350304, 0.06997968256473541, 0.09480412304401398, 0.295515775680542, -0.12528082728385925, 0.08547753840684891, 0.07021534442901611, -0.14996719360351562, -0.01681186631321907, -0.08481352031230927, 0.1086391732096672, -0.08571076393127441, 0.05742764472961426, 0.05789066106081009, -0.09239137917757034, 0.08009614050388336, -0.11778417229652405, 0.020980218425393105, -0.06258098781108856, -0.05841828137636185, 0.17715014517307281, -0.04846534505486488, -0.02333352342247963, 0.0760880559682846, -0.07992315292358398, -0.29384076595306396, -0.025414500385522842, -0.07770134508609772, -0.03142951428890228, 0.03827681019902229, -0.062050316482782364, -0.005438606254756451, 0.1372499167919159, -0.015178423374891281, 0.07738430798053741, 0.09203986823558807, -0.03834552317857742, 0.14494428038597107, 0.3187278211116791, -0.07542404532432556, 0.06882987916469574, -0.11826483905315399, -0.04061031714081764, 0.0027766143903136253, 0.0714774951338768, -0.16979855298995972, -0.0702439695596695, 0.06590529531240463, 0.0020429769065231085, 0.07231803983449936, 0.10886067152023315, -0.1261633187532425, 0.07835567742586136, 0.06697320938110352, -0.05295266583561897, -0.043956369161605835, 0.03943846374750137, 0.10462066531181335, -0.0031698162201792, -0.041519876569509506, 0.00789538025856018, -0.12380290776491165, 0.009035639464855194, 0.024856995791196823, 0.00507269985973835, -0.11031736433506012, 0.013945856131613255, 0.009571963921189308, 0.04722641035914421, -0.08078646659851074, 0.13813112676143646, 0.024091271683573723, -0.08005848526954651, 0.06771937757730484, -0.03282584249973297, -0.05504800006747246, -0.05831585451960564, 0.11189419031143188, 0.05421121045947075, 0.11056359112262726, -0.07437584549188614, -0.1078064814209938, -0.15084193646907806, 0.1332014501094818, -0.07606790214776993, 0.08495055139064789, -0.055670253932476044, -0.01669890806078911, 0.03143780305981636, -0.13246268033981323, -0.04049159586429596, 0.036744482815265656, -0.029481345787644386, -0.14506269991397858, 0.04402444139122963, 0.04186836630105972, -0.01127813383936882, -0.026817914098501205, -0.11956712603569031, -0.14283934235572815, 0.07426819205284119, -0.05628085136413574, -0.1039239913225174, -0.1096799373626709, -0.06048913672566414, -0.00712777441367507, 0.004496003966778517, -0.058569204062223434, 0.013826345093548298, -0.11119406670331955, 0.038812894374132156, 0.024761386215686798, 0.06873282790184021, -0.04689392074942589, -0.022318510338664055, -0.024448368698358536, -0.05462287738919258, -0.0366448275744915, 0.07257774472236633, 0.025414641946554184, -0.02199397049844265, -0.15459974110126495, -0.000573189405258745, 0.10656026005744934, -0.050801001489162445, 0.04378070309758186, -0.08367546647787094, 0.04303985834121704, 0.03590072691440582, -0.1396944224834442, 0.010932971723377705, 0.08588038384914398, -0.11069398373365402, 0.02411900833249092, -0.019374828785657883, -0.07485014945268631, -0.07172509282827377, 0.010485070757567883, 0.18126681447029114, 0.06479529291391373, 0.10671234130859375, 0.0006589952390640974, 0.08017212897539139, -0.21023087203502655, -0.03410807624459267, -0.0329093299806118, 0.07956508547067642, 0.0860166847705841, -0.03495636582374573, -0.006815274246037006, 0.0033923599403351545, 0.0737641304731369, 0.03843054175376892, -0.07181587815284729, -0.004038210958242416, -0.114915631711483, 0.043566085398197174, 0.020164992660284042, 0.12152073532342911, 0.04334146901965141, 0.016365617513656616, 0.2032834142446518, 0.13208916783332825, 0.09616222977638245, -0.06232120096683502, 0.11408761888742447, 0.026355650275945663, -0.013025558553636074, 0.10381343215703964, -0.04624492675065994, 0.006823292933404446, -0.11858178675174713, 0.16144855320453644, -0.045309122651815414, 0.00020317398593761027, -0.02164323814213276, 0.12706594169139862, 0.18729336559772491, -0.12954206764698029, 0.018547849729657173, -0.12990015745162964, 0.03743254020810127, -0.002026095986366272, -0.1054617315530777, -0.038900937885046005, -0.37377050518989563, 0.06705182790756226, -0.10419509559869766, 0.0893179327249527, 0.08241698890924454, 0.007182134781032801, 0.024935660883784294, 0.07217919826507568, 0.009507032111287117, -0.02129315957427025, 0.005872068461030722, -0.05539027228951454, -0.036659352481365204, -0.03797333687543869, -0.03306915983557701, -0.03175552934408188, -0.09968948364257812, 0.04002976417541504, 0.044507402926683426, -0.04808202013373375, 0.04265221580862999, 0.019588395953178406, -0.06434067338705063, 0.014577838592231274, -0.020077455788850784, 0.05005791783332825, 0.1589488387107849, -0.0023414252791553736, -0.0904913991689682, -0.008428131230175495, 0.2708144187927246, -0.007346253376454115, -0.045192282646894455, -0.05702529475092888, 0.19015006721019745, 0.05493791028857231, -0.06016926094889641, -0.0387655608355999, -0.06568242609500885, -0.022210856899619102, 0.14430314302444458, 0.036661867052316666, -0.11074482649564743, -0.026337305083870888, -0.103310726583004, -0.021835116669535637, -0.056870244443416595, 0.11043991893529892, 0.057288456708192825, 0.046253979206085205, -0.1351437270641327, 0.04561617970466614, -0.1068013533949852, -0.012545128352940083, -0.026056770235300064, -0.02598482556641102, 0.12348941713571548, -0.032074254006147385, -0.09847139567136765, -0.005342247895896435, -0.055237747728824615, -0.04217008873820305, 0.1526893824338913, -0.08222904801368713, -0.05282624438405037, -0.058683041483163834, 0.0665847584605217, 0.038785405457019806, 0.14417575299739838, -0.02834216319024563, 0.02148616872727871, -0.05607037991285324, 0.019705181941390038, -0.07041355222463608, -0.03474953770637512, 0.07331838458776474, -0.009578126482665539, 0.0891387090086937, -0.035377319902181625, 0.0049470872618258, 0.049560219049453735, 0.07793406397104263, -0.05149006098508835, 0.11794088035821915, -0.025936363264918327, -0.0664718821644783, -0.10004979372024536, -0.0010095632169395685, -0.0034069493412971497, 0.12050583213567734, 0.057232003659009933, -0.2006848156452179, 0.008975966833531857, 0.04393864423036575, 0.03344503045082092, -0.06541606783866882, 0.06437977403402328, -0.08343654125928879, 0.0594487227499485, 0.0878930538892746, -0.06523633748292923, -0.005519050173461437, -0.029868029057979584, 0.1349434107542038, 0.03383013978600502, 0.03329599276185036, -0.08199846744537354, -0.043004680424928665, 0.006970508489757776, 0.0432618223130703, -0.10922122746706009, -0.17569364607334137, -0.042603231966495514, -0.11955010890960693, -0.07310295104980469, -0.062001023441553116, 0.0375288724899292, 0.017623350024223328, 0.0322406180202961, -0.06343032419681549, 0.10727047175168991, 0.05791647732257843, 0.17032386362552643, -0.03837665170431137, -0.04215424135327339 ]
null
null
stable-baselines3
# PPO Agent playing QbertNoFrameskip-v4 This is a trained model of a **PPO agent playing QbertNoFrameskip-v4 using the [stable-baselines3 library](https://stable-baselines3.readthedocs.io/en/master/index.html)**. The training report: https://wandb.ai/simoninithomas/HFxSB3/reports/Atari-HFxSB3-Benchmark--VmlldzoxNjI3NTIy ## Evaluation Results Mean_reward: `15685.00 +/- 115.217` # Usage (with Stable-baselines3) - You need to use `gym==0.19` since it **includes Atari Roms**. - The Action Space is 6 since we use only **possible actions in this game**. Watch your agent interacts : ```python # Import the libraries import os import gym from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecNormalize from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack from huggingface_sb3 import load_from_hub, push_to_hub # Load the model checkpoint = load_from_hub("ThomasSimonini/ppo-QbertNoFrameskip-v4", "ppo-QbertNoFrameskip-v4.zip") # Because we using 3.7 on Colab and this agent was trained with 3.8 to avoid Pickle errors: custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } model= PPO.load(checkpoint, custom_objects=custom_objects) env = make_atari_env('QbertNoFrameskip-v4', n_envs=1) env = VecFrameStack(env, n_stack=4) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ``` ## Training Code ```python import wandb import gym from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder from stable_baselines3.common.callbacks import CheckpointCallback from wandb.integration.sb3 import WandbCallback from huggingface_sb3 import load_from_hub, push_to_hub config = { "env_name": "QbertNoFrameskip-v4", "num_envs": 8, "total_timesteps": int(10e6), "seed": 1194709219, } run = wandb.init( project="HFxSB3", config = config, sync_tensorboard = True, # Auto-upload sb3's tensorboard metrics monitor_gym = True, # Auto-upload the videos of agents playing the game save_code = True, # Save the code to W&B ) # There already exists an environment generator # that will make and wrap atari environments correctly. # Here we are also multi-worker training (n_envs=8 => 8 environments) env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"]) #QbertNoFrameskip-v4 print("ENV ACTION SPACE: ", env.action_space.n) # Frame-stacking with 4 frames env = VecFrameStack(env, n_stack=4) # Video recorder env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000) model = PPO(policy = "CnnPolicy", env = env, batch_size = 256, clip_range = 0.1, ent_coef = 0.01, gae_lambda = 0.9, gamma = 0.99, learning_rate = 2.5e-4, max_grad_norm = 0.5, n_epochs = 4, n_steps = 128, vf_coef = 0.5, tensorboard_log = f"runs", verbose=1, ) model.learn( total_timesteps = config["total_timesteps"], callback = [ WandbCallback( gradient_save_freq = 1000, model_save_path = f"models/{run.id}", ), CheckpointCallback(save_freq=10000, save_path='./qbert', name_prefix=config["env_name"]), ] ) model.save("ppo-QbertNoFrameskip-v4.zip") push_to_hub(repo_id="ThomasSimonini/ppo-QbertNoFrameskip-v4", filename="ppo-QbertNoFrameskip-v4.zip", commit_message="Added Qbert trained agent") ```
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3", "atari"], "model-index": [{"name": "PPO Agent", "results": [{"task": {"type": "reinforcement-learning"}, "dataset": {"name": "QbertNoFrameskip-v4", "type": "QbertNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "15685.00 +/- 115.217"}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-QbertNoFrameskip-v4
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "atari", "model-index", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #has_space #region-us
# PPO Agent playing QbertNoFrameskip-v4 This is a trained model of a PPO agent playing QbertNoFrameskip-v4 using the stable-baselines3 library. The training report: URL ## Evaluation Results Mean_reward: '15685.00 +/- 115.217' # Usage (with Stable-baselines3) - You need to use 'gym==0.19' since it includes Atari Roms. - The Action Space is 6 since we use only possible actions in this game. Watch your agent interacts : ## Training Code
[ "# PPO Agent playing QbertNoFrameskip-v4\nThis is a trained model of a PPO agent playing QbertNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '15685.00 +/- 115.217'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #has_space #region-us \n", "# PPO Agent playing QbertNoFrameskip-v4\nThis is a trained model of a PPO agent playing QbertNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '15685.00 +/- 115.217'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ 38, 50, 19, 52, 3 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #has_space #region-us \n# PPO Agent playing QbertNoFrameskip-v4\nThis is a trained model of a PPO agent playing QbertNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL## Evaluation Results\nMean_reward: '15685.00 +/- 115.217'# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :## Training Code" ]
[ -0.06665125489234924, 0.014857757836580276, 0.0009286589920520782, 0.08892475813627243, 0.11731737852096558, -0.0452510304749012, -0.030919929966330528, 0.14572307467460632, 0.08875685930252075, 0.09719551354646683, 0.003844439284875989, -0.10133401304483414, 0.06104794517159462, 0.25319164991378784, 0.024882176890969276, -0.1356489658355713, 0.061597790569067, 0.05199285224080086, 0.018395457416772842, 0.12984709441661835, 0.0187680684030056, -0.12534458935260773, 0.015404695644974709, 0.040887635201215744, -0.07026650756597519, -0.054163858294487, -0.027562402188777924, -0.12339142709970474, 0.09600715339183807, -0.05313880741596222, 0.0974382534623146, 0.03080112859606743, 0.046302467584609985, -0.11946342140436172, 0.04098821058869362, 0.08103838562965393, -0.04211752116680145, -0.0015173330903053284, -0.003931911196559668, 0.1496465504169464, -0.01826159469783306, 0.04395516589283943, 0.02361626923084259, 0.06627174466848373, -0.12800484895706177, -0.12338346242904663, 0.011436102911829948, -0.011824888177216053, 0.18098124861717224, 0.07536836713552475, -0.015407979488372803, 0.14155109226703644, -0.13136838376522064, -0.028666332364082336, 0.1291295289993286, -0.4110186994075775, -0.05234076827764511, 0.2594349980354309, 0.11039088666439056, 0.16342894732952118, -0.11513900756835938, -0.05212925001978874, 0.035153668373823166, 0.03866905719041824, 0.03052888624370098, -0.02285948023200035, 0.06453739106655121, 0.049869127571582794, -0.06793616712093353, -0.05767912417650223, 0.13383284211158752, 0.07575859129428864, -0.02213495969772339, -0.0743740126490593, 0.002042462583631277, -0.15898290276527405, -0.0211475882679224, -0.06343641877174377, 0.06818059086799622, 0.0130913145840168, -0.02915734425187111, 0.08109258860349655, -0.10974810272455215, -0.06137440353631973, -0.005084519740194082, -0.015458377078175545, -0.04077724739909172, -0.015309033915400505, -0.019615761935710907, 0.114339679479599, -0.2703624367713928, -0.05213999003171921, -0.13134723901748657, -0.07921911776065826, -0.12483514845371246, -0.007542184554040432, -0.04527987912297249, 0.02979922853410244, 0.07453814148902893, -0.0920671820640564, -0.020757820457220078, 0.07165730744600296, 0.007489306386560202, 0.056050561368465424, 0.002724794205278158, 0.18364371359348297, -0.006057878956198692, -0.03001406602561474, 0.05859318748116493, 0.14991140365600586, -0.03186777979135513, -0.09448107331991196, -0.13812005519866943, 0.01591005176305771, 0.027412913739681244, -0.03394417464733124, -0.0017427291022613645, 0.035837847739458084, -0.09987752884626389, -0.009251211769878864, 0.06990302354097366, -0.03073759563267231, -0.00048781471559777856, 0.07804436981678009, -0.11742924153804779, -0.08975397050380707, -0.004492995794862509, 0.05597905442118645, -0.0011505901347845793, -0.12382637709379196, -0.055147260427474976, -0.08212649822235107, -0.14336846768856049, -0.09518226236104965, 0.0697847455739975, -0.00026658602291718125, 0.010790140368044376, -0.12607340514659882, -0.06886740028858185, -0.03313432261347771, 0.01149776577949524, -0.015780894085764885, -0.12548328936100006, -0.07019859552383423, -0.023360099643468857, -0.08809032291173935, -0.004258904606103897, -0.014987732283771038, -0.053395193070173264, 0.10366038978099823, 0.08953908830881119, 0.1711614429950714, 0.019992059096693993, 0.014458105899393559, -0.1093815416097641, 0.04179510474205017, -0.2916916310787201, 0.015057235956192017, -0.07130104303359985, -0.020180944353342056, -0.01177715789526701, -0.03859313204884529, -0.012329258024692535, 0.02535313367843628, -0.021350737661123276, 0.06355465948581696, -0.07722695171833038, -0.0428326241672039, 0.0921749621629715, -0.05693741515278816, -0.18598763644695282, -0.03910670801997185, -0.019499287009239197, -0.01028041448444128, 0.009456438012421131, 0.26411139965057373, 0.07928112894296646, -0.09746718406677246, -0.07750099897384644, -0.0027686837129294872, -0.09105192124843597, -0.16649238765239716, 0.10824885964393616, 0.10828135162591934, 0.0844622328877449, 0.025068815797567368, -0.19053173065185547, 0.06773702055215836, -0.0429372601211071, -0.0036490715574473143, 0.014849919825792313, -0.06772870570421219, 0.09837058931589127, 0.024079209193587303, 0.0565226748585701, -0.08450989425182343, -0.11261390149593353, -0.033545684069395065, 0.05355796962976456, 0.019666530191898346, 0.003883171593770385, -0.16361869871616364, 0.1776699274778366, -0.11715926229953766, 0.03243500739336014, -0.13379202783107758, -0.12200747430324554, 0.024614552035927773, 0.13525430858135223, 0.007299433927983046, 0.16310036182403564, 0.1375463753938675, 0.03943069651722908, 0.007804366294294596, -0.17303583025932312, -0.1803538054227829, 0.00209239823743701, -0.0244881771504879, -0.04108715057373047, -0.11933352053165436, -0.12799791991710663, 0.0471317432820797, -0.0619954839348793, 0.05168435722589493, -0.012810845859348774, 0.009199289605021477, 0.039157599210739136, -0.04611582309007645, -0.0008146905456669629, 0.07238592952489853, -0.016497788950800896, -0.033796507865190506, 0.0653974860906601, 0.03377280756831169, 0.032788343727588654, -0.017462603747844696, -0.07165323942899704, 0.24781985580921173, 0.15602202713489532, 0.06322018057107925, 0.047375064343214035, -0.014464725740253925, -0.01606651581823826, 0.050474297255277634, -0.023236965760588646, 0.07111162692308426, 0.11116982996463776, 0.08898903429508209, 0.09377308934926987, -0.11096256971359253, 0.0888562947511673, 0.028902778401970863, -0.0664617270231247, 0.04126196354627609, 0.010615537874400616, 0.07445883005857468, 0.033486220985651016, 0.10036429017782211, 0.0831747055053711, 0.10327082872390747, 0.17733609676361084, 0.010601036250591278, -0.04377453774213791, -0.01778147928416729, 0.08224739879369736, -0.012583613395690918, 0.10235853493213654, -0.06045980751514435, 0.028849249705672264, 0.029747946187853813, -0.028515031561255455, -0.0030713458545506, -0.15275321900844574, -0.11652979254722595, 0.07574523985385895, -0.0023363151121884584, -0.10992414504289627, 0.059309329837560654, -0.005875723902136087, 0.09618481248617172, 0.0734030082821846, -0.05889322608709335, 0.0374971404671669, -0.0376519039273262, -0.0003035279514733702, 0.08694189786911011, -0.07144327461719513, -0.18614248931407928, -0.029189547523856163, -0.0368163138628006, -0.027481814846396446, 0.09235619753599167, 0.04290059208869934, -0.2086896151304245, 0.05019040405750275, -0.04322557896375656, -0.12932120263576508, -0.02196126990020275, -0.060695841908454895, 0.1102680042386055, 0.06184270977973938, 0.028795458376407623, -0.07346774637699127, -0.017601238563656807, -0.048429250717163086, -0.13973505795001984, 0.08417608588933945, -0.01996123418211937, 0.12101443856954575, 0.24294117093086243, -0.056124813854694366, 0.06796092540025711, -0.028099054470658302, 0.03910670056939125, -0.025161001831293106, -0.025338049978017807, 0.1899096518754959, 0.1134386733174324, -0.002840969478711486, -0.02279612608253956, -0.044922616332769394, 0.009570940397679806, 0.03470095992088318, -0.02888665534555912, -0.09041490405797958, -0.0914175882935524, -0.005091507453471422, -0.06495913863182068, 0.15471994876861572, 0.005855254363268614, 0.00009400929411640391, 0.005263368133455515, 0.017668507993221283, 0.12587854266166687, -0.04351973906159401, -0.044651251286268234, 0.06062307953834534, 0.057759370654821396, -0.05532871559262276, 0.03541248291730881, 0.003184408647939563, 0.0658828392624855, 0.02460704743862152, 0.07680048048496246, 0.07419334352016449, -0.005405707750469446, -0.05752675235271454, -0.004488208331167698, 0.14832837879657745, 0.07999192923307419, 0.08628842979669571, 0.05730044096708298, -0.12400718033313751, -0.0667722150683403, -0.00113280292134732, -0.14379896223545074, 0.1002575010061264, 0.09318526089191437, 0.030268419533967972, -0.17204315960407257, 0.09313073009252548, 0.0011402087984606624, 0.03782902657985687, 0.007512413896620274, -0.1356234848499298, -0.021138831973075867, -0.004306185990571976, 0.011204331181943417, -0.08581496775150299, 0.07341958582401276, 0.1267525851726532, -0.12342368066310883, -0.12154243886470795, 0.040897779166698456, 0.0736871287226677, 0.10482601821422577, 0.030223554000258446, -0.05178196728229523, 0.019861435517668724, -0.05182434991002083, 0.08537537604570389, -0.1135234385728836, 0.07713550329208374, -0.06094393879175186, 0.04178570955991745, -0.0066423662938177586, -0.07857589423656464, 0.016946177929639816, -0.016705485060811043, 0.095918670296669, 0.0010130985174328089, 0.010723347775638103, -0.2533576190471649, 0.0009232547599822283, 0.00013945624232292175, -0.07261933386325836, 0.05917821079492569, 0.13212068378925323, 0.07466612756252289, 0.035449106246232986, 0.019504711031913757, 0.1615990549325943, 0.0813002660870552, 0.027527496218681335, -0.08809351176023483, 0.05974419414997101, 0.10296511650085449, -0.10841017961502075, -0.013824977912008762, -0.07800836861133575, 0.11430098861455917, 0.13492751121520996, -0.013316341675817966, -0.06744606792926788, -0.011252659372985363, -0.06046270206570625, -0.028348203748464584, 0.05122741684317589, -0.032630860805511475, 0.19397008419036865, -0.08816665410995483, 0.02778838388621807, 0.08050614595413208, -0.06562091410160065, -0.017730817198753357, -0.03895800560712814, 0.07890878617763519, -0.025380661711096764, 0.08215470612049103, -0.022798722609877586, -0.033048730343580246, 0.032121118158102036, -0.05088524520397186, 0.16843809187412262, -0.1067279726266861, -0.05320248752832413, -0.08510897308588028, 0.05483683571219444, 0.15221382677555084, 0.004700962454080582, 0.03547540307044983, 0.14816464483737946, 0.25579574704170227, -0.07829369604587555, 0.12411810457706451, -0.04063258692622185, 0.0677502304315567, -0.08722621202468872, -0.03203582763671875, 0.04196649044752121, 0.05220913887023926, 0.14297445118427277, -0.08127667009830475, -0.002696775132790208, -0.049080222845077515, -0.03168557211756706, -0.004235964734107256, -0.19457653164863586, 0.009383231401443481, 0.056984078139066696, 0.08226312696933746, 0.22571980953216553, -0.08411572873592377, 0.07468605786561966, 0.10804620385169983, -0.14742694795131683, -0.008696518838405609, -0.1326426863670349, 0.1085578054189682, -0.0872553214430809, 0.0933571457862854, 0.06917357444763184, -0.07030632346868515, 0.0794234573841095, -0.12625181674957275, 0.031027305871248245, -0.058802928775548935, -0.10747107863426208, 0.10833118110895157, -0.08847959339618683, -0.08056775480508804, 0.018808718770742416, -0.037976399064064026, -0.2982669472694397, 0.0017438026843592525, -0.08950898051261902, -0.03794039040803909, 0.029897067695856094, -0.07221800088882446, -0.026081671938300133, 0.1316002458333969, -0.0031706364825367928, 0.07074566185474396, 0.07613927870988846, -0.0522395558655262, 0.13730280101299286, 0.3652297556400299, -0.04697822779417038, 0.0236000157892704, -0.12647628784179688, -0.027675174176692963, 0.003372140694409609, 0.10545795410871506, -0.1894100457429886, -0.04943373054265976, 0.08029428124427795, 0.011580843478441238, 0.05535772442817688, 0.10650084167718887, -0.1080501526594162, 0.11654125154018402, 0.06945782899856567, -0.05368214100599289, -0.04254378378391266, 0.024004260078072548, 0.15150177478790283, -0.020345216616988182, -0.04882684350013733, 0.009797541424632072, -0.1000494509935379, 0.014767666347324848, 0.03613985702395439, -0.013785784132778645, -0.09621254354715347, 0.03164674714207649, 0.06469101458787918, 0.08151303231716156, -0.0729171633720398, 0.12171805649995804, 0.03965713456273079, -0.04139287397265434, 0.05617895722389221, -0.03807692602276802, -0.06011371314525604, -0.057326436042785645, 0.0535208098590374, 0.11740211397409439, 0.053422462195158005, -0.053179483860731125, -0.0988587886095047, -0.14577168226242065, 0.10836883634328842, -0.00012182173668406904, 0.06362859159708023, -0.06132713332772255, -0.030895141884684563, 0.030842086300253868, -0.08702389150857925, 0.012834456749260426, 0.0016368579817935824, -0.029024768620729446, -0.1598389446735382, 0.04483006149530411, 0.010493744164705276, 0.0732458308339119, -0.02989654615521431, -0.1006070226430893, -0.1291341483592987, 0.06269355118274689, -0.11564099043607712, -0.09792856127023697, -0.022571424022316933, -0.029508301988244057, -0.07008892297744751, 0.011287879198789597, -0.08127930015325546, 0.02718740701675415, -0.11799753457307816, 0.04369521141052246, 0.005827594548463821, 0.06377867609262466, -0.048260658979415894, -0.043220311403274536, -0.01362235751003027, -0.03553217649459839, -0.010971937328577042, 0.0008883000700734556, -0.008138913661241531, -0.0007565333507955074, -0.09379719942808151, -0.012256402522325516, 0.06047479808330536, -0.010766318999230862, 0.08129340410232544, -0.01851225271821022, 0.026210030540823936, -0.02634800598025322, -0.1606379896402359, -0.0019592158496379852, 0.07329730689525604, -0.09827567636966705, 0.025707131251692772, -0.006424818187952042, -0.031359247863292694, -0.07515052706003189, 0.03235814347863197, 0.1354692578315735, 0.07990071922540665, 0.07997854053974152, -0.0073055666871368885, 0.078996442258358, -0.21086788177490234, -0.038854457437992096, 0.008807674050331116, 0.04066845402121544, 0.0416567400097847, -0.04061916470527649, 0.000673697330057621, -0.009422264993190765, 0.07078558206558228, -0.004227692726999521, -0.03731861710548401, 0.006897043436765671, -0.11898164451122284, 0.039584748446941376, -0.020258130505681038, 0.12466412782669067, 0.028986899182200432, 0.019963767379522324, 0.21374589204788208, 0.13985511660575867, 0.10142064094543457, -0.02336994744837284, 0.13298100233078003, 0.03237202763557434, 0.019963810220360756, 0.09575709700584412, -0.013206054456532001, -0.0140411127358675, -0.09304179251194, 0.13063910603523254, -0.023371262475848198, 0.004797253757715225, -0.059464823454618454, 0.11834786832332611, 0.15884113311767578, -0.12448102235794067, 0.01763441599905491, -0.12007039785385132, 0.038772791624069214, 0.0042817676439881325, -0.026498863473534584, -0.038103800266981125, -0.34029513597488403, 0.04206693917512894, -0.09813316911458969, 0.08747418969869614, 0.021272804588079453, -0.011176233179867268, 0.007888243533670902, 0.13028614223003387, -0.021928580477833748, 0.009296359494328499, 0.026656145229935646, -0.04753413796424866, -0.03424554318189621, -0.023882970213890076, -0.0065181865356862545, 0.017104540020227432, -0.09135068953037262, 0.000045448185119312257, 0.0449569895863533, -0.08211015164852142, 0.025852670893073082, 0.040749091655015945, -0.05826500058174133, -0.0012013869127258658, -0.0027111407835036516, 0.047505542635917664, 0.16382063925266266, 0.015749061480164528, -0.07012241333723068, -0.02924230881035328, 0.26359185576438904, -0.014235591515898705, -0.030240654945373535, -0.018836859613656998, 0.08332223445177078, 0.05808362364768982, -0.03879223391413689, -0.04498932883143425, -0.08507242053747177, -0.04896610602736473, 0.16963757574558258, -0.0159408338367939, -0.19747725129127502, -0.006785139441490173, -0.12778204679489136, -0.00871947966516018, -0.07274969667196274, 0.1051051989197731, 0.07081273198127747, 0.08814405649900436, -0.14277613162994385, 0.0005894045461900532, -0.08547917753458023, 0.015884073451161385, -0.000060415339248720556, 0.018148016184568405, 0.12355247884988785, -0.02322102151811123, -0.12790293991565704, -0.03619782254099846, -0.058142468333244324, -0.016253085806965828, 0.07112941145896912, -0.12831129133701324, -0.0726848617196083, -0.0709802582859993, 0.09611624479293823, 0.03153100609779358, 0.12886042892932892, -0.03143441304564476, 0.025503328070044518, -0.05308856815099716, -0.020549066364765167, -0.01716236211359501, -0.037346869707107544, 0.08354803919792175, 0.026264498010277748, 0.1356707662343979, -0.030253950506448746, -0.014326532371342182, 0.06219165772199631, 0.06624957174062729, -0.04272310808300972, 0.1430714875459671, 0.002594573190435767, -0.13214164972305298, -0.11901639401912689, 0.024312268942594528, 0.00898805446922779, 0.14520542323589325, 0.05537697672843933, -0.20807483792304993, 0.04433710500597954, 0.0724983885884285, -0.003320306073874235, -0.0833563432097435, 0.0629412829875946, -0.02955459989607334, 0.06993375718593597, 0.08838760107755661, -0.058587972074747086, -0.011766965501010418, -0.013640163466334343, 0.11725405603647232, 0.04868991672992706, 0.07489293813705444, -0.08469249308109283, -0.028590312227606773, 0.039674922823905945, 0.01533430814743042, -0.11605237424373627, -0.21116846799850464, -0.07444643974304199, -0.12652592360973358, -0.047697681933641434, -0.029798882082104683, 0.08093138784170151, 0.0518818199634552, 0.01737035997211933, -0.05049533024430275, 0.13075114786624908, 0.03546237200498581, 0.16761888563632965, -0.05154530704021454, -0.059463780373334885 ]
null
null
stable-baselines3
# PPO Agent playing SeaquestNoFrameskip-v4 This is a trained model of a **PPO agent playing SeaquestNoFrameskip-v4 using the [stable-baselines3 library](https://stable-baselines3.readthedocs.io/en/master/index.html)**. The training report: https://wandb.ai/simoninithomas/HFxSB3/reports/Atari-HFxSB3-Benchmark--VmlldzoxNjI3NTIy ## Evaluation Results Mean_reward: `1820.00 +/- 20.0` # Usage (with Stable-baselines3) - You need to use `gym==0.19` since it **includes Atari Roms**. - The Action Space is 6 since we use only **possible actions in this game**. Watch your agent interacts : ```python # Import the libraries import os import gym from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecNormalize from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack from huggingface_sb3 import load_from_hub, push_to_hub # Load the model checkpoint = load_from_hub("ThomasSimonini/ppo-SeaquestNoFrameskip-v4", "ppo-SeaquestNoFrameskip-v4.zip") # Because we using 3.7 on Colab and this agent was trained with 3.8 to avoid Pickle errors: custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } model= PPO.load(checkpoint, custom_objects=custom_objects) env = make_atari_env('SeaquestNoFrameskip-v4', n_envs=1) env = VecFrameStack(env, n_stack=4) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ``` ## Training Code ```python import wandb import gym from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder from stable_baselines3.common.callbacks import CheckpointCallback from wandb.integration.sb3 import WandbCallback from huggingface_sb3 import load_from_hub, push_to_hub config = { "env_name": "SeaquestNoFrameskip-v4", "num_envs": 8, "total_timesteps": int(10e6), "seed": 2862830927, } run = wandb.init( project="HFxSB3", config = config, sync_tensorboard = True, # Auto-upload sb3's tensorboard metrics monitor_gym = True, # Auto-upload the videos of agents playing the game save_code = True, # Save the code to W&B ) # There already exists an environment generator # that will make and wrap atari environments correctly. # Here we are also multi-worker training (n_envs=8 => 8 environments) env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"]) #SeaquestNoFrameskip-v4 print("ENV ACTION SPACE: ", env.action_space.n) # Frame-stacking with 4 frames env = VecFrameStack(env, n_stack=4) # Video recorder env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000) model = PPO(policy = "CnnPolicy", env = env, batch_size = 256, clip_range = 0.1, ent_coef = 0.01, gae_lambda = 0.9, gamma = 0.99, learning_rate = 2.5e-4, max_grad_norm = 0.5, n_epochs = 4, n_steps = 128, vf_coef = 0.5, tensorboard_log = f"runs", verbose=1, ) model.learn( total_timesteps = config["total_timesteps"], callback = [ WandbCallback( gradient_save_freq = 1000, model_save_path = f"models/{run.id}", ), CheckpointCallback(save_freq=10000, save_path='./seaquest', name_prefix=config["env_name"]), ] ) model.save("ppo-SeaquestNoFrameskip-v4.zip") push_to_hub(repo_id="ThomasSimonini/ppo-SeaquestNoFrameskip-v4", filename="ppo-SeaquestNoFrameskip-v4.zip", commit_message="Added Seaquest trained agent") ```
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3", "atari"], "model-index": [{"name": "PPO Agent", "results": [{"task": {"type": "reinforcement-learning"}, "dataset": {"name": "SeaquestNoFrameskip-v4", "type": "SeaquestNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "1820.00 +/- 20.0"}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-SeaquestNoFrameskip-v4
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "atari", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us
# PPO Agent playing SeaquestNoFrameskip-v4 This is a trained model of a PPO agent playing SeaquestNoFrameskip-v4 using the stable-baselines3 library. The training report: URL ## Evaluation Results Mean_reward: '1820.00 +/- 20.0' # Usage (with Stable-baselines3) - You need to use 'gym==0.19' since it includes Atari Roms. - The Action Space is 6 since we use only possible actions in this game. Watch your agent interacts : ## Training Code
[ "# PPO Agent playing SeaquestNoFrameskip-v4\nThis is a trained model of a PPO agent playing SeaquestNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '1820.00 +/- 20.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n", "# PPO Agent playing SeaquestNoFrameskip-v4\nThis is a trained model of a PPO agent playing SeaquestNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL", "## Evaluation Results\nMean_reward: '1820.00 +/- 20.0'", "# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :", "## Training Code" ]
[ 34, 50, 18, 52, 3 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #atari #model-index #region-us \n# PPO Agent playing SeaquestNoFrameskip-v4\nThis is a trained model of a PPO agent playing SeaquestNoFrameskip-v4 using the stable-baselines3 library.\n\nThe training report: URL## Evaluation Results\nMean_reward: '1820.00 +/- 20.0'# Usage (with Stable-baselines3)\n- You need to use 'gym==0.19' since it includes Atari Roms.\n- The Action Space is 6 since we use only possible actions in this game.\n\n\nWatch your agent interacts :## Training Code" ]
[ -0.03604428470134735, 0.05378761142492294, -0.0016955598257482052, 0.05040130764245987, 0.14439433813095093, -0.04788797348737717, 0.06715931743383408, 0.11431720107793808, 0.015549992211163044, 0.0779440775513649, -0.007347991224378347, -0.054366420954465866, 0.08853477984666824, 0.26015084981918335, 0.05958462879061699, -0.17849476635456085, 0.0592750608921051, 0.02387624979019165, 0.03150062635540962, 0.1282539814710617, 0.019763071089982986, -0.12560579180717468, 0.036895181983709335, 0.019303297623991966, -0.047717928886413574, -0.018820207566022873, -0.036663968116045, -0.13961392641067505, 0.07272780686616898, -0.06281061470508575, 0.14037543535232544, 0.011532681062817574, 0.08080368489027023, -0.09669534116983414, 0.042475633323192596, 0.10934588313102722, -0.0031458442099392414, 0.006537941284477711, 0.028978651389479637, 0.13370391726493835, 0.15471720695495605, 0.014165811240673065, 0.051406245678663254, 0.0274021178483963, -0.14633089303970337, -0.13003244996070862, 0.04270770028233528, -0.049144089221954346, 0.2315807044506073, 0.105281762778759, -0.011566531844437122, 0.1423846334218979, -0.12584808468818665, -0.019964521750807762, 0.13274352252483368, -0.3215760290622711, -0.07436726242303848, 0.20895710587501526, 0.06317504495382309, 0.18160447478294373, -0.08333997428417206, -0.0402873270213604, 0.01141645573079586, 0.04362823814153671, 0.009588643908500671, -0.02613692544400692, 0.03175901249051094, 0.03669474273920059, -0.06253279000520706, -0.07976994663476944, 0.22211907804012299, 0.0764705017209053, -0.032994478940963745, -0.06929866969585419, 0.03492652252316475, -0.07478863000869751, -0.027115385979413986, -0.07143867760896683, 0.09137216955423355, 0.01938270777463913, -0.019873106852173805, 0.09506219625473022, -0.1342981904745102, -0.041747577488422394, 0.00570496404543519, 0.03765377402305603, -0.052633509039878845, 0.011028221808373928, -0.0369548574090004, 0.08507425338029861, -0.1911841481924057, -0.04510873556137085, -0.07735911011695862, -0.0488908477127552, -0.10655222833156586, -0.022258007898926735, -0.028258729726076126, 0.005007811821997166, 0.068910151720047, -0.17349709570407867, -0.015109485946595669, 0.08124671876430511, 0.006810213904827833, 0.0727744922041893, 0.03254906088113785, 0.10602381080389023, -0.032903771847486496, 0.02357403375208378, 0.023439493030309677, 0.10463806241750717, 0.0061872187070548534, -0.09016184508800507, -0.117673359811306, 0.08284207433462143, -0.026497861370444298, -0.058481913059949875, 0.022764714434742928, 0.016208549961447716, -0.13272058963775635, -0.009864723309874535, 0.0464509092271328, -0.05731845274567604, 0.02742059715092182, 0.07744017243385315, -0.146941676735878, -0.04999636486172676, 0.02464383654296398, 0.0578487254679203, -0.023201419040560722, -0.0676480233669281, -0.0406046025454998, -0.061917081475257874, -0.16414271295070648, -0.06648888438940048, 0.1042538732290268, -0.01033895742148161, -0.005769853480160236, -0.10475383698940277, -0.11847614496946335, -0.06807547062635422, 0.0526522696018219, -0.03224380686879158, -0.12791180610656738, -0.10681166499853134, -0.023591578006744385, -0.14067350327968597, -0.005828029941767454, -0.010191517882049084, -0.04313050955533981, 0.061247099190950394, 0.057160571217536926, 0.17230501770973206, 0.040745217353105545, 0.007538273464888334, -0.11448091268539429, 0.01672370731830597, -0.23357246816158295, 0.004617811180651188, -0.05935949832201004, -0.004519820213317871, -0.05520777404308319, -0.062356170266866684, -0.07831738889217377, 0.07339601963758469, -0.010024426504969597, 0.09850221127271652, -0.08342384546995163, -0.06516224890947342, 0.07573959976434708, -0.08658966422080994, -0.12709364295005798, -0.049284063279628754, -0.019461000338196754, 0.05494150519371033, 0.04105811193585396, 0.20458807051181793, 0.03343377262353897, -0.10485529899597168, 0.029036229476332664, -0.03469167649745941, -0.12097010016441345, -0.1658078283071518, 0.10836823284626007, 0.05935601145029068, 0.12985605001449585, 0.022713303565979004, -0.13771909475326538, 0.0318952277302742, -0.06140310317277908, -0.008833046071231365, 0.07523132860660553, -0.04459601640701294, 0.014047514647245407, 0.09096929430961609, 0.05411631986498833, -0.07549817860126495, -0.07884673774242401, 0.025608472526073456, 0.05997070297598839, 0.0008604227332398295, 0.018947197124361992, -0.15303097665309906, 0.15015597641468048, -0.09128648042678833, 0.02171289548277855, -0.12078411877155304, -0.13026440143585205, -0.016933508217334747, 0.15292993187904358, 0.03554082289338112, 0.17352509498596191, 0.1479339897632599, 0.04665280506014824, 0.016980495303869247, -0.12331810593605042, -0.12616972625255585, 0.01362765021622181, 0.010131717659533024, -0.11049403995275497, -0.09477229416370392, -0.10849380493164062, 0.03873271122574806, -0.1227007582783699, 0.04689093679189682, 0.024383721873164177, 0.028778087347745895, 0.025783568620681763, -0.09178634732961655, -0.007352277636528015, 0.09072907269001007, 0.0033571904059499502, -0.06537013500928879, 0.07469022274017334, 0.02003198117017746, 0.02691815048456192, -0.04498576372861862, -0.06089618429541588, 0.249960795044899, 0.17316806316375732, 0.0037955893203616142, 0.01238852459937334, 0.02219000644981861, -0.016996759921312332, 0.04735696688294411, -0.0355682298541069, 0.14919190108776093, 0.09205354750156403, 0.08609043806791306, 0.08141219615936279, -0.09144939482212067, 0.12993498146533966, 0.0492461733520031, -0.10946168750524521, 0.03105657361447811, 0.03747327998280525, 0.06926581263542175, 0.04075060784816742, 0.09790720045566559, 0.02637152001261711, 0.05981960892677307, 0.15454645454883575, -0.01065246295183897, -0.07430366426706314, -0.014266557060182095, 0.11329564452171326, -0.004501415882259607, 0.08158570528030396, -0.04993470385670662, 0.023812152445316315, 0.028664834797382355, -0.036588091403245926, 0.016912011429667473, -0.180847629904747, -0.12157193571329117, 0.07688523828983307, 0.012963572517037392, -0.10969880223274231, 0.034689124673604965, -0.029150579124689102, 0.08250845968723297, 0.05958472192287445, -0.08985695987939835, 0.033235691487789154, -0.04241734370589256, -0.016428997740149498, 0.1016763299703598, -0.06003003567457199, -0.16569364070892334, -0.08206378668546677, 0.06672605127096176, -0.01108484249562025, 0.11947482079267502, 0.01845199428498745, -0.20083746314048767, 0.035945747047662735, -0.05919662490487099, -0.1871957927942276, -0.031109008938074112, -0.08786214143037796, 0.1409294456243515, 0.08026935160160065, -0.0015732944011688232, -0.039428964257240295, -0.027787989005446434, -0.06474471837282181, -0.12374377995729446, 0.08301641792058945, -0.04318087175488472, 0.10615485906600952, 0.23472952842712402, -0.05618961155414581, 0.08104167878627777, -0.016148719936609268, -0.07368834316730499, -0.03658297657966614, -0.05803604796528816, 0.22945474088191986, 0.12251033633947372, -0.007210795301944017, -0.0582723394036293, -0.028108365833759308, 0.0025298374239355326, 0.013097030110657215, -0.05596451833844185, -0.11802180856466293, -0.11551576107740402, -0.0061886850744485855, -0.06295069307088852, 0.15414723753929138, 0.019247248768806458, -0.010791104286909103, 0.03377164155244827, 0.021498583257198334, 0.1537017822265625, -0.08394333720207214, 0.039515119045972824, 0.07619810104370117, 0.04720472916960716, -0.06303025782108307, 0.0429251566529274, -0.022777924314141273, 0.03960208222270012, 0.04817313328385353, -0.005647755693644285, 0.07100613415241241, 0.04134129360318184, -0.06363905221223831, 0.009411219507455826, 0.05446980521082878, 0.012992181815207005, 0.085856132209301, 0.11412739008665085, -0.105000339448452, -0.08483327180147171, -0.02317296899855137, -0.18122811615467072, 0.13448408246040344, 0.07914696633815765, -0.014189901761710644, -0.12108833342790604, 0.11462376266717911, -0.02568596601486206, 0.011643655598163605, -0.02310478687286377, -0.24288465082645416, 0.006189017090946436, 0.004144352860748768, 0.05471033602952957, -0.08429033309221268, 0.037643205374479294, 0.09128029644489288, -0.11606147140264511, -0.0836377888917923, 0.049464449286460876, 0.06028690189123154, 0.07886037975549698, 0.004366820678114891, -0.0291743241250515, 0.04259514436125755, -0.03303145617246628, 0.09139273315668106, -0.0668097659945488, 0.10439641028642654, -0.0797165259718895, 0.06695939600467682, -0.024586472660303116, -0.06269270926713943, -0.031233901157975197, 0.0071592265740036964, 0.14197537302970886, 0.01584380306303501, -0.07541798800230026, -0.19632922112941742, -0.011663448065519333, -0.01168727595359087, -0.06040095537900925, 0.060342758893966675, 0.09674529731273651, 0.09420887380838394, 0.04060610383749008, 0.02256598137319088, 0.1000630110502243, 0.08560910820960999, 0.028243986889719963, -0.08001624792814255, 0.04740854725241661, 0.08817761391401291, -0.09915851801633835, -0.036582715809345245, -0.03026391565799713, 0.20849518477916718, 0.20652811229228973, 0.0020289074163883924, -0.09055978059768677, -0.015269039198756218, -0.07051901519298553, -0.0013024605577811599, 0.011690391227602959, -0.028955254703760147, 0.15963320434093475, -0.04647152125835419, 0.04086759313941002, 0.09405206143856049, -0.05299967899918556, -0.0005377154448069632, -0.038346774876117706, 0.09515158087015152, 0.02003576047718525, 0.03859057277441025, -0.04694359004497528, -0.01107009220868349, 0.06018717586994171, -0.02819104492664337, 0.18524466454982758, 0.0030259103514254093, 0.006859342567622662, -0.05165575072169304, 0.11083432286977768, 0.14474548399448395, 0.023063670843839645, 0.0031179271172732115, 0.0523432157933712, 0.2383500039577484, -0.022915437817573547, 0.12311797589063644, -0.049460504204034805, 0.01637342758476734, -0.07959476113319397, -0.030846934765577316, 0.027893967926502228, 0.03847755864262581, 0.14231184124946594, -0.11992175877094269, 0.007654150016605854, -0.08568663895130157, -0.040743645280599594, -0.052222467958927155, -0.2218559831380844, -0.00489134481176734, 0.08684676885604858, 0.10389654338359833, 0.24079211056232452, -0.11900676041841507, 0.08716870844364166, 0.04700423777103424, -0.07924515753984451, 0.02541782520711422, -0.15670186281204224, 0.09772159159183502, -0.07029088586568832, 0.10393140465021133, 0.07401906698942184, -0.08279144018888474, 0.07976413518190384, -0.12628473341464996, 0.028212694451212883, -0.07666046172380447, -0.05500905215740204, 0.13658052682876587, -0.04560275375843048, -0.05487557873129845, 0.09949355572462082, -0.07835444808006287, -0.31144893169403076, 0.0030964312609285116, -0.07350337505340576, -0.01249240804463625, 0.03532139211893082, -0.04116365686058998, -0.009634867310523987, 0.13097360730171204, 0.005198925733566284, 0.08853701502084732, 0.11885712295770645, -0.053100090473890305, 0.10061522573232651, 0.330381840467453, 0.017368489876389503, 0.10839518159627914, -0.09008423238992691, -0.043493859469890594, -0.009580801241099834, 0.07745897769927979, -0.20496737957000732, -0.07367745786905289, 0.05332666635513306, 0.004224067088216543, 0.03654027730226517, 0.09982269257307053, -0.1350392997264862, 0.05795111879706383, 0.09075957536697388, -0.07336331903934479, -0.026598164811730385, 0.055862702429294586, 0.12337467074394226, 0.02029975689947605, -0.024319065734744072, -0.001650440040975809, -0.12416312843561172, 0.04106513783335686, 0.027305860072374344, 0.006080322433263063, -0.10983636975288391, 0.027146607637405396, 0.044471293687820435, 0.0376327782869339, -0.06425526738166809, 0.1582850217819214, 0.045642126351594925, -0.046730898320674896, 0.07857833057641983, -0.03518105298280716, -0.0408543199300766, -0.0541083961725235, 0.0949404239654541, 0.09101716428995132, 0.10624700784683228, -0.12725679576396942, -0.13634264469146729, -0.14384539425373077, 0.10823742300271988, -0.11505725234746933, 0.07705387473106384, -0.05084925517439842, -0.03879842162132263, 0.054551903158426285, -0.08763331174850464, -0.046305034309625626, 0.05758296698331833, -0.047305453568696976, -0.1547863632440567, 0.08421476930379868, 0.004483297001570463, -0.01359022781252861, -0.029351776465773582, -0.09756875783205032, -0.11964180320501328, 0.09358060359954834, -0.001008109305985272, -0.10446314513683319, -0.0628550797700882, -0.045650631189346313, -0.025633638724684715, 0.014359461143612862, -0.07093879580497742, 0.023739395663142204, -0.09319944679737091, 0.05790655314922333, 0.006916937883943319, 0.0667521059513092, -0.06875075399875641, -0.0427544005215168, -0.029954664409160614, -0.04797853156924248, -0.07706127315759659, 0.03056837059557438, 0.00621790112927556, -0.02527269721031189, -0.14628289639949799, 0.0154154347255826, 0.11014144122600555, -0.047883257269859314, 0.033299531787633896, -0.0385313518345356, 0.008945235051214695, 0.027642501518130302, -0.12206081300973892, -0.023167865350842476, 0.050715651363134384, -0.07606727629899979, 0.016172589734196663, 0.01678500510752201, -0.07830209285020828, -0.07403334230184555, 0.05648007243871689, 0.1544502079486847, 0.07316640019416809, 0.10349062085151672, -0.00960944127291441, 0.08133658021688461, -0.19518974423408508, -0.026187198236584663, 0.014618122950196266, 0.05331943556666374, 0.06937983632087708, -0.06747559458017349, 0.02410946600139141, -0.007705024443566799, 0.028639912605285645, 0.0808391124010086, -0.049634627997875214, -0.007386202458292246, -0.10598672926425934, 0.08355087786912918, 0.04046578332781792, 0.06995698064565659, 0.03955354914069176, 0.0200722124427557, 0.18770350515842438, 0.10752978920936584, 0.08088184148073196, -0.04439496994018555, 0.10739775002002716, 0.05058003216981888, -0.06531459093093872, 0.11190018802881241, -0.021870438009500504, -0.01180013082921505, -0.07498154044151306, 0.15434959530830383, -0.04426892101764679, 0.006913759279996157, -0.05388466268777847, 0.10549816489219666, 0.13304036855697632, -0.147366002202034, 0.016030510887503624, -0.13133983314037323, 0.025625934824347496, -0.024591272696852684, -0.11023449897766113, -0.04468514025211334, -0.3169519901275635, 0.06558830291032791, -0.07910827547311783, 0.12106689810752869, -0.0004246395837981254, -0.018394336104393005, 0.01731588877737522, 0.11124071478843689, -0.03659430891275406, 0.009184123948216438, 0.003588381689041853, -0.062147486954927444, -0.03963489085435867, -0.02365601807832718, -0.03513243421912193, 0.006564653944224119, -0.09649559110403061, 0.028167802840471268, 0.03852098435163498, -0.045566730201244354, 0.04521460458636284, 0.030392585322260857, -0.058191973716020584, -0.0004387505177874118, -0.021888889372348785, 0.0361778661608696, 0.10219588875770569, 0.014616984874010086, -0.09390044957399368, -0.001719253952614963, 0.2177756428718567, -0.022366072982549667, -0.06709835678339005, -0.015907377004623413, 0.19792835414409637, 0.043794967234134674, -0.0288404393941164, -0.05774678289890289, -0.0638674795627594, -0.02490384504199028, 0.18015964329242706, 0.017533263191580772, -0.12865836918354034, -0.03898250684142113, -0.09624698013067245, -0.0009914640104398131, -0.09486191719770432, 0.09190189838409424, 0.025776533409953117, 0.05571481212973595, -0.13678273558616638, 0.04179798811674118, -0.0723193809390068, 0.0022662044502794743, -0.05225938558578491, -0.004236432258039713, 0.14276735484600067, -0.025148987770080566, -0.11267748475074768, 0.0016027612145990133, -0.0441441610455513, -0.08499886840581894, 0.1442217081785202, -0.13695505261421204, -0.04438650235533714, -0.08146805316209793, 0.09481439739465714, 0.03762667253613472, 0.1436006724834442, -0.0584174245595932, 0.008679009974002838, -0.06055905669927597, 0.029993627220392227, -0.06231849268078804, -0.00504120159894228, 0.04527809098362923, -0.14293187856674194, 0.09278165549039841, -0.04892350733280182, 0.06315832585096359, 0.027199601754546165, 0.02988939918577671, -0.012239038944244385, 0.09770043194293976, -0.02165631204843521, -0.05979553610086441, -0.10614214092493057, 0.022849610075354576, -0.024868538603186607, 0.07198238372802734, 0.04868972674012184, -0.15129683911800385, 0.01931920275092125, 0.03808220103383064, -0.0035185967572033405, -0.03907452151179314, 0.04251742735505104, -0.06748934090137482, 0.05603739246726036, 0.060234349220991135, -0.040532853454351425, 0.014326788485050201, -0.037470538169145584, 0.13206267356872559, 0.054577384144067764, 0.012774280272424221, -0.04789955914020538, -0.004794811364263296, -0.009330975823104382, 0.006891157012432814, -0.07721102237701416, -0.16559959948062897, -0.0514097735285759, -0.130710631608963, -0.08167263120412827, -0.022476008161902428, 0.030561672523617744, 0.03143816441297531, 0.011890221387147903, -0.06448725610971451, 0.06252789497375488, 0.08106548339128494, 0.1662888377904892, -0.009586128406226635, -0.037960998713970184 ]
null
null
stable-baselines3
# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4 This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. It is taken from [RL-trained-agents](https://github.com/DLR-RM/rl-trained-agents) ### Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: ``` pip install stable-baselines3 pip install huggingface_sb3 ``` Then, you can use the model like this: ```python import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="ppo-SpaceInvadersNoFrameskip-v4.zip") model = PPO.load(checkpoint) ``` ### Evaluation Results Mean_reward: 627.160 (162 eval episodes)
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"]}
reinforcement-learning
ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us
# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4 This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the stable-baselines3 library. It is taken from RL-trained-agents ### Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: Then, you can use the model like this: ### Evaluation Results Mean_reward: 627.160 (162 eval episodes)
[ "# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4\n\nThis is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the stable-baselines3 library. It is taken from RL-trained-agents", "### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:", "### Evaluation Results\nMean_reward: 627.160 (162 eval episodes)" ]
[ "TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us \n", "# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4\n\nThis is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the stable-baselines3 library. It is taken from RL-trained-agents", "### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:", "### Evaluation Results\nMean_reward: 627.160 (162 eval episodes)" ]
[ 27, 63, 48, 22 ]
[ "passage: TAGS\n#stable-baselines3 #deep-reinforcement-learning #reinforcement-learning #region-us \n# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4\n\nThis is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the stable-baselines3 library. It is taken from RL-trained-agents### Usage (with Stable-baselines3)\nUsing this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:\n\n\nThen, you can use the model like this:### Evaluation Results\nMean_reward: 627.160 (162 eval episodes)" ]
[ -0.04698779061436653, 0.1016179695725441, -0.0014947704039514065, 0.027684876695275307, 0.08460542559623718, 0.005649368744343519, 0.09958136826753616, 0.09361197799444199, 0.0464426688849926, 0.044621147215366364, 0.06588922441005707, -0.052029531449079514, 0.02308470755815506, 0.2807639539241791, 0.022166622802615166, -0.26916995644569397, 0.0529131256043911, -0.027099892497062683, 0.006803331431001425, 0.10694483667612076, 0.0722341239452362, -0.06558585911989212, -0.0030673579312860966, -0.02071904018521309, -0.0644608587026596, 0.01926254667341709, -0.04241053760051727, -0.05672825872898102, 0.08047506213188171, -0.08258531987667084, 0.14451377093791962, 0.04297541081905365, 0.1426437646150589, -0.11824015527963638, 0.03316931426525116, 0.06564350426197052, -0.06981619447469711, 0.051452264189720154, 0.001515566953457892, -0.004974126350134611, 0.1719985157251358, -0.040626782923936844, -0.006179440300911665, -0.013112157583236694, -0.12214017659425735, -0.09443733096122742, -0.03618468716740608, 0.10042139887809753, 0.1532735675573349, 0.028793644160032272, -0.013840951956808567, 0.10108024626970291, -0.1054859384894371, 0.00800511334091425, 0.19795437157154083, -0.28428325057029724, -0.08375045657157898, 0.1861896961927414, 0.00851824227720499, 0.08109060674905777, -0.006910254713147879, -0.005188737530261278, 0.0420936644077301, -0.005032986868172884, 0.05794256180524826, -0.0321299247443676, 0.05086683854460716, 0.06119511276483536, -0.14183931052684784, -0.06615744531154633, 0.23142939805984497, 0.037815868854522705, -0.0429866760969162, -0.0743294507265091, -0.02731291763484478, -0.028588319197297096, -0.04245105758309364, -0.08330324292182922, 0.043660856783390045, 0.03074618987739086, 0.06956713646650314, -0.04735397547483444, -0.09606914222240448, -0.10070721805095673, -0.0043036979623138905, 0.1952204555273056, 0.021389901638031006, 0.019519103690981865, 0.0440278984606266, 0.11917193979024887, -0.21548770368099213, -0.04801655560731888, -0.024015283212065697, -0.11138580739498138, -0.04904594644904137, 0.03897206112742424, -0.11041736602783203, 0.11802714318037033, 0.07375436276197433, 0.04615979641675949, 0.020115230232477188, 0.010802583768963814, 0.040223706513643265, 0.09237052500247955, -0.009390466846525669, 0.06584590673446655, -0.052732568234205246, -0.011393433436751366, 0.0802057534456253, 0.08062165230512619, 0.017093218863010406, 0.00640954589471221, -0.09998423606157303, 0.013378240168094635, 0.06213880330324173, -0.056850217282772064, -0.014618226327002048, 0.023581145331263542, -0.1035931184887886, -0.013339780271053314, -0.04181935265660286, -0.09567178040742874, -0.058917488902807236, 0.0503401979804039, -0.13088898360729218, -0.09912044554948807, 0.06944756209850311, -0.0003045787161681801, 0.0031196842901408672, -0.1703663170337677, 0.0022243920248001814, -0.049644481390714645, -0.13187654316425323, -0.10760132223367691, -0.04341362789273262, -0.06653060764074326, 0.037310533225536346, -0.14311788976192474, -0.28069135546684265, -0.06521883606910706, 0.08851751685142517, -0.03955193608999252, -0.09412822127342224, -0.07699723541736603, -0.016619019210338593, -0.07387533038854599, -0.01504781935364008, -0.04736080765724182, -0.06338398903608322, 0.017423855140805244, -0.010493424721062183, 0.17829611897468567, 0.03472675010561943, 0.00827851053327322, -0.07719686627388, 0.01961420848965645, -0.22394424676895142, 0.04496636986732483, -0.1165558248758316, -0.015116444788873196, -0.028666211292147636, -0.0675293579697609, -0.015126076526939869, 0.08363764733076096, 0.04998354986310005, 0.18968528509140015, -0.16711671650409698, -0.02918306738138199, 0.044685907661914825, -0.11968201398849487, -0.08165933191776276, -0.01655990071594715, -0.039240751415491104, 0.1480248123407364, -0.013993453234434128, 0.21841414272785187, -0.03125063702464104, -0.022158406674861908, 0.12101873010396957, 0.019920865073800087, -0.06099060922861099, -0.031234752386808395, 0.045463528484106064, 0.12484978884458542, -0.07824787497520447, 0.020976638421416283, -0.15291385352611542, 0.05456463620066643, -0.08973069489002228, -0.02345484495162964, 0.011032521724700928, -0.1362394094467163, 0.06790824979543686, 0.03973409906029701, 0.10307541489601135, -0.08299262076616287, -0.07650979608297348, 0.013695618137717247, 0.1608596295118332, -0.03697681799530983, -0.017982851713895798, -0.0681532546877861, 0.12066800147294998, -0.07100806385278702, -0.024810893461108208, -0.16266417503356934, -0.07338105887174606, -0.04538905248045921, 0.19926127791404724, 0.045668281614780426, 0.2218949794769287, 0.09693591296672821, 0.01311405934393406, 0.03320194035768509, -0.14012563228607178, -0.036681197583675385, 0.029066285118460655, 0.014181707054376602, -0.05559219419956207, -0.11476229131221771, -0.12080370634794235, 0.05049041286110878, -0.11077527701854706, 0.05936356633901596, -0.15305985510349274, 0.05989929661154747, 0.030224299058318138, -0.01759098283946514, 0.06069931015372276, 0.05595148354768753, -0.0020138972904533148, -0.06825224310159683, 0.08622925728559494, 0.03145067021250725, 0.009506063535809517, 0.006990786641836166, -0.027830371633172035, 0.1853984296321869, 0.13557246327400208, 0.023144518956542015, -0.050679195672273636, 0.03397170826792717, -0.059672191739082336, 0.05063989385962486, 0.043129388242959976, 0.13830651342868805, 0.05643252283334732, 0.02874382957816124, 0.06223396584391594, -0.06390443444252014, 0.07318156212568283, -0.06584906578063965, -0.14009441435337067, -0.03995165973901749, 0.09876592457294464, -0.012089069932699203, 0.0031870603561401367, 0.0853700190782547, 0.05384301021695137, -0.055886074900627136, 0.06919598579406738, 0.011812596581876278, -0.09200359135866165, -0.018030760809779167, 0.014588248915970325, 0.009147172793745995, 0.10414610803127289, -0.03528543561697006, -0.07072211802005768, 0.03424260765314102, -0.08808284997940063, 0.08707227557897568, -0.15710002183914185, -0.13659058511257172, 0.052692532539367676, 0.02248423360288143, 0.020006580278277397, 0.06342451274394989, -0.034972067922353745, 0.09587037563323975, -0.046321917325258255, -0.18361103534698486, -0.0256371907889843, -0.05958446487784386, -0.02168356627225876, 0.09137140214443207, -0.05624181404709816, -0.13473615050315857, -0.03636327013373375, -0.054445721209049225, -0.06907713413238525, 0.0890902653336525, 0.009749770164489746, -0.11414367705583572, 0.03609142452478409, -0.10608521103858948, -0.07625146955251694, 0.05855631083250046, 0.007927016355097294, 0.092856764793396, 0.03206438943743706, 0.05579333379864693, -0.03874017298221588, -0.050593115389347076, -0.1156211569905281, -0.10755815356969833, 0.11998718976974487, -0.07017283141613007, 0.03641217201948166, 0.12798283994197845, -0.03995800018310547, 0.0638885423541069, 0.0039028830360621214, 0.0848483145236969, 0.011677696369588375, -0.05589376389980316, 0.236171692609787, 0.054917048662900925, -0.031576648354530334, 0.0044633918441832066, 0.005050963256508112, -0.07865194231271744, 0.07554636150598526, -0.04813218116760254, -0.061739180237054825, -0.06373439729213715, -0.12061141431331635, -0.05865386500954628, -0.017116211354732513, 0.08337715268135071, 0.011581143364310265, -0.04870773106813431, 0.08123668283224106, 0.10313127934932709, -0.10513102263212204, -0.02085087075829506, 0.06430746614933014, 0.0018377798842266202, -0.06962105631828308, 0.05837523937225342, 0.014363405294716358, 0.0032575633376836777, 0.02813050150871277, 0.017590494826436043, 0.05842546746134758, -0.023054663091897964, -0.1669112741947174, 0.011686020530760288, 0.17658185958862305, 0.014695722609758377, 0.1411501169204712, 0.03344697877764702, -0.0874858871102333, -0.05388408899307251, -0.0015949911903589964, -0.14085650444030762, 0.14781051874160767, -0.009161947295069695, 0.023896008729934692, -0.13064812123775482, 0.025835752487182617, -0.047471996396780014, 0.10005857050418854, 0.07436884194612503, -0.2338741272687912, -0.00791684165596962, 0.05671542510390282, 0.03600159287452698, -0.017048588022589684, 0.09069372713565826, 0.04227069020271301, -0.039644576609134674, -0.07538159191608429, 0.09561853855848312, 0.0525783896446228, 0.08131422847509384, 0.00013058340118732303, -0.12887537479400635, 0.109812892973423, -0.019815631210803986, 0.07597959786653519, -0.12031205743551254, 0.19004830718040466, -0.06760840862989426, 0.03869442269206047, 0.0010070770513266325, -0.0373268723487854, 0.08296050131320953, 0.023220188915729523, 0.16391481459140778, -0.03503647446632385, -0.05332875996828079, -0.0862598791718483, -0.12188833951950073, 0.018378235399723053, -0.047003697603940964, -0.11960595101118088, 0.09887553751468658, 0.06522621959447861, 0.03669185936450958, 0.03956903889775276, 0.10230141133069992, -0.08797670900821686, 0.034248460084199905, -0.08488480001688004, -0.023654943332076073, 0.05058661103248596, -0.1367291808128357, -0.09962859004735947, -0.09051483124494553, 0.20636039972305298, 0.25232282280921936, -0.013021486811339855, -0.08295504003763199, 0.011057228781282902, 0.03575769066810608, 0.01999254710972309, 0.03350270912051201, 0.08060558885335922, 0.06902417540550232, -0.042833708226680756, -0.07820472121238708, 0.08084725588560104, -0.10463222116231918, -0.027521200478076935, 0.0035527488216757774, 0.0509192980825901, 0.10592933744192123, 0.07103104889392853, -0.0018460981082171202, 0.0043165902607142925, -0.017953980714082718, -0.03751436620950699, 0.09780147671699524, 0.10263028740882874, 0.026656774803996086, 0.0772382915019989, -0.0038725321646779776, 0.07867912948131561, -0.02327229455113411, 0.06276184320449829, 0.1514499932527542, 0.2620134949684143, -0.04617105424404144, 0.08563747256994247, -0.009885866194963455, 0.01989012211561203, -0.16171307861804962, -0.04546866565942764, 0.02640446648001671, 0.09743703901767731, 0.03477228060364723, -0.12140757590532303, 0.013965393416583538, -0.013949036598205566, -0.05140944942831993, -0.13703615963459015, -0.15176570415496826, -0.04879414290189743, 0.2837446928024292, 0.14067861437797546, 0.3214190900325775, -0.08469106256961823, 0.10315537452697754, 0.07032899558544159, 0.05731247738003731, 0.03218172490596771, -0.07290448993444443, 0.09264127165079117, -0.06672985851764679, 0.055791035294532776, 0.06664510816335678, -0.03476643189787865, 0.115628182888031, -0.10753770172595978, 0.08308976143598557, -0.0881534069776535, 0.051805686205625534, 0.04895131289958954, -0.06993698328733444, 0.036945756524801254, 0.04704161733388901, -0.000009540330211166292, -0.31160616874694824, -0.01307008694857359, -0.06782610714435577, 0.023414215072989464, 0.06039992719888687, -0.05411185696721077, 0.03471620753407478, 0.12189064174890518, 0.002453243127092719, 0.09004590660333633, 0.07199566811323166, -0.03684226796030998, 0.1364126205444336, 0.2413901835680008, -0.0073729753494262695, 0.025029031559824944, 0.020623140037059784, 0.07373862713575363, -0.0018850495107471943, 0.0639975443482399, -0.17193664610385895, -0.11401375383138657, 0.03916614130139351, 0.004196195863187313, 0.08694044500589371, 0.0977637767791748, -0.05510856956243515, 0.03680507838726044, 0.05536266788840294, -0.18718795478343964, -0.038408953696489334, 0.00002520945417927578, 0.05300428718328476, 0.03638308867812157, 0.019393164664506912, 0.0848749428987503, -0.17112687230110168, 0.0043429164215922356, -0.033270787447690964, 0.009443478658795357, -0.14847420156002045, 0.07640253752470016, 0.14779768884181976, 0.03101325035095215, -0.03173832595348358, 0.16839447617530823, -0.013795867562294006, 0.028870485723018646, 0.060026686638593674, -0.02748238295316696, 0.004766315221786499, -0.09913943707942963, 0.09138733893632889, 0.08597176522016525, 0.08194711059331894, -0.06415818631649017, -0.1224413588643074, -0.06904967129230499, 0.05992117151618004, 0.003983316943049431, 0.1304323673248291, -0.10603008419275284, -0.11099180579185486, 0.02831995114684105, -0.02036345563828945, -0.03239792585372925, 0.17922541499137878, -0.017352569848299026, -0.12018682807683945, 0.048637378960847855, -0.07814962416887283, 0.031136253848671913, -0.0902869701385498, -0.07264509052038193, -0.14418219029903412, 0.053137972950935364, -0.06178294122219086, -0.07749348878860474, -0.0875353217124939, 0.0023982152342796326, 0.000013349968867260031, -0.03644438832998276, -0.08191074430942535, 0.038451146334409714, -0.15226484835147858, 0.054293956607580185, 0.001512244576588273, 0.020312560722231865, -0.025822769850492477, -0.030011868104338646, -0.0003248706052545458, -0.07611865550279617, 0.013999000191688538, 0.09864981472492218, -0.012746934778988361, -0.03809668496251106, -0.1943073272705078, -0.04582212120294571, 0.06154874339699745, -0.005670374725013971, 0.05337947607040405, -0.08552081882953644, 0.030264021828770638, -0.003551137400791049, -0.15377682447433472, -0.04790075495839119, 0.09383055567741394, -0.0001826058141887188, 0.03234129399061203, 0.03070501610636711, 0.07461027055978775, -0.07413820922374725, -0.01044712495058775, 0.16500672698020935, 0.16038258373737335, 0.0033538590651005507, -0.016344472765922546, 0.025487272068858147, -0.17727196216583252, -0.022968223318457603, -0.03378058224916458, 0.007872402667999268, 0.09813888370990753, -0.08417607843875885, 0.07894466817378998, 0.03228646516799927, 0.16305036842823029, 0.016637401655316353, -0.07369814068078995, -0.05223923549056053, -0.01572076603770256, 0.20521695911884308, 0.043290119618177414, 0.1950015127658844, 0.022877857089042664, 0.029121780768036842, 0.06407797336578369, 0.09495619684457779, 0.1232152134180069, -0.03907211497426033, 0.055621758103370667, 0.11925593763589859, -0.03877975046634674, 0.11093489080667496, -0.025610538199543953, -0.01053374633193016, 0.03809310123324394, 0.11416309326887131, 0.025570133700966835, -0.02896248921751976, -0.04863804206252098, 0.10429423302412033, 0.11247231066226959, -0.0911516398191452, 0.006679045036435127, -0.024770736694335938, 0.012129140086472034, -0.05720497667789459, -0.16530878841876984, -0.03266466408967972, -0.29554298520088196, 0.04446496441960335, -0.11158519238233566, -0.024736860767006874, 0.09879377484321594, -0.0007814436685293913, 0.04721803218126297, 0.022050192579627037, 0.023649003356695175, 0.00348362373188138, 0.07145415246486664, -0.08193585276603699, -0.04330844804644585, -0.08008066564798355, -0.09719682484865189, -0.005550412926822901, -0.06441396474838257, 0.017830265685915947, -0.0017555508529767394, -0.006753329653292894, 0.038543034344911575, 0.02799876593053341, -0.023676732555031776, -0.01577754318714142, -0.020278915762901306, 0.03043743036687374, 0.1480686366558075, 0.054333604872226715, -0.07841929793357849, 0.0049546039663255215, 0.26334068179130554, -0.058053597807884216, -0.07396278530359268, -0.08682040125131607, 0.1859222650527954, -0.012931917794048786, 0.022536931559443474, -0.04608679935336113, -0.03791438415646553, -0.04490053653717041, 0.12071020901203156, 0.16685432195663452, -0.17373432219028473, 0.04408601298928261, -0.05986573547124863, -0.0036589927040040493, -0.13015642762184143, 0.09454024583101273, 0.1494150161743164, 0.009454894810914993, -0.12607845664024353, -0.018682880327105522, -0.10981855541467667, 0.015877563506364822, -0.055176615715026855, -0.03985452279448509, 0.1003103032708168, -0.06436945497989655, -0.09038844704627991, 0.02640938200056553, -0.11760421842336655, -0.040967829525470734, 0.020800596103072166, -0.1478739082813263, -0.12327443808317184, -0.06060846522450447, 0.054008908569812775, 0.0332784540951252, 0.11394656449556351, -0.10356918722391129, 0.020988862961530685, -0.032712165266275406, -0.014530183747410774, -0.0012913319515064359, -0.08132100105285645, 0.06287454813718796, 0.0030176290310919285, 0.13744217157363892, -0.05380011722445488, 0.007411164231598377, 0.022782864049077034, 0.005785913206636906, -0.0655742660164833, 0.07554654031991959, 0.0028663496486842632, -0.09134478867053986, -0.05328868329524994, 0.08706223964691162, -0.04735340550541878, 0.07904069870710373, 0.08929840475320816, -0.14271202683448792, 0.03599710017442703, -0.0025845433119684458, -0.0009841573191806674, -0.05933760479092598, 0.0032024765387177467, -0.10925369709730148, 0.08383117616176605, 0.03835693746805191, -0.06963188201189041, 0.035844314843416214, -0.024104634299874306, 0.10999535769224167, 0.0639471784234047, 0.060072220861911774, 0.011716395616531372, -0.04777201637625694, -0.02124924026429653, 0.021292710676789284, -0.07645957171916962, -0.0718439519405365, -0.09135956317186356, -0.13297812640666962, -0.060414548963308334, 0.01580176316201687, 0.06528458744287491, 0.07687749713659286, 0.026430757716298103, -0.04956790432333946, -0.02297324314713478, 0.03185655549168587, 0.13331276178359985, -0.09324117004871368, -0.07185537368059158 ]
null
null
stable-baselines3
# **PPO** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Walker2DBulletEnv-v0", "type": "Walker2DBulletEnv-v0"}, "metrics": [{"type": "mean_reward", "value": "29.51 +/- 2.93", "name": "mean_reward"}]}]}]}
reinforcement-learning
ThomasSimonini/ppo-Walker2DBulletEnv-v0
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stable-baselines3 #Walker2DBulletEnv-v0 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing Walker2DBulletEnv-v0 This is a trained model of a PPO agent playing Walker2DBulletEnv-v0 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing Walker2DBulletEnv-v0\nThis is a trained model of a PPO agent playing Walker2DBulletEnv-v0\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #Walker2DBulletEnv-v0 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing Walker2DBulletEnv-v0\nThis is a trained model of a PPO agent playing Walker2DBulletEnv-v0\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 43, 47, 17 ]
[ "passage: TAGS\n#stable-baselines3 #Walker2DBulletEnv-v0 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing Walker2DBulletEnv-v0\nThis is a trained model of a PPO agent playing Walker2DBulletEnv-v0\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ -0.05814991518855095, 0.09275179356336594, -0.005457388702780008, 0.05617330223321915, 0.1093565970659256, -0.05041356757283211, 0.08149319142103195, 0.10911820083856583, 0.08179441839456558, 0.04896452650427818, 0.13149766623973846, 0.0800531730055809, 0.057512443512678146, 0.2685551047325134, 0.033332470804452896, -0.2656148374080658, 0.021588841453194618, 0.04068278521299362, 0.06234695762395859, 0.11714499443769455, 0.051415953785181046, -0.06197720021009445, 0.03894840553402901, 0.05769171938300133, -0.13913051784038544, 0.035156406462192535, -0.038779933005571365, -0.09373169392347336, 0.07014439254999161, -0.013249754905700684, 0.03286178782582283, 0.05740536004304886, 0.17245134711265564, -0.13266374170780182, 0.030402150005102158, 0.04155779629945755, -0.054451219737529755, 0.05384213849902153, 0.02056712470948696, -0.04389549419283867, 0.051230330020189285, 0.028792986646294594, 0.012750973924994469, 0.03338652104139328, -0.12418251484632492, -0.07820852100849152, 0.0538027361035347, 0.20854325592517853, 0.13267508149147034, 0.06706787645816803, 0.02184142731130123, 0.14571571350097656, -0.07112525403499603, -0.016512315720319748, 0.14712122082710266, -0.3201315999031067, -0.038236942142248154, 0.16994516551494598, 0.07016444206237793, 0.00687957089394331, -0.0670364573597908, -0.04157176986336708, -0.01212396752089262, -0.007565379608422518, 0.0333433523774147, -0.0801674872636795, 0.13316002488136292, 0.0307694710791111, -0.0665188804268837, -0.000262881483649835, 0.21305380761623383, 0.05096125975251198, -0.002548521151766181, -0.04211697354912758, 0.009731215424835682, 0.017012985423207283, -0.006317348685115576, -0.0977368876338005, 0.04474659636616707, 0.06141335517168045, -0.019810238853096962, -0.050290171056985855, -0.08450818061828613, -0.03930715471506119, -0.06523727625608444, 0.24238140881061554, 0.0039850869216024876, -0.008761072531342506, 0.005159174557775259, 0.05105004087090492, -0.12107276916503906, -0.027633121237158775, -0.07081256061792374, -0.06452902406454086, -0.0393475666642189, -0.01554346177726984, -0.028003890067338943, 0.11024220287799835, 0.10492347925901413, 0.053570475429296494, 0.1097373515367508, 0.052192945033311844, -0.07261038571596146, 0.07032234966754913, 0.09071580320596695, 0.08505497127771378, -0.07412923872470856, 0.10845373570919037, 0.10867292433977127, 0.08808345347642899, 0.013418028131127357, -0.03965018317103386, -0.172279492020607, 0.10258155316114426, 0.03407127037644386, -0.010762929916381836, 0.04722046107053757, 0.03014996461570263, -0.13916222751140594, -0.045834798365831375, 0.011357402428984642, -0.10026217997074127, -0.01994963549077511, 0.10944359749555588, -0.0782795324921608, -0.025898918509483337, 0.012368150055408478, 0.06832312792539597, -0.0702829658985138, -0.08036671578884125, -0.02980087324976921, -0.0514267198741436, -0.0450073704123497, -0.06841278821229935, 0.03370121493935585, 0.023664992302656174, 0.05032925680279732, -0.14532575011253357, -0.1553535759449005, -0.04037601873278618, 0.04336577653884888, -0.02633238397538662, -0.13129886984825134, -0.16088150441646576, 0.020259205251932144, -0.10203481465578079, -0.027924716472625732, -0.19658075273036957, 0.005019488278776407, 0.012908117845654488, 0.022838251665234566, 0.0483003668487072, -0.016510356217622757, -0.010210511274635792, -0.11140388995409012, -0.014688493683934212, -0.12985530495643616, 0.06824485212564468, -0.04609522596001625, -0.03632354363799095, -0.08103132247924805, -0.06593094766139984, -0.043400343507528305, 0.10653620213270187, -0.013265994377434254, 0.15676982700824738, -0.08699021488428116, -0.09649398177862167, 0.2362145632505417, -0.08355661481618881, -0.1011013314127922, 0.0029483051039278507, -0.03505146875977516, 0.11924662441015244, 0.06047884002327919, 0.22770418226718903, 0.0034229052253067493, -0.14207984507083893, 0.12817661464214325, 0.006596254650503397, -0.11954224854707718, -0.04685176536440849, 0.09836623817682266, -0.050271835178136826, -0.015732651576399803, -0.04301926866173744, -0.16241292655467987, 0.0003838124102912843, -0.06020446494221687, 0.013522522523999214, 0.06353463977575302, -0.023503316566348076, 0.15115472674369812, 0.06087406352162361, 0.03746477887034416, -0.054691094905138016, -0.12423092871904373, 0.09847526252269745, 0.09634778648614883, -0.07232742011547089, 0.0039759608916938305, -0.20307186245918274, -0.028271393850445747, -0.019835393875837326, 0.0007094625034369528, -0.04907337203621864, -0.018198298290371895, -0.03389330580830574, 0.1669839471578598, 0.09877272695302963, 0.1572718620300293, 0.1045074313879013, 0.03434303402900696, 0.06014523655176163, -0.12282305955886841, -0.08913902938365936, 0.0450117364525795, 0.06760509312152863, -0.13577093183994293, -0.067386195063591, -0.08121632039546967, -0.0202439296990633, -0.09264989197254181, 0.055388014763593674, -0.020914481952786446, 0.03400371968746185, 0.043225664645433426, -0.052262671291828156, 0.02126324735581875, 0.08969896286725998, 0.023203091695904732, -0.04579630494117737, 0.1019660234451294, 0.018879657611250877, -0.03307231888175011, 0.015393835492432117, -0.04469818249344826, 0.21085605025291443, 0.15037307143211365, 0.02176707051694393, 0.025369655340909958, 0.012576946057379246, -0.03771792724728584, 0.04990416020154953, 0.028116745874285698, 0.06323721259832382, 0.17891626060009003, 0.09587197005748749, 0.06906567513942719, -0.06622141599655151, 0.08854353427886963, -0.011541302315890789, -0.09574075043201447, 0.021012797951698303, 0.03949769213795662, 0.045529045164585114, -0.053711242973804474, 0.0638926774263382, 0.01649913378059864, 0.1063351184129715, 0.0811525508761406, 0.0006690488080494106, -0.00964286644011736, -0.0629458874464035, 0.0585118867456913, 0.02117970585823059, 0.0015513066900894046, -0.007937723770737648, 0.01054093986749649, -0.017666088417172432, -0.026226835325360298, 0.024189015850424767, -0.13657793402671814, -0.09546499699354172, 0.02626819908618927, 0.005738857667893171, -0.0018202956998720765, 0.019548509269952774, -0.031334735453128815, -0.006684308405965567, 0.05104382708668709, -0.12706375122070312, 0.08768701553344727, 0.007671477738767862, -0.09039848297834396, 0.11814801394939423, -0.13739390671253204, -0.2844586968421936, -0.08128513395786285, -0.0017940039979293942, -0.02955744042992592, 0.12704385817050934, 0.020654866471886635, -0.08192139118909836, 0.05165473744273186, -0.04163463041186333, 0.020685136318206787, -0.016940180212259293, -0.08815420418977737, 0.15361376106739044, 0.08373852074146271, -0.009424420073628426, -0.06718823313713074, -0.04193129017949104, -0.05657867342233658, -0.1829523742198944, 0.032879047095775604, -0.06359921395778656, -0.00046605285024270415, 0.1862572729587555, 0.07827337831258774, 0.0748295858502388, -0.022869199514389038, -0.08628857135772705, 0.04352174326777458, -0.03828660026192665, 0.24983522295951843, -0.04145250841975212, -0.019128698855638504, 0.010941949672996998, 0.016797810792922974, -0.03233350068330765, -0.017634853720664978, -0.04958163574337959, -0.038136012852191925, -0.08990012109279633, -0.08956597745418549, -0.07650021463632584, 0.16693054139614105, 0.17954027652740479, 0.028607746586203575, -0.11955674737691879, 0.04763561114668846, 0.08151863515377045, -0.12909938395023346, 0.02447899617254734, 0.07056889683008194, 0.07083382457494736, -0.04857395961880684, 0.028093738481402397, 0.0369376465678215, 0.015118925832211971, 0.01592256687581539, 0.09477132558822632, -0.08835954964160919, 0.09965605288743973, -0.06381876766681671, 0.046103186905384064, 0.08211331814527512, -0.005417796783149242, 0.050077684223651886, 0.11688846349716187, -0.10600127279758453, 0.0074173444882035255, -0.02649969421327114, -0.1875748187303543, 0.09093867242336273, 0.10528890043497086, 0.04049298167228699, -0.13035614788532257, 0.1236819475889206, -0.0240662582218647, 0.020785372704267502, 0.04502218961715698, -0.21256940066814423, -0.00465876841917634, -0.01484757475554943, 0.02006092108786106, -0.06040889397263527, 0.11544723063707352, -0.03404928371310234, -0.1690591722726822, -0.030351271852850914, 0.054471708834171295, 0.06816965341567993, -0.04999759420752525, 0.0027479592245072126, -0.18613353371620178, 0.09284069389104843, 0.0028264522552490234, 0.08983515202999115, -0.09004438668489456, 0.15043413639068604, -0.04694772884249687, 0.14019085466861725, -0.04625965282320976, -0.034121789038181305, -0.009247822687029839, 0.025839582085609436, 0.18895074725151062, -0.002731817541643977, 0.06604979932308197, -0.026811301708221436, -0.14092452824115753, 0.0196238961070776, -0.021097077056765556, -0.1053161770105362, 0.015798624604940414, 0.04386505112051964, 0.035152364522218704, -0.021845655515789986, 0.04069618508219719, -0.09101109951734543, 0.013967652805149555, 0.0012042216258123517, -0.009000798687338829, 0.19984467327594757, -0.08512307703495026, -0.04077443107962608, -0.058657944202423096, 0.3166061043739319, 0.024996493011713028, -0.008083333261311054, -0.08027870953083038, 0.07286522537469864, -0.09618735313415527, -0.05002688243985176, 0.0010751624358817935, 0.002401901176199317, 0.13205480575561523, -0.10175211727619171, -0.07932176440954208, 0.13444091379642487, -0.09699796140193939, -0.016366124153137207, -0.00862845592200756, 0.22321560978889465, 0.10303852707147598, 0.014930258505046368, 0.043840281665325165, -0.006848957855254412, 0.0741029903292656, -0.06296981871128082, 0.20049884915351868, 0.05286862328648567, -0.06121053919196129, 0.01168079674243927, 0.0032441599760204554, 0.0021637813188135624, 0.02040296606719494, 0.035852961242198944, 0.19639824330806732, 0.22346195578575134, -0.004368391819298267, 0.1852409839630127, 0.05369360372424126, -0.012779566459357738, -0.1784002035856247, -0.06306425482034683, 0.05753215029835701, 0.03791211172938347, 0.09270571917295456, -0.2030467540025711, 0.03149566799402237, -0.0027282924856990576, -0.02424641139805317, -0.15371796488761902, -0.3395467698574066, -0.04886666312813759, 0.21065828204154968, 0.05349056050181389, 0.22622711956501007, -0.05501179024577141, 0.0460287444293499, 0.017798276618123055, -0.21513664722442627, 0.08733580261468887, -0.10023672133684158, 0.055320482701063156, -0.06460138410329819, 0.06443875283002853, 0.06912542134523392, -0.015742545947432518, -0.014060499146580696, -0.09847782552242279, -0.03884274140000343, -0.08394165337085724, -0.038979124277830124, 0.08197639137506485, 0.000598396232817322, -0.036500997841358185, 0.01488049142062664, -0.017406325787305832, -0.23299731314182281, -0.024080058559775352, -0.041390735656023026, 0.04138331487774849, 0.007356952875852585, -0.08342957496643066, 0.0400671660900116, 0.09319014847278595, 0.042771779000759125, 0.12291641533374786, 0.10551036149263382, -0.08308184146881104, 0.06125035509467125, 0.27274981141090393, 0.052292559295892715, 0.02406737580895424, -0.06255613267421722, -0.06198878213763237, -0.06892776489257812, 0.048632025718688965, -0.09586331993341446, 0.0053594098426401615, 0.06324173510074615, 0.021671339869499207, 0.06981406360864639, 0.08167823404073715, -0.08042415231466293, 0.025461306795477867, 0.05727609246969223, -0.15905308723449707, -0.12919141352176666, -0.0030200076289474964, 0.09554942697286606, 0.029381508007645607, 0.0673927441239357, 0.14040757715702057, -0.08140255510807037, -0.03969385102391243, 0.008703178726136684, 0.01966097392141819, -0.13974139094352722, -0.004828347824513912, 0.05143192782998085, 0.03373744338750839, -0.061819739639759064, 0.13793757557868958, -0.028889374807476997, 0.02528122439980507, 0.10704539716243744, 0.01004764437675476, -0.010319269262254238, -0.0846894234418869, 0.08611942827701569, 0.13195021450519562, -0.0023279280867427588, -0.07042734324932098, -0.0723022073507309, -0.11332755535840988, 0.06337554007768631, 0.0037461514584720135, 0.038273248821496964, -0.09703517705202103, -0.036620743572711945, 0.021977031603455544, -0.11164193600416183, -0.05927707627415657, 0.08651255071163177, -0.05512974411249161, -0.12760092318058014, 0.15912388265132904, -0.02509656548500061, 0.06907960027456284, -0.035102952271699905, -0.10188470780849457, -0.1787673383951187, 0.04292334243655205, 0.0004582628607749939, -0.06567007303237915, -0.12665031850337982, -0.01647726073861122, 0.002331346273422241, -0.015036442317068577, -0.04427099600434303, 0.04418729618191719, -0.09877314418554306, 0.032734453678131104, 0.001081876689568162, 0.010523155331611633, -0.066181480884552, -0.0147539172321558, 0.01869378797709942, -0.0474286749958992, 0.03083796426653862, 0.013334101065993309, -0.04656093195080757, -0.028534933924674988, -0.22773373126983643, -0.048040930181741714, 0.0681232288479805, -0.03984765335917473, 0.03569668531417847, -0.05009884014725685, 0.022471170872449875, 0.05074035003781319, -0.14350558817386627, -0.03644639626145363, 0.24421311914920807, -0.04786725714802742, 0.009439441375434399, 0.009917943738400936, 0.0005402180249802768, -0.07122250646352768, 0.015586473979055882, 0.0441916324198246, 0.0564180351793766, 0.040278010070323944, -0.06536635011434555, 0.09064216166734695, -0.09423532336950302, -0.027259934693574905, -0.02052125334739685, 0.06667917966842651, 0.11638052761554718, -0.04355357214808464, 0.016142431646585464, -0.006799028255045414, 0.09934607893228531, -0.06613874435424805, -0.1494780331850052, 0.010919513180851936, -0.16412684321403503, 0.03955468907952309, 0.02601388283073902, 0.16455841064453125, 0.009930364787578583, -0.010218137875199318, 0.06523551791906357, 0.05882697552442551, 0.0786721333861351, -0.08397478610277176, 0.1412327140569687, 0.038374003022909164, -0.09809482097625732, 0.08655587583780289, 0.06726354360580444, 0.0016403415938839316, -0.07122907787561417, 0.043737512081861496, 0.022125039249658585, 0.0004647970199584961, 0.008123026229441166, 0.13436707854270935, 0.162399023771286, -0.07375747710466385, -0.0527213029563427, -0.018505480140447617, -0.01702803745865822, -0.07961207628250122, -0.17697784304618835, -0.08688972145318985, -0.3007577955722809, 0.08094403892755508, -0.09097122400999069, 0.017716893926262856, -0.11128713190555573, 0.0017842091619968414, -0.016497591510415077, 0.025094108656048775, -0.0051169199869036674, -0.0756182000041008, 0.000535848899744451, -0.08482064306735992, -0.0028368046041578054, -0.04140425845980644, -0.10093753784894943, -0.023642340674996376, -0.056906793266534805, 0.04601163789629936, 0.024682972580194473, 0.046886008232831955, 0.01975587010383606, -0.10160354524850845, -0.022233648225665092, 0.015628525987267494, -0.013912959024310112, 0.06011459231376648, 0.13350322842597961, 0.06231376528739929, -0.149680957198143, 0.028370777145028114, 0.1827538013458252, 0.01763955131173134, -0.11302794516086578, -0.04056086018681526, 0.24077390134334564, 0.07827488332986832, 0.04093826562166214, -0.04602896422147751, -0.029114561155438423, -0.016239028424024582, 0.22776393592357635, 0.12374226003885269, -0.08545731753110886, 0.02409064769744873, -0.07353449612855911, 0.004646727349609137, 0.011251126416027546, 0.10360591858625412, 0.0036311447620391846, 0.07873066514730453, -0.08447830379009247, -0.055015724152326584, -0.07565172761678696, 0.02826535329222679, -0.12153412401676178, -0.09343735128641129, 0.08109157532453537, -0.06561238318681717, -0.026241909712553024, 0.03420359641313553, -0.09484247118234634, -0.006737754680216312, 0.10787224769592285, -0.11603432148694992, -0.07063335180282593, -0.10212000459432602, 0.03517900034785271, 0.07635147124528885, 0.16892869770526886, -0.022321032360196114, -0.030878795310854912, -0.04069913551211357, 0.04597353935241699, -0.0703715831041336, 0.02189980261027813, -0.023714782670140266, -0.16091008484363556, 0.13867172598838806, -0.06244026497006416, 0.08913825452327728, 0.045322004705667496, 0.0928640216588974, -0.06174788251519203, 0.08228141069412231, -0.04529062286019325, -0.029890211299061775, -0.010880226269364357, 0.03545084968209267, -0.042081136256456375, 0.11739993095397949, 0.08037520945072174, -0.1099199652671814, -0.014776179566979408, 0.0026021036319434643, -0.022615041583776474, -0.05053296312689781, 0.09230546653270721, -0.11159837245941162, 0.03143681213259697, -0.01940438523888588, -0.08320625126361847, -0.014484786428511143, -0.03571018949151039, 0.1667851358652115, 0.0693078562617302, 0.015594993717968464, -0.032301004976034164, -0.11399374157190323, -0.019990473985671997, 0.048920709639787674, -0.026559937745332718, -0.13915997743606567, -0.02528594620525837, -0.1911306381225586, -0.02699909172952175, -0.04146368429064751, 0.1053951159119606, 0.05365627631545067, 0.015491108410060406, -0.042128853499889374, 0.013143201358616352, 0.04160141944885254, 0.10835140198469162, -0.08962667733430862, -0.07245800644159317 ]
null
null
null
model-index: - name: stable-baselines3-ppo-LunarLander-v2 --- # ARCHIVED MODEL, DO NOT USE IT # stable-baselines3-ppo-LunarLander-v2 🚀👩‍🚀 This is a saved model of a PPO agent playing [LunarLander-v2](https://gym.openai.com/envs/LunarLander-v2/). The model is taken from [rl-baselines3-zoo](https://github.com/DLR-RM/rl-trained-agents) The goal is to correctly land the lander by controlling firing engines (fire left orientation engine, fire main engine and fire right orientation engine). <iframe width="560" height="315" src="https://www.youtube.com/embed/kE-Fvht81I0" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> 👉 You can watch the agent playing by using this [notebook](https://colab.research.google.com/drive/19OonMRkMyCH6Dg0ECFQi7evxMRqkW3U0?usp=sharing) ## Use the Model ### Install the dependencies You need to use the [Stable Baselines 3 Hugging Face version](https://github.com/simoninithomas/stable-baselines3) of the library (this version contains the function to load saved models directly from the Hugging Face Hub): ``` pip install git+https://github.com/simoninithomas/stable-baselines3.git ``` ### Evaluate the agent ⚠️You need to have Linux or MacOS to be able to use this environment. If it's not the case you can use the [colab notebook](https://colab.research.google.com/drive/19OonMRkMyCH6Dg0ECFQi7evxMRqkW3U0#scrollTo=Qbzj9quh0FsP) ``` # Import the libraries import gym from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Load the environment env = gym.make('LunarLander-v2') model = PPO.load_from_huggingface(hf_model_id="ThomasSimonini/stable-baselines3-ppo-LunarLander-v2",hf_model_filename="LunarLander-v2") # Evaluate the agent eval_env = gym.make('LunarLander-v2') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play obs = env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset() ``` ## Results Mean Reward (10 evaluation episodes): 245.63 +/- 10.02
{"license": "apache-2.0", "tags": ["deep-reinforcement-learning", "reinforcement-learning"]}
reinforcement-learning
ThomasSimonini/stable-baselines3-ppo-LunarLander-v2
[ "deep-reinforcement-learning", "reinforcement-learning", "license:apache-2.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #has_space #region-us
model-index: - name: stable-baselines3-ppo-LunarLander-v2 --- # ARCHIVED MODEL, DO NOT USE IT # stable-baselines3-ppo-LunarLander-v2 ‍ This is a saved model of a PPO agent playing LunarLander-v2. The model is taken from rl-baselines3-zoo The goal is to correctly land the lander by controlling firing engines (fire left orientation engine, fire main engine and fire right orientation engine). <iframe width="560" height="315" src="URL title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> You can watch the agent playing by using this notebook ## Use the Model ### Install the dependencies You need to use the Stable Baselines 3 Hugging Face version of the library (this version contains the function to load saved models directly from the Hugging Face Hub): ### Evaluate the agent ️You need to have Linux or MacOS to be able to use this environment. If it's not the case you can use the colab notebook ## Results Mean Reward (10 evaluation episodes): 245.63 +/- 10.02
[ "# ARCHIVED MODEL, DO NOT USE IT", "# stable-baselines3-ppo-LunarLander-v2 ‍\nThis is a saved model of a PPO agent playing LunarLander-v2. The model is taken from rl-baselines3-zoo\n\nThe goal is to correctly land the lander by controlling firing engines (fire left orientation engine, fire main engine and fire right orientation engine).\n\n<iframe width=\"560\" height=\"315\" src=\"URL title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>\n\n You can watch the agent playing by using this notebook", "## Use the Model", "### Install the dependencies\nYou need to use the Stable Baselines 3 Hugging Face version of the library (this version contains the function to load saved models directly from the Hugging Face Hub):", "### Evaluate the agent\n️You need to have Linux or MacOS to be able to use this environment. If it's not the case you can use the colab notebook", "## Results\nMean Reward (10 evaluation episodes): 245.63 +/- 10.02" ]
[ "TAGS\n#deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #has_space #region-us \n", "# ARCHIVED MODEL, DO NOT USE IT", "# stable-baselines3-ppo-LunarLander-v2 ‍\nThis is a saved model of a PPO agent playing LunarLander-v2. The model is taken from rl-baselines3-zoo\n\nThe goal is to correctly land the lander by controlling firing engines (fire left orientation engine, fire main engine and fire right orientation engine).\n\n<iframe width=\"560\" height=\"315\" src=\"URL title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>\n\n You can watch the agent playing by using this notebook", "## Use the Model", "### Install the dependencies\nYou need to use the Stable Baselines 3 Hugging Face version of the library (this version contains the function to load saved models directly from the Hugging Face Hub):", "### Evaluate the agent\n️You need to have Linux or MacOS to be able to use this environment. If it's not the case you can use the colab notebook", "## Results\nMean Reward (10 evaluation episodes): 245.63 +/- 10.02" ]
[ 32, 11, 159, 4, 44, 38, 17 ]
[ "passage: TAGS\n#deep-reinforcement-learning #reinforcement-learning #license-apache-2.0 #has_space #region-us \n# ARCHIVED MODEL, DO NOT USE IT# stable-baselines3-ppo-LunarLander-v2 ‍\nThis is a saved model of a PPO agent playing LunarLander-v2. The model is taken from rl-baselines3-zoo\n\nThe goal is to correctly land the lander by controlling firing engines (fire left orientation engine, fire main engine and fire right orientation engine).\n\n<iframe width=\"560\" height=\"315\" src=\"URL title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>\n\n You can watch the agent playing by using this notebook## Use the Model### Install the dependencies\nYou need to use the Stable Baselines 3 Hugging Face version of the library (this version contains the function to load saved models directly from the Hugging Face Hub):### Evaluate the agent\n️You need to have Linux or MacOS to be able to use this environment. If it's not the case you can use the colab notebook## Results\nMean Reward (10 evaluation episodes): 245.63 +/- 10.02" ]
[ -0.08835294097661972, 0.11230383813381195, -0.0020196533296257257, 0.05680807679891586, 0.09157887101173401, 0.022712338715791702, 0.11643873155117035, 0.12678289413452148, 0.06943285465240479, 0.0859295055270195, -0.03901668265461922, 0.03507993370294571, 0.07013368606567383, 0.1583043336868286, 0.04141616076231003, -0.16796568036079407, 0.06351444125175476, -0.09863494336605072, 0.08524204045534134, 0.06138082593679428, 0.06892024725675583, -0.02756683900952339, 0.06596460938453674, -0.02535613626241684, -0.08608365803956985, 0.04789557307958603, -0.04608455300331116, -0.009214825928211212, 0.0765819102525711, 0.00798844639211893, 0.004059623461216688, 0.029102357104420662, 0.09855611622333527, -0.13519641757011414, 0.0317252017557621, 0.08400464057922363, -0.0724605917930603, -0.0008513777866028249, 0.11865482479333878, 0.008485835045576096, 0.12102741003036499, -0.06927968561649323, 0.052586618810892105, 0.05198270082473755, -0.07991835474967957, -0.15610797703266144, -0.08865021914243698, 0.0779154822230339, 0.12406592071056366, 0.05159330368041992, 0.000669004104565829, 0.11510054022073746, 0.004148076754063368, 0.05476273223757744, 0.19464485347270966, -0.15255150198936462, -0.045449696481227875, 0.16505856812000275, 0.07122711092233658, 0.0749630331993103, -0.12308292090892792, 0.037106577306985855, 0.033273741602897644, -0.04085094481706619, -0.011659816838800907, -0.058267273008823395, -0.04908309131860733, -0.049159761518239975, -0.03247243911027908, -0.06312310695648193, 0.19369281828403473, 0.04771125689148903, -0.06621600687503815, -0.09378951787948608, -0.023448636755347252, 0.12357321381568909, -0.006535928230732679, 0.04408548027276993, 0.053511351346969604, 0.013159578666090965, -0.004704110790044069, -0.08967196196317673, -0.07392611354589462, -0.05016367882490158, 0.02122037298977375, 0.07298237085342407, -0.01183542050421238, 0.038850653916597366, 0.055050693452358246, 0.08525007963180542, -0.11508752405643463, -0.09434104710817337, -0.05159284174442291, -0.0506519116461277, -0.11460507661104202, 0.013686422258615494, -0.026682183146476746, 0.14373332262039185, 0.0191583763808012, 0.1864045262336731, -0.03818671777844429, 0.04772070795297623, -0.007051579188555479, 0.042141132056713104, -0.02373327501118183, 0.14990071952342987, 0.002894179429858923, -0.13961701095104218, 0.08131711184978485, 0.05511627718806267, 0.07677020877599716, -0.03957393392920494, -0.07583993673324585, -0.006822075229138136, -0.0835152342915535, 0.05664396286010742, 0.05972312390804291, 0.00014638940047007054, -0.04229334369301796, -0.00965095404535532, 0.14860740303993225, -0.1014837995171547, 0.09569332748651505, 0.04514150321483612, -0.027316510677337646, -0.04044105485081673, 0.07894662022590637, -0.008644240908324718, -0.012195565737783909, -0.0664673000574112, -0.006500252056866884, 0.031518638134002686, -0.09546475857496262, -0.0511123463511467, 0.038384947925806046, -0.08404900878667831, -0.010673507116734982, -0.11320743709802628, -0.18212908506393433, -0.0613911896944046, 0.019165612757205963, -0.018528884276747704, -0.009627455845475197, -0.03156845271587372, 0.00264451140537858, -0.02928522787988186, 0.01715223304927349, -0.06714558601379395, -0.020173165947198868, -0.01598586142063141, 0.021720729768276215, 0.08659136295318604, 0.020375695079565048, -0.008716005831956863, -0.08234384655952454, 0.060342274606227875, -0.25204208493232727, 0.09884364902973175, -0.0904124453663826, 0.07253430783748627, -0.0194743350148201, 0.035945065319538116, 0.048233650624752045, 0.0056306845508515835, 0.03551171347498894, 0.13887913525104523, -0.200673446059227, -0.03445563092827797, 0.09587962925434113, -0.16314992308616638, -0.11178001016378403, 0.06752865016460419, 0.011715986765921116, 0.001979619963094592, -0.001355098676867783, 0.15328708291053772, 0.10270603746175766, -0.18309226632118225, -0.04116354510188103, 0.009979797527194023, -0.05300302803516388, 0.02308107353746891, 0.06323648244142532, -0.0024047649931162596, -0.022598806768655777, 0.029849471524357796, -0.14256034791469574, -0.005598698742687702, 0.03259195387363434, -0.01672348380088806, -0.030834563076496124, -0.02634478360414505, -0.047611262649297714, 0.01954561285674572, -0.05191943049430847, -0.06033237650990486, -0.07012604922056198, -0.04202701151371002, 0.13085192441940308, -0.06634104251861572, 0.037743594497442245, -0.030704433098435402, 0.15914154052734375, -0.048410218209028244, 0.002010551979765296, -0.10268411040306091, -0.09756851196289062, 0.037333469837903976, -0.012446648441255093, 0.03276001662015915, -0.01981212943792343, 0.07904033362865448, 0.0919356569647789, -0.010730891488492489, -0.09770578891038895, -0.05685323104262352, -0.04356202855706215, 0.03948207572102547, -0.118792325258255, -0.03728386387228966, -0.08479739725589752, 0.13831864297389984, -0.11356024444103241, 0.01565724052488804, -0.07872800529003143, 0.10934282839298248, -0.047658149152994156, -0.09204287827014923, 0.017760304734110832, -0.08010269701480865, -0.0006522611365653574, -0.07849771529436111, 0.016877369955182076, 0.0568031370639801, -0.03248630464076996, 0.07296963781118393, -0.19103796780109406, -0.11117465049028397, 0.09973882883787155, -0.011629119515419006, -0.01464706752449274, -0.043328456580638885, -0.04070660099387169, 0.007050736341625452, -0.03361974284052849, -0.03225025162100792, 0.10326524078845978, 0.010151338763535023, 0.06539659202098846, -0.08836384117603302, -0.020028486847877502, -0.01255365926772356, -0.055664315819740295, -0.072269007563591, 0.062285784631967545, -0.01993907056748867, 0.04802499711513519, 0.04376817122101784, 0.010267901234328747, -0.04495544731616974, 0.12620878219604492, 0.03532710671424866, -0.09369093924760818, -0.025724997743964195, 0.04595978930592537, 0.0577964223921299, 0.11415596306324005, -0.015514375641942024, 0.020601438358426094, 0.049368202686309814, -0.06541336327791214, -0.014617586508393288, -0.1011919379234314, -0.009319944307208061, -0.0010922582587227225, -0.02872553840279579, 0.021772151812911034, 0.021276794373989105, 0.00313165201805532, 0.02431631088256836, -0.052595995366573334, 0.020104937255382538, -0.030457980930805206, -0.06957651674747467, -0.07942705601453781, 0.10741229355335236, -0.09256226569414139, -0.23012959957122803, -0.16541261970996857, 0.006428329739719629, -0.11181232333183289, 0.02782064862549305, 0.06523988395929337, -0.028569838032126427, -0.07730131596326828, -0.08299773931503296, -0.01518002338707447, 0.05089404061436653, -0.09153062105178833, 0.068449966609478, 0.03872298821806908, 0.062087297439575195, -0.09573009610176086, -0.004479917697608471, 0.01875111646950245, -0.12897536158561707, 0.0109196025878191, 0.03933541104197502, 0.07995808124542236, -0.0013166882563382387, 0.0011168253840878606, 0.00008568794874008745, 0.00043219467625021935, 0.09877901524305344, -0.05652916058897972, 0.0647331029176712, 0.17241287231445312, 0.015973879024386406, 0.07657301425933838, 0.08774945139884949, -0.020044740289449692, -0.0343908816576004, 0.009116490371525288, 0.002848835429176688, -0.05830882489681244, -0.14126259088516235, -0.048167046159505844, -0.0827583521604538, 0.05618307739496231, 0.0611674040555954, 0.017609985545277596, 0.0015779942041262984, 0.06212741881608963, -0.060880690813064575, -0.03240623325109482, 0.06329161673784256, 0.12754860520362854, 0.012508281506597996, -0.008401140570640564, 0.019106507301330566, -0.0757216140627861, 0.05652454122900963, 0.1237187460064888, 0.07314693182706833, 0.0850311666727066, -0.030050620436668396, 0.012178333476185799, 0.007516290061175823, 0.05232755467295647, -0.03873363137245178, 0.10962244868278503, -0.008012776263058186, -0.021899057552218437, 0.012932012788951397, -0.0892588347196579, -0.04985464736819267, 0.11695750802755356, 0.04724408686161041, 0.001589994179084897, -0.07963933050632477, 0.05406853184103966, 0.06415821611881256, 0.05056656524538994, -0.011671839281916618, -0.18857772648334503, 0.013910009525716305, 0.06107499450445175, 0.07339638471603394, -0.08295829594135284, -0.01802729442715645, 0.07748871296644211, -0.11839620023965836, 0.08040826767683029, 0.06964556127786636, 0.06116413325071335, -0.005697485525161028, -0.059007201343774796, -0.07179064303636551, 0.15433429181575775, 0.017713282257318497, 0.07907203584909439, -0.076145701110363, 0.04092145711183548, -0.018586058169603348, 0.06886424869298935, -0.012720230035483837, 0.021460633724927902, 0.12126728892326355, 0.05074752867221832, 0.1881738007068634, 0.045984093099832535, -0.13443386554718018, -0.05979326739907265, -0.10957633703947067, -0.012343186885118484, 0.010100976563990116, -0.08007054775953293, 0.018400097265839577, -0.01616603508591652, -0.0468912273645401, -0.06031576916575432, 0.1055222898721695, -0.05224867910146713, -0.10879478603601456, -0.0030864770524203777, -0.010083042085170746, -0.05398373305797577, -0.09251908957958221, -0.018808476626873016, -0.11382848024368286, 0.17853693664073944, 0.07163882255554199, -0.02660316787660122, -0.11372042447328568, -0.08920314908027649, 0.10708540678024292, -0.029585443437099457, 0.03011857531964779, -0.05651383101940155, 0.18417073786258698, -0.09287901967763901, -0.07922036945819855, 0.0299741942435503, -0.14946319162845612, -0.08631180971860886, -0.034772198647260666, 0.1523788571357727, -0.025804979726672173, 0.03569713607430458, 0.05685385316610336, 0.04401153698563576, -0.037171751260757446, -0.0943298190832138, 0.005703430622816086, 0.08105804771184921, -0.011756597086787224, 0.06263814121484756, -0.07035872340202332, -0.038197051733732224, -0.016326241195201874, 0.03651978075504303, 0.07530804723501205, 0.2517523467540741, -0.07035178691148758, 0.06565242260694504, 0.13566076755523682, -0.05690116807818413, -0.1805342733860016, -0.03975941613316536, 0.0389057956635952, -0.002396388677880168, 0.04062020033597946, -0.05374513939023018, 0.09582304209470749, 0.019568288698792458, -0.01792176067829132, 0.02944728173315525, -0.020183579996228218, -0.1011975109577179, 0.08747030794620514, 0.0566273033618927, 0.02782195433974266, -0.08959157019853592, -0.011784698814153671, -0.04997670650482178, -0.05785812437534332, 0.028700649738311768, -0.05980350822210312, 0.0928606390953064, -0.019846921786665916, -0.005362509284168482, 0.040040574967861176, -0.053570590913295746, 0.15347318351268768, -0.029315313324332237, 0.05652540177106857, -0.07097122073173523, 0.0757269412279129, 0.10980672389268875, -0.13882416486740112, 0.10813175141811371, -0.055442050099372864, 0.025732900947332382, -0.1942874938249588, 0.01918811909854412, -0.019368894398212433, 0.06009724736213684, -0.027015870437026024, 0.000030349179723998532, 0.001330397091805935, 0.0735500156879425, 0.05686192587018013, 0.041871849447488785, 0.04058166220784187, -0.00778850307688117, 0.031833648681640625, 0.16384516656398773, 0.023453187197446823, 0.07520507276058197, -0.10791852325201035, -0.0022638479713350534, -0.014032330363988876, 0.04144500941038132, -0.05099766328930855, 0.037745676934719086, 0.0406908243894577, -0.007758620660752058, 0.0957619845867157, -0.0008042709087021649, -0.10580476373434067, -0.015771765261888504, 0.08360528945922852, -0.11350417882204056, 0.014861644245684147, -0.00023441493976861238, 0.04904855787754059, -0.03162175416946411, -0.07367856800556183, 0.07094859331846237, 0.0018001359421759844, 0.0063255964778363705, -0.0017103053396567702, 0.03222052380442619, -0.05060321092605591, 0.026911960914731026, -0.013129323720932007, 0.04200528934597969, -0.08107532560825348, 0.18187740445137024, -0.019540991634130478, -0.006875147577375174, 0.012496386654675007, 0.1710115373134613, -0.043412625789642334, -0.060965798795223236, 0.009357010945677757, 0.13698133826255798, -0.01043001189827919, -0.0736965537071228, -0.046732690185308456, -0.0504615493118763, -0.00814726296812296, -0.032867636531591415, 0.04538259282708168, -0.0729067400097847, 0.013525506481528282, 0.01800144836306572, -0.09169083833694458, 0.045653339475393295, 0.03021514229476452, 0.03780076652765274, -0.06637857854366302, -0.026830444112420082, 0.04917672649025917, 0.009004293009638786, -0.018739381805062294, -0.045472998172044754, -0.09286265075206757, -0.024751782417297363, -0.02931530587375164, 0.030911624431610107, -0.05501651391386986, 0.039752230048179626, -0.01727226935327053, 0.0019330413779243827, -0.007478070445358753, 0.04977284371852875, -0.046729374676942825, -0.08167462795972824, -0.027943860739469528, 0.08986377716064453, -0.1071600541472435, -0.05578024312853813, 0.04642361402511597, -0.1111992672085762, 0.06346060335636139, 0.08988650888204575, 0.021407023072242737, -0.03235991299152374, -0.2114168256521225, -0.06614784896373749, 0.015011385083198547, 0.03906344994902611, 0.05487920343875885, -0.11841810494661331, 0.0506046898663044, -0.006777400150895119, -0.09831814467906952, -0.06082801893353462, 0.06827821582555771, -0.07045068591833115, 0.029946835711598396, 0.013526104390621185, -0.12967585027217865, -0.020307336002588272, 0.010741181671619415, 0.047042153775691986, 0.050311170518398285, 0.04221458360552788, -0.03265214338898659, 0.04143229126930237, -0.1535315215587616, -0.03852643445134163, 0.019237667322158813, -0.024593321606516838, 0.009647696278989315, -0.09302463382482529, 0.06917047500610352, 0.022638067603111267, 0.13346710801124573, 0.0021225165110081434, 0.05302491411566734, 0.0051636165007948875, 0.09675613045692444, 0.07252655923366547, -0.02660864219069481, 0.005524102598428726, -0.03480919823050499, 0.037143733352422714, 0.06358499825000763, -0.01901448518037796, 0.09544482082128525, -0.13093556463718414, 0.016030006110668182, 0.06289811432361603, 0.012245462276041508, 0.08445684611797333, 0.11425843089818954, -0.062188465148210526, -0.07541579753160477, -0.03828800097107887, -0.029572058469057083, 0.007307171355932951, -0.09172884374856949, 0.06652060151100159, 0.14649340510368347, -0.19187654554843903, 0.07001423090696335, 0.04153292253613472, -0.006801431067287922, -0.053849734365940094, -0.12321604043245316, -0.030687585473060608, -0.13440805673599243, 0.08209298551082611, -0.08556380122900009, 0.05772119760513306, -0.04116692394018173, 0.009676975198090076, 0.010305042378604412, 0.12182153016328812, -0.06831421703100204, -0.024415912106633186, 0.03346525877714157, 0.015293730422854424, 0.039473723620176315, 0.10445920377969742, -0.049519166350364685, 0.074980728328228, -0.024334589019417763, 0.03999516740441322, 0.0221409872174263, 0.10993168503046036, 0.06315240263938904, 0.01736837439239025, -0.07655500620603561, 0.02625279687345028, -0.030823538079857826, -0.006327662616968155, 0.18024225533008575, 0.059955354779958725, 0.015307264402508736, -0.0038647628389298916, 0.14916150271892548, -0.07391384243965149, -0.03245338425040245, -0.07458069920539856, 0.025931265205144882, -0.06669319421052933, -0.015284138731658459, -0.01950589194893837, -0.12479210644960403, -0.04641241580247879, 0.16647909581661224, 0.07578126341104507, -0.029913408681750298, -0.01336589828133583, -0.03236514329910278, 0.007418863940984011, -0.041227471083402634, 0.09456176310777664, 0.09575669467449188, 0.12733809649944305, -0.04456977918744087, 0.015795309096574783, -0.01286969892680645, -0.054515596479177475, -0.05949490889906883, 0.03851497545838356, -0.06837886571884155, -0.04200733080506325, -0.004340867977589369, 0.028541414067149162, -0.03210151195526123, -0.1505865901708603, 0.08761660009622574, -0.08052003383636475, -0.07216887176036835, -0.04030961915850639, 0.13259634375572205, 0.018367694690823555, 0.02903037704527378, 0.03127630800008774, 0.009808625094592571, 0.12205550074577332, -0.030038073658943176, -0.062104061245918274, -0.09618537873029709, -0.012094657868146896, -0.12331582605838776, 0.26191359758377075, -0.03426887467503548, 0.004221769981086254, 0.05777209624648094, 0.03298277035355568, -0.10878776758909225, 0.08709605783224106, 0.008669608272612095, -0.2127043604850769, -0.0073388200253248215, 0.18419241905212402, -0.06114749237895012, 0.03850790113210678, 0.04000360518693924, 0.007951202802360058, 0.038178738206624985, 0.08069168776273727, 0.00929342769086361, -0.07490567117929459, 0.0589459128677845, -0.1298580914735794, 0.13831999897956848, 0.09716833382844925, -0.009510586969554424, -0.0006589521071873605, -0.0920448824763298, 0.049799155443906784, 0.07731695473194122, -0.00944956112653017, 0.026525601744651794, -0.06558466702699661, 0.01597324199974537, 0.049498312175273895, 0.04715755209326744, -0.13456684350967407, -0.08590807765722275, -0.06939569860696793, -0.06452907621860504, -0.02950686775147915, 0.0699644684791565, -0.006384094245731831, 0.030620597302913666, -0.009259110316634178, -0.20005983114242554, 0.05675491318106651, 0.09619615226984024, -0.10087814182043076, -0.060397762805223465 ]
null
null
transformers
# t5-end2end-question-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad dataset to generate questions based on a context. 👉 If you want to learn how to fine-tune the t5 model to do the same, you can follow this [tutorial](https://colab.research.google.com/drive/1z-Zl2hftMrFXabYfmz8o9YZpgYx6sGeW?usp=sharing) For instance: ``` Context: "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace." ``` ``` Questions: Who created Python?, When was Python first released? What is Python's design philosophy? ``` It achieves the following results on the evaluation set: - Loss: 1.5691 ## Use the Model ``` from transformers import T5ForConditionalGeneration, T5TokenizerFast hfmodel = T5ForConditionalGeneration.from_pretrained("ThomasSimonini/t5-end2end-question-generation") text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791." def run_model(input_string, **generator_args): generator_args = { "max_length": 256, "num_beams": 4, "length_penalty": 1.5, "no_repeat_ngram_size": 3, "early_stopping": True, } input_string = "generate questions: " + input_string + " </s>" input_ids = tokenizer.encode(input_string, return_tensors="pt") res = hfmodel.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) output = [item.split("<sep>") for item in output] return output run_model(text) => [['When did the National Constituent Assembly abolish feudal privileges?', ' Who drafted the Declaration of the Rights of Man and of the Citizen?', ' When was the Constitutional Monarchy established?', ' What was the name of the Declaration that paved the way to a constitutional monarchy?', '']] ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5834 | 0.34 | 100 | 1.9107 | | 1.9642 | 0.68 | 200 | 1.7227 | | 1.8526 | 1.02 | 300 | 1.6627 | | 1.7383 | 1.36 | 400 | 1.6354 | | 1.7223 | 1.69 | 500 | 1.6154 | | 1.6871 | 2.03 | 600 | 1.6096 | | 1.6309 | 2.37 | 700 | 1.6048 | | 1.6242 | 2.71 | 800 | 1.5923 | | 1.6226 | 3.05 | 900 | 1.5855 | | 1.5645 | 3.39 | 1000 | 1.5874 | | 1.5705 | 3.73 | 1100 | 1.5822 | | 1.5543 | 4.07 | 1200 | 1.5817 | | 1.5284 | 4.41 | 1300 | 1.5841 | | 1.5275 | 4.75 | 1400 | 1.5741 | | 1.5269 | 5.08 | 1500 | 1.5715 | | 1.5079 | 5.42 | 1600 | 1.5701 | | 1.4876 | 5.76 | 1700 | 1.5754 | | 1.498 | 6.1 | 1800 | 1.5699 | | 1.4852 | 6.44 | 1900 | 1.5693 | | 1.4776 | 6.78 | 2000 | 1.5691 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"]}
text2text-generation
ThomasSimonini/t5-end2end-question-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
t5-end2end-question-generation ============================== This model is a fine-tuned version of t5-base on the squad dataset to generate questions based on a context. If you want to learn how to fine-tune the t5 model to do the same, you can follow this tutorial For instance: It achieves the following results on the evaluation set: * Loss: 1.5691 Use the Model ------------- ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 7 ### Training results ### Framework versions * Transformers 4.10.3 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 73, 125, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7### Training results### Framework versions\n\n\n* Transformers 4.10.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.13326948881149292, 0.14797529578208923, -0.0012964021880179644, 0.10859408974647522, 0.1477242112159729, 0.026020394638180733, 0.09619835764169693, 0.1596727967262268, -0.12477652728557587, 0.08746257424354553, 0.12809377908706665, 0.11044374108314514, 0.0500861257314682, 0.17048808932304382, -0.039407920092344284, -0.2488439530134201, 0.0014081575209274888, 0.009872267954051495, -0.0635915994644165, 0.1435643434524536, 0.08222813904285431, -0.12054803967475891, 0.07235904037952423, -0.02446664869785309, -0.17210286855697632, -0.04030153155326843, -0.02631550282239914, -0.04681312292814255, 0.13714288175106049, 0.011407588608562946, 0.09127908945083618, 0.023757899180054665, 0.08485918492078781, -0.1820823699235916, 0.001126444898545742, 0.06704892963171005, 0.01826227642595768, 0.10358778387308121, 0.0701327919960022, -0.004519025795161724, 0.12293745577335358, -0.10339076817035675, 0.03565286844968796, 0.020212288945913315, -0.11567912995815277, -0.18513914942741394, -0.10645467787981033, 0.04838835820555687, 0.0842466801404953, 0.1083182543516159, -0.01908327266573906, 0.0828002318739891, -0.08760175853967667, 0.0935521051287651, 0.24031944572925568, -0.2849577069282532, -0.05647573247551918, 0.035430263727903366, 0.032432664185762405, 0.07668713480234146, -0.09112437069416046, -0.034720830619335175, 0.034113939851522446, 0.04705284163355827, 0.12718656659126282, -0.004244009032845497, -0.07855784893035889, 0.011752113699913025, -0.15737126767635345, -0.0763937309384346, 0.1555529087781906, 0.03802364692091942, -0.02098500169813633, -0.06709624826908112, -0.08673542737960815, -0.23422643542289734, -0.02022409997880459, 0.03126691281795502, 0.028716549277305603, -0.03522634878754616, -0.08582532405853271, -0.0010705204913392663, -0.08570542186498642, -0.059727828949689865, -0.03865736350417137, 0.04268740490078926, 0.037939902395009995, 0.0016435438301414251, 0.00015885764150880277, 0.12164993584156036, 0.033491723239421844, -0.14612382650375366, 0.025762032717466354, 0.02348484843969345, -0.03959226980805397, -0.011881970800459385, -0.049761027097702026, -0.006251329556107521, 0.015051750466227531, 0.12232191115617752, -0.0721317008137703, 0.02738802321255207, 0.020410381257534027, 0.03629174828529358, -0.0821213573217392, 0.16514770686626434, -0.08197305351495743, -0.07968638837337494, 0.0025014460552483797, 0.09816350787878036, 0.03445436805486679, -0.027602892369031906, -0.11887328326702118, -0.004883935675024986, 0.12717752158641815, 0.04738984629511833, -0.008894730359315872, 0.04534987732768059, -0.0519016794860363, -0.02574843540787697, 0.04362616688013077, -0.10826323926448822, 0.027884716168045998, 0.005312170367687941, -0.08239034563302994, -0.03137655183672905, 0.00935167446732521, -0.007716524414718151, -0.05740021541714668, 0.09552287310361862, -0.09131994098424911, 0.003611732507124543, -0.09047013521194458, -0.12255489081144333, 0.031863983720541, -0.10963299870491028, -0.024925393983721733, -0.07881387323141098, -0.17098724842071533, -0.033368419855833054, 0.03927513211965561, -0.054892346262931824, -0.09388692677021027, -0.07478421926498413, -0.09785652905702591, 0.04246241971850395, -0.030066100880503654, 0.15014824271202087, -0.0668134018778801, 0.12495455145835876, 0.0087650828063488, 0.06626488268375397, -0.004447071347385645, 0.06980635225772858, -0.0866088792681694, 0.033854372799396515, -0.1602715253829956, 0.08878180384635925, -0.03393867611885071, 0.04973354935646057, -0.11218409985303879, -0.11172173917293549, 0.021419668570160866, -0.03064252808690071, 0.10187410563230515, 0.12841880321502686, -0.20069174468517303, -0.06516614556312561, 0.17528390884399414, -0.05541123449802399, -0.11845650523900986, 0.12817949056625366, -0.037625882774591446, -0.016305940225720406, 0.03341177850961685, 0.18142317235469818, 0.05516133829951286, -0.0630342960357666, -0.03513236343860626, -0.0014658948639407754, 0.09054745733737946, -0.07908085733652115, 0.10108248889446259, -0.010996570810675621, 0.05540480092167854, 0.012406007386744022, -0.03089531883597374, 0.06981788575649261, -0.1012534499168396, -0.0868871882557869, -0.03706252574920654, -0.07963574677705765, 0.044215861707925797, 0.060171835124492645, 0.0568331703543663, -0.08166123926639557, -0.10612905025482178, 0.016942905262112617, 0.10425921529531479, -0.09369970858097076, 0.039469800889492035, -0.03538474068045616, 0.12697939574718475, -0.07178589701652527, -0.006482204422354698, -0.20325209200382233, -0.04156533256173134, 0.024103576317429543, 0.02705221250653267, -0.0027556437999010086, -0.010726706124842167, 0.040800899267196655, 0.07067546248435974, -0.049326617270708084, -0.04165419563651085, -0.03946175053715706, -0.025862159207463264, -0.12070488929748535, -0.21322877705097198, -0.0707845389842987, -0.01788008026778698, 0.17248134315013885, -0.20110566914081573, 0.02779838629066944, 0.0019426483195275068, 0.09711425751447678, 0.0030961092561483383, -0.02253677137196064, -0.012541165575385094, 0.08719755709171295, -0.06498493254184723, -0.0754939615726471, 0.07851822674274445, 0.013273273594677448, -0.08596813678741455, -0.0041604298166930676, -0.1031738743185997, 0.09477299451828003, 0.13574351370334625, -0.02981269732117653, -0.07626453042030334, -0.026842566207051277, -0.0798179879784584, -0.031999778002500534, -0.03594448044896126, 0.012915990315377712, 0.12175288796424866, 0.023892143741250038, 0.1497919261455536, -0.08770869672298431, -0.0548577755689621, 0.035713184624910355, 0.010537841357290745, 0.020528210327029228, 0.14304976165294647, 0.11460912227630615, -0.04131879284977913, 0.15232889354228973, 0.11485916376113892, -0.04753531888127327, 0.12018406391143799, -0.053381968289613724, -0.10091615468263626, -0.023940198123455048, 0.006569800898432732, 0.009768093936145306, 0.10656845569610596, -0.13505740463733673, -0.01702229119837284, 0.041962169110774994, 0.033428847789764404, 0.02749556116759777, -0.20027178525924683, -0.01998857781291008, 0.020817231386899948, -0.06466864794492722, -0.015862299129366875, -0.018561890348792076, 0.00962243415415287, 0.11955957114696503, 0.01826433464884758, -0.07381131500005722, 0.02460036426782608, -0.0006389842019416392, -0.07830843329429626, 0.20054668188095093, -0.09479091316461563, -0.18015216290950775, -0.1151740625500679, -0.04285444691777229, -0.05702555552124977, -0.005043350160121918, 0.04887636750936508, -0.06756005436182022, -0.00658958125859499, -0.09138892590999603, 0.01717383600771427, -0.03518863394856453, 0.035365961492061615, -0.014694582670927048, 0.004800345748662949, 0.04596147686243057, -0.10739794373512268, 0.005524820182472467, -0.030183715745806694, -0.050196677446365356, 0.04905383661389351, 0.03397596627473831, 0.12547935545444489, 0.17377029359340668, -0.006499711889773607, 0.019642410799860954, -0.04788632690906525, 0.19891229271888733, -0.07659416645765305, -0.011754239909350872, 0.1222408190369606, 0.021062739193439484, 0.07016927748918533, 0.1494140923023224, 0.03570399433374405, -0.07813718169927597, 0.01090081874281168, 0.01635446399450302, -0.031832654029130936, -0.2303910106420517, -0.06741625815629959, -0.07974835485219955, 0.028238190338015556, 0.1137453243136406, 0.025212589651346207, -0.009661722928285599, 0.04174388200044632, 0.007649432867765427, 0.07384408265352249, -0.05239864066243172, 0.0643467977643013, 0.09851758927106857, 0.038352444767951965, 0.1370490938425064, -0.03349209576845169, -0.024461327120661736, 0.05472787097096443, -0.0016062762588262558, 0.23874326050281525, -0.07145510613918304, 0.16998358070850372, 0.04010086879134178, 0.20777100324630737, 0.007908868603408337, 0.09203291684389114, -0.01486209500581026, 0.009574532508850098, -0.013267403468489647, -0.05110848695039749, -0.05902178958058357, 0.003604640020057559, -0.009850888513028622, 0.04419643431901932, -0.13853588700294495, 0.004122573882341385, 0.054841261357069016, 0.30293476581573486, 0.10081733018159866, -0.34564709663391113, -0.10045731067657471, -0.0003249813162256032, -0.026795295998454094, -0.032052308320999146, 0.015794221311807632, 0.1440742164850235, -0.08996137976646423, 0.023976042866706848, -0.06436576694250107, 0.0976753681898117, -0.06740900874137878, 0.018594438210129738, 0.07760168612003326, 0.07886972278356552, 0.006261744536459446, 0.08352842181921005, -0.27676236629486084, 0.265434592962265, 0.003609463106840849, 0.03845342621207237, -0.08047410100698471, 0.017120886594057083, 0.013673448003828526, 0.01766468957066536, 0.07976554334163666, 0.0033149144146591425, -0.044146887958049774, -0.1744481474161148, -0.12354297190904617, 0.016894429922103882, 0.0872686579823494, -0.061152491718530655, 0.12108190357685089, -0.028353003785014153, -0.01212390698492527, 0.038618508726358414, 0.009788963943719864, -0.021874569356441498, -0.120541051030159, 0.015491992235183716, 0.01228648703545332, -0.00007000590267125517, -0.061096206307411194, -0.11571579426527023, -0.07768062502145767, 0.17375297844409943, -0.04873617738485336, -0.05345677211880684, -0.1252065747976303, 0.11303645372390747, 0.13127946853637695, -0.09204718470573425, 0.04085917770862579, -0.004410645458847284, 0.08349215239286423, 0.008035575039684772, -0.06591729074716568, 0.09425408393144608, -0.05580475181341171, -0.20190700888633728, -0.06214084103703499, 0.14105816185474396, 0.00820708554238081, 0.07590790838003159, -0.03621806204319, 0.03088446334004402, -0.037869516760110855, -0.09136662632226944, 0.013631475158035755, 0.017051812261343002, 0.12123896181583405, 0.03990595415234566, -0.06014041602611542, 0.003981799352914095, -0.0449380986392498, -0.04729621484875679, 0.2000003606081009, 0.2368793785572052, -0.11004683375358582, 0.044450607150793076, 0.04080336540937424, -0.05404416099190712, -0.1950002759695053, 0.007101200055330992, 0.08718514442443848, 0.03531015291810036, 0.00048818456707522273, -0.18188415467739105, 0.05966085568070412, 0.10370606184005737, -0.012440897524356842, 0.1132875308394432, -0.36882495880126953, -0.11614225804805756, 0.052814990282058716, 0.09705089777708054, 0.05094052106142044, -0.16686378419399261, -0.03851846233010292, -0.012781089171767235, -0.09738093614578247, 0.12813135981559753, -0.0572112575173378, 0.13729532063007355, -0.02997061051428318, 0.07029227912425995, 0.008145586587488651, -0.06723961234092712, 0.11396963149309158, 0.027180571109056473, 0.052968282252550125, -0.044511061161756516, -0.016430363059043884, 0.0885128602385521, -0.06715042144060135, 0.026059461757540703, -0.08799479156732559, 0.056308139115571976, -0.138808012008667, -0.006060747429728508, -0.08785450458526611, 0.02063480205833912, -0.049305275082588196, -0.05756001174449921, -0.038319505751132965, 0.038675352931022644, 0.07537131011486053, -0.00991857796907425, 0.10584378987550735, 0.01725413277745247, 0.1378820389509201, 0.11903870105743408, 0.04177030175924301, -0.04876827076077461, -0.05994151532649994, -0.01069414522498846, -0.015187347307801247, 0.03301335498690605, -0.16059456765651703, 0.009091753512620926, 0.16276977956295013, 0.036210957914590836, 0.13630422949790955, 0.07600172609090805, -0.042965833097696304, 0.01628854125738144, 0.06386586278676987, -0.15406708419322968, -0.0811861976981163, -0.0028520068153738976, -0.03942620009183884, -0.1471690833568573, 0.025143219158053398, 0.10199431329965591, -0.05918068811297417, -0.017777221277356148, -0.004223911091685295, 0.03217259421944618, -0.029564060270786285, 0.19689053297042847, 0.04034765064716339, 0.07822667807340622, -0.11232643574476242, 0.07900164276361465, 0.08466163277626038, -0.12512661516666412, 0.020494559779763222, 0.10850293934345245, -0.10319777578115463, -0.030928760766983032, 0.050852321088314056, 0.11318803578615189, -0.039740197360515594, -0.025894805788993835, -0.11354173719882965, -0.11016934365034103, 0.10515297949314117, 0.10430916398763657, 0.07500538975000381, 0.049997538328170776, -0.036843862384557724, -0.01434524916112423, -0.13129135966300964, 0.11103969812393188, 0.054983384907245636, 0.061023201793432236, -0.11897464096546173, 0.16924458742141724, -0.0015167726669460535, 0.055212102830410004, -0.014660683460533619, 0.029853470623493195, -0.1023595780134201, -0.0009027328342199326, -0.0983741283416748, -0.016871431842446327, -0.048504941165447235, -0.010009082034230232, -0.029609201475977898, -0.030687447637319565, -0.04477199539542198, 0.005128850229084492, -0.09827123582363129, -0.059115756303071976, -0.020906073972582817, 0.043656107038259506, -0.12361511588096619, -0.02095470018684864, 0.0029598805122077465, -0.09029272198677063, 0.11230868101119995, 0.04424651339650154, 0.03205901384353638, 0.01891881600022316, -0.05396328493952751, -0.013705708086490631, 0.03419112414121628, 0.012050336226820946, 0.07672256976366043, -0.09977219253778458, 0.006028898525983095, -0.010179455392062664, 0.014832128770649433, 0.021328577771782875, 0.05223778262734413, -0.1433081328868866, 0.013810504227876663, -0.028633730486035347, -0.03975270688533783, -0.06727015227079391, 0.06233875826001167, 0.06748135387897491, 0.033705681562423706, 0.15932786464691162, -0.06537631899118423, 0.053729284554719925, -0.23122845590114594, -0.016573909670114517, -0.02400725707411766, -0.09280604869127274, -0.10348830372095108, -0.04401610791683197, 0.08787844330072403, -0.05565517768263817, 0.11299529671669006, 0.013267488218843937, 0.06551963835954666, 0.015125020407140255, -0.022682655602693558, 0.00682654557749629, 0.0243596863001585, 0.18216624855995178, 0.036222562193870544, -0.04106488823890686, 0.07329315692186356, 0.0488869845867157, 0.08844491094350815, 0.16656304895877838, 0.206381693482399, 0.10836213082075119, 0.07844617962837219, 0.08303409814834595, 0.027352305129170418, -0.10963962972164154, -0.1831904798746109, 0.07486584782600403, -0.04786939546465874, 0.1349157989025116, -0.03416137024760246, 0.21493886411190033, 0.07908767461776733, -0.19516848027706146, 0.05302432179450989, -0.04225785285234451, -0.08566572517156601, -0.09408412128686905, -0.061951614916324615, -0.07047853618860245, -0.14238931238651276, -0.0203124787658453, -0.1276639997959137, 0.024880075827240944, 0.12375835329294205, 0.019163362681865692, 0.0033153665717691183, 0.08942703157663345, 0.05660257115960121, 0.008739564567804337, 0.07652756571769714, 0.031780924648046494, 0.011944272555410862, -0.05588102713227272, -0.07302586734294891, 0.01402073074132204, -0.016635362058877945, 0.0731891393661499, -0.03892587497830391, -0.041704211384058, 0.07162801921367645, -0.013374914415180683, -0.09399834275245667, 0.009045491926372051, 0.010368718765676022, 0.07453379034996033, 0.09849950671195984, 0.020692158490419388, 0.0005610639345832169, -0.02001112326979637, 0.240448459982872, -0.0862620398402214, -0.07684627175331116, -0.10990335047245026, 0.23878125846385956, 0.02348700352013111, -0.04586334154009819, 0.03951383754611015, -0.09078044444322586, -0.027270957827568054, 0.2071768343448639, 0.22201821208000183, -0.08701593428850174, -0.02651609480381012, 0.03405071049928665, -0.012852195650339127, -0.021686160936951637, 0.10567289590835571, 0.14915280044078827, 0.11445417255163193, -0.09729477763175964, -0.04078724980354309, -0.05938524380326271, -0.024733390659093857, -0.027845585718750954, 0.07168363034725189, 0.014644188806414604, 0.0024781585671007633, -0.024801883846521378, 0.050942033529281616, -0.07557723671197891, -0.10706470161676407, 0.04360061138868332, -0.24263839423656464, -0.18927481770515442, -0.0114376125857234, 0.07250962406396866, 0.005819265730679035, 0.061807285994291306, -0.012499310076236725, 0.009702266193926334, 0.09602750837802887, -0.029471658170223236, -0.07796759903430939, -0.07055487483739853, 0.08141890913248062, -0.08203878998756409, 0.1716902256011963, -0.049723926931619644, 0.03184041380882263, 0.13995729386806488, 0.0716366246342659, -0.11885242909193039, 0.04942493513226509, 0.06800215691328049, -0.03606791794300079, 0.046212561428546906, 0.11127958446741104, -0.034164752811193466, 0.06282225996255875, 0.04948951303958893, -0.09866118431091309, 0.010806560516357422, -0.06392810493707657, -0.022190431132912636, -0.05672620236873627, -0.04712007939815521, -0.033758971840143204, 0.14240829646587372, 0.21819408237934113, -0.05871163681149483, 0.00325782666914165, -0.07512104511260986, -0.020543936640024185, 0.019643019884824753, 0.06985983997583389, -0.04275936633348465, -0.23336628079414368, 0.016553178429603577, 0.048868581652641296, 0.0025862560141831636, -0.2456766963005066, -0.06742817163467407, 0.025683093816041946, -0.06565038859844208, -0.12951885163784027, 0.11638718843460083, 0.038816843181848526, 0.040851201862096786, -0.05445026233792305, -0.0218941792845726, -0.07297859340906143, 0.16046476364135742, -0.16487418115139008, -0.08879362046718597 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
ThoracicCosine/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
#Michael DialoGPT Model
{"tags": ["conversational"]}
text-generation
Tidum/DialoGPT-large-Michael
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Michael DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Precision: 0.8920 - Recall: 0.8656 - F1: 0.8786 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0519 | 1.0 | 2904 | 0.0731 | 0.8700 | 0.8564 | 0.8631 | 0.9832 | | 0.026 | 2.0 | 5808 | 0.0749 | 0.8771 | 0.8540 | 0.8654 | 0.9840 | | 0.0159 | 3.0 | 8712 | 0.0772 | 0.8920 | 0.8656 | 0.8786 | 0.9855 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "gpl-3.0", "tags": ["generated_from_trainer"], "datasets": ["mim_gold_ner"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "IceBERT-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "mim_gold_ner", "type": "mim_gold_ner", "args": "mim-gold-ner"}, "metrics": [{"type": "precision", "value": 0.8920083733530353, "name": "Precision"}, {"type": "recall", "value": 0.8655753375552635, "name": "Recall"}, {"type": "f1", "value": 0.8785930867192238, "name": "F1"}, {"type": "accuracy", "value": 0.9855436530476731, "name": "Accuracy"}]}]}]}
token-classification
Titantoe/IceBERT-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:mim_gold_ner", "license:gpl-3.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-gpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
IceBERT-finetuned-ner ===================== This model is a fine-tuned version of vesteinn/IceBERT on the mim\_gold\_ner dataset. It achieves the following results on the evaluation set: * Loss: 0.0772 * Precision: 0.8920 * Recall: 0.8656 * F1: 0.8786 * Accuracy: 0.9855 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.11.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-gpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 71, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-gpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.1008133664727211, 0.09311485290527344, -0.002488085301592946, 0.12893927097320557, 0.1615004539489746, 0.03830305486917496, 0.13207273185253143, 0.11403627693653107, -0.07766343653202057, 0.03246282413601875, 0.122496597468853, 0.162178635597229, 0.005931996274739504, 0.11851627379655838, -0.049551256000995636, -0.2647092938423157, -0.015248740091919899, 0.046433545649051666, -0.053369078785181046, 0.12929004430770874, 0.0910419225692749, -0.1365346908569336, 0.09388914704322815, 0.016461556777358055, -0.21742168068885803, -0.002612314186990261, 0.027220377698540688, -0.05373020097613335, 0.14479698240756989, 0.018116842955350876, 0.12319551408290863, 0.005351466592401266, 0.08910582214593887, -0.16351258754730225, 0.010754807852208614, 0.03499101847410202, 0.002885386347770691, 0.09452328085899353, 0.04044115170836449, -0.007752900943160057, 0.10796599090099335, -0.06905210018157959, 0.06037649139761925, 0.013825871981680393, -0.13740961253643036, -0.22434906661510468, -0.08889401704072952, 0.04485272243618965, 0.05539620667695999, 0.08170903474092484, -0.01025936845690012, 0.14962558448314667, -0.07602478563785553, 0.0816183015704155, 0.20378069579601288, -0.3071204125881195, -0.06877847760915756, 0.07573356479406357, 0.007588670589029789, 0.05041295662522316, -0.105824775993824, -0.011075425893068314, 0.0485987551510334, 0.03906840831041336, 0.1375550925731659, -0.034153424203395844, -0.06340763717889786, 0.027142656967043877, -0.1484093964099884, -0.02638968639075756, 0.13213779032230377, 0.05071631446480751, -0.03987710550427437, -0.026386601850390434, -0.044434692710638046, -0.15550626814365387, -0.03941360116004944, -0.012023478746414185, 0.04688718914985657, -0.03731546178460121, -0.11018433421850204, -0.004690208937972784, -0.09178727120161057, -0.06491583585739136, -0.07540271431207657, 0.1586703658103943, 0.029276026412844658, 0.008383728563785553, -0.024677902460098267, 0.11446196585893631, -0.028693320229649544, -0.11377264559268951, 0.02168666571378708, 0.030186885967850685, -0.009670086205005646, -0.061089105904102325, -0.04668006673455238, -0.05445948615670204, 0.0030223613139241934, 0.13663801550865173, -0.0259579885751009, 0.041882794350385666, 0.04500380530953407, 0.04336680471897125, -0.08865392953157425, 0.17952589690685272, -0.04791365563869476, -0.03569281846284866, 0.006633317563682795, 0.041084736585617065, 0.01656222715973854, -0.008141877129673958, -0.12681210041046143, 0.0031550759449601173, 0.11112585663795471, -0.0017907903529703617, -0.07161904871463776, 0.07294026762247086, -0.0630977600812912, -0.026521999388933182, 0.0020176677498966455, -0.07258637994527817, 0.03162696585059166, -0.016453329473733902, -0.0834413468837738, -0.038938749581575394, -0.0026071760803461075, 0.027476226910948753, 0.01865733042359352, 0.13345064222812653, -0.11160890758037567, 0.022902993485331535, -0.08257752656936646, -0.10998806357383728, 0.013438778929412365, -0.1004357784986496, 0.034045711159706116, -0.10186949372291565, -0.1732349991798401, -0.009575074538588524, 0.059198811650276184, -0.03314047306776047, -0.050477784126996994, -0.04328889772295952, -0.05901710316538811, 0.0042869774624705315, -0.007227989844977856, 0.10998404771089554, -0.06033336743712425, 0.0951170027256012, 0.030439989641308784, 0.06617457419633865, -0.03620525822043419, 0.03972373530268669, -0.09941311925649643, 0.022361643612384796, -0.1628570705652237, 0.03348200023174286, -0.04774974286556244, 0.0651112049818039, -0.08536054193973541, -0.1075609028339386, 0.012835557572543621, -0.012942561879754066, 0.06607182323932648, 0.08217986673116684, -0.16027098894119263, -0.09067077189683914, 0.16263453662395477, -0.06235126778483391, -0.12255872786045074, 0.12393131107091904, -0.07704243063926697, 0.040435124188661575, 0.071938656270504, 0.19012941420078278, 0.05396582558751106, -0.09135778993368149, 0.0029945778660476208, -0.01751684583723545, 0.040140457451343536, -0.0603475384414196, 0.07336100190877914, 0.02064983919262886, 0.0014879065565764904, 0.021965667605400085, -0.03843333572149277, 0.06017552316188812, -0.10668949037790298, -0.09372541308403015, -0.022632285952568054, -0.09723670780658722, 0.07298342138528824, 0.06098392978310585, 0.0838875100016594, -0.10025665163993835, -0.07593271136283875, 0.06805788725614548, 0.07998204231262207, -0.04768052324652672, 0.018228057771921158, -0.07922635227441788, 0.09316834807395935, -0.06694227457046509, -0.032900918275117874, -0.1617671698331833, -0.02728487364947796, 0.007519275415688753, 0.004813842009752989, 0.037671420723199844, 0.025095339864492416, 0.07062803953886032, 0.07024190574884415, -0.06628420948982239, -0.00372294127009809, -0.034490495920181274, 0.0018003865843638778, -0.12547284364700317, -0.19763332605361938, -0.04403949901461601, -0.018163520842790604, 0.16720989346504211, -0.22447487711906433, 0.03441649302840233, 0.0034380049910396338, 0.09161996841430664, 0.030943365767598152, -0.025830108672380447, -0.04506411403417587, 0.07074370980262756, -0.03488066419959068, -0.05351753905415535, 0.062277715653181076, 0.011545133776962757, -0.10772271454334259, -0.06346401572227478, -0.11192462593317032, 0.1873241811990738, 0.12728336453437805, -0.1248043105006218, -0.08880185335874557, -0.018943652510643005, -0.05662987753748894, -0.026228241622447968, -0.04503391683101654, 0.031479183584451675, 0.16790471971035004, -0.011809764429926872, 0.1439194232225418, -0.06602095067501068, -0.045079853385686874, 0.031679823994636536, -0.04500456154346466, 0.012293292209506035, 0.11289725452661514, 0.10963764786720276, -0.10160514712333679, 0.14231877028942108, 0.13072332739830017, -0.08900893479585648, 0.13923057913780212, -0.02264384925365448, -0.05277034640312195, -0.046050410717725754, -0.041386570781469345, 0.00557393254712224, 0.11596621572971344, -0.13678507506847382, -0.006752284709364176, 0.023502569645643234, 0.01841367781162262, 0.013039425015449524, -0.21482746303081512, -0.05350155010819435, 0.04059535637497902, -0.02721640281379223, -0.01178441196680069, -0.0006842647562734783, -0.008367063477635384, 0.10461872071027756, 0.018214577808976173, -0.08090982586145401, 0.04347594082355499, 0.011677248403429985, -0.07504049688577652, 0.19997823238372803, -0.06532019376754761, -0.11140381544828415, -0.11595428735017776, -0.09794584661722183, -0.053074851632118225, 0.016184713691473007, 0.048063233494758606, -0.08331570774316788, -0.02101837657392025, -0.0609329491853714, 0.02008819207549095, -0.014796641655266285, 0.03456627577543259, 0.01875973492860794, -0.011936786584556103, 0.05546409264206886, -0.0900038480758667, -0.016406461596488953, -0.06564287841320038, -0.04214463382959366, 0.055842868983745575, 0.03279803320765495, 0.12285827845335007, 0.15752679109573364, -0.02894015796482563, 0.016055990010499954, -0.036416977643966675, 0.2570849657058716, -0.07453685998916626, -0.029702117666602135, 0.12124533206224442, -0.010480323806405067, 0.0480327270925045, 0.10620763897895813, 0.07971848547458649, -0.09187787026166916, -0.0018518187571316957, 0.03869054466485977, -0.05412939935922623, -0.20306310057640076, -0.04917360097169876, -0.053921543061733246, -0.013078481890261173, 0.08922377973794937, 0.023265231400728226, 0.042670879513025284, 0.08268380165100098, 0.049919866025447845, 0.09438397735357285, -0.044837355613708496, 0.07675866037607193, 0.13494256138801575, 0.053762368857860565, 0.13121555745601654, -0.03315393999218941, -0.07352815568447113, 0.042976975440979004, -0.002285782480612397, 0.2297886461019516, 0.02534922957420349, 0.116575688123703, 0.06189828738570213, 0.15780460834503174, 0.009161559864878654, 0.04991479218006134, -0.007828853093087673, -0.04452495649456978, -0.022942855954170227, -0.03814048692584038, -0.020454343408346176, 0.020308516919612885, -0.05319320783019066, 0.04087912291288376, -0.11308978497982025, 0.0030079251155257225, 0.05254605785012245, 0.1966198980808258, 0.04661017656326294, -0.33847367763519287, -0.09844759851694107, 0.003389527555555105, -0.018891174346208572, -0.004835371859371662, 0.016416363418102264, 0.07445581257343292, -0.09423734247684479, 0.04167814552783966, -0.08125130832195282, 0.08339080959558487, -0.06659363210201263, 0.04699893295764923, 0.0741056576371193, 0.09695784747600555, -0.00821460410952568, 0.07296460121870041, -0.2639077305793762, 0.28438785672187805, 0.009996226988732815, 0.06461986154317856, -0.06451953947544098, -0.01877124048769474, 0.02631324529647827, 0.0552554652094841, 0.07200314849615097, -0.006287491414695978, -0.0204396340996027, -0.20933254063129425, -0.028062473982572556, 0.022394616156816483, 0.08940985053777695, -0.04412823170423508, 0.09981067478656769, -0.022414887323975563, 0.009077542461454868, 0.06934837996959686, 0.002865405287593603, -0.05423058196902275, -0.08398661017417908, 0.002793757012113929, 0.022920383140444756, -0.05092325806617737, -0.056653156876564026, -0.11457912623882294, -0.13473773002624512, 0.14217285811901093, -0.011638328433036804, -0.025962622836232185, -0.11051320284605026, 0.10383274406194687, 0.06699271500110626, -0.09038015455007553, 0.040363796055316925, 0.009171388112008572, 0.07586891949176788, 0.024103116244077682, -0.05235416814684868, 0.10903219133615494, -0.057913508266210556, -0.16576124727725983, -0.06630640476942062, 0.09365636855363846, 0.04402494803071022, 0.07065708935260773, -0.005507190711796284, 0.025111492723226547, -0.026771819218993187, -0.0894431546330452, 0.05175996944308281, -0.03031385876238346, 0.06667996942996979, 0.003950397949665785, -0.02619376964867115, 0.0663168877363205, -0.05827835202217102, -0.032629258930683136, 0.17952582240104675, 0.2664233446121216, -0.09842485934495926, 0.008269541896879673, 0.030196048319339752, -0.06480509787797928, -0.1796180009841919, 0.06067158654332161, 0.039051685482263565, 0.005918959155678749, 0.0510370135307312, -0.17526555061340332, 0.1159677654504776, 0.1117141917347908, -0.018395528197288513, 0.10443589836359024, -0.30030950903892517, -0.12306489050388336, 0.10062818229198456, 0.15271396934986115, 0.13886669278144836, -0.13003750145435333, -0.024276092648506165, -0.010617404244840145, -0.15312549471855164, 0.10769140720367432, -0.08409078419208527, 0.12315879762172699, -0.031029164791107178, 0.1013982966542244, 0.01267006155103445, -0.0602881982922554, 0.1214166209101677, 0.03603985533118248, 0.10891564190387726, -0.05756627395749092, -0.06617940217256546, 0.05933292582631111, -0.03642994910478592, 0.00002158053575840313, -0.0659370869398117, 0.02364770509302616, -0.0754685252904892, -0.031554050743579865, -0.06936218589544296, 0.037861838936805725, -0.02848406881093979, -0.0814458504319191, -0.056051842868328094, 0.048304807394742966, 0.03945040702819824, -0.01768009178340435, 0.14698472619056702, 0.028174005448818207, 0.1464107185602188, 0.07812225073575974, 0.06706344336271286, -0.07286062836647034, -0.057895462960004807, -0.016874972730875015, -0.01985044591128826, 0.05767088383436203, -0.13079150021076202, 0.022763442248106003, 0.14888519048690796, 0.03253558278083801, 0.15098512172698975, 0.08383096754550934, -0.03264671936631203, 0.026444025337696075, 0.06522560864686966, -0.16096241772174835, -0.09610021859407425, -0.003693145466968417, -0.08048999309539795, -0.10368113219738007, 0.05238129198551178, 0.10869289934635162, -0.0714072436094284, -0.010818110778927803, -0.0021951596718281507, -0.002631867304444313, -0.05504830926656723, 0.1904582679271698, 0.07016057521104813, 0.041283562779426575, -0.096901535987854, 0.05755270645022392, 0.052662745118141174, -0.060580458492040634, 0.0007935137837193906, 0.03259145841002464, -0.08590726554393768, -0.036773353815078735, 0.019425321370363235, 0.20579251646995544, -0.09360283613204956, -0.018643485382199287, -0.14573103189468384, -0.1115562692284584, 0.06630265712738037, 0.1296910047531128, 0.10838251560926437, 0.014445883221924305, -0.06608545035123825, 0.016827872022986412, -0.12491059303283691, 0.08635569363832474, 0.057008616626262665, 0.07926198840141296, -0.16701985895633698, 0.15481138229370117, -0.007794246543198824, 0.03914423659443855, -0.023825697600841522, 0.02127036638557911, -0.11302810907363892, 0.008467973209917545, -0.10626102238893509, -0.029903268441557884, -0.038288213312625885, 0.009998242370784283, -0.011023302562534809, -0.0627535879611969, -0.06407762318849564, 0.006312550511211157, -0.11886367946863174, -0.014114693738520145, 0.05159836634993553, 0.044689811766147614, -0.09950949996709824, -0.03888878598809242, 0.023364625871181488, -0.0501781664788723, 0.07518614828586578, 0.03944026306271553, 0.03838925063610077, 0.05399312824010849, -0.13086934387683868, 0.026628248393535614, 0.060597699135541916, 0.004832474980503321, 0.07484348863363266, -0.08499881625175476, -0.008575567975640297, -0.021998247131705284, 0.05582270398736, 0.030451640486717224, 0.05992041900753975, -0.13120277225971222, 0.00017551789642311633, -0.022240621969103813, -0.07283589243888855, -0.06664859503507614, 0.03589525818824768, 0.08000405877828598, 0.028150932863354683, 0.18759465217590332, -0.06898024678230286, 0.03379132226109505, -0.21344009041786194, -0.002834217855706811, -0.0030396946240216494, -0.11175946891307831, -0.11011991649866104, -0.06554572284221649, 0.05877257138490677, -0.05536102503538132, 0.1538563221693039, 0.04831302538514137, 0.012018210254609585, 0.024250388145446777, -0.00868251547217369, 0.029593953862786293, 0.001597332302480936, 0.19210094213485718, 0.04057617858052254, -0.045827701687812805, 0.05524255707859993, 0.04977620020508766, 0.10132879763841629, 0.11121976375579834, 0.19172747433185577, 0.1417689323425293, -0.020060252398252487, 0.06741312146186829, 0.04001602530479431, -0.04942011460661888, -0.18263015151023865, 0.03048551082611084, -0.03867437317967415, 0.09660550951957703, -0.018453603610396385, 0.20454607903957367, 0.07743292301893234, -0.16862860321998596, 0.03168134391307831, -0.04490966349840164, -0.08524100482463837, -0.10842809826135635, -0.07838571071624756, -0.08669545501470566, -0.13594692945480347, 0.01841011457145214, -0.11009235680103302, 0.008504368364810944, 0.11470942199230194, 0.005284622311592102, -0.020175639539957047, 0.14409135282039642, 0.0019279231783002615, 0.041204508394002914, 0.05362869054079056, 0.004583315923810005, -0.05129154399037361, -0.09556879103183746, -0.061185549944639206, -0.02178295888006687, -0.02383382059633732, 0.030192002654075623, -0.07071340084075928, -0.0410231277346611, 0.02195749059319496, -0.008418194949626923, -0.10183922201395035, 0.005429130978882313, 0.025658421218395233, 0.06351923942565918, 0.014272789470851421, -0.008352978155016899, 0.02106468752026558, -0.018401501700282097, 0.2177640199661255, -0.05876415595412254, -0.04327813908457756, -0.09378798305988312, 0.23573625087738037, 0.030634351074695587, -0.009135117754340172, 0.03170574828982353, -0.07061474025249481, 0.03264008089900017, 0.2325451374053955, 0.21907676756381989, -0.08626624196767807, -0.0026527452282607555, 0.010637964121997356, -0.01103890035301447, -0.01140893716365099, 0.09967871755361557, 0.09683061391115189, 0.03757114335894585, -0.09198075532913208, -0.03453684225678444, -0.07535998523235321, -0.005792069714516401, -0.005477999337017536, 0.07125572860240936, 0.05788414925336838, 0.013962695375084877, -0.054879408329725266, 0.05567339062690735, -0.07404720038175583, -0.09959172457456589, 0.07499916851520538, -0.21182306110858917, -0.16527198255062103, -0.006680256221443415, 0.06863868236541748, 0.00394436763599515, 0.07541146129369736, -0.03734875097870827, -0.008175088092684746, 0.04450104385614395, -0.00493414094671607, -0.09685471653938293, -0.08199611306190491, 0.10502595454454422, -0.05765463784337044, 0.22085203230381012, -0.059039488434791565, 0.07478863000869751, 0.1291366070508957, 0.060475897043943405, -0.07050138711929321, 0.056087981909513474, 0.04862027242779732, -0.0569230280816555, 0.017307396978139877, 0.08747366070747375, -0.028057828545570374, 0.07401604950428009, 0.05376184731721878, -0.12735353410243988, 0.009893301874399185, -0.05960969626903534, -0.05301477387547493, -0.05177989602088928, -0.0383109450340271, -0.05361073464155197, 0.1395842432975769, 0.20876847207546234, -0.0321090966463089, 0.0014265719801187515, -0.06232361122965813, 0.017762288451194763, 0.07884114235639572, 0.02659180760383606, -0.067902572453022, -0.2211715281009674, 0.006895436439663172, 0.06774110347032547, -0.029164418578147888, -0.24431194365024567, -0.09815746545791626, -0.004397017415612936, -0.06352278590202332, -0.07444113492965698, 0.09031106531620026, 0.09650790691375732, 0.05440232530236244, -0.058716483414173126, -0.0557795912027359, -0.07724251598119736, 0.1473146378993988, -0.1422204077243805, -0.0849328264594078 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0941 - Precision: 0.8714 - Recall: 0.8450 - F1: 0.8580 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0572 | 1.0 | 2904 | 0.0998 | 0.8586 | 0.8171 | 0.8373 | 0.9802 | | 0.0313 | 2.0 | 5808 | 0.0868 | 0.8666 | 0.8288 | 0.8473 | 0.9822 | | 0.0199 | 3.0 | 8712 | 0.0941 | 0.8714 | 0.8450 | 0.8580 | 0.9827 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "agpl-3.0", "tags": ["generated_from_trainer"], "datasets": ["mim_gold_ner"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "XLMR-ENIS-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "mim_gold_ner", "type": "mim_gold_ner", "args": "mim-gold-ner"}, "metrics": [{"type": "precision", "value": 0.8713799976550592, "name": "Precision"}, {"type": "recall", "value": 0.8450255827174531, "name": "Recall"}, {"type": "f1", "value": 0.8580004617871162, "name": "F1"}, {"type": "accuracy", "value": 0.9827265378338392, "name": "Accuracy"}]}]}]}
token-classification
Titantoe/XLMR-ENIS-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:mim_gold_ner", "license:agpl-3.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-agpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
XLMR-ENIS-finetuned-ner ======================= This model is a fine-tuned version of vesteinn/XLMR-ENIS on the mim\_gold\_ner dataset. It achieves the following results on the evaluation set: * Loss: 0.0941 * Precision: 0.8714 * Recall: 0.8450 * F1: 0.8580 * Accuracy: 0.9827 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.11.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-agpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 74, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-mim_gold_ner #license-agpl-3.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.1094665378332138, 0.11923381686210632, -0.0020727880764752626, 0.12853819131851196, 0.16566932201385498, 0.03240054100751877, 0.13284434378147125, 0.12001047283411026, -0.06372877210378647, 0.033334627747535706, 0.12310049682855606, 0.14146234095096588, 0.014073671773076057, 0.13714464008808136, -0.05696827545762062, -0.2530836760997772, -0.009471290744841099, 0.050876110792160034, -0.04555058479309082, 0.12457210570573807, 0.09135787934064865, -0.13278822600841522, 0.09736990183591843, 0.010434127412736416, -0.21042272448539734, -0.003959076479077339, 0.025989362969994545, -0.05632886663079262, 0.13904781639575958, 0.032196637243032455, 0.1246427595615387, 0.006391886621713638, 0.09153430908918381, -0.15770114958286285, 0.007744541857391596, 0.03604205697774887, 0.003363045398145914, 0.100038543343544, 0.045991457998752594, 0.0027288738638162613, 0.08713764697313309, -0.07687035948038101, 0.050469718873500824, 0.011253555305302143, -0.1350567787885666, -0.23191644251346588, -0.08944620192050934, 0.03639182820916176, 0.06564454734325409, 0.09251758456230164, -0.009045691229403019, 0.15360631048679352, -0.060200028121471405, 0.08573689311742783, 0.195050910115242, -0.29847452044487, -0.06759892404079437, 0.0694439485669136, 0.010181049816310406, 0.05369168519973755, -0.10059696435928345, -0.019821589812636375, 0.04852838069200516, 0.03921155631542206, 0.13234373927116394, -0.037266992032527924, -0.04527321085333824, 0.02173183485865593, -0.1419645994901657, -0.027953898534178734, 0.14251773059368134, 0.05619353801012039, -0.04392162337899208, -0.029837999492883682, -0.04353043809533119, -0.14703170955181122, -0.036637432873249054, 0.002139963675290346, 0.04350439831614494, -0.03993530943989754, -0.10046979039907455, 0.0011372638400644064, -0.09356732666492462, -0.05933323875069618, -0.0733848586678505, 0.13846595585346222, 0.021865028887987137, 0.005832040216773748, -0.018761837854981422, 0.10756643116474152, -0.02301291935145855, -0.12456343322992325, 0.024524157866835594, 0.03248610720038414, -0.01830952800810337, -0.059237997978925705, -0.04416310042142868, -0.056306153535842896, -0.003369924146682024, 0.12304232269525528, -0.020160991698503494, 0.042064107954502106, 0.029926199465990067, 0.0387980081140995, -0.08145646005868912, 0.1919945925474167, -0.04727443307638168, -0.05137408897280693, 0.0039978669956326485, 0.05552893877029419, 0.013098901137709618, -0.009824461303651333, -0.13276121020317078, -0.0007106252596713603, 0.11268603801727295, -0.0015729769365862012, -0.061859555542469025, 0.06567467749118805, -0.05803994834423065, -0.03562038019299507, 0.022447701543569565, -0.07410885393619537, 0.03096368908882141, -0.024820726364850998, -0.08156368136405945, -0.03459373861551285, 0.0022315089590847492, 0.028597038239240646, 0.014874469488859177, 0.12239237874746323, -0.11229773610830307, 0.022684898227453232, -0.08349486440420151, -0.11580207943916321, 0.009767641313374043, -0.08826927840709686, 0.028390606865286827, -0.10657865554094315, -0.1798972487449646, -0.017289964482188225, 0.060111887753009796, -0.037282124161720276, -0.05997510626912117, -0.04097849503159523, -0.0592024028301239, 0.008739752694964409, -0.010272280313074589, 0.11012761294841766, -0.06169517710804939, 0.09863539785146713, 0.03712337464094162, 0.06381753832101822, -0.04675186797976494, 0.045794665813446045, -0.09986963123083115, 0.02629893645644188, -0.16049619019031525, 0.0320141538977623, -0.04601230099797249, 0.07017850130796432, -0.09285247325897217, -0.10315269231796265, 0.027942439541220665, -0.012547719292342663, 0.06591606885194778, 0.07088309526443481, -0.16948291659355164, -0.07884368300437927, 0.15390942990779877, -0.05717102065682411, -0.12463488429784775, 0.12180756032466888, -0.07044392824172974, 0.041745223104953766, 0.0683983564376831, 0.18586421012878418, 0.06473211199045181, -0.08701429516077042, 0.0023786660749465227, -0.01978180930018425, 0.05661926046013832, -0.07835438847541809, 0.08749131113290787, 0.019952666014432907, 0.005541294347494841, 0.019666291773319244, -0.04761829972267151, 0.06881608068943024, -0.09889881312847137, -0.09146078675985336, -0.016633687540888786, -0.09542771428823471, 0.05156172439455986, 0.06237363815307617, 0.08123845607042313, -0.09478212893009186, -0.07172276824712753, 0.0718497782945633, 0.08684364706277847, -0.047385383397340775, 0.01343231089413166, -0.07399623841047287, 0.08381595462560654, -0.08297540247440338, -0.034428030252456665, -0.1629602164030075, -0.025900734588503838, 0.011257477104663849, 0.010340115986764431, 0.028635578230023384, 0.03220430016517639, 0.06668838858604431, 0.07255695760250092, -0.06658276915550232, -0.01497364416718483, -0.028385387733578682, 0.005568336229771376, -0.13421939313411713, -0.1859341710805893, -0.0417475625872612, -0.018084950745105743, 0.17307274043560028, -0.2315887212753296, 0.027111826464533806, -0.014722471125423908, 0.09367842227220535, 0.03835757449269295, -0.020308367908000946, -0.042719341814517975, 0.07615622133016586, -0.04021455720067024, -0.05650412663817406, 0.06443654000759125, 0.012009595520794392, -0.10240031778812408, -0.05327065661549568, -0.11904393136501312, 0.189934641122818, 0.12562252581119537, -0.09314016252756119, -0.07990500330924988, -0.02288946881890297, -0.05158300697803497, -0.02964123710989952, -0.0439608097076416, 0.021069969981908798, 0.15405718982219696, -0.006663235370069742, 0.15612800419330597, -0.06461509317159653, -0.03695598989725113, 0.03437165915966034, -0.04251686856150627, 0.006315994542092085, 0.11567052453756332, 0.11371351033449173, -0.11929456144571304, 0.149105042219162, 0.13956262171268463, -0.08335727453231812, 0.14277108013629913, -0.027766067534685135, -0.059259433299303055, -0.049190279096364975, -0.0423613004386425, 0.010331482626497746, 0.1180279552936554, -0.09557873010635376, -0.002487660851329565, 0.029802851378917694, 0.02201361209154129, 0.01008629146963358, -0.20595063269138336, -0.04798857122659683, 0.04275309666991234, -0.029404671862721443, -0.010644011199474335, -0.007372737862169743, -0.009879518300294876, 0.10323592275381088, 0.017259974032640457, -0.08844877779483795, 0.041044555604457855, 0.00993608869612217, -0.0730118378996849, 0.19185319542884827, -0.07019644975662231, -0.13400503993034363, -0.13370250165462494, -0.09629645198583603, -0.05210968106985092, 0.01736055314540863, 0.0432203933596611, -0.06712145358324051, -0.027601415291428566, -0.07145313173532486, -0.0013027293607592583, -0.012404778972268105, 0.03096395917236805, 0.024065785109996796, -0.01059309858828783, 0.0622292086482048, -0.08435790985822678, -0.017560208216309547, -0.05102059245109558, -0.032670799642801285, 0.05487203970551491, 0.023437129333615303, 0.12579330801963806, 0.14189627766609192, -0.02249212935566902, 0.013179338537156582, -0.03624355420470238, 0.25841593742370605, -0.07362713664770126, -0.023818055167794228, 0.12494155764579773, -0.0055843377485871315, 0.04745427891612053, 0.11732407659292221, 0.06770950555801392, -0.087760329246521, 0.0023782553616911173, 0.03350280970335007, -0.04675709828734398, -0.19417007267475128, -0.0468892827630043, -0.05777599662542343, -0.005908436141908169, 0.09627025574445724, 0.020611658692359924, 0.048664264380931854, 0.07410949468612671, 0.04822622239589691, 0.09793193638324738, -0.05900806188583374, 0.07555458694696426, 0.11863527446985245, 0.05711290240287781, 0.1328507512807846, -0.036401621997356415, -0.06810922175645828, 0.04604755714535713, 0.005364632699638605, 0.2300698459148407, 0.022240718826651573, 0.12747344374656677, 0.04453781992197037, 0.15195102989673615, 0.011630590073764324, 0.053619883954524994, -0.004106681793928146, -0.04049760103225708, -0.02840569242835045, -0.03565295413136482, -0.02348606288433075, 0.02429015003144741, -0.040687721222639084, 0.03804223611950874, -0.1105651929974556, -0.001586642931215465, 0.04519135504961014, 0.20252680778503418, 0.04708337411284447, -0.3431297540664673, -0.09606684744358063, 0.009753287769854069, -0.0203274954110384, -0.015238769352436066, 0.005889163352549076, 0.08524978160858154, -0.09719688445329666, 0.03359953314065933, -0.08065315335988998, 0.08594401925802231, -0.06291074305772781, 0.04587174206972122, 0.07869090139865875, 0.08998499065637589, -0.007905146107077599, 0.07307296246290207, -0.2719251811504364, 0.28932127356529236, 0.012261344119906425, 0.05985527113080025, -0.06383080780506134, -0.013035653159022331, 0.021727170795202255, 0.051719192415475845, 0.06565487384796143, -0.006346551235765219, -0.03428947180509567, -0.22511839866638184, -0.042529936879873276, 0.022149836644530296, 0.07025228440761566, -0.04672475904226303, 0.10846873372793198, -0.027783216908574104, 0.00482494430616498, 0.06919624656438828, 0.009970462881028652, -0.043392524123191833, -0.0903533548116684, 0.010919967666268349, 0.03763481229543686, -0.05106031522154808, -0.0581926628947258, -0.1113109216094017, -0.12886297702789307, 0.134582981467247, -0.005919698625802994, -0.026001006364822388, -0.11624825745820999, 0.10209165513515472, 0.07397008687257767, -0.09805073589086533, 0.03368093818426132, 0.008333904668688774, 0.07755323499441147, 0.027620166540145874, -0.05325261130928993, 0.10770565271377563, -0.05831484496593475, -0.16014447808265686, -0.06729458272457123, 0.09094919264316559, 0.029670141637325287, 0.0704536959528923, -0.005639200564473867, 0.029960956424474716, -0.0279560349881649, -0.07825221121311188, 0.04553619399666786, -0.023399172350764275, 0.07076185196638107, 0.004900837317109108, -0.02597709931433201, 0.04856991395354271, -0.0566292442381382, -0.043090011924505234, 0.17730973660945892, 0.26757127046585083, -0.09878450632095337, 0.003882909659296274, 0.02597953751683235, -0.0633431151509285, -0.17459186911582947, 0.05583062395453453, 0.05087536200881004, 0.016651155427098274, 0.054622065275907516, -0.17057658731937408, 0.10707134753465652, 0.11392022669315338, -0.018117431551218033, 0.10271380841732025, -0.28661367297172546, -0.12257008254528046, 0.09795798361301422, 0.14671441912651062, 0.12641574442386627, -0.1370663195848465, -0.024286769330501556, -0.018849017098546028, -0.15593470633029938, 0.11537669599056244, -0.06912568211555481, 0.12414012104272842, -0.025809265673160553, 0.09262236207723618, 0.012532563880085945, -0.05963173136115074, 0.13134419918060303, 0.03190202638506889, 0.10720578581094742, -0.05665894225239754, -0.06325224786996841, 0.039318934082984924, -0.04071490839123726, 0.00807364471256733, -0.07059025019407272, 0.02145744115114212, -0.10115654021501541, -0.02802039496600628, -0.06861171871423721, 0.026734868064522743, -0.023881612345576286, -0.0766666904091835, -0.044334761798381805, 0.057946231216192245, 0.041191186755895615, -0.019502123817801476, 0.1478726863861084, 0.023030029609799385, 0.13485299050807953, 0.09609866887331009, 0.059360094368457794, -0.06293462216854095, -0.05194664001464844, -0.020919784903526306, -0.022017909213900566, 0.055434782058000565, -0.1242702305316925, 0.023661896586418152, 0.1504700928926468, 0.021048489958047867, 0.15893961489200592, 0.07244201749563217, -0.026561114937067032, 0.01850026287138462, 0.0664660707116127, -0.155584916472435, -0.09631060808897018, -0.012098608538508415, -0.06129002571105957, -0.11030083149671555, 0.0317365862429142, 0.11814209818840027, -0.0701056495308876, -0.0110094603151083, -0.0019474892178550363, 0.0007475644815713167, -0.046524956822395325, 0.19557063281536102, 0.06415147334337234, 0.042971476912498474, -0.09392938017845154, 0.05214076116681099, 0.06880848854780197, -0.05293107032775879, 0.007106253411620855, 0.03798508644104004, -0.0866798385977745, -0.03905969858169556, 0.018582450225949287, 0.20824170112609863, -0.09940261393785477, -0.024452796205878258, -0.15167737007141113, -0.10512502491474152, 0.06419304013252258, 0.12246681749820709, 0.10812252014875412, 0.0069696251302957535, -0.05655674636363983, 0.002420490374788642, -0.12409898638725281, 0.0913458839058876, 0.05563420057296753, 0.08454178273677826, -0.16708512604236603, 0.1550285369157791, -0.0130764190107584, 0.03814007714390755, -0.019346842542290688, 0.026053424924612045, -0.11383619159460068, 0.002661696635186672, -0.1118050143122673, -0.023154376074671745, -0.035391487181186676, 0.0043891556560993195, -0.00812397338449955, -0.06615780293941498, -0.056238289922475815, 0.003631819039583206, -0.11839967966079712, -0.019176805391907692, 0.04748424142599106, 0.051252856850624084, -0.09033499658107758, -0.04692167043685913, 0.017074471339583397, -0.046891383826732635, 0.06669491529464722, 0.031797342002391815, 0.042102258652448654, 0.04375191405415535, -0.12018059939146042, 0.02482716739177704, 0.05157852545380592, 0.010730961337685585, 0.08186400681734085, -0.09112496674060822, -0.008256832137703896, -0.013584606349468231, 0.05903583765029907, 0.028100624680519104, 0.0610169880092144, -0.13266269862651825, -0.004583862144500017, -0.02400183491408825, -0.0684967115521431, -0.06928380578756332, 0.04071541130542755, 0.08361873775720596, 0.03926023840904236, 0.1934119164943695, -0.07280135899782181, 0.03684598207473755, -0.21221262216567993, -0.004233872052282095, -0.011162313632667065, -0.11354615539312363, -0.10156320780515671, -0.07139234244823456, 0.05880782753229141, -0.05236028879880905, 0.13331900537014008, 0.049903690814971924, 0.03114238940179348, 0.02381892502307892, -0.027356859296560287, 0.036467425525188446, 0.0007280994323082268, 0.19139151275157928, 0.04099605232477188, -0.039745260030031204, 0.06841854751110077, 0.04943444952368736, 0.09680196642875671, 0.12791435420513153, 0.17873914539813995, 0.14568983018398285, -0.011737282387912273, 0.06633077561855316, 0.03924296051263809, -0.05810614675283432, -0.17413431406021118, 0.024066805839538574, -0.044231582432985306, 0.10393453389406204, -0.017219768837094307, 0.2090769112110138, 0.06585289537906647, -0.17445069551467896, 0.027746783569455147, -0.052711062133312225, -0.08596852421760559, -0.09782125055789948, -0.07385074347257614, -0.09028004854917526, -0.12108278274536133, 0.003768973285332322, -0.11026212573051453, 0.010905971750617027, 0.12019287049770355, -0.0008138141129165888, -0.02004287578165531, 0.13257451355457306, 0.0023149012122303247, 0.03385267034173012, 0.05311945080757141, 0.003990588244050741, -0.04086334630846977, -0.09924167394638062, -0.05769657716155052, -0.02196020819246769, -0.009219079278409481, 0.03282805159687996, -0.06861436367034912, -0.038080815225839615, 0.02786208502948284, -0.004948624409735203, -0.10716996341943741, 0.004909392911940813, 0.02414950728416443, 0.06074604392051697, 0.028721796348690987, 0.00012521885219030082, 0.024395031854510307, -0.017400309443473816, 0.21947194635868073, -0.06361252814531326, -0.04702771082520485, -0.10266277194023132, 0.24315045773983002, 0.025011537596583366, -0.015410132706165314, 0.028609341010451317, -0.07214581966400146, 0.030145922675728798, 0.22750453650951385, 0.20513926446437836, -0.09547822177410126, -0.007000437937676907, 0.005953193176537752, -0.010694493539631367, -0.014650668017566204, 0.10158251225948334, 0.10042444616556168, 0.0387275405228138, -0.08960368484258652, -0.0330713726580143, -0.07834790647029877, -0.006254757754504681, -0.012657508254051208, 0.06139988452196121, 0.05116324499249458, 0.016959305852651596, -0.04979696869850159, 0.052619971334934235, -0.05512270703911781, -0.09919729083776474, 0.05409352853894234, -0.21092790365219116, -0.17155788838863373, -0.008020730689167976, 0.07543645799160004, 0.005415171850472689, 0.06615526974201202, -0.04336213320493698, 0.008667442947626114, 0.051218416541814804, -0.012754950672388077, -0.08251742273569107, -0.075425885617733, 0.10525216162204742, -0.06326475739479065, 0.20851485431194305, -0.056971143931150436, 0.06797392666339874, 0.13033893704414368, 0.05923160910606384, -0.08002205938100815, 0.062411464750766754, 0.05126020684838295, -0.052026648074388504, 0.03028506599366665, 0.09246987104415894, -0.0320068784058094, 0.08661416172981262, 0.04901851341128349, -0.13146774470806122, 0.004792595747858286, -0.062324367463588715, -0.051844485104084015, -0.04434020444750786, -0.04323333501815796, -0.05204463005065918, 0.14851737022399902, 0.21009443700313568, -0.0383194275200367, -0.0062851011753082275, -0.05899748578667641, 0.014887511730194092, 0.07354327291250229, 0.02455882355570793, -0.07276341319084167, -0.2135791778564453, 0.0045303357765078545, 0.04621740058064461, -0.02264750935137272, -0.2481054812669754, -0.09115999191999435, -0.013502435758709908, -0.07088924199342728, -0.07284881174564362, 0.09666890650987625, 0.08481859415769577, 0.050879087299108505, -0.06307205557823181, -0.045784495770931244, -0.07826771587133408, 0.14482757449150085, -0.1361343413591385, -0.09061744064092636 ]
null
null
null
{"tags": ["summarization"]}
summarization
Tminus1/SumBot
[ "summarization", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #summarization #region-us
[]
[ "TAGS\n#summarization #region-us \n" ]
[ 10 ]
[ "passage: TAGS\n#summarization #region-us \n" ]
[ 0.004198385868221521, 0.04270515590906143, -0.010776623152196407, -0.10757064074277878, 0.13696491718292236, 0.05966564267873764, -0.003935419488698244, -0.0042762793600559235, 0.12784144282341003, -0.007759788539260626, 0.12069462984800339, 0.019877703860402107, -0.018586328253149986, 0.07374726980924606, -0.04274703189730644, -0.2613150179386139, 0.04078248515725136, -0.016374606639146805, -0.08543331176042557, 0.047513630241155624, -0.012900391593575478, -0.08381430059671402, 0.006421860307455063, -0.09523392468690872, -0.07709676027297974, 0.09468738734722137, 0.007077631074935198, -0.055729735642671585, 0.0759221687912941, -0.01393785048276186, 0.14011453092098236, 0.023251546546816826, -0.09970317780971527, -0.288924902677536, 0.02735372819006443, -0.053095731884241104, -0.08519095182418823, 0.01005053985863924, 0.08872983604669571, -0.04198175668716431, 0.07875881344079971, -0.005783370230346918, -0.0011242100736126304, 0.06656882911920547, -0.23917460441589355, -0.07617030292749405, -0.02751259133219719, -0.17213858664035797, 0.08166974782943726, -0.02168053202331066, -0.01601490192115307, 0.09404589980840683, -0.20512782037258148, 0.009933963418006897, -0.03791952133178711, -0.2307935506105423, 0.024721678346395493, 0.20208236575126648, 0.010371127165853977, 0.08117925375699997, -0.031015189364552498, 0.10161786526441574, 0.06546258181333542, -0.03799128532409668, -0.11164091527462006, -0.061489202082157135, -0.058904122561216354, 0.1227358803153038, -0.09115330129861832, -0.090704545378685, 0.4400866627693176, 0.04735448211431503, 0.03877350687980652, 0.10259904712438583, -0.0686027780175209, -0.062244486063718796, 0.03219497203826904, 0.008956683799624443, 0.010343166068196297, 0.13270246982574463, 0.15668030083179474, 0.045604076236486435, -0.13036522269248962, 0.026331037282943726, -0.2559712827205658, 0.1884087473154068, -0.023032572120428085, 0.1049734577536583, -0.24097158014774323, -0.035332679748535156, -0.2352679967880249, -0.04345489293336868, 0.07921674102544785, -0.07915856689214706, -0.11316683143377304, -0.03760397434234619, -0.037045057862997055, -0.08661282807588577, 0.06311029195785522, 0.090843066573143, -0.06924647837877274, 0.09303038567304611, -0.04713496193289757, 0.12170207500457764, 0.17649127542972565, 0.09570473432540894, 0.08270522207021713, -0.006589979864656925, -0.0843987911939621, -0.1661980301141739, 0.01070712972432375, -0.07111480087041855, -0.05576418712735176, 0.057761918753385544, -0.0977933406829834, 0.13821914792060852, -0.04517790302634239, -0.04290958121418953, -0.1704258769750595, 0.047805096954107285, -0.11792214959859848, -0.032876331359148026, -0.0439588688313961, -0.034739959985017776, 0.04351559653878212, 0.09196781367063522, -0.16045241057872772, -0.005763240158557892, 0.045015834271907806, 0.13955801725387573, -0.15489275753498077, -0.02110995166003704, -0.05923348292708397, 0.054131846874952316, 0.06752008944749832, -0.06993107497692108, 0.04853785037994385, -0.07768815755844116, -0.04877108335494995, 0.013946838676929474, 0.015311005525290966, -0.03907078504562378, 0.09038691967725754, -0.037012577056884766, 0.06284438073635101, -0.024330701678991318, -0.038125962018966675, -0.024146178737282753, -0.13631980121135712, 0.063670314848423, -0.009231961332261562, 0.027936989441514015, -0.18197883665561676, 0.0178375244140625, -0.13995233178138733, 0.11565300077199936, -0.07706008851528168, 0.025399981066584587, -0.046346068382263184, 0.17855452001094818, 0.006728914100676775, 0.06919356435537338, -0.23636242747306824, 0.012219577096402645, -0.08049748837947845, 0.22356177866458893, -0.2271282821893692, -0.08830475807189941, 0.14556358754634857, -0.13026677072048187, -0.07441691309213638, 0.02283686026930809, 0.029882630333304405, 0.09641379863023758, 0.056382209062576294, 0.42672356963157654, -0.12874406576156616, -0.020571382716298103, 0.06826115399599075, 0.20766766369342804, -0.14374348521232605, -0.08002666383981705, 0.06358341872692108, -0.08900900930166245, -0.21223290264606476, 0.04009348526597023, 0.19480261206626892, 0.029521211981773376, -0.08999516069889069, -0.022678110748529434, 0.07096199691295624, 0.0478130578994751, 0.07196291536092758, 0.04992770776152611, 0.08002681285142899, -0.041208092123270035, 0.09901066869497299, -0.04306251183152199, -0.0014447396388277411, 0.14262765645980835, -0.012086923234164715, -0.01427594292908907, 0.100733682513237, -0.06036856397986412, 0.0504847876727581, -0.20809078216552734, -0.12037388980388641, 0.021830925717949867, 0.06831878423690796, 0.011114922352135181, 0.1445336788892746, 0.038779281079769135, -0.10838060081005096, 0.006778381764888763, 0.04096246883273125, 0.11982867866754532, 0.040252022445201874, 0.012193062342703342, -0.042606987059116364, 0.07742331922054291, -0.08647215366363525, -0.03587125986814499, -0.057349253445863724, -0.02200615406036377, 0.21939441561698914, 0.024260038509964943, 0.06349097192287445, 0.006101725157350302, 0.032619278877973557, 0.0867418572306633, 0.056038159877061844, 0.023326341062784195, 0.09654796868562698, -0.023076530545949936, -0.12857738137245178, 0.06466273218393326, -0.09501491487026215, 0.18925142288208008, 0.1460738480091095, -0.1989070177078247, 0.024773670360445976, -0.11516598612070084, -0.003998507279902697, 0.0017183794407173991, 0.07180971652269363, -0.045735277235507965, -0.04115891084074974, 0.01723116636276245, 0.045495446771383286, -0.013350066728889942, 0.0062911296263337135, -0.054998788982629776, -0.01646747812628746, -0.1474105566740036, 0.10221679508686066, 0.18815255165100098, -0.23628021776676178, 0.15262721478939056, 0.35090258717536926, 0.18899954855442047, 0.21287062764167786, -0.11886126548051834, -0.011718498542904854, -0.0002822338428813964, -0.002173167886212468, -0.06813614815473557, 0.09812431037425995, -0.20713765919208527, 0.023919617757201195, 0.04592450335621834, 0.043689314275979996, 0.10880125313997269, -0.11128368228673935, -0.08987685292959213, -0.0004301717854104936, 0.0375395193696022, -0.1635945737361908, 0.04590471461415291, -0.01697525382041931, 0.056898701936006546, 0.06712523102760315, -0.0010683079017326236, 0.10501092672348022, -0.05336502194404602, -0.03239740431308746, 0.11294315755367279, -0.19175656139850616, -0.2527078092098236, -0.12348232418298721, -0.059680767357349396, 0.014417764730751514, 0.03690093010663986, 0.010860712267458439, -0.13799497485160828, -0.03945305943489075, 0.07199515402317047, 0.10438140481710434, -0.24966272711753845, -0.010782025754451752, -0.05137364938855171, 0.14735004305839539, -0.11702398210763931, -0.021618034690618515, -0.03758811578154564, -0.12317407131195068, 0.05456240847706795, 0.10405393689870834, -0.1668277084827423, 0.0946204662322998, 0.21979482471942902, 0.07150036096572876, 0.052565596997737885, -0.03242679312825203, 0.12734046578407288, -0.14003318548202515, -0.16768121719360352, 0.02426586113870144, -0.06689506024122238, 0.050357792526483536, 0.2069942057132721, 0.03219568729400635, -0.15431331098079681, -0.012340259738266468, -0.040849972516298294, -0.13424618542194366, -0.20538626611232758, -0.1323738545179367, -0.1418277770280838, 0.16488520801067352, 0.013496444560587406, 0.041224297136068344, -0.022650228813290596, -0.014287671074271202, 0.13616161048412323, -0.06700485199689865, -0.04840748384594917, -0.02007174864411354, 0.2070838361978531, -0.07725530862808228, -0.00797916017472744, -0.08613988012075424, -0.056157056242227554, 0.10745125263929367, 0.03225865215063095, 0.18663297593593597, 0.2466779500246048, 0.09059490263462067, 0.0563184879720211, 0.00923959817737341, 0.15872861444950104, 0.1296665221452713, 0.07466960698366165, -0.022935641929507256, -0.05734538659453392, 0.010912513360381126, -0.10851408541202545, 0.03896821662783623, 0.1512211710214615, -0.21905578672885895, -0.05342775583267212, -0.1637326180934906, 0.12014118582010269, -0.02415899932384491, 0.11700856685638428, -0.02607550099492073, 0.08481496572494507, 0.1273881196975708, 0.0005746231181547046, -0.054795295000076294, 0.16436812281608582, 0.0795508399605751, -0.09954313188791275, 0.07896735519170761, 0.04256023094058037, 0.09988333284854889, -0.03136181831359863, 0.1244068369269371, -0.1410801112651825, -0.15700075030326843, 0.019158853217959404, 0.10024471580982208, -0.095103919506073, 0.3649800717830658, 0.022194338962435722, -0.16600777208805084, -0.037733446806669235, -0.07140395790338516, -0.017295310273766518, 0.098528191447258, 0.10616125166416168, 0.05886225029826164, -0.31762513518333435, -0.11722701042890549, 0.045297957956790924, 0.002396432450041175, 0.1942845731973648, -0.04814189672470093, -0.11757610738277435, -0.034976471215486526, 0.0502350740134716, -0.052594151347875595, 0.003039630362764001, 0.06592724472284317, -0.14417321979999542, 0.0060803997330367565, 0.0045537627302110195, -0.0010478937765583396, 0.004049960989505053, 0.06462415307760239, 0.08790626376867294, 0.056117501109838486, 0.05129249766469002, 0.009883448481559753, -0.06209004297852516, -0.09406673908233643, 0.14174450933933258, -0.03405916690826416, -0.001815087511204183, -0.0928119346499443, -0.08042911440134048, -0.06293902546167374, -0.1702001988887787, 0.12581662833690643, -0.015964707359671593, 0.12075412273406982, -0.08269023150205612, 0.19981145858764648, -0.11689535528421402, 0.04732527956366539, -0.057087142020463943, 0.07251105457544327, 0.008167264983057976, -0.09261865168809891, 0.09650144726037979, -0.1623520404100418, 0.022680846974253654, 0.2243030071258545, -0.03572732210159302, 0.001936982269398868, 0.06261169910430908, -0.08056081086397171, 0.22535325586795807, 0.31064504384994507, 0.002930663526058197, 0.15132884681224823, 0.23330433666706085, -0.07591117173433304, -0.26953932642936707, -0.06878316402435303, -0.22839686274528503, -0.041855864226818085, 0.10045259445905685, -0.1854560673236847, 0.08467435836791992, 0.13806161284446716, -0.02768467180430889, 0.1853582113981247, -0.2086002379655838, -0.02452274225652218, 0.10764246433973312, -0.10242237150669098, 0.49169468879699707, -0.10395301878452301, -0.1541270911693573, -0.02887776866555214, -0.03141804784536362, 0.1569346934556961, 0.02001444809138775, 0.06330414861440659, 0.03008248098194599, -0.04109245538711548, 0.04734501987695694, -0.010533376596868038, 0.24810555577278137, 0.04972006753087044, 0.04352195933461189, -0.02790606953203678, -0.2303617149591446, 0.1154242753982544, -0.0007102409726940095, -0.10044384002685547, 0.08529724180698395, -0.044231388717889786, -0.1117316484451294, 0.015438184142112732, -0.053808074444532394, -0.02490484155714512, 0.06393924355506897, -0.03784504532814026, -0.049833931028842926, 0.017117181792855263, -0.11273829638957977, -0.009400353766977787, 0.34285444021224976, -0.06878187507390976, 0.14234086871147156, 0.09644169360399246, 0.06399357318878174, -0.2034967839717865, 0.046525947749614716, -0.03952043130993843, -0.0078048789873719215, 0.07678212970495224, -0.14193950593471527, 0.05507037043571472, 0.16871316730976105, -0.014596558175981045, 0.05180003121495247, 0.09808967262506485, -0.008449165150523186, -0.021256396546959877, 0.21896503865718842, -0.13601154088974, -0.2043457329273224, -0.03235204890370369, -0.06482861191034317, 0.09155996888875961, -0.015676425769925117, 0.03844597563147545, 0.16685302555561066, 0.04056680202484131, 0.0134888906031847, 0.004248105920851231, -0.0887971892952919, 0.010376383550465107, -0.027843190357089043, 0.03574433922767639, -0.0884796753525734, 0.21404609084129333, 0.09711293876171112, -0.19298310577869415, -0.09292774647474289, 0.12546084821224213, -0.11740448325872421, -0.04270278289914131, -0.22263792157173157, 0.033804573118686676, 0.027740268036723137, -0.04221254959702492, 0.06212490051984787, -0.1150374636054039, 0.003529987996444106, 0.14319613575935364, 0.06067002937197685, 0.11845773458480835, 0.0019161052769050002, -0.05907079949975014, 0.1340581476688385, -0.09695189446210861, -0.04857613518834114, -0.047937821596860886, -0.06822241842746735, -0.14149652421474457, -0.008969687856733799, 0.1630375236272812, -0.09277892857789993, -0.1499410718679428, -0.2397594153881073, 0.09667988121509552, -0.0995471403002739, -0.06797893345355988, -0.07960493117570877, -0.07131078094244003, 0.060640495270490646, 0.014543252065777779, -0.06787807494401932, -0.09890785068273544, -0.16787675023078918, 0.08730059862136841, 0.022217292338609695, 0.08455284684896469, 0.052994076162576675, -0.029965540394186974, 0.17892368137836456, -0.018477020785212517, 0.08921653032302856, 0.11928261816501617, -0.010504740290343761, 0.20141509175300598, -0.1522793024778366, -0.11421819776296616, 0.16164688766002655, -0.004964987747371197, 0.037325866520404816, 0.1199694275856018, -0.049937788397073746, 0.0361267626285553, -0.026383159682154655, 0.06161158159375191, -0.15992827713489532, -0.1269124150276184, -0.003956221044063568, -0.010251879692077637, -0.24635446071624756, 0.007418942172080278, -0.19417445361614227, 0.10367686301469803, 0.009938360191881657, 0.056217167526483536, 0.08213925361633301, 0.07817200571298599, 0.026617173105478287, 0.027900690212845802, -0.001539974706247449, -0.14387263357639313, 0.05784407630562782, -0.07433782517910004, -0.006435044575482607, 0.004959883634001017, 0.3890276551246643, 0.0015659481287002563, -0.005963993724435568, 0.036543529480695724, 0.1377687305212021, 0.01725226454436779, 0.0354788601398468, 0.1569686383008957, 0.15017640590667725, -0.06383971869945526, -0.12134575098752975, 0.04432268068194389, -0.017210857942700386, -0.023171862587332726, 0.14201612770557404, 0.06036865711212158, 0.01294340193271637, 0.06340228021144867, -0.053268011659383774, -0.003324518445879221, 0.03414041921496391, 0.00730628427118063, 0.048375945538282394, 0.01821017637848854, 0.03797472268342972, -0.014924739487469196, 0.10562019050121307, -0.04360714927315712, 0.11038954555988312, -0.08285846561193466, -0.00845337100327015, -0.12320913374423981, -0.06319013983011246, 0.008372780866920948, -0.10369231551885605, 0.04569301754236221, -0.02705015055835247, -0.028090516105294228, 0.3101845681667328, 0.02587045729160309, -0.0007384419441223145, 0.08473695069551468, -0.1197880357503891, -0.11166693270206451, 0.03564644604921341, -0.0018674097955226898, 0.00870794802904129, -0.08288232982158661, -0.05456992983818054, -0.09298212826251984, -0.0736011192202568, -0.10833454877138138, 0.0665825754404068, -0.06874639540910721, -0.05835288017988205, -0.1553877294063568, -0.05383932590484619, -0.0637141615152359, 0.10281471163034439, -0.14102929830551147, 0.053940944373607635, -0.018286798149347305, 0.016309481114149094, 0.053535670042037964, 0.18597599864006042, -0.015492028556764126, 0.04564303532242775, -0.016443472355604172, 0.1841706782579422, -0.037556242197752, 0.16201482713222504, -0.0500628761947155, -0.06030074506998062, -0.05246077850461006, 0.19010339677333832, 0.2954848110675812, -0.042241308838129044, -0.03878669813275337, -0.016744034364819527, 0.05476997047662735, 0.10248825699090958, 0.09512187540531158, -0.00445206556469202, 0.28274089097976685, -0.07247233390808105, 0.050181061029434204, -0.009645969606935978, 0.005799677688628435, -0.014262455515563488, 0.05226997658610344, 0.11294682323932648, -0.010515300557017326, -0.13276194036006927, 0.1756012886762619, -0.22391767799854279, 0.11640381813049316, 0.08743131160736084, -0.19277416169643402, -0.03108002245426178, -0.049971193075180054, 0.06442628055810928, -0.054937489330768585, 0.14560161530971527, -0.0943637415766716, -0.19383612275123596, -0.1806260496377945, 0.06335105001926422, -0.3198922276496887, -0.20942196249961853, 0.11972155421972275, 0.12811802327632904, 0.0658240020275116, -0.04106934741139412, -0.026591187343001366, -0.0176763366907835, 0.06868990510702133, 0.029999788850545883, 0.014351757243275642, 0.03162968531250954, 0.013741456903517246, -0.17275121808052063, -0.029162932187318802, 0.020980682224035263, 0.043028268963098526, 0.07499659806489944, -0.10556496679782867, 0.016659419983625412, 0.05050581693649292, -0.056226830929517746, 0.06405363231897354, 0.008751005865633488, -0.14835628867149353, 0.008098694495856762, 0.104117251932621, 0.036058392375707626, -0.0074860951863229275, -0.02217566780745983, -0.0066375029273331165, 0.017510265111923218, -0.1048831194639206, -0.12429191172122955, 0.07244347035884857, -0.0671255886554718, 0.19061119854450226, -0.0696922242641449, -0.08208947628736496, 0.046725817024707794, -0.03542578965425491, 0.20198681950569153, -0.05924910679459572, 0.07594766467809677, 0.07197608053684235, -0.0031081470660865307, -0.022741330787539482, -0.3291264474391937, 0.11555645614862442, -0.007159125525504351, -0.016095733270049095, -0.04177108034491539 ]
null
null
transformers
# Mast DialoGPT Model
{"tags": ["conversational"]}
text-generation
Toadally/DialoGPT-small-david_mast
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mast DialoGPT Model
[ "# Mast DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mast DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mast DialoGPT Model" ]
[ -0.03734563663601875, 0.03822702914476395, -0.007277993950992823, -0.026013121008872986, 0.13623154163360596, -0.0042700688354671, 0.1811676323413849, 0.12362035363912582, 0.027380356565117836, -0.036199115216732025, 0.10061345249414444, 0.17927511036396027, 0.01451534777879715, 0.10855170339345932, -0.07876889407634735, -0.250539094209671, 0.040024351328611374, 0.03598988428711891, -0.006369208451360464, 0.13046661019325256, 0.09512479603290558, -0.03922132030129433, 0.07264074683189392, -0.00033005751902237535, -0.15571831166744232, 0.0291310902684927, 0.02094312012195587, -0.11764335632324219, 0.10226419568061829, 0.05434957519173622, 0.05614527314901352, 0.033961378037929535, -0.06272523105144501, -0.1316368728876114, 0.036966439336538315, 0.01627388596534729, -0.03640042990446091, 0.05165637284517288, 0.042233746498823166, -0.08966682851314545, 0.14858876168727875, 0.06862539052963257, -0.004305677954107523, 0.04929180070757866, -0.133579820394516, 0.03644748032093048, -0.007340635173022747, 0.006660922896116972, 0.07401726394891739, 0.12634362280368805, -0.05479352921247482, 0.126079261302948, -0.08734603971242905, 0.10886259377002716, 0.09408093243837357, -0.3346688449382782, -0.02125539816915989, 0.14228245615959167, 0.016615431755781174, 0.05638037994503975, -0.04442794620990753, 0.06963061541318893, 0.00030227797105908394, 0.0027288610581308603, -0.05063574016094208, -0.06000048294663429, -0.006388319190591574, -0.0015946239000186324, -0.09022294729948044, -0.022689444944262505, 0.24190440773963928, -0.03882217034697533, 0.05042581632733345, -0.09318294376134872, -0.09138040989637375, 0.012724191881716251, -0.053111810237169266, 0.0008610941004008055, -0.09407815337181091, 0.09516499936580658, -0.029176389798521996, -0.08702585846185684, -0.10498800873756409, -0.04662718251347542, -0.18654191493988037, 0.16770629584789276, 0.03786122426390648, 0.04692274332046509, -0.22784940898418427, 0.08398117870092392, 0.002115613780915737, -0.09504634141921997, 0.03314412012696266, -0.0979403480887413, -0.0013095244066789746, 0.03266710042953491, -0.04019704461097717, -0.09094797074794769, 0.08530779182910919, 0.09442567825317383, -0.005049753934144974, 0.020947055891156197, -0.06714995950460434, 0.06743516027927399, 0.023691676557064056, 0.05148414522409439, -0.0006708413129672408, -0.07554103434085846, 0.03216274082660675, -0.11538586020469666, 0.0008888632291927934, -0.05445033684372902, -0.15422137081623077, -0.01731525920331478, 0.026667745783925056, 0.05630320683121681, 0.062316037714481354, 0.11591237038373947, -0.003377411048859358, -0.051242489367723465, 0.032468363642692566, -0.03547818213701248, -0.022192683070898056, 0.010476583614945412, 0.0032863589003682137, 0.1286993771791458, 0.01334268506616354, 0.05875041335821152, -0.12324543297290802, 0.02359546162188053, -0.0363951250910759, -0.01794283650815487, -0.03844166547060013, -0.057783160358667374, -0.01636091060936451, -0.023522891104221344, -0.011234129779040813, -0.12629468739032745, -0.18106217682361603, -0.014790011569857597, -0.028517238795757294, -0.042883630841970444, -0.11861640959978104, -0.08966149389743805, -0.03034992888569832, 0.03970714285969734, -0.04697871953248978, 0.010129387490451336, -0.04302272945642471, 0.08061780035495758, -0.027446022257208824, 0.08371530473232269, -0.08282741159200668, 0.06731589883565903, -0.07744966447353363, -0.0441913828253746, -0.1431671530008316, 0.13026763498783112, -0.005651859100908041, 0.07782550901174545, -0.050792474299669266, -0.023510055616497993, -0.17783819139003754, 0.04961566999554634, -0.019492747262120247, 0.2327902615070343, -0.09920070320367813, -0.1174248680472374, 0.2975827157497406, -0.05538710951805115, -0.10196080058813095, 0.13357897102832794, 0.009616163559257984, 0.06023627147078514, 0.10917836427688599, 0.19549353420734406, -0.004792629275470972, 0.00456384988501668, 0.07807008922100067, 0.0923433005809784, -0.08152490854263306, -0.018782850354909897, 0.026205692440271378, -0.05087412893772125, -0.09915874153375626, 0.01997816003859043, 0.09321695566177368, 0.06452490389347076, -0.058050643652677536, -0.02597104385495186, 0.0019913199357688427, 0.0007993881590664387, 0.035544466227293015, -0.027475034818053246, 0.12196878343820572, -0.04839957132935524, -0.06208288297057152, -0.08029735088348389, 0.021296022459864616, -0.044160157442092896, 0.04616130515933037, -0.07946211099624634, 0.06086842343211174, -0.03205869346857071, 0.064720518887043, -0.13642649352550507, -0.053141284734010696, -0.039976127445697784, 0.21567273139953613, 0.05581500381231308, 0.05888684466481209, 0.057486411184072495, -0.07441156357526779, -0.0002457520749885589, 0.03547433763742447, 0.16872066259384155, -0.03625934198498726, -0.07344834506511688, -0.12925249338150024, 0.10257495939731598, -0.05198629945516586, 0.14699406921863556, -0.06422838568687439, 0.02910803072154522, 0.00883885845541954, 0.11931948363780975, -0.009580383077263832, 0.011119057424366474, 0.020772937685251236, -0.012943532317876816, -0.040269382297992706, 0.0065757199190557, 0.08950460702180862, 0.005292975809425116, -0.08338409662246704, 0.23494942486286163, -0.14890983700752258, 0.150997593998909, 0.2023291438817978, -0.2564104199409485, 0.020738298073410988, -0.09221138805150986, -0.04073428735136986, 0.006578823085874319, 0.04091261699795723, -0.044261250644922256, 0.21014787256717682, 0.002959826262667775, 0.15647472441196442, -0.037324488162994385, -0.02594950795173645, -0.01031858753412962, -0.03210640698671341, 0.02998965233564377, 0.08576201647520065, 0.14284321665763855, -0.12070223689079285, 0.14252689480781555, 0.10083125531673431, 0.054052893072366714, 0.1853172332048416, 0.03462808579206467, -0.004698112141340971, 0.07441487908363342, 0.0008391168084926903, -0.04182019457221031, -0.08196751773357391, -0.2975344955921173, -0.03814883530139923, 0.06762611120939255, 0.03951948881149292, 0.1272670179605484, -0.08925310522317886, -0.028949756175279617, -0.014579073525965214, -0.025250479578971863, -0.0010875447187572718, 0.11313111335039139, 0.040675416588783264, 0.1204868033528328, -0.011515033431351185, -0.07403915375471115, 0.05783757567405701, -0.008734825067222118, -0.10302998125553131, 0.17172649502754211, -0.11291554570198059, -0.2952894866466522, -0.09861863404512405, -0.1403314620256424, -0.06416910886764526, 0.0459478534758091, 0.09739329665899277, -0.11567285656929016, -0.020088782534003258, 0.00597401475533843, 0.11968247592449188, -0.08741055428981781, 0.03751886636018753, -0.009966929443180561, 0.0033296612091362476, -0.1213744729757309, -0.09220177680253983, -0.05737981200218201, -0.044382672756910324, -0.11602373421192169, 0.11662779003381729, -0.14533351361751556, 0.03836926445364952, 0.21575994789600372, 0.05596674978733063, 0.06873670965433121, -0.0454862080514431, 0.20293296873569489, -0.12142856419086456, -0.01715790294110775, 0.16539639234542847, 0.009700726717710495, 0.053276386111974716, 0.13117749989032745, 0.0038315101992338896, -0.0737648457288742, 0.043961770832538605, 0.0015434076776728034, -0.07074577361345291, -0.22874464094638824, -0.1469661146402359, -0.12946301698684692, 0.060527343302965164, 0.0013577318750321865, 0.04169318079948425, 0.16080085933208466, 0.050959620624780655, -0.04258671775460243, -0.0004956183256581426, 0.060271307826042175, 0.08936110138893127, 0.2197364866733551, -0.05319472402334213, 0.16561132669448853, -0.033603161573410034, -0.15842261910438538, 0.06878822296857834, 0.037437938153743744, 0.11367763578891754, 0.053338423371315, 0.0643841102719307, 0.034067388623952866, 0.05172758921980858, 0.13165655732154846, 0.066970594227314, -0.00356768979690969, -0.03359513357281685, -0.03336720913648605, -0.05511530861258507, -0.03903273120522499, 0.028949404135346413, 0.07681835442781448, -0.1505458652973175, -0.018518131226301193, -0.030454741790890694, 0.07323133200407028, 0.07671025395393372, 0.07233018428087234, -0.15096741914749146, 0.003139849752187729, 0.04709821939468384, -0.03500903397798538, -0.09308121353387833, 0.08259033411741257, -0.01000967063009739, -0.12675409018993378, 0.04808066412806511, -0.014556962065398693, 0.12347402423620224, -0.046001870185136795, 0.07909096777439117, -0.11475595086812973, -0.05377842113375664, -0.013085861690342426, 0.09470152109861374, -0.29783326387405396, 0.2018178552389145, -0.007068173494189978, -0.04382546246051788, -0.11312351375818253, -0.0014019750524312258, 0.026308178901672363, 0.06865539401769638, 0.1034795418381691, -0.015269778668880463, 0.025302758440375328, 0.02276787720620632, -0.07873658090829849, 0.037145283073186874, 0.10180089622735977, -0.0502297580242157, -0.003362533636391163, -0.021971020847558975, -0.007871299982070923, -0.0029120673425495625, -0.015908101573586464, -0.028023989871144295, -0.1811063289642334, 0.08122719079256058, 0.0744464173913002, 0.011425686068832874, 0.02597457356750965, -0.030018053948879242, -0.09187855571508408, 0.2610556185245514, -0.028565378859639168, -0.0905948132276535, -0.0885375514626503, -0.042106933891773224, 0.03909347206354141, -0.055522795766592026, 0.007996429689228535, -0.036952484399080276, 0.04130053147673607, -0.06466765701770782, -0.17637638747692108, 0.11990739405155182, -0.10010980814695358, -0.026321902871131897, -0.026860089972615242, 0.22319889068603516, -0.040022943168878555, 0.01988624595105648, 0.04384263977408409, -0.0023770974949002266, -0.10930370539426804, -0.09465441852807999, 0.004642302170395851, 0.010660259053111076, -0.0026141235139220953, 0.07556918263435364, 0.01843801699578762, -0.059113942086696625, -0.061983413994312286, -0.01730789802968502, 0.3000122010707855, 0.11980361491441727, -0.028297163546085358, 0.16590717434883118, 0.095303475856781, -0.064499631524086, -0.26762786507606506, -0.07670143246650696, -0.0776297003030777, -0.038718461990356445, -0.10614927858114243, -0.17850279808044434, 0.10372795909643173, -0.05393366143107414, -0.025298722088336945, 0.061687346547842026, -0.2878807783126831, -0.09784971177577972, 0.17054437100887299, -0.035692814737558365, 0.40736135840415955, -0.11002048850059509, -0.10029151290655136, -0.04882100224494934, -0.1884051263332367, 0.1651308387517929, -0.07693882286548615, 0.09236415475606918, -0.00320844491943717, 0.1728621870279312, 0.05170551314949989, -0.012858058325946331, 0.06452807039022446, 0.027260811999440193, -0.07171716541051865, -0.07973473519086838, -0.01676291972398758, 0.00880890991538763, 0.03786921128630638, 0.036549411714076996, -0.06038343161344528, 0.025559719651937485, -0.14305242896080017, -0.05495424196124077, -0.08827686309814453, 0.04087187722325325, 0.021106315776705742, -0.055641572922468185, 0.008493239991366863, -0.06508613377809525, 0.0011287066154181957, 0.0181643757969141, 0.16133888065814972, -0.09181368350982666, 0.17543907463550568, 0.08258235454559326, 0.15907791256904602, -0.1349002569913864, 0.003114879596978426, -0.043173663318157196, -0.062229253351688385, 0.07041914761066437, -0.0857086107134819, 0.035130325704813004, 0.09402435272932053, -0.029237303882837296, 0.06206526979804039, 0.10679735988378525, -0.020604422315955162, -0.016430407762527466, 0.10368139296770096, -0.23796389997005463, -0.05414291471242905, -0.0731256976723671, 0.07694565504789352, 0.07028643786907196, 0.1034657433629036, 0.2063378244638443, 0.0021003438159823418, -0.031934212893247604, 0.00519776064902544, 0.024776926264166832, -0.04976363107562065, 0.08956264704465866, -0.008882223628461361, 0.01973515935242176, -0.16318699717521667, 0.039474572986364365, 0.002752528991550207, -0.0823822021484375, 0.024655770510435104, 0.1713588982820511, -0.0995216816663742, -0.11706030368804932, -0.06603038311004639, 0.1591515839099884, -0.10435015708208084, 0.001181236351840198, -0.055296458303928375, -0.13696356117725372, 0.08145506680011749, 0.08723992854356766, 0.04621626436710358, 0.07211557030677795, -0.0894336998462677, -0.027357475832104683, -0.038754064589738846, -0.010079423896968365, 0.02671203576028347, -0.011212429963052273, -0.03596676513552666, 0.06482917815446854, -0.041808996349573135, 0.10011771321296692, -0.08644402027130127, -0.08883559703826904, -0.1508907675743103, 0.049778107553720474, -0.04427695274353027, -0.08991699665784836, -0.07865925878286362, -0.05493558570742607, -0.007298280950635672, -0.023654965683817863, -0.05607549101114273, -0.036510150879621506, -0.10820656269788742, 0.019753608852624893, -0.042623911052942276, 0.019266970455646515, -0.07620149850845337, 0.05007023364305496, 0.04877133294939995, -0.033554356545209885, 0.14692099392414093, 0.1591060310602188, -0.08966581523418427, 0.07453470677137375, -0.11952386796474457, -0.06913619488477707, 0.09142711013555527, 0.01358906738460064, 0.03243448957800865, 0.06206924840807915, 0.016309907659888268, 0.07481104135513306, 0.06018219143152237, 0.05686580389738083, 0.04460293799638748, -0.08773379772901535, 0.06516686081886292, -0.053166382014751434, -0.11285673081874847, -0.035778045654296875, -0.010534205473959446, 0.02884625270962715, 0.07279378175735474, 0.08848565071821213, -0.06276851892471313, 0.0763091892004013, -0.08667637407779694, 0.03798715025186539, 0.013548044487833977, -0.14006611704826355, 0.04194324463605881, -0.07695861160755157, 0.06399461627006531, 0.013896133750677109, 0.21611593663692474, 0.06480298191308975, -0.002330383053049445, 0.028663907200098038, 0.07432357221841812, 0.034974969923496246, -0.014062140136957169, 0.1960849165916443, 0.12760446965694427, -0.034843359142541885, -0.0683671310544014, 0.06010696291923523, 0.0304583627730608, 0.07053449004888535, 0.12059399485588074, 0.005131872836500406, 0.06693173199892044, 0.07711606472730637, 0.021841339766979218, 0.01203323993831873, -0.0939004123210907, -0.10650595277547836, -0.051938507705926895, 0.0345938615500927, -0.05098792910575867, 0.11788583546876907, 0.14817029237747192, -0.021337328478693962, 0.029719671234488487, -0.008516130037605762, -0.04612158238887787, -0.20276066660881042, -0.15902236104011536, -0.0666874498128891, -0.1500210165977478, 0.016088970005512238, -0.1279488354921341, 0.03522958233952522, 0.029574284330010414, 0.08298825472593307, -0.04021693766117096, 0.07165568321943283, 0.017507381737232208, -0.10293134301900864, 0.07679887861013412, -0.03869367390871048, 0.074392169713974, -0.03787008672952652, 0.00904007162898779, -0.06208043545484543, 0.0574343204498291, 0.03757907450199127, 0.03290599212050438, -0.06762535125017166, 0.027157984673976898, -0.09822246432304382, -0.09332110732793808, -0.04700979217886925, 0.0381196066737175, -0.001395723083987832, 0.18992003798484802, 0.01798151433467865, -0.02715345285832882, 0.02012043446302414, 0.2490256428718567, -0.09060512483119965, -0.11041656136512756, -0.0707564502954483, 0.20017829537391663, 0.009657732211053371, 0.0925159901380539, -0.040187180042266846, -0.010948092676699162, -0.07371439039707184, 0.319277822971344, 0.3394233286380768, -0.09201202541589737, 0.017859363928437233, 0.042475540190935135, 0.03400392457842827, 0.09771464020013809, 0.08750160783529282, 0.1318351775407791, 0.31649789214134216, -0.058626558631658554, 0.0037496346049010754, -0.012339445762336254, -0.03487538918852806, -0.07270004600286484, 0.037953756749629974, 0.046246785670518875, -0.07704430818557739, -0.0017725322395563126, 0.12662728130817413, -0.2362298220396042, 0.042654849588871, -0.16675040125846863, -0.2004719376564026, -0.07534807175397873, -0.004616695921868086, 0.09536416828632355, 0.028174346312880516, 0.08879740536212921, -0.016827689483761787, -0.057807400822639465, 0.04689274728298187, 0.01530156284570694, -0.17297755181789398, -0.02005932480096817, 0.0648370161652565, -0.11510206013917923, -0.042725421488285065, -0.03274829313158989, 0.0689353495836258, 0.07997027784585953, 0.05360611900687218, -0.015859393402934074, 0.029817936941981316, -0.01835150644183159, -0.027538126334547997, 0.026991190388798714, 0.08561377972364426, -0.001975186401978135, -0.06960476189851761, 0.07826630026102066, -0.16375234723091125, 0.04460000991821289, -0.04583446681499481, -0.026592731475830078, -0.02954791486263275, 0.038571469485759735, -0.08381054550409317, 0.05931730568408966, 0.07569263130426407, -0.008057577535510063, 0.005975657142698765, -0.022072937339544296, -0.030495891347527504, -0.02999645657837391, -0.03806108608841896, -0.1113385334610939, -0.1734916716814041, -0.1077752560377121, 0.07496701925992966, 0.006104779429733753, -0.22965528070926666, 0.012110636569559574, -0.10869577527046204, 0.05298091843724251, -0.15141071379184723, 0.09295064955949783, 0.0977158397436142, 0.016755573451519012, -0.0008271149708889425, -0.07801516354084015, 0.04672393947839737, 0.08940696716308594, -0.12515665590763092, -0.07757515460252762 ]
null
null
transformers
# Boon 2 DialoGPT Model
{"tags": ["conversational"]}
text-generation
Tofu05/DialoGPT-large-boon2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Boon 2 DialoGPT Model
[ "# Boon 2 DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Boon 2 DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Boon 2 DialoGPT Model" ]
[ -0.03554293140769005, 0.07867617905139923, -0.006475747562944889, 0.031691912561655045, 0.1296909898519516, -0.0008702012710273266, 0.12134916335344315, 0.12192127853631973, -0.010097229853272438, -0.046559661626815796, 0.12081613391637802, 0.15543672442436218, -0.00074725691229105, 0.08751925826072693, -0.06768591701984406, -0.29975277185440063, 0.06885898858308792, 0.049196116626262665, -0.00961418729275465, 0.1227709949016571, 0.08652973175048828, -0.03204262629151344, 0.06416521221399307, 0.010694572702050209, -0.1433570384979248, 0.009899216704070568, 0.028975792229175568, -0.10641549527645111, 0.09691563248634338, 0.05406677722930908, 0.02775164693593979, 0.02777513861656189, -0.05483131855726242, -0.15403367578983307, 0.02950592339038849, -0.02709374763071537, -0.03363797441124916, 0.053605612367391586, 0.009470891207456589, -0.07514293491840363, 0.11252953857183456, 0.14196959137916565, 0.006584847811609507, 0.0451602041721344, -0.1568569839000702, -0.0718042254447937, -0.0118181724101305, 0.06522965431213379, 0.058503538370132446, 0.10498441010713577, -0.04056180641055107, 0.11562708020210266, -0.07603621482849121, 0.08594665676355362, 0.0651828870177269, -0.364397794008255, 0.00258064828813076, 0.07573389261960983, 0.0183725543320179, 0.03754173591732979, -0.023058757185935974, 0.06513110548257828, 0.013248933479189873, 0.005101132206618786, -0.01888786070048809, -0.06217220053076744, -0.050685908645391464, 0.013884466141462326, -0.09174049645662308, -0.03083750791847706, 0.2546103894710541, -0.029222222045063972, 0.04679300636053085, -0.07234503328800201, -0.08519335836172104, 0.007300944998860359, -0.04650092124938965, -0.04205849766731262, -0.0811987891793251, 0.09418283402919769, -0.001109002623707056, -0.10898321866989136, -0.12602311372756958, -0.02486623264849186, -0.1706874966621399, 0.1638583540916443, 0.0416206493973732, 0.044168584048748016, -0.19701634347438812, 0.10491271317005157, -0.018972191959619522, -0.09967939555644989, 0.02363300323486328, -0.0918833389878273, 0.014337411150336266, 0.026415908709168434, -0.02176552824676037, 0.006378738209605217, 0.0656852126121521, 0.13404566049575806, -0.008350965566933155, 0.015809401869773865, -0.06187065318226814, 0.058237798511981964, 0.03695804253220558, 0.06697063893079758, -0.011847429908812046, -0.0450519360601902, 0.044411297887563705, -0.09595495462417603, 0.015123878605663776, -0.04752955958247185, -0.1836623102426529, -0.03021974489092827, 0.06578636169433594, 0.05982767790555954, 0.02898508682847023, 0.11265595257282257, -0.044857122004032135, -0.03920476883649826, 0.09016318619251251, -0.024306919425725937, -0.0075415014289319515, 0.015813715755939484, -0.00400034012272954, 0.10454793274402618, 0.026040159165859222, 0.055744439363479614, -0.12736552953720093, -0.011980000883340836, -0.059026848524808884, -0.003878986230120063, -0.01655471697449684, -0.04420320689678192, -0.0010464924853295088, 0.008193280547857285, 0.0020991992205381393, -0.14657869935035706, -0.1789519488811493, 0.02610880136489868, 0.002165675163269043, -0.058891259133815765, -0.101952463388443, -0.1009695753455162, -0.018256578594446182, 0.04255726560950279, -0.0631863921880722, -0.03907974436879158, -0.0490710511803627, 0.08947491645812988, -0.007090143859386444, 0.08172760903835297, -0.12048374116420746, 0.07432933151721954, -0.1000482589006424, -0.027681168168783188, -0.11313116550445557, 0.13392455875873566, 0.00564467441290617, 0.047643356025218964, -0.036921463906764984, -0.017849311232566833, -0.11562223732471466, 0.0500577911734581, -0.015140553005039692, 0.24626342952251434, -0.08683860301971436, -0.10210303962230682, 0.2841540277004242, -0.08375038206577301, -0.1317964643239975, 0.13717596232891083, -0.0008892146870493889, 0.08963953703641891, 0.12339341640472412, 0.20607009530067444, 0.022166352719068527, -0.013056768104434013, 0.08577928692102432, 0.09118859469890594, -0.09397736936807632, -0.011380903422832489, 0.021142762154340744, -0.03686608374118805, -0.11061206459999084, 0.032715316861867905, 0.0746494010090828, 0.07378163188695908, -0.05225716531276703, -0.025400439277291298, -0.005747577175498009, -0.009417509660124779, 0.08424676954746246, -0.03984683007001877, 0.12569266557693481, -0.02841135486960411, -0.0638640895485878, 0.00843497458845377, 0.015849892050027847, -0.057156115770339966, 0.04156140983104706, -0.08055257052183151, 0.0863247960805893, -0.06522470712661743, 0.06350667774677277, -0.13182766735553741, -0.05588766932487488, -0.013852609321475029, 0.17365437746047974, 0.05477248877286911, 0.10169407725334167, 0.06924648582935333, -0.03258552774786949, -0.01922575943171978, 0.014189733192324638, 0.1636960208415985, -0.016473820433020592, -0.08027222007513046, -0.07942762970924377, 0.0905056968331337, -0.05574195086956024, 0.12267531454563141, -0.05899209529161453, 0.012928357347846031, 0.032335199415683746, 0.10747507959604263, -0.0021087233908474445, 0.01919793337583542, 0.01543185394257307, -0.03341001644730568, -0.041794128715991974, 0.016316404566168785, 0.09409668296575546, 0.0073750801384449005, -0.11631396412849426, 0.25362202525138855, -0.18513676524162292, 0.18399858474731445, 0.17888513207435608, -0.20169636607170105, 0.013494118116796017, -0.13409966230392456, -0.03972971439361572, 0.00196048803627491, 0.06605757772922516, -0.06263024359941483, 0.21375882625579834, -0.01731163077056408, 0.1830219030380249, -0.04877619072794914, -0.04574903845787048, -0.023973559960722923, -0.06303365528583527, -0.0015432194340974092, 0.08571602404117584, 0.05928945913910866, -0.1400676816701889, 0.15968912839889526, 0.10809697210788727, 0.07012011110782623, 0.17067700624465942, 0.029179483652114868, -0.0072507094591856, 0.036775168031454086, 0.015409877523779869, -0.03869761899113655, -0.07281531393527985, -0.2644195556640625, -0.009699396789073944, 0.08002690970897675, 0.06782150268554688, 0.12280574440956116, -0.10673567652702332, -0.028497567400336266, -0.002793516032397747, -0.04127470403909683, 0.03860724717378616, 0.10701467841863632, 0.017126161605119705, 0.12150575965642929, -0.01082648430019617, -0.025006337091326714, 0.08671998232603073, 0.019050264731049538, -0.09620996564626694, 0.16608108580112457, -0.13703462481498718, -0.3358076810836792, -0.12110047787427902, -0.16452045738697052, -0.018775105476379395, 0.05742847919464111, 0.10302227735519409, -0.10053788125514984, -0.02540898323059082, -0.011625422164797783, 0.102701336145401, -0.09033630788326263, 0.01383066177368164, -0.03243419528007507, -0.01164282951503992, -0.09011591970920563, -0.09780853241682053, -0.057696230709552765, -0.036295101046562195, -0.0871744304895401, 0.11689969152212143, -0.1232140064239502, 0.013993524014949799, 0.20377475023269653, 0.05707172676920891, 0.05903496593236923, -0.030612358823418617, 0.2015405297279358, -0.0908350944519043, 0.006492644548416138, 0.17509697377681732, -0.05060475319623947, 0.07029013335704803, 0.1387358456850052, -0.007640351541340351, -0.0885607898235321, 0.03987044841051102, -0.04282712563872337, -0.07315199822187424, -0.20248396694660187, -0.13518249988555908, -0.12114091962575912, 0.06580562889575958, 0.021419916301965714, 0.04681529104709625, 0.13501989841461182, 0.06420283019542694, -0.03300255909562111, 0.0028740782290697098, 0.06637348234653473, 0.08084345608949661, 0.27466535568237305, -0.06273304671049118, 0.13635605573654175, -0.022013463079929352, -0.15875846147537231, 0.07976989448070526, 0.07491425424814224, 0.09499230235815048, 0.04641559347510338, 0.05449032038450241, 0.01778370887041092, 0.05720909684896469, 0.12570860981941223, 0.06090635806322098, 0.0019273782381787896, -0.03383058309555054, -0.03893386200070381, -0.04189029708504677, -0.02232040837407112, 0.0379536971449852, 0.07366650551557541, -0.14244689047336578, -0.0385129377245903, -0.05319676548242569, 0.07043564319610596, 0.017482832074165344, 0.11726003140211105, -0.1627386063337326, -0.026559099555015564, 0.08680331707000732, -0.04330043867230415, -0.10365765541791916, 0.08015458285808563, 0.017391592264175415, -0.12204361706972122, 0.038156215101480484, -0.012925192713737488, 0.10141017287969589, -0.09408967196941376, 0.073822021484375, -0.12539967894554138, -0.05933738127350807, 0.008940723724663258, 0.10120272636413574, -0.2843005061149597, 0.1834855079650879, -0.010791540145874023, -0.04204869270324707, -0.09889210760593414, 0.0010599892120808363, 0.009257063269615173, 0.058867715299129486, 0.1027846708893776, -0.009388985112309456, 0.06985834985971451, 0.0125615568831563, -0.07316232472658157, 0.03233079984784126, 0.0799517035484314, -0.04376306012272835, -0.0161605104804039, -0.03633992001414299, -0.0037837193813174963, -0.007453605532646179, -0.04047439992427826, -0.02566390484571457, -0.19056160748004913, 0.06661087274551392, 0.06493417918682098, 0.06748314946889877, 0.0158255435526371, -0.014332209713757038, -0.09070605039596558, 0.25843122601509094, 0.01569208689033985, -0.10373122990131378, -0.08788102120161057, -0.00556547287851572, 0.07348599284887314, -0.05479441210627556, 0.03550117462873459, -0.06176754832267761, 0.014729532413184643, -0.04983973875641823, -0.16786473989486694, 0.11634144186973572, -0.08735856413841248, -0.04342498630285263, -0.031129350885748863, 0.23375895619392395, -0.015732159838080406, 0.021288570016622543, 0.04280612990260124, 0.006195013411343098, -0.08964312076568604, -0.10276441276073456, 0.004564756527543068, 0.014264507219195366, -0.004411829635500908, 0.03716258704662323, -0.030264778062701225, -0.05869210511445999, -0.046868547797203064, -0.013554241508245468, 0.3164217174053192, 0.16003775596618652, -0.04440109431743622, 0.1853930801153183, 0.1427925080060959, -0.052725035697221756, -0.26372551918029785, -0.10803510248661041, -0.06694448739290237, -0.034212712198495865, -0.07826193422079086, -0.164651557803154, 0.08932477980852127, -0.014388595707714558, -0.03096366487443447, 0.11539526283740997, -0.27667421102523804, -0.098079614341259, 0.16829481720924377, -0.021538671106100082, 0.3837612271308899, -0.0893944650888443, -0.10087723284959793, -0.02941231057047844, -0.1955862045288086, 0.1758468598127365, 0.0008526851888746023, 0.10236409306526184, -0.004004159010946751, 0.1375221461057663, 0.05329539626836777, -0.011188903823494911, 0.07359346747398376, 0.023818332701921463, -0.0535418838262558, -0.09915734827518463, -0.04056527093052864, 0.0008572384249418974, 0.02952546440064907, 0.06659384071826935, -0.04344669729471207, 0.03309763967990875, -0.10926701128482819, -0.058643605560064316, -0.08034989982843399, 0.026075253263115883, 0.028767606243491173, -0.07124744355678558, 0.008939212188124657, -0.0649518221616745, -0.008937232196331024, 0.019494248554110527, 0.11020561307668686, -0.08199247717857361, 0.1292382776737213, 0.07557596266269684, 0.1320537030696869, -0.10955649614334106, 0.010927295312285423, -0.05422695726156235, -0.07363441586494446, 0.07527541369199753, -0.0933261439204216, 0.0413660891354084, 0.09977372735738754, -0.049154847860336304, 0.09680300951004028, 0.08839411288499832, -0.019760292023420334, 0.017486795783042908, 0.0995548665523529, -0.2380722016096115, -0.10756562650203705, -0.06844688206911087, 0.014516852796077728, 0.0786961168050766, 0.08515121787786484, 0.20654802024364471, -0.005606766790151596, -0.037394531071186066, 0.016344711184501648, 0.02591039426624775, -0.054973114281892776, 0.08326703310012817, 0.004921489395201206, 0.015122056938707829, -0.14901386201381683, 0.07401485741138458, -0.013568026944994926, -0.09042663127183914, 0.04400978237390518, 0.13998986780643463, -0.11234495788812637, -0.12029500305652618, -0.1124812588095665, 0.11486810445785522, -0.07727932184934616, -0.013469106517732143, -0.01576101779937744, -0.13033567368984222, 0.07205773890018463, 0.05521143227815628, 0.04469010606408119, 0.08732818812131882, -0.09645634889602661, -0.012923624366521835, -0.020875075832009315, 0.0038586053997278214, 0.05227687954902649, -0.02648635022342205, -0.0476309210062027, 0.03243524581193924, -0.038719091564416885, 0.1015494167804718, -0.09115847200155258, -0.0990493968129158, -0.15395238995552063, 0.030432943254709244, -0.09363842010498047, -0.0832233875989914, -0.09564098715782166, -0.041937027126550674, 0.004508310928940773, -0.056270480155944824, -0.03372235596179962, -0.0397801399230957, -0.11254745721817017, 0.0316426120698452, -0.03738986700773239, 0.0006933417171239853, -0.06905978918075562, 0.01718967594206333, 0.06354731321334839, -0.039948705583810806, 0.17994743585586548, 0.15395569801330566, -0.10371261835098267, 0.09167163819074631, -0.17075522243976593, -0.06867107003927231, 0.11986812949180603, 0.010486871004104614, 0.05329855531454086, 0.04182548448443413, 0.008266419172286987, 0.07583210617303848, 0.0528591051697731, 0.04484162852168083, 0.07193593680858612, -0.10144221037626266, 0.020816829055547714, -0.050897423177957535, -0.12840455770492554, -0.043956026434898376, -0.033522382378578186, 0.010455603711307049, 0.05709817633032799, 0.098536916077137, -0.05855855718255043, 0.06747149676084518, -0.06520064920186996, 0.030060172080993652, 0.01607799343764782, -0.14742347598075867, -0.00230339914560318, -0.07008149474859238, 0.04082762822508812, 0.018517442047595978, 0.18994559347629547, -0.01640673726797104, -0.02495744079351425, 0.018717125058174133, 0.06995853781700134, 0.044765621423721313, -0.009369634091854095, 0.18186472356319427, 0.11403661966323853, -0.05606355518102646, -0.11369525641202927, 0.0739724189043045, 0.025263985618948936, 0.013488381169736385, 0.09642192721366882, -0.04184645414352417, -0.030317064374685287, 0.08592737466096878, -0.0007472597062587738, 0.03510751575231552, -0.13868974149227142, -0.12712393701076508, -0.05328334867954254, 0.04234576225280762, -0.04450611025094986, 0.15163765847682953, 0.1451665163040161, -0.01781260222196579, 0.02844943478703499, 0.009518245235085487, -0.0615430623292923, -0.17244063317775726, -0.19200262427330017, -0.07639180123806, -0.1335187703371048, 0.00902344100177288, -0.12102758884429932, 0.047471918165683746, 0.010632365010678768, 0.08419414609670639, -0.04370740428566933, 0.08539390563964844, 0.06970386207103729, -0.09980101883411407, 0.055735908448696136, -0.03798924759030342, 0.0705496221780777, 0.005601910874247551, 0.0026348447427153587, -0.08129210770130157, 0.061766818165779114, 0.018750298768281937, 0.05999670550227165, -0.05192223936319351, 0.003681181464344263, -0.1135597825050354, -0.08313918113708496, -0.065015509724617, 0.06431727111339569, -0.0011709686368703842, 0.1450260579586029, 0.027006402611732483, -0.037690989673137665, 0.021990539506077766, 0.23746514320373535, -0.0781945139169693, -0.12112528085708618, -0.08595448732376099, 0.22702661156654358, 0.00824868492782116, 0.0975974053144455, -0.02073858678340912, -0.011527050286531448, -0.07699786871671677, 0.32505714893341064, 0.31623226404190063, -0.09761425107717514, 0.015485280193388462, 0.02335534431040287, 0.033494509756565094, 0.11061982810497284, 0.10100952535867691, 0.10446960479021072, 0.3301020860671997, -0.06881483644247055, -0.020991090685129166, -0.023178111761808395, -0.03223784640431404, -0.05875561013817787, 0.06984375417232513, 0.02747904323041439, -0.05532325059175491, -0.03203364461660385, 0.09867361187934875, -0.23664698004722595, 0.07861994206905365, -0.18220610916614532, -0.15469098091125488, -0.07080437242984772, 0.0029349392279982567, 0.08476357161998749, 0.021379493176937103, 0.09375475347042084, -0.011280744336545467, -0.07564432173967361, 0.05884057283401489, 0.021492674946784973, -0.19644387066364288, 0.016627082601189613, 0.0740872472524643, -0.02997208759188652, -0.030789494514465332, -0.013491202145814896, 0.08394637703895569, 0.07771122455596924, 0.06343249976634979, -0.022838540375232697, 0.05238083750009537, -0.01430502813309431, -0.03853517398238182, 0.01577041856944561, 0.04330668970942497, 0.024087078869342804, -0.09511259198188782, 0.07073090225458145, -0.15471601486206055, 0.03573382645845413, -0.023823237046599388, -0.032728005200624466, -0.0198905561119318, 0.017798803746700287, -0.05628732591867447, 0.0683903619647026, 0.06853622943162918, -0.017192605882883072, -0.006048619747161865, -0.03189020976424217, -0.017379818484187126, -0.026533406227827072, -0.04988676682114601, -0.0778796523809433, -0.1712273359298706, -0.1052473783493042, 0.11396929621696472, -0.0063225445337593555, -0.17593717575073242, 0.004135997034609318, -0.12635527551174164, 0.06403769552707672, -0.14238695800304413, 0.10775741934776306, 0.08146511763334274, 0.038487643003463745, 0.004255800973623991, -0.005332127213478088, 0.03790545091032982, 0.07939876616001129, -0.12066908180713654, -0.07352764904499054 ]
null
null
transformers
# Boon Bot DialoGPT Model
{"tags": ["conversational"]}
text-generation
Tofu05/DialoGPT-med-boon3
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Boon Bot DialoGPT Model
[ "# Boon Bot DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Boon Bot DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Boon Bot DialoGPT Model" ]
[ -0.024397963657975197, 0.05256621539592743, -0.005883542820811272, 0.0111701600253582, 0.13549190759658813, -0.015680495649576187, 0.14228080213069916, 0.11141836643218994, 0.02183287777006626, -0.04060228914022446, 0.10998616367578506, 0.17963825166225433, -0.0003144778311252594, 0.1582370549440384, -0.06345196813344955, -0.2782573401927948, 0.08421595394611359, 0.03947275131940842, 0.006607739254832268, 0.12465942651033401, 0.08235788345336914, -0.04001247510313988, 0.06521743535995483, 0.008326463401317596, -0.17317037284374237, 0.010882213711738586, 0.021788693964481354, -0.11328339576721191, 0.08205227553844452, 0.060045961290597916, 0.028983669355511665, 0.005487055983394384, -0.052626967430114746, -0.10628123581409454, 0.03269139304757118, -0.023782825097441673, -0.033504046499729156, 0.05569445341825485, -0.02502535656094551, -0.08573168516159058, 0.14888514578342438, 0.1351214498281479, 0.014534968882799149, 0.058871522545814514, -0.1361311376094818, -0.03616451844573021, 0.005714142229408026, 0.052157461643218994, 0.06820520758628845, 0.12048420310020447, -0.05317797139286995, 0.16024602949619293, -0.08534285426139832, 0.09699633717536926, 0.048823870718479156, -0.36160802841186523, -0.015813011676073074, 0.08439576625823975, 0.021007616072893143, 0.02919701859354973, -0.043936289846897125, 0.06191890686750412, 0.0159379243850708, 0.016917288303375244, -0.036781132221221924, -0.06168536841869354, -0.07292206585407257, -0.00801850762218237, -0.09006725251674652, -0.025644943118095398, 0.2832651436328888, -0.027723118662834167, 0.040633536875247955, -0.08903897553682327, -0.08093275129795074, 0.019571756944060326, -0.06391282379627228, -0.020314298570156097, -0.08691323548555374, 0.08277267217636108, -0.012203429825603962, -0.09939148277044296, -0.120745450258255, -0.027299001812934875, -0.16667354106903076, 0.18901193141937256, 0.04466389864683151, 0.04119793325662613, -0.22883670032024384, 0.09844664484262466, 0.05165206268429756, -0.08921968191862106, 0.02768903598189354, -0.09035440534353256, -0.007826659828424454, 0.017566613852977753, -0.018947696313261986, -0.04214201867580414, 0.0680873692035675, 0.18078504502773285, -0.014692476019263268, 0.026393819600343704, -0.06701701134443283, 0.051295775920152664, 0.04564432427287102, 0.06569729745388031, -0.0185594093054533, -0.02450881525874138, 0.0613710954785347, -0.08582231402397156, 0.016362778842449188, -0.04369702190160751, -0.18197382986545563, -0.004747566767036915, 0.05757167562842369, 0.06026054918766022, 0.047040946781635284, 0.12913113832473755, -0.040278360247612, -0.043012142181396484, 0.07642528414726257, -0.024959079921245575, -0.008388187736272812, 0.01422131061553955, -0.02779518812894821, 0.07720248401165009, 0.026527585461735725, 0.034192509949207306, -0.13168329000473022, -0.022062305361032486, -0.07100705802440643, 0.002294654492288828, -0.02059614472091198, -0.0471717044711113, 0.0012826058082282543, 0.005745069123804569, 0.0016096411272883415, -0.1638898253440857, -0.14974844455718994, 0.008753637783229351, -0.0101275984197855, -0.05645935982465744, -0.09665751457214355, -0.11059803515672684, -0.025760412216186523, 0.04653649777173996, -0.05848700553178787, -0.025606703013181686, -0.054573819041252136, 0.0818382054567337, -0.021701019257307053, 0.09831216931343079, -0.11745627224445343, 0.06568954885005951, -0.11489319056272507, -0.054183829575777054, -0.1428987681865692, 0.14514321088790894, -0.016228405758738518, 0.1101190447807312, -0.039488065987825394, 0.0029778843745589256, -0.12852737307548523, 0.05366787314414978, -0.021144159138202667, 0.2615218162536621, -0.10110113769769669, -0.11570221185684204, 0.31547051668167114, -0.06982603669166565, -0.11913089454174042, 0.1375960409641266, 0.00298670819029212, 0.0894949659705162, 0.14738711714744568, 0.18766239285469055, -0.04466814547777176, -0.004437058232724667, 0.05856463685631752, 0.07586392015218735, -0.1139092743396759, -0.002639384474605322, -0.009225338697433472, -0.023812076076865196, -0.09584437310695648, 0.028090570122003555, 0.11291682720184326, 0.10158774256706238, -0.048513263463974, -0.020576581358909607, 0.005305561237037182, -0.011340557597577572, 0.07385790348052979, -0.02457301691174507, 0.13682666420936584, -0.03002011962234974, -0.07940679043531418, -0.014673590660095215, 0.01693219691514969, -0.040118519216775894, 0.026148581877350807, -0.11965589225292206, 0.07187535613775253, -0.03188174590468407, 0.08981737494468689, -0.14324484765529633, -0.08153209835290909, -0.009787874296307564, 0.1419459730386734, 0.09221203625202179, 0.08172488212585449, 0.06778865307569504, -0.0410136878490448, 0.002638125093653798, 0.01582428067922592, 0.18099220097064972, -0.02564738132059574, -0.08983271569013596, -0.09917201101779938, 0.09089168906211853, -0.05556202679872513, 0.14887049794197083, -0.04918498918414116, 0.02208090014755726, 0.03663849085569382, 0.12988410890102386, 0.0037773086223751307, 0.018782779574394226, 0.05289279669523239, -0.033742014318704605, -0.04144405573606491, 0.0074049001559615135, 0.08437220007181168, -0.008640522137284279, -0.12191807478666306, 0.24122850596904755, -0.1553686261177063, 0.13792063295841217, 0.19877541065216064, -0.16381430625915527, -0.0017137862741947174, -0.08364780992269516, -0.037858519703149796, 0.005206132773309946, 0.07603906095027924, -0.06135833263397217, 0.2382505238056183, -0.01080904621630907, 0.1740776151418686, -0.0360703207552433, -0.03590325638651848, -0.025470102205872536, -0.052299998700618744, -0.00230557844042778, 0.08695778250694275, 0.0715656653046608, -0.16325587034225464, 0.14938606321811676, 0.07092178612947464, 0.07558351755142212, 0.20720548927783966, 0.033895689994096756, 0.012965685687959194, 0.04266082122921944, 0.011601921170949936, -0.04082242399454117, -0.06694341450929642, -0.30787014961242676, -0.03357169032096863, 0.06692755967378616, 0.03468342125415802, 0.12193472683429718, -0.08936329931020737, -0.020786497741937637, -0.03252197429537773, -0.02818828634917736, 0.07777395844459534, 0.11207299679517746, 0.02359766513109207, 0.13345986604690552, -0.01500740833580494, -0.06504597514867783, 0.07095254212617874, 0.0214183758944273, -0.0902303159236908, 0.16682831943035126, -0.14395995438098907, -0.35711583495140076, -0.09449846297502518, -0.12248511612415314, -0.03249766677618027, 0.05728698521852493, 0.08963118493556976, -0.1214626133441925, -0.033853236585855484, 0.0000050908420234918594, 0.10019868612289429, -0.0332038588821888, 0.012955984100699425, -0.018186070024967194, -0.012058580294251442, -0.0910821259021759, -0.10572800040245056, -0.0635150820016861, -0.05487649515271187, -0.09639260917901993, 0.1276892125606537, -0.12363395094871521, 0.03343581035733223, 0.20323914289474487, 0.05984225496649742, 0.06163392961025238, -0.024067124351859093, 0.19346250593662262, -0.107867531478405, 0.01703450083732605, 0.1498265415430069, -0.005861947312951088, 0.03544075787067413, 0.13684040307998657, -0.008235964924097061, -0.11389734596014023, 0.0530850887298584, -0.037795744836330414, -0.07051848620176315, -0.19318810105323792, -0.15935814380645752, -0.12411224842071533, 0.06243526190519333, 0.03283313289284706, 0.06271322071552277, 0.11361706256866455, 0.05075855925679207, -0.04898364096879959, 0.018690455704927444, 0.07431332767009735, 0.08006569743156433, 0.23091253638267517, -0.07340053468942642, 0.1536232829093933, -0.024584252387285233, -0.16627934575080872, 0.07647715508937836, 0.03093508444726467, 0.08738044649362564, 0.04955650493502617, 0.06346159428358078, 0.014326147735118866, 0.044390689581632614, 0.1335557997226715, 0.06377781927585602, 0.02014268934726715, -0.05009647458791733, -0.026894154027104378, -0.04212315008044243, -0.05784577876329422, 0.04185105487704277, 0.08169782161712646, -0.146710604429245, -0.018093686550855637, -0.04411206394433975, 0.085729219019413, 0.039069078862667084, 0.1081949919462204, -0.18712511658668518, -0.04804958775639534, 0.07784103602170944, -0.04862486571073532, -0.10301359742879868, 0.08657365292310715, 0.03631051629781723, -0.13430945575237274, 0.04446466267108917, -0.013520710170269012, 0.10051338374614716, -0.09295165538787842, 0.07262663543224335, -0.13336439430713654, -0.0445980504155159, 0.008368701674044132, 0.08551204949617386, -0.28720101714134216, 0.15583834052085876, -0.01491459272801876, -0.03051586262881756, -0.11082836985588074, 0.005409550853073597, 0.019764408469200134, 0.05290638655424118, 0.09798107296228409, -0.010437780991196632, 0.05546743422746658, -0.020589862018823624, -0.09028570353984833, 0.03770235553383827, 0.05671005696058273, -0.03809565305709839, -0.019933421164751053, -0.021166812628507614, -0.017851386219263077, -0.018040161579847336, -0.06791174411773682, -0.03196385130286217, -0.1833386868238449, 0.05862937122583389, 0.09679526090621948, 0.06647428870201111, 0.011597445234656334, -0.01833767630159855, -0.0180157870054245, 0.2504458427429199, 0.025680581107735634, -0.10114889591932297, -0.07496815919876099, 0.02212846279144287, 0.05291936546564102, -0.05955532193183899, 0.014347112737596035, -0.06478240340948105, 0.010626829229295254, -0.05882780998945236, -0.17552049458026886, 0.1255759298801422, -0.09207183122634888, -0.02801920846104622, -0.029455486685037613, 0.21146143972873688, 0.011769048869609833, 0.018955577164888382, 0.04711928963661194, -0.008678772486746311, -0.07829845696687698, -0.10146158933639526, -0.0033393308985978365, 0.044033490121364594, -0.023091640323400497, 0.07278464734554291, -0.038313206285238266, -0.1417056769132614, -0.0590883307158947, 0.009225642308592796, 0.31117212772369385, 0.11578777432441711, -0.035318464040756226, 0.17618615925312042, 0.15278875827789307, -0.03416365385055542, -0.2702641189098358, -0.1006520688533783, -0.07454226911067963, -0.02664581686258316, -0.1211882159113884, -0.1816171258687973, 0.10934972763061523, -0.044134706258773804, -0.024862758815288544, 0.1206558495759964, -0.29104650020599365, -0.10402263700962067, 0.19999097287654877, -0.031208110973238945, 0.368374764919281, -0.08357202261686325, -0.08852130174636841, -0.03750145807862282, -0.15103238821029663, 0.19126108288764954, 0.00935776811093092, 0.10436850786209106, -0.006986808031797409, 0.1537821888923645, 0.05521170794963837, -0.004237717017531395, 0.050833553075790405, 0.035748276859521866, -0.0531652495265007, -0.10477001965045929, -0.04425631836056709, 0.012930972501635551, 0.04721605032682419, 0.09446586668491364, -0.0440036915242672, 0.012891022488474846, -0.110044464468956, -0.05098169296979904, -0.09574317932128906, 0.05227126553654671, 0.03729531541466713, -0.05310871824622154, 0.006201309151947498, -0.04614027589559555, -0.028276639059185982, 0.03737746551632881, 0.11035215854644775, -0.07603637874126434, 0.1583353877067566, 0.0773920863866806, 0.12733638286590576, -0.1882539987564087, 0.03161978721618652, -0.03695898875594139, -0.05236641317605972, 0.08778046071529388, -0.07817545533180237, 0.025860125198960304, 0.09677273035049438, -0.04583991691470146, 0.10395859181880951, 0.07506325840950012, -0.03691438212990761, 0.01841912791132927, 0.10621762275695801, -0.2418966293334961, -0.11363914608955383, -0.05640999972820282, 0.02279018983244896, 0.0896717980504036, 0.08673606812953949, 0.20915429294109344, -0.011108484119176865, -0.04220731928944588, 0.010364999994635582, 0.028555696830153465, -0.04474928602576256, 0.10125008970499039, -0.017930246889591217, 0.012388478964567184, -0.1673925369977951, 0.05532926693558693, 0.005520247854292393, -0.07207993417978287, 0.060291897505521774, 0.1535339206457138, -0.12375384569168091, -0.1266084611415863, -0.13460233807563782, 0.12235905230045319, -0.062329985201358795, 0.003921200521290302, -0.019095532596111298, -0.13592344522476196, 0.07016777992248535, 0.026696618646383286, 0.03957501798868179, 0.08871015906333923, -0.09862765669822693, -0.023078836500644684, -0.01660798490047455, -0.00016987649723887444, 0.050038911402225494, -0.03950364887714386, -0.02353796735405922, 0.05258660018444061, -0.02323107048869133, 0.08800685405731201, -0.09518304467201233, -0.10987724363803864, -0.1711450070142746, 0.03495880588889122, -0.09549407660961151, -0.09336444735527039, -0.10164147615432739, -0.04005871340632439, -0.0003285203129053116, -0.04992832988500595, -0.04265151545405388, -0.04398809373378754, -0.11676695942878723, 0.020065264776349068, -0.030539562925696373, 0.014983592554926872, -0.08935321867465973, 0.03291340544819832, 0.05055877938866615, -0.036563046276569366, 0.18505844473838806, 0.17841920256614685, -0.10455785691738129, 0.0916375070810318, -0.17446383833885193, -0.07683117687702179, 0.1284191757440567, 0.009789181873202324, 0.07791012525558472, 0.05789312720298767, 0.018431281670928, 0.08111438155174255, 0.07258601486682892, 0.058959007263183594, 0.07105157524347305, -0.10178398340940475, 0.018456049263477325, -0.027076903730630875, -0.11235754936933517, -0.05341397225856781, -0.011610535904765129, 0.01968662068247795, 0.04914522543549538, 0.1053275614976883, -0.06694387644529343, 0.047414630651474, -0.059168752282857895, 0.023324280977249146, 0.004498233553022146, -0.16230681538581848, 0.014368048869073391, -0.061207547783851624, 0.048579562455415726, 0.008122553117573261, 0.14411669969558716, 0.013817847706377506, -0.027123577892780304, 0.025788675993680954, 0.10329753160476685, 0.017306046560406685, -0.003089811187237501, 0.08946456760168076, 0.11192180216312408, -0.04867027699947357, -0.09121677279472351, 0.06987891346216202, 0.04555969312787056, 0.014061504043638706, 0.11122680455446243, -0.05911289155483246, -0.02736045978963375, 0.09125304967164993, 0.007110384292900562, 0.02819201722741127, -0.15580491721630096, -0.0825238898396492, -0.10367454588413239, 0.06654980033636093, -0.05375458300113678, 0.13038703799247742, 0.14032918214797974, -0.010263459756970406, 0.011764775961637497, 0.002167822327464819, -0.05915512889623642, -0.16081346571445465, -0.21918520331382751, -0.06686146557331085, -0.12440594285726547, 0.012762743979692459, -0.11037346720695496, 0.025532839819788933, -0.020535552874207497, 0.08585657924413681, -0.05251721292734146, 0.11223158240318298, 0.05439971387386322, -0.10017833113670349, 0.0742776021361351, -0.0343012772500515, 0.03390252962708473, -0.007773412391543388, 0.0009724884293973446, -0.08723250031471252, 0.06910404562950134, 0.019046034663915634, 0.06122646480798721, -0.06156621128320694, 0.03021048754453659, -0.11686909198760986, -0.07742243260145187, -0.06333085894584656, 0.05904669314622879, -0.011588532477617264, 0.11720440536737442, 0.046120256185531616, -0.040803492069244385, 0.022048281505703926, 0.25318098068237305, -0.058309171348810196, -0.10728655755519867, -0.09843503683805466, 0.21019503474235535, 0.002893824130296707, 0.08567345887422562, -0.03299250453710556, -0.001736365375109017, -0.0983605831861496, 0.2966616451740265, 0.3251672685146332, -0.09254369139671326, 0.01820567063987255, -0.007309921085834503, 0.031817883253097534, 0.08052384853363037, 0.1222652941942215, 0.12351934611797333, 0.3391380310058594, -0.0453529991209507, 0.016028499230742455, -0.015214899554848671, -0.04969813674688339, -0.0653725415468216, 0.018140073865652084, 0.03294465318322182, -0.041741177439689636, -0.028945893049240112, 0.09350252896547318, -0.2526809871196747, 0.056558169424533844, -0.17801621556282043, -0.1693136841058731, -0.07113172858953476, -0.00178522989153862, 0.07691463828086853, 0.0351363904774189, 0.11144506931304932, -0.006863733287900686, -0.07010102272033691, 0.05077776685357094, 0.006648510228842497, -0.1931067705154419, -0.02456740289926529, 0.08098460733890533, -0.09238538891077042, -0.00993365328758955, -0.027265099808573723, 0.06901410222053528, 0.08324016630649567, 0.0618712492287159, -0.03441248834133148, 0.057265833020210266, -0.026413343846797943, -0.029026171192526817, 0.03307928517460823, 0.0624249130487442, 0.027374934405088425, -0.04004686325788498, 0.07521829009056091, -0.14424234628677368, 0.036601241677999496, -0.07738225907087326, 0.00030765309929847717, -0.028624990954995155, 0.05250490829348564, -0.0655650943517685, 0.07321984320878983, 0.0945371612906456, -0.02340061590075493, -0.003419475629925728, -0.02402016520500183, -0.014045311138033867, -0.03881051391363144, -0.07962880283594131, -0.11222420632839203, -0.1950276643037796, -0.09941078722476959, 0.07287243753671646, 0.0015020649880170822, -0.16334214806556702, 0.015613608062267303, -0.14856621623039246, 0.06082724779844284, -0.13436377048492432, 0.12387871742248535, 0.08385471999645233, 0.04304278641939163, -0.0015330268070101738, -0.007552284747362137, 0.039083294570446014, 0.07677856832742691, -0.12082187831401825, -0.07901933044195175 ]
null
null
transformers
# DialoGPT Model
{"tags": ["conversational"]}
text-generation
TofuBoy/DialoGPT-medium-Yubin2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Model
[ "# DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Model" ]
[ 51, 6 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DialoGPT Model" ]
[ -0.024913784116506577, 0.059885814785957336, -0.006370560731738806, 0.005591870751231909, 0.1400369256734848, -0.0017210821388289332, 0.14453551173210144, 0.1305549293756485, -0.005140632390975952, -0.04746326059103012, 0.11040995270013809, 0.17464804649353027, 0.00005884444180992432, 0.10279427468776703, -0.06700735539197922, -0.30301547050476074, 0.053555361926555634, 0.04799194633960724, 0.03172240033745766, 0.12370786815881729, 0.09697233140468597, -0.03515102341771126, 0.07359035313129425, 0.016337214037775993, -0.14608228206634521, 0.008702786639332771, 0.020564572885632515, -0.11812834441661835, 0.11564046889543533, 0.06303486973047256, 0.031853143125772476, 0.016330430284142494, -0.05706833302974701, -0.15538105368614197, 0.030822578817605972, -0.011710972525179386, -0.03776337578892708, 0.0390513576567173, 0.013027690351009369, -0.08109435439109802, 0.13798007369041443, 0.11103490740060806, -0.0006903049652464688, 0.05149789899587631, -0.15588748455047607, -0.02453835867345333, 0.0056235818192362785, 0.05189436674118042, 0.07900577038526535, 0.10578032582998276, -0.05446584150195122, 0.10697488486766815, -0.07928606867790222, 0.10821779072284698, 0.06460071355104446, -0.3304550349712372, -0.009671307168900967, 0.11538558453321457, 0.03450269624590874, 0.054815422743558884, -0.04201076552271843, 0.0824151262640953, 0.009290721267461777, 0.006035477854311466, -0.032788269221782684, -0.07132215797901154, -0.10193204879760742, 0.006551430560648441, -0.09726589918136597, -0.0258798711001873, 0.23640194535255432, -0.03990011662244797, 0.06252937018871307, -0.10212960094213486, -0.09118569642305374, -0.03237495943903923, -0.05150890722870827, -0.0365157276391983, -0.0839976891875267, 0.0904611349105835, 0.0021221432834863663, -0.10112922638654709, -0.12684102356433868, -0.024515217170119286, -0.1798400729894638, 0.15324442088603973, 0.04135982319712639, 0.03738006204366684, -0.21732071042060852, 0.10802596062421799, -0.004699528217315674, -0.08924009650945663, 0.015718011185526848, -0.09444153308868408, 0.005393149331212044, 0.018949348479509354, -0.023769304156303406, -0.02245417609810829, 0.071538545191288, 0.12310110777616501, -0.008414418436586857, 0.01803559996187687, -0.02886049821972847, 0.05434831976890564, 0.044429961591959, 0.09031231701374054, -0.0004054193268530071, -0.06243148446083069, 0.02556614764034748, -0.10987833142280579, -0.002097092801705003, -0.05473942682147026, -0.1771335005760193, -0.03277626261115074, 0.05024220421910286, 0.06949009001255035, 0.038518261164426804, 0.13099628686904907, -0.014898126944899559, -0.04120773449540138, 0.049538981169462204, -0.02118101716041565, -0.019307132810354233, 0.01077673863619566, 0.00021168503735680133, 0.13354060053825378, 0.020747724920511246, 0.054277703166007996, -0.13421103358268738, -0.006427135784178972, -0.05237990990281105, -0.0037572025321424007, -0.020576726645231247, -0.035563331097364426, -0.005978869274258614, -0.035299152135849, 0.004738541319966316, -0.14597202837467194, -0.1565362960100174, 0.0018145747017115355, -0.012572446838021278, -0.05118400976061821, -0.10953684151172638, -0.10451575368642807, -0.012483193539083004, 0.04074859246611595, -0.073121577501297, -0.029571810737252235, -0.05626916140317917, 0.08391527831554413, -0.0223742313683033, 0.09020611643791199, -0.10036323964595795, 0.07730360329151154, -0.09547045081853867, -0.030655134469270706, -0.08499831706285477, 0.14090873301029205, 0.007521872408688068, 0.060876164585351944, -0.02892179600894451, -0.01812925562262535, -0.09551245719194412, 0.06555063277482986, -0.037842776626348495, 0.2511831223964691, -0.07485883682966232, -0.10467271506786346, 0.3031613528728485, -0.05542227625846863, -0.1174754872918129, 0.13804100453853607, 0.004014485981315374, 0.09292948991060257, 0.13330815732479095, 0.20730602741241455, 0.006785695441067219, -0.01130867749452591, 0.07652883976697922, 0.1123679131269455, -0.09412068128585815, -0.004696235992014408, 0.018771391361951828, -0.03732754662632942, -0.0615185983479023, 0.03945691138505936, 0.0918814018368721, 0.07724982500076294, -0.05049227550625801, -0.02635934390127659, -0.0023276912979781628, 0.005086123943328857, 0.09270118921995163, -0.02826463244855404, 0.11834660172462463, -0.02530142478644848, -0.0651538223028183, 0.005330660846084356, 0.01807267777621746, -0.05040483921766281, 0.03730621933937073, -0.08481638878583908, 0.06969784945249557, -0.01567489467561245, 0.06640731543302536, -0.1328243464231491, -0.07466539740562439, -0.030554741621017456, 0.17213810980319977, 0.054117102175951004, 0.09494859725236893, 0.058685027062892914, -0.05372991785407066, -0.015398679301142693, 0.029681967571377754, 0.17216141521930695, -0.022161604836583138, -0.07678841054439545, -0.08318672329187393, 0.09648197144269943, -0.05398808792233467, 0.12141907215118408, -0.0584552176296711, 0.011645917780697346, 0.008916736580431461, 0.1138097271323204, -0.016967222094535828, 0.02565431222319603, 0.020725993439555168, -0.01728132553398609, -0.045443106442689896, 0.006205448415130377, 0.09695922583341599, -0.0005631769308820367, -0.08418076485395432, 0.24964486062526703, -0.18068887293338776, 0.14020590484142303, 0.18366922438144684, -0.221713587641716, 0.0068918620236217976, -0.13734327256679535, -0.03869214281439781, 0.00613968214020133, 0.06413275003433228, -0.033990148454904556, 0.24107660353183746, -0.01761019602417946, 0.17522141337394714, -0.04074199125170708, -0.03856118768453598, -0.031620122492313385, -0.059479568153619766, 0.012314273975789547, 0.07982588559389114, 0.08996986597776413, -0.14238384366035461, 0.16995596885681152, 0.07693640142679214, 0.06359536200761795, 0.20625178515911102, 0.03081705793738365, 0.004842577967792749, 0.060801248997449875, 0.011165530420839787, -0.05723736807703972, -0.08003953844308853, -0.3082432746887207, -0.03168068453669548, 0.07579894363880157, 0.04920177906751633, 0.1247701346874237, -0.10083109885454178, -0.025040151551365852, -0.007432801648974419, -0.032827746123075485, 0.04254986718297005, 0.1248268336057663, 0.025425903499126434, 0.12365515530109406, -0.014906835742294788, -0.04915047064423561, 0.06900184601545334, 0.01880059763789177, -0.09095945954322815, 0.1853390783071518, -0.13226887583732605, -0.3670875132083893, -0.10801271349191666, -0.18826530873775482, -0.053062859922647476, 0.05028614401817322, 0.10349522531032562, -0.12274793535470963, -0.017768485471606255, 0.006885032635182142, 0.10071776062250137, -0.07899999618530273, 0.004595107864588499, -0.04295947402715683, -0.003671956015750766, -0.1221664622426033, -0.09965944290161133, -0.05386786535382271, -0.0368826724588871, -0.07943999767303467, 0.11483556032180786, -0.13470399379730225, 0.013493534177541733, 0.24523232877254486, 0.05864564701914787, 0.05501837655901909, -0.0427839495241642, 0.2037586271762848, -0.12367647141218185, 0.0008646533242426813, 0.1831413358449936, -0.03490077331662178, 0.05347062647342682, 0.14504793286323547, -0.015804851427674294, -0.0806526243686676, 0.03586822748184204, -0.026950683444738388, -0.06742250919342041, -0.2125854194164276, -0.14805234968662262, -0.1185927465558052, 0.0752660259604454, 0.006962217390537262, 0.05195801705121994, 0.17260807752609253, 0.06551632285118103, -0.0434856191277504, -0.005812929477542639, 0.060369811952114105, 0.08069669455289841, 0.28216201066970825, -0.08048021793365479, 0.14302591979503632, -0.018469739705324173, -0.16462981700897217, 0.06707606464624405, 0.07059457153081894, 0.08240380138158798, 0.05571749806404114, 0.06408853828907013, 0.020019512623548508, 0.042412105947732925, 0.13208544254302979, 0.04695230722427368, 0.02080257050693035, -0.04102680832147598, -0.030393056571483612, -0.04134482517838478, -0.034642294049263, 0.039923813194036484, 0.08479992300271988, -0.16532406210899353, -0.025224192067980766, -0.031236432492733, 0.07147160172462463, 0.04700807109475136, 0.0971657857298851, -0.17109414935112, -0.02006104774773121, 0.06809273362159729, -0.045084621757268906, -0.1277531534433365, 0.08245641738176346, 0.017267579212784767, -0.14336557686328888, 0.041139155626297, -0.010424407199025154, 0.1063515916466713, -0.08672701567411423, 0.07601979374885559, -0.10954118520021439, -0.06033514812588692, 0.00649800943210721, 0.1048232838511467, -0.28240975737571716, 0.20267292857170105, -0.010205818340182304, -0.04767698049545288, -0.11087173968553543, -0.003088148310780525, 0.008685793727636337, 0.09982018172740936, 0.11080232262611389, -0.010897021740674973, 0.06010783836245537, 0.01074928604066372, -0.0641118735074997, 0.030009055510163307, 0.09830599278211594, -0.021834392100572586, -0.022157687693834305, -0.04229605942964554, -0.007223988883197308, -0.010515191592276096, -0.08110329508781433, 0.006763392593711615, -0.18965590000152588, 0.07934610545635223, 0.07836032658815384, 0.09331153333187103, 0.034879427403211594, -0.02039165236055851, -0.07735047489404678, 0.26660391688346863, -0.001745997928082943, -0.11087268590927124, -0.09013383835554123, -0.03938518837094307, 0.061391681432724, -0.060341909527778625, 0.03911830857396126, -0.06230296939611435, 0.025415945798158646, -0.05982738733291626, -0.17342302203178406, 0.1172124519944191, -0.09237013012170792, -0.031492993235588074, -0.021194038912653923, 0.2209726721048355, -0.02881753258407116, 0.018607214093208313, 0.0485420860350132, -0.0016108331037685275, -0.10285819321870804, -0.09511756151914597, -0.008251611143350601, 0.03416767343878746, -0.010918160900473595, 0.04900135099887848, -0.025705384090542793, -0.07975678145885468, -0.05679561197757721, -0.026996619999408722, 0.3277484178543091, 0.14047661423683167, -0.04023522138595581, 0.1832364797592163, 0.13087767362594604, -0.07047362625598907, -0.27516162395477295, -0.11699166893959045, -0.07004266232252121, -0.03739752992987633, -0.08913245052099228, -0.17295846343040466, 0.07231628149747849, -0.0337100625038147, -0.019120773300528526, 0.10272365063428879, -0.30713778734207153, -0.10119624435901642, 0.1841830015182495, -0.040434908121824265, 0.38047826290130615, -0.09586136043071747, -0.09027645736932755, -0.03650684654712677, -0.16112621128559113, 0.15327894687652588, 0.013831807300448418, 0.1137205958366394, -0.00520882336422801, 0.16828098893165588, 0.05761009827256203, -0.0037952496204525232, 0.0801926776766777, 0.020570142194628716, -0.06405492126941681, -0.09793397039175034, -0.05492318794131279, -0.010638588108122349, 0.030262181535363197, 0.04951264709234238, -0.03946765139698982, 0.02415548823773861, -0.13371272385120392, -0.06691490858793259, -0.08781696110963821, 0.03774605691432953, 0.03007272444665432, -0.07535070180892944, -0.0022670684847980738, -0.057146526873111725, -0.004920732695609331, 0.016489142552018166, 0.13982847332954407, -0.10220712423324585, 0.14974616467952728, 0.08558730036020279, 0.14377474784851074, -0.1267731636762619, -0.02710891142487526, -0.06777701526880264, -0.056171074509620667, 0.060112304985523224, -0.07733222842216492, 0.01809944026172161, 0.10395341366529465, -0.03572990000247955, 0.0892905741930008, 0.08693087100982666, -0.0029834709130227566, 0.018481746315956116, 0.0958748459815979, -0.23642750084400177, -0.0784866213798523, -0.07511850446462631, 0.004866753239184618, 0.07849688827991486, 0.09815483540296555, 0.20598983764648438, -0.0055185589008033276, -0.03345122188329697, 0.005455619189888239, 0.029903264716267586, -0.0488831028342247, 0.07706867158412933, -0.014750740490853786, 0.016356803476810455, -0.1521972119808197, 0.0554715096950531, 0.004925752058625221, -0.09222063422203064, 0.038881685584783554, 0.15763826668262482, -0.10888952761888504, -0.12089364230632782, -0.08886770159006119, 0.07910440862178802, -0.12084902822971344, -0.009604928083717823, -0.02347567118704319, -0.13296781480312347, 0.06387606263160706, 0.08701322972774506, 0.0437626987695694, 0.07419894635677338, -0.09570327401161194, -0.02431090548634529, -0.02687120996415615, -0.0017909490270540118, 0.03388874977827072, -0.02725594863295555, -0.050178829580545425, 0.07766241580247879, -0.027600683271884918, 0.11357290297746658, -0.09536272287368774, -0.11787430942058563, -0.15327751636505127, 0.043511081486940384, -0.10504508763551712, -0.09393152594566345, -0.10382603108882904, -0.0441301055252552, -0.006286561954766512, -0.0356043316423893, -0.040126241743564606, -0.042129531502723694, -0.11320815980434418, 0.04160013049840927, -0.0388944037258625, 0.014745749533176422, -0.07397600263357162, 0.034163519740104675, 0.055859487503767014, -0.021551288664340973, 0.17199264466762543, 0.14865818619728088, -0.11332426220178604, 0.09327242523431778, -0.1476971060037613, -0.06912451237440109, 0.11707700043916702, 0.01386991050094366, 0.05010296776890755, 0.06245600804686546, 0.01375818345695734, 0.06647069752216339, 0.05892495810985565, 0.055103451013565063, 0.03533833846449852, -0.09740222990512848, 0.03540431708097458, -0.051264502108097076, -0.11605577170848846, -0.04105662181973457, -0.02362375147640705, 0.01182797271758318, 0.037739090621471405, 0.0816110223531723, -0.06518704444169998, 0.08111141622066498, -0.060025863349437714, 0.034763384610414505, 0.010268314741551876, -0.15251383185386658, 0.01151428185403347, -0.08090870082378387, 0.045707058161497116, 0.018197542056441307, 0.21769149601459503, 0.03206104785203934, -0.011791389435529709, 0.022609105333685875, 0.061102695763111115, 0.044076818972826004, -0.0074079507030546665, 0.18608367443084717, 0.11599293351173401, -0.04786842316389084, -0.08154924213886261, 0.08616366237401962, 0.027072686702013016, 0.012013224884867668, 0.1102207750082016, -0.03597520291805267, -0.028533903881907463, 0.0957425907254219, -0.00277633941732347, 0.010677528567612171, -0.13263827562332153, -0.1476590931415558, -0.057697832584381104, 0.0545891635119915, -0.07178869098424911, 0.1294231116771698, 0.14395111799240112, -0.015384795144200325, 0.028612734749913216, 0.0056631313636898994, -0.0673055648803711, -0.1843535453081131, -0.18144491314888, -0.06532441079616547, -0.14781342446804047, 0.004382668994367123, -0.12940357625484467, 0.04699232429265976, 0.019192663952708244, 0.0929097980260849, -0.06795235723257065, 0.09418174624443054, 0.04096103087067604, -0.12085825204849243, 0.07592883706092834, -0.030949443578720093, 0.10102833062410355, -0.04530954733490944, 0.005423769820481539, -0.07506589591503143, 0.052309803664684296, 0.018251951783895493, 0.04347652196884155, -0.056720416992902756, 0.010472290217876434, -0.11363999545574188, -0.0677863210439682, -0.06325967609882355, 0.072298064827919, -0.00715883681550622, 0.15068843960762024, 0.024534717202186584, -0.0377090647816658, 0.022099463269114494, 0.2343917340040207, -0.07186796516180038, -0.11640064418315887, -0.07081592082977295, 0.23128795623779297, 0.0032145122531801462, 0.10219047963619232, -0.02703510783612728, 0.0025806529447436333, -0.0979236513376236, 0.3415871858596802, 0.3059147000312805, -0.0860423818230629, 0.009900609031319618, 0.011851979419589043, 0.041959453374147415, 0.10790658742189407, 0.11337239295244217, 0.11100282520055771, 0.3354373872280121, -0.05870787426829338, -0.018936263397336006, -0.008911260403692722, -0.03764409199357033, -0.06623929738998413, 0.04435466229915619, 0.04571417719125748, -0.05948540195822716, -0.021169263869524002, 0.11091866344213486, -0.27121052145957947, 0.1118035838007927, -0.18168742954730988, -0.1746239960193634, -0.0817655622959137, 0.0005091189523227513, 0.08720190823078156, 0.0349675677716732, 0.086737260222435, 0.005980369169265032, -0.08153318613767624, 0.08380652219057083, 0.02215738035738468, -0.1987052857875824, -0.0018651568097993731, 0.07820136845111847, -0.058110371232032776, -0.03811068460345268, -0.024587661027908325, 0.07317402958869934, 0.07213760167360306, 0.05823235586285591, -0.009499620646238327, 0.0351860485970974, -0.009158890694379807, -0.05503746494650841, 0.036731280386447906, 0.04213286191225052, 0.026777109131217003, -0.09254409372806549, 0.07286582887172699, -0.13738596439361572, 0.05198653042316437, -0.019483182579278946, -0.024750495329499245, -0.023410877212882042, 0.027425769716501236, -0.07066013664007187, 0.0699906274676323, 0.08309417963027954, -0.012793978676199913, -0.009652730077505112, -0.028083020821213722, -0.01748109795153141, -0.028795616701245308, -0.07272003591060638, -0.09161628037691116, -0.1734045445919037, -0.11351196467876434, 0.08207743614912033, -0.003544888226315379, -0.16898474097251892, 0.01998589187860489, -0.1118529886007309, 0.06080397590994835, -0.13530707359313965, 0.10253074020147324, 0.07773260772228241, 0.027893366292119026, 0.0055290088057518005, -0.023794665932655334, 0.045850809663534164, 0.08739979565143585, -0.13488763570785522, -0.07641109824180603 ]
null
null
transformers
# Boon Bot DialoGPT Model
{"tags": ["conversational"]}
text-generation
TofuBoy/DialoGPT-medium-boon
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Boon Bot DialoGPT Model
[ "# Boon Bot DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Boon Bot DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Boon Bot DialoGPT Model" ]
[ -0.024397963657975197, 0.05256621539592743, -0.005883542820811272, 0.0111701600253582, 0.13549190759658813, -0.015680495649576187, 0.14228080213069916, 0.11141836643218994, 0.02183287777006626, -0.04060228914022446, 0.10998616367578506, 0.17963825166225433, -0.0003144778311252594, 0.1582370549440384, -0.06345196813344955, -0.2782573401927948, 0.08421595394611359, 0.03947275131940842, 0.006607739254832268, 0.12465942651033401, 0.08235788345336914, -0.04001247510313988, 0.06521743535995483, 0.008326463401317596, -0.17317037284374237, 0.010882213711738586, 0.021788693964481354, -0.11328339576721191, 0.08205227553844452, 0.060045961290597916, 0.028983669355511665, 0.005487055983394384, -0.052626967430114746, -0.10628123581409454, 0.03269139304757118, -0.023782825097441673, -0.033504046499729156, 0.05569445341825485, -0.02502535656094551, -0.08573168516159058, 0.14888514578342438, 0.1351214498281479, 0.014534968882799149, 0.058871522545814514, -0.1361311376094818, -0.03616451844573021, 0.005714142229408026, 0.052157461643218994, 0.06820520758628845, 0.12048420310020447, -0.05317797139286995, 0.16024602949619293, -0.08534285426139832, 0.09699633717536926, 0.048823870718479156, -0.36160802841186523, -0.015813011676073074, 0.08439576625823975, 0.021007616072893143, 0.02919701859354973, -0.043936289846897125, 0.06191890686750412, 0.0159379243850708, 0.016917288303375244, -0.036781132221221924, -0.06168536841869354, -0.07292206585407257, -0.00801850762218237, -0.09006725251674652, -0.025644943118095398, 0.2832651436328888, -0.027723118662834167, 0.040633536875247955, -0.08903897553682327, -0.08093275129795074, 0.019571756944060326, -0.06391282379627228, -0.020314298570156097, -0.08691323548555374, 0.08277267217636108, -0.012203429825603962, -0.09939148277044296, -0.120745450258255, -0.027299001812934875, -0.16667354106903076, 0.18901193141937256, 0.04466389864683151, 0.04119793325662613, -0.22883670032024384, 0.09844664484262466, 0.05165206268429756, -0.08921968191862106, 0.02768903598189354, -0.09035440534353256, -0.007826659828424454, 0.017566613852977753, -0.018947696313261986, -0.04214201867580414, 0.0680873692035675, 0.18078504502773285, -0.014692476019263268, 0.026393819600343704, -0.06701701134443283, 0.051295775920152664, 0.04564432427287102, 0.06569729745388031, -0.0185594093054533, -0.02450881525874138, 0.0613710954785347, -0.08582231402397156, 0.016362778842449188, -0.04369702190160751, -0.18197382986545563, -0.004747566767036915, 0.05757167562842369, 0.06026054918766022, 0.047040946781635284, 0.12913113832473755, -0.040278360247612, -0.043012142181396484, 0.07642528414726257, -0.024959079921245575, -0.008388187736272812, 0.01422131061553955, -0.02779518812894821, 0.07720248401165009, 0.026527585461735725, 0.034192509949207306, -0.13168329000473022, -0.022062305361032486, -0.07100705802440643, 0.002294654492288828, -0.02059614472091198, -0.0471717044711113, 0.0012826058082282543, 0.005745069123804569, 0.0016096411272883415, -0.1638898253440857, -0.14974844455718994, 0.008753637783229351, -0.0101275984197855, -0.05645935982465744, -0.09665751457214355, -0.11059803515672684, -0.025760412216186523, 0.04653649777173996, -0.05848700553178787, -0.025606703013181686, -0.054573819041252136, 0.0818382054567337, -0.021701019257307053, 0.09831216931343079, -0.11745627224445343, 0.06568954885005951, -0.11489319056272507, -0.054183829575777054, -0.1428987681865692, 0.14514321088790894, -0.016228405758738518, 0.1101190447807312, -0.039488065987825394, 0.0029778843745589256, -0.12852737307548523, 0.05366787314414978, -0.021144159138202667, 0.2615218162536621, -0.10110113769769669, -0.11570221185684204, 0.31547051668167114, -0.06982603669166565, -0.11913089454174042, 0.1375960409641266, 0.00298670819029212, 0.0894949659705162, 0.14738711714744568, 0.18766239285469055, -0.04466814547777176, -0.004437058232724667, 0.05856463685631752, 0.07586392015218735, -0.1139092743396759, -0.002639384474605322, -0.009225338697433472, -0.023812076076865196, -0.09584437310695648, 0.028090570122003555, 0.11291682720184326, 0.10158774256706238, -0.048513263463974, -0.020576581358909607, 0.005305561237037182, -0.011340557597577572, 0.07385790348052979, -0.02457301691174507, 0.13682666420936584, -0.03002011962234974, -0.07940679043531418, -0.014673590660095215, 0.01693219691514969, -0.040118519216775894, 0.026148581877350807, -0.11965589225292206, 0.07187535613775253, -0.03188174590468407, 0.08981737494468689, -0.14324484765529633, -0.08153209835290909, -0.009787874296307564, 0.1419459730386734, 0.09221203625202179, 0.08172488212585449, 0.06778865307569504, -0.0410136878490448, 0.002638125093653798, 0.01582428067922592, 0.18099220097064972, -0.02564738132059574, -0.08983271569013596, -0.09917201101779938, 0.09089168906211853, -0.05556202679872513, 0.14887049794197083, -0.04918498918414116, 0.02208090014755726, 0.03663849085569382, 0.12988410890102386, 0.0037773086223751307, 0.018782779574394226, 0.05289279669523239, -0.033742014318704605, -0.04144405573606491, 0.0074049001559615135, 0.08437220007181168, -0.008640522137284279, -0.12191807478666306, 0.24122850596904755, -0.1553686261177063, 0.13792063295841217, 0.19877541065216064, -0.16381430625915527, -0.0017137862741947174, -0.08364780992269516, -0.037858519703149796, 0.005206132773309946, 0.07603906095027924, -0.06135833263397217, 0.2382505238056183, -0.01080904621630907, 0.1740776151418686, -0.0360703207552433, -0.03590325638651848, -0.025470102205872536, -0.052299998700618744, -0.00230557844042778, 0.08695778250694275, 0.0715656653046608, -0.16325587034225464, 0.14938606321811676, 0.07092178612947464, 0.07558351755142212, 0.20720548927783966, 0.033895689994096756, 0.012965685687959194, 0.04266082122921944, 0.011601921170949936, -0.04082242399454117, -0.06694341450929642, -0.30787014961242676, -0.03357169032096863, 0.06692755967378616, 0.03468342125415802, 0.12193472683429718, -0.08936329931020737, -0.020786497741937637, -0.03252197429537773, -0.02818828634917736, 0.07777395844459534, 0.11207299679517746, 0.02359766513109207, 0.13345986604690552, -0.01500740833580494, -0.06504597514867783, 0.07095254212617874, 0.0214183758944273, -0.0902303159236908, 0.16682831943035126, -0.14395995438098907, -0.35711583495140076, -0.09449846297502518, -0.12248511612415314, -0.03249766677618027, 0.05728698521852493, 0.08963118493556976, -0.1214626133441925, -0.033853236585855484, 0.0000050908420234918594, 0.10019868612289429, -0.0332038588821888, 0.012955984100699425, -0.018186070024967194, -0.012058580294251442, -0.0910821259021759, -0.10572800040245056, -0.0635150820016861, -0.05487649515271187, -0.09639260917901993, 0.1276892125606537, -0.12363395094871521, 0.03343581035733223, 0.20323914289474487, 0.05984225496649742, 0.06163392961025238, -0.024067124351859093, 0.19346250593662262, -0.107867531478405, 0.01703450083732605, 0.1498265415430069, -0.005861947312951088, 0.03544075787067413, 0.13684040307998657, -0.008235964924097061, -0.11389734596014023, 0.0530850887298584, -0.037795744836330414, -0.07051848620176315, -0.19318810105323792, -0.15935814380645752, -0.12411224842071533, 0.06243526190519333, 0.03283313289284706, 0.06271322071552277, 0.11361706256866455, 0.05075855925679207, -0.04898364096879959, 0.018690455704927444, 0.07431332767009735, 0.08006569743156433, 0.23091253638267517, -0.07340053468942642, 0.1536232829093933, -0.024584252387285233, -0.16627934575080872, 0.07647715508937836, 0.03093508444726467, 0.08738044649362564, 0.04955650493502617, 0.06346159428358078, 0.014326147735118866, 0.044390689581632614, 0.1335557997226715, 0.06377781927585602, 0.02014268934726715, -0.05009647458791733, -0.026894154027104378, -0.04212315008044243, -0.05784577876329422, 0.04185105487704277, 0.08169782161712646, -0.146710604429245, -0.018093686550855637, -0.04411206394433975, 0.085729219019413, 0.039069078862667084, 0.1081949919462204, -0.18712511658668518, -0.04804958775639534, 0.07784103602170944, -0.04862486571073532, -0.10301359742879868, 0.08657365292310715, 0.03631051629781723, -0.13430945575237274, 0.04446466267108917, -0.013520710170269012, 0.10051338374614716, -0.09295165538787842, 0.07262663543224335, -0.13336439430713654, -0.0445980504155159, 0.008368701674044132, 0.08551204949617386, -0.28720101714134216, 0.15583834052085876, -0.01491459272801876, -0.03051586262881756, -0.11082836985588074, 0.005409550853073597, 0.019764408469200134, 0.05290638655424118, 0.09798107296228409, -0.010437780991196632, 0.05546743422746658, -0.020589862018823624, -0.09028570353984833, 0.03770235553383827, 0.05671005696058273, -0.03809565305709839, -0.019933421164751053, -0.021166812628507614, -0.017851386219263077, -0.018040161579847336, -0.06791174411773682, -0.03196385130286217, -0.1833386868238449, 0.05862937122583389, 0.09679526090621948, 0.06647428870201111, 0.011597445234656334, -0.01833767630159855, -0.0180157870054245, 0.2504458427429199, 0.025680581107735634, -0.10114889591932297, -0.07496815919876099, 0.02212846279144287, 0.05291936546564102, -0.05955532193183899, 0.014347112737596035, -0.06478240340948105, 0.010626829229295254, -0.05882780998945236, -0.17552049458026886, 0.1255759298801422, -0.09207183122634888, -0.02801920846104622, -0.029455486685037613, 0.21146143972873688, 0.011769048869609833, 0.018955577164888382, 0.04711928963661194, -0.008678772486746311, -0.07829845696687698, -0.10146158933639526, -0.0033393308985978365, 0.044033490121364594, -0.023091640323400497, 0.07278464734554291, -0.038313206285238266, -0.1417056769132614, -0.0590883307158947, 0.009225642308592796, 0.31117212772369385, 0.11578777432441711, -0.035318464040756226, 0.17618615925312042, 0.15278875827789307, -0.03416365385055542, -0.2702641189098358, -0.1006520688533783, -0.07454226911067963, -0.02664581686258316, -0.1211882159113884, -0.1816171258687973, 0.10934972763061523, -0.044134706258773804, -0.024862758815288544, 0.1206558495759964, -0.29104650020599365, -0.10402263700962067, 0.19999097287654877, -0.031208110973238945, 0.368374764919281, -0.08357202261686325, -0.08852130174636841, -0.03750145807862282, -0.15103238821029663, 0.19126108288764954, 0.00935776811093092, 0.10436850786209106, -0.006986808031797409, 0.1537821888923645, 0.05521170794963837, -0.004237717017531395, 0.050833553075790405, 0.035748276859521866, -0.0531652495265007, -0.10477001965045929, -0.04425631836056709, 0.012930972501635551, 0.04721605032682419, 0.09446586668491364, -0.0440036915242672, 0.012891022488474846, -0.110044464468956, -0.05098169296979904, -0.09574317932128906, 0.05227126553654671, 0.03729531541466713, -0.05310871824622154, 0.006201309151947498, -0.04614027589559555, -0.028276639059185982, 0.03737746551632881, 0.11035215854644775, -0.07603637874126434, 0.1583353877067566, 0.0773920863866806, 0.12733638286590576, -0.1882539987564087, 0.03161978721618652, -0.03695898875594139, -0.05236641317605972, 0.08778046071529388, -0.07817545533180237, 0.025860125198960304, 0.09677273035049438, -0.04583991691470146, 0.10395859181880951, 0.07506325840950012, -0.03691438212990761, 0.01841912791132927, 0.10621762275695801, -0.2418966293334961, -0.11363914608955383, -0.05640999972820282, 0.02279018983244896, 0.0896717980504036, 0.08673606812953949, 0.20915429294109344, -0.011108484119176865, -0.04220731928944588, 0.010364999994635582, 0.028555696830153465, -0.04474928602576256, 0.10125008970499039, -0.017930246889591217, 0.012388478964567184, -0.1673925369977951, 0.05532926693558693, 0.005520247854292393, -0.07207993417978287, 0.060291897505521774, 0.1535339206457138, -0.12375384569168091, -0.1266084611415863, -0.13460233807563782, 0.12235905230045319, -0.062329985201358795, 0.003921200521290302, -0.019095532596111298, -0.13592344522476196, 0.07016777992248535, 0.026696618646383286, 0.03957501798868179, 0.08871015906333923, -0.09862765669822693, -0.023078836500644684, -0.01660798490047455, -0.00016987649723887444, 0.050038911402225494, -0.03950364887714386, -0.02353796735405922, 0.05258660018444061, -0.02323107048869133, 0.08800685405731201, -0.09518304467201233, -0.10987724363803864, -0.1711450070142746, 0.03495880588889122, -0.09549407660961151, -0.09336444735527039, -0.10164147615432739, -0.04005871340632439, -0.0003285203129053116, -0.04992832988500595, -0.04265151545405388, -0.04398809373378754, -0.11676695942878723, 0.020065264776349068, -0.030539562925696373, 0.014983592554926872, -0.08935321867465973, 0.03291340544819832, 0.05055877938866615, -0.036563046276569366, 0.18505844473838806, 0.17841920256614685, -0.10455785691738129, 0.0916375070810318, -0.17446383833885193, -0.07683117687702179, 0.1284191757440567, 0.009789181873202324, 0.07791012525558472, 0.05789312720298767, 0.018431281670928, 0.08111438155174255, 0.07258601486682892, 0.058959007263183594, 0.07105157524347305, -0.10178398340940475, 0.018456049263477325, -0.027076903730630875, -0.11235754936933517, -0.05341397225856781, -0.011610535904765129, 0.01968662068247795, 0.04914522543549538, 0.1053275614976883, -0.06694387644529343, 0.047414630651474, -0.059168752282857895, 0.023324280977249146, 0.004498233553022146, -0.16230681538581848, 0.014368048869073391, -0.061207547783851624, 0.048579562455415726, 0.008122553117573261, 0.14411669969558716, 0.013817847706377506, -0.027123577892780304, 0.025788675993680954, 0.10329753160476685, 0.017306046560406685, -0.003089811187237501, 0.08946456760168076, 0.11192180216312408, -0.04867027699947357, -0.09121677279472351, 0.06987891346216202, 0.04555969312787056, 0.014061504043638706, 0.11122680455446243, -0.05911289155483246, -0.02736045978963375, 0.09125304967164993, 0.007110384292900562, 0.02819201722741127, -0.15580491721630096, -0.0825238898396492, -0.10367454588413239, 0.06654980033636093, -0.05375458300113678, 0.13038703799247742, 0.14032918214797974, -0.010263459756970406, 0.011764775961637497, 0.002167822327464819, -0.05915512889623642, -0.16081346571445465, -0.21918520331382751, -0.06686146557331085, -0.12440594285726547, 0.012762743979692459, -0.11037346720695496, 0.025532839819788933, -0.020535552874207497, 0.08585657924413681, -0.05251721292734146, 0.11223158240318298, 0.05439971387386322, -0.10017833113670349, 0.0742776021361351, -0.0343012772500515, 0.03390252962708473, -0.007773412391543388, 0.0009724884293973446, -0.08723250031471252, 0.06910404562950134, 0.019046034663915634, 0.06122646480798721, -0.06156621128320694, 0.03021048754453659, -0.11686909198760986, -0.07742243260145187, -0.06333085894584656, 0.05904669314622879, -0.011588532477617264, 0.11720440536737442, 0.046120256185531616, -0.040803492069244385, 0.022048281505703926, 0.25318098068237305, -0.058309171348810196, -0.10728655755519867, -0.09843503683805466, 0.21019503474235535, 0.002893824130296707, 0.08567345887422562, -0.03299250453710556, -0.001736365375109017, -0.0983605831861496, 0.2966616451740265, 0.3251672685146332, -0.09254369139671326, 0.01820567063987255, -0.007309921085834503, 0.031817883253097534, 0.08052384853363037, 0.1222652941942215, 0.12351934611797333, 0.3391380310058594, -0.0453529991209507, 0.016028499230742455, -0.015214899554848671, -0.04969813674688339, -0.0653725415468216, 0.018140073865652084, 0.03294465318322182, -0.041741177439689636, -0.028945893049240112, 0.09350252896547318, -0.2526809871196747, 0.056558169424533844, -0.17801621556282043, -0.1693136841058731, -0.07113172858953476, -0.00178522989153862, 0.07691463828086853, 0.0351363904774189, 0.11144506931304932, -0.006863733287900686, -0.07010102272033691, 0.05077776685357094, 0.006648510228842497, -0.1931067705154419, -0.02456740289926529, 0.08098460733890533, -0.09238538891077042, -0.00993365328758955, -0.027265099808573723, 0.06901410222053528, 0.08324016630649567, 0.0618712492287159, -0.03441248834133148, 0.057265833020210266, -0.026413343846797943, -0.029026171192526817, 0.03307928517460823, 0.0624249130487442, 0.027374934405088425, -0.04004686325788498, 0.07521829009056091, -0.14424234628677368, 0.036601241677999496, -0.07738225907087326, 0.00030765309929847717, -0.028624990954995155, 0.05250490829348564, -0.0655650943517685, 0.07321984320878983, 0.0945371612906456, -0.02340061590075493, -0.003419475629925728, -0.02402016520500183, -0.014045311138033867, -0.03881051391363144, -0.07962880283594131, -0.11222420632839203, -0.1950276643037796, -0.09941078722476959, 0.07287243753671646, 0.0015020649880170822, -0.16334214806556702, 0.015613608062267303, -0.14856621623039246, 0.06082724779844284, -0.13436377048492432, 0.12387871742248535, 0.08385471999645233, 0.04304278641939163, -0.0015330268070101738, -0.007552284747362137, 0.039083294570446014, 0.07677856832742691, -0.12082187831401825, -0.07901933044195175 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9237 - Mae: 0.5122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1089 | 1.0 | 235 | 0.9380 | 0.4878 | | 0.9546 | 2.0 | 470 | 0.9237 | 0.5122 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
text-classification
TomO/xlm-roberta-base-finetuned-marc-en
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-marc-en ================================== This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.9237 * Mae: 0.5122 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.14.1 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.09035862982273102, 0.08059733361005783, -0.0021605573128908873, 0.11526552587747574, 0.18301986157894135, 0.04312571510672569, 0.15630286931991577, 0.11832890659570694, -0.0875784307718277, 0.0016325075412169099, 0.11360887438058853, 0.16993127763271332, 0.011493599973618984, 0.12548229098320007, -0.06253176927566528, -0.25663644075393677, -0.01277062389999628, 0.05161543935537338, -0.04651900753378868, 0.14509040117263794, 0.09974677860736847, -0.1376481056213379, 0.09585810452699661, -0.0023352354764938354, -0.1973927766084671, -0.00557738309726119, 0.030303047969937325, -0.06652539223432541, 0.13700458407402039, 0.03855397179722786, 0.1385691612958908, 0.011864431202411652, 0.07176752388477325, -0.19713588058948517, 0.020916206762194633, 0.04017498344182968, 0.002623826265335083, 0.09204118698835373, 0.029988352209329605, -0.015109265223145485, 0.13035635650157928, -0.05889251083135605, 0.07070118188858032, 0.020692387595772743, -0.12236687541007996, -0.23098190128803253, -0.08292200416326523, 0.0335320346057415, 0.053269241005182266, 0.09850631654262543, -0.011444645002484322, 0.15618939697742462, -0.08064151555299759, 0.10166952013969421, 0.2390204817056656, -0.28717857599258423, -0.07572688907384872, 0.027812570333480835, 0.04230109974741936, 0.08631366491317749, -0.10436634719371796, -0.023760009557008743, 0.060247886925935745, 0.05405737832188606, 0.12021215260028839, -0.043381769210100174, -0.09587668627500534, 0.017679354175925255, -0.144788458943367, -0.023063449189066887, 0.1973963975906372, 0.03544763848185539, -0.046011488884687424, -0.048670168966054916, -0.032275211066007614, -0.1633661836385727, -0.03869425132870674, -0.002994660986587405, 0.05256890878081322, -0.0628969743847847, -0.08636706322431564, -0.010747822932898998, -0.11609070748090744, -0.05431676283478737, -0.06497865170240402, 0.14508908987045288, 0.04142400249838829, 0.015464690513908863, -0.03530266135931015, 0.10510973632335663, 0.020788168534636497, -0.10314935445785522, 0.015065527521073818, 0.010024231858551502, -0.011418762616813183, -0.04679758846759796, -0.05597628280520439, -0.07699338346719742, 0.0028371834196150303, 0.12052814662456512, -0.05085770785808563, 0.032664138823747635, 0.03883528336882591, 0.05831592157483101, -0.07746226340532303, 0.19689792394638062, -0.030856791883707047, -0.0005332891596481204, -0.012600783258676529, 0.053570836782455444, 0.013395318761467934, -0.011963405646383762, -0.1286672204732895, 0.00664949044585228, 0.08025910705327988, 0.01439061388373375, -0.07678363472223282, 0.06303460150957108, -0.07354824244976044, -0.043843597173690796, -0.0073161255568265915, -0.07373245805501938, 0.029880328103899956, -0.006977550685405731, -0.06493931263685226, -0.02468917705118656, 0.023637929931282997, 0.01811356469988823, -0.008496517315506935, 0.13165824115276337, -0.09195946902036667, 0.034831028431653976, -0.09200922399759293, -0.10740526020526886, 0.01978129707276821, -0.08169613033533096, 0.037756096571683884, -0.10726595669984818, -0.15826326608657837, -0.03321490436792374, 0.051082029938697815, -0.01808624155819416, -0.056760165840387344, -0.03929072618484497, -0.0623495951294899, 0.009826847352087498, -0.011750674806535244, 0.14359216392040253, -0.07115733623504639, 0.11378083378076553, 0.03718182444572449, 0.06109800934791565, -0.04491133615374565, 0.0496244914829731, -0.09299784153699875, -0.007661463692784309, -0.15100525319576263, 0.03237443417310715, -0.04584108293056488, 0.05770813673734665, -0.07138890027999878, -0.11838989704847336, 0.01054349634796381, 0.02002243511378765, 0.044636767357587814, 0.07751461863517761, -0.171956866979599, -0.08197478950023651, 0.15696704387664795, -0.06599657982587814, -0.12114711850881577, 0.11799208074808121, -0.07835119217634201, 0.06978996843099594, 0.07716456800699234, 0.1610596776008606, 0.07830789685249329, -0.07837319374084473, 0.02254852093756199, -0.011930657550692558, 0.03136150911450386, -0.06290194392204285, 0.07487080991268158, 0.02007940225303173, -0.009562957100570202, 0.030849481001496315, -0.035650525242090225, 0.038580771535634995, -0.09688293933868408, -0.08972176164388657, -0.03461763262748718, -0.09546500444412231, 0.06582162529230118, 0.07402932643890381, 0.06970439851284027, -0.11731346696615219, -0.07322297245264053, 0.06948366016149521, 0.0849389061331749, -0.05424366891384125, 0.018196793273091316, -0.052645716816186905, 0.0644061267375946, -0.03478735312819481, -0.02359069511294365, -0.1776687055826187, -0.027613604441285133, 0.015654945746064186, 0.007760270033031702, 0.03470766916871071, 0.0437026210129261, 0.05540310963988304, 0.04228338599205017, -0.06964012235403061, -0.012809443287551403, -0.053567007184028625, -0.010704407468438148, -0.12154029309749603, -0.19975993037223816, -0.017979903146624565, -0.021052023395895958, 0.12065195292234421, -0.22344699501991272, 0.03584831580519676, -0.03807992488145828, 0.057002510875463486, 0.04234037175774574, -0.01120161172002554, -0.022491082549095154, 0.0882997065782547, -0.035282883793115616, -0.03188548609614372, 0.07614695280790329, 0.009142495691776276, -0.10323828458786011, -0.007225472945719957, -0.09753944724798203, 0.18933774530887604, 0.12937213480472565, -0.09848537296056747, -0.09123069792985916, 0.006965571083128452, -0.054868459701538086, -0.034641217440366745, -0.07804635167121887, 0.03765026107430458, 0.1834997683763504, -0.003533095121383667, 0.14122791588306427, -0.08571379631757736, -0.0463932640850544, 0.029832882806658745, -0.04519312456250191, 0.025211527943611145, 0.14425848424434662, 0.12913519144058228, -0.08780166506767273, 0.14073042571544647, 0.14893117547035217, -0.07433521747589111, 0.1689024120569229, -0.03845164179801941, -0.06141626089811325, -0.026143604889512062, -0.035053085535764694, -0.010435917414724827, 0.10956045240163803, -0.13098248839378357, 0.0010832478292286396, 0.02951507456600666, 0.007217473350465298, 0.016973214223980904, -0.23449814319610596, -0.049009811133146286, 0.03819023445248604, -0.04236665368080139, -0.011958462186157703, 0.005824893247336149, 0.01608973927795887, 0.11067213863134384, -0.0002792609157040715, -0.0643666461110115, 0.03766917809844017, 0.007155929692089558, -0.09078327566385269, 0.21715007722377777, -0.07476765662431717, -0.1777045875787735, -0.1351507008075714, -0.04927028343081474, -0.04005824401974678, -0.0017515390645712614, 0.06471598148345947, -0.07847317308187485, -0.025417611002922058, -0.06298232823610306, 0.007234905380755663, -0.004602436441928148, 0.016259431838989258, -0.021197432652115822, 0.024887673556804657, 0.03868338093161583, -0.1043485626578331, -0.012482945807278156, -0.06182880327105522, -0.04243994876742363, 0.055573172867298126, 0.04085672274231911, 0.10838931053876877, 0.15189795196056366, -0.025360731407999992, -0.004806554410606623, -0.03343893215060234, 0.2141484022140503, -0.0870928168296814, -0.04826345667243004, 0.1294831782579422, -0.009398830123245716, 0.035038936883211136, 0.11986337602138519, 0.07354272156953812, -0.09334418177604675, 0.016801143065094948, 0.030571114271879196, -0.03860245645046234, -0.27214157581329346, -0.034447088837623596, -0.05044145509600639, 0.0016439150786027312, 0.07211530208587646, 0.024136101827025414, 0.005454056430608034, 0.0660020112991333, 0.04167969152331352, 0.06318202614784241, -0.030747562646865845, 0.059685610234737396, 0.10765507817268372, 0.03689035400748253, 0.1303303837776184, -0.055283498018980026, -0.062420014292001724, 0.05425482243299484, -0.006729551590979099, 0.2478828877210617, 0.01700659655034542, 0.13852143287658691, 0.07937122881412506, 0.1265653669834137, 0.015484662726521492, 0.05606207624077797, 0.019706035032868385, -0.03911585360765457, -0.01795198954641819, -0.027185285463929176, -0.032320257276296616, 0.028675053268671036, -0.04356097802519798, 0.04918544739484787, -0.1409386396408081, -0.011997980996966362, 0.06037088856101036, 0.24108286201953888, 0.016306575387716293, -0.3073848783969879, -0.10261871665716171, 0.008344478905200958, -0.04958735406398773, -0.00770536670461297, 0.02535008266568184, 0.1043558344244957, -0.12282168865203857, 0.031599584966897964, -0.07925571501255035, 0.09103003889322281, -0.09041883796453476, 0.0425332635641098, 0.0724869966506958, 0.06695956736803055, -0.004431326407939196, 0.07785413414239883, -0.3044440746307373, 0.28692013025283813, -0.0044546532444655895, 0.05746043100953102, -0.061971552670001984, -0.02644168585538864, 0.021254513412714005, 0.0533653199672699, 0.05901468172669411, -0.004558502230793238, -0.05011886730790138, -0.179862841963768, -0.029286598786711693, 0.02373131364583969, 0.08326613903045654, -0.01917596533894539, 0.08918139338493347, -0.028858305886387825, 0.004837504588067532, 0.05932074412703514, -0.025558089837431908, -0.04993530362844467, -0.09453099220991135, -0.0023969742469489574, 0.018238624557852745, -0.058620795607566833, -0.06512891501188278, -0.13374125957489014, -0.08359388262033463, 0.1348934769630432, -0.020710809156298637, -0.0445815809071064, -0.09420016407966614, 0.0696709081530571, 0.06967895478010178, -0.08109605312347412, 0.03727840259671211, 0.015591079369187355, 0.08253757655620575, 0.022974438965320587, -0.04282096400856972, 0.09884705394506454, -0.048446569591760635, -0.18772925436496735, -0.06581666320562363, 0.11375877261161804, 0.029449230059981346, 0.06868963688611984, -0.026217631995677948, -0.0019302223809063435, -0.04674617573618889, -0.08563333749771118, 0.02617103047668934, 0.004474183078855276, 0.08004587143659592, 0.04323151707649231, -0.058402132242918015, 0.00845920667052269, -0.0787639245390892, -0.05771666765213013, 0.1997326910495758, 0.21386593580245972, -0.09233475476503372, 0.029603654518723488, 0.019149143248796463, -0.08079741150140762, -0.17080089449882507, 0.038347747176885605, 0.0697641596198082, 0.012554916553199291, 0.057733193039894104, -0.1547245979309082, 0.10604612529277802, 0.09769079834222794, -0.007446750532835722, 0.1360466182231903, -0.32511985301971436, -0.13383719325065613, 0.09206478297710419, 0.1562969982624054, 0.12205813080072403, -0.13633720576763153, -0.014336295425891876, -0.02756437100470066, -0.12985719740390778, 0.13542501628398895, -0.08081451803445816, 0.14185161888599396, -0.034972451627254486, 0.1039847880601883, 0.006045449059456587, -0.05436428263783455, 0.11622989177703857, 0.013761081732809544, 0.11071552336215973, -0.04935480281710625, -0.04890253022313118, 0.01609155163168907, -0.03038504347205162, 0.013844453729689121, -0.07635394483804703, 0.019116347655653954, -0.09271401166915894, -0.03577105700969696, -0.07702914625406265, 0.03374336287379265, -0.043190840631723404, -0.054965801537036896, -0.04091208055615425, 0.034320443868637085, 0.01975821703672409, -0.01666278950870037, 0.13955621421337128, 0.003333756234496832, 0.1515265554189682, 0.07059978693723679, 0.09764006733894348, -0.053968023508787155, -0.09303875267505646, -0.03528987243771553, -0.02135799452662468, 0.05129755660891533, -0.1549561768770218, 0.021464267745614052, 0.14301742613315582, 0.014462959952652454, 0.1601264923810959, 0.07522013783454895, -0.033135492354631424, 0.014299861155450344, 0.06942472606897354, -0.14904573559761047, -0.1017177626490593, -0.01664944551885128, -0.0900869369506836, -0.11416462063789368, 0.043869584798812866, 0.1134345680475235, -0.06793675571680069, -0.026468046009540558, -0.01288853120058775, 0.007993075996637344, -0.05045941472053528, 0.1904538869857788, 0.07405471056699753, 0.05156270042061806, -0.09864658117294312, 0.08679638803005219, 0.05379316210746765, -0.07317699491977692, 0.007465556729584932, 0.07078637182712555, -0.08284694701433182, -0.05923943594098091, 0.06080721691250801, 0.1845737099647522, -0.06259603798389435, -0.05010136961936951, -0.14641422033309937, -0.12266141921281815, 0.07773836702108383, 0.16021229326725006, 0.11242614686489105, 0.013465124182403088, -0.04153253883123398, -0.007651757448911667, -0.10213588178157806, 0.10111714154481888, 0.05612899735569954, 0.0690903589129448, -0.15284816920757294, 0.1204565241932869, 0.029733508825302124, 0.0543297603726387, -0.019849255681037903, 0.03377451002597809, -0.11426439136266708, 0.016749080270528793, -0.11472266167402267, -0.007514541037380695, -0.015288793481886387, 0.014385919086635113, 0.000968395615927875, -0.05706295743584633, -0.06771895289421082, 0.009480050764977932, -0.12319580465555191, -0.01554066501557827, 0.04397782310843468, 0.07795210182666779, -0.08845756202936172, -0.03568360209465027, 0.029337206855416298, -0.04569719731807709, 0.06853406131267548, 0.04594171419739723, 0.011460299603641033, 0.064334437251091, -0.13294970989227295, 0.037452664226293564, 0.05697771534323692, 0.015961483120918274, 0.04798586294054985, -0.122411347925663, 0.006371380761265755, -0.0018000301206484437, 0.0726303681731224, 0.02550157904624939, 0.06858478486537933, -0.15950055420398712, -0.001442316104657948, -0.010857275687158108, -0.08171621710062027, -0.05929914116859436, 0.020686471834778786, 0.05978851765394211, 0.029236869886517525, 0.20805278420448303, -0.08189813047647476, 0.04346061870455742, -0.20222651958465576, 0.005659915506839752, -0.018371185287833214, -0.1223297193646431, -0.11947851628065109, -0.07597819715738297, 0.05543426796793938, -0.06955041736364365, 0.16489247977733612, 0.045550987124443054, 0.0549137108027935, 0.023259665817022324, -0.022227095440030098, -0.010836119763553143, 0.01647890917956829, 0.1678566336631775, 0.01063258945941925, -0.041180793195962906, 0.0580611377954483, 0.04760049656033516, 0.1042211502790451, 0.10280633717775345, 0.1982542723417282, 0.16875684261322021, 0.006852929014712572, 0.08667604625225067, 0.04101232811808586, -0.031973063945770264, -0.12991562485694885, 0.03978733345866203, -0.02574671246111393, 0.10865302383899689, -0.025577977299690247, 0.2061185985803604, 0.07416003942489624, -0.16316106915473938, 0.049012813717126846, -0.05792305991053581, -0.08825383335351944, -0.1150832399725914, -0.049085453152656555, -0.09668797254562378, -0.14463910460472107, 0.006008736789226532, -0.12712836265563965, -0.0028959743212908506, 0.09135644882917404, 0.005958298686891794, -0.039303846657276154, 0.12308738380670547, 0.02667427994310856, 0.01225320715457201, 0.0875907689332962, 0.013997238129377365, -0.03401065617799759, -0.11858925968408585, -0.05133643001317978, -0.02547909878194332, -0.024985963478684425, 0.021956482902169228, -0.05279587209224701, -0.07042188942432404, 0.023617476224899292, -0.024421868845820427, -0.10451808571815491, 0.015104338526725769, 0.020283101126551628, 0.0760403424501419, 0.033780477941036224, 0.01294429786503315, 0.01067402120679617, -0.002114263130351901, 0.24915248155593872, -0.06171346828341484, -0.056850071996450424, -0.11706892400979996, 0.23931555449962616, 0.03811323642730713, -0.022686097770929337, 0.035850364714860916, -0.06395736336708069, 0.004687613341957331, 0.2525510787963867, 0.23049494624137878, -0.07155535370111465, -0.006469343788921833, 0.01875956542789936, -0.0044971369206905365, -0.01674075610935688, 0.12212818115949631, 0.11295080929994583, 0.038160987198352814, -0.07667936384677887, -0.03625045716762543, -0.05411999300122261, 0.002980659017339349, -0.013366126455366611, 0.06571297347545624, 0.05371075123548508, 0.0077498676255345345, -0.043995942920446396, 0.07343292236328125, -0.0817638412117958, -0.11540486663579941, 0.05174659565091133, -0.21671998500823975, -0.17089396715164185, -0.017842251807451248, 0.09271592646837234, -0.0013818513834849, 0.06708966195583344, -0.02471045032143593, -0.016434239223599434, 0.0736321210861206, -0.015373230911791325, -0.10811056196689606, -0.08283166587352753, 0.0929350033402443, -0.10401742905378342, 0.18679691851139069, -0.05283636227250099, 0.05521148443222046, 0.12144825607538223, 0.0635753646492958, -0.06168590858578682, 0.07964552938938141, 0.03850160911679268, -0.04149516299366951, 0.0419253334403038, 0.09710109233856201, -0.029392188414931297, 0.07377967983484268, 0.053761791437864304, -0.12431114166975021, 0.021366672590374947, -0.09222661703824997, -0.0476057231426239, -0.05577758699655533, -0.01194423995912075, -0.0719410702586174, 0.12683211266994476, 0.23718325793743134, -0.03593607619404793, -0.007039632182568312, -0.05860098823904991, 0.022368503734469414, 0.06637374311685562, 0.04110746830701828, -0.048966698348522186, -0.22823092341423035, 0.009324760176241398, 0.07710987329483032, -0.013783383183181286, -0.2741815447807312, -0.06949706375598907, 0.00313156982883811, -0.07000496238470078, -0.07492216676473618, 0.08012600243091583, 0.07749845087528229, 0.04956114664673805, -0.06145444139838219, -0.06689776480197906, -0.0661398395895958, 0.15848445892333984, -0.1544489562511444, -0.09518257528543472 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TOMFINSEN This model is a fine-tuned version of [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Recall: 0.8986 - Accuracy: 0.8742 - Precision: 0.8510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.5403 | 1.0 | 273 | 0.4207 | 0.8358 | 0.8619 | 0.8534 | | 0.3939 | 2.0 | 546 | 0.3750 | 0.8943 | 0.8577 | 0.8225 | | 0.1993 | 3.0 | 819 | 0.3113 | 0.8882 | 0.8660 | 0.8367 | | 0.301 | 4.0 | 1092 | 0.3642 | 0.8986 | 0.8742 | 0.8510 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["financial_phrasebank"], "metrics": ["recall", "accuracy", "precision"], "model-index": [{"name": "TOMFINSEN", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "financial_phrasebank", "type": "financial_phrasebank", "args": "sentences_50agree"}, "metrics": [{"type": "recall", "value": 0.8985861629736692, "name": "Recall"}, {"type": "accuracy", "value": 0.8742268041237113, "name": "Accuracy"}, {"type": "precision", "value": 0.8509995913451198, "name": "Precision"}]}]}]}
text-classification
tomwetherell/TOMFINSEN
[ "transformers", "pytorch", "tensorboard", "perceiver", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #perceiver #text-classification #generated_from_trainer #dataset-financial_phrasebank #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
TOMFINSEN ========= This model is a fine-tuned version of deepmind/language-perceiver on the financial\_phrasebank dataset. It achieves the following results on the evaluation set: * Loss: 0.3642 * Recall: 0.8986 * Accuracy: 0.8742 * Precision: 0.8510 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * distributed\_type: tpu * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.0+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: tpu\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #perceiver #text-classification #generated_from_trainer #dataset-financial_phrasebank #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: tpu\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 72, 107, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #perceiver #text-classification #generated_from_trainer #dataset-financial_phrasebank #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: tpu\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.09649261087179184, 0.07675007730722427, -0.0016207221196964383, 0.12036848813295364, 0.17410728335380554, 0.01827145367860794, 0.13242413103580475, 0.10045714676380157, -0.06896830350160599, 0.024534791707992554, 0.10344541072845459, 0.15479156374931335, 0.025185003876686096, 0.15915167331695557, -0.05674603953957558, -0.23252511024475098, 0.00830454658716917, 0.033107221126556396, -0.03466968610882759, 0.14974449574947357, 0.09397802501916885, -0.1166171208024025, 0.11096612364053726, 0.012311138212680817, -0.17102167010307312, -0.0010869906982406974, 0.01473190076649189, -0.06361083686351776, 0.1449802666902542, 0.05111807584762573, 0.09297405183315277, 0.0050797732546925545, 0.05934932827949524, -0.15744493901729584, 0.013084488920867443, 0.059538584202528, -0.013252036646008492, 0.08252746611833572, 0.04288797825574875, 0.00793163850903511, 0.12921693921089172, -0.06945525854825974, 0.05038181319832802, 0.008434330113232136, -0.13064278662204742, -0.19037073850631714, -0.06834466755390167, 0.045607008039951324, 0.04615860432386398, 0.11153345555067062, -0.00813569501042366, 0.18124225735664368, -0.04153113067150116, 0.09691974520683289, 0.17200811207294464, -0.3171776533126831, -0.06245771050453186, -0.002439283998683095, 0.0016459538601338863, 0.08896903693675995, -0.08126175403594971, -0.024360865354537964, 0.0327184684574604, 0.042364832013845444, 0.1561950147151947, -0.02907649800181389, -0.06788691878318787, -0.004005700349807739, -0.14583522081375122, -0.05717870965600014, 0.17970606684684753, 0.06893352419137955, -0.03733096271753311, -0.044922277331352234, -0.08024632930755615, -0.12694352865219116, -0.011468665674328804, -0.010188800282776356, 0.04428355395793915, -0.017647026106715202, -0.07085181027650833, -0.004956725053489208, -0.08741658180952072, -0.04039393365383148, -0.08916770666837692, 0.1444721519947052, 0.018135879188776016, 0.014123250730335712, -0.00979798473417759, 0.0938921868801117, -0.002661750651896, -0.14039301872253418, 0.03492891415953636, 0.025034863501787186, -0.008057920262217522, -0.0383695587515831, -0.05282450467348099, -0.10545056313276291, -0.0030394147615879774, 0.10457209497690201, -0.027684777975082397, 0.0149028729647398, 0.03307749330997467, 0.032555628567934036, -0.08539354801177979, 0.1931600123643875, -0.062479808926582336, -0.037081263959407806, 0.018429046496748924, 0.0841107964515686, 0.04605037346482277, -0.021504875272512436, -0.11159820854663849, 0.04283062368631363, 0.12178632616996765, -0.006284404546022415, -0.05511617287993431, 0.08637254685163498, -0.06971137970685959, -0.055419765412807465, 0.050208721309900284, -0.08857470005750656, 0.004171914886683226, -0.022239282727241516, -0.07058892399072647, -0.04624944180250168, 0.01300621684640646, 0.01581249199807644, -0.028696652501821518, 0.10925038903951645, -0.10041593015193939, 0.0032939440570771694, -0.07639636099338531, -0.12698325514793396, 0.006246501579880714, -0.06574889272451401, 0.023411685600876808, -0.12163188308477402, -0.1691838651895523, -0.009405331686139107, 0.06130888685584068, -0.026778025552630424, -0.09828253835439682, -0.03457248583436012, -0.0659242793917656, 0.010271644219756126, -0.024992993101477623, 0.1182258278131485, -0.08485996723175049, 0.08813423663377762, 0.01821949891746044, 0.04124823585152626, -0.06257148832082748, 0.0474657267332077, -0.11416991800069809, 0.0059478385373950005, -0.14682041108608246, 0.04103247821331024, -0.017148829996585846, 0.08161894232034683, -0.10288657248020172, -0.09062653034925461, 0.0046549527905881405, -0.015436365269124508, 0.06387783586978912, 0.06410924345254898, -0.15035800635814667, -0.07985278218984604, 0.12801527976989746, -0.08309493213891983, -0.15777775645256042, 0.1363038867712021, -0.048289213329553604, 0.042520660907030106, 0.08095425367355347, 0.18257400393486023, 0.08193650841712952, -0.07388467341661453, 0.0054123555310070515, -0.003614401910454035, 0.057296272367239, -0.05904453247785568, 0.10267048329114914, 0.00941313337534666, -0.00521499989554286, 0.011628096923232079, -0.04365387558937073, 0.07026669383049011, -0.08537265658378601, -0.08486505597829819, -0.03243204578757286, -0.10133454948663712, 0.002101246500387788, 0.06508351117372513, 0.06580974906682968, -0.09183962643146515, -0.0930873304605484, 0.057913120836019516, 0.06861437857151031, -0.059071868658065796, 0.02533097006380558, -0.09072530269622803, 0.08831962198019028, -0.0503247044980526, -0.009005351923406124, -0.1879168599843979, -0.00022652193729300052, 0.017883343622088432, -0.005962493363767862, 0.029798859730362892, 0.023701967671513557, 0.05618249252438545, 0.04839445650577545, -0.06091953068971634, -0.019874654710292816, -0.037315770983695984, 0.0036837118677794933, -0.10932362079620361, -0.190598264336586, -0.018058259040117264, -0.015270617790520191, 0.15782643854618073, -0.1666661649942398, 0.01736816018819809, 0.0042388420552015305, 0.0720263198018074, 0.02830461598932743, -0.013638895004987717, -0.036596592515707016, 0.07956640422344208, -0.04386526346206665, -0.05917341262102127, 0.07519517093896866, 0.03064516931772232, -0.11299850046634674, -0.019958041608333588, -0.12751993536949158, 0.20107829570770264, 0.14067834615707397, -0.0848611444234848, -0.04866781085729599, 0.02895905077457428, -0.04217977449297905, -0.024016641080379486, -0.02391122095286846, 0.009140150621533394, 0.19496719539165497, -0.004496767185628414, 0.15075398981571198, -0.0792265310883522, -0.029417993500828743, 0.026000088080763817, -0.002998631913214922, 0.02374359592795372, 0.11804922670125961, 0.07295098155736923, -0.15898090600967407, 0.1330818086862564, 0.15678729116916656, -0.0403481125831604, 0.11783182621002197, -0.04456925019621849, -0.06416025757789612, -0.021453948691487312, -0.01837018132209778, 0.010053396224975586, 0.08522354066371918, -0.11905419081449509, 0.0032493919134140015, 0.041183166205883026, 0.016873588785529137, -0.006744519341737032, -0.19624391198158264, -0.02609933353960514, 0.04752251133322716, -0.04331929236650467, -0.02524249255657196, -0.009730654768645763, -0.01407703198492527, 0.10687554627656937, 0.017761101946234703, -0.10393273085355759, 0.03485791012644768, 0.002579003106802702, -0.06880895793437958, 0.18996329605579376, -0.05988756939768791, -0.2010868340730667, -0.12412583082914352, -0.04624848812818527, -0.0746217593550682, 0.014964195899665356, 0.06211823597550392, -0.04409724846482277, -0.05341345816850662, -0.10569671541452408, 0.004095003008842468, 0.02772759273648262, 0.02441301941871643, 0.03753051906824112, -0.029631322249770164, 0.0858042985200882, -0.09914550930261612, -0.014774896204471588, -0.03826706483960152, -0.03295714035630226, 0.040544744580984116, 0.0268124770373106, 0.13247637450695038, 0.13361547887325287, -0.014911179430782795, 0.012903994880616665, -0.029229359701275826, 0.2672654986381531, -0.06758920103311539, -0.03637950122356415, 0.1497269719839096, -0.007403844967484474, 0.048642128705978394, 0.14027830958366394, 0.058002982288599014, -0.08993598073720932, 0.01617375575006008, 0.02295556478202343, -0.0381755493581295, -0.19490720331668854, -0.054923366755247116, -0.06795614212751389, -0.04422261565923691, 0.09520275145769119, 0.0337170735001564, 0.019549522548913956, 0.053830165416002274, 0.029699532315135002, 0.09488964825868607, -0.027048995718359947, 0.06342900544404984, 0.13679181039333344, 0.0759517252445221, 0.13724413514137268, -0.04808543622493744, -0.06064421683549881, 0.06550014764070511, -0.040686145424842834, 0.20965422689914703, -0.006295058410614729, 0.18511593341827393, 0.043449923396110535, 0.13419730961322784, -0.002252824604511261, 0.07819012552499771, -0.018128082156181335, -0.013496624305844307, -0.04168558493256569, -0.030658569186925888, -0.0473518930375576, 0.009509950876235962, -0.06798236072063446, 0.07009246945381165, -0.10079772025346756, -0.0008901988621801138, 0.06126479431986809, 0.26636916399002075, 0.02315462753176689, -0.34727969765663147, -0.10029200464487076, -0.011065901257097721, -0.04008816182613373, -0.017564555630087852, 0.010381920263171196, 0.0941501334309578, -0.07161711901426315, 0.0572042241692543, -0.0684782937169075, 0.10305458307266235, -0.05514207482337952, 0.049349457025527954, 0.08946949988603592, 0.07821406424045563, -0.004903897643089294, 0.07505983859300613, -0.2811937928199768, 0.2730845510959625, -0.000051218081352999434, 0.06570330262184143, -0.06964818388223648, -0.010002278722822666, 0.026803473010659218, 0.07878601551055908, 0.05349520966410637, 0.001545713865198195, 0.046482525765895844, -0.16945265233516693, -0.06216256320476532, 0.03610307723283768, 0.04869614914059639, -0.048134785145521164, 0.08825169503688812, -0.04754721745848656, 0.00519215315580368, 0.060840632766485214, 0.0401984304189682, -0.032841961830854416, -0.09651327133178711, 0.007115466054528952, 0.024283308535814285, -0.012008070014417171, -0.05299924314022064, -0.10999617725610733, -0.11384623497724533, 0.13008852303028107, 0.035994935780763626, -0.03423735126852989, -0.10210646688938141, 0.06206488609313965, 0.05739550665020943, -0.09519298374652863, 0.02433951385319233, -0.0025812729727476835, 0.06190956383943558, 0.05687416344881058, -0.06777293980121613, 0.11403451859951019, -0.04495749995112419, -0.15519052743911743, -0.0393451489508152, 0.08825015276670456, -0.0028496563900262117, 0.06338703632354736, -0.01847023144364357, 0.025895340368151665, -0.05233645811676979, -0.08297859132289886, 0.0016277715330943465, -0.03655122593045235, 0.06807101517915726, 0.0056686364114284515, -0.009668216109275818, 0.0012923228787258267, -0.07273391634225845, -0.041998233646154404, 0.1601596623659134, 0.25838640332221985, -0.06973066180944443, 0.0010659777326509356, 0.03605205565690994, -0.04124484583735466, -0.17266516387462616, -0.00212193769402802, 0.03172091022133827, 0.011066175065934658, 0.05374263599514961, -0.1392180472612381, 0.08132873475551605, 0.08939185738563538, -0.014211309142410755, 0.0725163146853447, -0.29870954155921936, -0.14706562459468842, 0.10682399570941925, 0.1493457853794098, 0.1220298558473587, -0.1578764170408249, -0.02216583490371704, -0.03702017664909363, -0.11725147813558578, 0.14462465047836304, -0.10115931183099747, 0.11597984284162521, -0.008239956572651863, 0.0550573505461216, 0.0037967965472489595, -0.03599099814891815, 0.11570409685373306, -0.004884226247668266, 0.07922351360321045, -0.06825456023216248, 0.0034975314047187567, 0.07291124761104584, -0.03969120606780052, 0.012221959419548512, -0.10722705721855164, 0.0387641079723835, -0.10784096270799637, -0.029523901641368866, -0.07307153940200806, 0.014884899370372295, -0.008096110075712204, -0.057413335889577866, -0.0338340699672699, 0.03679370507597923, 0.08192148059606552, -0.020125003531575203, 0.15502268075942993, 0.014861201867461205, 0.12550821900367737, 0.12613585591316223, 0.08424128592014313, -0.09600035846233368, -0.06717485189437866, -0.021718885749578476, -0.016460439190268517, 0.06157303601503372, -0.1213700920343399, 0.033307965844869614, 0.12855501472949982, 0.010603278875350952, 0.14900384843349457, 0.06451281160116196, -0.015843214467167854, 0.0028961587231606245, 0.05824025347828865, -0.18184785544872284, -0.11608781665563583, -0.016487106680870056, -0.06066935136914253, -0.1138436496257782, 0.028527308255434036, 0.11646372079849243, -0.06443481147289276, -0.002651265822350979, 0.0025433083064854145, -0.0006615154561586678, -0.04123738408088684, 0.1736481934785843, 0.03580620139837265, 0.03922537714242935, -0.10579497367143631, 0.07240334898233414, 0.07672557234764099, -0.08810699731111526, -0.002591449534520507, 0.02406635694205761, -0.10754915326833725, -0.043646469712257385, 0.05440550670027733, 0.17034220695495605, -0.05094179883599281, -0.03594547137618065, -0.15145306289196014, -0.11451912671327591, 0.07520001381635666, 0.129769429564476, 0.10799073427915573, 0.004502183757722378, -0.05981585010886192, -0.015621437691152096, -0.08943215757608414, 0.09628070890903473, 0.056526731699705124, 0.058560919016599655, -0.15541289746761322, 0.10932885110378265, 0.009996295906603336, 0.031200937926769257, -0.031195348128676414, 0.022679414600133896, -0.09499447047710419, 0.002560403198003769, -0.10831739008426666, -0.00014821389049757272, -0.01640244573354721, 0.01332381833344698, -0.0074658566154539585, -0.07484957575798035, -0.08411205559968948, 0.012389120645821095, -0.11001275479793549, -0.028731925413012505, 0.04549258202314377, 0.06132352352142334, -0.10648543387651443, -0.04436509311199188, 0.02005689963698387, -0.06112700328230858, 0.07466217130422592, 0.03164754807949066, -0.0014342042850330472, 0.04511420801281929, -0.09918156266212463, 0.010884035378694534, 0.06339984387159348, 0.03168994188308716, 0.06912650167942047, -0.09112078696489334, 0.0023554060608148575, 0.018320158123970032, 0.03298569098114967, 0.019910749047994614, 0.10954409092664719, -0.12430271506309509, -0.005456788931041956, 0.010682336986064911, -0.06483535468578339, -0.04976285621523857, 0.03491055220365524, 0.083812415599823, 0.035228192806243896, 0.23229333758354187, -0.06817888468503952, 0.0012348124291747808, -0.2249174565076828, -0.001615396817214787, 0.004425900522619486, -0.11303587257862091, -0.13718239963054657, -0.07335956394672394, 0.05758441984653473, -0.05608287453651428, 0.14054886996746063, 0.043973855674266815, 0.06938488781452179, 0.03706961125135422, 0.026817597448825836, 0.019082490354776382, 0.009754637256264687, 0.1995805948972702, 0.030181359499692917, -0.023775063455104828, 0.07066186517477036, 0.008087546564638615, 0.09230586141347885, 0.12980321049690247, 0.17623579502105713, 0.14579354226589203, 0.006357405334711075, 0.06748577952384949, 0.01660275086760521, -0.031627703458070755, -0.16223886609077454, 0.00271734525449574, -0.04998662695288658, 0.1388045996427536, -0.00044143132981844246, 0.23171712458133698, 0.04903658479452133, -0.16158387064933777, 0.03983817249536514, -0.06250783801078796, -0.07182095944881439, -0.07679322361946106, -0.08329359441995621, -0.09539155662059784, -0.14451000094413757, -0.0037168734706938267, -0.10922674089670181, 0.01738661341369152, 0.13889412581920624, -0.005988473538309336, -0.0304764024913311, 0.12838134169578552, -0.017458686605095863, -0.0013002929044887424, 0.05881208926439285, -0.0045610349625349045, -0.05135456100106239, -0.10187939554452896, -0.0735950917005539, -0.011160135269165039, 0.011706262826919556, 0.033654775470495224, -0.04504852741956711, -0.04170563071966171, 0.0340348556637764, -0.019020410254597664, -0.10794692486524582, 0.016973940655589104, 0.018081113696098328, 0.04163398593664169, 0.049272242933511734, 0.01738830655813217, 0.026926269754767418, 0.003164589172229171, 0.22223559021949768, -0.06115318834781647, -0.07781227678060532, -0.10655464231967926, 0.23636290431022644, 0.020779695361852646, -0.020200662314891815, 0.05485080927610397, -0.0718827098608017, -0.004210534505546093, 0.22146421670913696, 0.1943231225013733, -0.12961600720882416, -0.011284800246357918, -0.003807107685133815, -0.003714329795911908, -0.0049573881551623344, 0.1240854486823082, 0.11357253789901733, 0.013917120173573494, -0.07883240282535553, -0.0006370833143591881, -0.0819503664970398, -0.004036824684590101, -0.012884900905191898, 0.057598236948251724, 0.04563175141811371, -0.0027885197196155787, -0.04255281761288643, 0.052737731486558914, -0.06089520826935768, -0.11451004445552826, 0.039106585085392, -0.2175474762916565, -0.16606168448925018, -0.037285614758729935, 0.0847824364900589, 0.005012780427932739, 0.059758320450782776, -0.02448217011988163, 0.02381698228418827, 0.03210141509771347, -0.008710927329957485, -0.08066104352474213, -0.08330722898244858, 0.1084621325135231, -0.13215352594852448, 0.1892772763967514, -0.0476464182138443, 0.058417316526174545, 0.11990274488925934, 0.060974858701229095, -0.07681568711996078, 0.08420873433351517, 0.04031423479318619, -0.053377918899059296, 0.04715307056903839, 0.060658641159534454, -0.030205069109797478, 0.0758863314986229, 0.04665368050336838, -0.0985557809472084, 0.00015227326366584748, -0.056159332394599915, -0.024411173537373543, -0.033418379724025726, -0.05489332973957062, -0.07284842431545258, 0.13815610110759735, 0.20519442856311798, -0.03349120914936066, 0.004890780430287123, -0.07703249156475067, 0.011873962357640266, 0.06740301847457886, 0.023635605350136757, -0.06567417085170746, -0.2152584195137024, -0.0036592602264136076, 0.05646078661084175, -0.0040821293368935585, -0.2534322142601013, -0.08071965724229813, -0.03467869386076927, -0.055511027574539185, -0.09074920415878296, 0.10175871104001999, 0.06228400394320488, 0.03783649578690529, -0.06613164395093918, -0.02464553713798523, -0.0700988918542862, 0.14394034445285797, -0.14676213264465332, -0.08549834042787552 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import numpy as np import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array.numpy()).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\"\%\'\"\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 35.43 % ## Training The Common Voice `train`, `validation`, and `other` datasets were used for training as well as CSS10 and Finnish parliament session 2 The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
{"language": "fi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice", "CSS10", "Finnish parliament session 2"], "metrics": ["wer"], "model-index": [{"name": "Finnish XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fi", "type": "common_voice", "args": "fi"}, "metrics": [{"type": "wer", "value": 35.43, "name": "Test WER"}]}]}]}
automatic-speech-recognition
Tommi/wav2vec2-large-xlsr-53-finnish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 and Finnish parliament session 2 datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. Test Result: 35.43 % ## Training The Common Voice 'train', 'validation', and 'other' datasets were used for training as well as CSS10 and Finnish parliament session 2 The script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
[ "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 and Finnish parliament session 2 datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result: 35.43 %", "## Training\n\nThe Common Voice 'train', 'validation', and 'other' datasets were used for training as well as CSS10 and Finnish parliament session 2\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 and Finnish parliament session 2 datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result: 35.43 %", "## Training\n\nThe Common Voice 'train', 'validation', and 'other' datasets were used for training as well as CSS10 and Finnish parliament session 2\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ 71, 78, 20, 29, 110 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 and Finnish parliament session 2 datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result: 35.43 %## Training\n\nThe Common Voice 'train', 'validation', and 'other' datasets were used for training as well as CSS10 and Finnish parliament session 2\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ -0.11877892166376114, 0.07070060819387436, -0.0029640935827046633, 0.025544142350554466, 0.09744454175233841, -0.0235087089240551, 0.22715960443019867, 0.1212838813662529, 0.07237700372934341, 0.04545213282108307, 0.008211284875869751, 0.0047796256840229034, 0.057358261197805405, 0.20210854709148407, 0.05334275960922241, -0.2279927134513855, 0.015844082459807396, -0.03198821842670441, -0.01764971762895584, 0.054332561790943146, 0.09724640101194382, -0.04463229700922966, 0.02472161501646042, 0.051756903529167175, -0.07795960456132889, 0.0503726601600647, 0.0034876663703471422, -0.08452592045068741, 0.11879143118858337, 0.10443752259016037, 0.10998192429542542, 0.017889434471726418, 0.10001793503761292, -0.244719997048378, 0.0403418093919754, 0.053948502987623215, -0.001054127118550241, 0.030654054135084152, 0.08182428777217865, -0.03193819150328636, 0.03989020735025406, 0.06353744864463806, -0.008879877626895905, 0.07429106533527374, -0.06335359811782837, -0.0717025101184845, -0.03168873116374016, -0.03983452916145325, 0.04462048038840294, 0.08418644219636917, -0.04784549027681351, 0.11425475031137466, -0.1095222681760788, 0.10949118435382843, 0.19472074508666992, -0.10843705385923386, -0.019692590460181236, 0.2105388343334198, 0.07168243080377579, 0.05118827894330025, -0.04939822107553482, 0.06373957544565201, 0.019924554973840714, -0.00937026459723711, -0.030332764610648155, 0.011754138395190239, -0.15627595782279968, -0.05622304230928421, -0.09421734511852264, -0.03293723613023758, 0.12850625813007355, 0.0070306905545294285, -0.05015284940600395, -0.16635175049304962, -0.006499630399048328, 0.026939377188682556, -0.023754574358463287, -0.04062388092279434, -0.022649744525551796, 0.04927007108926773, 0.031317275017499924, -0.13130241632461548, -0.1400483399629593, -0.0710025280714035, 0.0116557152941823, 0.09085799008607864, 0.024584513157606125, 0.023361999541521072, -0.1003275066614151, 0.07880176603794098, -0.09132950752973557, -0.045839592814445496, 0.010567241348326206, -0.031456585973501205, -0.08316855132579803, -0.03474992886185646, -0.060677532106637955, -0.1542508453130722, 0.07596251368522644, 0.03783807530999184, 0.016715990379452705, -0.010111036710441113, -0.021605998277664185, 0.0460452176630497, 0.055944595485925674, 0.10255672037601471, -0.04837195202708244, 0.0031255800276994705, 0.004809363279491663, -0.02478080801665783, -0.07319727540016174, -0.036373209208250046, -0.11081002652645111, -0.007472888100892305, -0.07824242860078812, 0.10534463077783585, -0.007796040736138821, 0.007947408594191074, -0.015753349289298058, -0.02801048569381237, 0.09887947142124176, -0.12872900068759918, 0.0043404861353337765, 0.05391490086913109, -0.004751193802803755, 0.07156962156295776, 0.04487920179963112, 0.022483887150883675, -0.10693946480751038, -0.06087767705321312, 0.013525807298719883, 0.09943139553070068, -0.06666364520788193, -0.09363576769828796, 0.04325510188937187, -0.05037324130535126, -0.0334974080324173, -0.11597903817892075, -0.045355167239904404, -0.03018060140311718, 0.009676462039351463, 0.018554266542196274, 0.016207898035645485, -0.0757485032081604, -0.03286968544125557, -0.029579918831586838, -0.012112364172935486, -0.031075764447450638, -0.042630720883607864, -0.007848309352993965, -0.06595271825790405, 0.04073675721883774, 0.0008066926966421306, 0.03502136841416359, -0.06818326562643051, -0.05015202984213829, -0.07992542535066605, 0.1632581502199173, -0.08621609210968018, -0.09586798399686813, -0.07301764190196991, -0.019110683351755142, -0.01233694888651371, 0.05130291357636452, 0.005602465942502022, 0.1048336923122406, -0.2617660164833069, -0.032814644277095795, 0.2692943215370178, -0.11013257503509521, 0.014198717661201954, 0.1524013876914978, -0.05684852600097656, 0.0967903807759285, 0.13108329474925995, 0.2563452422618866, 0.1038297638297081, -0.27280041575431824, 0.002701271092519164, 0.04155012592673302, -0.06695176661014557, 0.07623075693845749, 0.03613343462347984, -0.002366237109526992, 0.10614999383687973, 0.053664084523916245, 0.0004445029771886766, 0.044224534183740616, 0.013088332489132881, -0.06410257518291473, -0.013333375565707684, -0.0754811242222786, -0.030268769711256027, 0.05383705347776413, 0.0012322876136749983, -0.009759964421391487, -0.04750751331448555, 0.07529166340827942, 0.14837783575057983, -0.15553955733776093, 0.0550505667924881, -0.11129917204380035, 0.03040269762277603, -0.0778026282787323, 0.001288756844587624, -0.14866776764392853, -0.08640974760055542, 0.003262553596869111, -0.04355030134320259, 0.113762266933918, 0.21009528636932373, 0.023479171097278595, 0.06485103070735931, -0.01448818203061819, 0.0406121090054512, -0.05652313306927681, -0.03991309925913811, -0.026907747611403465, -0.09187545627355576, -0.02820453979074955, -0.08162806928157806, 0.16187943518161774, -0.13134083151817322, 0.026513338088989258, 0.031229056417942047, 0.06967255473136902, 0.0291907899081707, -0.04793735593557358, 0.051865775138139725, 0.035933371633291245, -0.017322713509202003, -0.03710262477397919, 0.012415701523423195, -0.027519723400473595, -0.06271973252296448, 0.1045428216457367, -0.12856924533843994, -0.13214871287345886, 0.08894448727369308, 0.04994899407029152, -0.07225324958562851, -0.06530199944972992, -0.0072935037314891815, 0.02500651217997074, -0.10547645390033722, 0.041981130838394165, 0.21397864818572998, 0.008237197063863277, 0.08156205713748932, -0.10682949423789978, 0.002290694508701563, -0.003230567090213299, -0.06417211145162582, 0.039378706365823746, 0.08685366064310074, 0.03275596722960472, -0.0027156444266438484, 0.04328400641679764, -0.15608055889606476, -0.018688848242163658, 0.2719583809375763, 0.03783245384693146, -0.14902736246585846, -0.03605286404490471, 0.007220857311040163, 0.03697405755519867, 0.08962094038724899, 0.02202240563929081, 0.038276124745607376, 0.035888057202100754, 0.012628573924303055, 0.06146319583058357, -0.10644504427909851, -0.018601194024086, -0.026463396847248077, -0.14794602990150452, -0.12761078774929047, 0.05324690788984299, 0.015207245014607906, 0.05546649917960167, -0.12210096418857574, 0.02249952033162117, -0.07514822483062744, -0.032340917736291885, -0.06515926867723465, 0.13178075850009918, -0.07008475065231323, -0.3283085823059082, -0.18034476041793823, 0.058370474725961685, -0.046005334705114365, 0.035055700689554214, 0.0908062756061554, -0.10640423744916916, -0.04823615401983261, -0.0767085999250412, 0.10027359426021576, 0.05185381695628166, -0.10229306668043137, -0.10555681586265564, 0.09880921244621277, 0.03009723871946335, -0.1570930778980255, 0.023057952523231506, 0.020594462752342224, -0.029123054817318916, 0.001990916207432747, -0.005041070282459259, 0.012234115041792393, 0.12357573956251144, 0.015761027112603188, 0.012304085306823254, 0.0007548722205683589, 0.17514526844024658, -0.14325842261314392, 0.06545054167509079, 0.09952837973833084, -0.030124349519610405, 0.012615007348358631, 0.08227352797985077, 0.05201456695795059, -0.08372469991445541, 0.019813615828752518, 0.032545220106840134, -0.08533444255590439, -0.24382968246936798, -0.12151838093996048, -0.04441883787512779, -0.030614938586950302, 0.03708208352327347, 0.012440787628293037, -0.012484738603234291, 0.06317845731973648, -0.07678104192018509, -0.059668634086847305, 0.05780152231454849, 0.023867424577474594, -0.020172618329524994, 0.008497183211147785, 0.08539994060993195, -0.07273340970277786, -0.05829574912786484, 0.04876745864748955, 0.11125057190656662, 0.11148180067539215, -0.020550083369016647, 0.12180979549884796, 0.06657543778419495, 0.0921722799539566, 0.0694858580827713, 0.06003444641828537, 0.02756628580391407, -0.007499342318624258, 0.02862994186580181, -0.05909789726138115, -0.013765967451035976, 0.04128850996494293, 0.13253475725650787, -0.18387703597545624, -0.0023255147971212864, -0.016332805156707764, 0.020470445975661278, 0.21321484446525574, 0.011030003428459167, -0.15549904108047485, -0.085561603307724, -0.010437491349875927, -0.07718478888273239, -0.03134511038661003, -0.01597941853106022, 0.17249293625354767, -0.15937305986881256, 0.03446963056921959, 0.0010446079540997744, 0.0894695371389389, 0.0025709981564432383, -0.0458984375, -0.05906033515930176, 0.023457247763872147, 0.031864434480667114, 0.12780532240867615, -0.09134772419929504, 0.10748877376317978, 0.015248957090079784, 0.07989806681871414, -0.07992985099554062, 0.02801729552447796, 0.01686183735728264, 0.11415942758321762, 0.12103424966335297, 0.027270877733826637, -0.06905151158571243, -0.15342527627944946, -0.13526935875415802, 0.017220256850123405, 0.0246885996311903, -0.07510768622159958, 0.07415513694286346, 0.004385955631732941, 0.012521438300609589, -0.07048927247524261, -0.14225895702838898, -0.15981672704219818, -0.19999025762081146, 0.038888029754161835, 0.08028487861156464, 0.037710029631853104, -0.0010287831537425518, -0.09256395697593689, -0.09158224612474442, 0.15874995291233063, 0.0037854965776205063, -0.027490010485053062, -0.07332754880189896, -0.010070684365928173, 0.16191910207271576, -0.06998786330223083, -0.01472959853708744, 0.036158256232738495, 0.21181510388851166, -0.11959095299243927, -0.059362903237342834, 0.000779046502429992, -0.09094870090484619, -0.09624174982309341, 0.03692485764622688, 0.1494619995355606, 0.13086716830730438, 0.05885523930191994, 0.12346712499856949, -0.015544412657618523, 0.014183320105075836, -0.07322831451892853, -0.08900409191846848, 0.1905686855316162, -0.014893396757543087, 0.08544623851776123, -0.0412442721426487, -0.08884929865598679, -0.11947674304246902, -0.025408469140529633, 0.16918671131134033, 0.22657644748687744, -0.08837885409593582, 0.18796387314796448, 0.1099427342414856, -0.13268066942691803, -0.1835949569940567, 0.011632613837718964, 0.07742895185947418, 0.07807639241218567, 0.09359604865312576, -0.2005278766155243, 0.08640426397323608, 0.03139204531908035, -0.02006521262228489, -0.02133702114224434, -0.21631726622581482, -0.1315845102071762, 0.029001399874687195, -0.04679253324866295, 0.05605965852737427, -0.04869014769792557, -0.0040869941003620625, -0.05846619978547096, 0.01655980572104454, 0.1322745829820633, -0.11129239946603775, 0.1363012194633484, 0.028879396617412567, 0.12814781069755554, 0.0856851190328598, -0.04255497083067894, 0.12539871037006378, 0.017130039632320404, -0.0006523086922243237, -0.06865813583135605, 0.13812898099422455, 0.12206219881772995, -0.029341386631131172, 0.19821709394454956, -0.053815025836229324, -0.0065745278261601925, -0.020983582362532616, -0.09386785328388214, -0.05384814366698265, 0.1286921352148056, 0.0025137898046523333, -0.031954724341630936, -0.04869208484888077, 0.038469839841127396, 0.06095340847969055, 0.004152354318648577, -0.007763948757201433, -0.11677611619234085, 0.04464061185717583, 0.07002631574869156, 0.12297352403402328, -0.0077073718421161175, -0.09389397501945496, 0.037678953260183334, -0.03885158523917198, 0.05100446566939354, -0.04488740488886833, 0.06256043910980225, 0.05628305301070213, -0.05511317029595375, 0.11188004165887833, -0.031630467623472214, -0.10763474553823471, 0.046953897923231125, 0.0432092510163784, -0.1091085895895958, -0.12722396850585938, -0.02864302322268486, 0.02055804617702961, -0.03711135685443878, 0.00844477117061615, 0.17956407368183136, -0.042552269995212555, -0.0488123781979084, -0.030416101217269897, 0.029721958562731743, -0.041398681700229645, 0.0561465360224247, 0.019682487472891808, 0.03905688598752022, -0.09780875593423843, 0.03680700808763504, 0.039504971355199814, -0.14071780443191528, 0.04476197436451912, -0.017201745882630348, -0.07136920839548111, -0.07687228173017502, 0.050413306802511215, 0.07929182052612305, -0.0008668801165185869, -0.08567440509796143, -0.07374708354473114, 0.003242757171392441, -0.04669739678502083, 0.05473114922642708, 0.056504275649785995, -0.013550431467592716, -0.004857967607676983, -0.030361955985426903, -0.11986248940229416, 0.038426127284765244, 0.07682241499423981, -0.0068108136765658855, -0.07871633023023605, 0.2127087265253067, 0.03228814899921417, 0.011212080717086792, -0.02882016822695732, -0.05417487770318985, -0.015803219750523567, 0.015714863315224648, 0.010715420357882977, 0.06544151157140732, -0.09064371883869171, 0.04247670993208885, -0.01769937574863434, -0.02047763764858246, 0.01678754948079586, 0.05475804582238197, -0.10400326550006866, 0.020990794524550438, -0.08865487575531006, 0.07916071265935898, -0.13169075548648834, 0.009547539055347443, 0.021899623796343803, -0.025661535561084747, 0.08236914873123169, 0.06401067227125168, -0.08667880296707153, 0.10502111911773682, -0.14842136204242706, -0.006057914346456528, 0.041085463017225266, 0.09461035579442978, -0.001483983127400279, -0.06164441630244255, 0.030025415122509003, 0.04201330989599228, 0.0966091975569725, 0.0009068928193300962, 0.1192416325211525, -0.07462461292743683, -0.059927526861429214, 0.04925265908241272, -0.05296512693166733, -0.06683967262506485, 0.04444855451583862, 0.06860858201980591, 0.10588640719652176, 0.1372448056936264, -0.08136922866106033, 0.10056255012750626, -0.11291523277759552, 0.004997397772967815, -0.004819624591618776, -0.013199149630963802, 0.01187122892588377, -0.09262484312057495, 0.03556424751877785, -0.055906809866428375, 0.1911768913269043, 0.04060770571231842, 0.12699459493160248, -0.026549596339464188, -0.14844082295894623, 0.08972711861133575, 0.022108379751443863, 0.1067500188946724, 0.013127914629876614, 0.02434050291776657, -0.04951378330588341, -0.01817256025969982, 0.02691507712006569, 0.03697694092988968, -0.009426842443645, 0.07425770908594131, 0.025589147582650185, 0.0740143209695816, 0.06301726400852203, -0.0013437005691230297, 0.0009881844744086266, -0.07434959709644318, -0.16383397579193115, -0.0035865730606019497, -0.05346900224685669, 0.0857536643743515, 0.119394950568676, -0.11483999341726303, 0.13264480233192444, 0.03811567276716232, -0.1127561628818512, -0.15389716625213623, -0.18254975974559784, -0.07007324695587158, -0.06969524919986725, 0.0502476766705513, -0.11056932806968689, 0.09186559170484543, 0.058495573699474335, 0.04857257753610611, -0.015981070697307587, 0.1831817477941513, -0.041253115981817245, -0.0713762417435646, -0.01199786365032196, -0.03623104467988014, 0.009457297623157501, 0.029858434572815895, 0.009588205255568027, 0.09247982501983643, 0.00956699438393116, 0.06344767659902573, 0.047685664147138596, 0.041155893355607986, 0.019854038953781128, -0.1042233407497406, -0.04164879769086838, -0.02189752645790577, -0.03295062109827995, 0.04497075825929642, 0.11577773094177246, 0.13326112926006317, -0.06555908173322678, -0.012782810255885124, 0.16135519742965698, -0.004892187193036079, -0.1372298151254654, -0.2181755155324936, 0.013474599458277225, 0.0009280316298827529, 0.05144478753209114, -0.059978410601615906, -0.007465566974133253, -0.043585147708654404, 0.15877141058444977, 0.2454252392053604, 0.03087310492992401, 0.02959997020661831, -0.029489222913980484, -0.0009062600438483059, -0.0325603187084198, 0.08747871220111847, -0.018721625208854675, 0.09507355093955994, -0.04142015427350998, 0.034421563148498535, -0.04703126475214958, -0.03579755127429962, -0.08681578934192657, 0.0327485091984272, -0.12032659351825714, -0.05930560827255249, -0.02308426983654499, 0.15625719726085663, -0.10285885632038116, -0.09587772190570831, -0.10948566347360611, -0.06957989931106567, -0.11746719479560852, 0.0019469533581286669, 0.005991966929286718, -0.00043228163849562407, 0.05207151547074318, -0.04214995354413986, 0.03810527175664902, 0.1837235391139984, -0.0015525538474321365, -0.07654527574777603, -0.07674859464168549, 0.035820554941892624, -0.14048367738723755, 0.061983078718185425, 0.015598718076944351, 0.13226567208766937, 0.022749654948711395, 0.01584094762802124, -0.0029336814768612385, 0.07043042778968811, 0.021443642675876617, -0.02057161182165146, 0.031801313161849976, 0.1679791957139969, -0.07388139516115189, 0.05546845868229866, 0.023159563541412354, -0.11055629700422287, 0.06214884668588638, -0.0906018391251564, 0.0393792986869812, -0.06596498191356659, 0.0800371915102005, -0.07298876345157623, 0.08447708189487457, 0.14436213672161102, -0.015285331755876541, -0.04331553354859352, -0.06345441192388535, 0.05408868193626404, 0.01880073919892311, -0.06751634180545807, -0.06593965739011765, -0.20882977545261383, -0.050265271216630936, -0.04052247107028961, 0.0644928440451622, -0.11321645975112915, -0.03750867769122124, 0.022663047537207603, -0.08261265605688095, -0.010561887174844742, 0.11543495208024979, 0.08954673260450363, -0.0013903500512242317, 0.001511529553681612, -0.1223190650343895, 0.07201343774795532, 0.06248946487903595, -0.14003649353981018, -0.12048305571079254 ]
null
null
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
Tr1ex/DialoGPT-small-rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick DialoGPT Model" ]
[ -0.027243174612522125, 0.09208611398935318, -0.005486058536916971, 0.01197603065520525, 0.13312271237373352, -0.0006643096567131579, 0.14875547587871552, 0.13561291992664337, -0.012389403767883778, -0.048079900443553925, 0.13848258554935455, 0.20838283002376556, -0.007769247982650995, 0.06212212145328522, -0.07722679525613785, -0.3253750503063202, 0.05440690368413925, 0.05986349284648895, -0.02559526450932026, 0.11941008269786835, 0.10155656188726425, -0.034638021141290665, 0.07502283155918121, 0.008745936676859856, -0.1460564285516739, 0.011253442615270615, 0.020986590534448624, -0.11265120655298233, 0.11301227658987045, 0.0699501633644104, 0.03311868757009506, 0.044131726026535034, -0.04560676962137222, -0.12763948738574982, 0.04502782225608826, 0.00030866602901369333, -0.04332113638520241, 0.05997459217905998, 0.016281595453619957, -0.09000954777002335, 0.11693226546049118, 0.12603440880775452, -0.01263172086328268, 0.041781701147556305, -0.1548357903957367, -0.004369331523776054, -0.01233562733978033, 0.06789606809616089, 0.06087101250886917, 0.10755407065153122, -0.04065045714378357, 0.11729123443365097, -0.06241777911782265, 0.11526333540678024, 0.1129850223660469, -0.291816771030426, -0.016308816149830818, 0.14326390624046326, 0.043570004403591156, 0.04201141744852066, -0.04241296648979187, 0.09895236790180206, 0.01734745316207409, -0.009189855307340622, -0.04667704179883003, -0.07920589298009872, -0.0809992179274559, 0.022899743169546127, -0.08393258601427078, -0.009693359956145287, 0.24909301102161407, -0.033697742968797684, 0.07867740839719772, -0.07909003645181656, -0.08747624605894089, -0.011933685280382633, -0.03604159876704216, -0.03430533409118652, -0.10349667817354202, 0.07883962988853455, -0.03785189241170883, -0.09532928466796875, -0.11454451829195023, -0.029063701629638672, -0.16551746428012848, 0.1769428551197052, 0.028738701716065407, 0.03337583318352699, -0.22648879885673523, 0.09508261829614639, -0.012410550378262997, -0.09879330545663834, 0.018604513257741928, -0.08811058849096298, 0.012304049916565418, 0.017966609448194504, -0.025972042232751846, -0.002111254259943962, 0.08367783576250076, 0.11593183130025864, 0.01627914048731327, 0.018418017774820328, -0.01303142961114645, 0.05024925619363785, 0.039101485162973404, 0.07016518712043762, -0.018131986260414124, -0.026958800852298737, 0.025394905358552933, -0.09519384801387787, -0.01311302836984396, -0.06533002108335495, -0.19878731667995453, -0.008748088963329792, 0.05362382158637047, 0.059645626693964005, 0.040223345160484314, 0.1349429488182068, 0.005914759822189808, -0.04811347648501396, 0.041568055748939514, -0.017372997477650642, -0.016568226739764214, 0.013325352221727371, 0.004558354616165161, 0.14832930266857147, 0.012210249900817871, 0.05107790604233742, -0.11448643356561661, 0.0074756252579391, -0.04443434625864029, -0.019875049591064453, -0.033431850373744965, -0.05190093815326691, -0.010580608621239662, -0.024629589170217514, 0.015543424524366856, -0.1382266879081726, -0.1671048104763031, -0.0113193579018116, -0.006982414051890373, -0.04376089945435524, -0.11932645738124847, -0.1048901304602623, -0.03145192563533783, 0.04379252344369888, -0.060927584767341614, -0.0003760824038181454, -0.04660411551594734, 0.09378229826688766, -0.03543102741241455, 0.07682112604379654, -0.10023638606071472, 0.0828537717461586, -0.07001189142465591, -0.04422231763601303, -0.0734889879822731, 0.13164658844470978, 0.014363138936460018, 0.05487450957298279, -0.031934577971696854, -0.01827416382730007, -0.10224048048257828, 0.07911752909421921, -0.04339373856782913, 0.23623128235340118, -0.09449771791696548, -0.10362883657217026, 0.26979705691337585, -0.053989510983228683, -0.1375254988670349, 0.10795111209154129, -0.015854641795158386, 0.11475867033004761, 0.12686948478221893, 0.18240338563919067, 0.06434911489486694, 0.007867260836064816, 0.07431085407733917, 0.11333738267421722, -0.0774611383676529, -0.018117602914571762, 0.014873803593218327, -0.020292608067393303, -0.07848027348518372, 0.023533256724476814, 0.07671299576759338, 0.05307117849588394, -0.05429181456565857, -0.015286878682672977, 0.00432937266305089, 0.004517627414315939, 0.05698307976126671, -0.02530503273010254, 0.12313884496688843, -0.029461434110999107, -0.07295558601617813, -0.029503753408789635, 0.027530280873179436, -0.05828499048948288, 0.03278997913002968, -0.08230485767126083, 0.03637091815471649, -0.014406797476112843, 0.07024850696325302, -0.16572508215904236, -0.09323301911354065, -0.05250932276248932, 0.1899155229330063, 0.06807822734117508, 0.11413464695215225, 0.05567482113838196, -0.06841246038675308, -0.0038719952572137117, 0.018287649378180504, 0.1991138458251953, -0.01677977479994297, -0.07748494297266006, -0.09769339859485626, 0.10122697055339813, -0.07130109518766403, 0.06141059845685959, -0.050490207970142365, 0.017946461215615273, 0.020556224510073662, 0.1050461083650589, -0.03456922993063927, 0.039413414895534515, 0.011159577406942844, -0.034563858062028885, -0.06218598783016205, -0.004433273337781429, 0.09716981649398804, 0.0021626276429742575, -0.10631977766752243, 0.24286337196826935, -0.19168923795223236, 0.12176351994276047, 0.17641966044902802, -0.19923987984657288, -0.0002552573860157281, -0.11963175982236862, -0.026344671845436096, 0.011637656949460506, 0.037626978009939194, -0.042151857167482376, 0.24314165115356445, -0.00910688005387783, 0.16631373763084412, -0.03389734402298927, -0.04332707077264786, -0.041059546172618866, -0.046011339873075485, 0.010055569931864738, 0.11430004984140396, 0.1047205775976181, -0.17159950733184814, 0.17967921495437622, 0.05867021903395653, 0.05177219957113266, 0.16841758787631989, 0.018001655116677284, 0.021052619442343712, 0.06948674470186234, -0.003431870136409998, -0.03584783151745796, -0.07413756102323532, -0.2106374204158783, -0.023212855681777, 0.0793403834104538, 0.048357341438531876, 0.1068209707736969, -0.1037900522351265, -0.03368109092116356, -0.010547412559390068, -0.021230356767773628, 0.03035620041191578, 0.14086326956748962, 0.013085569255053997, 0.1286563277244568, -0.024180158972740173, -0.06866493821144104, 0.06965550780296326, 0.014881031587719917, -0.08571527898311615, 0.19352088868618011, -0.10702410340309143, -0.34334462881088257, -0.10363983362913132, -0.18596062064170837, -0.056601256132125854, 0.04553624242544174, 0.11461924016475677, -0.14119702577590942, -0.020731983706355095, 0.006813736632466316, 0.06912991404533386, -0.11165751516819, 0.01017086487263441, -0.03630850836634636, -0.017619650810956955, -0.13406261801719666, -0.1034051924943924, -0.05356309190392494, -0.044913630932569504, -0.05510649085044861, 0.12040390819311142, -0.15435875952243805, 0.020806124433875084, 0.23555229604244232, 0.06075655668973923, 0.07018083333969116, -0.03907359018921852, 0.17685799300670624, -0.1052674949169159, 0.011976814828813076, 0.2128676474094391, -0.03831172361969948, 0.06525631994009018, 0.11611197143793106, -0.01394710224121809, -0.0662488266825676, 0.036592915654182434, -0.009823341853916645, -0.07247381657361984, -0.21345274150371552, -0.1158827692270279, -0.1087421104311943, 0.054685093462467194, 0.04713849350810051, 0.050020426511764526, 0.1613347977399826, 0.07427749037742615, -0.04962149262428284, -0.0022197163198143244, 0.06106492131948471, 0.0832381621003151, 0.2504972517490387, -0.06253999471664429, 0.1427627056837082, -0.025090228766202927, -0.16789253056049347, 0.06259234994649887, 0.0661388710141182, 0.09291604906320572, 0.06118352338671684, 0.10224727541208267, 0.005179570056498051, 0.009344357997179031, 0.12825439870357513, 0.07115643471479416, 0.008030776865780354, -0.03595518320798874, -0.039997417479753494, -0.03642706945538521, -0.013250070624053478, 0.032193150371313095, 0.046790316700935364, -0.16567666828632355, -0.021018991246819496, 0.009807335212826729, 0.05824935808777809, 0.02185324765741825, 0.08615364134311676, -0.18498282134532928, -0.016169089823961258, 0.06576614826917648, -0.011832303367555141, -0.11644340306520462, 0.08480028808116913, 0.0007836486911401153, -0.1121063381433487, 0.03723234683275223, -0.027525627985596657, 0.13150714337825775, -0.08457524329423904, 0.0741792693734169, -0.12022519111633301, -0.0374552421271801, -0.010245736688375473, 0.12193918228149414, -0.29501426219940186, 0.19123348593711853, -0.009575535543262959, -0.04439779743552208, -0.1071409061551094, -0.015645509585738182, 0.02963484264910221, 0.10361164063215256, 0.11110331863164902, -0.020523378625512123, -0.02764100395143032, 0.06007368490099907, -0.07205203175544739, 0.0399978905916214, 0.09906689822673798, -0.06730470806360245, -0.013155711814761162, -0.052545808255672455, 0.00039069546619430184, 0.010376452468335629, -0.10966821759939194, 0.022783124819397926, -0.19194799661636353, 0.08703918755054474, 0.08162695169448853, 0.09630028903484344, 0.037212129682302475, -0.029887177050113678, -0.07769683748483658, 0.2589099109172821, 0.009560960344970226, -0.10013746470212936, -0.10953836888074875, 0.008171502500772476, 0.04785030707716942, -0.07699282467365265, -0.016966527327895164, -0.0694924145936966, 0.04450516775250435, -0.06552471220493317, -0.18611730635166168, 0.11722762882709503, -0.09691806137561798, -0.03250948712229729, -0.036249466240406036, 0.21333028376102448, -0.03155504912137985, 0.017869247123599052, 0.04537748545408249, -0.00578570831567049, -0.11741422116756439, -0.10654788464307785, 0.0012778750387951732, -0.004119161982089281, 0.016931969672441483, 0.023226622492074966, -0.03199922665953636, -0.009455137886106968, -0.06797713041305542, -0.014383019879460335, 0.3228513300418854, 0.12615877389907837, -0.042267147451639175, 0.15242800116539001, 0.09877358376979828, -0.06251336634159088, -0.2941497564315796, -0.11165541410446167, -0.07421603053808212, -0.05438753217458725, -0.09733224660158157, -0.18137554824352264, 0.08739634603261948, -0.05383281409740448, -0.013516134582459927, 0.09413999319076538, -0.25194358825683594, -0.10185287892818451, 0.2005643993616104, -0.03753361105918884, 0.4304826855659485, -0.11250142753124237, -0.07815388590097427, -0.04850279167294502, -0.14005880057811737, 0.19035954773426056, 0.004324326757341623, 0.10461755096912384, -0.0006430890643969178, 0.19764995574951172, 0.05591731518507004, -0.0006032987730577588, 0.07056128233671188, 0.01866593211889267, -0.057801030576229095, -0.09095179289579391, -0.0913778692483902, -0.0337459035217762, 0.010270410217344761, 0.0292131919413805, -0.07448325306177139, 0.04388400912284851, -0.13094636797904968, -0.05198022723197937, -0.08626694977283478, 0.038746368139982224, 0.027130719274282455, -0.06653520464897156, -0.0030553280375897884, -0.04914497584104538, 0.0004573945188894868, 0.007742773275822401, 0.21047258377075195, -0.10902713984251022, 0.1467881053686142, 0.028732312843203545, 0.1500566452741623, -0.09794784337282181, -0.04768699035048485, -0.06421241164207458, -0.05478411167860031, 0.07145597785711288, -0.12202182412147522, 0.03240978345274925, 0.1044924184679985, -0.026888413354754448, 0.08732181787490845, 0.1105954647064209, -0.010995322838425636, 0.005803761538118124, 0.08983830362558365, -0.241703063249588, -0.06713853776454926, -0.08410414308309555, 0.05373041704297066, 0.05893997475504875, 0.10275863856077194, 0.20927143096923828, 0.007167487405240536, -0.031165437772870064, 0.021489497274160385, 0.027375908568501472, -0.017840299755334854, 0.05977841466665268, 0.010519524104893208, 0.030491052195429802, -0.14741286635398865, 0.043485816568136215, -0.013757874257862568, -0.09077676385641098, 0.02600322663784027, 0.14754873514175415, -0.10901660472154617, -0.12182232737541199, -0.03921690955758095, 0.13600249588489532, -0.14775370061397552, -0.009947444312274456, -0.0477454848587513, -0.12692049145698547, 0.06857728958129883, 0.1067143976688385, 0.0457911379635334, 0.04121949151158333, -0.09239879250526428, -0.027268609032034874, -0.0535728819668293, 0.00003198942795279436, 0.028995376080274582, -0.0204177163541317, -0.05248761177062988, 0.040780652314424515, -0.03588524088263512, 0.12051229178905487, -0.08552545309066772, -0.10064204037189484, -0.16698434948921204, 0.03528384119272232, -0.07174701243638992, -0.08977310359477997, -0.0871967226266861, -0.03724304214119911, 0.006766482722014189, -0.0405125692486763, -0.02825779654085636, -0.03461418300867081, -0.1126255914568901, 0.03079685941338539, -0.04579872637987137, 0.003088617930188775, -0.07116411626338959, 0.029772473499178886, 0.0525958277285099, -0.029091687873005867, 0.149556964635849, 0.14025014638900757, -0.11192594468593597, 0.09547203034162521, -0.1507159322500229, -0.07066365331411362, 0.09605675935745239, 0.018403515219688416, 0.04981891065835953, 0.05175008252263069, 0.009065150283277035, 0.051755502820014954, 0.06169715151190758, 0.04307684674859047, 0.0153890922665596, -0.07590135186910629, 0.06697173416614532, -0.06090308725833893, -0.10307016223669052, -0.05066140368580818, -0.003966273739933968, 0.015159476548433304, 0.07283487915992737, 0.10097057372331619, -0.056661296635866165, 0.09506311267614365, -0.05649305135011673, 0.04625694453716278, 0.024318000301718712, -0.17797043919563293, 0.03397766128182411, -0.08718447387218475, 0.05030312016606331, 0.010050542652606964, 0.1727033108472824, 0.02054430916905403, -0.019508427008986473, 0.02473587542772293, 0.0719463899731636, 0.04261681064963341, -0.013226886279881, 0.19012948870658875, 0.10657399147748947, -0.03943915665149689, -0.0805516242980957, 0.09759991616010666, 0.04438556358218193, 0.04173632711172104, 0.14543114602565765, -0.05563090741634369, -0.03441290557384491, 0.081944540143013, -0.0026839920319616795, 0.010976077988743782, -0.09896437078714371, -0.13543705642223358, -0.026787811890244484, 0.036508288234472275, -0.03667739778757095, 0.10571453720331192, 0.15851758420467377, -0.005720720160752535, 0.01726081222295761, -0.01855739764869213, -0.05729815363883972, -0.1993623524904251, -0.19528920948505402, -0.083323635160923, -0.13647840917110443, 0.0050200955010950565, -0.13574683666229248, 0.04266147315502167, 0.026296362280845642, 0.09698255360126495, -0.04634363576769829, 0.050944969058036804, 0.03791060671210289, -0.11099781841039658, 0.058360110968351364, -0.043620482087135315, 0.09173028916120529, -0.03267880156636238, 0.014702340587973595, -0.060175783932209015, 0.035412851721048355, 0.016039982438087463, 0.041373249143362045, -0.02921622060239315, 0.019025372341275215, -0.12458328902721405, -0.08709227293729782, -0.06697598844766617, 0.06596853584051132, 0.006195025984197855, 0.16954803466796875, 0.019531596451997757, -0.027915386483073235, 0.028833186253905296, 0.23899038136005402, -0.07318265736103058, -0.09635625779628754, -0.06982157379388809, 0.21012257039546967, -0.009315763600170612, 0.08784335851669312, -0.03747710958123207, 0.009438461624085903, -0.08562079071998596, 0.3506644368171692, 0.29213622212409973, -0.09391074627637863, 0.010968702845275402, -0.0027621579356491566, 0.04181644320487976, 0.12788556516170502, 0.09239348024129868, 0.10824161767959595, 0.29070642590522766, -0.06708572804927826, -0.03647898510098457, -0.006994254421442747, -0.0254643727093935, -0.055716969072818756, 0.0551714263856411, 0.05315792188048363, -0.06511329114437103, -0.01592782698571682, 0.11738577485084534, -0.2489209920167923, 0.0614120177924633, -0.15840938687324524, -0.16190756857395172, -0.07126864790916443, -0.0001230158086400479, 0.0958227664232254, 0.01604771800339222, 0.09578458964824677, -0.011418631300330162, -0.06834693253040314, 0.04414822906255722, 0.020037546753883362, -0.20774760842323303, 0.009963343851268291, 0.06968449801206589, -0.051950447261333466, -0.05526239052414894, -0.017540784552693367, 0.07181108742952347, 0.0862373560667038, 0.031932324171066284, -0.021655123680830002, 0.04088883846998215, -0.011214682832360268, -0.07533704489469528, 0.03916772082448006, 0.027806051075458527, 0.005651058629155159, -0.08518505096435547, 0.07656224071979523, -0.16369622945785522, 0.03412613272666931, -0.0035786160733550787, -0.048953261226415634, -0.014727948233485222, 0.030175231397151947, -0.061420172452926636, 0.08509553223848343, 0.0839199498295784, -0.0171944722533226, -0.016525855287909508, -0.0222842525690794, -0.012990890070796013, -0.020874707028269768, -0.0818524956703186, -0.09698375314474106, -0.15574125945568085, -0.1261346936225891, 0.08575325459241867, -0.00355695397593081, -0.19997835159301758, 0.028783639892935753, -0.12125882506370544, 0.04249454662203789, -0.12142720073461533, 0.09701541811227798, 0.0825105607509613, 0.02303435280919075, -0.0030652873683720827, 0.006164520047605038, 0.03737448528409004, 0.07968182861804962, -0.13731823861598969, -0.08554888516664505 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3 hello hello
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "dgpt", "results": []}]}
text-generation
TrLOX/gpt2-tdk
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# dgpt This model is a fine-tuned version of distilgpt2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3 hello hello
[ "# dgpt\n\nThis model is a fine-tuned version of distilgpt2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- num_devices: 8\n- total_train_batch_size: 16\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.14.0.dev0\n- Pytorch 1.9.0+cu102\n- Datasets 1.16.2.dev0\n- Tokenizers 0.10.3\nhello\nhello" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# dgpt\n\nThis model is a fine-tuned version of distilgpt2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- num_devices: 8\n- total_train_batch_size: 16\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.14.0.dev0\n- Pytorch 1.9.0+cu102\n- Datasets 1.16.2.dev0\n- Tokenizers 0.10.3\nhello\nhello" ]
[ 66, 27, 6, 12, 8, 3, 130, 4, 44 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# dgpt\n\nThis model is a fine-tuned version of distilgpt2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- num_devices: 8\n- total_train_batch_size: 16\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.14.0.dev0\n- Pytorch 1.9.0+cu102\n- Datasets 1.16.2.dev0\n- Tokenizers 0.10.3\nhello\nhello" ]
[ -0.07893774658441544, 0.11116617918014526, -0.0029727458022534847, 0.08629346638917923, 0.15579764544963837, 0.045466549694538116, 0.09758417308330536, 0.13499656319618225, -0.12469622492790222, 0.07535821199417114, 0.08140837401151657, 0.06332312524318695, 0.054356761276721954, 0.10647350549697876, -0.025295879691839218, -0.2276889681816101, 0.009877192787826061, 0.0016914563020691276, -0.07282745838165283, 0.09056389331817627, 0.10180198401212692, -0.10428889840841293, 0.07161878049373627, 0.0078036971390247345, -0.17321209609508514, -0.0047913808375597, -0.02626267448067665, -0.04939235374331474, 0.10011141747236252, 0.01598275452852249, 0.0973576009273529, -0.018788998946547508, 0.11756227910518646, -0.16392754018306732, -0.011516524478793144, 0.10427234321832657, 0.03788547217845917, 0.0727144107222557, 0.045835405588150024, 0.051769111305475235, 0.1049913614988327, -0.14620065689086914, 0.09206213802099228, -0.0023982012644410133, -0.09270273149013519, -0.19003988802433014, -0.08708833158016205, 0.014965255744755268, 0.0719958245754242, 0.11235635727643967, 0.008197263814508915, 0.1355263888835907, -0.04988551139831543, 0.06066790223121643, 0.136570006608963, -0.24226343631744385, -0.06371227651834488, 0.07818254828453064, 0.04692249745130539, 0.07289677113294601, -0.06767375022172928, -0.025446200743317604, 0.022471792995929718, 0.073225237429142, 0.10392198711633682, -0.014193628914654255, -0.04127252846956253, -0.016054626554250717, -0.11784640699625015, -0.03901194408535957, 0.15086975693702698, 0.01832522079348564, -0.03281744197010994, -0.09833018481731415, -0.08436568081378937, -0.09580954909324646, -0.017801055684685707, -0.04603643715381622, 0.03318781033158302, -0.003732843790203333, -0.030715296044945717, -0.04986501485109329, -0.07104513049125671, -0.05541839078068733, -0.027988770976662636, 0.10879728198051453, 0.030465636402368546, 0.019548241049051285, -0.03887348622083664, 0.0980881005525589, -0.04746626690030098, -0.13531316816806793, -0.004462997894734144, -0.00844072736799717, -0.04799547791481018, -0.05226964130997658, -0.06195865198969841, -0.09168718755245209, 0.010316523723304272, 0.11374642699956894, -0.08582230657339096, 0.07158074527978897, -0.0028356537222862244, -0.013323468156158924, -0.03521009907126427, 0.16552893817424774, -0.05852051451802254, -0.055926449596881866, 0.026389937847852707, 0.10195861011743546, 0.040948137640953064, -0.01129953097552061, -0.09300704300403595, -0.034750889986753464, 0.09704305976629257, 0.016780974343419075, -0.023925306275486946, 0.04545104131102562, -0.04347441717982292, -0.032967709004879, 0.08473063260316849, -0.11449696123600006, 0.03308689594268799, -0.022146563977003098, -0.06423072516918182, -0.03190352022647858, 0.014425146393477917, -0.0006039945292286575, -0.04890352860093117, 0.1099216639995575, -0.07353951781988144, -0.014927002601325512, -0.09648095816373825, -0.09263414889574051, 0.003759522922337055, -0.011696970090270042, -0.0038828798569738865, -0.07874663174152374, -0.19024132192134857, -0.03238759562373161, 0.05290631204843521, -0.062188152223825455, -0.05172678828239441, -0.007943825796246529, -0.07502247393131256, 0.03129822760820389, -0.005552183371037245, 0.1422407180070877, -0.054018814116716385, 0.07076167315244675, 0.0162658654153347, 0.022491389885544777, -0.017353344708681107, 0.0439116433262825, -0.06801220774650574, 0.03348643332719803, -0.15266434848308563, 0.094316765666008, -0.04871856048703194, 0.020253727212548256, -0.11302319169044495, -0.11141122132539749, -0.009472059085965157, -0.03321150690317154, 0.0932210385799408, 0.10217003524303436, -0.18565063178539276, -0.006423262879252434, 0.14059264957904816, -0.06288719922304153, -0.0757775828242302, 0.09745374321937561, -0.04081015661358833, -0.0025168946012854576, 0.058592766523361206, 0.12518280744552612, 0.10946505516767502, -0.10890354216098785, -0.008964273147284985, 0.016226960346102715, 0.056637655943632126, 0.0149756520986557, 0.0526745580136776, -0.00774097116664052, 0.07025884091854095, 0.009710486978292465, -0.049751412123441696, 0.010479426942765713, -0.05493626371026039, -0.07164504379034042, -0.06990720331668854, -0.07290846109390259, 0.010941985063254833, 0.029032478109002113, 0.03741409629583359, -0.06693378835916519, -0.11506056040525436, 0.10656359046697617, 0.12009068578481674, -0.05442933365702629, 0.020423514768481255, -0.07772130519151688, 0.05169012024998665, -0.05784952640533447, 0.0025190061423927546, -0.21943259239196777, -0.08409562706947327, 0.045802727341651917, -0.030337315052747726, 0.008356951177120209, 0.027574194595217705, 0.07249408960342407, 0.0693766325712204, -0.050279367715120316, -0.014519557356834412, -0.08265259861946106, -0.005536309443414211, -0.095234714448452, -0.14687857031822205, -0.02300061099231243, -0.032778605818748474, 0.12456604838371277, -0.18748432397842407, 0.002744447672739625, 0.021214723587036133, 0.1276317983865738, 0.019372951239347458, -0.05017353966832161, -0.02988368831574917, 0.047204386442899704, -0.015406192280352116, -0.11793436855077744, 0.03497312217950821, 0.020280782133340836, -0.08309759199619293, -0.06012193113565445, -0.14279566705226898, 0.049425918608903885, 0.10750547051429749, 0.030874911695718765, -0.07629523426294327, 0.013903477229177952, -0.045366961508989334, -0.03892889246344566, -0.041338950395584106, -0.025208210572600365, 0.19788753986358643, 0.014511840417981148, 0.1241648942232132, -0.058198221027851105, -0.052939385175704956, 0.009370286017656326, 0.03812234476208687, 0.0007120922673493624, 0.03635164350271225, 0.0392734669148922, -0.10382632166147232, 0.08683910965919495, 0.1024196445941925, -0.057458359748125076, 0.10451271384954453, -0.05674620345234871, -0.06931207329034805, -0.03151898831129074, 0.009871353395283222, 0.004106428939849138, 0.08333877474069595, -0.09511110186576843, 0.020258663222193718, 0.03845532611012459, 0.04648378863930702, 0.023156579583883286, -0.1739402711391449, 0.004337775986641645, 0.032749664038419724, -0.0387016236782074, 0.004963546525686979, -0.00281877932138741, 0.012494849972426891, 0.07851351052522659, 0.039286039769649506, -0.0009895265102386475, 0.029262538999319077, -0.013928894884884357, -0.05010757967829704, 0.16364142298698425, -0.14092151820659637, -0.144162118434906, -0.09920041263103485, 0.01876675710082054, -0.05769697204232216, 0.009282433427870274, 0.01600627973675728, -0.0778321847319603, -0.06945401430130005, -0.0757039338350296, -0.014960329979658127, -0.04862973093986511, 0.0027516609989106655, 0.05465460568666458, -0.01823248527944088, 0.09758869558572769, -0.1395387053489685, -0.0062616136856377125, 0.015979532152414322, -0.06524888426065445, 0.016927964985370636, 0.07475066930055618, 0.0679377093911171, 0.11012636870145798, -0.01755065657198429, -0.003367820056155324, -0.0044661895371973515, 0.278629332780838, -0.08620385080575943, 0.00608579209074378, 0.15059907734394073, 0.019006473943591118, 0.0706370547413826, 0.12056280672550201, 0.03170335665345192, -0.10648497194051743, 0.023987015709280968, 0.04119548201560974, -0.020617540925741196, -0.21583637595176697, -0.042428888380527496, -0.057374466210603714, -0.09493105858564377, 0.10043271631002426, 0.04169083759188652, -0.01812959648668766, 0.050631411373615265, -0.008471565321087837, 0.12481632083654404, -0.02031383104622364, 0.08507095277309418, 0.1606997400522232, 0.057200223207473755, 0.09926456958055496, -0.022561145946383476, -0.027640877291560173, 0.07106596231460571, -0.006356274709105492, 0.2252715528011322, -0.05673656612634659, 0.11171261966228485, 0.01362117100507021, 0.10705696791410446, -0.03905722498893738, 0.04374920576810837, -0.012343340553343296, 0.0118350088596344, -0.014593628235161304, -0.061016909778118134, -0.047869764268398285, 0.01621284708380699, -0.034851204603910446, 0.01848561502993107, -0.04424199461936951, 0.04273933172225952, 0.027271348983049393, 0.2367081195116043, 0.03609122335910797, -0.30420351028442383, -0.0804334282875061, 0.012299416586756706, 0.00018828325846698135, -0.08734488487243652, -0.00896966177970171, 0.13043513894081116, -0.09465764462947845, 0.0628233477473259, -0.07195895910263062, 0.07942302525043488, -0.048078712075948715, 0.025459695607423782, 0.10167060792446136, 0.14895384013652802, 0.012357616797089577, 0.06742021441459656, -0.24976111948490143, 0.14481301605701447, 0.0322423093020916, 0.1181463673710823, -0.07500343024730682, 0.06581525504589081, 0.006842487491667271, 0.08121854811906815, 0.04785662516951561, 0.009845171123743057, -0.02338368073105812, -0.1100359559059143, -0.06772927194833755, 0.030815787613391876, 0.09454717487096786, 0.00014037167420610785, 0.07086759060621262, -0.05294054374098778, 0.0161479152739048, 0.061520643532276154, -0.036118362098932266, -0.12275658547878265, -0.12668389081954956, 0.04248974844813347, 0.01213914155960083, -0.028717340901494026, -0.07504159212112427, -0.07033738493919373, -0.03895675018429756, 0.16565237939357758, 0.054895613342523575, -0.06309065967798233, -0.12647612392902374, 0.07219374924898148, 0.13089658319950104, -0.052108284085989, 0.03709202632308006, 0.005111709237098694, 0.09986171871423721, 0.04443449527025223, -0.07797037065029144, 0.06051493063569069, -0.055129121989011765, -0.16229347884655, -0.05932839959859848, 0.09283164888620377, 0.009017836302518845, 0.03651482239365578, -0.008565092459321022, 0.034321654587984085, -0.019816730171442032, -0.09986613690853119, 0.00343489833176136, 0.06205342337489128, 0.1255611926317215, 0.024797236546874046, -0.03491561487317085, 0.033456552773714066, -0.0057901544496417046, -0.007642220705747604, 0.09920349717140198, 0.202384352684021, -0.06704022735357285, 0.035840947180986404, 0.03187891095876694, -0.05588877201080322, -0.17009757459163666, 0.044579993933439255, 0.10646600276231766, 0.014952759258449078, 0.03475816547870636, -0.18459677696228027, 0.09027473628520966, 0.09371064603328705, -0.015846088528633118, 0.0965978279709816, -0.33320802450180054, -0.13776914775371552, 0.026948008686304092, 0.11200067400932312, 0.04548518732190132, -0.14162051677703857, -0.03959297761321068, -0.053993720561265945, -0.16095976531505585, 0.1052459105849266, -0.08371269702911377, 0.10325848311185837, -0.013828033581376076, 0.10117705166339874, 0.029729042202234268, -0.050582654774188995, 0.15586000680923462, -0.0029169456101953983, 0.07922670245170593, -0.07748285681009293, 0.04952004924416542, 0.11175522208213806, -0.061863914132118225, 0.023323919624090195, -0.06001266837120056, 0.07526633143424988, -0.11973899602890015, -0.0132726626470685, -0.06285693496465683, 0.027706990018486977, -0.04280935227870941, -0.08101017028093338, -0.04349128529429436, 0.03874111548066139, 0.0751040130853653, -0.047615665942430496, 0.06383701413869858, 0.04798802733421326, 0.06168990954756737, 0.09053297340869904, 0.06614117324352264, -0.011364644393324852, -0.08452852070331573, 0.02368239499628544, 0.002119459444656968, 0.06714694201946259, -0.15646770596504211, 0.03074479103088379, 0.11755931377410889, 0.01474122516810894, 0.12360737472772598, 0.04453947767615318, -0.05436084419488907, 0.0012255060719326138, 0.04555230215191841, -0.12203212827444077, -0.1605226844549179, 0.005107693374156952, -0.031406793743371964, -0.11453373730182648, -0.0064977495931088924, 0.11550022661685944, -0.04307050630450249, -0.004711886402219534, 0.005344302859157324, 0.015417234972119331, -0.042762480676174164, 0.1939191073179245, 0.0050733271054923534, 0.042743146419525146, -0.08672744035720825, 0.10135176032781601, 0.08677820861339569, -0.06678839772939682, 0.03692585229873657, 0.041619524359703064, -0.10127053409814835, -0.01436531636863947, 0.07587920874357224, 0.11380745470523834, 0.011038786731660366, -0.020538436248898506, -0.0627455860376358, -0.08593537658452988, 0.0464802049100399, -0.003032744163647294, 0.04712140932679176, 0.004921789281070232, -0.057291168719530106, 0.03098519705235958, -0.1323501616716385, 0.08834127336740494, 0.025741182267665863, 0.0859147384762764, -0.14457520842552185, 0.11038310825824738, -0.013072137720882893, 0.01273315493017435, -0.012014192529022694, 0.04239386320114136, -0.07240574061870575, -0.031061742454767227, -0.17194856703281403, -0.004421316087245941, -0.019385378807783127, 0.007074122317135334, -0.019819989800453186, -0.03167908638715744, -0.038192544132471085, 0.04161443933844566, -0.05579996481537819, -0.08373676240444183, -0.005530137103050947, 0.031012579798698425, -0.11417961865663528, -0.02369524911046028, -0.00375561835244298, -0.09910948574542999, 0.08431761711835861, 0.04665568470954895, 0.020773854106664658, 0.019730539992451668, -0.04457322508096695, -0.009403479285538197, 0.05188724771142006, 0.04964975267648697, 0.06770934164524078, -0.07421962916851044, -0.010061018168926239, -0.014425932429730892, 0.02179275080561638, 0.006520672235637903, 0.08446621149778366, -0.12211599200963974, -0.005471889860928059, -0.052387069910764694, -0.0422775074839592, -0.05874846503138542, 0.03960274159908295, 0.12140460312366486, 0.05021104961633682, 0.17882563173770905, -0.06360849738121033, 0.020010482519865036, -0.19748122990131378, -0.04129376262426376, 0.004898630082607269, -0.042418528348207474, -0.05243775621056557, -0.030404528602957726, 0.08637861162424088, -0.06219259649515152, 0.11301464587450027, -0.004696452524513006, 0.08216258883476257, 0.03772829473018646, -0.010324908420443535, -0.03635314479470253, 0.001460217754356563, 0.1794409602880478, 0.05410335212945938, -0.02922891452908516, 0.0652233213186264, -0.0052248891443014145, 0.09040430933237076, 0.09989966452121735, 0.14094562828540802, 0.1349611133337021, 0.015450549311935902, 0.05576862394809723, 0.03162037208676338, -0.09601588547229767, -0.1968688666820526, 0.08987335115671158, -0.0477445088326931, 0.13430388271808624, -0.05517977103590965, 0.14823442697525024, 0.04999418184161186, -0.1680167317390442, 0.050544969737529755, -0.08688005805015564, -0.10449013859033585, -0.0810137540102005, -0.043796356767416, -0.06900288909673691, -0.11843127012252808, 0.004688882268965244, -0.11765611916780472, 0.06006908789277077, 0.07538419961929321, -0.003547776723280549, -0.015848271548748016, 0.1553417444229126, -0.009313138201832771, -0.008563759736716747, 0.037964530289173126, 0.01869829371571541, -0.005533917341381311, -0.0066602714359760284, -0.07803547382354736, 0.01221153512597084, 0.03164798766374588, 0.0941224917769432, -0.029244232922792435, -0.010210951790213585, 0.025867845863103867, -0.005888018757104874, -0.054476723074913025, 0.022033769637346268, 0.03257453069090843, 0.00868944451212883, 0.07021898031234741, 0.03773602470755577, 0.011449172161519527, -0.030399244278669357, 0.24992085993289948, -0.07291048020124435, -0.11700155586004257, -0.12622128427028656, 0.16221964359283447, 0.03349227085709572, -0.011295775882899761, 0.07016140967607498, -0.11106971651315689, -0.026901697739958763, 0.12926889955997467, 0.14720265567302704, -0.11043272167444229, -0.027577713131904602, 0.010868512094020844, -0.022258024662733078, -0.0692780613899231, 0.13548386096954346, 0.11063935607671738, 0.004411539528518915, -0.034125421196222305, 0.014686467126011848, -0.03050593100488186, -0.010260206647217274, -0.06950981169939041, 0.049512650817632675, 0.005469415336847305, 0.007203234825283289, -0.011673355475068092, 0.03765755146741867, 0.016959847882390022, -0.1771402209997177, 0.04283991456031799, -0.1633845865726471, -0.17845991253852844, -0.0007888724794611335, 0.05943122133612633, -0.04058026522397995, 0.06515742093324661, -0.01472434401512146, 0.007071124389767647, 0.11332813650369644, -0.03983575105667114, -0.02477610483765602, -0.06537363678216934, 0.09115071594715118, -0.06498724222183228, 0.19316542148590088, 0.0034374049864709377, 0.07256212830543518, 0.11261268705129623, 0.04726387932896614, -0.13647262752056122, 0.05239487066864967, 0.06329213827848434, -0.07025415450334549, 0.020142793655395508, 0.12586745619773865, -0.05749285966157913, 0.03410371020436287, 0.04726005718111992, -0.09157291054725647, -0.02997986599802971, 0.008581369183957577, 0.0032700062729418278, -0.0828714370727539, -0.047135669738054276, -0.084306500852108, 0.1619909703731537, 0.20777347683906555, -0.0150651466101408, 0.01810774765908718, -0.07389287650585175, 0.02066071331501007, 0.03861740976572037, 0.12424903362989426, -0.07155942171812057, -0.206519216299057, 0.012891861610114574, 0.08457321673631668, 0.0322817862033844, -0.18607793748378754, -0.0902787446975708, 0.048617392778396606, -0.054177168756723404, -0.060797933489084244, 0.12084639817476273, 0.019118543714284897, 0.019978277385234833, -0.04402836784720421, -0.08370441943407059, -0.07940327376127243, 0.1408241093158722, -0.14441223442554474, -0.06421764940023422 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-de_en-pharmaceutical-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "de-en", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-de_en-pharmaceutical-smt
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de-en" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_cs-it-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-cs", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_cs-it-smt
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-cs" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_de-it-nmt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_de-it-nmt
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
null
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_de-it-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
null
TransQuest/microtransquest-en_de-it-smt
[ "Quality Estimation", "microtransquest", "license:apache-2.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #Quality Estimation #microtransquest #license-apache-2.0 #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#Quality Estimation #microtransquest #license-apache-2.0 #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 24, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#Quality Estimation #microtransquest #license-apache-2.0 #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.053585682064294815, -0.013290682807564735, -0.003362118499353528, 0.016157910227775574, 0.04446917027235031, -0.013592205010354519, 0.00417574867606163, 0.06407417356967926, -0.007083193399012089, 0.06065851449966431, -0.055443137884140015, -0.061803724616765976, 0.09261494129896164, 0.08629565685987473, 0.04919089749455452, -0.13037706911563873, -0.017208604142069817, -0.11081165075302124, -0.0524960495531559, 0.08138244599103928, 0.08967456221580505, -0.020520061254501343, 0.08854342997074127, 0.0733276754617691, 0.0072595770470798016, 0.02007170021533966, -0.00568180438131094, -0.08848555386066437, 0.10364463180303574, 0.15382696688175201, 0.02749934047460556, 0.030846651643514633, -0.012861045077443123, -0.1993335336446762, 0.005741363391280174, 0.05209913104772568, -0.016771143302321434, -0.01445327140390873, 0.13245835900306702, -0.04874492064118385, 0.0194528978317976, 0.034840647131204605, 0.006673305761069059, 0.0618693009018898, -0.022847702726721764, -0.03781473636627197, -0.05994291976094246, -0.1018894836306572, 0.059294167906045914, 0.05689617991447449, -0.03800837695598602, 0.13955265283584595, -0.07539834082126617, 0.016773026436567307, -0.03127599135041237, -0.2486162781715393, -0.0009262178791686893, -0.06955958157777786, 0.013546540401875973, 0.16380546987056732, -0.0006854875246062875, -0.0005130770732648671, 0.0693504810333252, 0.01864701882004738, -0.013908217661082745, -0.016555719077587128, 0.06652024388313293, -0.03344939649105072, -0.1538507640361786, 0.011020704172551632, 0.146821066737175, -0.013287386856973171, -0.13932117819786072, -0.14725899696350098, 0.01369089912623167, 0.111854188144207, 0.0882904902100563, -0.05744192376732826, 0.033303916454315186, 0.015154421329498291, 0.05210477113723755, -0.013346814550459385, -0.13512888550758362, -0.08272022008895874, -0.10218890011310577, 0.16522765159606934, 0.07236046344041824, 0.039394862949848175, -0.09430509060621262, 0.14854267239570618, -0.11291000992059708, -0.03605777025222778, -0.10831323266029358, -0.08775482326745987, -0.07827062904834747, 0.011952738277614117, -0.026608915999531746, -0.15912385284900665, -0.012083017267286777, 0.05313078314065933, -0.08895418047904968, 0.04790177196264267, -0.05157575011253357, 0.040544960647821426, 0.15679241716861725, 0.1648922860622406, 0.042704030871391296, -0.0631832480430603, -0.015030898153781891, -0.0806964635848999, 0.019998472183942795, 0.016647420823574066, -0.021752620115876198, -0.029287099838256836, -0.058489251881837845, 0.08349119126796722, -0.0035383955109864473, -0.0754459947347641, -0.020991964265704155, -0.03227682411670685, 0.22708389163017273, -0.10198178142309189, -0.07538565248250961, -0.005065920762717724, -0.04705874249339104, 0.07245998829603195, 0.006335384678095579, -0.00900261104106903, -0.09091107547283173, -0.0307125486433506, -0.027413781732320786, -0.023151814937591553, -0.039323609322309494, -0.12135624140501022, 0.008013643324375153, 0.027941159904003143, 0.00892013031989336, -0.15927962958812714, -0.013972004875540733, -0.10789892822504044, -0.0029487404972314835, -0.09427454322576523, -0.0004985288251191378, -0.018453292548656464, 0.05544697865843773, -0.012587491422891617, -0.00617512920871377, -0.0100637786090374, -0.04651636630296707, 0.037895988672971725, 0.0004203859716653824, 0.035421691834926605, 0.013762381859123707, 0.015130946412682533, -0.08216896653175354, -0.0007970192818902433, -0.07071133702993393, 0.19582052528858185, -0.06483223289251328, -0.03697305545210838, -0.0787675529718399, -0.03134581074118614, -0.03376827389001846, 0.08453422039747238, -0.008227609097957611, 0.13016116619110107, -0.25424525141716003, -0.03459767997264862, 0.2325102984905243, -0.1511257141828537, -0.07458674907684326, 0.10633782297372818, -0.034861817955970764, 0.19448713958263397, 0.12884539365768433, 0.045144036412239075, 0.1753903180360794, -0.07286775857210159, -0.0332808643579483, 0.007337902672588825, -0.042924948036670685, 0.1012112945318222, 0.1012185662984848, -0.012594877742230892, 0.04374691843986511, 0.0065176887437701225, -0.06038903445005417, 0.015199904330074787, 0.010009007528424263, -0.03318243846297264, 0.027191216126084328, -0.026046453043818474, -0.040788955986499786, -0.10965361446142197, 0.062191106379032135, -0.03550940006971359, -0.11320618540048599, -0.0726209208369255, 0.04815998673439026, -0.026046352460980415, 0.04483938217163086, -0.09149616211652756, -0.033248722553253174, -0.0020632613450288773, 0.006416557356715202, -0.1661125272512436, 0.03894173726439476, 0.07873901724815369, -0.1304434835910797, 0.12772606313228607, 0.028239436447620392, -0.007609321270138025, 0.02841934561729431, 0.03292607143521309, 0.01770809292793274, -0.01719680428504944, -0.0660369023680687, -0.06554379314184189, -0.06843579560518265, 0.08123670518398285, -0.06865153461694717, -0.060012273490428925, -0.031544074416160583, -0.03550193831324577, 0.07778254896402359, -0.0370539091527462, 0.058363836258649826, 0.01565087027847767, -0.004063562024384737, 0.017923207953572273, -0.010495508089661598, 0.007665692828595638, -0.041546061635017395, -0.001183204003609717, -0.11430042237043381, 0.19922581315040588, -0.11172117292881012, -0.10951074212789536, 0.022930730134248734, 0.040596336126327515, -0.08527549356222153, -0.13437405228614807, 0.013704300858080387, -0.007582631893455982, -0.07216459512710571, -0.06766951084136963, 0.2260059416294098, 0.016774585470557213, 0.03456370532512665, -0.153076633810997, -0.09197009354829788, -0.006794075481593609, -0.009598048403859138, 0.006723289843648672, 0.08518768846988678, -0.02225089818239212, -0.16192381083965302, -0.009539376012980938, 0.10878118127584457, 0.017465200275182724, 0.14728623628616333, 0.008568897843360901, -0.12625674903392792, 0.01009417325258255, 0.054399196058511734, -0.021316813305020332, 0.018212132155895233, 0.042388562113046646, -0.011485626921057701, 0.023395001888275146, 0.09873156249523163, 0.058292195200920105, -0.07787401974201202, 0.062015727162361145, 0.06948255002498627, -0.0036151905078440905, -0.1331823617219925, 0.008849019184708595, -0.03404475748538971, 0.07738006114959717, 0.03582901135087013, 0.14482250809669495, -0.0334663912653923, -0.09678801894187927, -0.12075863778591156, 0.1513734608888626, -0.11306414753198624, -0.24184998869895935, -0.19006352126598358, 0.07802356779575348, 0.034485332667827606, -0.029456185176968575, 0.09367361664772034, -0.14624013006687164, -0.07780652493238449, -0.06973665207624435, 0.08620348572731018, -0.048383310437202454, -0.0938221737742424, -0.1247086226940155, 0.03897200524806976, -0.06528041511774063, -0.11487233638763428, 0.034489408135414124, -0.01325816661119461, -0.06160297617316246, 0.04068318009376526, 0.0030991339590400457, 0.021336378529667854, 0.06486228108406067, 0.028538305312395096, -0.0565335750579834, -0.06381746381521225, 0.2901342809200287, -0.09346771240234375, 0.040929343551397324, 0.1664706915616989, -0.06685274839401245, 0.042588792741298676, 0.04324668273329735, -0.00616920692846179, -0.0719575509428978, 0.07457756996154785, 0.006477946415543556, -0.07276542484760284, -0.2768181264400482, -0.0419117696583271, 0.01678597182035446, -0.05231538787484169, -0.05594927445054054, 0.018746180459856987, -0.12338647246360779, 0.017203958705067635, -0.025179024785757065, 0.006498721893876791, 0.019017063081264496, 0.028067292645573616, 0.09042152017354965, -0.010253184475004673, 0.0763203427195549, -0.046872109174728394, 0.0582212433218956, 0.1506313979625702, 0.10567206144332886, 0.18120841681957245, -0.00484774773940444, 0.16125579178333282, 0.0930112972855568, 0.07310287654399872, 0.08865192532539368, 0.051729533821344376, -0.027273358777165413, 0.07198929786682129, -0.05829988420009613, -0.025185544043779373, -0.037071697413921356, 0.09384874999523163, 0.001097862608730793, -0.06164643540978432, -0.017383528873324394, 0.03515157476067543, 0.0179826021194458, 0.11076050996780396, -0.0518527552485466, 0.04482448101043701, -0.03863159939646721, 0.06498456746339798, -0.13061845302581787, -0.057046160101890564, 0.1066267266869545, 0.17524896562099457, -0.1419694423675537, -0.028471823781728745, 0.02891387976706028, 0.11109387129545212, -0.08694753795862198, -0.03932597115635872, -0.06351809203624725, -0.05387107655405998, -0.005979664158076048, 0.06201740726828575, -0.0929168313741684, 0.062042903155088425, 0.01836891658604145, 0.017444252967834473, -0.06214766204357147, 0.04048251733183861, -0.0011380596552044153, -0.05309251323342323, 0.10409066081047058, 0.014527808874845505, -0.029932359233498573, -0.009896845556795597, -0.0705178827047348, 0.040034420788288116, 0.07444147765636444, -0.08098572492599487, 0.07273490726947784, 0.02232527919113636, 0.06903161853551865, -0.10092923790216446, 0.014528359286487103, -0.07081710547208786, -0.1515854299068451, -0.025684447959065437, -0.11503320187330246, 0.13026826083660126, -0.020120227709412575, -0.032135795801877975, -0.07980948686599731, 0.03662377968430519, -0.2982977330684662, -0.13341595232486725, -0.07379815727472305, -0.056857913732528687, 0.08353928476572037, -0.09156541526317596, 0.013556443154811859, 0.03190208226442337, 0.07721525430679321, 0.004380261525511742, -0.0734190121293068, 0.008668613620102406, -0.10148640722036362, -0.09058623760938644, 0.003963715396821499, 0.09997101128101349, 0.1234009638428688, 0.07096443325281143, 0.0032830045092850924, -0.04767073690891266, -0.0354466438293457, -0.12626837193965912, -0.03300227224826813, 0.13824047148227692, -0.049234744161367416, 0.06574039906263351, -0.015568475238978863, -0.040929555892944336, -0.15672336518764496, -0.07807909697294235, 0.11464232206344604, 0.07728920131921768, -0.021771470084786415, 0.17489710450172424, 0.12510347366333008, -0.10681063681840897, -0.08040984719991684, -0.059227533638477325, 0.11457450687885284, 0.08070901036262512, 0.10251158475875854, -0.09586112201213837, -0.016818469390273094, 0.028911037370562553, 0.015988614410161972, 0.07570131868124008, -0.14825120568275452, -0.09930229932069778, 0.0067382920533418655, 0.01918923109769821, 0.05684912949800491, -0.05301010608673096, -0.08062738180160522, 0.0038682660087943077, -0.03631286695599556, 0.10633274167776108, 0.013405408710241318, 0.010287065990269184, 0.05258391052484512, 0.10387776046991348, 0.020402392372488976, 0.050899438560009, 0.09801573306322098, -0.05738336220383644, 0.004703808575868607, -0.001867530052550137, 0.11793357133865356, -0.21433207392692566, -0.032065004110336304, 0.04287063330411911, 0.042838968336582184, 0.04009624943137169, -0.017602482810616493, -0.09434538334608078, -0.033256273716688156, -0.08378913998603821, -0.025215795263648033, -0.032272253185510635, -0.07979728281497955, 0.03075382672250271, 0.04165060445666313, -0.012665584683418274, -0.035848263651132584, -0.11411325633525848, -0.06250486522912979, 0.13328523933887482, 0.23630815744400024, 0.0625106617808342, -0.11791937798261642, -0.031905148178339005, -0.0033716021571308374, 0.144587904214859, -0.17185425758361816, 0.07770559936761856, 0.09218815714120865, -0.016049711033701897, 0.064900703728199, -0.03111037239432335, -0.18602792918682098, 0.10251007229089737, 0.036275532096624374, 0.029452919960021973, -0.0991000384092331, -0.05931272730231285, 0.09888230264186859, 0.01912795379757881, -0.04865194484591484, 0.16011367738246918, -0.009155218489468098, -0.05704481899738312, -0.017025204375386238, 0.03083093836903572, 0.025400908663868904, 0.1559843122959137, -0.014610967598855495, -0.009918873198330402, -0.07725553959608078, 0.10718481987714767, 0.03179437667131424, -0.07907335460186005, 0.04493756219744682, 0.018938731402158737, -0.08636898547410965, -0.0015979057643562555, -0.05378258600831032, -0.10661415755748749, -0.1290835589170456, -0.13601727783679962, 0.051375988870859146, -0.07560045272111893, -0.009153982624411583, 0.20660249888896942, 0.04903697222471237, 0.0315680094063282, -0.0013742151204496622, 0.018708031624555588, 0.07078049331903458, 0.01559360884130001, 0.04829546809196472, -0.039131782948970795, -0.04480784758925438, 0.035821039229631424, 0.06027739495038986, 0.10894953459501266, -0.022686518728733063, -0.06474397331476212, -0.06370764970779419, 0.0018941087182611227, -0.18046914041042328, 0.10920289158821106, -0.008868098258972168, 0.02309822291135788, 0.010173235088586807, -0.007435348816215992, -0.030927380546927452, 0.03864597529172897, -0.08059538900852203, 0.0024150426033884287, -0.0816444456577301, 0.11413192749023438, -0.032031431794166565, 0.04965643584728241, 0.0897168517112732, -0.032496776431798935, 0.04805811122059822, -0.02296585775911808, -0.06509812921285629, 0.09708493202924728, 0.006340214982628822, 0.10301234573125839, -0.017546676099300385, 0.048731181770563126, 0.010271148756146431, -0.09994657337665558, 0.005429912358522415, 0.010442367754876614, -0.08787544071674347, -0.033593665808439255, 0.027986373752355576, -0.07490535825490952, 0.07567926496267319, 0.06338963657617569, -0.028983306139707565, -0.06477952748537064, -0.044849053025245667, -0.0033548048231750727, 0.06271620839834213, 0.0608997568488121, -0.017108427360653877, 0.04655495285987854, -0.08593086898326874, -0.0010097002377733588, 0.05504138767719269, 0.1404203623533249, -0.067781001329422, -0.05192972347140312, 0.0210508331656456, -0.01419055089354515, 0.17072583734989166, 0.03500133752822876, 0.08262030780315399, 0.03613821044564247, 0.009883048944175243, -0.0785820260643959, -0.028660351410508156, -0.08016448467969894, 0.02538169175386429, 0.04699014499783516, -0.10191488265991211, -0.03415768966078758, -0.06088423728942871, -0.18199872970581055, 0.06538735330104828, 0.033608466386795044, 0.07058416306972504, 0.08472824841737747, -0.012151779606938362, -0.013129997067153454, -0.0025286641903221607, -0.07085877656936646, 0.004749997053295374, -0.08926108479499817, 0.016097815707325935, 0.03800784796476364, 0.14259199798107147, -0.10621664673089981, 0.08686444163322449, 0.03612598776817322, -0.016885576769709587, -0.13080757856369019, -0.18656118214130402, -0.03022915869951248, -0.06780408322811127, -0.028934793546795845, -0.08625642955303192, 0.05828765779733658, 0.042200151830911636, 0.08118308335542679, -0.03424211964011192, 0.058518972247838974, -0.19511160254478455, -0.23386259377002716, 0.044901132583618164, 0.011836247518658638, 0.11620261520147324, 0.04060756415128708, 0.08946242183446884, 0.0488576665520668, 0.08627259731292725, 0.005718386732041836, 0.0972946435213089, 0.014954089187085629, -0.03004096820950508, -0.06411594152450562, 0.036430083215236664, -0.028201688081026077, 0.02480088174343109, 0.025854337960481644, 0.20581533014774323, 0.06055041030049324, -0.012291974388062954, -0.009522436186671257, 0.20799681544303894, -0.04415838420391083, 0.013135196641087532, -0.19452472031116486, 0.13213813304901123, -0.024301838129758835, 0.0395987331867218, -0.006405027117580175, -0.09997314214706421, -0.029927000403404236, 0.23999282717704773, 0.04520859196782112, -0.043895889073610306, -0.029071133583784103, -0.0034014948178082705, 0.029552454128861427, 0.041091758757829666, 0.0804535523056984, -0.014378293417394161, 0.36435624957084656, -0.047587208449840546, 0.09045491367578506, -0.05613863095641136, 0.020224308595061302, 0.06436412781476974, 0.09937618672847748, -0.03558181971311569, -0.03741016983985901, -0.07305697351694107, 0.15515871345996857, -0.04170543700456619, -0.16831643879413605, -0.022120922803878784, 0.016389645636081696, -0.07145944237709045, 0.018500136211514473, -0.022470993921160698, -0.003969020675867796, 0.03294751048088074, 0.0466064028441906, -0.02982664667069912, 0.13796062767505646, 0.022275930270552635, -0.03173477202653885, -0.04463440179824829, 0.08511101454496384, 0.013187642209231853, 0.11041004955768585, 0.0640357956290245, 0.17411363124847412, 0.008915756829082966, 0.059722088277339935, -0.013415426015853882, 0.04903638735413551, 0.006893035024404526, -0.09701680392026901, 0.0025863749906420708, 0.1126004308462143, 0.04400380328297615, 0.11864276230335236, 0.11116445809602737, -0.010657265782356262, 0.04701966047286987, 0.04302898421883583, -0.009442921727895737, -0.11462140828371048, 0.12010594457387924, -0.1260378360748291, 0.12254681438207626, 0.1233377754688263, -0.0035129396710544825, 0.01679367572069168, -0.00805863831192255, 0.07184261828660965, -0.04040929302573204, 0.04706056788563728, 0.03681015968322754, -0.13986161351203918, -0.004758445080369711, -0.00378627167083323, -0.024717086926102638, -0.20288437604904175, 0.003811231115832925, 0.05970105528831482, 0.04149641841650009, 0.033247705549001694, 0.09788927435874939, 0.01376720517873764, 0.02432042360305786, -0.022880341857671738, -0.09851637482643127, 0.016866624355316162, 0.02110247127711773, -0.06540842354297638, -0.027017224580049515 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_de-wiki", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_de-wiki
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_lv-pharmaceutical-nmt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-lv", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_lv-pharmaceutical-nmt
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-lv" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_lv-pharmaceutical-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-lv", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_lv-pharmaceutical-smt
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-lv" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_zh-wiki", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-zh", "license": "apache-2.0", "tags": ["Quality Estimation", "microtransquest"]}
token-classification
TransQuest/microtransquest-en_zh-wiki
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-zh" ]
TAGS #transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 59, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #Quality Estimation #microtransquest #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07467984408140182, 0.04561213031411171, -0.0031872198451310396, 0.01665922813117504, 0.06034873425960541, -0.029543355107307434, 0.056920375674963, 0.04712317883968353, 0.004385472275316715, 0.06029127538204193, -0.0643743947148323, -0.02499346435070038, 0.12438131123781204, 0.14060714840888977, 0.036490991711616516, -0.17732763290405273, -0.0033894141670316458, -0.06779645383358002, -0.06041743978857994, 0.06373699754476547, 0.04700025916099548, -0.05136030912399292, 0.06961862742900848, 0.08054491132497787, -0.044733162969350815, -0.021327702328562737, -0.05273846164345741, -0.07240552455186844, 0.10795480757951736, 0.14826293289661407, 0.05439594015479088, 0.00708722835406661, -0.017087163403630257, -0.15220849215984344, 0.014541269280016422, 0.07231545448303223, -0.018605142831802368, 0.03632468730211258, 0.1670982837677002, -0.015267474576830864, 0.04399198666214943, -0.02337043732404709, 0.025873880833387375, 0.06736137717962265, -0.017161021009087563, -0.09528005123138428, -0.07502274960279465, -0.0011989343911409378, 0.08202580362558365, 0.060059964656829834, -0.02345638908445835, 0.17679914832115173, -0.052850209176540375, 0.046752024441957474, -0.009912248700857162, -0.2691378891468048, -0.024094201624393463, -0.07085880637168884, -0.018201583996415138, 0.09756475687026978, -0.027474086731672287, -0.04449743404984474, 0.016515906900167465, 0.05115072429180145, 0.04457642138004303, -0.02063417248427868, 0.006012455094605684, -0.0666801780462265, -0.1522127240896225, 0.034688159823417664, 0.1599050760269165, -0.005771267227828503, -0.09999020397663116, -0.18716828525066376, -0.020001215860247612, 0.0982956662774086, 0.050622984766960144, -0.047841716557741165, -0.005043076816946268, 0.007600085344165564, 0.03960225358605385, -0.03529270365834236, -0.11520283669233322, -0.024929432198405266, -0.09550461173057556, 0.1745801717042923, 0.07266111671924591, 0.05242399126291275, -0.06764127314090729, 0.11431074142456055, -0.05842989683151245, -0.02390468493103981, -0.055411361157894135, -0.07894785702228546, -0.1139766052365303, -0.011021286249160767, -0.04683703929185867, -0.12472067773342133, -0.010358213447034359, 0.06678689271211624, -0.03432639315724373, 0.05648626387119293, -0.03379015624523163, 0.0401809923350811, 0.16170582175254822, 0.10893892496824265, -0.05179065093398094, -0.0950033888220787, 0.01837710663676262, -0.0982586145401001, 0.0002685799263417721, -0.0032822214998304844, -0.02082197368144989, -0.06541572511196136, -0.03664793819189072, 0.04233813285827637, 0.044377341866493225, 0.0018022933509200811, -0.01398477889597416, -0.0796099379658699, 0.254585862159729, -0.10293637961149216, -0.0822954773902893, 0.004832184407860041, -0.0664164200425148, 0.10325679928064346, 0.019207822158932686, -0.026520835235714912, -0.12866926193237305, -0.017552923411130905, -0.02299397997558117, -0.04661143198609352, -0.037629056721925735, -0.08299235999584198, 0.012028258293867111, -0.024698058143258095, -0.014472948387265205, -0.08929421007633209, -0.037343163043260574, -0.0952354148030281, 0.0330633707344532, -0.06568268686532974, -0.030755531042814255, -0.009378752671182156, 0.0628783106803894, -0.035382889211177826, -0.01717080920934677, -0.01701122522354126, -0.034890517592430115, 0.03378551825881004, -0.0766676589846611, 0.02304736338555813, -0.0446983203291893, 0.021553806960582733, -0.0732225552201271, -0.0027530179359018803, -0.10904055088758469, 0.12830930948257446, -0.059034716337919235, -0.019267767667770386, -0.08339306712150574, -0.0236685648560524, -0.05274127796292305, 0.04445352032780647, -0.021257102489471436, 0.10230819135904312, -0.12740899622440338, -0.03572521358728409, 0.23917144536972046, -0.10365504771471024, -0.05859936401247978, 0.13154049217700958, -0.02401420660316944, 0.13112759590148926, 0.11704325675964355, 0.06691420078277588, 0.17697061598300934, -0.04792552441358566, -0.03568487986922264, 0.03887864574790001, -0.06875605136156082, 0.06173582747578621, 0.09003347158432007, -0.041642699390649796, 0.11030080169439316, 0.00853391271084547, -0.009144802577793598, 0.02109912596642971, 0.022808261215686798, -0.02036081627011299, 0.027141980826854706, -0.04587247595191002, -0.028233399614691734, -0.11705616861581802, 0.0661073699593544, -0.0009356834343634546, -0.07494813948869705, -0.025132764130830765, 0.055742476135492325, -0.02231188304722309, 0.02510065957903862, -0.084127277135849, -0.02290181815624237, 0.01387796364724636, -0.006979278288781643, -0.16738444566726685, -0.002850235439836979, 0.06343948096036911, -0.12345471233129501, 0.10804543644189835, 0.010557866655290127, 0.00874264258891344, 0.05097740516066551, 0.018006525933742523, 0.01639578677713871, 0.0013931678840890527, -0.06485282629728317, -0.06668415665626526, -0.06961780041456223, 0.016022400930523872, -0.05271495133638382, -0.06076472997665405, -0.02050551399588585, -0.0037183589302003384, 0.06496667116880417, 0.04792878031730652, 0.058271367102861404, -0.0061265560798347, 0.023409869521856308, 0.012358820997178555, 0.017485106363892555, -0.01076554786413908, -0.025547435507178307, 0.03074474073946476, -0.0938509926199913, 0.1720530241727829, -0.12114351987838745, -0.047695666551589966, 0.05614187568426132, -0.006712630391120911, -0.044336069375276566, -0.14979533851146698, -0.00235505192540586, -0.039448171854019165, -0.07357998192310333, -0.02599235624074936, 0.20609396696090698, 0.041783932596445084, 0.051176056265830994, -0.10604109615087509, -0.08092796057462692, 0.0060554007068276405, 0.005787713918834925, 0.016294164583086967, 0.057504475116729736, -0.052623651921749115, -0.17063137888908386, 0.053389616310596466, 0.04538855701684952, 0.015575561672449112, 0.1499115377664566, 0.008182384073734283, -0.10267526656389236, 0.02332383394241333, 0.08897939324378967, -0.0215620044618845, 0.04471640661358833, -0.060715969651937485, -0.024534665048122406, 0.04243132099509239, 0.05531860888004303, 0.067604199051857, -0.06806457787752151, 0.06002601981163025, 0.03461156040430069, 0.03197784349322319, -0.07822960615158081, 0.026573415845632553, -0.0010407986119389534, 0.07347647100687027, 0.06872692704200745, 0.14190489053726196, 0.004383726976811886, -0.08504960685968399, -0.10988616943359375, 0.1373423933982849, -0.11765512824058533, -0.20217077434062958, -0.18294106423854828, 0.015130744315683842, -0.01647014543414116, -0.01775079406797886, 0.04586675390601158, -0.06196058541536331, -0.057537343353033066, -0.03302064538002014, 0.1001051589846611, -0.037077952176332474, -0.09121952205896378, -0.06470092386007309, 0.029816653579473495, -0.06022116541862488, -0.08698385953903198, 0.03883262351155281, 0.01509004645049572, -0.07306428253650665, 0.05569767951965332, -0.032439060509204865, 0.016109474003314972, 0.07574991881847382, 0.030071692541241646, -0.037783779203891754, -0.05043034255504608, 0.24853885173797607, -0.09748712927103043, 0.04545927792787552, 0.16996698081493378, -0.04339092969894409, 0.0789363756775856, 0.04291898012161255, 0.027896111831068993, -0.04017769545316696, 0.04512991011142731, 0.03268357738852501, -0.028164876624941826, -0.22510051727294922, -0.07089058309793472, -0.029064398258924484, -0.026884473860263824, 0.005235529504716396, 0.014286664314568043, -0.07470448315143585, 0.059107087552547455, -0.08881831169128418, 0.06850098073482513, 0.0569269098341465, 0.03376620635390282, 0.04774031043052673, 0.0048403507098555565, 0.06465629488229752, -0.044382672756910324, 0.02740311250090599, 0.14192356169223785, 0.09642834961414337, 0.2331276535987854, -0.028280965983867645, 0.14006640017032623, 0.08519487082958221, 0.09658169746398926, 0.06538894772529602, 0.07367977499961853, -0.010679946281015873, 0.06207443028688431, -0.03363130986690521, -0.05412783846259117, -0.030189966782927513, 0.05901893228292465, -0.022854864597320557, -0.07897578924894333, 0.03416813164949417, -0.010820034891366959, 0.029699314385652542, 0.23197609186172485, -0.06312812864780426, 0.017604047432541847, -0.0605645477771759, 0.02275901474058628, -0.10508700460195541, -0.11360261589288712, 0.056877605617046356, 0.1438240110874176, -0.1861722767353058, -0.016171593219041824, -0.016447048634290695, 0.09718113392591476, -0.0730602964758873, -0.04174119979143143, -0.061435095965862274, -0.01459049154073, -0.013226338662207127, 0.06097731739282608, -0.09748619794845581, 0.04785939306020737, 0.027321886271238327, 0.03861859440803528, -0.11535809189081192, 0.032602522522211075, 0.024337289854884148, -0.04630490764975548, 0.08860845863819122, 0.02356738969683647, 0.00795487780123949, -0.051057178527116776, -0.07949963957071304, 0.03110886923968792, 0.09375055879354477, -0.0504886619746685, 0.04956847056746483, 0.03150166943669319, 0.07268683612346649, -0.08212020993232727, 0.027215411886572838, -0.06479515880346298, -0.18563014268875122, -0.00664115184918046, -0.11286646872758865, 0.08604369312524796, -0.025789935141801834, -0.01934485323727131, -0.087321437895298, 0.03357149288058281, -0.24788254499435425, -0.12870360910892487, -0.09582046419382095, -0.07316906005144119, 0.07392071932554245, -0.09258349984884262, 0.0563964918255806, 0.007320718839764595, 0.09037820994853973, -0.027990996837615967, -0.12764346599578857, 0.026601124554872513, -0.08666475862264633, -0.1203339621424675, 0.02552228607237339, 0.05891692638397217, 0.15613776445388794, 0.04989398270845413, -0.010493835434317589, -0.03287472203373909, -0.050084445625543594, -0.10591929405927658, -0.04151774197816849, 0.15229371190071106, 0.03096082992851734, 0.10372409969568253, -0.01497804094105959, -0.1005336344242096, -0.12434818595647812, -0.06137702241539955, 0.07441896200180054, 0.0801149308681488, -0.012275668792426586, 0.13992489874362946, 0.15252898633480072, -0.06024281680583954, -0.16094300150871277, -0.04732026532292366, 0.09125569462776184, 0.07797472178936005, 0.07954645901918411, -0.16729916632175446, 0.07759755849838257, 0.05582078546285629, -0.007628545165061951, 0.08061078935861588, -0.17623959481716156, -0.08705145120620728, 0.03606387600302696, 0.06519689410924911, 0.03367772698402405, -0.041245389729738235, -0.04097246751189232, -0.016095062717795372, -0.008659073151648045, 0.11811638623476028, -0.08679307252168655, 0.022152815014123917, 0.022080963477492332, 0.09988999366760254, 0.018640607595443726, 0.006358744576573372, 0.06865805387496948, -0.054296255111694336, 0.03914390876889229, -0.024531492963433266, 0.13271404802799225, -0.08522837609052658, -0.017280584201216698, 0.04869670048356056, 0.006633234675973654, 0.02219569683074951, -0.05983427166938782, -0.07311750203371048, -0.060388095676898956, -0.011932489462196827, -0.0313301719725132, -0.049971237778663635, -0.07399257272481918, 0.058954883366823196, 0.07466758787631989, 0.004456286318600178, 0.014308556914329529, -0.055175866931676865, -0.018460223451256752, 0.1454499065876007, 0.18036383390426636, 0.048041876405477524, -0.10386773198843002, -0.08295463025569916, -0.015337598510086536, 0.12530459463596344, -0.12885406613349915, 0.049739494919776917, 0.07891835272312164, 0.010857361368834972, 0.05116533860564232, -0.007680010981857777, -0.18892276287078857, 0.0682581216096878, 0.03975363448262215, -0.015296121127903461, -0.0920456126332283, -0.04810448735952377, 0.13761770725250244, -0.04292244464159012, 0.03523333743214607, 0.11252011358737946, -0.0037764657754451036, -0.06689504534006119, -0.007650973740965128, 0.015227725729346275, 0.006960990838706493, 0.1521715670824051, 0.002152497647330165, 0.009226920083165169, -0.08340012282133102, 0.12395445257425308, 0.0447084903717041, -0.03256029263138771, 0.03664082661271095, 0.037840161472558975, -0.12047869712114334, -0.03905649483203888, 0.03161181882023811, -0.12462275475263596, -0.03435351327061653, -0.09541365504264832, 0.06556151062250137, -0.08021828532218933, -0.006212175823748112, 0.21216052770614624, 0.04186485335230827, 0.04156377911567688, -0.011866196990013123, 0.0019340607104822993, 0.04506025090813637, 0.02641724795103073, 0.029232479631900787, -0.026345789432525635, -0.05262196436524391, 0.08683772385120392, 0.03758632019162178, 0.06883292645215988, -0.027352554723620415, -0.08736029267311096, -0.08705756813287735, -0.00994479563087225, -0.12918147444725037, 0.04686683788895607, -0.08090341091156006, 0.014303998090326786, -0.030818484723567963, 0.015201887115836143, 0.0010939608328044415, 0.04607506841421127, -0.07398366183042526, 0.010335119441151619, -0.059676673263311386, 0.07286793738603592, -0.04417157545685768, 0.047304462641477585, 0.07418456673622131, -0.0583178885281086, 0.07337283343076706, 0.001303958473727107, -0.0652925968170166, 0.08611533790826797, 0.03147858381271362, 0.06281166523694992, -0.06722177565097809, 0.04820048809051514, 0.006696585100144148, -0.019455326721072197, -0.02443077601492405, -0.014851348474621773, -0.04146968945860863, 0.0003981523623224348, 0.09751491248607635, -0.06569889187812805, 0.056698959320783615, 0.008208265528082848, -0.0006670178263448179, -0.08104130625724792, 0.005522582679986954, 0.04832832142710686, 0.05379774793982506, 0.052987173199653625, -0.01550283469259739, 0.03938452526926994, -0.0994337946176529, -0.0034339611884206533, 0.058396369218826294, 0.08306228369474411, 0.0035216258838772774, -0.052681200206279755, 0.02345159649848938, -0.00484467064961791, 0.16984756290912628, -0.044738512486219406, 0.04654403403401375, 0.01787707395851612, 0.006093918811529875, -0.1364241987466812, -0.021159788593649864, -0.0030045288149267435, 0.006621974986046553, 0.033245619386434555, -0.022864079102873802, 0.017555223777890205, -0.0992576852440834, -0.08412045985460281, 0.04084327444434166, 0.05786862596869469, -0.00592427421361208, 0.03899885341525078, 0.011162695474922657, -0.030977586284279823, -0.017102792859077454, -0.05506325513124466, 0.015041961334645748, -0.043432947248220444, -0.032068878412246704, 0.06883566826581955, 0.10971656441688538, -0.1033778265118599, 0.08616960048675537, 0.06185659021139145, -0.03126316890120506, -0.11222915351390839, -0.25790172815322876, -0.0039699748158454895, -0.04709238559007645, -0.03146713227033615, -0.09068918973207474, 0.035262513905763626, 0.11253631860017776, 0.08982602506875992, -0.024486644193530083, 0.08303843438625336, -0.19589771330356598, -0.19475099444389343, 0.05452176555991173, 0.012517966330051422, 0.07562626898288727, 0.01496232207864523, 0.044190578162670135, 0.02836916781961918, 0.0839037373661995, 0.06511886417865753, 0.05432681739330292, -0.013272139243781567, -0.022286051884293556, -0.06406162679195404, 0.002143374877050519, -0.01602700725197792, 0.018293920904397964, -0.01803296059370041, 0.22063085436820984, 0.0363755077123642, -0.03609989956021309, -0.043447867035865784, 0.20712624490261078, -0.05655553191900253, 0.00588108878582716, -0.18990269303321838, 0.10653240233659744, -0.010076731443405151, -0.028610708191990852, 0.013700232841074467, -0.08713708072900772, 0.0073533570393919945, 0.24098919332027435, 0.05179048702120781, -0.013002208434045315, -0.011022007092833519, 0.015040954574942589, 0.011899464763700962, -0.012866614386439323, 0.09049289673566818, 0.01958478055894375, 0.28456398844718933, -0.04038805514574051, 0.11554165929555893, -0.032250940799713135, -0.0018805431900545955, -0.027618423104286194, 0.010765669867396355, -0.03555116802453995, -0.023484380915760994, -0.06591709703207016, 0.1547967791557312, -0.07776077091693878, -0.15516330301761627, -0.022442715242505074, 0.0022045630030333996, -0.06970970332622528, -0.020063018426299095, -0.07872354984283447, 0.006858188658952713, 0.06045292690396309, 0.04749995842576027, 0.010139006190001965, 0.16064535081386566, 0.04098215326666832, -0.0565907321870327, -0.04463233798742294, 0.07717638462781906, -0.06655214726924896, 0.12149867415428162, 0.05058884620666504, 0.12750668823719025, 0.02745618298649788, 0.07511384040117264, -0.01866353303194046, 0.00588287552818656, -0.01904390938580036, -0.06166479364037514, -0.022333620116114616, 0.10218727588653564, 0.032801710069179535, 0.09426052868366241, 0.06916883587837219, -0.04475697875022888, 0.02492082118988037, 0.014926462434232235, 0.035440389066934586, -0.1077485904097557, 0.12275810539722443, -0.12789811193943024, 0.14630191028118134, 0.13804012537002563, -0.021203704178333282, -0.005322854965925217, -0.017780480906367302, 0.035042714327573776, -0.019411947578191757, 0.018207237124443054, -0.01587211713194847, -0.15777575969696045, -0.0034879588056355715, -0.07963361591100693, 0.0030410250183194876, -0.1377529352903366, 0.016169603914022446, 0.031370725482702255, -0.003775442484766245, 0.03705154359340668, 0.0704938992857933, 0.008540725335478783, 0.00474474485963583, -0.026179930195212364, -0.07856921851634979, 0.0026200185529887676, 0.024319063872098923, -0.06766369938850403, -0.014172001741826534 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-any_en", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "multilingual-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-any_en
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "multilingual-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-en_any", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-multilingual", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-en_any
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-multilingual" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-en_de-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-en_de-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-en_zh-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-zh", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-en_zh-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-zh" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-et_en-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "et-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-et_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "et-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-multilingual", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "multilingual-multilingual", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-multilingual
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "multilingual-multilingual" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-ne_en-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ne-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-ne_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ne-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-ro_en-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ro-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-ro_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ro-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-ru_en-reddit_wikiquotes", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ru-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-ru_en-reddit_wikiquotes
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-si_en-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "si-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "DA"]}
text-classification
TransQuest/monotransquest-da-si_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "si-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 60, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #DA #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07549289613962173, 0.045924123376607895, -0.003104966599494219, 0.0161619670689106, 0.06472742557525635, -0.025587603449821472, 0.05554493889212608, 0.044639844447374344, 0.000684231985360384, 0.05377032607793808, -0.06509464979171753, -0.03839816898107529, 0.12601208686828613, 0.13611003756523132, 0.0366315059363842, -0.18425415456295013, -0.005919631104916334, -0.06602390110492706, -0.059242937713861465, 0.062372300773859024, 0.04295479133725166, -0.050525035709142685, 0.07049448043107986, 0.07758738100528717, -0.04282167926430702, -0.02370433136820793, -0.05349745228886604, -0.0681711733341217, 0.11001370847225189, 0.15174251794815063, 0.0519399456679821, 0.01661633513867855, -0.015052558854222298, -0.15206614136695862, 0.016319358721375465, 0.07305275648832321, -0.019925707951188087, 0.04061166197061539, 0.16157883405685425, -0.020742518827319145, 0.06979646533727646, -0.011258739978075027, 0.026203522458672523, 0.07013343274593353, -0.02013542316854, -0.11342800408601761, -0.07490511983633041, 0.000908061396330595, 0.07364179193973541, 0.05800813063979149, -0.02484724298119545, 0.16151243448257446, -0.039523061364889145, 0.04413099214434624, -0.00950984563678503, -0.27356767654418945, -0.023725183680653572, -0.06804458051919937, -0.010354318656027317, 0.09019064903259277, -0.033720556646585464, -0.03931230679154396, 0.019360115751624107, 0.05357403680682182, 0.055096033960580826, -0.017831671983003616, 0.01124770101159811, -0.06905976682901382, -0.1484130620956421, 0.03864587843418121, 0.16018126904964447, -0.0063362522050738335, -0.1021256223320961, -0.18533362448215485, -0.018423493951559067, 0.08946364372968674, 0.04973464831709862, -0.05486980825662613, -0.008959183469414711, 0.007605972699820995, 0.036750953644514084, -0.036913227289915085, -0.11393270641565323, -0.023112066090106964, -0.09207574278116226, 0.16768403351306915, 0.06898720562458038, 0.05455866828560829, -0.059432804584503174, 0.11954445391893387, -0.04931297525763512, -0.017046090215444565, -0.05199934169650078, -0.0815892219543457, -0.11402588337659836, -0.0051175192929804325, -0.043951086699962616, -0.12453006953001022, -0.01455365214496851, 0.051914967596530914, -0.036991167813539505, 0.053297046571969986, -0.04004044830799103, 0.040150437504053116, 0.16081775724887848, 0.10715426504611969, -0.05597668141126633, -0.0948183611035347, 0.014418390579521656, -0.08893439918756485, 0.0034715719521045685, -0.004303004126995802, -0.017814360558986664, -0.06870344281196594, -0.029632989317178726, 0.043496329337358475, 0.03936424106359482, 0.001526087406091392, -0.01442253589630127, -0.07533414661884308, 0.2671993672847748, -0.0950542613863945, -0.08414191752672195, 0.00698492769151926, -0.06339041143655777, 0.1049966812133789, 0.02670258842408657, -0.03686666116118431, -0.12947873771190643, -0.011527360416948795, -0.021597664803266525, -0.048586126416921616, -0.03803510591387749, -0.08429272472858429, 0.007034648209810257, -0.02448081597685814, -0.02044668048620224, -0.08726661652326584, -0.025184184312820435, -0.0960230827331543, 0.036147646605968475, -0.06423013657331467, -0.029074762016534805, -0.016468776389956474, 0.06727196276187897, -0.0368751622736454, -0.019584957510232925, -0.021596204489469528, -0.03307156264781952, 0.033278938382864, -0.07637549936771393, 0.024726038798689842, -0.05028677359223366, 0.02694038860499859, -0.06762444972991943, 0.003546276595443487, -0.10137542337179184, 0.12878651916980743, -0.05741077661514282, -0.026614351198077202, -0.07735762000083923, -0.029089782387018204, -0.05339649319648743, 0.04663586616516113, -0.01737566664814949, 0.10248424857854843, -0.1273621916770935, -0.03853612393140793, 0.23727427423000336, -0.10524099320173264, -0.05385292321443558, 0.13042019307613373, -0.026055922731757164, 0.12305572628974915, 0.12112856656312943, 0.05841303989291191, 0.17055824398994446, -0.040686462074518204, -0.036227934062480927, 0.0405082069337368, -0.06923465430736542, 0.0664694607257843, 0.08350015431642532, -0.04395170137286186, 0.1041681244969368, 0.013504444621503353, -0.0007680578273721039, 0.018579257652163506, 0.02062499336898327, -0.02113424800336361, 0.03192387521266937, -0.04492398723959923, -0.01671862229704857, -0.11435770243406296, 0.06220637634396553, 0.00037734719808213413, -0.07609491795301437, -0.02807474695146084, 0.053169090300798416, -0.026480652391910553, 0.029184898361563683, -0.07690569758415222, -0.02476504072546959, 0.020269792526960373, 0.000895834993571043, -0.16883988678455353, -0.0053926496766507626, 0.059810467064380646, -0.11453530192375183, 0.10285868495702744, 0.014745411463081837, 0.006563331466168165, 0.05709459260106087, 0.010874703526496887, 0.02157272771000862, -0.0008300039335153997, -0.06849617511034012, -0.06769442558288574, -0.05976667255163193, 0.01151969563215971, -0.05581551790237427, -0.0605461411178112, -0.025007499381899834, -0.00018599476607050747, 0.05680092051625252, 0.03676711022853851, 0.06327278912067413, -0.008809098973870277, 0.025383781641721725, 0.01654409058392048, 0.016970353201031685, -0.006393840536475182, -0.02085997723042965, 0.02959613688290119, -0.10230956971645355, 0.1707429587841034, -0.11967983096837997, -0.04871883615851402, 0.05480450764298439, 0.0055814809165894985, -0.05141976848244667, -0.1510811299085617, -0.00038239842979237437, -0.03757238760590553, -0.07143834978342056, -0.016566019505262375, 0.20844954252243042, 0.043442580848932266, 0.053307242691516876, -0.0987105593085289, -0.07222770154476166, 0.006440162658691406, 0.015139177441596985, 0.011957774870097637, 0.06131989136338234, -0.06397775560617447, -0.1576472967863083, 0.048272505402565, 0.03626765310764313, 0.01748308539390564, 0.14675986766815186, 0.01053323782980442, -0.09955865889787674, 0.028109239414334297, 0.08366446942090988, -0.020333031192421913, 0.049770090728998184, -0.06426902115345001, -0.027683483436703682, 0.041617266833782196, 0.053489021956920624, 0.06466986984014511, -0.06912858039140701, 0.05657036229968071, 0.026192428544163704, 0.026569193229079247, -0.08149921149015427, 0.031099816784262657, -0.005171008408069611, 0.07474466413259506, 0.06649907678365707, 0.13792021572589874, 0.004089617636054754, -0.08371635526418686, -0.10811586678028107, 0.1367659717798233, -0.11774680018424988, -0.20579864084720612, -0.18260428309440613, 0.011798378080129623, -0.021259823814034462, -0.013719003647565842, 0.04823692515492439, -0.04879581183195114, -0.052238527685403824, -0.03464919701218605, 0.10486067831516266, -0.037125490605831146, -0.09646130353212357, -0.06523092836141586, 0.02407963015139103, -0.06045332923531532, -0.08526332676410675, 0.045670341700315475, 0.010098767466843128, -0.07079949229955673, 0.05595719814300537, -0.035147953778505325, 0.015452024526894093, 0.07547377049922943, 0.03105972148478031, -0.042481761425733566, -0.05187316611409187, 0.22960807383060455, -0.09524285793304443, 0.038300108164548874, 0.16927768290042877, -0.04089564457535744, 0.07768698781728745, 0.0428447462618351, 0.0273902490735054, -0.03635621443390846, 0.04242310672998428, 0.031947776675224304, -0.03206036239862442, -0.21461597084999084, -0.06898939609527588, -0.029294781386852264, -0.01974639482796192, 0.007143140770494938, 0.014743986539542675, -0.09431018680334091, 0.060017988085746765, -0.09019210189580917, 0.06081308051943779, 0.06761484593153, 0.028999412432312965, 0.04642593115568161, -0.0017778672045096755, 0.06521454453468323, -0.043079543858766556, 0.023820992559194565, 0.13919737935066223, 0.0961017906665802, 0.23454011976718903, -0.03776657208800316, 0.12067544460296631, 0.0802345871925354, 0.08824647963047028, 0.0644192099571228, 0.06976072490215302, -0.00510042067617178, 0.06372903287410736, -0.03821738809347153, -0.0490204356610775, -0.02720368094742298, 0.050022076815366745, -0.027370069175958633, -0.0744057223200798, 0.02599521540105343, -0.01694532483816147, 0.029114754870533943, 0.24283768236637115, -0.05554066598415375, 0.015204865485429764, -0.06685568392276764, 0.01793633960187435, -0.0982859656214714, -0.12433739006519318, 0.06016740947961807, 0.1365077942609787, -0.18859204649925232, -0.012272686697542667, -0.016097353771328926, 0.09435424208641052, -0.07780460268259048, -0.038351185619831085, -0.06753537803888321, -0.008473614230751991, -0.017461715266108513, 0.06031021475791931, -0.10363701730966568, 0.046407684683799744, 0.022198816761374474, 0.03888384625315666, -0.10515099763870239, 0.027068082243204117, 0.02694679982960224, -0.028598923236131668, 0.08722787350416183, 0.02326708287000656, 0.009956736117601395, -0.03911255672574043, -0.07501476258039474, 0.03211482614278793, 0.08489418774843216, -0.048464346677064896, 0.043274372816085815, 0.03277634084224701, 0.0722476989030838, -0.08161666989326477, 0.02531256154179573, -0.056022536009550095, -0.18482115864753723, -0.009341041557490826, -0.12074768543243408, 0.09914488345384598, -0.025963254272937775, -0.01785760372877121, -0.07768043875694275, 0.03741440176963806, -0.2322845160961151, -0.12645483016967773, -0.0903552770614624, -0.07311785221099854, 0.06833818554878235, -0.08689261972904205, 0.04954809322953224, 0.0068495506420731544, 0.08837725222110748, -0.03827603533864021, -0.1355096995830536, 0.02674074098467827, -0.08100710809230804, -0.12541405856609344, 0.02923698164522648, 0.0605994388461113, 0.1560622602701187, 0.044756412506103516, -0.012906447052955627, -0.03478386625647545, -0.0521235316991806, -0.1035333201289177, -0.031509075313806534, 0.16086624562740326, 0.022955479100346565, 0.11245948821306229, -0.016088230535387993, -0.1315576136112213, -0.12623903155326843, -0.06096205860376358, 0.06430444121360779, 0.08463065326213837, -0.01542755588889122, 0.14935044944286346, 0.16854143142700195, -0.06144936382770538, -0.16800457239151, -0.05022633820772171, 0.08341043442487717, 0.08271826803684235, 0.07712574303150177, -0.16607365012168884, 0.06973951309919357, 0.05687853321433067, -0.007228972855955362, 0.09697103500366211, -0.1752433031797409, -0.08673687279224396, 0.04258044809103012, 0.06409263610839844, 0.050297223031520844, -0.04118180274963379, -0.03699025511741638, -0.03155072033405304, -0.009310215711593628, 0.1089274063706398, -0.06910894066095352, 0.02646692655980587, 0.013044830411672592, 0.09594613313674927, 0.0188390351831913, 0.011785157956182957, 0.06769169867038727, -0.061790794134140015, 0.04221529886126518, -0.02207249589264393, 0.13554562628269196, -0.08435650169849396, -0.017218133434653282, 0.050322212278842926, -0.00627927528694272, 0.020501917228102684, -0.03916322812438011, -0.0734393373131752, -0.06145550683140755, -0.006652660667896271, -0.030754288658499718, -0.04774532467126846, -0.07837247848510742, 0.05789092555642128, 0.07127805799245834, 0.0024890091735869646, 0.006160525139421225, -0.06271790713071823, -0.005926149897277355, 0.14559106528759003, 0.17838145792484283, 0.0469050258398056, -0.09861904382705688, -0.08541621267795563, -0.019041845574975014, 0.1285771280527115, -0.12417658418416977, 0.04618421196937561, 0.08109265565872192, 0.006973112467676401, 0.056030869483947754, -0.001748466631397605, -0.19239212572574615, 0.07413540780544281, 0.04109716787934303, -0.018932975828647614, -0.09484025835990906, -0.054925985634326935, 0.11703556776046753, -0.049386605620384216, 0.04551952704787254, 0.11189062893390656, -0.005901323165744543, -0.064191073179245, -0.00367940217256546, 0.018396059051156044, 0.006419055629521608, 0.14270363748073578, -0.004753283224999905, 0.009157093241810799, -0.07889381051063538, 0.12049681693315506, 0.042604006826877594, -0.019991815090179443, 0.03447166830301285, 0.03792499378323555, -0.12377043068408966, -0.040288105607032776, 0.008328801952302456, -0.1267692595720291, -0.0329192690551281, -0.08687713742256165, 0.07094723731279373, -0.08923066407442093, -0.012968976981937885, 0.20397265255451202, 0.038157377392053604, 0.04464513063430786, -0.017343027517199516, -0.0007380858296528459, 0.04311323165893555, 0.02655637264251709, 0.022768039256334305, -0.023568592965602875, -0.04766961559653282, 0.09278448671102524, 0.035892874002456665, 0.06983828544616699, -0.02945687808096409, -0.08971834182739258, -0.08746817708015442, -0.011418513022363186, -0.13835057616233826, 0.03794578090310097, -0.0900525376200676, 0.015547055751085281, -0.034478019922971725, 0.02282564342021942, 0.004146299324929714, 0.04138230159878731, -0.07116489112377167, 0.008183385245501995, -0.05918152630329132, 0.06807705760002136, -0.04800788685679436, 0.04539404809474945, 0.06647580116987228, -0.05913342162966728, 0.07284507155418396, -0.002395996358245611, -0.0628766193985939, 0.08796229213476181, 0.0304850023239851, 0.06296180188655853, -0.06668630987405777, 0.042770568281412125, 0.0009343906422145665, -0.02044503390789032, -0.029708802700042725, -0.01630663126707077, -0.04747893288731575, 0.005909742321819067, 0.104590505361557, -0.0644889548420906, 0.047060564160346985, -0.00042552725062705576, 0.007247146684676409, -0.07782405614852905, 0.012626715004444122, 0.04817622900009155, 0.06466902792453766, 0.05085059255361557, -0.019211934879422188, 0.03740694746375084, -0.09834473580121994, -0.0039885081350803375, 0.05612240731716156, 0.07722260802984238, 0.009928098879754543, -0.05158725008368492, 0.02488444745540619, -0.007082865107804537, 0.1690620332956314, -0.043891679495573044, 0.043218329548835754, 0.010442331433296204, -0.005050338804721832, -0.14605559408664703, -0.02217237837612629, -0.007891601882874966, 0.005078745074570179, 0.026994524523615837, -0.021167635917663574, 0.0264472384005785, -0.10645157098770142, -0.07067554444074631, 0.04293397441506386, 0.04496299475431442, -0.020811866968870163, 0.038747236132621765, 0.010491055436432362, -0.031128020957112312, -0.009949706494808197, -0.060544151812791824, 0.01701836660504341, -0.03755214810371399, -0.026316093280911446, 0.0726507306098938, 0.10745920985937119, -0.09964209794998169, 0.09225580841302872, 0.06029147654771805, -0.03141479566693306, -0.11063709110021591, -0.25370004773139954, 0.0010586910648271441, -0.04690701514482498, -0.03130774199962616, -0.0881165862083435, 0.027542417868971825, 0.11259775608778, 0.08369530737400055, -0.027523739263415337, 0.07318796962499619, -0.1902969628572464, -0.19449394941329956, 0.06496433913707733, 0.013591638766229153, 0.07086995244026184, 0.019599594175815582, 0.045946694910526276, 0.036852117627859116, 0.08427399396896362, 0.0612393356859684, 0.05132032558321953, -0.014609720557928085, -0.01738591678440571, -0.06546472758054733, 0.0061904736794531345, -0.01503324881196022, 0.02739671804010868, -0.00700101675465703, 0.2294967919588089, 0.03950400650501251, -0.03811341151595116, -0.044013913720846176, 0.2087666392326355, -0.05528944358229637, 0.014210664667189121, -0.19050449132919312, 0.1274549663066864, -0.009794071316719055, -0.03265418857336044, 0.013675561174750328, -0.08258268237113953, 0.011643354780972004, 0.23186509311199188, 0.06870216131210327, -0.0164430383592844, -0.009670454077422619, 0.007640352938324213, 0.01095291506499052, -0.006539366208016872, 0.09190426766872406, 0.025298697873950005, 0.2860829532146454, -0.035806428641080856, 0.12330266088247299, -0.032181523740291595, 0.002281904686242342, -0.027323497459292412, 0.013108705170452595, -0.03164714574813843, -0.020567188039422035, -0.06237140670418739, 0.15213091671466827, -0.08066564053297043, -0.1665937900543213, -0.02387470379471779, 0.004687177017331123, -0.06509171426296234, -0.026369962841272354, -0.0967567041516304, 0.0073504275642335415, 0.06143582612276077, 0.045588359236717224, 0.016460580751299858, 0.17519532144069672, 0.0397237166762352, -0.05540550500154495, -0.04083982855081558, 0.07274313271045685, -0.06773173809051514, 0.1084829568862915, 0.04985545575618744, 0.11584566533565521, 0.02136479690670967, 0.0799056738615036, -0.012026168406009674, 0.015262864530086517, -0.028756732121109962, -0.049896515905857086, -0.014948607422411442, 0.0948486328125, 0.032382652163505554, 0.09093703329563141, 0.06798896938562393, -0.031119242310523987, 0.02700936235487461, 0.006367120426148176, 0.027017848566174507, -0.09749379009008408, 0.12538465857505798, -0.12614870071411133, 0.14677082002162933, 0.14738678932189941, -0.018226386979222298, -0.008126496337354183, -0.016374943777918816, 0.030807163566350937, -0.02559974044561386, 0.013767581433057785, -0.0101992879062891, -0.14324982464313507, -0.0039858343079686165, -0.06619291007518768, 0.00020546246378216892, -0.15254254639148712, 0.02071075700223446, 0.02827964723110199, -0.006720559671521187, 0.04771685600280762, 0.06765427440404892, 0.0020245711784809828, 0.0049004023894667625, -0.030052827671170235, -0.07151774317026138, 0.005616145674139261, 0.02603820711374283, -0.069207102060318, -0.01675630733370781 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-de_en-pharmaceutical", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "de-en", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-de_en-pharmaceutical
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de-en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_any", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-multilingual", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "HTER"]}
text-classification
TransQuest/monotransquest-hter-en_any
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "HTER", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-multilingual" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #HTER #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #HTER #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #HTER #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07369595766067505, 0.050229135900735855, -0.003045662073418498, 0.006592252291738987, 0.06373532116413116, -0.02216731198132038, 0.0490325465798378, 0.05155111104249954, -0.0006339152459986508, 0.04827902838587761, -0.06164595112204552, -0.04382726177573204, 0.12431112676858902, 0.13075603544712067, 0.0444430448114872, -0.18479906022548676, -0.005822223611176014, -0.06183311715722084, -0.057600393891334534, 0.06679968535900116, 0.0389852337539196, -0.052275195717811584, 0.07227984070777893, 0.08005020022392273, -0.03714976832270622, -0.02276848442852497, -0.05350309982895851, -0.06333572417497635, 0.11385606974363327, 0.15182974934577942, 0.04895782098174095, 0.02597280964255333, -0.017048705369234085, -0.15756867825984955, 0.017733057960867882, 0.07538040727376938, -0.016232730820775032, 0.0409991554915905, 0.15581010282039642, -0.026711754500865936, 0.06791433691978455, -0.013825958594679832, 0.025252629071474075, 0.06861315667629242, -0.021175559610128403, -0.11224187910556793, -0.07233873009681702, 0.0020286364015191793, 0.06411508470773697, 0.0589444637298584, -0.023860247805714607, 0.17153294384479523, -0.04443415626883507, 0.0445127934217453, 0.004739261232316494, -0.2842889130115509, -0.017709288746118546, -0.07865381240844727, -0.01110826339572668, 0.09816042333841324, -0.033130671828985214, -0.03354422375559807, 0.026520024985074997, 0.05299878492951393, 0.04575420171022415, -0.016142258420586586, 0.010572772473096848, -0.06459543108940125, -0.1483435034751892, 0.03324521332979202, 0.1645277887582779, -0.007266134489327669, -0.10440171509981155, -0.17647773027420044, -0.022483298555016518, 0.07769250124692917, 0.05433868616819382, -0.049904558807611465, -0.006799937225878239, 0.0020287702791392803, 0.032521363347768784, -0.03923259675502777, -0.11876920610666275, -0.022354375571012497, -0.08246912062168121, 0.16008494794368744, 0.07080603390932083, 0.05738363787531853, -0.05522523075342178, 0.13017790019512177, -0.04117653891444206, -0.013615591451525688, -0.05088331177830696, -0.0806281566619873, -0.11441074311733246, -0.0024989198427647352, -0.03831913694739342, -0.1344091296195984, -0.015879325568675995, 0.04222885146737099, -0.05292513594031334, 0.05487075448036194, -0.03016883321106434, 0.04288690164685249, 0.16327610611915588, 0.10526170581579208, -0.054445717483758926, -0.10069557279348373, 0.00749504379928112, -0.09463797509670258, 0.00386250764131546, -0.003222866216674447, -0.01102837361395359, -0.0684085339307785, -0.02066972479224205, 0.04553191736340523, 0.03134560212492943, 0.003309647785499692, -0.0056937942281365395, -0.068148672580719, 0.2693498432636261, -0.09171666204929352, -0.08958324044942856, 0.007244080305099487, -0.061411406844854355, 0.10479973256587982, 0.034063711762428284, -0.03860308974981308, -0.1352807879447937, -0.004200832452625036, -0.02318722940981388, -0.05052058771252632, -0.034898508340120316, -0.08628511428833008, 0.002131280256435275, -0.019534816965460777, -0.023340895771980286, -0.08877314627170563, -0.03288799896836281, -0.0965929701924324, 0.035090669989585876, -0.059391994029283524, -0.026662804186344147, -0.00992114469408989, 0.07511557638645172, -0.03948335349559784, -0.022021355107426643, -0.019963745027780533, -0.03970950469374657, 0.03838450461626053, -0.0889759212732315, 0.023387886583805084, -0.05317787826061249, 0.02501201629638672, -0.07499546557664871, 0.0009333405760116875, -0.09783439338207245, 0.11890309303998947, -0.05427417904138565, -0.015234767459332943, -0.07727762311697006, -0.04173414036631584, -0.05471417307853699, 0.04997381940484047, -0.020224086940288544, 0.10040611773729324, -0.11867479979991913, -0.04455718770623207, 0.2290612906217575, -0.1045193076133728, -0.04763012379407883, 0.1331140697002411, -0.022482313215732574, 0.12689171731472015, 0.12240565568208694, 0.06347913295030594, 0.17692099511623383, -0.038771532475948334, -0.025469519197940826, 0.04747859016060829, -0.07896536588668823, 0.06852135062217712, 0.06996336579322815, -0.043156836181879044, 0.09138045459985733, 0.015187056735157967, -0.002064522821456194, 0.018766410648822784, 0.014141883701086044, -0.020882299169898033, 0.03256601840257645, -0.04437703639268875, -0.028556926175951958, -0.11339057236909866, 0.06260520964860916, -0.003993764985352755, -0.07352899014949799, -0.018989911302924156, 0.05615534633398056, -0.024750277400016785, 0.03497623652219772, -0.06889262050390244, -0.013845942914485931, 0.024574581533670425, -0.0034506095107644796, -0.17057588696479797, 0.010774393565952778, 0.05653756484389305, -0.11521178483963013, 0.10262540727853775, 0.03647342324256897, 0.00762882549315691, 0.05661585554480553, 0.010323818773031235, 0.015215163119137287, 0.009789100848138332, -0.0697605311870575, -0.06976030021905899, -0.06267422437667847, 0.01684044860303402, -0.05024980008602142, -0.049631692469120026, -0.022883666679263115, -0.004409633111208677, 0.04948855936527252, 0.03492392599582672, 0.0639968290925026, -0.005433144047856331, 0.028518734499812126, 0.01435239240527153, 0.018483027815818787, -0.0019066556124016643, -0.019844576716423035, 0.03746621310710907, -0.1023615226149559, 0.16737724840641022, -0.11972835659980774, -0.055426325649023056, 0.05595289170742035, -0.004117994569242001, -0.05707515776157379, -0.14314763247966766, -0.007574119139462709, -0.030740248039364815, -0.07513516396284103, -0.0110278045758605, 0.20672138035297394, 0.038582246750593185, 0.06082608550786972, -0.10426219552755356, -0.07404430955648422, 0.0035641049034893513, 0.011774345301091671, 0.016124621033668518, 0.07102090865373611, -0.06482340395450592, -0.16436952352523804, 0.039203472435474396, 0.034613411873579025, 0.019218657165765762, 0.16227693855762482, 0.01573038287460804, -0.09792211651802063, 0.03639077767729759, 0.08497756719589233, -0.027696406468749046, 0.052696485072374344, -0.06683516502380371, -0.02978658676147461, 0.043906763195991516, 0.05231816694140434, 0.06187163293361664, -0.0781770646572113, 0.058230869472026825, 0.024728402495384216, 0.021595614030957222, -0.08241195976734161, 0.02983984723687172, -0.006456688512116671, 0.08204799145460129, 0.06428737938404083, 0.14175966382026672, -0.0035351801197975874, -0.08383750170469284, -0.11218095570802689, 0.14106424152851105, -0.11765208095312119, -0.20922456681728363, -0.17181161046028137, 0.021874966099858284, -0.01487831398844719, -0.020251724869012833, 0.05534788593649864, -0.052112556993961334, -0.05666320398449898, -0.04073501005768776, 0.10454283654689789, -0.0374319963157177, -0.09067879617214203, -0.0751376524567604, 0.02047540992498398, -0.06106173247098923, -0.08843570947647095, 0.04693632572889328, -0.0037411937955766916, -0.07086723297834396, 0.06088698282837868, -0.040443625301122665, 0.017609868198633194, 0.07833690196275711, 0.027759317308664322, -0.04050883650779724, -0.056267719715833664, 0.2351195067167282, -0.0973648652434349, 0.03585396334528923, 0.16323845088481903, -0.03462923318147659, 0.07667556405067444, 0.037739917635917664, 0.02523854933679104, -0.03065868839621544, 0.043654780834913254, 0.033404577523469925, -0.030008789151906967, -0.21401122212409973, -0.06967417150735855, -0.026033911854028702, -0.016592951491475105, 0.0004950154689140618, 0.021053345873951912, -0.0896683856844902, 0.05253427103161812, -0.09015744179487228, 0.0528625026345253, 0.06011499837040901, 0.030858874320983887, 0.029685603454709053, -0.0029278635047376156, 0.06216344237327576, -0.04516831040382385, 0.025299184024333954, 0.13983431458473206, 0.08994711935520172, 0.2281344085931778, -0.048225339502096176, 0.1234576404094696, 0.08474604040384293, 0.09414162486791611, 0.07141026109457016, 0.06941650062799454, -0.010296796448528767, 0.06408634781837463, -0.04140804335474968, -0.04570714011788368, -0.02541796676814556, 0.04614139348268509, -0.024979127570986748, -0.06730180978775024, 0.02307557687163353, -0.015386853367090225, 0.03572572022676468, 0.2559467554092407, -0.05331585183739662, 0.020180635154247284, -0.06644922494888306, 0.019059130921959877, -0.10101016610860825, -0.1241677924990654, 0.06059684231877327, 0.12992103397846222, -0.1930103302001953, -0.006308985874056816, -0.009433264844119549, 0.0937006026506424, -0.08070779591798782, -0.03333323076367378, -0.0646597221493721, -0.010617172345519066, -0.028430309146642685, 0.06054637208580971, -0.10267452150583267, 0.05289452150464058, 0.01807248406112194, 0.03281371295452118, -0.10327208787202835, 0.016479603946208954, 0.022182706743478775, -0.02191959321498871, 0.09390538930892944, 0.025132043287158012, 0.018101144582033157, -0.03320172801613808, -0.0646020919084549, 0.03232546150684357, 0.08066913485527039, -0.04023665562272072, 0.03818637505173683, 0.030077261850237846, 0.06783084571361542, -0.0834726020693779, 0.012885594740509987, -0.05883095785975456, -0.17360937595367432, -0.010458902455866337, -0.1285165697336197, 0.09418150037527084, -0.02445000782608986, -0.0190750639885664, -0.0824275016784668, 0.036959197372198105, -0.22741462290287018, -0.12993615865707397, -0.09042162448167801, -0.06769083440303802, 0.05826447904109955, -0.08746401220560074, 0.045259468257427216, 0.003384042764082551, 0.0833471268415451, -0.03634784743189812, -0.13048812747001648, 0.023802420124411583, -0.07736580818891525, -0.1325254589319229, 0.032739222049713135, 0.06911128014326096, 0.14925310015678406, 0.05024107173085213, -0.0174529030919075, -0.04365210235118866, -0.05636637285351753, -0.10132572054862976, -0.032138969749212265, 0.1526034027338028, 0.015714189037680626, 0.11386788636445999, -0.01843126118183136, -0.12840335071086884, -0.12499441206455231, -0.06085409224033356, 0.0748947262763977, 0.07725740224123001, -0.014316536486148834, 0.15787853300571442, 0.17793959379196167, -0.06398943066596985, -0.1688767820596695, -0.04519681632518768, 0.07810095697641373, 0.07914751023054123, 0.06370596587657928, -0.15184718370437622, 0.0683663934469223, 0.05189789831638336, 0.00096835260046646, 0.09090079367160797, -0.17389875650405884, -0.08717357367277145, 0.040905021131038666, 0.06558298319578171, 0.0678158700466156, -0.04338086023926735, -0.03411145880818367, -0.03403777629137039, -0.022934051230549812, 0.10131816565990448, -0.07526790350675583, 0.028310131281614304, 0.013369184918701649, 0.09508350491523743, 0.014772020280361176, 0.00813371129333973, 0.06632895767688751, -0.06227956712245941, 0.04267691820859909, -0.02401432767510414, 0.13679446280002594, -0.09517210721969604, -0.014765015803277493, 0.05536367744207382, -0.0021646220702677965, 0.020578764379024506, -0.04001352936029434, -0.07074911147356033, -0.07075094431638718, -0.007885076105594635, -0.03142409026622772, -0.05157209932804108, -0.07562209665775299, 0.06075187027454376, 0.07301391661167145, -0.0008506511803716421, -0.0028882452752441168, -0.07514861971139908, -0.007902153767645359, 0.12265076488256454, 0.18331624567508698, 0.02561347931623459, -0.10545291751623154, -0.08186317980289459, -0.021190524101257324, 0.13029985129833221, -0.12501424551010132, 0.044548239558935165, 0.08386125415563583, 0.010277830995619297, 0.06054298207163811, -0.0013335607945919037, -0.1938243806362152, 0.07253743708133698, 0.04197974130511284, -0.03623891994357109, -0.08964716643095016, -0.054015446454286575, 0.11169376224279404, -0.040349625051021576, 0.04542667791247368, 0.11532539874315262, -0.007096175570040941, -0.06363066285848618, 0.0005069037433713675, 0.017541727051138878, 0.006296290084719658, 0.1407468467950821, -0.00302320858463645, 0.008845853619277477, -0.08267229795455933, 0.11857115477323532, 0.04087591916322708, -0.01000267919152975, 0.027708375826478004, 0.04344465211033821, -0.13013674318790436, -0.03979213163256645, 0.009993433021008968, -0.11170832067728043, -0.04126641899347305, -0.09217266738414764, 0.06420877575874329, -0.09849050641059875, -0.014090115204453468, 0.2083369642496109, 0.03514548018574715, 0.037549734115600586, -0.015396074391901493, -0.0027063756715506315, 0.04720434918999672, 0.025801917538046837, 0.026070091873407364, -0.0242911484092474, -0.04375966265797615, 0.10487274080514908, 0.04048257693648338, 0.07759258151054382, -0.030915817245841026, -0.08885087072849274, -0.08483219146728516, -0.004468848928809166, -0.13724730908870697, 0.03342803567647934, -0.08140703290700912, 0.014146853238344193, -0.03581182658672333, 0.02179899625480175, 0.0004398128658067435, 0.037324532866477966, -0.0759739950299263, 0.012643814086914062, -0.053460147231817245, 0.06198045238852501, -0.04480587691068649, 0.047371722757816315, 0.06287278980016708, -0.057635825127363205, 0.07408618927001953, -0.006516681052744389, -0.06981497257947922, 0.09247938543558121, 0.02546992152929306, 0.05526835843920708, -0.06837169080972672, 0.04068949446082115, 0.0044320980086922646, -0.011730823665857315, -0.03361852839589119, -0.017780082300305367, -0.049842242151498795, 0.004171158652752638, 0.08935117721557617, -0.061597514897584915, 0.05807887762784958, 0.0006011705845594406, 0.010614048689603806, -0.08074703067541122, 0.006317017134279013, 0.03640067204833031, 0.06973737478256226, 0.04571233689785004, -0.019401244819164276, 0.03603706508874893, -0.10311125218868256, -0.007356219459325075, 0.06117934733629227, 0.06867417693138123, -0.009244573302567005, -0.04993704333901405, 0.027185197919607162, -0.004593982826918364, 0.1687217354774475, -0.03727467358112335, 0.047951698303222656, 0.012780513614416122, 0.005285701248794794, -0.14670293033123016, -0.02880229987204075, -0.010315771214663982, 0.000509290664922446, 0.032607514411211014, -0.025727329775691032, 0.023137342184782028, -0.1077500507235527, -0.07502997666597366, 0.05376806855201721, 0.043942779302597046, 0.0027758507058024406, 0.04032796993851662, -0.0009129560785368085, -0.03276171162724495, -0.004976182244718075, -0.06679245829582214, 0.009218181483447552, -0.024742113426327705, -0.023378310725092888, 0.06849528849124908, 0.11275965720415115, -0.09897642582654953, 0.08842910081148148, 0.060699377208948135, -0.03516246750950813, -0.1125168651342392, -0.24560166895389557, 0.0019152131862938404, -0.04848907142877579, -0.03164723142981529, -0.08824869990348816, 0.020936664193868637, 0.10920533537864685, 0.08996640145778656, -0.020808545872569084, 0.06949064135551453, -0.18044210970401764, -0.1993495374917984, 0.06656359881162643, 0.015235035680234432, 0.07704244554042816, 0.010778413154184818, 0.04793350398540497, 0.03746774047613144, 0.08461819589138031, 0.05330045148730278, 0.05176560953259468, -0.01647750474512577, -0.011790529824793339, -0.05570574477314949, 0.006578674074262381, -0.012473458424210548, 0.028438862413167953, -0.002046956680715084, 0.22648391127586365, 0.041085369884967804, -0.03243124112486839, -0.04171333461999893, 0.21348489820957184, -0.05365686118602753, 0.006329670082777739, -0.19042187929153442, 0.14427365362644196, -0.007983732037246227, -0.03472132235765457, 0.0214570090174675, -0.0819978192448616, 0.015614203177392483, 0.24476853013038635, 0.07974427193403244, -0.023679494857788086, -0.008824990130960941, 0.006411568261682987, 0.010540889576077461, -0.0022700431291013956, 0.09119539707899094, 0.031136341392993927, 0.2889939844608307, -0.04376225173473358, 0.12839612364768982, -0.038119085133075714, 0.005759111139923334, -0.026893015950918198, 0.015692593529820442, -0.022814106196165085, -0.021702997386455536, -0.06188073009252548, 0.15083973109722137, -0.08018792420625687, -0.1885952353477478, -0.029992254450917244, 0.004098000470548868, -0.06498979032039642, -0.025099946185946465, -0.08341895043849945, 0.013148102909326553, 0.057691384106874466, 0.040725987404584885, 0.015467948280274868, 0.18411438167095184, 0.04243581369519234, -0.05531499162316322, -0.05336984992027283, 0.08029235899448395, -0.06633058190345764, 0.10063990950584412, 0.04802834987640381, 0.10702799260616302, 0.016749193891882896, 0.07584881782531738, -0.003118049819022417, 0.017472295090556145, -0.024717677384614944, -0.059161052107810974, -0.01957390084862709, 0.0911758542060852, 0.039473433047533035, 0.08997828513383865, 0.06717000901699066, -0.038425642997026443, 0.02909279055893421, 0.01328221708536148, 0.026970859616994858, -0.09782075881958008, 0.12566587328910828, -0.12078908830881119, 0.14786618947982788, 0.15027247369289398, -0.017952129244804382, -0.00598796084523201, -0.02113858051598072, 0.027054961770772934, -0.029566314071416855, 0.0005536578828468919, -0.005367578007280827, -0.13874666392803192, 0.004524208139628172, -0.07763036340475082, 0.0019386893836781383, -0.15059012174606323, 0.02131219208240509, 0.028892461210489273, -0.004625992849469185, 0.045808229595422745, 0.0732434019446373, -0.003843714715912938, 0.010310457088053226, -0.025406740605831146, -0.049186475574970245, 0.00814093742519617, 0.028337499126791954, -0.06925273686647415, -0.019705193117260933 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_cs-pharmaceutical", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-cs", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_cs-pharmaceutical
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-cs" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_de-it-nmt
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-it-smt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_de-it-smt
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_de-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_lv-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-lv", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_lv-it-nmt
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-lv" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_lv-it-smt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-lv", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_lv-it-smt
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-lv" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.07401654869318008, 0.04948030412197113, -0.0030633569695055485, 0.005598915740847588, 0.06245854124426842, -0.02168201468884945, 0.0475192591547966, 0.053647711873054504, 0.000811117934063077, 0.04664922505617142, -0.06317431479692459, -0.04575375095009804, 0.12489143013954163, 0.13146831095218658, 0.04424995929002762, -0.183088481426239, -0.005707883276045322, -0.06217310577630997, -0.061203423887491226, 0.06554394215345383, 0.03899194672703743, -0.05264220014214516, 0.07266437262296677, 0.08091119676828384, -0.03687327727675438, -0.022271456196904182, -0.053655628114938736, -0.06248022988438606, 0.11409822851419449, 0.15147250890731812, 0.04775165021419525, 0.027309393510222435, -0.016510741785168648, -0.15726187825202942, 0.018057754263281822, 0.07538443058729172, -0.015757789835333824, 0.04033007100224495, 0.1547480970621109, -0.026951339095830917, 0.06899701058864594, -0.014877868816256523, 0.024349374696612358, 0.0692305639386177, -0.019686637446284294, -0.11422335356473923, -0.07188313454389572, 0.001995009370148182, 0.06330429762601852, 0.05838526040315628, -0.023963022977113724, 0.17174890637397766, -0.04603166505694389, 0.04329030588269234, 0.007685129996389151, -0.28164124488830566, -0.01591215841472149, -0.0790322795510292, -0.013115269131958485, 0.09695091843605042, -0.03267659246921539, -0.032782770693302155, 0.027351079508662224, 0.05190698429942131, 0.04739189147949219, -0.016801742836833, 0.010948269627988338, -0.06287479400634766, -0.147987499833107, 0.032968670129776, 0.166281059384346, -0.006577279884368181, -0.10283094644546509, -0.17448793351650238, -0.022509774193167686, 0.07822174578905106, 0.054453618824481964, -0.04831293225288391, -0.006668505258858204, 0.00018815227667801082, 0.03283657506108284, -0.0393076092004776, -0.11937699466943741, -0.0220791008323431, -0.08013860136270523, 0.15847474336624146, 0.07192031294107437, 0.05750175938010216, -0.05565182492136955, 0.13173578679561615, -0.040404923260211945, -0.014295353554189205, -0.05077189952135086, -0.079505056142807, -0.11563574522733688, -0.0020263618789613247, -0.03857247158885002, -0.1331886351108551, -0.013931835070252419, 0.04140998795628548, -0.0553603433072567, 0.056510623544454575, -0.02885240688920021, 0.04251961410045624, 0.16422024369239807, 0.10373163223266602, -0.05559944361448288, -0.0982823520898819, 0.008282461203634739, -0.09445808827877045, 0.003288257634267211, -0.0028246145229786634, -0.011330770328640938, -0.06866029649972916, -0.019519783556461334, 0.0447351448237896, 0.029403312131762505, 0.0031239797826856375, -0.004772951826453209, -0.06855617463588715, 0.2683522701263428, -0.09222200512886047, -0.09126829355955124, 0.00799805298447609, -0.06120150163769722, 0.10384669154882431, 0.034937962889671326, -0.03875711187720299, -0.1360899657011032, -0.0035620222333818674, -0.023776071146130562, -0.05079161375761032, -0.03399181738495827, -0.08440717309713364, 0.0020985333248972893, -0.01878259889781475, -0.023517489433288574, -0.08861144632101059, -0.032001856714487076, -0.09534814953804016, 0.035550713539123535, -0.05918698385357857, -0.02740175649523735, -0.009599678218364716, 0.07576023042201996, -0.040223319083452225, -0.021845009177923203, -0.01981310546398163, -0.04003291204571724, 0.03783288598060608, -0.08955492824316025, 0.024148335680365562, -0.05389580875635147, 0.02467249147593975, -0.07392579317092896, 0.0016562717501074076, -0.09836775064468384, 0.1181524246931076, -0.05522378906607628, -0.014214455150067806, -0.07723955065011978, -0.04213978722691536, -0.0532529316842556, 0.04925078898668289, -0.020883284509181976, 0.10000129789113998, -0.11631790548563004, -0.045206040143966675, 0.22859658300876617, -0.10354924947023392, -0.047936148941516876, 0.1332368105649948, -0.023193849250674248, 0.12722818553447723, 0.12164074927568436, 0.06360011547803879, 0.1768980324268341, -0.039736051112413406, -0.02386784553527832, 0.049378421157598495, -0.07821375876665115, 0.0683426558971405, 0.06916452199220657, -0.04269671067595482, 0.09037033468484879, 0.015596333891153336, -0.0028543362859636545, 0.017849870026111603, 0.01478650700300932, -0.02185322344303131, 0.03206615522503853, -0.04517018422484398, -0.027695385739207268, -0.11352834105491638, 0.06369861960411072, -0.0023499217350035906, -0.07294096797704697, -0.01809232123196125, 0.05767517536878586, -0.025065064430236816, 0.03583567962050438, -0.06762472540140152, -0.012786764651536942, 0.02653362788259983, -0.003933038096874952, -0.1698317676782608, 0.012519876472651958, 0.056081052869558334, -0.11792206019163132, 0.10364041477441788, 0.039158210158348083, 0.006696703378111124, 0.05580030381679535, 0.008969640359282494, 0.015727099031209946, 0.009111389517784119, -0.06809338182210922, -0.06794630736112595, -0.0637880340218544, 0.017169741913676262, -0.04842105507850647, -0.045379430055618286, -0.021861469373106956, -0.004655411001294851, 0.051260996609926224, 0.03608173504471779, 0.06283208727836609, -0.0034931169357150793, 0.028589574620127678, 0.012877353467047215, 0.019343946129083633, -0.001714227139018476, -0.019864438101649284, 0.03752019628882408, -0.10307688266038895, 0.16628007590770721, -0.11946180462837219, -0.05781814083456993, 0.05547082796692848, -0.004108610097318888, -0.05613486096262932, -0.14437448978424072, -0.007235725875943899, -0.031350649893283844, -0.07474812865257263, -0.011724291369318962, 0.2051832377910614, 0.03804097697138786, 0.06087041646242142, -0.10611779242753983, -0.07597914338111877, 0.003863782621920109, 0.01107003539800644, 0.016515688970685005, 0.0701245367527008, -0.06456034630537033, -0.16503065824508667, 0.03684751316905022, 0.034211769700050354, 0.01821949891746044, 0.16532407701015472, 0.015259938314557076, -0.09800788760185242, 0.03622431680560112, 0.08565156906843185, -0.02867225557565689, 0.05501839518547058, -0.06819681823253632, -0.029531054198741913, 0.043748170137405396, 0.05197920650243759, 0.06300466507673264, -0.07870985567569733, 0.05908208340406418, 0.023517992347478867, 0.021970365196466446, -0.08265028148889542, 0.03045801818370819, -0.006606054492294788, 0.08137241750955582, 0.06491310149431229, 0.14251044392585754, -0.0038080078084021807, -0.08438091725111008, -0.11212330311536789, 0.14149723947048187, -0.11803244799375534, -0.20906075835227966, -0.1705474555492401, 0.02285749837756157, -0.01499108225107193, -0.022118445485830307, 0.05556713044643402, -0.05270244553685188, -0.05629963427782059, -0.03987325727939606, 0.10362252593040466, -0.03765241801738739, -0.09120888262987137, -0.07573108375072479, 0.021219443529844284, -0.0607154443860054, -0.08833218365907669, 0.045827463269233704, -0.004429081920534372, -0.07032769173383713, 0.060840483754873276, -0.04158397391438484, 0.016686977818608284, 0.0794697254896164, 0.026897476986050606, -0.03833947330713272, -0.055929526686668396, 0.23375457525253296, -0.09702052175998688, 0.037215542048215866, 0.16110724210739136, -0.03453699126839638, 0.07719272375106812, 0.03767692297697067, 0.02562868967652321, -0.029719175770878792, 0.043673161417245865, 0.03447817265987396, -0.029483232647180557, -0.21376194059848785, -0.07008766382932663, -0.026865394786000252, -0.01864500343799591, -0.0003872700035572052, 0.02050725556910038, -0.08898966759443283, 0.05110635608434677, -0.09051891416311264, 0.05335213616490364, 0.059771083295345306, 0.030166761949658394, 0.02917911857366562, -0.0021480757277458906, 0.06018505245447159, -0.04513048753142357, 0.02557927556335926, 0.14002230763435364, 0.09063387662172318, 0.22881057858467102, -0.051534220576286316, 0.12388266623020172, 0.08655726164579391, 0.09526447206735611, 0.07092949002981186, 0.06854896992444992, -0.011035372503101826, 0.0644441768527031, -0.04097018763422966, -0.046188775449991226, -0.02325441502034664, 0.04633083939552307, -0.025856932625174522, -0.06736615300178528, 0.022484099492430687, -0.014014714397490025, 0.03577188029885292, 0.256132572889328, -0.05181421712040901, 0.022048918530344963, -0.0637236163020134, 0.019500210881233215, -0.09953542798757553, -0.12374646216630936, 0.06113286316394806, 0.1290142834186554, -0.19387520849704742, -0.004947172477841377, -0.009269274771213531, 0.09255808591842651, -0.08023151010274887, -0.03298357501626015, -0.06526853144168854, -0.00938353594392538, -0.029168251901865005, 0.062041182070970535, -0.10253643244504929, 0.05346687510609627, 0.018099794164299965, 0.03203544020652771, -0.1043459102511406, 0.015521597117185593, 0.02358405292034149, -0.020144542679190636, 0.0932067260146141, 0.027033977210521698, 0.018505819141864777, -0.0326140820980072, -0.06212354078888893, 0.03338443860411644, 0.07969428598880768, -0.03981231898069382, 0.03742789477109909, 0.029852351173758507, 0.06680438667535782, -0.08335612714290619, 0.013865525834262371, -0.05870334804058075, -0.1727142632007599, -0.008976510725915432, -0.12970244884490967, 0.0927731916308403, -0.02573743835091591, -0.018723012879490852, -0.08306745439767838, 0.034916918724775314, -0.22549399733543396, -0.1315390020608902, -0.09023990482091904, -0.0676320493221283, 0.05751524120569229, -0.08750854432582855, 0.045633815228939056, 0.0036155013367533684, 0.08348871022462845, -0.036554571241140366, -0.13129030168056488, 0.02399158477783203, -0.07634628564119339, -0.13289940357208252, 0.034053582698106766, 0.06983106583356857, 0.15030060708522797, 0.04973231256008148, -0.018052207306027412, -0.045282408595085144, -0.056723687797784805, -0.10107813775539398, -0.03288772329688072, 0.15332633256912231, 0.015043694525957108, 0.11447200179100037, -0.01798226311802864, -0.12844640016555786, -0.12449774891138077, -0.06085763871669769, 0.07401411980390549, 0.07756992429494858, -0.01423839945346117, 0.1593177765607834, 0.17924731969833374, -0.06333471834659576, -0.16980725526809692, -0.04454416409134865, 0.07688126713037491, 0.07844475656747818, 0.062471989542245865, -0.15092581510543823, 0.06939541548490524, 0.05077637732028961, 0.0006363772554323077, 0.0903511568903923, -0.17230044305324554, -0.0878940299153328, 0.041456189006567, 0.06481093913316727, 0.06764905899763107, -0.04141710326075554, -0.03344098851084709, -0.03622063994407654, -0.023721501231193542, 0.0998709499835968, -0.07912637293338776, 0.027989445254206657, 0.012972919270396233, 0.0960652306675911, 0.014657197520136833, 0.00803794339299202, 0.066066212952137, -0.0615195594727993, 0.04329874366521835, -0.023735150694847107, 0.13729581236839294, -0.09273215383291245, -0.016481999307870865, 0.05534911900758743, -0.0038505466654896736, 0.021713290363550186, -0.038352128118276596, -0.07001177221536636, -0.07321875542402267, -0.0069266255013644695, -0.032612498849630356, -0.05216469615697861, -0.07639963179826736, 0.06171131879091263, 0.07346852868795395, -0.001442390843294561, -0.00390823557972908, -0.07472631335258484, -0.008980881422758102, 0.12347473949193954, 0.1846555918455124, 0.022278431802988052, -0.10488275438547134, -0.08175519853830338, -0.02112480252981186, 0.13047663867473602, -0.12698101997375488, 0.04563841596245766, 0.08348002284765244, 0.01162150502204895, 0.060965798795223236, -0.0015780569519847631, -0.19624973833560944, 0.07102815061807632, 0.0418725349009037, -0.036632832139730453, -0.08924295008182526, -0.056046247482299805, 0.11152048408985138, -0.03968937695026398, 0.04730427637696266, 0.11571402102708817, -0.006660193670541048, -0.06412888318300247, 0.0011280173202976584, 0.01771392673254013, 0.006438526790589094, 0.14055736362934113, -0.0019430560059845448, 0.010245532728731632, -0.08371531218290329, 0.12033739686012268, 0.039719387888908386, -0.008537985384464264, 0.028010187670588493, 0.043478939682245255, -0.13156485557556152, -0.040032315999269485, 0.01065767277032137, -0.11057175695896149, -0.04033763334155083, -0.0931813046336174, 0.06389151513576508, -0.09940249472856522, -0.014767074957489967, 0.20854540169239044, 0.035450343042612076, 0.0362667515873909, -0.014520086348056793, -0.0034873634576797485, 0.04745343700051308, 0.0275410246104002, 0.026095828041434288, -0.02413032203912735, -0.043596427887678146, 0.10400675237178802, 0.04063707962632179, 0.07953289896249771, -0.030984975397586823, -0.08997344225645065, -0.08465143293142319, -0.003878071904182434, -0.13981452584266663, 0.03301826864480972, -0.08179311454296112, 0.014273886568844318, -0.03610725700855255, 0.022779209539294243, 0.00027606289950199425, 0.039089612662792206, -0.07682052999734879, 0.0135138388723135, -0.05392250418663025, 0.062086012214422226, -0.04358801618218422, 0.04756492003798485, 0.06254073977470398, -0.05828669294714928, 0.0750764012336731, -0.007678403984755278, -0.07121559977531433, 0.09503532201051712, 0.027401907369494438, 0.05388841778039932, -0.06935708224773407, 0.040779754519462585, 0.005855783820152283, -0.012598044238984585, -0.03503664955496788, -0.018844209611415863, -0.048921022564172745, 0.0031330513302236795, 0.0872572809457779, -0.06017885357141495, 0.05874548852443695, 0.0005676947766914964, 0.010416490025818348, -0.08103197067975998, 0.006979701574891806, 0.03465229272842407, 0.06857854127883911, 0.043823614716529846, -0.018425218760967255, 0.034184809774160385, -0.10264463722705841, -0.008642981760203838, 0.062160663306713104, 0.06881328672170639, -0.010725480504333973, -0.050407763570547104, 0.02727528102695942, -0.006113698706030846, 0.1685715913772583, -0.038572221994400024, 0.0481724813580513, 0.012263951823115349, 0.005840071942657232, -0.1477903425693512, -0.028505386784672737, -0.010308889672160149, -0.0017063712002709508, 0.03268572688102722, -0.026120057329535484, 0.022237809374928474, -0.10821671038866043, -0.07327690720558167, 0.05593321844935417, 0.0436357744038105, 0.0043289195746183395, 0.03919267654418945, -0.00044015049934387207, -0.03279077634215355, -0.004752032924443483, -0.06444856524467468, 0.008770455606281757, -0.023056326434016228, -0.02361595258116722, 0.0654638409614563, 0.11391881108283997, -0.09928511828184128, 0.08844925463199615, 0.05983651056885719, -0.036434631794691086, -0.11257429420948029, -0.24704714119434357, 0.002268246142193675, -0.05038822442293167, -0.03180086612701416, -0.08745322376489639, 0.020484717562794685, 0.10948748141527176, 0.09082771837711334, -0.020602654665708542, 0.07080128788948059, -0.17845967411994934, -0.20016002655029297, 0.0668550357222557, 0.015672162175178528, 0.07540781050920486, 0.012282086536288261, 0.04799520596861839, 0.03764450177550316, 0.08371878415346146, 0.05179278925061226, 0.050431448966264725, -0.016304239630699158, -0.01262641604989767, -0.05479218810796738, 0.00687065115198493, -0.01157018169760704, 0.027532441541552544, -0.002418819349259138, 0.22416828572750092, 0.041054319590330124, -0.032580453902482986, -0.04195218160748482, 0.21277397871017456, -0.05416669324040413, 0.004494672175496817, -0.19049495458602905, 0.14642708003520966, -0.0072309053502976894, -0.035633210092782974, 0.023476365953683853, -0.08253676444292068, 0.01554590929299593, 0.24465687572956085, 0.07950035482645035, -0.022980371490120888, -0.008089393377304077, 0.005243763793259859, 0.01037510670721531, -0.0036501968279480934, 0.09218413382768631, 0.03003711998462677, 0.28663715720176697, -0.043177466839551926, 0.1284130960702896, -0.03724035620689392, 0.004411335568875074, -0.02687288448214531, 0.01600654609501362, -0.021433904767036438, -0.022395245730876923, -0.06110692769289017, 0.14931844174861908, -0.07884202152490616, -0.19025343656539917, -0.03133703023195267, 0.0051225475035607815, -0.06489323079586029, -0.02508687600493431, -0.08454983681440353, 0.012877858243882656, 0.05731201171875, 0.03979039192199707, 0.015463056042790413, 0.18590135872364044, 0.04316549748182297, -0.05525853857398033, -0.053721196949481964, 0.08249575644731522, -0.06817787140607834, 0.09976573288440704, 0.04820005223155022, 0.10617169737815857, 0.016693970188498497, 0.07525547593832016, -0.002363409148529172, 0.017180291935801506, -0.02399720996618271, -0.05979152396321297, -0.021084750071167946, 0.09278491139411926, 0.039803437888622284, 0.08860550820827484, 0.06721945852041245, -0.03845028951764107, 0.028131423518061638, 0.0135657899081707, 0.028054766356945038, -0.09796186536550522, 0.12567384541034698, -0.12035509198904037, 0.1475638598203659, 0.1502450555562973, -0.017885563895106316, -0.005196786019951105, -0.02162444405257702, 0.0269649475812912, -0.02975277043879032, -0.0007141701644286513, -0.004895702004432678, -0.13785085082054138, 0.0058599477633833885, -0.07762166857719421, 0.0017058082157745957, -0.1497218906879425, 0.02251928672194481, 0.028520485386252403, -0.003972049802541733, 0.047193702310323715, 0.07490431517362595, -0.003899927716702223, 0.010988070629537106, -0.024772778153419495, -0.04773034155368805, 0.0060617150738835335, 0.028347885236144066, -0.0707617774605751, -0.018655860796570778 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_zh-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. ## Table of Contents 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-zh", "license": "apache-2.0", "tags": ["Quality Estimation", "monotransquest", "hter"]}
text-classification
TransQuest/monotransquest-hter-en_zh-wiki
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-zh" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. ## Table of Contents 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.", "## Table of Contents\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.", "## Table of Contents\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 61, 241, 105, 2, 5, 4, 9, 10, 249 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Quality Estimation #monotransquest #hter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models## Documentation\nFor more details follow the documentation." ]
[ -0.0766105204820633, 0.05763515457510948, -0.0030294868629425764, 0.007218223996460438, 0.06560620665550232, -0.022324295714497566, 0.04660658538341522, 0.05354868620634079, -0.002439216012135148, 0.047195013612508774, -0.06151304394006729, -0.04427826777100563, 0.12626901268959045, 0.13591600954532623, 0.05094797909259796, -0.18583926558494568, -0.005449834279716015, -0.0643649771809578, -0.0571683794260025, 0.06371679902076721, 0.03625866025686264, -0.05356615036725998, 0.07273715734481812, 0.07809167355298996, -0.040851105004549026, -0.022668609395623207, -0.05449396371841431, -0.06038971617817879, 0.11477097868919373, 0.15079675614833832, 0.04565742239356041, 0.023872628808021545, -0.014404192566871643, -0.15723569691181183, 0.01955343224108219, 0.07814921438694, -0.015334866009652615, 0.0433320589363575, 0.15686558187007904, -0.023660732433199883, 0.07400296628475189, -0.017383625730872154, 0.02193654142320156, 0.07117566466331482, -0.01908622682094574, -0.1169004961848259, -0.07440557330846786, 0.006361333187669516, 0.05919913202524185, 0.058746591210365295, -0.022331619635224342, 0.1674768477678299, -0.0395795963704586, 0.043519459664821625, 0.010128402151167393, -0.2786632478237152, -0.01660946011543274, -0.07722450792789459, -0.012267700396478176, 0.09631017595529556, -0.03659664839506149, -0.03130630776286125, 0.025848224759101868, 0.052907731384038925, 0.049781765788793564, -0.016060296446084976, 0.009667320176959038, -0.06460539251565933, -0.1445162147283554, 0.03231557086110115, 0.16145969927310944, -0.008399789221584797, -0.10668922960758209, -0.1749965250492096, -0.02471638284623623, 0.07411262392997742, 0.054161228239536285, -0.046219319105148315, -0.0052947052754461765, 0.001265067490749061, 0.034007396548986435, -0.044208869338035583, -0.12026017904281616, -0.01862534135580063, -0.08017520606517792, 0.1578749418258667, 0.07151738554239273, 0.05664197355508804, -0.05205342918634415, 0.13128067553043365, -0.03580230847001076, -0.011923449113965034, -0.05137338861823082, -0.07978743314743042, -0.11204716563224792, -0.0011444094125181437, -0.03649787977337837, -0.13403759896755219, -0.015275106765329838, 0.04072647541761398, -0.055474650114774704, 0.0573086142539978, -0.028983337804675102, 0.042437318712472916, 0.16042940318584442, 0.10217554867267609, -0.05670775845646858, -0.09895138442516327, 0.009397543035447598, -0.09745997190475464, 0.001884602359496057, -0.004553876351565123, -0.010404842905700207, -0.06874137371778488, -0.019409233704209328, 0.04562371224164963, 0.03024330362677574, 0.0038490479346364737, -0.0010801946045830846, -0.06989862024784088, 0.27242714166641235, -0.09373168647289276, -0.08912293612957001, 0.006766899023205042, -0.058343950659036636, 0.10543673485517502, 0.03704554960131645, -0.04271600395441055, -0.13704420626163483, -0.004079772625118494, -0.023707762360572815, -0.04983044043183327, -0.03605607524514198, -0.08214034885168076, 0.0033622034825384617, -0.02195141650736332, -0.024139676243066788, -0.086826853454113, -0.03123369999229908, -0.09640053659677505, 0.03702916204929352, -0.055719710886478424, -0.02286556176841259, -0.008694222196936607, 0.07456281036138535, -0.041207410395145416, -0.022136222571134567, -0.01795116253197193, -0.039288174360990524, 0.03786594048142433, -0.09078802168369293, 0.02287626452744007, -0.05609995126724243, 0.02338852919638157, -0.07118932902812958, 0.0018026879988610744, -0.09856049716472626, 0.1142454445362091, -0.054004307836294174, -0.01585434004664421, -0.07771213352680206, -0.04145985096693039, -0.05271507799625397, 0.049843281507492065, -0.018790902569890022, 0.09869536012411118, -0.11621198803186417, -0.04428359866142273, 0.23109792172908783, -0.10220383107662201, -0.04193778336048126, 0.13219121098518372, -0.023054730147123337, 0.12730439007282257, 0.12130122631788254, 0.06323006004095078, 0.1801147311925888, -0.04282417893409729, -0.027366049587726593, 0.04688932001590729, -0.08014112710952759, 0.06338861584663391, 0.06781438738107681, -0.045532457530498505, 0.09418430924415588, 0.018007105216383934, -0.0007981139933690429, 0.01851406879723072, 0.015106124803423882, -0.019003288820385933, 0.03298645839095116, -0.04369405657052994, -0.027674082666635513, -0.11253485828638077, 0.059382468461990356, -0.0015706776175647974, -0.07169625163078308, -0.01621033065021038, 0.05831146240234375, -0.026339950039982796, 0.037312980741262436, -0.0671079158782959, -0.016143616288900375, 0.025833962485194206, -0.003695315681397915, -0.1703757792711258, 0.015018654055893421, 0.055783841758966446, -0.11836802214384079, 0.1052384078502655, 0.031027942895889282, 0.00843928661197424, 0.05920917168259621, 0.007207478862255812, 0.015944400802254677, 0.00865828525274992, -0.06815851479768753, -0.06845282763242722, -0.06255275011062622, 0.013643955811858177, -0.04770903289318085, -0.05027763172984123, -0.023676391690969467, -0.0026692745741456747, 0.05271908640861511, 0.036913931369781494, 0.06309427320957184, -0.008395828306674957, 0.030927155166864395, 0.0117135439068079, 0.021085279062390327, -0.005051810760051012, -0.019128521904349327, 0.03963172063231468, -0.09491083770990372, 0.1650070995092392, -0.12079133093357086, -0.05875281244516373, 0.05504331737756729, 0.00241266842931509, -0.05559776723384857, -0.14363287389278412, -0.007196522783488035, -0.032941922545433044, -0.07713824510574341, -0.011729154735803604, 0.20644277334213257, 0.036653466522693634, 0.06173914298415184, -0.10261303931474686, -0.07416096329689026, 0.005542008671909571, 0.014653515070676804, 0.015764018520712852, 0.06879433989524841, -0.06535499542951584, -0.16395294666290283, 0.03875017166137695, 0.030996406450867653, 0.021783124655485153, 0.16784904897212982, 0.016556767746806145, -0.09751994907855988, 0.03449542075395584, 0.08369362354278564, -0.02820287086069584, 0.06028854846954346, -0.06560669094324112, -0.029792441055178642, 0.04323811084032059, 0.05271400883793831, 0.06474354863166809, -0.07822231203317642, 0.05933386832475662, 0.02352459914982319, 0.02263801544904709, -0.0781288743019104, 0.029169220477342606, -0.008135629817843437, 0.0807989165186882, 0.06492792814970016, 0.14520759880542755, -0.0058881123550236225, -0.08200220763683319, -0.11187466979026794, 0.14078544080257416, -0.12077375501394272, -0.20838820934295654, -0.17492011189460754, 0.021496053785085678, -0.015063919126987457, -0.021851446479558945, 0.052505217492580414, -0.05081645026803017, -0.055631279945373535, -0.04227298125624657, 0.1023433655500412, -0.0383472666144371, -0.08989028632640839, -0.0757567510008812, 0.019231945276260376, -0.05948713794350624, -0.08969422429800034, 0.04648672044277191, -0.0014551634667441249, -0.06847498565912247, 0.0580454096198082, -0.03760074824094772, 0.018989628180861473, 0.07642952352762222, 0.026013461872935295, -0.0387733057141304, -0.054284751415252686, 0.22635281085968018, -0.09693633019924164, 0.04116324707865715, 0.16202160716056824, -0.03170713037252426, 0.07586237788200378, 0.03402164950966835, 0.02579721249639988, -0.02728212997317314, 0.04240148887038231, 0.033408503979444504, -0.030393535271286964, -0.21205590665340424, -0.06620374321937561, -0.027801169082522392, -0.01401356142014265, 0.0022402824833989143, 0.022516902536153793, -0.08668623119592667, 0.049805376678705215, -0.09003467112779617, 0.053445059806108475, 0.060193873941898346, 0.03119419515132904, 0.025199666619300842, -0.0027435768861323595, 0.056913409382104874, -0.04660077393054962, 0.028528111055493355, 0.1404462456703186, 0.0880291610956192, 0.22967594861984253, -0.052730146795511246, 0.1241021454334259, 0.08536186814308167, 0.09268324822187424, 0.07015912979841232, 0.0717637911438942, -0.008359769359230995, 0.06482430547475815, -0.03959844633936882, -0.04714750871062279, -0.02555817738175392, 0.042105138301849365, -0.02750416472554207, -0.06812763959169388, 0.021218551322817802, -0.016976172104477882, 0.03594312071800232, 0.2536396384239197, -0.055079467594623566, 0.021180003881454468, -0.06920044124126434, 0.015549426898360252, -0.10082819312810898, -0.1272585541009903, 0.0586906298995018, 0.13471795618534088, -0.19373708963394165, -0.007083958480507135, -0.012064154259860516, 0.09161002933979034, -0.08195440471172333, -0.03317955136299133, -0.06307738274335861, -0.00015874802193138748, -0.030627688392996788, 0.05864931643009186, -0.10119215399026871, 0.049569372087717056, 0.019000131636857986, 0.0353357307612896, -0.10362343490123749, 0.015772201120853424, 0.02654901333153248, -0.020839499309659004, 0.09134172648191452, 0.029054680839180946, 0.01243166346102953, -0.03192721679806709, -0.06607562303543091, 0.03270801901817322, 0.08212333917617798, -0.04030995815992355, 0.03866005316376686, 0.02937285043299198, 0.0653236135840416, -0.08392234146595001, 0.015520556829869747, -0.06103391572833061, -0.17510661482810974, -0.009130141697824001, -0.12964195013046265, 0.09397544711828232, -0.025189979001879692, -0.01825324445962906, -0.08191391080617905, 0.039195507764816284, -0.227235808968544, -0.12828779220581055, -0.0917738676071167, -0.06711042672395706, 0.05799343064427376, -0.08659672737121582, 0.04702592268586159, 0.0036652954295277596, 0.0845012292265892, -0.03833688795566559, -0.1330929398536682, 0.022805510088801384, -0.07496388256549835, -0.13269783556461334, 0.03468943014740944, 0.06905399262905121, 0.14999079704284668, 0.04878797009587288, -0.019982587546110153, -0.04307522997260094, -0.054626356810331345, -0.10131536424160004, -0.03138365224003792, 0.15903043746948242, 0.02046361193060875, 0.11109812557697296, -0.019585179165005684, -0.13061878085136414, -0.12237866222858429, -0.06467673927545547, 0.07237455248832703, 0.07894088327884674, -0.014258580282330513, 0.16022424399852753, 0.17742276191711426, -0.0666445791721344, -0.1733117550611496, -0.0420544371008873, 0.07349524646997452, 0.07924941927194595, 0.06355950981378555, -0.15470968186855316, 0.06801708042621613, 0.050750818103551865, 0.002775368047878146, 0.09728632867336273, -0.1732187271118164, -0.09017634391784668, 0.03972911462187767, 0.06637381762266159, 0.06218158081173897, -0.039500702172517776, -0.03147964924573898, -0.03644702211022377, -0.02555909939110279, 0.0984937772154808, -0.08205457031726837, 0.030286628752946854, 0.011825998313724995, 0.09200214594602585, 0.01384156197309494, 0.005805233493447304, 0.06577177345752716, -0.06433244794607162, 0.0446120910346508, -0.024102816358208656, 0.13653291761875153, -0.089055635035038, -0.015937933698296547, 0.05593298748135567, -0.004986371845006943, 0.020778141915798187, -0.03884291648864746, -0.06935791671276093, -0.07465687394142151, -0.006779855117201805, -0.03501048684120178, -0.05193993076682091, -0.07685089111328125, 0.06301012635231018, 0.07492268085479736, -0.0017297094454988837, -0.004646908026188612, -0.07404389977455139, -0.007308716885745525, 0.12643153965473175, 0.18210166692733765, 0.022022182121872902, -0.10368483513593674, -0.08343406021595001, -0.022883903235197067, 0.12683510780334473, -0.12696129083633423, 0.04367309808731079, 0.08379802852869034, 0.01141548901796341, 0.059226155281066895, -0.0019394842674955726, -0.19753849506378174, 0.06831864267587662, 0.04297449439764023, -0.037306394428014755, -0.09165534377098083, -0.05510348454117775, 0.11277411878108978, -0.041561901569366455, 0.04961882904171944, 0.1154998391866684, -0.00924534723162651, -0.06482383608818054, 0.0026415653992444277, 0.01882636360824108, 0.006675924174487591, 0.1394500732421875, -0.0010163309052586555, 0.009420325048267841, -0.08252482861280441, 0.12237464636564255, 0.0376688688993454, -0.00905286893248558, 0.028087062761187553, 0.04782519489526749, -0.13108617067337036, -0.04065445438027382, 0.016383321955800056, -0.114738330245018, -0.037312205880880356, -0.09166079759597778, 0.06464174389839172, -0.09717527031898499, -0.015083580277860165, 0.20556816458702087, 0.03284710273146629, 0.036688242107629776, -0.015589200891554356, -0.0010435146978124976, 0.04542005434632301, 0.02574770897626877, 0.02182835154235363, -0.023379113525152206, -0.04379803687334061, 0.11195825040340424, 0.03947480767965317, 0.07524287700653076, -0.029953626915812492, -0.09022273868322372, -0.0812559425830841, -0.00574905751273036, -0.13794827461242676, 0.029125506058335304, -0.08573344349861145, 0.011755203828215599, -0.036974720656871796, 0.025036770850419998, 0.0032768268138170242, 0.04011129215359688, -0.07486344128847122, 0.01263736654073, -0.055481888353824615, 0.05957125127315521, -0.042631786316633224, 0.05007752776145935, 0.06109410896897316, -0.05845503881573677, 0.07482955604791641, -0.007221421226859093, -0.07111955434083939, 0.095188669860363, 0.02487572841346264, 0.05468164384365082, -0.07130122929811478, 0.03715142980217934, 0.0034044659696519375, -0.01083642803132534, -0.0353831872344017, -0.020998280495405197, -0.047895703464746475, 0.0025551393628120422, 0.09254062920808792, -0.0588817298412323, 0.05712125077843666, -0.0006264659459702671, 0.01666533388197422, -0.08139164000749588, 0.010161615908145905, 0.034828029572963715, 0.06762390583753586, 0.04158979281783104, -0.02030065841972828, 0.03254613280296326, -0.10317330062389374, -0.008655859157443047, 0.060288406908512115, 0.06456197053194046, -0.006110430229455233, -0.05019279569387436, 0.027670953422784805, -0.004928527399897575, 0.16636152565479279, -0.04093503579497337, 0.04652374982833862, 0.011056941002607346, 0.001891904161311686, -0.15438012778759003, -0.02845596708357334, -0.010103514418005943, -0.0052213482558727264, 0.03256465122103691, -0.02240782417356968, 0.024295704439282417, -0.10761123895645142, -0.06965634971857071, 0.06075380742549896, 0.04469461366534233, 0.0033213256392627954, 0.040434274822473526, -0.003909286577254534, -0.03410337492823601, -0.0077339522540569305, -0.0663597360253334, 0.008270997554063797, -0.020615098997950554, -0.028486069291830063, 0.06372290104627609, 0.11334508657455444, -0.10149148106575012, 0.09215433895587921, 0.06000543758273125, -0.03625718876719475, -0.10930268466472626, -0.24827441573143005, 0.006161149591207504, -0.04654255881905556, -0.03395624831318855, -0.08645655959844589, 0.02339751087129116, 0.10537814348936081, 0.08950958400964737, -0.020470725372433662, 0.07347973436117172, -0.17784593999385834, -0.2022726833820343, 0.0679364949464798, 0.015805259346961975, 0.07299253344535828, 0.011434055864810944, 0.047602783888578415, 0.03795341029763222, 0.08197152614593506, 0.05609888583421707, 0.050358615815639496, -0.012919414788484573, -0.011572279967367649, -0.05511998012661934, 0.005467262584716082, -0.011580688878893852, 0.026531271636486053, -0.002993260743096471, 0.2250150889158249, 0.04218842461705208, -0.03603898733854294, -0.041007254272699356, 0.21189559996128082, -0.05296902731060982, 0.005645108409225941, -0.18707230687141418, 0.14517207443714142, -0.0052587296813726425, -0.03877482935786247, 0.023419786244630814, -0.08229861408472061, 0.017334621399641037, 0.2450333535671234, 0.08130623400211334, -0.021346205845475197, -0.0070510003715753555, 0.007446124218404293, 0.009816247969865799, -0.004062287509441376, 0.09536106139421463, 0.030907124280929565, 0.28532496094703674, -0.04097166284918785, 0.12986133992671967, -0.0350421741604805, 0.0026893862523138523, -0.02896774746477604, 0.0159872118383646, -0.026220988482236862, -0.02028723806142807, -0.05978545546531677, 0.14716890454292297, -0.08134119212627411, -0.1981619894504547, -0.031422749161720276, 0.00359874009154737, -0.06436103582382202, -0.026586003601551056, -0.08605235069990158, 0.014867831952869892, 0.05579215660691261, 0.041608937084674835, 0.019726160913705826, 0.18849623203277588, 0.044532932341098785, -0.05515506491065025, -0.054272156208753586, 0.0788879245519638, -0.07306168228387833, 0.10172747820615768, 0.047878697514534, 0.0994865670800209, 0.017026029527187347, 0.07459127902984619, -0.006330827251076698, 0.015302378684282303, -0.02614748477935791, -0.05978123098611832, -0.022141501307487488, 0.09523332118988037, 0.040170758962631226, 0.08428071439266205, 0.06387685239315033, -0.0324227511882782, 0.028569400310516357, 0.016615282744169235, 0.030256764963269234, -0.09430970251560211, 0.12495628744363785, -0.121334508061409, 0.14901486039161682, 0.14888928830623627, -0.018059082329273224, -0.0066100736148655415, -0.023465538397431374, 0.025454506278038025, -0.029060544446110725, 0.0009470120421610773, -0.006257211789488792, -0.13739325106143951, 0.005827559158205986, -0.08075045049190521, 0.004222323652356863, -0.14838773012161255, 0.021599384024739265, 0.03123510256409645, -0.0059248534962534904, 0.04497627168893814, 0.0759643167257309, -0.00566638819873333, 0.011799300089478493, -0.02504594251513481, -0.04516499489545822, 0.007780548185110092, 0.02977585978806019, -0.07187860459089279, -0.018062828108668327 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-en_de-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-de", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-en_de-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-de" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-en_zh-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "en-zh", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-en_zh-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en-zh" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-et_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "et-en", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-et_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "et-en" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-multilingual") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "multilingual-multilingual", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-multilingual
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "multilingual-multilingual" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-ne_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ne-en", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-ne_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ne-en" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-ro_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ro-en", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-ro_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ro-en" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-ru_en-reddit_wikiquotes") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "ru-en", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-ru_en-reddit_wikiquotes
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru-en" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-si_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
{"language": "si-en", "license": "apache-2.0", "tags": ["Quality Estimation", "siamesetransquest", "da"]}
feature-extraction
TransQuest/siamesetransquest-da-si_en-wiki
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "si-en" ]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest. ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace. ## Installation ### From pip ### From Source ## Using Pre-trained Models ## Documentation For more details follow the documentation. 1. Installation - Install TransQuest locally using pip. 2. Architectures - Checkout the architectures implemented in TransQuest 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. 3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. Sentence-level Examples 2. Word-level Examples 4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. Sentence-level Models 2. Word-level Models 5. Contact - Contact us for any issues with TransQuest s If you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021. If you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020.
[ "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n", "# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.", "## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.", "## Installation", "### From pip", "### From Source", "## Using Pre-trained Models", "## Documentation\nFor more details follow the documentation.\n\n1. Installation - Install TransQuest locally using pip. \n2. Architectures - Checkout the architectures implemented in TransQuest\n 1. Sentence-level Architectures - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.\n 2. Word-level Architecture - We have released MicroTransQuest to perform word level quality estimation. \n3. Examples - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.\n 1. Sentence-level Examples\n 2. Word-level Examples\n4. Pre-trained Models - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level\n 1. Sentence-level Models\n 2. Word-level Models\n5. Contact - Contact us for any issues with TransQuest\n\n\ns\nIf you are using the word-level architecture, please consider citing this paper which is accepted to ACL 2021.\n\n\n\nIf you are using the sentence-level architectures, please consider citing these papers which were presented in COLING 2020 and in WMT 2020 at EMNLP 2020." ]
[ 54, 241, 105, 2, 5, 4, 9, 254 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #Quality Estimation #siamesetransquest #da #license-apache-2.0 #endpoints_compatible #region-us \n# TransQuest: Translation Quality Estimation with Cross-lingual Transformers\nThe goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.\n\nWith TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in WMT 2020. TransQuest outperforms current open-source quality estimation frameworks such as OpenKiwi and DeepQuest.## Features\n- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.\n- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.\n- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. \n- Pre-trained quality estimation models for fifteen language pairs are available in HuggingFace.## Installation### From pip### From Source## Using Pre-trained Models" ]
[ -0.06318984180688858, 0.03648517280817032, -0.0031090567354112864, 0.02877548709511757, 0.02414095029234886, -0.04764595627784729, 0.08429349213838577, 0.03530178964138031, -0.01909557357430458, 0.0532965362071991, -0.055178266018629074, -0.016120145097374916, 0.13678929209709167, 0.1904466152191162, 0.014899646863341331, -0.21659782528877258, 0.018341021612286568, -0.07355336844921112, -0.0005428832955658436, 0.061821792274713516, 0.04418933764100075, -0.061963219195604324, 0.04550466313958168, 0.08145984262228012, 0.0024662551004439592, -0.022949406877160072, -0.07761005312204361, -0.10049496591091156, 0.11502006649971008, 0.1512804478406906, 0.05043194815516472, 0.001607065787538886, -0.026201849803328514, -0.1418924629688263, 0.028406836092472076, 0.07673876732587814, -0.015642739832401276, 0.02501584030687809, 0.1447833925485611, 0.04253119230270386, 0.023613927885890007, -0.008212112821638584, 0.021587520837783813, 0.02696564793586731, -0.015793588012456894, -0.08330614864826202, -0.0820285826921463, -0.006398501340299845, 0.07837402075529099, 0.07098893821239471, -0.027806362137198448, 0.2000124603509903, -0.05267919972538948, 0.03699936345219612, 0.008200742304325104, -0.2913285493850708, -0.022521698847413063, -0.1288948357105255, -0.02214891090989113, 0.08644431829452515, -0.05366063863039017, -0.06792274862527847, 0.014071771875023842, 0.035719387233257294, -0.00004688368062488735, -0.0010260391281917691, 0.05559864267706871, -0.07859499007463455, -0.13148587942123413, 0.027241364121437073, 0.10752047598361969, -0.015356037765741348, -0.12980568408966064, -0.1898999959230423, -0.03191542252898216, 0.0922059714794159, 0.049836885184049606, -0.04482608661055565, 0.011875353753566742, 0.020158497616648674, 0.06474428623914719, -0.04043245315551758, -0.1283714771270752, -0.00952519103884697, -0.13440653681755066, 0.1971459537744522, 0.09187483787536621, 0.03816481679677963, -0.07705038040876389, 0.0991564393043518, -0.0815390795469284, -0.04139683395624161, -0.08769989758729935, -0.08606649935245514, -0.12110382318496704, -0.019541293382644653, -0.046877264976501465, -0.1505257487297058, -0.03045918606221676, 0.08673442900180817, -0.040093813091516495, 0.05131861940026283, -0.050032634288072586, 0.024865174666047096, 0.18173067271709442, 0.1234571784734726, -0.04514799639582634, -0.05646375194191933, 0.03347885608673096, -0.1060890257358551, 0.018480125814676285, -0.013076609000563622, 0.003914009314030409, -0.07953482866287231, -0.07140083611011505, 0.03829732909798622, 0.036750104278326035, 0.00027245632372796535, 0.003644212381914258, -0.09907901287078857, 0.2694019377231598, -0.11925184726715088, -0.09602531790733337, -0.00017995358211919665, -0.04223499074578285, 0.15023349225521088, -0.003742208704352379, -0.014444124884903431, -0.12605318427085876, 0.007313404232263565, 0.01883331686258316, -0.034633588045835495, -0.03171181678771973, -0.06771667301654816, 0.03184201940894127, -0.052124202251434326, -0.02274497225880623, -0.07227856665849686, -0.04053959622979164, -0.09518294036388397, 0.034004587680101395, -0.0520993210375309, -0.0162788238376379, -0.002501717070117593, 0.057350873947143555, -0.04007622227072716, -0.021297818049788475, -0.03825980797410011, -0.03130466863512993, 0.03367198631167412, -0.07560207694768906, 0.021839411929249763, -0.03304918110370636, 0.0085626021027565, -0.05358530208468437, -0.014044005423784256, -0.09743108600378036, 0.11511081457138062, -0.04437027499079704, -0.033564142882823944, -0.06648064404726028, -0.019255978986620903, -0.05911245942115784, 0.02661273255944252, -0.02351607382297516, 0.09970589727163315, -0.1821437031030655, -0.018549591302871704, 0.2370697408914566, -0.13147854804992676, -0.04702647030353546, 0.13739927113056183, -0.04815211519598961, 0.11047583818435669, 0.11894364655017853, 0.05345476046204567, 0.17203041911125183, -0.07648894935846329, -0.06154836341738701, 0.022845203056931496, -0.06329885870218277, 0.06258717179298401, 0.11409176141023636, -0.014120862819254398, 0.1505506932735443, 0.011172550730407238, -0.021725919097661972, -0.0015680312644690275, 0.041159141808748245, -0.02628137730062008, 0.041498973965644836, -0.025985341519117355, -0.004792769439518452, -0.12180586159229279, 0.06755797564983368, 0.012094855308532715, -0.06908948719501495, -0.02328047901391983, 0.0755794420838356, -0.017364289611577988, 0.036741722375154495, -0.1123398020863533, -0.04743640497326851, -0.0002270899130962789, 0.00011874241317855194, -0.15775787830352783, 0.026814695447683334, 0.06095478683710098, -0.11687692254781723, 0.12452039122581482, 0.01625635288655758, 0.015388717874884605, 0.04842953756451607, 0.02558596059679985, 0.004174253437668085, -0.033579226583242416, -0.06631102412939072, -0.05957511439919472, -0.07340694218873978, 0.011871634051203728, -0.07367362827062607, -0.12257219851016998, -0.010163405910134315, -0.03127356618642807, 0.04743620753288269, 0.04551330581307411, 0.060485661029815674, 0.002306599635630846, 0.02813872881233692, 0.005900740157812834, 0.015355467796325684, -0.01998572237789631, -0.05352335423231125, 0.040640685707330704, -0.08073386549949646, 0.17470592260360718, -0.09787486493587494, -0.0035029426217079163, 0.0511484295129776, 0.017887882888317108, -0.029560115188360214, -0.13438649475574493, -0.009090559557080269, -0.033211663365364075, -0.07466292381286621, 0.03067595511674881, 0.2487732321023941, 0.05651316046714783, 0.05168996378779411, -0.13387878239154816, -0.07187686860561371, -0.0072834729216992855, -0.006682886276394129, 0.013947663828730583, 0.050297755748033524, -0.05547923222184181, -0.21127142012119293, 0.024761099368333817, 0.06536564230918884, 0.01567661575973034, 0.17233338952064514, -0.010230683721601963, -0.1048414334654808, 0.00008682335464982316, 0.11563722789287567, -0.006689930334687233, 0.02115500532090664, -0.0008731000707484782, -0.018706629052758217, 0.03037285804748535, 0.0505831353366375, 0.06012691557407379, -0.05350043624639511, 0.05113622173666954, 0.05577308312058449, 0.03692922368645668, -0.06075318157672882, 0.035239096730947495, 0.0013789760414510965, 0.06776979565620422, 0.08944857120513916, 0.1808929443359375, -0.0018355947686359286, -0.08065591007471085, -0.0678848922252655, 0.13995687663555145, -0.11856304109096527, -0.189579576253891, -0.15438498556613922, 0.0015820327680557966, -0.0160839706659317, -0.014145463705062866, 0.03805256634950638, -0.10327611863613129, -0.045588329434394836, -0.03838103637099266, 0.08795046806335449, -0.03008347935974598, -0.06319191306829453, -0.06229270622134209, 0.04117995500564575, -0.0800694152712822, -0.0811283066868782, 0.043428704142570496, 0.0043908702209591866, -0.06419190019369125, 0.03634761646389961, -0.011335081420838833, -0.01618514396250248, 0.04749790579080582, 0.03211323544383049, -0.03841139003634453, -0.030490407720208168, 0.2092328667640686, -0.10672462731599808, 0.043464675545692444, 0.18703216314315796, -0.046910785138607025, 0.07164258509874344, 0.04926747828722, 0.00947935413569212, -0.04300477355718613, 0.040902260690927505, 0.03626003861427307, -0.021516500040888786, -0.2518346607685089, -0.026494378224015236, -0.020836137235164642, -0.023270774632692337, -0.009794216603040695, 0.02756294049322605, -0.10559823364019394, 0.04658877104520798, -0.09292930364608765, 0.08501538634300232, 0.034851811826229095, 0.027183815836906433, 0.08068370819091797, 0.010240741074085236, 0.04574565216898918, -0.07431712746620178, 0.02990853041410446, 0.14777390658855438, 0.10303504765033722, 0.22708024084568024, -0.04699699580669403, 0.1477508842945099, 0.0840693786740303, 0.08134400844573975, 0.08888275921344757, 0.08546844124794006, -0.011288958601653576, 0.04992688447237015, -0.02983645722270012, -0.060982584953308105, -0.06127476319670677, 0.05098515376448631, -0.0281118992716074, -0.09219089150428772, 0.05233043059706688, 0.00601189536973834, 0.014473405666649342, 0.159506157040596, -0.0886700451374054, 0.04638376459479332, -0.06229440122842789, 0.008120744489133358, -0.1550600677728653, -0.12288519740104675, 0.0523432195186615, 0.12128111720085144, -0.1784960925579071, -0.022562680765986443, -0.022876596078276634, 0.09155283868312836, -0.1289563775062561, -0.03802618011832237, -0.0636536180973053, -0.008520904928445816, -0.006373980548232794, 0.04846542328596115, -0.07413654774427414, 0.055954672396183014, 0.023639781400561333, 0.07802130281925201, -0.12005134671926498, 0.04163878411054611, 0.028512025251984596, -0.06383941322565079, 0.07128468155860901, 0.014070332050323486, 0.014203952625393867, -0.026988094672560692, -0.07928825914859772, 0.03531866893172264, 0.11621032655239105, -0.014010763727128506, 0.06669334322214127, 0.04451465234160423, 0.08607852458953857, -0.10757602751255035, 0.08091646432876587, -0.04941416159272194, -0.19761313498020172, 0.013699744828045368, -0.13360106945037842, 0.08687113970518112, -0.021871503442525864, -0.029507670551538467, -0.06810502707958221, 0.07478275895118713, -0.22521290183067322, -0.11456667631864548, -0.10228637605905533, -0.09103769063949585, 0.10356012731790543, -0.11094805598258972, 0.04896091669797897, -0.002593160839751363, 0.11263677477836609, -0.044067688286304474, -0.1401570737361908, 0.005188708659261465, -0.0753798708319664, -0.11098876595497131, 0.030793823301792145, 0.04033457115292549, 0.1348179131746292, 0.03671411797404289, 0.00696355476975441, -0.034993842244148254, -0.052405945956707, -0.1210353821516037, -0.05914849042892456, 0.17210233211517334, 0.011587214656174183, 0.061851080507040024, 0.01485329307615757, -0.05846549943089485, -0.10294345021247864, -0.05662108585238457, 0.07035192102193832, 0.08607450872659683, 0.013059587217867374, 0.1720052808523178, 0.1447897106409073, -0.05400926619768143, -0.13121281564235687, -0.0672181248664856, 0.1134275272488594, 0.08523257821798325, 0.0458812341094017, -0.20238520205020905, 0.06263234466314316, 0.032347410917282104, -0.015661103650927544, 0.05542370676994324, -0.1207602322101593, -0.08520132303237915, 0.04352950304746628, 0.04886813089251518, 0.04736645892262459, -0.01989673636853695, -0.05605434998869896, -0.027947302907705307, 0.01946139894425869, 0.11128587275743484, -0.06717856973409653, 0.05281730741262436, 0.03072250820696354, 0.08043670654296875, 0.013920488767325878, 0.012130461633205414, 0.05634814128279686, -0.07798991352319717, 0.04724587872624397, -0.030554311349987984, 0.12984557449817657, -0.10311181098222733, -0.026750367134809494, 0.050846487283706665, 0.021880170330405235, 0.029401343315839767, -0.06520707905292511, -0.10936662554740906, -0.046751875430345535, -0.03271001577377319, -0.030294978991150856, -0.049546051770448685, -0.07246888428926468, 0.07051699608564377, 0.07027256488800049, 0.0024166773073375225, 0.030854279175400734, -0.03726094961166382, -0.037322767078876495, 0.10801467299461365, 0.18582725524902344, 0.08857863396406174, -0.06961608678102493, -0.08384967595338821, -0.005601626355201006, 0.1214081346988678, -0.1416478306055069, 0.03245402127504349, 0.0657440647482872, -0.0004040258063469082, 0.02801932767033577, -0.022982513532042503, -0.2029554843902588, 0.06389504671096802, 0.026967521756887436, -0.02024010568857193, -0.0861670970916748, -0.027850570157170296, 0.18434715270996094, -0.021563518792390823, 0.05160333961248398, 0.1257300227880478, -0.0097959628328681, -0.06500181555747986, -0.01131011825054884, 0.0009288627770729363, 0.032406460493803024, 0.13029634952545166, -0.005114239640533924, -0.004900291562080383, -0.08997777849435806, 0.11885534226894379, 0.02984173782169819, -0.05928879603743553, 0.06346214562654495, 0.043939970433712006, -0.09935082495212555, -0.04413701966404915, 0.04673313722014427, -0.1408013552427292, -0.006725063547492027, -0.09134478121995926, 0.06374907493591309, -0.0506453812122345, 0.008207111619412899, 0.20765118300914764, 0.03704594448208809, 0.06788112968206406, -0.030916595831513405, -0.005998748354613781, 0.055980995297431946, 0.010038856416940689, 0.03593483567237854, -0.020352624356746674, -0.053279533982276917, 0.08523283153772354, 0.021903125569224358, 0.06497226655483246, -0.01949012279510498, -0.08652965724468231, -0.04686952754855156, -0.013635783456265926, -0.11269655078649521, 0.06756217777729034, -0.0706784576177597, 0.02091801166534424, -0.03483552485704422, 0.01706336997449398, 0.010186969302594662, 0.040868692100048065, -0.07398602366447449, 0.009290014393627644, -0.06473945826292038, 0.05585693195462227, -0.05154305323958397, 0.06914503872394562, 0.07488436251878738, -0.06402863562107086, 0.08425942808389664, 0.016095230355858803, -0.07549070566892624, 0.09240783751010895, 0.036784809082746506, 0.06745121628046036, -0.0753571167588234, 0.04297911375761032, 0.0018432002980262041, 0.006111219059675932, -0.00921395793557167, -0.0011425380362197757, -0.049212776124477386, -0.010348977521061897, 0.0839034840464592, -0.07474955916404724, 0.0338800810277462, 0.03198204189538956, -0.013042524456977844, -0.07928698509931564, 0.012707265093922615, 0.05848005414009094, 0.03365514054894447, 0.04360382258892059, -0.01203317940235138, 0.05285085737705231, -0.07849980890750885, -0.008219967596232891, 0.05753280967473984, 0.08247436583042145, 0.029546018689870834, -0.07790731638669968, 0.019978193566203117, 0.0002803174138534814, 0.15870468318462372, -0.07916387915611267, 0.04351983591914177, 0.006752413231879473, -0.055775560438632965, -0.14336954057216644, 0.0005341500509530306, 0.04727894440293312, 0.011991557665169239, 0.022461215034127235, -0.035270288586616516, -0.017621126025915146, -0.11986895650625229, -0.0863303393125534, 0.02639654278755188, 0.10881302505731583, 0.05115427449345589, 0.04556120187044144, 0.008365807123482227, 0.002370086731389165, -0.026908010244369507, -0.06674493104219437, -0.011355294845998287, -0.046158816665410995, -0.021163063123822212, 0.020782386884093285, 0.11280542612075806, -0.09336075186729431, 0.0754704549908638, 0.09359101951122284, -0.02570684626698494, -0.11934790015220642, -0.2717812657356262, -0.018168015405535698, -0.01721874065697193, -0.0020256394054740667, -0.08755055069923401, 0.05802049860358238, 0.06153968721628189, 0.1247556135058403, -0.040302567183971405, 0.1049712747335434, -0.16838917136192322, -0.19976630806922913, 0.09714894741773605, 0.015443703159689903, 0.06511852145195007, 0.04613659903407097, 0.03272154927253723, 0.02999088354408741, 0.04976128041744232, 0.04781340807676315, 0.06840457767248154, 0.0006641859072260559, -0.019770754501223564, -0.058138180524110794, -0.0018508977955207229, 0.002699160948395729, 0.0007081839721649885, 0.006059726234525442, 0.2308812439441681, 0.032128218561410904, -0.05863174796104431, -0.04099645838141441, 0.19949965178966522, -0.03812297061085701, -0.007526910398155451, -0.19836993515491486, 0.0784413069486618, 0.00005087473982712254, -0.0233285054564476, 0.0027669721748679876, -0.061222709715366364, 0.006641962565481663, 0.19755609333515167, 0.014003983698785305, -0.008964933454990387, 0.008628355339169502, 0.0522247776389122, 0.01456567831337452, -0.025876222178339958, 0.08786757290363312, -0.007606508210301399, 0.29885369539260864, -0.024626391008496284, 0.08498307317495346, -0.031099338084459305, -0.017641009762883186, -0.013039479963481426, 0.048153940588235855, -0.04638337343931198, -0.028893211856484413, -0.0910034030675888, 0.14661453664302826, -0.06949973851442337, -0.20762623846530914, -0.017632903531193733, 0.0104698920622468, -0.09931735694408417, -0.009666520170867443, -0.0576678141951561, 0.026517823338508606, 0.04235510900616646, 0.06100136414170265, 0.017131809145212173, 0.11751322448253632, 0.05271229147911072, -0.028757061809301376, -0.004600766580551863, 0.08554525673389435, -0.013243482448160648, 0.07208140939474106, 0.0794982984662056, 0.10962182283401489, 0.019329911097884178, 0.07750619202852249, -0.03365498408675194, 0.030076639726758003, -0.01764632761478424, -0.0958697572350502, -0.029009664431214333, 0.11253604292869568, 0.03701997920870781, 0.06586587429046631, 0.08247783035039902, -0.04171130433678627, 0.030728358775377274, 0.02206694893538952, 0.026784254238009453, -0.11847133934497833, 0.16253645718097687, -0.1464441865682602, 0.1433660089969635, 0.1362784504890442, -0.009429926984012127, -0.008815320208668709, -0.019583135843276978, 0.06029602885246277, -0.030345939099788666, -0.05136378854513168, -0.03345219045877457, -0.1277998834848404, -0.009592615067958832, -0.06728385388851166, 0.03972676396369934, -0.1130126491189003, 0.002943743485957384, 0.04934486001729965, -0.0013154991902410984, 0.025935687124729156, 0.04672182723879814, 0.004094016272574663, 0.009697021916508675, -0.0097278393805027, -0.05538060516119003, 0.015231790952384472, -0.011705493554472923, -0.06580917537212372, -0.012045387178659439 ]
null
null
transformers
#Michael Scott DialoGPT model
{"tags": ["conversational"]}
text-generation
TrebleJeff/DialoGPT-small-Michael
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Michael Scott DialoGPT model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
#Deadpool DialoGPT Model
{"tags": ["conversational"]}
text-generation
TrimPeachu/Deadpool
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Deadpool DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# GPT-2 for Music Language Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation. This model is a rather small instance of GPT-2 trained on [TristanBehrens/js-fakes-4bars](https://huggingface.co/datasets/TristanBehrens/js-fakes-4bars). The model generates 4 bars at a time of Bach-like chorales with four voices (soprano, alto, tenor, bass). If you are contribute, if you want to say hello, if you want to know more, find me on [LinkedIn](https://www.linkedin.com/in/dr-tristan-behrens-734967a2/) ## Model description The model is GPT-2 with 6 decoders and 8 attention-heads each. The context length is 512. The embedding dimensions are 512 as well. The vocabulary size is 119. ## Intended uses & limitations This model is just a proof of concept. It shows that HuggingFace can be used to compose music. ### How to use There is a notebook in the repo that you can run on Google Colab. ### Limitations and bias Since this model has been trained on a very small corpus of music, it is overfitting heavily.
{"tags": ["gpt2", "text-generation", "music-modeling", "music-generation"], "widget": [{"text": "PIECE_START"}, {"text": "PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=60"}, {"text": "PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=58"}]}
text-generation
TristanBehrens/js-fakes-4bars
[ "transformers", "pytorch", "gpt2", "text-generation", "music-modeling", "music-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #music-modeling #music-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# GPT-2 for Music Language Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation. This model is a rather small instance of GPT-2 trained on TristanBehrens/js-fakes-4bars. The model generates 4 bars at a time of Bach-like chorales with four voices (soprano, alto, tenor, bass). If you are contribute, if you want to say hello, if you want to know more, find me on LinkedIn ## Model description The model is GPT-2 with 6 decoders and 8 attention-heads each. The context length is 512. The embedding dimensions are 512 as well. The vocabulary size is 119. ## Intended uses & limitations This model is just a proof of concept. It shows that HuggingFace can be used to compose music. ### How to use There is a notebook in the repo that you can run on Google Colab. ### Limitations and bias Since this model has been trained on a very small corpus of music, it is overfitting heavily.
[ "# GPT-2 for Music\n\nLanguage Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation.\n\nThis model is a rather small instance of GPT-2 trained on TristanBehrens/js-fakes-4bars. The model generates 4 bars at a time of Bach-like chorales with four voices (soprano, alto, tenor, bass).\n\nIf you are contribute, if you want to say hello, if you want to know more, find me on LinkedIn", "## Model description\n\nThe model is GPT-2 with 6 decoders and 8 attention-heads each. The context length is 512. The embedding dimensions are 512 as well. The vocabulary size is 119.", "## Intended uses & limitations\n\nThis model is just a proof of concept. It shows that HuggingFace can be used to compose music.", "### How to use\n\nThere is a notebook in the repo that you can run on Google Colab.", "### Limitations and bias\n\nSince this model has been trained on a very small corpus of music, it is overfitting heavily." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #music-modeling #music-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT-2 for Music\n\nLanguage Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation.\n\nThis model is a rather small instance of GPT-2 trained on TristanBehrens/js-fakes-4bars. The model generates 4 bars at a time of Bach-like chorales with four voices (soprano, alto, tenor, bass).\n\nIf you are contribute, if you want to say hello, if you want to know more, find me on LinkedIn", "## Model description\n\nThe model is GPT-2 with 6 decoders and 8 attention-heads each. The context length is 512. The embedding dimensions are 512 as well. The vocabulary size is 119.", "## Intended uses & limitations\n\nThis model is just a proof of concept. It shows that HuggingFace can be used to compose music.", "### How to use\n\nThere is a notebook in the repo that you can run on Google Colab.", "### Limitations and bias\n\nSince this model has been trained on a very small corpus of music, it is overfitting heavily." ]
[ 61, 127, 45, 33, 21, 31 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #music-modeling #music-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT-2 for Music\n\nLanguage Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation.\n\nThis model is a rather small instance of GPT-2 trained on TristanBehrens/js-fakes-4bars. The model generates 4 bars at a time of Bach-like chorales with four voices (soprano, alto, tenor, bass).\n\nIf you are contribute, if you want to say hello, if you want to know more, find me on LinkedIn## Model description\n\nThe model is GPT-2 with 6 decoders and 8 attention-heads each. The context length is 512. The embedding dimensions are 512 as well. The vocabulary size is 119.## Intended uses & limitations\n\nThis model is just a proof of concept. It shows that HuggingFace can be used to compose music.### How to use\n\nThere is a notebook in the repo that you can run on Google Colab.### Limitations and bias\n\nSince this model has been trained on a very small corpus of music, it is overfitting heavily." ]
[ -0.11908318102359772, 0.06659548729658127, -0.0040001473389565945, 0.1291104406118393, 0.08243145793676376, -0.06162785738706589, 0.05678177997469902, 0.06766413897275925, -0.03649983927607536, 0.1733531504869461, -0.04331324249505997, -0.06976042687892914, 0.05876081436872482, 0.14214351773262024, 0.008263643831014633, -0.2984638512134552, 0.0028357594273984432, 0.010150282643735409, -0.012135621160268784, 0.04411022737622261, 0.04201361909508705, -0.07331370562314987, 0.017222614958882332, -0.062236715108156204, -0.07578475773334503, 0.011028951965272427, -0.06509014964103699, -0.02775290608406067, 0.010328173637390137, 0.05619995668530464, -0.015183573588728905, -0.010168211534619331, -0.013519423082470894, -0.08290259540081024, 0.009451329708099365, 0.018282616510987282, -0.018599851056933403, 0.01036419440060854, 0.050398875027894974, 0.05961708351969719, 0.13643141090869904, -0.07857757806777954, -0.030526893213391304, 0.0687546357512474, -0.0899738222360611, -0.07346779108047485, -0.12883377075195312, -0.0299652349203825, 0.07344042509794235, 0.09810920059680939, -0.06990262120962143, 0.023197084665298462, -0.03416844457387924, 0.043180353939533234, 0.24521423876285553, -0.21959497034549713, -0.023322196677327156, 0.13361436128616333, 0.11654729396104813, 0.15416204929351807, -0.05786643549799919, 0.004845449700951576, 0.07405579835176468, 0.1368108093738556, 0.05592471733689308, -0.07464004307985306, 0.09663763642311096, -0.08852525055408478, -0.12187308818101883, -0.0932934433221817, 0.16156873106956482, -0.034115154296159744, -0.08396359533071518, -0.09482787549495697, -0.035652875900268555, -0.081798255443573, -0.014816776849329472, -0.005178758408874273, 0.06720300763845444, 0.011553269810974598, -0.01915649138391018, -0.08579128235578537, -0.07886729389429092, -0.016853900626301765, -0.04857685789465904, 0.010317623615264893, 0.010515655390918255, -0.05898379534482956, 0.014364829286932945, 0.033970851451158524, -0.1478760987520218, -0.10379016399383545, -0.07156751304864883, 0.027904534712433815, -0.021503673866391182, 0.018684672191739082, -0.027120620012283325, 0.03259505331516266, 0.020984599366784096, 0.12459024041891098, -0.06456881761550903, -0.044215958565473557, 0.05444642901420593, 0.03558829426765442, 0.09392964094877243, 0.15338484942913055, 0.01390330120921135, -0.15383662283420563, 0.11092443019151688, -0.026652120053768158, 0.09390731900930405, -0.04567385092377663, -0.14756393432617188, -0.10416954755783081, 0.10000839084386826, 0.033945340663194656, 0.05137991905212402, -0.03003663383424282, -0.043314795941114426, -0.016548343002796173, 0.05672334507107735, -0.12087799608707428, 0.07099754363298416, -0.002287802752107382, 0.04627292603254318, 0.04279886558651924, 0.004089978523552418, -0.04561864584684372, -0.12955477833747864, 0.0103598702698946, -0.019706115126609802, -0.014148551039397717, -0.07463955134153366, -0.12951524555683136, 0.1162564679980278, -0.09016650170087814, 0.0006788201862946153, -0.07148787379264832, -0.011775871738791466, -0.07219329476356506, -0.05622509494423866, -0.08001026511192322, -0.10063910484313965, -0.011230962350964546, -0.07103975862264633, -0.07701407372951508, -0.09105230867862701, -0.0004975370247848332, -0.020224004983901978, 0.0640939250588417, 0.032741155475378036, 0.11029327660799026, -0.09226085245609283, 0.08776991814374924, -0.10720118880271912, 0.05838548019528389, -0.22477614879608154, 0.13158246874809265, -0.041003692895174026, -0.08391506224870682, 0.002760830568149686, -0.06818646937608719, -0.05722297728061676, 0.06792109459638596, 0.061367217451334, 0.05942444130778313, -0.2475380003452301, -0.11886247247457504, 0.13439451158046722, -0.10982154309749603, -0.04070882126688957, 0.1879008412361145, 0.03552364185452461, 0.04252466931939125, 0.12746796011924744, 0.17299440503120422, 0.09244021773338318, 0.033312588930130005, -0.1957412213087082, -0.018664490431547165, 0.008946256712079048, -0.007195016834884882, 0.0356348417699337, -0.01162723172456026, 0.19124193489551544, 0.0033434706274420023, 0.13691957294940948, -0.011041431687772274, 0.03823050484061241, 0.022822309285402298, 0.013281798921525478, -0.01905316300690174, -0.06966641545295715, 0.03287078067660332, -0.037504710257053375, -0.08121468126773834, -0.07506375014781952, 0.011218525469303131, -0.025268670171499252, -0.10620301961898804, 0.06523612141609192, 0.0005334732122719288, 0.17142082750797272, -0.12886027991771698, 0.01740468107163906, -0.19375796616077423, 0.03482311964035034, 0.06827876716852188, -0.015945380553603172, 0.1436624377965927, 0.10617350041866302, 0.03134641796350479, 0.07505998760461807, -0.018224909901618958, 0.029375627636909485, 0.014149648137390614, -0.023770473897457123, -0.13924051821231842, -0.005932752974331379, -0.09578774124383926, -0.05607820674777031, 0.007353714667260647, -0.07022356241941452, -0.0018362617120146751, 0.13507288694381714, 0.03185977786779404, 0.01793169602751732, -0.06639669835567474, 0.06629788875579834, 0.08469416201114655, -0.0068299430422484875, -0.06577510386705399, -0.013343972153961658, 0.07304465025663376, 0.023700738325715065, -0.02059258334338665, -0.29184597730636597, -0.08341776579618454, 0.12562483549118042, 0.06950831413269043, 0.014797530137002468, -0.08771539479494095, 0.007055534981191158, -0.003032505512237549, -0.06439349055290222, -0.06126541271805763, 0.22255519032478333, -0.016781587153673172, 0.07635924220085144, -0.11586295068264008, -0.005132797174155712, 0.03659003600478172, -0.05643021687865257, 0.04466535523533821, 0.09942106902599335, 0.03167615830898285, -0.0473000593483448, 0.1278010606765747, 0.04837653413414955, -0.05707598105072975, 0.1485372632741928, -0.0255576241761446, -0.12062986195087433, -0.0014042358379811049, -0.024862609803676605, 0.03716494143009186, 0.11055326461791992, -0.09664466977119446, 0.025477781891822815, 0.023354120552539825, 0.05562037602066994, 0.04404092952609062, -0.11281974613666534, 0.056045051664114, 0.03243943303823471, -0.05779638513922691, -0.03444598242640495, -0.011672877706587315, -0.01418621838092804, 0.027363384142518044, 0.0002506719611119479, 0.030345063656568527, 0.007343152072280645, -0.01642853207886219, -0.09813427180051804, 0.08226529508829117, -0.060259319841861725, -0.24484024941921234, -0.11199204623699188, -0.04700106382369995, 0.02684222161769867, 0.09035519510507584, 0.10067173093557358, -0.04398602247238159, -0.01567031443119049, -0.05621905252337456, 0.17190559208393097, 0.046103235334157944, -0.01712336204946041, -0.10676209628582001, 0.01666596159338951, 0.03471743315458298, -0.0723043754696846, -0.0221006590873003, -0.009533868171274662, -0.12155133485794067, -0.002969438210129738, -0.05499754473567009, 0.07308613508939743, 0.12383931130170822, 0.04080290347337723, 0.01292843371629715, -0.003535541007295251, 0.20582889020442963, -0.08728069067001343, 0.07621841132640839, 0.17565466463565826, 0.02297823689877987, 0.046667132526636124, 0.13117064535617828, 0.0013709993800148368, -0.014501082710921764, -0.010618302039802074, 0.032438237220048904, -0.1344710886478424, -0.12540464103221893, -0.05939163267612457, -0.14690864086151123, 0.07480191439390182, 0.05863950774073601, 0.03587993606925011, -0.03021622821688652, 0.07460085302591324, -0.07937776297330856, 0.14843344688415527, 0.05982711911201477, 0.058492884039878845, 0.08494774252176285, 0.005073170643299818, 0.060792699456214905, -0.06254929304122925, -0.0029867638368159533, 0.10511671006679535, 0.0862661600112915, 0.2031642645597458, -0.029407404363155365, 0.10966316610574722, 0.013974737375974655, 0.017778662964701653, 0.053989700973033905, 0.10303985327482224, -0.06120293214917183, 0.023483427241444588, -0.057838160544633865, -0.061245206743478775, -0.042770322412252426, 0.020251695066690445, 0.1137872189283371, -0.044375739991664886, -0.11576180160045624, -0.018405698239803314, -0.02734970860183239, 0.02356942556798458, 0.11529255658388138, -0.13754211366176605, -0.09962853044271469, 0.07135827094316483, -0.021039476618170738, -0.04094856604933739, 0.06517639756202698, 0.1939559280872345, -0.04323572665452957, -0.006313308607786894, 0.007220141589641571, 0.11879073828458786, -0.11213836073875427, 0.015748191624879837, 0.002573869889602065, 0.12481684982776642, 0.02511468529701233, 0.07121893018484116, -0.1647198647260666, 0.02822268195450306, 0.021035321056842804, 0.07519973069429398, -0.03942377120256424, 0.07252637296915054, 0.02116679772734642, -0.06573459506034851, 0.04316405951976776, 0.006711494643241167, -0.025010662153363228, -0.09053236246109009, -0.07066407054662704, 0.05058315396308899, 0.01446876022964716, -0.0034841231536120176, 0.11400876939296722, 0.000948966306168586, 0.0143342399969697, -0.03122354857623577, -0.03486132621765137, 0.01593957096338272, -0.18491774797439575, 0.03874870017170906, 0.016563143581151962, -0.07520783692598343, -0.03382842615246773, -0.07613521814346313, -0.016241038218140602, 0.15259231626987457, 0.02882879599928856, -0.06798554956912994, -0.04503718018531799, 0.12500755488872528, 0.12010010331869125, -0.09382859617471695, 0.0754782035946846, 0.021327268332242966, 0.10153808444738388, -0.07116550952196121, 0.004552521277219057, 0.10644613951444626, -0.025741588324308395, -0.12241590768098831, 0.030552910640835762, 0.15648694336414337, -0.016474377363920212, 0.1283131241798401, 0.025393832474946976, 0.05950981751084328, 0.058660153299570084, -0.08470050990581512, 0.03278172388672829, 0.011412909254431725, 0.03702077269554138, 0.054090529680252075, -0.00036184443160891533, -0.07165362685918808, 0.02041202038526535, 0.03419686481356621, 0.11973714083433151, 0.23991185426712036, -0.033681195229291916, 0.08227546513080597, 0.10632742196321487, -0.055569808930158615, -0.23767885565757751, -0.030893681570887566, -0.008227109909057617, 0.09676776826381683, 0.02930578961968422, -0.1657562255859375, 0.0556197315454483, 0.04721979424357414, -0.022496365010738373, 0.03466062247753143, -0.17924030125141144, -0.0630703940987587, 0.002656969241797924, -0.021555420011281967, 0.07236557453870773, -0.0981835275888443, -0.07496084272861481, -0.03053200989961624, -0.09743284434080124, -0.011972184292972088, -0.15062938630580902, 0.162020742893219, 0.05270759388804436, 0.02872442454099655, 0.041606441140174866, -0.013335740193724632, 0.08326048403978348, 0.012821880169212818, -0.028256511315703392, -0.06741919368505478, -0.024346543475985527, 0.019205302000045776, -0.0533517450094223, 0.07565484941005707, -0.11977546662092209, -0.017786340788006783, 0.0024874480441212654, -0.09517434984445572, -0.050592392683029175, 0.020120656117796898, -0.05467228963971138, -0.023398367688059807, -0.07533497363328934, 0.05344593524932861, 0.018383238464593887, 0.019829411059617996, -0.09111574292182922, -0.09985820949077606, -0.09446623921394348, 0.12026496231555939, 0.17363791167736053, -0.06839846074581146, -0.15189731121063232, 0.02422867901623249, -0.014089689590036869, 0.05242077633738518, -0.06165095791220665, 0.039205342531204224, 0.09090708941221237, 0.023870687931776047, 0.03613901138305664, 0.04959221929311752, -0.12355922907590866, 0.06139840558171272, 0.03130445256829262, -0.03481699526309967, -0.19023646414279938, -0.01804773509502411, -0.05352522432804108, -0.11958944797515869, 0.04687325656414032, 0.09138601273298264, -0.018593860790133476, -0.05503593012690544, 0.003424227936193347, 0.04602205008268356, -0.0452764667570591, 0.10824910551309586, 0.03190803527832031, 0.026416929438710213, -0.10465376824140549, 0.03918531537055969, 0.0648447796702385, -0.09276743978261948, 0.04408934712409973, 0.18710167706012726, -0.05150771141052246, -0.028415264561772346, 0.0036021978594362736, -0.016268381848931313, 0.024959517642855644, 0.01971958763897419, -0.011519107967615128, -0.1021144837141037, 0.0327889509499073, 0.047117430716753006, 0.046476054936647415, 0.011915764771401882, -0.0921567976474762, 0.05931452661752701, -0.13524577021598816, 0.08542143553495407, 0.12639939785003662, 0.07293141633272171, -0.07842723280191422, 0.04156665876507759, 0.0022384650073945522, -0.0002916207304224372, -0.046095605939626694, -0.027043838053941727, -0.06698650121688843, -0.014720329083502293, -0.13179241120815277, 0.0028577614575624466, -0.1249183863401413, -0.03786644712090492, -0.05388449877500534, -0.006536281667649746, -0.0441695936024189, 0.04770444706082344, -0.035133179277181625, -0.051669273525476456, -0.10137371718883514, 0.059723298996686935, -0.050089627504348755, -0.011134928092360497, 0.06247503682971001, -0.09226883202791214, 0.11835536360740662, -0.010125129483640194, -0.0833982303738594, -0.01330558955669403, -0.06880058348178864, -0.09839989989995956, 0.08711812645196915, 0.0561751089990139, 0.0945681780576706, -0.048456255346536636, 0.010931234806776047, 0.026451265439391136, 0.06271854788064957, 0.007380325812846422, 0.06428050249814987, -0.08498505502939224, 0.04139304906129837, -0.08748823404312134, -0.11522429436445236, -0.044394295662641525, 0.09677021950483322, 0.07167060673236847, 0.06986846029758453, 0.11642656475305557, -0.060908760875463486, 0.08472363650798798, -0.18807679414749146, 0.009217653423547745, -0.016049301251769066, -0.0830749124288559, -0.06098562851548195, -0.0674210861325264, 0.07621809840202332, 0.03282177075743675, 0.10261664539575577, 0.06678177416324615, -0.011362716555595398, -0.018044237047433853, -0.0020330119878053665, 0.1863214522600174, -0.01986333355307579, 0.16809923946857452, 0.0065123592503368855, -0.07205463200807571, 0.011867458000779152, 0.04392706975340843, 0.055553607642650604, 0.0834471806883812, 0.10724995285272598, 0.08609271794557571, 0.0894002914428711, 0.07808659225702286, 0.05610787495970726, -0.025101572275161743, -0.12573479115962982, -0.00015188836550805718, 0.03299181908369064, 0.06633076816797256, -0.02434486150741577, 0.07971112430095673, 0.08564307540655136, -0.10442735254764557, 0.10464604198932648, -0.0538034662604332, -0.08701255917549133, -0.0686398595571518, -0.2151506245136261, -0.05892043933272362, -0.033963534981012344, -0.0349094420671463, -0.13956056535243988, 0.013675471767783165, 0.11580238491296768, -0.023251408711075783, -0.038769613951444626, 0.13573481142520905, -0.06369145959615707, -0.047737967222929, 0.021785466000437737, -0.02127726934850216, 0.08452267199754715, 0.05142584070563316, -0.015530415810644627, 0.028100354596972466, 0.044435061514377594, 0.06964066624641418, 0.028255263343453407, 0.06409434229135513, -0.004439665470272303, -0.053079333156347275, -0.0624554306268692, -0.04305240139365196, 0.02335214801132679, 0.0677589476108551, 0.25966358184814453, 0.03373792767524719, -0.10800875723361969, 0.030187126249074936, 0.09369539469480515, -0.03855132311582565, -0.13302239775657654, -0.09766040742397308, 0.11046180874109268, -0.026448149234056473, -0.01615038514137268, -0.02745913900434971, -0.10624450445175171, 0.016901517286896706, 0.10732359439134598, 0.19950774312019348, -0.02234584279358387, -0.030031677335500717, 0.023712454363703728, -0.008571953512728214, -0.007913496345281601, 0.05020260065793991, 0.0856843888759613, 0.3470364809036255, -0.03324442729353905, 0.0540291927754879, -0.0578903891146183, -0.04874914139509201, -0.12377534061670303, 0.0949740782380104, -0.0037518057506531477, 0.020594976842403412, -0.04339125007390976, 0.07957843691110611, 0.012005303055047989, -0.11228030920028687, -0.044816918671131134, -0.09205779433250427, -0.12151060998439789, 0.04546654224395752, 0.027873020619153976, 0.08380799740552902, 0.11891772598028183, -0.046722374856472015, 0.04613891616463661, 0.046355850994586945, -0.016692327335476875, -0.08832274377346039, 0.0964888259768486, 0.04875049740076065, -0.1556917130947113, 0.17079667747020721, -0.02122454158961773, 0.10923757404088974, 0.10186964273452759, 0.10497159510850906, -0.08336684107780457, 0.04089220613241196, 0.046964842826128006, -0.08433865755796432, 0.03812643140554428, 0.13524682819843292, -0.040475405752658844, -0.01493088062852621, 0.08670911192893982, -0.07278536260128021, 0.013958227820694447, -0.053691912442445755, -0.026700442656874657, -0.08884592354297638, -0.021268533542752266, -0.10880600661039352, 0.08090143650770187, 0.08011908829212189, -0.038889046758413315, -0.06705698370933533, -0.012296638451516628, 0.011560565792024136, 0.04883752390742302, 0.13406974077224731, -0.008150286041200161, -0.1417037844657898, -0.022391365841031075, 0.01841011643409729, -0.017712127417325974, -0.1921568661928177, -0.04724116250872612, -0.03168647736310959, -0.00011213503603357822, -0.13414917886257172, 0.10204573720693588, 0.017328178510069847, -0.012253123335540295, -0.04762705788016319, -0.022787487134337425, -0.07610633969306946, 0.10544495284557343, -0.13445518910884857, -0.0889686644077301 ]
null
null
transformers
Rick chatbot made with GPT2 ai from the show Rick and Morty, discord bot available now! https://discord.com/oauth2/authorize?client_id=894569097818431519&permissions=1074113536&scope=bot (v1 is no longer supported with RickBot)
{"tags": ["conversational"]}
text-generation
Trixzy/rickai-v1
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Rick chatbot made with GPT2 ai from the show Rick and Morty, discord bot available now! URL (v1 is no longer supported with RickBot)
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# Peppa Pig DialoGPT Model
{"tags": ["conversational"]}
text-generation
Tropics/DialoGPT-small-peppa
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Peppa Pig DialoGPT Model
[ "# Peppa Pig DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Peppa Pig DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Peppa Pig DialoGPT Model" ]
[ -0.0046287220902740955, 0.11079838126897812, -0.004722771234810352, 0.005615032743662596, 0.14846475422382355, 0.0031290357001125813, 0.09405254572629929, 0.1498846709728241, -0.04478456825017929, -0.037625718861818314, 0.09783704578876495, 0.18134906888008118, 0.03702627867460251, 0.0956091433763504, -0.012524383142590523, -0.34462970495224, 0.09527668356895447, 0.06704514473676682, 0.06279101222753525, 0.1268656849861145, 0.06812834739685059, -0.02005312778055668, 0.08508792519569397, 0.04238331317901611, -0.11586278676986694, -0.02229073829948902, -0.010743007995188236, -0.09414513409137726, 0.11736553907394409, 0.039896026253700256, 0.05588012933731079, -0.01792462170124054, -0.04638231545686722, -0.12900806963443756, 0.03167959302663803, -0.014305820688605309, -0.0315500907599926, 0.05164714530110359, 0.02231275662779808, -0.0613209530711174, 0.12598732113838196, 0.11888492107391357, 0.027840618044137955, 0.0370497964322567, -0.13290733098983765, -0.06651213765144348, 0.05898512527346611, 0.11877432465553284, 0.06634745001792908, 0.07079597562551498, -0.04045167192816734, 0.08789527416229248, -0.0788583755493164, 0.10111835598945618, 0.1291728913784027, -0.30753830075263977, -0.016111919656395912, 0.045229606330394745, 0.05916774272918701, 0.034264106303453445, -0.03881770744919777, 0.06127592921257019, 0.03817712143063545, 0.01050203014165163, -0.06354080140590668, -0.0864323303103447, -0.03550006449222565, -0.0638858824968338, -0.11665748059749603, -0.016617516055703163, 0.17560063302516937, -0.03697692230343819, 0.03732774779200554, -0.0798802599310875, -0.1028888076543808, -0.06433957815170288, -0.07048514485359192, -0.05692293494939804, -0.06944811344146729, 0.062066804617643356, 0.06987686455249786, -0.05424582213163376, -0.09400065243244171, -0.030338536947965622, -0.14007985591888428, 0.11202292144298553, 0.0671074166893959, -0.009631014429032803, -0.1733383983373642, 0.09785007685422897, -0.0012221578508615494, -0.06820092350244522, 0.01277424767613411, -0.06512778997421265, 0.029058033600449562, 0.003165006637573242, -0.01077104452997446, 0.023167623206973076, 0.07447439432144165, 0.08745482563972473, -0.015021005645394325, 0.04881248250603676, -0.0318446159362793, 0.02663147635757923, 0.04275268316268921, 0.064370296895504, -0.06330680102109909, -0.029182761907577515, 0.018502328544855118, -0.0843355655670166, -0.0283230971544981, -0.054823391139507294, -0.15356110036373138, -0.029039349406957626, 0.07353581488132477, 0.03673408925533295, 0.006194275803864002, 0.13479161262512207, -0.01634438894689083, -0.06506315618753433, 0.0924593061208725, -0.022939546033740044, -0.024444373324513435, 0.016284670680761337, 0.02178020030260086, 0.19653327763080597, 0.04074697196483612, 0.06016197055578232, -0.12844440340995789, 0.031219271942973137, -0.07386493682861328, -0.03125134855508804, -0.011151486076414585, -0.031712308526039124, -0.0038002128712832928, 0.013814711943268776, -0.003553982824087143, -0.160061776638031, -0.17158383131027222, 0.029477756470441818, -0.003358046058565378, -0.04222281277179718, -0.1295175999403, -0.062139905989170074, 0.004725768230855465, 0.026619141921401024, -0.061475466936826706, -0.011055936105549335, -0.058150649070739746, 0.09552500396966934, -0.04985710233449936, 0.08536559343338013, -0.13040634989738464, 0.09141247719526291, -0.10273824632167816, 0.0019175577908754349, -0.1519533097743988, 0.09392361342906952, 0.020300526171922684, 0.07401114702224731, -0.015097178518772125, -0.04646387696266174, -0.1151617020368576, 0.0528872087597847, -0.05215203016996384, 0.18313461542129517, -0.04278993979096413, -0.1274469792842865, 0.3074074685573578, -0.08618360757827759, -0.10586035251617432, 0.13099220395088196, 0.03035713918507099, 0.1234758049249649, 0.18565797805786133, 0.22362525761127472, 0.08651530742645264, -0.06922300159931183, 0.10292080044746399, 0.12692397832870483, -0.05668089538812637, 0.01847011037170887, 0.028686046600341797, -0.034017957746982574, -0.09544163197278976, 0.04441523179411888, 0.09387490153312683, 0.07018887996673584, -0.041885435581207275, -0.007665683981031179, 0.009294585324823856, -0.025507748126983643, 0.08093460649251938, -0.03244004398584366, 0.10627756267786026, -0.013515458442270756, -0.06196051463484764, 0.04523487389087677, 0.055319275707006454, -0.03729166463017464, 0.044070057570934296, -0.04129438474774361, 0.1343640387058258, 0.02143523283302784, 0.05882705748081207, -0.1181662529706955, 0.013201307505369186, -0.03159336373209953, 0.06061295419931412, 0.04718608781695366, 0.11904474347829819, 0.03127723187208176, -0.03161655738949776, 0.00700394855812192, 0.0441271997988224, 0.15471340715885162, -0.005518226884305477, -0.11187055706977844, -0.07877381891012192, 0.10285268723964691, -0.03208373859524727, 0.130616694688797, -0.016290200874209404, 0.02367604337632656, -0.02982756868004799, 0.11282120645046234, -0.03508731722831726, 0.007269572000950575, 0.008165059611201286, -0.012144438922405243, -0.0491359680891037, 0.022415585815906525, 0.12246334552764893, 0.005700087174773216, -0.030707402154803276, 0.19915346801280975, -0.17489871382713318, 0.17625197768211365, 0.17334693670272827, -0.2067190557718277, -0.05115654319524765, -0.106747105717659, -0.014340104535222054, 0.004462342243641615, 0.03827394172549248, -0.08954310417175293, 0.23662781715393066, -0.04213973879814148, 0.1835223287343979, -0.061378732323646545, -0.022198233753442764, -0.03292477875947952, -0.07079881429672241, 0.05272546410560608, 0.10833855718374252, 0.05725474655628204, -0.09944948554039001, 0.16388146579265594, 0.07696907222270966, 0.08462125062942505, 0.19116432964801788, 0.05602993071079254, -0.019406136125326157, 0.07630331814289093, 0.046617209911346436, -0.0529075562953949, -0.08228261768817902, -0.3076934516429901, 0.0034857853315770626, 0.08400721848011017, 0.07472194731235504, 0.11599225550889969, -0.08130816370248795, -0.004987976513803005, 0.011723027564585209, -0.0333363339304924, 0.014022115617990494, 0.06130238622426987, 0.03619292750954628, 0.1518155336380005, 0.0041553303599357605, -0.06718306243419647, 0.044270969927310944, 0.033950354903936386, -0.08332853019237518, 0.18503352999687195, -0.11154013872146606, -0.422243595123291, -0.09704778343439102, -0.21430937945842743, -0.0117086386308074, 0.06109309196472168, 0.10918337106704712, -0.10553041845560074, -0.008349709212779999, 0.03577638044953346, 0.09078864753246307, -0.07207538187503815, 0.02941564843058586, -0.03522695600986481, -0.01624462567269802, -0.05939217284321785, -0.08473127335309982, -0.04660602658987045, -0.05119818076491356, -0.0497572235763073, 0.06164240092039108, -0.15238817036151886, 0.012076231651008129, 0.26381200551986694, 0.042122770100831985, 0.026595477014780045, -0.03245418891310692, 0.23426544666290283, -0.0803326964378357, -0.006978808436542749, 0.1616555005311966, -0.07428976893424988, 0.06637389212846756, 0.13067618012428284, -0.026435354724526405, -0.07902160286903381, 0.04001248627901077, -0.017811773344874382, -0.08453650027513504, -0.1555040031671524, -0.12733012437820435, -0.0957823246717453, 0.12414047122001648, 0.029777728021144867, 0.05236261710524559, 0.11397663503885269, 0.08678251504898071, -0.0506988987326622, 0.022660035640001297, 0.04338986426591873, 0.07641391456127167, 0.23437434434890747, -0.10747209191322327, 0.13815516233444214, 0.0057970741763710976, -0.17110402882099152, 0.07265861332416534, 0.08088189363479614, 0.014725265093147755, 0.060744091868400574, 0.07407566159963608, 0.011837690137326717, 0.05443253740668297, 0.14103110134601593, 0.08695822954177856, -0.01789124682545662, -0.032151252031326294, -0.05585815757513046, -0.028405722230672836, -0.06081310659646988, 0.021329743787646294, 0.06332094222307205, -0.09105949103832245, -0.04983082786202431, -0.04809851199388504, 0.051327139139175415, 0.08188829571008682, 0.08641652762889862, -0.17338959872722626, 0.0133774783462286, 0.05788879841566086, -0.07073413580656052, -0.12665313482284546, 0.07538200914859772, -0.03510357439517975, -0.1796179562807083, 0.04392872750759125, -0.00906856544315815, 0.11941011250019073, -0.10756798088550568, 0.09454567730426788, -0.10753662884235382, -0.09196627140045166, -0.019854828715324402, 0.1281375288963318, -0.26604992151260376, 0.13869240880012512, -0.02987716719508171, -0.06873165816068649, -0.10155943781137466, -0.0019115949980914593, -0.002974308095872402, 0.08395437151193619, 0.10170700401067734, -0.012734255753457546, 0.12521405518054962, -0.061181653290987015, -0.10731350630521774, 0.03586031123995781, 0.0691400021314621, -0.040765270590782166, -0.013841254636645317, -0.05081680044531822, 0.01869240216910839, -0.021608196198940277, -0.02172374725341797, 0.011178839951753616, -0.14572520554065704, 0.09417158365249634, 0.0251016765832901, 0.11312389373779297, 0.039154380559921265, -0.03807291015982628, -0.1460704356431961, 0.27901774644851685, -0.0468837171792984, -0.1389395147562027, -0.07741282880306244, -0.08651185035705566, 0.011622099205851555, -0.06519348919391632, 0.0305122509598732, -0.09085503220558167, 0.02584439143538475, -0.036744289100170135, -0.16529232263565063, 0.12356512248516083, -0.07970825582742691, -0.06204318255186081, -0.02538072131574154, 0.19033312797546387, 0.006248621270060539, 0.05421234667301178, 0.06292258203029633, -0.047030311077833176, -0.10497501492500305, -0.09035065770149231, -0.0757494866847992, 0.021689722314476967, -0.036520861089229584, 0.028249263763427734, -0.09029150009155273, -0.051047615706920624, -0.07219027727842331, 0.029589572921395302, 0.3201915919780731, 0.12146101891994476, -0.00958972331136465, 0.182387113571167, 0.1780020296573639, -0.07651233673095703, -0.26845723390579224, -0.15419967472553253, -0.04369564354419708, -0.051230765879154205, -0.07442258298397064, -0.1819591522216797, 0.1467089205980301, 0.05837654322385788, -0.02752518281340599, 0.1370561420917511, -0.30816206336021423, -0.1136961281299591, 0.21090614795684814, -0.0309289563447237, 0.36218756437301636, -0.10676048696041107, -0.06525839120149612, -0.049401622265577316, -0.14395329356193542, 0.14559940993785858, -0.027917122468352318, 0.13610434532165527, 0.002310925628989935, 0.13887499272823334, 0.03896624967455864, 0.01932724379003048, 0.08109614253044128, 0.0764206051826477, -0.08082413673400879, -0.09004580229520798, -0.018614280968904495, -0.09019814431667328, 0.029834281653165817, 0.02494633197784424, -0.044377829879522324, -0.007734905928373337, -0.21438521146774292, -0.05825011804699898, -0.08361239731311798, 0.05457817018032074, 0.024364663287997246, -0.08386078476905823, -0.0032693599350750446, -0.05718312785029411, 0.02176821418106556, 0.029212843626737595, 0.09804271906614304, -0.12030477076768875, 0.16827484965324402, 0.12092044949531555, 0.08548449724912643, -0.12899847328662872, -0.04529139772057533, -0.08515027910470963, -0.05792112275958061, 0.060459256172180176, -0.00899982638657093, 0.02172022871673107, 0.1037934347987175, -0.019803857430815697, 0.09350097179412842, 0.07674209773540497, -0.009332824498414993, 0.022778166458010674, 0.07204218208789825, -0.23137640953063965, 0.02801373600959778, -0.0398787260055542, -0.019998563453555107, 0.019288012757897377, 0.06037507206201553, 0.19250011444091797, 0.009183652698993683, -0.04848884046077728, 0.02119644358754158, 0.02938469499349594, -0.06301222741603851, 0.12130876630544662, -0.007546219974756241, 0.011173069477081299, -0.16777291893959045, 0.023222997784614563, 0.0023162486031651497, -0.07641275227069855, 0.02942904829978943, 0.11117152124643326, -0.1041593849658966, -0.0909523069858551, -0.06438229233026505, 0.10324618965387344, -0.10464661568403244, -0.008503653109073639, -0.010008296929299831, -0.1658746302127838, 0.08443734049797058, 0.07164415717124939, 0.07468333840370178, 0.058828700333833694, -0.07860083132982254, -0.009610003791749477, -0.03611496463418007, 0.02542297914624214, 0.05880186706781387, -0.00014058616943657398, -0.060397569090127945, 0.07455280423164368, -0.010914284735918045, 0.09475164115428925, -0.10792656242847443, -0.10295835882425308, -0.18628224730491638, 0.03089030645787716, -0.13543850183486938, -0.052066706120967865, -0.11377337574958801, -0.03804855793714523, -0.0015806835144758224, -0.03764316439628601, -0.025627583265304565, -0.06227853521704674, -0.11975225806236267, 0.02890516072511673, -0.03087572380900383, 0.011340483091771603, -0.06809172034263611, 0.04029276967048645, 0.06286869943141937, -0.011882014572620392, 0.12251055240631104, 0.11657002568244934, -0.1002708300948143, 0.08750705420970917, -0.15373513102531433, -0.048589691519737244, 0.12307330220937729, -0.004348360002040863, 0.04223987087607384, 0.04271446168422699, 0.01966465264558792, 0.04281245917081833, 0.04902983084321022, 0.06503499299287796, 0.04051338508725166, -0.11480282992124557, 0.040694430470466614, -0.06030499190092087, -0.12867000699043274, -0.0026392508298158646, -0.07830629497766495, 0.00984686054289341, 0.02780498005449772, 0.08426197618246078, -0.06186594069004059, 0.09154213219881058, -0.05761808529496193, 0.029528791084885597, 0.0024636629968881607, -0.12759070098400116, 0.012846417725086212, -0.08692270517349243, 0.012463033199310303, 0.03937327861785889, 0.2118869125843048, 0.015081762336194515, 0.017790403217077255, 0.021758107468485832, 0.0652998685836792, 0.03728937357664108, -0.009165484458208084, 0.20307913422584534, 0.11162195354700089, -0.04039353132247925, -0.06409259885549545, 0.09010642766952515, 0.03883405029773712, -0.009958701208233833, 0.12011054158210754, -0.00573824904859066, -0.07224370539188385, 0.07087767124176025, -0.03244784101843834, 0.0665995255112648, -0.18353427946567535, -0.1203683465719223, -0.03899705410003662, 0.060743845999240875, -0.028340168297290802, 0.13662081956863403, 0.10676830261945724, -0.02558276057243347, 0.008156640455126762, 0.02910635806620121, -0.06180380657315254, -0.20027723908424377, -0.1594114452600479, -0.05281481891870499, -0.13550585508346558, -0.03199292719364166, -0.12346234917640686, 0.008685207925736904, 0.12229600548744202, 0.08145323395729065, -0.042104754596948624, 0.11900480091571808, 0.006448183674365282, -0.13219723105430603, 0.0490068756043911, -0.012369485571980476, 0.08639060705900192, -0.09315156936645508, -0.03792693093419075, -0.04786837846040726, 0.10860669612884521, 0.021577607840299606, 0.028012532740831375, -0.05648895725607872, -0.02763158082962036, -0.12993453443050385, -0.06211599335074425, -0.056084729731082916, 0.06397101283073425, -0.025300975888967514, 0.13800162076950073, 0.01409997045993805, -0.07760390639305115, -0.005213269963860512, 0.16492663323879242, -0.0643468126654625, -0.04375973343849182, -0.08649516105651855, 0.27478861808776855, -0.03247030824422836, 0.12075622379779816, -0.014222132042050362, 0.023748554289340973, -0.10199630260467529, 0.4207412004470825, 0.23714202642440796, -0.12532025575637817, 0.0071616084314882755, -0.007043046876788139, 0.04697461053729057, 0.12324398010969162, 0.12109339237213135, 0.14804960787296295, 0.2958260476589203, -0.04735013097524643, -0.004877750761806965, -0.007792092859745026, -0.054327137768268585, -0.1362961232662201, -0.01644359529018402, 0.0654822364449501, -0.042699865996837616, -0.0392349436879158, 0.1008782833814621, -0.2959499657154083, 0.04899507761001587, -0.19415557384490967, -0.11149142682552338, -0.09350048005580902, -0.01417304202914238, 0.020636742934584618, 0.07004984468221664, 0.07703372091054916, -0.01082567498087883, -0.0697202980518341, 0.11024027317762375, 0.009556503966450691, -0.1804533302783966, -0.05031394213438034, 0.07898250222206116, -0.055410802364349365, 0.0027635134756565094, -0.016619566828012466, 0.0016140388324856758, 0.05616895109415054, 0.042089950293302536, 0.009929272346198559, -0.0011774713639169931, -0.008811019361019135, -0.05746772885322571, 0.03654465079307556, 0.029593970626592636, 0.0223250575363636, -0.07771743088960648, 0.07677417993545532, -0.14407388865947723, 0.015056117437779903, -0.006481793709099293, 0.00031097372993826866, -0.025562750175595284, 0.013003530912101269, -0.07645770907402039, 0.08679836988449097, 0.136667400598526, -0.029361408203840256, -0.007227752823382616, -0.034319955855607986, -0.03158591687679291, -0.04534197226166725, -0.1321326494216919, -0.09169241786003113, -0.22342777252197266, -0.1377972960472107, 0.027812302112579346, -0.007265761494636536, -0.21586579084396362, 0.008793627843260765, -0.15622729063034058, 0.06295019388198853, -0.1498548984527588, 0.09547170996665955, -0.00848541222512722, 0.022067349404096603, 0.01285897009074688, 0.04770076274871826, 0.022375620901584625, 0.11488121002912521, -0.12578997015953064, -0.07804938405752182 ]
null
null
transformers
# CPM-Generate ## Model description CPM (Chinese Pre-trained Language Model) is a Transformer-based autoregressive language model, with 2.6 billion parameters and 100GB Chinese training data. To the best of our knowledge, CPM is the largest Chinese pre-trained language model, which could facilitate downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. [[Project](https://cpm.baai.ac.cn)] [[Model](https://cpm.baai.ac.cn/download.html)] [[Paper](https://arxiv.org/abs/2012.00413)] ## Intended uses & limitations #### How to use ```python from transformers import TextGenerationPipeline, AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("TsinghuaAI/CPM-Generate") model = AutoModelWithLMHead.from_pretrained("TsinghuaAI/CPM-Generate") text_generator = TextGenerationPipeline(model, tokenizer) text_generator('清华大学', max_length=50, do_sample=True, top_p=0.9) ``` #### Limitations and bias The text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly. ## Training data We collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q\&A. The details of our training data are shown as follows. | Data Source | Encyclopedia | Webpage | Story | News | Dialog | | ----------- | ------------ | ------- | ----- | ----- | ------ | | **Size** | ~40GB | ~39GB | ~10GB | ~10GB | ~1GB | ## Training procedure Based on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \\(1.5\times10^{-4}\\) and the batch size as \\(3,072\\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \\(1,024\\). We will implement sparse attention in the future. We pre-train our model for \\(20,000\\) steps, and the first \\(5,000\\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \\(64\\) NVIDIA V100. ## Eval results | | n_param | n_layers | d_model | n_heads | d_head | |------------|-------------------:|--------------------:|-------------------:|-------------------:|------------------:| | CPM-Small | 109M | 12 | 768 | 12 | 64 | | CPM-Medium | 334M | 24 | 1,024 | 16 | 64 | | CPM-Large | 2.6B | 32 | 2,560 | 32 | 80 | We evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our [paper](https://arxiv.org/abs/2012.00413) for more detailed results. ### Zero-shot performance on text classification tasks | | TNEWS | IFLYTEK | OCNLI | | ---------- | :------------: | :------------: | :------------: | | CPM-Small | 0.626 | 0.584 | 0.378 | | CPM-Medium | 0.618 | 0.635 | 0.379 | | CPM-Large | **0.703** | **0.708** | **0.442** | ### Performance on Chinese Idiom Cloze (ChID) dataset | | Supervised | Unsupervised | |------------|:--------------:|:--------------:| | CPM-Small | 0.657 | 0.433 | | CPM-Medium | 0.695 | 0.524 | | CPM-Large | **0.804** | **0.685** | ### Performance on Short Text Conversation Generation (STC) dataset | | Average | Extrema | Greedy | Dist-1 | Dist-2 | |----------------------------------|:--------------:|:--------------:|:--------------:|:-------------------------------:|:--------------------------------:| | *Few-shot (Unsupervised)* | | | | | | | CDial-GPT | 0.899 | 0.797 | 0.810 | 1,963 / **0.011** | 20,814 / 0.126 | | CPM-Large | **0.928** | **0.805** | **0.815** | **3,229** / 0.007 | **68,008** / **0.154** | | *Supervised* | | | | | | | CDial-GPT | 0.933 | **0.814** | **0.826** | 2,468 / 0.008 | 35,634 / 0.127 | | CPM-Large | **0.934** | 0.810 | 0.819 | **3,352** / **0.011** | **67,310** / **0.233** | ### BibTeX entry and citation info ```bibtex @article{cpm-v1, title={CPM: A Large-scale Generative Chinese Pre-trained Language Model}, author={Zhang, Zhengyan and Han, Xu, and Zhou, Hao, and Ke, Pei, and Gu, Yuxian and Ye, Deming and Qin, Yujia and Su, Yusheng and Ji, Haozhe and Guan, Jian and Qi, Fanchao and Wang, Xiaozhi and Zheng, Yanan and Zeng, Guoyang and Cao, Huanqi and Chen, Shengqi and Li, Daixuan and Sun, Zhenbo and Liu, Zhiyuan and Huang, Minlie and Han, Wentao and Tang, Jie and Li, Juanzi and Sun, Maosong}, year={2020} } ```
{"language": ["zh"], "license": "mit", "tags": ["cpm"], "datasets": ["100GB Chinese corpus"]}
text-generation
TsinghuaAI/CPM-Generate
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "cpm", "zh", "arxiv:2012.00413", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2012.00413" ]
[ "zh" ]
TAGS #transformers #pytorch #tf #gpt2 #text-generation #cpm #zh #arxiv-2012.00413 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CPM-Generate ============ Model description ----------------- CPM (Chinese Pre-trained Language Model) is a Transformer-based autoregressive language model, with 2.6 billion parameters and 100GB Chinese training data. To the best of our knowledge, CPM is the largest Chinese pre-trained language model, which could facilitate downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. [Project] [Model] [Paper] Intended uses & limitations --------------------------- #### How to use #### Limitations and bias The text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly. Training data ------------- We collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q&A. The details of our training data are shown as follows. Training procedure ------------------ Based on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \(1.5\times10^{-4}\) and the batch size as \(3,072\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \(1,024\). We will implement sparse attention in the future. We pre-train our model for \(20,000\) steps, and the first \(5,000\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \(64\) NVIDIA V100. Eval results ------------ We evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our paper for more detailed results. ### Zero-shot performance on text classification tasks ### Performance on Chinese Idiom Cloze (ChID) dataset ### Performance on Short Text Conversation Generation (STC) dataset ### BibTeX entry and citation info
[ "#### How to use", "#### Limitations and bias\n\n\nThe text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly.\n\n\nTraining data\n-------------\n\n\nWe collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q&A. The details of our training data are shown as follows.\n\n\n\nTraining procedure\n------------------\n\n\nBased on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \\(1.5\\times10^{-4}\\) and the batch size as \\(3,072\\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \\(1,024\\). We will implement sparse attention in the future. We pre-train our model for \\(20,000\\) steps, and the first \\(5,000\\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \\(64\\) NVIDIA V100.\n\n\nEval results\n------------\n\n\n\nWe evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our paper for more detailed results.", "### Zero-shot performance on text classification tasks", "### Performance on Chinese Idiom Cloze (ChID) dataset", "### Performance on Short Text Conversation Generation (STC) dataset", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #cpm #zh #arxiv-2012.00413 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "#### How to use", "#### Limitations and bias\n\n\nThe text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly.\n\n\nTraining data\n-------------\n\n\nWe collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q&A. The details of our training data are shown as follows.\n\n\n\nTraining procedure\n------------------\n\n\nBased on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \\(1.5\\times10^{-4}\\) and the batch size as \\(3,072\\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \\(1,024\\). We will implement sparse attention in the future. We pre-train our model for \\(20,000\\) steps, and the first \\(5,000\\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \\(64\\) NVIDIA V100.\n\n\nEval results\n------------\n\n\n\nWe evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our paper for more detailed results.", "### Zero-shot performance on text classification tasks", "### Performance on Chinese Idiom Cloze (ChID) dataset", "### Performance on Short Text Conversation Generation (STC) dataset", "### BibTeX entry and citation info" ]
[ 68, 5, 426, 12, 16, 16, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #cpm #zh #arxiv-2012.00413 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n#### How to use#### Limitations and bias\n\n\nThe text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly.\n\n\nTraining data\n-------------\n\n\nWe collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q&A. The details of our training data are shown as follows.\n\n\n\nTraining procedure\n------------------\n\n\nBased on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \\(1.5\\times10^{-4}\\) and the batch size as \\(3,072\\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \\(1,024\\). We will implement sparse attention in the future. We pre-train our model for \\(20,000\\) steps, and the first \\(5,000\\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \\(64\\) NVIDIA V100.\n\n\nEval results\n------------\n\n\n\nWe evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our paper for more detailed results." ]
[ -0.09450042247772217, 0.05468212068080902, -0.001814211718738079, 0.022087082266807556, 0.10969328135251999, -0.030594980344176292, 0.06791344285011292, 0.11147218197584152, -0.04412565752863884, 0.11095955967903137, 0.021066483110189438, -0.10062581300735474, 0.10301405191421509, 0.11012008786201477, 0.06726997345685959, -0.2936495542526245, 0.054732587188482285, -0.04915421083569527, 0.052275270223617554, 0.11285271495580673, 0.10973482578992844, -0.09889206290245056, 0.0837295725941658, -0.0024352960754185915, -0.03192194923758507, -0.04386439174413681, -0.06522848457098007, -0.061181582510471344, 0.10504315048456192, 0.010182183235883713, 0.08213867992162704, 0.0478963740170002, 0.05548476427793503, -0.21058712899684906, 0.021313771605491638, 0.05007036030292511, 0.030056435614824295, 0.06834366172552109, 0.04346161335706711, 0.04094017297029495, 0.18176020681858063, -0.12014506757259369, 0.02226998470723629, 0.0419776551425457, -0.09138629585504532, -0.12497632205486298, -0.10832592844963074, 0.11830545961856842, 0.09268742054700851, 0.0537862665951252, -0.041956763714551926, 0.05391557514667511, -0.08838753402233124, -0.0006830343627370894, 0.062883660197258, -0.29592427611351013, -0.012897463515400887, 0.09577452391386032, 0.018038570880889893, 0.14927014708518982, -0.1089479997754097, -0.01725415326654911, 0.050653256475925446, -0.01364386361092329, 0.02695675939321518, 0.06168825924396515, 0.13365155458450317, -0.002601122949272394, -0.12395422905683517, -0.0660061240196228, 0.18731434643268585, -0.0032963331323117018, -0.10484732687473297, -0.16401030123233795, 0.012079230509698391, -0.10524982213973999, 0.015672409906983376, -0.003048605751246214, 0.028339795768260956, 0.03224622830748558, 0.052928779274225235, -0.05171347036957741, -0.13838811218738556, -0.041412901133298874, -0.024966567754745483, 0.028325065970420837, 0.048416443169116974, 0.024765176698565483, -0.029247792437672615, 0.11274709552526474, -0.023449694737792015, -0.09062446653842926, -0.09793876856565475, -0.05991097539663315, -0.0514242947101593, -0.023271197453141212, -0.032855644822120667, 0.0038373712450265884, -0.033430762588977814, 0.0704156681895256, -0.1060481145977974, 0.04923636466264725, 0.01451735571026802, 0.03786381334066391, 0.0629868134856224, 0.17647570371627808, -0.05600825697183609, 0.07455325871706009, 0.002729175379499793, 0.0010936710750684142, 0.033166397362947464, -0.01992861181497574, -0.019711211323738098, -0.015390750020742416, 0.0862516537308693, 0.052608273923397064, -0.09882688522338867, 0.0815635547041893, -0.002495582913979888, 0.0007271503563970327, 0.09750288724899292, -0.13400986790657043, 0.0022248192690312862, 0.04572022333741188, -0.05710752680897713, 0.1102883517742157, 0.040566202253103256, -0.01813342235982418, -0.03660295158624649, 0.06933056563138962, -0.05808485671877861, -0.039151862263679504, -0.09349994361400604, -0.04868554696440697, 0.032576706260442734, -0.022260667756199837, -0.07223282009363174, -0.06194555386900902, -0.12969864904880524, -0.029124656692147255, -0.023678788915276527, -0.048679936677217484, -0.01739654503762722, 0.008317159488797188, -0.05185083672404289, -0.0313631109893322, 0.006449289154261351, -0.054883286356925964, -0.05570312961935997, 0.07282551378011703, 0.01941959746181965, 0.05762277543544769, 0.04287470132112503, 0.019933653995394707, -0.10220696032047272, 0.06447014212608337, -0.16573376953601837, 0.12073735147714615, -0.03181763365864754, 0.012859406881034374, -0.03313382714986801, -0.08851318806409836, -0.06366667151451111, -0.007474529556930065, 0.013810508884489536, 0.10946091264486313, -0.2167172133922577, -0.03526711091399193, 0.17099496722221375, -0.1916750818490982, -0.08021573722362518, 0.11470545828342438, -0.012228603474795818, 0.03535186126828194, 0.09414151310920715, 0.07801685482263565, 0.06511783599853516, -0.09930945932865143, -0.09129059314727783, -0.059352051466703415, -0.01765662617981434, 0.06064080446958542, 0.08775210380554199, 0.021611351519823074, -0.007205563131719828, 0.04959305003285408, -0.08944538980722427, -0.010428464971482754, -0.06155170872807503, -0.06587232649326324, -0.029103728011250496, -0.016284862533211708, -0.004582840949296951, 0.03854166343808174, 0.008772498928010464, -0.03499498963356018, -0.05548519641160965, 0.016059305518865585, 0.09355921298265457, -0.06989531219005585, 0.015551045536994934, -0.10690397024154663, 0.10085577517747879, 0.04522435739636421, 0.001156642916612327, -0.13161469995975494, -0.05565936118364334, 0.09088768810033798, -0.044719163328409195, 0.03536011278629303, 0.011955463327467442, 0.03425547108054161, 0.07043696939945221, -0.04425947368144989, 0.010728076100349426, -0.0032640008721500635, -0.024095265194773674, -0.048403918743133545, -0.12101928889751434, -0.039157092571258545, -0.008721503429114819, 0.26245054602622986, -0.23765045404434204, 0.01743360608816147, 0.05520520359277725, 0.08978486806154251, -0.01885291375219822, -0.04277034103870392, 0.03952071815729141, 0.013465756550431252, -0.03389718011021614, -0.01828714646399021, 0.008778152987360954, 0.04595619812607765, -0.07567189633846283, 0.10718496888875961, -0.1442316770553589, -0.0971120297908783, 0.11277616769075394, 0.08308237791061401, -0.11523427069187164, -0.1094934418797493, -0.09468407928943634, -0.036632612347602844, -0.11499979346990585, -0.021244412288069725, 0.20160488784313202, -0.017150767147541046, 0.11567001044750214, -0.11197713762521744, -0.014669065363705158, -0.005356871988624334, -0.037834081798791885, -0.05330652743577957, 0.0455588735640049, 0.05027121677994728, -0.05347447097301483, 0.0671568438410759, -0.09271083772182465, 0.03986708074808121, 0.13820099830627441, -0.022363655269145966, -0.1446382999420166, -0.012513549998402596, 0.07413145154714584, 0.0041328431107103825, 0.13658563792705536, -0.03548889607191086, -0.029228009283542633, 0.03301343694329262, -0.007482495624572039, 0.05198749154806137, -0.15682728588581085, 0.040277328342199326, 0.04934165999293327, -0.07391931116580963, -0.0478898324072361, -0.06545048952102661, -0.0024293905589729548, 0.11287343502044678, 0.01714848168194294, 0.05313068628311157, -0.02233940176665783, -0.04018351435661316, -0.1558716893196106, 0.11391305178403854, -0.0774402767419815, -0.24700945615768433, -0.14235568046569824, 0.06679941713809967, -0.02159225568175316, 0.021789534017443657, -0.017584996297955513, -0.11663710325956345, -0.07153348624706268, -0.14652277529239655, -0.019931018352508545, 0.026175659149885178, -0.002991017419844866, -0.019209476187825203, 0.022245893254876137, 0.0026496448554098606, -0.08196305483579636, -0.0023301690816879272, -0.0504310242831707, -0.08327475190162659, 0.05916031450033188, -0.05303497985005379, 0.04459001123905182, 0.17889685928821564, -0.028377912938594818, -0.016317788511514664, -0.016530822962522507, 0.10424927622079849, -0.08582988381385803, 0.07625347375869751, 0.08708138763904572, -0.015410082414746284, 0.03931978717446327, 0.0879288986325264, -0.003833621507510543, -0.05293027311563492, 0.09530743956565857, -0.0020295048598200083, -0.07453861087560654, -0.2208324521780014, -0.06999576836824417, -0.055127114057540894, -0.03786546736955643, 0.026672150939702988, 0.07318476587533951, 0.10849590599536896, 0.014082038775086403, -0.08551288396120071, -0.019578907638788223, 0.06807928532361984, 0.07221882045269012, 0.012847261503338814, 0.006468981504440308, 0.035798270255327225, -0.06640437990427017, 0.020426303148269653, 0.07819073647260666, -0.028417319059371948, 0.21553654968738556, -0.05931944400072098, 0.1427018940448761, 0.05866626650094986, 0.18889343738555908, 0.09473554790019989, 0.05895734578371048, -0.07697299122810364, 0.03002908267080784, -0.01928943395614624, -0.10025739669799805, -0.07547585666179657, 0.07874136418104172, 0.056423407047986984, 0.007080001290887594, -0.09781400859355927, 0.0020747955422848463, 0.062188856303691864, 0.26079264283180237, 0.023946361616253853, -0.15779362618923187, -0.12632940709590912, 0.015137643553316593, -0.002840654458850622, -0.017986798658967018, 0.04161873459815979, 0.17720919847488403, -0.12582072615623474, 0.020039452239871025, 0.015518889762461185, 0.07176073640584946, -0.06115207448601723, -0.005035176407545805, 0.07608836144208908, 0.044152140617370605, -0.021845024079084396, 0.06928785890340805, -0.1698969453573227, 0.1632501184940338, -0.027326440438628197, 0.07358422130346298, -0.07049034535884857, 0.011234930716454983, -0.009045909158885479, 0.011703945696353912, 0.04798109456896782, 0.025493627414107323, -0.0654899999499321, -0.07933873683214188, -0.120994932949543, 0.0292428620159626, 0.0992988795042038, 0.006060630548745394, 0.10332728922367096, -0.019930677488446236, -0.0012235328322276473, -0.015249117277562618, -0.011911053210496902, -0.030144868418574333, -0.11256016045808792, 0.053200989961624146, -0.10138183832168579, 0.02043827995657921, -0.055612653493881226, -0.06691288203001022, -0.040003057569265366, 0.19843195378780365, -0.10837850719690323, -0.11464260518550873, -0.08304823935031891, -0.04890286549925804, 0.11122038960456848, -0.04074161499738693, 0.03237207606434822, 0.03995426744222641, 0.19522707164287567, 0.04290209338068962, -0.034281402826309204, 0.0004229526675771922, -0.010273474268615246, -0.21107974648475647, -0.010315588675439358, 0.18170198798179626, 0.046099934726953506, 0.06576961278915405, -0.007288837339729071, 0.01769726723432541, 0.03767275810241699, -0.12987226247787476, -0.02958385832607746, 0.139517143368721, 0.027427108958363533, 0.07979252189397812, -0.09585800021886826, 0.013470715843141079, -0.1225537583231926, -0.0765102282166481, 0.06854137778282166, 0.23230668902397156, -0.07003265619277954, 0.1334104984998703, 0.18957504630088806, -0.0700172409415245, -0.16708874702453613, -0.02314160019159317, 0.018804090097546577, 0.04312894493341446, -0.07785350829362869, -0.20095185935497284, 0.037088461220264435, 0.11332695931196213, -0.0029907235875725746, -0.00648952042683959, -0.2777729034423828, -0.14367114007472992, 0.0268708486109972, 0.029234929010272026, -0.0012127181980758905, -0.1260065734386444, -0.05712262541055679, 0.027691524475812912, -0.008800089359283447, 0.06071056053042412, -0.013147884048521519, 0.09762220084667206, -0.014918627217411995, 0.00938328541815281, 0.060973405838012695, -0.06097259745001793, 0.17183122038841248, 0.011700067669153214, 0.018086468800902367, -0.0839468315243721, 0.041009724140167236, 0.0025420398451387882, -0.04455901309847832, 0.17691253125667572, 0.013807167299091816, 0.04829061031341553, -0.11560764163732529, -0.07028067857027054, -0.03951060026884079, -0.03679530322551727, -0.05328959971666336, -0.02325807511806488, -0.11701170355081558, 0.11715225130319595, 0.05352990701794624, -0.016777606680989265, -0.017341291531920433, -0.03293478116393089, 0.02230335958302021, 0.05804748833179474, 0.1681879609823227, -0.011120413430035114, -0.02172630839049816, 0.0003352108469698578, 0.017782162874937057, 0.048532869666814804, -0.09004170447587967, 0.011002905666828156, 0.15423405170440674, 0.03458547219634056, 0.17670953273773193, 0.0383785255253315, -0.11895668506622314, 0.010196978226304054, 0.0845487117767334, -0.12270549684762955, -0.21498511731624603, -0.020470721647143364, -0.0025327689945697784, -0.10270047187805176, -0.04671034589409828, 0.03731388971209526, -0.11815496534109116, 0.0049074809066951275, 0.0024148966185748577, 0.10260222107172012, -0.00022570951841771603, 0.073966383934021, 0.018138395622372627, 0.02197069302201271, -0.07978156208992004, 0.13982775807380676, 0.1217401996254921, -0.06437399238348007, 0.010378926992416382, 0.12051630020141602, -0.10979486256837845, 0.006546325981616974, -0.05378865823149681, -0.016977496445178986, 0.007449006661772728, -0.07255438715219498, -0.003789245616644621, -0.14010663330554962, 0.014626649208366871, 0.11537551134824753, 0.007954110391438007, 0.08854520320892334, -0.010117330588400364, 0.0010180179961025715, -0.15021422505378723, 0.05233173817396164, 0.03858662024140358, 0.012168241664767265, -0.04864465445280075, 0.17006218433380127, 0.07314997911453247, 0.038066886365413666, -0.038303110748529434, -0.08419346064329147, -0.10095387697219849, -0.001816237228922546, -0.1359507143497467, 0.05663170665502548, -0.08575451374053955, -0.05723262205719948, 0.011012179777026176, -0.06194518133997917, -0.011586136184632778, 0.013842152431607246, -0.034524913877248764, -0.01480462308973074, -0.01843409240245819, 0.07154646515846252, -0.13108521699905396, -0.005368640646338463, 0.09105678647756577, -0.11110048741102219, 0.1091720461845398, 0.10988329350948334, -0.03534380719065666, 0.022564005106687546, -0.10141516476869583, 0.044425830245018005, 0.043577712029218674, 0.04296790063381195, 0.0004048847476951778, -0.12077120691537857, 0.02627871371805668, 0.035550978034734726, -0.08681565523147583, 0.02304067090153694, 0.05589571222662926, -0.08461814373731613, 0.011516275815665722, -0.0366089902818203, 0.00410377886146307, -0.11203566938638687, 0.045477043837308884, 0.06691346317529678, 0.07390790432691574, 0.0815797671675682, -0.10393702983856201, 0.024884995073080063, -0.1500719040632248, -0.025569846853613853, -0.026547888293862343, 0.031215021386742592, -0.010453734546899796, -0.017569920048117638, 0.06003178283572197, -0.0001883152435766533, 0.18730776011943817, -0.05483004078269005, -0.05303826183080673, 0.03153152018785477, -0.03645709529519081, -0.013287181966006756, 0.03300534188747406, 0.1580956131219864, 0.050194427371025085, -0.010037476196885109, 0.048710715025663376, 0.01307639665901661, -0.0617847703397274, -0.06319800019264221, 0.20744732022285461, 0.11240500956773758, 0.09149648994207382, 0.048862896859645844, 0.05495840311050415, -0.06694246083498001, -0.06912951916456223, -0.00035713016404770315, -0.1088009625673294, 0.020132558420300484, -0.05302371457219124, 0.1892773061990738, 0.16116863489151, -0.1648353934288025, 0.11948813498020172, -0.07833178341388702, -0.11840202659368515, -0.04663022235035896, -0.10187163949012756, -0.02033412642776966, -0.07802298665046692, -0.011003686115145683, -0.1310425102710724, -0.006910521537065506, 0.03813263028860092, 0.04751324653625488, -0.06494110822677612, 0.05798304080963135, -0.06870873272418976, -0.038533154875040054, 0.020910438150167465, 0.019312966614961624, 0.054848309606313705, -0.021439507603645325, -0.01343176793307066, 0.041318926960229874, 0.02327348105609417, 0.07403675466775894, 0.08122798055410385, 0.10738655179738998, 0.01968652941286564, 0.02186126820743084, -0.05204332247376442, 0.020542407408356667, -0.07114452123641968, 0.050237491726875305, 0.10211953520774841, 0.0669025257229805, -0.05221406742930412, 0.0016880572075024247, 0.1986938714981079, 0.008169598877429962, -0.055708758533000946, -0.17978979647159576, 0.26332610845565796, 0.03203630819916725, -0.05237383767962456, 0.06351376324892044, -0.13753578066825867, -0.017580455169081688, 0.2081126570701599, 0.12608297169208527, -0.033400002866983414, -0.010803564451634884, -0.0634055882692337, 0.0016521732322871685, -0.014573979191482067, 0.09450981765985489, 0.07513483613729477, 0.2568318843841553, -0.011953930370509624, 0.08260411024093628, -0.05933435261249542, 0.007256072945892811, -0.044784486293792725, 0.12140773981809616, -0.03491710126399994, -0.008366898633539677, -0.1151057556271553, 0.05604656785726547, -0.09191227704286575, -0.2621954381465912, -0.018337056040763855, -0.06862291693687439, -0.08384834229946136, 0.038532037287950516, -0.06072264164686203, 0.015340680256485939, 0.03084721602499485, 0.019369598478078842, 0.04783044010400772, 0.13450998067855835, 0.04381458833813667, -0.021906699985265732, 0.0024268985725939274, 0.12686671316623688, -0.033504266291856766, 0.2520311176776886, 0.010548042133450508, 0.004572167992591858, 0.053217075765132904, 0.05243973061442375, -0.12117698788642883, 0.03916623070836067, 0.02217734232544899, -0.09307024627923965, -0.024577487260103226, 0.1592283993959427, -0.0005387489800341427, 0.06305097043514252, 0.0976167544722557, -0.001168841146863997, 0.04607495293021202, -0.004767295904457569, 0.031775277107954025, -0.10230139642953873, 0.02743617258965969, -0.0354980044066906, 0.14344988763332367, 0.19421929121017456, -0.04467611387372017, 0.021756771951913834, -0.0440099723637104, -0.008189297281205654, -0.049886398017406464, 0.04372332617640495, 0.01047396007925272, -0.20103099942207336, 0.015103774145245552, -0.051853880286216736, 0.03491569310426712, -0.1906612366437912, -0.08928169310092926, 0.04868314042687416, -0.03234635666012764, -0.040068402886390686, 0.09252793341875076, 0.06291019171476364, 0.07608344405889511, -0.06792832911014557, -0.012952341698110104, -0.005560941528528929, 0.12977561354637146, -0.14861147105693817, -0.07145358622074127 ]
null
null
transformers
# ClinicalPubMedBERT ## Description A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes ([MIMIC-III](https://mimic.physionet.org/)). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens. Pre-trained model: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
{"language": ["en"], "license": "mit", "datasets": ["MIMIC-III"], "widget": [{"text": "Due to shortness of breath, the patient is diagnosed with [MASK], and other respiratory problems.", "example_title": "Example 1"}]}
fill-mask
Tsubasaz/clinical-pubmed-bert-base-128
[ "transformers", "pytorch", "bert", "fill-mask", "en", "dataset:MIMIC-III", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# ClinicalPubMedBERT ## Description A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens. Pre-trained model: URL
[ "# ClinicalPubMedBERT", "## Description\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. \n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens.\n\nPre-trained model: URL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# ClinicalPubMedBERT", "## Description\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. \n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens.\n\nPre-trained model: URL" ]
[ 55, 7, 152 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# ClinicalPubMedBERT## Description\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. \n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens.\n\nPre-trained model: URL" ]
[ -0.056424763053655624, 0.03608682379126549, -0.0017617332050576806, -0.00967988558113575, 0.07796049118041992, 0.03266908600926399, 0.1313381791114807, 0.11480703949928284, 0.00498412549495697, 0.055628158152103424, 0.10934572666883469, -0.00096519710496068, 0.004908123519271612, 0.1770443171262741, -0.0028624830301851034, -0.3259164094924927, 0.054490383714437485, 0.07877153158187866, 0.0031731596682220697, 0.07640724629163742, 0.08421117812395096, -0.09965287894010544, 0.027152812108397484, 0.0599256195127964, -0.04511662572622299, -0.01734904572367668, -0.001189019880257547, -0.05167505890130997, 0.09666493535041809, -0.011613268405199051, 0.08689987659454346, 0.05475196987390518, 0.0636059120297432, -0.08533123880624771, 0.03412390500307083, -0.004781828727573156, 0.03383719548583031, 0.10817660391330719, -0.004709342960268259, -0.06009112671017647, 0.10863398015499115, -0.11766501516103745, 0.05871598422527313, -0.014761331491172314, -0.07307145744562149, -0.11635580658912659, -0.051553331315517426, 0.004136550240218639, 0.06948134303092957, 0.08681105077266693, -0.0200625192373991, 0.18576882779598236, -0.08881526440382004, 0.06172837316989899, 0.12140174955129623, -0.3138014078140259, -0.028813375160098076, 0.10220488160848618, 0.10723517835140228, -0.04180099815130234, -0.018202457576990128, 0.0457378588616848, -0.004417323041707277, 0.026411395519971848, 0.11072949320077896, -0.04477449506521225, -0.02782362699508667, -0.03027430921792984, -0.13711930811405182, 0.022887375205755234, 0.18802151083946228, -0.06623121351003647, -0.026365069672465324, -0.10831522941589355, -0.04225664585828781, 0.1243908554315567, -0.03141674026846886, -0.03835376352071762, 0.015967996791005135, -0.03527588024735451, -0.017814315855503082, -0.007045815698802471, -0.07791034877300262, -0.046972669661045074, -0.12014327943325043, 0.04181559756398201, 0.05005135387182236, 0.04502365365624428, -0.048306725919246674, 0.05797537416219711, -0.0416787713766098, -0.059551797807216644, 0.0012189659755676985, -0.041491154581308365, -0.018560612574219704, -0.040409479290246964, -0.1298220008611679, -0.15865057706832886, 0.051891569048166275, 0.05479717254638672, 0.011659679934382439, -0.011330755427479744, 0.04400033876299858, 0.033062078058719635, 0.08523186296224594, 0.0188605859875679, -0.09462297707796097, 0.0196507778018713, 0.01838807947933674, 0.022044556215405464, 0.009340500459074974, 0.027557561174035072, -0.0826687142252922, -0.023253997787833214, -0.0069540864787995815, -0.0060368990525603294, -0.11540469527244568, 0.08760873973369598, -0.0301858838647604, -0.04213588684797287, 0.07539881020784378, -0.06366054713726044, -0.029307356104254723, -0.024201389402151108, 0.012567676603794098, 0.06736483424901962, 0.10705704241991043, 0.0030639732722193003, -0.11002315580844879, 0.10461260378360748, -0.05436718463897705, -0.001500748097896576, -0.10556398332118988, -0.12769150733947754, 0.008664286695420742, -0.07124735414981842, 0.0034530856646597385, -0.1155218556523323, -0.09335954487323761, -0.023866211995482445, 0.07436174154281616, -0.028694309294223785, 0.033452197909355164, -0.07889104634523392, 0.056103430688381195, -0.011086927726864815, -0.03132093697786331, 0.09435641765594482, -0.04512432962656021, 0.0007482244400307536, -0.10576049238443375, 0.14831654727458954, -0.13088774681091309, 0.03083503246307373, -0.06300577521324158, 0.014789524488151073, -0.11630439013242722, 0.01622946560382843, 0.0030239680781960487, -0.057215847074985504, -0.09330923110246658, -0.07464486360549927, -0.06952086091041565, 0.02613912895321846, 0.08709581196308136, 0.06449943035840988, -0.04987603425979614, -0.030918415635824203, 0.23956584930419922, -0.030572911724448204, -0.07217438519001007, 0.10669467598199844, -0.07565861195325851, 0.11221464723348618, 0.08469370007514954, 0.1940327286720276, -0.012158144265413284, -0.13936150074005127, 0.0395345613360405, -0.012413756921887398, -0.014645420014858246, -0.08859933167695999, 0.06587090343236923, 0.0002709814580157399, -0.058287203311920166, 0.0274488627910614, -0.002574911108240485, -0.014551596716046333, -0.09837649017572403, -0.012331613339483738, 0.011577633209526539, -0.0895698219537735, 0.011430632323026657, -0.009076655842363834, 0.10593090951442719, -0.08897630125284195, -0.020728925243020058, 0.052333101630210876, 0.09026430547237396, -0.07077427953481674, 0.0248333141207695, -0.06606964766979218, -0.014780695550143719, -0.05530354380607605, 0.005447555333375931, -0.16913752257823944, -0.01142354216426611, 0.0000035372227102925535, 0.03540484234690666, 0.028801249340176582, 0.09277696162462234, -0.0031443280167877674, 0.060285210609436035, -0.03843161463737488, 0.06331849098205566, 0.09564374387264252, 0.001092107966542244, -0.11907873302698135, -0.10008878260850906, 0.003401878522709012, -0.08020492643117905, 0.02011636272072792, -0.023418502882122993, 0.011180632747709751, -0.17258265614509583, 0.07135512679815292, -0.003987953998148441, 0.019593629986047745, 0.05649479106068611, 0.06451191753149033, 0.015052316710352898, 0.0342751182615757, 0.09945294260978699, -0.006594851613044739, -0.05856096372008324, 0.06305959820747375, -0.058218006044626236, -0.02743510529398918, 0.07055411487817764, -0.0599987767636776, -0.02484397403895855, -0.08044527471065521, -0.040010590106248856, 0.007934719324111938, -0.11749206483364105, -0.026145165786147118, 0.18886113166809082, -0.009783582761883736, 0.13777711987495422, -0.05821153521537781, -0.013865819200873375, -0.03170325607061386, -0.07010957598686218, -0.0007533390307798982, 0.05143636465072632, 0.08550159633159637, -0.1739732176065445, 0.018046922981739044, 0.07955516874790192, -0.014427326619625092, 0.13491365313529968, 0.012506918050348759, -0.09250491857528687, -0.014995132572948933, -0.07455958425998688, -0.010606223717331886, 0.03048383630812168, -0.18095995485782623, -0.024525582790374756, 0.09185116738080978, 0.03116905875504017, 0.058762721717357635, -0.06958475708961487, 0.043678928166627884, 0.013697566464543343, 0.008622230030596256, -0.15612398087978363, 0.07463817298412323, -0.017089776694774628, 0.09640756249427795, 0.04300706833600998, -0.016919035464525223, -0.006446714047342539, -0.017230765894055367, -0.10679049789905548, 0.18144342303276062, -0.08536520600318909, -0.23377367854118347, -0.09897686541080475, -0.10489603877067566, 0.016967685893177986, 0.03184988349676132, 0.056674979627132416, -0.015763483941555023, -0.09124848246574402, -0.06429421901702881, 0.04099074751138687, 0.04903209209442139, 0.004489232320338488, -0.012823080644011497, 0.026117809116840363, -0.008888695389032364, -0.0998900979757309, -0.03369680792093277, -0.12123854458332062, 0.03722899779677391, 0.10286376625299454, -0.12938377261161804, 0.05862217769026756, 0.11142662912607193, -0.02646680735051632, 0.01735815778374672, -0.046904586255550385, 0.17615756392478943, -0.01928776502609253, 0.006030614022165537, 0.14347556233406067, -0.02437586709856987, -0.010130048729479313, 0.09931189566850662, 0.0496014803647995, -0.06930970400571823, 0.08531146496534348, -0.012542037293314934, -0.024550795555114746, -0.22820046544075012, -0.11838974803686142, -0.0901866927742958, -0.10108581930398941, 0.014737367630004883, -0.016576021909713745, -0.06722822040319443, 0.08866320550441742, 0.02272736467421055, 0.011059827171266079, -0.047787316143512726, 0.059314608573913574, 0.11056262254714966, -0.009132223203778267, 0.17246855795383453, 0.01013114582747221, -0.09608260542154312, 0.023516546934843063, 0.009540803730487823, 0.2592630386352539, -0.012466792948544025, 0.06571724265813828, 0.13436532020568848, 0.056608326733112335, 0.09877029061317444, 0.15999622642993927, -0.0111850555986166, 0.011999357491731644, -0.06098625808954239, -0.032646652311086655, -0.03261491656303406, 0.006135060917586088, -0.030330602079629898, -0.040387969464063644, -0.12103857845067978, -0.024738483130931854, 0.010099830105900764, 0.24046461284160614, 0.09060146659612656, -0.23187831044197083, -0.05112626776099205, 0.024360299110412598, -0.05632415786385536, -0.08777061849832535, 0.018430745229125023, 0.08761760592460632, -0.11261466145515442, 0.04668169096112251, -0.014878465794026852, 0.12841448187828064, -0.034284986555576324, 0.06213437393307686, -0.07468801736831665, -0.027614951133728027, -0.03938571736216545, 0.09583285450935364, -0.16706335544586182, 0.22718164324760437, 0.009995791129767895, 0.046867914497852325, -0.10220853984355927, -0.02888409234583378, 0.029002459719777107, 0.1262786090373993, 0.11448659747838974, 0.01886911503970623, 0.010250074788928032, -0.01602882146835327, -0.10514821112155914, 0.05199293792247772, 0.09003674983978271, -0.008039827458560467, 0.09299097210168839, -0.001401994377374649, -0.028418246656656265, -0.002337326994165778, -0.04393954947590828, -0.15251512825489044, -0.12875334918498993, 0.046678029000759125, 0.0748756155371666, -0.016065502539277077, -0.02456050179898739, -0.07759102433919907, -0.04917905107140541, 0.1595432013273239, 0.05931907892227173, -0.06548114120960236, -0.14259955286979675, 0.10345937311649323, 0.09379520267248154, -0.05360693112015724, 0.021006908267736435, -0.008626914583146572, 0.03740556165575981, -0.03564780205488205, -0.13677836954593658, 0.07503961771726608, -0.10394617170095444, -0.05093659833073616, -0.06551708281040192, 0.1222284734249115, 0.04594729095697403, 0.04719769209623337, 0.03426884487271309, 0.022837741300463676, -0.06911012530326843, -0.009037800133228302, 0.036563463509082794, 0.08275581896305084, 0.1932443380355835, 0.07983796298503876, -0.22453147172927856, -0.07266882807016373, -0.015139423310756683, -0.023598112165927887, 0.1393711417913437, 0.08959197252988815, -0.03756851330399513, 0.12720412015914917, 0.21216584742069244, -0.06898606568574905, -0.29126739501953125, 0.005227372050285339, 0.048734068870544434, 0.07925457507371902, -0.058657411485910416, -0.17610488831996918, 0.14375489950180054, 0.0015013080555945635, 0.0017631209921091795, -0.025142226368188858, -0.16437198221683502, -0.10939853638410568, 0.13625283539295197, 0.0667305588722229, 0.3358933627605438, -0.03547344356775284, -0.0005146549665369093, -0.024922305718064308, -0.08919122070074081, 0.06172670051455498, -0.10209375619888306, 0.14334020018577576, -0.03482908383011818, 0.018862413242459297, 0.02351241558790207, -0.05032702535390854, 0.06743691861629486, 0.026610102504491806, 0.03492897003889084, -0.02243262529373169, 0.01645328663289547, 0.027668271213769913, -0.007970531471073627, 0.13439105451107025, 0.06871695816516876, 0.01455651130527258, -0.007135928608477116, -0.09846404939889908, -0.054543979465961456, -0.014148333109915257, 0.049589432775974274, -0.08353693783283234, -0.056761953979730606, 0.06447065621614456, 0.05705992877483368, 0.0047874366864562035, 0.05577268451452255, -0.11929752677679062, -0.02589811012148857, 0.044690851122140884, 0.19290870428085327, -0.17290188372135162, 0.017511893063783646, 0.060170046985149384, -0.07809420675039291, 0.09524324536323547, -0.03358153998851776, 0.006068406160920858, 0.11643665283918381, -0.033877234905958176, 0.07788129150867462, 0.09624763578176498, -0.041894808411598206, -0.041513413190841675, 0.0740576982498169, -0.14744485914707184, -0.09898385405540466, 0.0005187830538488925, -0.027935290709137917, -0.09640507400035858, 0.0443480983376503, 0.15304706990718842, -0.051426250487565994, -0.034354858100414276, -0.041696131229400635, 0.0026850944850593805, -0.03879529982805252, 0.15088945627212524, 0.002898816019296646, 0.00843850988894701, -0.0705302357673645, -0.0005933008505962789, 0.08173849433660507, -0.09469176828861237, 0.025738859549164772, 0.03259917348623276, -0.16173982620239258, -0.10535238683223724, 0.018678948283195496, 0.23239350318908691, 0.015602408908307552, -0.07817783206701279, -0.04843977093696594, -0.12163129448890686, 0.0705500990152359, 0.14626795053482056, 0.06513220816850662, -0.03825293481349945, -0.09166716039180756, -0.021106624975800514, -0.10447564721107483, 0.09349589794874191, 0.030589967966079712, 0.047333236783742905, 0.08193929493427277, 0.09044469892978668, -0.04650426283478737, 0.08662398159503937, -0.08459148555994034, 0.008439237251877785, -0.10177864134311676, -0.0025436694268137217, -0.11360695213079453, -0.009940046817064285, -0.05130930617451668, -0.06992819905281067, 0.009344062767922878, 0.0031588615383952856, 0.008243629708886147, -0.0007916748290881515, -0.05288713425397873, 0.004911710042506456, -0.009524493478238583, 0.021897349506616592, -0.03662220016121864, -0.046540409326553345, 0.013146141543984413, -0.03268837556242943, 0.09768601506948471, -0.003547685220837593, -0.059302061796188354, -0.014688142575323582, -0.08298567682504654, -0.0838419571518898, 0.03813692927360535, 0.11924577504396439, 0.03234116733074188, -0.1210172101855278, 0.009815857745707035, 0.04147268831729889, 0.031002739444375038, 0.03795100748538971, 0.08254224807024002, -0.037053968757390976, 0.019158033654093742, -0.061837200075387955, -0.003980912733823061, -0.06742533296346664, -0.01744362711906433, 0.0030046270694583654, 0.108429454267025, 0.12168202549219131, -0.07903491705656052, 0.008483597077429295, -0.06902935355901718, 0.01681332476437092, -0.007080702111124992, -0.09255576133728027, -0.09701653569936752, -0.09624411165714264, 0.08753523230552673, -0.0019319732673466206, 0.19208306074142456, 0.018738169223070145, -0.06184036284685135, -0.00032204826129600406, 0.040776576846838, 0.06543682515621185, -0.022770820185542107, 0.13300721347332, 0.04063046723604202, -0.05626571923494339, -0.04838915169239044, 0.055983345955610275, 0.0427272655069828, 0.09355717152357101, 0.20246081054210663, 0.11943342536687851, 0.16756699979305267, 0.06442492455244064, -0.06734055280685425, 0.03154442086815834, -0.09541027247905731, -0.0765749141573906, 0.05671291798353195, 0.03484679386019707, 0.0027405470609664917, -0.0073006851598620415, 0.06915589421987534, -0.12867926061153412, 0.07653281092643738, -0.021250171586871147, -0.07887018471956253, -0.13272124528884888, -0.1325864940881729, -0.06885272264480591, -0.04444544389843941, -0.058275263756513596, -0.14087851345539093, -0.03968146815896034, 0.08289171010255814, 0.0715685486793518, 0.016712946817278862, 0.11466429382562637, -0.14988350868225098, 0.019029537215828896, 0.07703250646591187, -0.03409139811992645, 0.06605691462755203, -0.03060946613550186, 0.007589946500957012, -0.012509172782301903, 0.014165437780320644, 0.030288932844996452, 0.008818886242806911, 0.016209816560149193, -0.024124812334775925, -0.020820626989006996, -0.06317073851823807, -0.02765066735446453, 0.007711792830377817, 0.04836257919669151, 0.15651339292526245, 0.09716653823852539, -0.04564756900072098, 0.0071910591796040535, 0.15021923184394836, -0.03930196911096573, -0.11804255098104477, -0.16136842966079712, 0.19493362307548523, 0.061251718550920486, 0.015829477459192276, 0.009586518630385399, -0.03803728520870209, -0.04709983617067337, 0.3499680757522583, 0.25330254435539246, -0.07079396396875381, -0.03724747523665428, 0.030157046392560005, 0.009873698465526104, 0.07356179505586624, 0.17590337991714478, 0.10327285528182983, 0.21949751675128937, -0.06744281947612762, -0.05066199228167534, -0.06263905018568039, -0.034162748605012894, -0.1533484309911728, -0.013724204152822495, 0.10078267008066177, -0.06355833262205124, 0.020055191591382027, 0.0625392347574234, -0.06213342025876045, -0.03685615211725235, -0.0403704009950161, -0.0924353376030922, -0.09622619301080704, -0.040139198303222656, -0.05825236439704895, -0.009340020827949047, 0.07914683222770691, -0.07187236845493317, 0.06347271800041199, 0.1931363344192505, -0.004639625083655119, -0.05954548344016075, -0.011782852932810783, 0.13677680492401123, -0.04780896380543709, 0.06832446902990341, 0.036722928285598755, 0.10071254521608353, 0.05885869264602661, 0.015661055222153664, -0.03130871057510376, 0.12290650606155396, -0.04740774258971214, 0.02658299170434475, 0.11915528029203415, 0.0820935070514679, -0.017666207626461983, -0.025439437478780746, 0.005006883293390274, -0.17537100613117218, 0.020166315138339996, -0.03405256196856499, -0.04009471833705902, -0.0745181068778038, 0.12353872507810593, -0.07431776076555252, 0.10720771551132202, 0.1490035057067871, 0.004839841742068529, 0.010950666852295399, -0.026121322065591812, 0.03726590424776077, 0.017301293089985847, -0.015072698704898357, -0.06862017512321472, -0.14447632431983948, 0.00527789443731308, -0.14179666340351105, 0.005707921460270882, -0.3540477752685547, -0.056657757610082626, -0.09726115316152573, -0.005095785018056631, -0.07486775517463684, 0.045902956277132034, 0.06449968367815018, 0.012151673436164856, -0.06622478365898132, -0.048083510249853134, 0.017778359353542328, 0.060177698731422424, -0.11861562728881836, -0.08718746155500412 ]
null
null
transformers
# ClinicalPubMedBERT ## Description A pre-trained model for clinical decision support, for more details, please see https://github.com/NtaylorOX/Public_Prompt_Mimic_III A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes ([MIMIC-III](https://mimic.physionet.org/)). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 100k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 512 tokens. Pre-trained model: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
{"language": ["en"], "license": "mit", "datasets": ["MIMIC-III"], "widget": [{"text": "Due to shortness of breath, the patient is diagnosed with [MASK], and other respiratory problems.", "example_title": "Example 1"}, {"text": "Due to high blood sugar, and very low blood pressure, the patient is diagnosed with [MASK].", "example_title": "Example 2"}]}
fill-mask
Tsubasaz/clinical-pubmed-bert-base-512
[ "transformers", "pytorch", "bert", "fill-mask", "en", "dataset:MIMIC-III", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #region-us
# ClinicalPubMedBERT ## Description A pre-trained model for clinical decision support, for more details, please see URL A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 100k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 512 tokens. Pre-trained model: URL
[ "# ClinicalPubMedBERT", "## Description\nA pre-trained model for clinical decision support, for more details, please see URL\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions.\n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 100k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 512 tokens.\n\nPre-trained model: URL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# ClinicalPubMedBERT", "## Description\nA pre-trained model for clinical decision support, for more details, please see URL\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions.\n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 100k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 512 tokens.\n\nPre-trained model: URL" ]
[ 51, 7, 171 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #en #dataset-MIMIC-III #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# ClinicalPubMedBERT## Description\nA pre-trained model for clinical decision support, for more details, please see URL\n\nA BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes (MIMIC-III). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions.\n\nThis model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 100k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 512 tokens.\n\nPre-trained model: URL" ]
[ -0.05559021234512329, 0.05165077745914459, -0.0022329576313495636, -0.01334899291396141, 0.0598207451403141, 0.02910829521715641, 0.15851061046123505, 0.12231950461864471, -0.04662902280688286, 0.07131943106651306, 0.10830611735582352, -0.037849027663469315, 0.024117181077599525, 0.21000362932682037, 0.025948604568839073, -0.35221248865127563, 0.046416111290454865, 0.0656360536813736, 0.0627053901553154, 0.09278220683336258, 0.05273834988474846, -0.13266481459140778, 0.023931454867124557, 0.06303510814905167, -0.06003647297620773, -0.027651065960526466, -0.00040977029129862785, -0.0268836859613657, 0.06971218436956406, -0.043754905462265015, 0.06946153938770294, 0.07482242584228516, 0.0794534832239151, -0.10807417333126068, 0.0366630032658577, 0.007995464839041233, 0.052920807152986526, 0.13056156039237976, -0.028908347710967064, -0.005720192566514015, 0.12199859321117401, -0.1040533259510994, 0.060446035116910934, -0.009118162095546722, -0.059868715703487396, -0.10807798057794571, -0.08706630766391754, 0.047721851617097855, 0.07543116807937622, 0.0722222551703453, -0.027301901951432228, 0.20476490259170532, -0.05546373873949051, 0.045314352959394455, 0.1113097071647644, -0.2949489951133728, -0.04144738242030144, 0.0385516881942749, 0.07602432370185852, -0.004389236681163311, -0.012585810385644436, 0.03945589065551758, 0.028638320043683052, 0.006145955063402653, 0.1031787246465683, -0.033155083656311035, 0.0068129366263747215, -0.052619852125644684, -0.16218075156211853, -0.011290919966995716, 0.14012162387371063, -0.030279241502285004, -0.06039382144808769, -0.11954601109027863, -0.0318162739276886, 0.009689492173492908, -0.03346094489097595, -0.06142681464552879, 0.036487478762865067, -0.05778871104121208, -0.04265831783413887, -0.006906525697559118, -0.0801728144288063, -0.051458247005939484, -0.11184438318014145, 0.017263973131775856, 0.05728326737880707, 0.052765972912311554, -0.02260778285562992, 0.06509921699762344, -0.05980951339006424, -0.06274349987506866, -0.009637651965022087, -0.02698552794754505, -0.04255225881934166, -0.05547620356082916, -0.08073563128709793, -0.15766794979572296, 0.04602134972810745, 0.05739564076066017, 0.013912863098084927, -0.011314794421195984, 0.026726674288511276, 0.00856289267539978, 0.09994331002235413, -0.023680217564105988, -0.10668874531984329, 0.07715684920549393, 0.0018172876443713903, 0.07052774727344513, 0.03713503107428551, 0.035402655601501465, -0.05994068831205368, 0.027694473043084145, -3.586467585137143e-7, 0.008167783729732037, -0.14707407355308533, 0.07742725312709808, -0.04322262853384018, -0.05231548473238945, 0.13094089925289154, -0.055695801973342896, -0.041743405163288116, -0.013995031826198101, -0.020937945693731308, 0.043368324637413025, 0.07175332307815552, -0.004588915966451168, -0.08856086432933807, 0.1133570745587349, -0.06532633304595947, -0.017876844853162766, -0.11396254599094391, -0.12857826054096222, 0.008387485519051552, -0.02317316271364689, -0.01601298339664936, -0.09421071410179138, -0.08563019335269928, -0.011322916485369205, 0.060568489134311676, -0.023937907069921494, 0.03609783202409744, -0.07792006433010101, 0.031258657574653625, -0.029171930626034737, -0.0414096936583519, 0.11170916259288788, -0.04008112847805023, 0.005704911891371012, -0.06458784639835358, 0.12997642159461975, -0.08679251372814178, 0.0018852195935323834, -0.05674776807427406, 0.027050910517573357, -0.12232500314712524, 0.00530879944562912, 0.0009243040112778544, -0.020197616890072823, -0.09153817594051361, -0.08208321034908295, -0.06623829901218414, 0.0011650107335299253, 0.09690923988819122, 0.057641468942165375, -0.08349303156137466, -0.01936877891421318, 0.2260882705450058, -0.06306692212820053, -0.10662257671356201, 0.11991468816995621, -0.07711903750896454, 0.08407556265592575, 0.07565857470035553, 0.2162485420703888, 0.015422873198986053, -0.1372300535440445, 0.03248939663171768, -0.05370057374238968, -0.006602462846785784, -0.08962871134281158, 0.06652063131332397, 0.008299026638269424, 0.0077883717603981495, 0.0044870623387396336, 0.0008856581407599151, -0.05634475126862526, -0.1313856840133667, -0.01562638208270073, 0.029185866937041283, -0.09917867183685303, -0.02531280554831028, -0.007573936600238085, 0.07868298888206482, -0.11006011068820953, -0.03947833925485611, 0.003865201259031892, 0.12385254353284836, -0.04920966923236847, 0.014610244892537594, -0.11317954957485199, -0.02741241455078125, -0.05836151912808418, -0.007708301767706871, -0.16281522810459137, -0.006806790363043547, 0.02730761468410492, -0.016422230750322342, 0.01608431711792946, 0.10192501544952393, -0.01803075149655342, 0.07917755842208862, -0.011611799709498882, 0.05782966688275337, 0.09491937607526779, -0.022145114839076996, -0.11757224798202515, -0.09534256905317307, -0.011300934478640556, -0.0836448147892952, 0.00756752910092473, -0.01878013275563717, 0.02978348918259144, -0.08650363981723785, 0.06765440106391907, 0.008180687204003334, -0.016006022691726685, 0.08903911709785461, 0.042810432612895966, 0.026193100959062576, 0.014376264996826649, 0.08169316500425339, -0.010789702646434307, -0.027820415794849396, -0.023949721828103065, -0.11385449022054672, -0.04759683087468147, 0.05602144077420235, 0.07344785332679749, -0.03960398957133293, -0.1174502745270729, -0.05738004297018051, 0.02740791253745556, -0.11866208165884018, 0.002613897668197751, 0.2176293581724167, 0.019117677584290504, 0.13358351588249207, -0.05871889740228653, -0.019184183329343796, -0.01549436803907156, -0.04235457628965378, -0.003735113888978958, 0.020022863522171974, 0.06805655360221863, -0.18785999715328217, -0.016840390861034393, 0.009050232358276844, 0.03881390020251274, 0.12087215483188629, -0.013876746408641338, -0.09868447482585907, -0.03509139269590378, -0.06035246327519417, 0.007149477489292622, 0.060473356395959854, -0.13596385717391968, -0.023638028651475906, 0.08346633613109589, 0.014519812539219856, 0.03961505368351936, -0.08697541058063507, 0.0466625951230526, 0.01547922845929861, -0.016205238178372383, -0.15574340522289276, 0.04208637401461601, -0.056070476770401, 0.08635824173688889, 0.049962084740400314, 0.008161584846675396, -0.01962432637810707, -0.03088347055017948, -0.08968654274940491, 0.14851030707359314, -0.08013144135475159, -0.19152994453907013, -0.07695918530225754, -0.06290656328201294, 0.0314178392291069, 0.008736797608435154, 0.053679581731557846, -0.048424843698740005, -0.08359988778829575, -0.0985659658908844, 0.06292347609996796, 0.06912823021411896, 0.02050577662885189, 0.04083098843693733, 0.009153636172413826, 0.012427949346601963, -0.0932849869132042, -0.01813615672290325, -0.1525171846151352, 0.04608205333352089, 0.07514101266860962, -0.08038973808288574, 0.05304066091775894, 0.11162897199392319, -0.03419223427772522, 0.03358412906527519, -0.039837006479501724, 0.14420433342456818, -0.021429626271128654, -0.007004766725003719, 0.15912513434886932, 0.001144137349911034, 0.0024568322114646435, 0.11004581302404404, 0.054823026061058044, -0.09103088080883026, 0.11460580676794052, -0.0017458799993619323, -0.010812390595674515, -0.20532549917697906, -0.06952077895402908, -0.07216709852218628, -0.1025601327419281, 0.029800819233059883, -0.025043834000825882, -0.09301810711622238, 0.11006268113851547, 0.005128420889377594, -0.02307230420410633, -0.070876345038414, 0.08084964007139206, 0.07095364481210709, 0.00622092979028821, 0.15173648297786713, -0.0017531426856294274, -0.08072629570960999, 0.037746913731098175, -0.0037235443014651537, 0.23953674733638763, -0.03992599993944168, 0.14799731969833374, 0.14159733057022095, 0.06393138319253922, 0.09944475442171097, 0.138139009475708, -0.03418209031224251, -0.009457793086767197, -0.05466175079345703, -0.01800747588276863, -0.09218218922615051, -0.030108535662293434, -0.058509256690740585, 0.005998402368277311, -0.1496589183807373, 0.046552836894989014, 0.00423488300293684, 0.2865462303161621, 0.08440591394901276, -0.2482232004404068, -0.06996528059244156, 0.013286545872688293, -0.08221683651208878, -0.06452438235282898, 0.014570130966603756, 0.13077029585838318, -0.09027016162872314, 0.05797121301293373, -0.05349503457546234, 0.12686221301555634, -0.09153106808662415, 0.08772137761116028, -0.04359682649374008, 0.05091346427798271, -0.057978205382823944, 0.09410875290632248, -0.13969558477401733, 0.209809809923172, 0.008400159887969494, 0.06080467253923416, -0.10073684900999069, -0.005508555099368095, 0.005050788167864084, 0.10665728896856308, 0.10124819725751877, -0.00805812980979681, 0.010828973725438118, 0.023140424862504005, -0.12381470203399658, 0.040824007242918015, 0.11197556555271149, -0.040471624583005905, 0.09570477157831192, 0.01402431633323431, -0.016747068613767624, -0.02130764350295067, -0.07427086681127548, -0.162374347448349, -0.12540000677108765, 0.058637574315071106, 0.020571256056427956, -0.009868042543530464, -0.04225191846489906, -0.07453851401805878, 0.017413372173905373, 0.16966131329536438, 0.04882240295410156, -0.07063319534063339, -0.15196463465690613, 0.1406761109828949, 0.07626597583293915, -0.05543891713023186, -0.014309697784483433, 0.003406540025025606, 0.08908386528491974, -0.04823384806513786, -0.08993375301361084, 0.06682626157999039, -0.09228578209877014, -0.08079195767641068, -0.08821478486061096, 0.10586187243461609, 0.04187141731381416, 0.06374112516641617, 0.0037826416082680225, -0.007310633547604084, -0.03196646645665169, -0.011483070440590382, 0.0413910411298275, 0.07363025844097137, 0.17251411080360413, 0.021923428401350975, -0.1766442358493805, -0.009655116125941277, -0.04087110608816147, -0.02208043821156025, 0.10315246134996414, 0.12378101795911789, -0.023678641766309738, 0.12576231360435486, 0.2197783887386322, -0.037268493324518204, -0.23749488592147827, 0.015971405431628227, 0.07110479474067688, 0.0774959921836853, -0.09777010977268219, -0.191964790225029, 0.09587397426366806, 0.03515440225601196, 0.012522649951279163, -0.06252317130565643, -0.1730758398771286, -0.0872977077960968, 0.09120489656925201, 0.11673465371131897, 0.2120445817708969, -0.04481476917862892, -0.011923013255000114, 0.011567185632884502, -0.02391146309673786, 0.06445740163326263, -0.09483499825000763, 0.12353546917438507, -0.03800735995173454, 0.02328103967010975, 0.033995091915130615, -0.05142178758978844, 0.05463029444217682, 0.04299436882138252, 0.08011233806610107, -0.042150989174842834, 0.05155467614531517, 0.06948957592248917, -0.02048416994512081, 0.14845320582389832, 0.06601466238498688, 0.019646869972348213, 0.018849683925509453, -0.09486138820648193, -0.02795053832232952, -0.05872514098882675, 0.038421113044023514, -0.09380786120891571, -0.05908994749188423, 0.07101545482873917, 0.04797644168138504, -0.005663396790623665, 0.054953936487436295, -0.09187726676464081, -0.05717651918530464, 0.06655704230070114, 0.22901184856891632, -0.15130189061164856, 0.030213428661227226, 0.049277957528829575, -0.049144547432661057, 0.08600249886512756, -0.05711118504405022, -0.035017453134059906, 0.12468314915895462, -0.027729442343115807, 0.07090906798839569, 0.060635920614004135, -0.06817857921123505, -0.01982678845524788, 0.07791723310947418, -0.14817170798778534, -0.14738717675209045, 0.02910868264734745, 0.02791992947459221, -0.16484032571315765, 0.04369676113128662, 0.1373138427734375, -0.0497945137321949, -0.02490129880607128, -0.040050119161605835, 0.018424395471811295, -0.01794111542403698, 0.18393239378929138, -0.011119460687041283, 0.037303026765584946, -0.0785885825753212, -0.013028471730649471, 0.0774531438946724, -0.11536996811628342, 0.022810114547610283, 0.03694221377372742, -0.17325524985790253, -0.0991605743765831, -0.01481014396995306, 0.22636795043945312, 0.03352343663573265, -0.05150824412703514, -0.07494154572486877, -0.10299092531204224, 0.05147058889269829, 0.11298330873250961, 0.0418466255068779, -0.044538892805576324, -0.10118045657873154, -0.00918206013739109, -0.1448722630739212, 0.10836846381425858, 0.0266637671738863, 0.06005492061376572, 0.057525597512722015, 0.12336418777704239, -0.03954596072435379, 0.07482824474573135, -0.07179427146911621, 0.019655345007777214, -0.054785821586847305, -0.024738648906350136, -0.08336935192346573, -0.023848485201597214, -0.06501958519220352, -0.06033342331647873, 0.027699535712599754, 0.017545288428664207, -0.005853435955941677, -0.005723301321268082, -0.05334677919745445, -0.007441892754286528, 0.02176450379192829, 0.0033423034474253654, -0.03162059187889099, -0.022931354120373726, -0.007782460190355778, -0.029645569622516632, 0.10875988751649857, -0.028313567861914635, -0.025135353207588196, -0.031367842108011246, -0.015517739579081535, -0.05879206582903862, 0.02788444794714451, 0.13038118183612823, 0.0424392893910408, -0.10188785940408707, 0.009412136860191822, 0.03502757474780083, -0.003111452329903841, 0.03085634671151638, 0.09194515645503998, -0.05349509045481682, -0.005989948753267527, -0.030344996601343155, 0.05542115122079849, -0.09739995747804642, 0.007322929799556732, -0.006438956130295992, 0.08229455351829529, 0.11691604554653168, -0.06569140404462814, 0.020082997158169746, -0.0904374048113823, -0.003872989909723401, 0.018015023320913315, -0.07302070409059525, -0.10486339777708054, -0.08521634340286255, 0.10191335529088974, -0.013959732837975025, 0.159930020570755, 0.003023421624675393, -0.05714695528149605, 0.01084216870367527, -0.0006632547592744231, 0.0818333774805069, -0.023104695603251457, 0.12210565060377121, 0.04660098999738693, -0.06007467582821846, -0.015243242494761944, 0.023827143013477325, 0.030467208474874496, 0.04281141236424446, 0.22649648785591125, 0.10720565170049667, 0.14642992615699768, 0.028978988528251648, -0.05887908115983009, 0.04287901893258095, -0.07106388360261917, -0.01491569634526968, 0.037099145352840424, 0.020881718024611473, 0.01677524670958519, -0.05488985404372215, 0.09096623212099075, -0.11553405225276947, 0.06218189001083374, 0.016955280676484108, -0.08379804342985153, -0.10889513045549393, -0.14813494682312012, -0.045119237154722214, -0.06210288405418396, -0.030911829322576523, -0.15967294573783875, -0.045481037348508835, 0.08504565060138702, 0.07512752711772919, 0.0273495614528656, 0.13838841021060944, -0.13764339685440063, 0.0363156832754612, 0.08577564358711243, -0.03139873966574669, 0.02996315434575081, -0.03875870257616043, -0.010926289483904839, 0.03196653723716736, -0.004686861298978329, 0.05033577233552933, 0.01281426940113306, 0.04907921329140663, -0.0305493101477623, 0.013824735768139362, -0.07137132436037064, -0.00982633512467146, -0.023538125678896904, 0.06351090222597122, 0.1257307231426239, 0.11042054742574692, -0.04593534395098686, -0.006005784031003714, 0.11958145350217819, -0.0320337638258934, -0.09218866378068924, -0.16765029728412628, 0.21074071526527405, 0.04568203166127205, 0.02100355178117752, 0.019109977409243584, -0.04553046450018883, -0.04515296220779419, 0.30682048201560974, 0.2213766872882843, -0.07417788356542587, -0.04375658929347992, 0.025688819587230682, 0.005869564134627581, 0.02591811493039131, 0.17229263484477997, 0.08689641207456589, 0.1289612054824829, -0.048860158771276474, -0.027979347854852676, -0.053435806185007095, -0.04558125510811806, -0.11744378507137299, -0.014910965226590633, 0.12458568066358566, -0.013387023471295834, -0.00251715537160635, 0.05981668829917908, -0.018353890627622604, -0.0948282852768898, -0.033900536596775055, -0.07286741584539413, -0.10084234178066254, -0.03795576095581055, -0.04104474559426308, 0.027884433045983315, 0.10031837970018387, -0.06240912526845932, 0.07021161913871765, 0.21770703792572021, 0.00029230143991298974, -0.07818544656038284, -0.03950806334614754, 0.13284049928188324, -0.13997134566307068, 0.09184534847736359, 0.024547407403588295, 0.079039067029953, 0.07235591113567352, -0.04209716245532036, -0.055434126406908035, 0.13352176547050476, -0.025959942489862442, 0.041681259870529175, 0.11197240650653839, 0.13781048357486725, 0.011027565225958824, 0.011355383321642876, 0.003532980801537633, -0.19944044947624207, -0.011301115155220032, -0.07346343249082565, -0.003916467074304819, -0.0703616738319397, 0.1276123821735382, -0.03812729939818382, 0.11759520322084427, 0.13589543104171753, 0.0002469592436682433, 0.04155822843313217, -0.02416182868182659, 0.04687974974513054, 0.02690277062356472, 0.04863498732447624, -0.025693019852042198, -0.15194959938526154, -0.016944274306297302, -0.13967299461364746, -0.0079806512221694, -0.39983150362968445, -0.06860586255788803, -0.08333685994148254, -0.0032988267485052347, -0.06734620779752731, 0.04109244421124458, 0.08092094957828522, 0.04394694045186043, -0.07975441962480545, 0.006091761868447065, -0.002569488249719143, 0.06520987302064896, -0.1147313341498375, -0.05483277142047882 ]
null
null
null
The older generation has a vulnerability, so they need to be monitored and taken care of. A large number of people, young and old, play really responsibly, but such a pastime can turn into a big problem. Many authoritative blogs and news portals of the gambling world like QYTO share statistics about this area and recommend only trusted casinos that cooperate with health organizations.
{}
null
Tsurakawi/erererere
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
The older generation has a vulnerability, so they need to be monitored and taken care of. A large number of people, young and old, play really responsibly, but such a pastime can turn into a big problem. Many authoritative blogs and news portals of the gambling world like QYTO share statistics about this area and recommend only trusted casinos that cooperate with health organizations.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
null
# Model to Recognize Faces using eigenfaces and scikit-learn Simple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka [LFW](http://vis-www.cs.umass.edu/lfw/) This demo was taken from [Scikit-learn](https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html) The dataset includes 7 classes (individuals): ![Eigenfaces](https://duchesnay.github.io/pystatsml/_images/sphx_glr_ml_lab_face_recognition_001.png)
{}
null
Tuana/eigenfaces-sklearn-lfw
[ "joblib", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #joblib #region-us
# Model to Recognize Faces using eigenfaces and scikit-learn Simple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW This demo was taken from Scikit-learn The dataset includes 7 classes (individuals): !Eigenfaces
[ "# Model to Recognize Faces using eigenfaces and scikit-learn\n\nSimple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW\nThis demo was taken from Scikit-learn\nThe dataset includes 7 classes (individuals):\n!Eigenfaces" ]
[ "TAGS\n#joblib #region-us \n", "# Model to Recognize Faces using eigenfaces and scikit-learn\n\nSimple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW\nThis demo was taken from Scikit-learn\nThe dataset includes 7 classes (individuals):\n!Eigenfaces" ]
[ 9, 74 ]
[ "passage: TAGS\n#joblib #region-us \n# Model to Recognize Faces using eigenfaces and scikit-learn\n\nSimple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW\nThis demo was taken from Scikit-learn\nThe dataset includes 7 classes (individuals):\n!Eigenfaces" ]
[ -0.08173529803752899, 0.0764450654387474, 0.001086904783733189, 0.01038364041596651, 0.07301989942789078, 0.050134461373090744, 0.18624021112918854, 0.08298514783382416, 0.3754632771015167, 0.018291359767317772, 0.14203444123268127, 0.07664044946432114, -0.009866064414381981, 0.183712899684906, 0.06860163807868958, -0.2004283219575882, 0.05630012974143028, 0.02919340878725052, 0.04572951793670654, 0.018226955085992813, 0.09542754292488098, -0.022935885936021805, 0.047411732375621796, 0.020484890788793564, -0.28897398710250854, 0.06416193395853043, -0.07193193584680557, -0.021852541714906693, 0.17868156731128693, 0.08906033635139465, 0.07488073408603668, -0.03597173094749451, 0.07921750098466873, -0.19672109186649323, -0.0009512145770713687, -0.04893603175878525, -0.06162647157907486, -0.016175318509340286, -0.03042738139629364, -0.04611153528094292, 0.08054910600185394, 0.0007430916302837431, 0.029591988772153854, -0.034776173532009125, -0.07702159136533737, -0.08421680331230164, 0.06987299025058746, -0.0017380359349772334, 0.04801918566226959, 0.016161490231752396, 0.015605256892740726, 0.09370150417089462, -0.20092931389808655, 0.11702467501163483, 0.17777232825756073, 0.040288928896188736, -0.00018896836263593286, -0.0256741214543581, -0.09696979820728302, -0.2106798142194748, -0.05427652224898338, 0.03342436999082565, 0.0475090853869915, -0.034133441746234894, -0.09414414316415787, 0.014595892280340195, -0.2360324263572693, -0.05559343472123146, -0.08252660930156708, 0.04791823774576187, 0.2030038684606552, 0.10690314322710037, -0.04958025738596916, -0.09257697314023972, -0.05429927259683609, 0.09097851812839508, 0.05660129338502884, -0.0378359816968441, -0.0007742636371403933, -0.07129107415676117, -0.006130182184278965, 0.018022339791059494, -0.03253631666302681, -0.08386027812957764, -0.06643982231616974, 0.20941467583179474, -0.007709565572440624, 0.15675973892211914, -0.10366911441087723, 0.016461415216326714, -0.09449509531259537, 0.01088050939142704, -0.0008655697456561029, -0.01240963488817215, -0.07379290461540222, 0.03482551500201225, -0.00786882545799017, 0.0199544969946146, 0.07546664029359818, 0.14776329696178436, 0.04473355412483215, 0.028261248022317886, -0.0514802560210228, 0.07702814787626266, 0.0997358113527298, 0.13947224617004395, 0.06621193885803223, -0.13361294567584991, 0.03648017719388008, -0.023450829088687897, 0.005677538923919201, -0.0732257142663002, -0.10117380321025848, -0.1402496099472046, 0.0844883918762207, 0.07642380148172379, -0.04152558371424675, 0.026427308097481728, -0.038344986736774445, -0.03406162187457085, -0.052880458533763885, -0.058451272547245026, -0.027428727596998215, 0.032345402985811234, -0.1301548331975937, -0.031069617718458176, 0.06070491671562195, 0.001569838379509747, 0.030857952311635017, -0.1507178544998169, -0.05963153392076492, -0.005516904406249523, 0.021021006628870964, -0.06010551005601883, -0.007736030500382185, -0.09396983683109283, 0.1480555683374405, -0.15593348443508148, -0.1659666746854782, 0.0050677889958024025, -0.013117176480591297, 0.0014039762318134308, -0.008876582607626915, -0.13925066590309143, 0.006139615550637245, -0.046199288219213486, 0.010349043644964695, -0.05406015366315842, -0.06610622256994247, -0.015708206221461296, 0.07284761965274811, 0.18662633001804352, -0.15922760963439941, -0.01278680469840765, -0.05056669935584068, -0.0118447570130229, -0.14496183395385742, 0.0563834011554718, -0.06027890741825104, 0.13714849948883057, -0.004797871224582195, -0.018146997317671776, 0.024045845493674278, 0.09601655602455139, -0.024940166622400284, 0.17726673185825348, -0.12237165123224258, -0.01751028001308441, 0.07965056598186493, -0.10379026085138321, -0.0706147775053978, 0.07486004382371902, -0.05732297524809837, 0.130763977766037, 0.029755283147096634, 0.43648555874824524, 0.020339911803603172, -0.0780806839466095, 0.12052030861377716, 0.07183784991502762, -0.017572389915585518, -0.06641234457492828, -0.0046408167108893394, 0.036343906074762344, -0.11424235999584198, -0.022094517946243286, -0.13510553538799286, 0.0896025002002716, -0.08306028693914413, -0.01396099291741848, 0.07198692858219147, -0.14953169226646423, 0.008157537318766117, -0.004753888119012117, 0.061542123556137085, -0.1518627405166626, 0.039297785609960556, -0.19522526860237122, 0.15946464240550995, -0.0830463171005249, -0.02468305639922619, -0.08037883043289185, 0.07055458426475525, 0.13430345058441162, -0.020274460315704346, -0.047464512288570404, -0.10393133759498596, 0.10183922201395035, 0.09459377080202103, 0.05282602459192276, 0.07168719172477722, -0.006397075951099396, 0.07904299348592758, 0.07966382801532745, -0.11129949241876602, 0.013679544441401958, -0.05192141607403755, 0.025272225961089134, -0.07434424012899399, -0.03630628436803818, -0.08393771946430206, -0.0029296649154275656, -0.1057419702410698, 0.003749289782717824, -0.15098902583122253, 0.06251265853643417, 0.057413626462221146, 0.033007342368364334, 0.020746402442455292, -0.04735755920410156, -0.008324306458234787, -0.03820569068193436, 0.04421853646636009, -0.08103840053081512, -0.02903822623193264, 0.12355434149503708, -0.05631329119205475, 0.1064423993229866, 0.050774283707141876, -0.20434309542179108, -0.04218258708715439, 0.01381715014576912, -0.004789954982697964, 0.022365489974617958, -0.043600160628557205, -0.1078927144408226, 0.12775267660617828, -0.12331564724445343, 0.03174541890621185, -0.03539278730750084, -0.0023445100523531437, -0.07606536895036697, -0.007640319876372814, -0.04294551536440849, 0.027324819937348366, 0.01834833435714245, -0.269052118062973, 0.03716722130775452, -0.0850730687379837, 0.03840561956167221, 0.194429412484169, 0.05771782621741295, 0.04766623303294182, -0.02351624332368374, 0.05000486597418785, -0.08534705638885498, 0.12330993264913559, -0.21380549669265747, -0.07194176316261292, -0.0248932596296072, -0.018690992146730423, 0.04477280005812645, -0.1663985699415207, -0.030863001942634583, -0.008377008140087128, -0.08490042388439178, 0.020754560828208923, 0.10151910036802292, -0.1197744756937027, 0.06260516494512558, -0.08491828292608261, -0.23198138177394867, 0.015240688808262348, -0.08268050104379654, -0.07143691182136536, 0.15765346586704254, -0.049009378999471664, -0.16322743892669678, -0.07823706418275833, -0.033348970115184784, -0.007891230285167694, 0.083274707198143, 0.03858640417456627, 0.0012563248164951801, -0.0031801729928702116, -0.007036526221781969, 0.13361582159996033, -0.036208949983119965, 0.0174446702003479, 0.11072719842195511, -0.102889783680439, -0.05797148123383522, -0.117274709045887, -0.06531589478254318, -0.06409306079149246, 0.08229199796915054, 0.015309104695916176, -0.19063898921012878, 0.11916416883468628, -0.021289590746164322, -0.07029695808887482, 0.0022794881369918585, -0.05242420732975006, 0.38715848326683044, -0.014499131590127945, -0.058166515082120895, 0.08038775622844696, -0.07537148147821426, -0.02664959616959095, 0.017153479158878326, -0.043129220604896545, -0.19041404128074646, 0.010122286155819893, -0.00525229936465621, -0.10799423605203629, -0.05477648600935936, 0.018693847581744194, 0.051766034215688705, 0.11491191387176514, 0.08412117511034012, 0.03068263828754425, 0.07159224897623062, -0.01245141588151455, 0.06662169843912125, 0.11169635504484177, -0.0045387460850179195, -0.01679699495434761, -0.07200271636247635, -0.04792854189872742, 0.034273456782102585, 0.007503024302423, -0.011531971395015717, -0.05673965439200401, 0.04508970305323601, 0.13098612427711487, 0.08109964430332184, 0.009803630411624908, 0.0006336128572002053, -0.01009074691683054, 0.0706900805234909, 0.12009841948747635, -0.0008980993297882378, 0.008840028196573257, -0.02861083298921585, 0.04048207774758339, -0.10848946124315262, 0.07643061876296997, 0.2042362242937088, 0.07026701420545578, -0.15328067541122437, 0.020387833938002586, 0.06301367282867432, 0.09913939982652664, 0.034382663667201996, -0.16328254342079163, 0.029355879873037338, 0.021807240322232246, -0.09270617365837097, 0.030957909300923347, 0.11441542953252792, 0.14391960203647614, -0.07862353324890137, -0.01690112240612507, 0.13902002573013306, 0.021374449133872986, -0.08710526674985886, 0.08260153234004974, -0.10006172209978104, -0.12608644366264343, 0.01812095195055008, 0.04715302959084511, -0.07151304930448532, 0.20946702361106873, -0.02990892343223095, 0.01925431564450264, -0.0795021578669548, -0.07283581048250198, 0.09027963131666183, 0.04907647520303726, 0.24301700294017792, 0.004887058865278959, -0.22951112687587738, -0.020670795813202858, 0.04608013853430748, 0.06548242270946503, 0.08385887742042542, -0.1427682638168335, -0.018818823620676994, 0.005453262012451887, -0.015360791236162186, 0.048526983708143234, 0.22885358333587646, -0.06477184593677521, 0.06339029967784882, -0.11106019467115402, 0.04622504487633705, 0.007073899731040001, -0.03572937473654747, 0.014450407586991787, -0.07717099040746689, -0.09786248207092285, 0.011005702428519726, 0.05964338406920433, -0.08001897484064102, 0.1227460727095604, 0.030860980972647667, -0.06033066660165787, 0.013433413580060005, 0.04679318517446518, 0.010665337555110455, -0.018673967570066452, -0.08908447623252869, 0.02462470717728138, -0.1277099847793579, -0.014510971494019032, -0.05212892219424248, 0.0147353271022439, 0.05687929689884186, 0.005079091060906649, 0.07791389524936676, -0.07714817672967911, -0.0019327151821926236, -0.020746799185872078, 0.15579627454280853, 0.06169053912162781, -0.24930307269096375, 0.24151800572872162, -0.12287867814302444, -0.15026618540287018, -0.0927029624581337, 0.04493613913655281, 0.24573083221912384, 0.24720202386379242, -0.01917235180735588, -0.042506247758865356, 0.20613954961299896, -0.057974908500909805, -0.23888154327869415, 0.03995634242892265, 0.006864076945930719, 0.15647035837173462, -0.016068900004029274, -0.17415577173233032, 0.05977174639701843, 0.018020061776041985, 0.02876926213502884, 0.13422748446464539, -0.2668021321296692, -0.031450625509023666, 0.1968926191329956, 0.13625285029411316, 0.37464484572410583, -0.04433058202266693, -0.014791290275752544, -0.05078563094139099, 0.03052765689790249, 0.1462174952030182, 0.03781180456280708, 0.08563651889562607, -0.06842078268527985, 0.06137717515230179, 0.05519809573888779, 0.02633284218609333, 0.12768232822418213, 0.08552046120166779, 0.15468111634254456, -0.05287018045783043, -0.07011368870735168, -0.1598753035068512, -0.07424145936965942, 0.11055004596710205, 0.014685230329632759, 0.010230094194412231, -0.09731820225715637, -0.02973482571542263, -0.11930684000253677, 0.12620128691196442, 0.02748733200132847, -0.056346580386161804, -0.060372281819581985, -0.02975247986614704, 0.04152485728263855, 0.11313976347446442, 0.08024269342422485, -0.010131806135177612, 0.1531369388103485, -0.11781446635723114, 0.0006010785582475364, 0.10938646644353867, -0.04711813107132912, -0.0891546905040741, 0.02171417698264122, 0.09766658395528793, -0.02481551095843315, -0.03309790790081024, 0.08287859708070755, 0.12259326875209808, 0.13740745186805725, 0.09989313036203384, -0.0996432676911354, 0.05232496187090874, 0.06233084946870804, -0.08643140643835068, -0.009350857697427273, -0.051113568246364594, -0.02989443764090538, 0.13872013986110687, 0.012620117515325546, 0.10606279969215393, -0.008800479583442211, -0.025222308933734894, -0.11230254173278809, -0.0042230719700455666, -0.05146540701389313, 0.009437642991542816, 0.13824044167995453, 0.04151330888271332, -0.04109218344092369, 0.07643045485019684, -0.08236294984817505, 0.1282132863998413, 0.013094686903059483, 0.0894298255443573, 0.0005824576364830136, -0.09927475452423096, -0.09307209402322769, 0.33172544836997986, -0.18924318253993988, -0.13112232089042664, -0.013489839620888233, -0.019665846601128578, 0.0014201656449586153, 0.274088054895401, 0.05979647487401962, -0.030106961727142334, 0.048651307821273804, -0.0009717617649585009, -0.004476247821003199, -0.03519883006811142, -0.18176765739917755, -0.025126729160547256, -0.016037343069911003, -0.11894121021032333, -0.017190266400575638, 0.1133761927485466, -0.025755038484930992, -0.06733188033103943, -0.2136225700378418, 0.02961660735309124, 0.012050576508045197, 0.058504022657871246, 0.03894355148077011, 0.04040822014212608, 0.09666682034730911, -0.036626704037189484, -0.03434276953339577, 0.07699842751026154, -0.099666528403759, 0.00812030490487814, 0.04291157051920891, 0.031642328947782516, 0.023103132843971252, -0.08271008729934692, 0.04944524168968201, -0.05577727034687996, 0.08783745020627975, 0.03308357670903206, -0.05389397591352463, 0.1725955605506897, -0.25251051783561707, -0.11364852637052536, 0.06315135955810547, -0.04528338462114334, 0.03571059927344322, -0.06547333300113678, -0.0442543663084507, -0.050669435411691666, -0.0021070905495435, 0.0020439967047423124, 0.14406107366085052, -0.030439715832471848, -0.05352182313799858, -0.03085355833172798, -0.09180101007223129, -0.07165808230638504, 0.008453701622784138, 0.10431284457445145, 0.06015298515558243, 0.0054257772862911224, -0.032573115080595016, 0.09220480918884277, 0.04708258435130119, 0.03597107157111168, -0.0070237647742033005, -0.05298952758312225, 0.038919463753700256, 0.0032375215087085962, 0.014353240840137005, -0.07559174299240112, 0.14237911999225616, -0.08056454360485077, 0.0942569151520729, -0.06557083874940872, -0.034429945051670074, -0.15614844858646393, 0.025776153430342674, 0.1588420867919922, -0.1593664586544037, 0.0537128672003746, 0.09425851702690125, 0.11373305320739746, 0.14497637748718262, 0.16940277814865112, 0.06641540676355362, -0.01587292179465294, -0.10143633186817169, 0.2134559601545334, 0.11645673215389252, -0.09648806601762772, -0.012930648401379585, -0.19779850542545319, 0.10361340641975403, 0.01860867440700531, 0.056884460151195526, 0.013222447596490383, 0.0416143462061882, -0.0191827230155468, 0.0742327943444252, 0.012061615474522114, -0.06139130890369415, -0.06308776140213013, -0.04077939689159393, 0.006770052947103977, 0.000575268582906574, 0.04585089161992073, -0.0870659127831459, -0.09402061253786087, 0.07343365997076035, 0.02189621515572071, -0.056668784469366074, 0.06677394360303879, -0.10097970813512802, -0.04708374664187431, 0.12120435386896133, 0.007956909015774727, -0.12506495416164398, -0.10170120000839233, -0.07433264702558517, -0.02039835788309574, 0.04708792269229889, -0.06866788119077682, -0.07281538844108582, -0.05617904290556908, -0.02453779987990856, -0.08881869912147522, -0.03394163027405739, -0.015563040971755981, -0.0692933201789856, -0.04848265275359154, 0.07475963234901428, 0.05895273759961128, -0.09610243886709213, 0.03778557851910591, 0.05381882190704346, 0.035228241235017776, -0.028214778751134872, -0.09475640207529068, 0.19655776023864746, -0.041347093880176544, 0.07717715203762054, -0.08843982219696045, -0.04064972326159477, -0.050353214144706726, 0.04666052758693695, 0.19818660616874695, -0.11128783226013184, 0.04987187683582306, -0.07607237249612808, 0.0026049716398119926, -0.019349070265889168, 0.00887585524469614, 0.0707981288433075, 0.07067057490348816, 0.0316375270485878, 0.07492616027593613, -0.012244009412825108, -0.06073478236794472, 0.030568845570087433, -0.02398722805082798, 0.09075824171304703, 0.04054054617881775, -0.10984578728675842, 0.02439933829009533, -0.1790163666009903, -0.01604844443500042, 0.16851675510406494, -0.12960270047187805, -0.060556840151548386, -0.04104060307145119, -0.13949988782405853, 0.0644642785191536, 0.11710788309574127, -0.11307007074356079, 0.010692947544157505, -0.08305007964372635, -0.006429701112210751, -0.24256254732608795, -0.08596417307853699, -0.013355801813304424, -0.04953721910715103, 0.1756247729063034, -0.02529723569750786, 0.1351865828037262, 0.012044270522892475, 0.0010612179758027196, 0.004100697580724955, 0.07026588171720505, -0.042299605906009674, 0.15885895490646362, -0.07797127217054367, 0.18882416188716888, -0.024541517719626427, 0.14672529697418213, 0.0057521481066942215, -0.14233775436878204, -0.023505816236138344, 0.08314275741577148, -0.0596320703625679, -0.07288950681686401, 0.008789719082415104, -0.10643738508224487, 0.08328360319137573, 0.058763761073350906, 0.0011207201750949025, -0.1135391816496849, 0.04250338673591614, 0.11158894002437592, 0.0291934534907341, -0.1333838552236557, -0.08191762864589691, -0.10001294314861298, -0.025973103940486908, -0.027542946860194206, -0.01855403184890747, -0.014086968265473843, -0.08172166347503662, -0.13905195891857147, -0.05809886381030083, 0.08337222784757614, 0.00540059432387352, 0.1332838088274002, 0.03251941129565239, -0.00034280450199730694, -0.1779921054840088, 0.021728239953517914, 0.09963949769735336, -0.035620056092739105, -0.18996846675872803 ]
null
null
transformers
## Quickstart **Release 1.0** (November 25, 2019) We generally recommend the use of the cased model. Paper presenting Finnish BERT: [arXiv:1912.07076](https://arxiv.org/abs/1912.07076) ## What's this? A version of Google's [BERT](https://github.com/google-research/bert) deep transfer learning model for Finnish. The model can be fine-tuned to achieve state-of-the-art results for various Finnish natural language processing tasks. FinBERT features a custom 50,000 wordpiece vocabulary that has much better coverage of Finnish words than e.g. the previously released [multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) models from Google: | Vocabulary | Example | |------------|---------| | FinBERT | Suomessa vaihtuu kesän aikana sekä pääministeri että valtiovarain ##ministeri . | | Multilingual BERT | Suomessa vai ##htuu kes ##än aikana sekä p ##ää ##minister ##i että valt ##io ##vara ##in ##minister ##i . | FinBERT has been pre-trained for 1 million steps on over 3 billion tokens (24B characters) of Finnish text drawn from news, online discussion, and internet crawls. By contrast, Multilingual BERT was trained on Wikipedia texts, where the Finnish Wikipedia text is approximately 3% of the amount used to train FinBERT. These features allow FinBERT to outperform not only Multilingual BERT but also all previously proposed models when fine-tuned for Finnish natural language processing tasks. ## Results ### Document classification ![learning curves for Yle and Ylilauta document classification](https://raw.githubusercontent.com/TurkuNLP/FinBERT/master/img/yle-ylilauta-curves.png) FinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with [FastText](https://fasttext.cc/) included for reference.) [[code](https://github.com/spyysalo/finbert-text-classification)][[Yle data](https://github.com/spyysalo/yle-corpus)] [[Ylilauta data](https://github.com/spyysalo/ylilauta-corpus)] ### Named Entity Recognition Evaluation on FiNER corpus ([Ruokolainen et al 2019](https://arxiv.org/abs/1908.04212)) | Model | Accuracy | |--------------------|----------| | **FinBERT** | **92.40%** | | Multilingual BERT | 90.29% | | [FiNER-tagger](https://github.com/Traubert/FiNer-rules) (rule-based) | 86.82% | (FiNER tagger results from [Ruokolainen et al. 2019](https://arxiv.org/pdf/1908.04212.pdf)) [[code](https://github.com/jouniluoma/keras-bert-ner)][[data](https://github.com/mpsilfve/finer-data)] ### Part of speech tagging Evaluation on three Finnish corpora annotated with [Universal Dependencies](https://universaldependencies.org/) part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD) | Model | TDT | FTB | PUD | |-------------------|-------------|-------------|-------------| | **FinBERT** | **98.23%** | **98.39%** | **98.08%** | | Multilingual BERT | 96.97% | 95.87% | 97.58% | [[code](https://github.com/spyysalo/bert-pos)][[data](http://hdl.handle.net/11234/1-2837)] ## Previous releases ### Release 0.2 **October 24, 2019** Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-uncased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-uncased.zip) ### Release 0.1 **September 30, 2019** We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-cased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-cased.zip)
{"language": "fi"}
fill-mask
TurkuNLP/bert-base-finnish-cased-v1
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "fi", "arxiv:1912.07076", "arxiv:1908.04212", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1912.07076", "1908.04212" ]
[ "fi" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us
Quickstart ---------- Release 1.0 (November 25, 2019) We generally recommend the use of the cased model. Paper presenting Finnish BERT: arXiv:1912.07076 What's this? ------------ A version of Google's BERT deep transfer learning model for Finnish. The model can be fine-tuned to achieve state-of-the-art results for various Finnish natural language processing tasks. FinBERT features a custom 50,000 wordpiece vocabulary that has much better coverage of Finnish words than e.g. the previously released multilingual BERT models from Google: FinBERT has been pre-trained for 1 million steps on over 3 billion tokens (24B characters) of Finnish text drawn from news, online discussion, and internet crawls. By contrast, Multilingual BERT was trained on Wikipedia texts, where the Finnish Wikipedia text is approximately 3% of the amount used to train FinBERT. These features allow FinBERT to outperform not only Multilingual BERT but also all previously proposed models when fine-tuned for Finnish natural language processing tasks. Results ------- ### Document classification !learning curves for Yle and Ylilauta document classification FinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.) [code][Yle data] [Ylilauta data] ### Named Entity Recognition Evaluation on FiNER corpus (Ruokolainen et al 2019) (FiNER tagger results from Ruokolainen et al. 2019) [code][data] ### Part of speech tagging Evaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD) [code][data] Previous releases ----------------- ### Release 0.2 October 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: URL ### Release 0.1 September 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: URL
[ "### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]", "### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]", "### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nPrevious releases\n-----------------", "### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL", "### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]", "### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]", "### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nPrevious releases\n-----------------", "### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL", "### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ 66, 97, 43, 68, 46, 48 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nPrevious releases\n-----------------### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ -0.042510319501161575, 0.15829208493232727, -0.00356834614649415, 0.016332561150193214, 0.1062672883272171, -0.0006537768058478832, 0.11639592051506042, 0.10044526308774948, -0.02589799091219902, 0.08116253465414047, -0.021645531058311462, 0.004132796078920364, 0.12077116221189499, 0.13633181154727936, -0.024293994531035423, -0.23592078685760498, 0.07043682783842087, -0.07650458067655563, -0.05862711742520332, 0.039924148470163345, 0.1199016124010086, -0.032129231840372086, 0.03023458644747734, 0.012051482684910297, -0.07916344702243805, 0.015762075781822205, -0.053676437586545944, -0.1110108494758606, 0.03599586710333824, 0.05242714658379555, 0.05315485596656799, 0.02364606410264969, 0.027404725551605225, -0.1394265592098236, 0.004803746938705444, 0.04608212411403656, -0.009244752116501331, 0.02672579698264599, 0.1459178477525711, 0.004768406040966511, 0.19146491587162018, -0.11381584405899048, 0.028338337317109108, 0.02483147196471691, -0.07366854697465897, -0.1354484260082245, -0.15961937606334686, -0.0027296848129481077, 0.12590953707695007, 0.0815746933221817, -0.0525934211909771, 0.12203983962535858, -0.07454937696456909, 0.06784610450267792, 0.09854497760534286, -0.26238322257995605, -0.071621373295784, -0.0035084914416074753, 0.04353825002908707, -0.010571926832199097, -0.07141988724470139, 0.05078883841633797, 0.03855903074145317, 0.00828012265264988, -0.03131429851055145, 0.0019523611990734935, -0.053028594702482224, -0.09364227950572968, -0.12655583024024963, 0.034745294600725174, 0.1797138750553131, 0.016050761565566063, -0.043012216687202454, -0.14396893978118896, 0.044233959168195724, 0.08460267633199692, -0.024482859298586845, -0.03440617769956589, 0.01185357291251421, -0.06277231872081757, 0.12875913083553314, -0.06847886741161346, -0.09062735736370087, 0.05631037428975105, -0.014910221099853516, 0.227561354637146, 0.034759994596242905, 0.03602851927280426, 0.023136179894208908, -0.003145691240206361, 0.08068320900201797, -0.10187045484781265, -0.0010486245155334473, -0.026517339050769806, -0.05047943443059921, -0.045091837644577026, -0.04370474815368652, -0.18213848769664764, 0.04451514780521393, 0.043082959949970245, -0.08195064216852188, -0.031078800559043884, -0.048613034188747406, -0.0015118892770260572, 0.0514332614839077, 0.15300597250461578, -0.09520139545202255, -0.07565772533416748, 0.018780795857310295, -0.008690745569765568, 0.027075959369540215, -0.019649479538202286, -0.05406594276428223, 0.03565911948680878, 0.025211958214640617, 0.10595224052667618, 0.019539086148142815, -0.0031108183320611715, -0.03131626173853874, -0.08398757129907608, 0.12419567257165909, -0.15600083768367767, -0.039252158254384995, -0.00017905696586240083, -0.06092558801174164, 0.04014967381954193, -0.056372903287410736, 0.025221187621355057, -0.10041525214910507, -0.002097049495205283, -0.04449718818068504, 0.018772725015878677, 0.010831995867192745, -0.08785941451787949, 0.05064142122864723, -0.10579424351453781, -0.03569026291370392, -0.06094295158982277, -0.01459486223757267, -0.05965108424425125, 0.037321656942367554, -0.06410440057516098, -0.03301778808236122, -0.06415097415447235, -0.05154336988925934, -0.008962716907262802, 0.020378243178129196, 0.03152695298194885, -0.0484258309006691, -0.010427078232169151, -0.11933379620313644, 0.034388571977615356, 0.06075579300522804, 0.043938759714365005, -0.09420598298311234, -0.038388147950172424, -0.1461239755153656, 0.0935913547873497, -0.14822615683078766, 0.010087486356496811, -0.09902556240558624, -0.05738313868641853, 0.10099519044160843, 0.01215665228664875, 0.011448068544268608, 0.14769494533538818, -0.13603238761425018, -0.06331995129585266, 0.07042870670557022, -0.13029105961322784, -0.019474884495139122, 0.1146511435508728, 0.014852688647806644, 0.0007271363283507526, 0.08365517854690552, 0.1839272826910019, 0.04121893271803856, -0.07324666529893875, -0.11567097902297974, -0.05294513329863548, -0.01914105750620365, 0.0919618308544159, 0.07230907678604126, -0.02553781308233738, 0.08747413009405136, 0.04860541224479675, -0.05177929252386093, -0.03832990303635597, 0.000265894690528512, -0.0811687782406807, 0.062331464141607285, -0.03599902242422104, -0.03971829637885094, 0.007433387916535139, 0.04657936468720436, -0.059926897287368774, -0.08602617681026459, 0.04265832528471947, 0.10652132332324982, -0.023542776703834534, 0.040943779051303864, -0.06831061840057373, 0.1330631971359253, -0.03839285299181938, -0.0019349614158272743, -0.09742534905672073, -0.13402186334133148, 0.06544119119644165, -0.10470252484083176, 0.04660295322537422, 0.004081590101122856, -0.003481288207694888, 0.032797180116176605, -0.02808094024658203, -0.005264696199446917, -0.03698902577161789, -0.022588379681110382, -0.014442634768784046, -0.16615161299705505, 0.03452505171298981, -0.048066191375255585, 0.11016493290662766, -0.10366082191467285, -0.015163587406277657, 0.126956045627594, 0.1761053502559662, 0.06779303401708603, -0.03805568814277649, 0.058098696172237396, 0.034105949103832245, 0.01165610272437334, -0.03656359389424324, 0.0061194924637675285, -0.017069924622774124, -0.05332374945282936, 0.1263056993484497, -0.05063234269618988, -0.04767226800322533, 0.07783437520265579, 0.11927448213100433, -0.0663556307554245, 0.11675737053155899, -0.06848153471946716, -0.01345829851925373, -0.009632498025894165, 0.06830517202615738, 0.12789902091026306, 0.00456021586433053, 0.04060126468539238, -0.08805685490369797, -0.06680043786764145, 0.02366335317492485, -0.03575420007109642, -0.132356658577919, 0.1405060738325119, -0.038924440741539, -0.18197956681251526, 0.06806023418903351, -0.0012527542421594262, 0.0270624291151762, 0.289249449968338, -0.012638784013688564, -0.11414091289043427, -0.02533264271914959, -0.002613865537568927, 0.04755629599094391, 0.16189412772655487, -0.017852293327450752, 0.0050625912845134735, 0.02357729710638523, 0.003916039131581783, 0.08814239501953125, -0.02891683764755726, -0.0047873868606984615, -0.0844019278883934, -0.06905108690261841, 0.02550961636006832, 0.051403678953647614, 0.02061353251338005, 0.10332722961902618, 0.03431996703147888, -0.015717780217528343, -0.03126669302582741, -0.061226408928632736, -0.0406002439558506, 0.13466283679008484, -0.12842245399951935, -0.40365535020828247, -0.13279373943805695, 0.04317886754870415, -0.13633842766284943, -0.036794088780879974, 0.03259540721774101, -0.09727127850055695, -0.11621825397014618, -0.07803303748369217, 0.09472513198852539, 0.03344190493226051, -0.06130710244178772, -0.015819430351257324, 0.060351863503456116, 0.00022315508977044374, -0.11078280955553055, 0.023182768374681473, -0.046664875000715256, -0.05125954747200012, -0.008412943221628666, 0.01932385563850403, 0.07044168561697006, 0.03335024416446686, -0.017598919570446014, 0.008046702481806278, -0.01651843450963497, 0.15747736394405365, -0.1632554829120636, 0.04220276325941086, 0.07221346348524094, -0.022692522034049034, 0.0012175317388027906, 0.1430307924747467, 0.012624061666429043, -0.08372186869382858, -0.010262400843203068, 0.08202177286148071, 0.02745123580098152, -0.26768893003463745, -0.11006784439086914, -0.04324487969279289, 0.028979644179344177, -0.009038764052093029, 0.020112354308366776, -0.03600132092833519, -0.03483724594116211, -0.08759072422981262, -0.0273952167481184, 0.06381995230913162, 0.04816886782646179, 0.051630280911922455, 0.041570402681827545, 0.07265008240938187, -0.06240549311041832, 0.0019843298941850662, 0.14140039682388306, -0.02002919279038906, 0.2253270298242569, -0.03557361289858818, 0.08813881874084473, 0.05571693927049637, 0.07429934293031693, 0.00998851377516985, 0.009288440458476543, 0.0032424465753138065, 0.028302716091275215, 0.02597828581929207, -0.061842482537031174, 0.05538554862141609, 0.029495446011424065, 0.06640055030584335, -0.09867848455905914, -0.0032294809352606535, -0.04714427888393402, 0.0909019261598587, 0.289430171251297, 0.08194571733474731, -0.05332810804247856, -0.0822388231754303, 0.049270838499069214, -0.09378504753112793, -0.05632339417934418, -0.015372492372989655, 0.032295238226652145, -0.14420516788959503, 0.10386000573635101, -0.04398409277200699, 0.05767038092017174, -0.017639273777604103, -0.05376466363668442, 0.007686770521104336, 0.07311613112688065, -0.02110670693218708, 0.09676589071750641, -0.11778728663921356, 0.19491761922836304, 0.0021786780562251806, 0.10082967579364777, -0.049436911940574646, 0.04441210627555847, 0.066673144698143, 0.0019430048996582627, 0.1457686722278595, 0.03586408123373985, -0.11391305923461914, -0.003635250963270664, -0.1411323994398117, 0.033312760293483734, 0.06299346685409546, -0.13596045970916748, 0.08410443365573883, -0.004584736656397581, 0.007587083149701357, -0.05738842114806175, -0.1589101105928421, -0.12086600810289383, -0.14073249697685242, 0.10067842155694962, -0.12742766737937927, -0.04908725619316101, -0.048590656369924545, -0.14740638434886932, -0.10145745426416397, 0.23159798979759216, -0.0065178340300917625, -0.10865404456853867, -0.0986621305346489, -0.04259520769119263, 0.13247740268707275, -0.060302864760160446, 0.01334149856120348, 0.007132653146982193, 0.15891025960445404, -0.0069760894402861595, -0.08072138577699661, 0.0184356439858675, -0.04954371601343155, -0.15451057255268097, 0.047804128378629684, 0.11325666308403015, 0.0797957256436348, -0.0026014784816652536, 0.034036487340927124, 0.07059819996356964, 0.04502763971686363, -0.055805668234825134, -0.014781316742300987, 0.07165930420160294, 0.07544902712106705, 0.11471926420927048, -0.0770244151353836, -0.24975118041038513, -0.1803751140832901, -0.057037852704524994, 0.05742098018527031, 0.21594679355621338, -0.04787321761250496, 0.16324253380298615, 0.08652670681476593, -0.09957718104124069, -0.192243292927742, 0.03561142832040787, 0.05201942101120949, 0.04438721761107445, 0.008481636643409729, -0.17137064039707184, 0.11709345132112503, 0.10945916920900345, -0.026095503941178322, 0.15778982639312744, -0.09267698228359222, -0.11159354448318481, 0.028163298964500427, 0.04464608058333397, 0.040447913110256195, -0.03417300805449486, -0.03253988176584244, 0.010321101173758507, 0.05662554129958153, 0.14049780368804932, 0.01564422808587551, 0.09393972158432007, -0.004957972560077906, -0.0067275287583470345, 0.03448053076863289, 0.016794633120298386, 0.1346171796321869, -0.03979150578379631, -0.006904986221343279, -0.056732986122369766, 0.054462749511003494, 0.1032024472951889, -0.023094521835446358, 0.12062416225671768, -0.016540061682462692, -0.007200025953352451, -0.10548467189073563, -0.045122064650058746, -0.04854981228709221, 0.1554844230413437, -0.06330458074808121, -0.013206393457949162, -0.06688413769006729, 0.13700978457927704, 0.07835225760936737, -0.009452599100768566, 0.09747899323701859, -0.02840258553624153, 0.06784467399120331, -0.01377955824136734, 0.11621183156967163, 0.04538629949092865, 0.04440416395664215, -0.025959087535738945, -0.03635837510228157, 0.024095475673675537, 0.0048681823536753654, 0.019880836829543114, 0.08425923436880112, -0.02146216854453087, 0.06907118111848831, -0.04832834750413895, -0.13223867118358612, 0.023522567003965378, 0.082498699426651, -0.16134494543075562, -0.09156280755996704, -0.05113477259874344, -0.08587507903575897, -0.032306820154190063, 0.032238904386758804, 0.16824853420257568, -0.031759489327669144, -0.06650251150131226, -0.0002647344081196934, 0.09698698669672012, 0.017169363796710968, 0.0369916595518589, 0.01039644330739975, 0.025874514132738113, -0.10349532961845398, 0.17013034224510193, 0.0958392396569252, -0.0994897410273552, 0.04206642508506775, 0.11992140114307404, -0.05439669266343117, -0.05694219842553139, 0.023554591462016106, 0.1363181471824646, 0.027360916137695312, -0.040197357535362244, -0.12882384657859802, -0.10332264751195908, 0.012838468886911869, 0.1857820451259613, 0.054581549018621445, 0.04097142815589905, 0.025409294292330742, 0.0036082870792597532, -0.07991669327020645, 0.11901969462633133, 0.06645610183477402, -0.050413236021995544, -0.08108539134263992, 0.04555165395140648, 0.020318234339356422, 0.0018807603046298027, -0.031012210994958878, -0.0034142553340643644, -0.0663636326789856, -0.08239544183015823, -0.010822756215929985, 0.022827159613370895, -0.04815834388136864, 0.06363554298877716, -0.05670896917581558, -0.04162009805440903, -0.06256254762411118, 0.046555280685424805, -0.07085403054952621, -0.015925733372569084, -0.056458648294210434, 0.0804888978600502, -0.12672066688537598, -0.02190501242876053, -0.0028909542597830296, -0.0911155492067337, 0.09116379916667938, 0.029696008190512657, 0.02905886247754097, 0.10803955793380737, 0.014600826427340508, 0.025886304676532745, -0.050817083567380905, 0.03881487250328064, 0.03942863643169403, -0.15323589742183685, -0.019430890679359436, 0.02753928117454052, 0.03595622256398201, 0.04574625566601753, 0.010873178951442242, -0.06624553352594376, -0.011723787523806095, -0.021809836849570274, -0.06517732888460159, -0.015007581561803818, 0.0721016600728035, 0.13251551985740662, 0.06589652597904205, 0.16667650640010834, -0.07068824023008347, 0.07163069397211075, -0.06338462978601456, 0.012688703835010529, 0.0018479215214028955, -0.09334693104028702, -0.062065206468105316, 0.0425448976457119, 0.05910683795809746, -0.01912112347781658, 0.1270238608121872, 0.04577808827161789, 0.07741228491067886, 0.054088592529296875, -0.056453678756952286, -0.038659609854221344, 0.08336731046438217, 0.028809376060962677, -0.0011478392407298088, 0.0017007665010169148, -0.018957100808620453, -0.08610278367996216, -0.05718102678656578, -0.09286602586507797, 0.09012476354837418, 0.11779019981622696, 0.09821386635303497, 0.05133869871497154, 0.05825802683830261, -0.08166252821683884, -0.08879446238279343, 0.03764467313885689, -0.07822839915752411, 0.06856749206781387, 0.018075568601489067, 0.11300439387559891, 0.101931631565094, -0.19305387139320374, 0.09091466665267944, -0.009581002406775951, -0.09260954707860947, -0.057340797036886215, -0.12504200637340546, -0.08062101155519485, -0.0043450938537716866, 0.022986602038145065, -0.1634654998779297, 0.06492217630147934, 0.07514394074678421, 0.04638117924332619, -0.028116250410676003, 0.06348754465579987, -0.12620194256305695, -0.06520450860261917, 0.17079274356365204, 0.01670735329389572, -0.031141644343733788, 0.019684359431266785, 0.004874513018876314, -0.007796097081154585, 0.08469755947589874, 0.028210986405611038, 0.012126948684453964, -0.006100710481405258, 0.011931429617106915, -0.07377173751592636, -0.10381476581096649, 0.05424060672521591, -0.01450901199132204, 0.06004027649760246, 0.10890528559684753, 0.08432406932115555, -0.029025176540017128, -0.0023260400630533695, 0.18355576694011688, 0.024109521880745888, -0.009813128039240837, -0.20021124184131622, 0.08081517368555069, -0.019785761833190918, 0.01802821084856987, 0.019356701523065567, -0.10261786729097366, -0.022993486374616623, 0.13923823833465576, 0.15966260433197021, 0.05161448195576668, -0.019672853872179985, -0.033804427832365036, -0.010123253799974918, -0.03254209831357002, 0.04068713262677193, 0.017602117732167244, 0.11395655572414398, -0.010701647959649563, -0.05375625938177109, -0.06753026694059372, 0.018357926979660988, -0.09418493509292603, 0.051166731864213943, 0.00337467179633677, -0.043460145592689514, -0.06920798122882843, 0.14097116887569427, -0.1361844390630722, -0.23340801894664764, -0.035663459450006485, -0.14425350725650787, -0.2326069325208664, -0.0416550412774086, 0.04273330420255661, -0.019602572545409203, 0.08267437666654587, 0.06756844371557236, -0.012494196183979511, 0.09671957790851593, 0.0513145811855793, -0.011991801671683788, -0.13041634857654572, 0.06096699461340904, -0.1235172227025032, 0.19841894507408142, 0.014655133709311485, 0.017481623217463493, 0.05201893672347069, -0.0002790282014757395, -0.06490872800350189, -0.017468702048063278, 0.016932962462306023, -0.019770579412579536, 0.06446807086467743, 0.22239039838314056, -0.033727239817380905, 0.06477148830890656, 0.09469937533140182, -0.03994816169142723, 0.011738191358745098, -0.03494847193360329, -0.048646148294210434, 0.011999093927443027, 0.1266082227230072, -0.12245022505521774, 0.10990527272224426, 0.2783607840538025, -0.011056347750127316, -0.004720313474535942, -0.06508797407150269, 0.04962814226746559, 0.00896218977868557, 0.016474982723593712, 0.028704214841127396, -0.2070646435022354, -0.016048206016421318, -0.08267612755298615, 0.04268607869744301, -0.12860582768917084, -0.02107795514166355, -0.04617585241794586, -0.02927328646183014, -0.07592964172363281, 0.08654850721359253, 0.041545845568180084, -0.03870999440550804, -0.009909185580909252, 0.009022600948810577, 0.05324632301926613, 0.048978835344314575, -0.07215611636638641, -0.029322318732738495 ]
null
null
transformers
## Quickstart **Release 1.0** (November 25, 2019) Download the models here: * Cased Finnish BERT Base: [bert-base-finnish-cased-v1.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-cased-v1.zip) * Uncased Finnish BERT Base: [bert-base-finnish-uncased-v1.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-uncased-v1.zip) We generally recommend the use of the cased model. Paper presenting Finnish BERT: [arXiv:1912.07076](https://arxiv.org/abs/1912.07076) ## What's this? A version of Google's [BERT](https://github.com/google-research/bert) deep transfer learning model for Finnish. The model can be fine-tuned to achieve state-of-the-art results for various Finnish natural language processing tasks. FinBERT features a custom 50,000 wordpiece vocabulary that has much better coverage of Finnish words than e.g. the previously released [multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) models from Google: | Vocabulary | Example | |------------|---------| | FinBERT | Suomessa vaihtuu kesän aikana sekä pääministeri että valtiovarain ##ministeri . | | Multilingual BERT | Suomessa vai ##htuu kes ##än aikana sekä p ##ää ##minister ##i että valt ##io ##vara ##in ##minister ##i . | FinBERT has been pre-trained for 1 million steps on over 3 billion tokens (24B characters) of Finnish text drawn from news, online discussion, and internet crawls. By contrast, Multilingual BERT was trained on Wikipedia texts, where the Finnish Wikipedia text is approximately 3% of the amount used to train FinBERT. These features allow FinBERT to outperform not only Multilingual BERT but also all previously proposed models when fine-tuned for Finnish natural language processing tasks. ## Results ### Document classification ![learning curves for Yle and Ylilauta document classification](https://raw.githubusercontent.com/TurkuNLP/FinBERT/master/img/yle-ylilauta-curves.png) FinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with [FastText](https://fasttext.cc/) included for reference.) [[code](https://github.com/spyysalo/finbert-text-classification)][[Yle data](https://github.com/spyysalo/yle-corpus)] [[Ylilauta data](https://github.com/spyysalo/ylilauta-corpus)] ### Named Entity Recognition Evaluation on FiNER corpus ([Ruokolainen et al 2019](https://arxiv.org/abs/1908.04212)) | Model | Accuracy | |--------------------|----------| | **FinBERT** | **92.40%** | | Multilingual BERT | 90.29% | | [FiNER-tagger](https://github.com/Traubert/FiNer-rules) (rule-based) | 86.82% | (FiNER tagger results from [Ruokolainen et al. 2019](https://arxiv.org/pdf/1908.04212.pdf)) [[code](https://github.com/jouniluoma/keras-bert-ner)][[data](https://github.com/mpsilfve/finer-data)] ### Part of speech tagging Evaluation on three Finnish corpora annotated with [Universal Dependencies](https://universaldependencies.org/) part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD) | Model | TDT | FTB | PUD | |-------------------|-------------|-------------|-------------| | **FinBERT** | **98.23%** | **98.39%** | **98.08%** | | Multilingual BERT | 96.97% | 95.87% | 97.58% | [[code](https://github.com/spyysalo/bert-pos)][[data](http://hdl.handle.net/11234/1-2837)] ## Use with PyTorch If you want to use the model with the huggingface/transformers library, follow the steps in [huggingface_transformers.md](https://github.com/TurkuNLP/FinBERT/blob/master/huggingface_transformers.md) ## Previous releases ### Release 0.2 **October 24, 2019** Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-uncased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-uncased.zip) ### Release 0.1 **September 30, 2019** We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-cased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-cased.zip)
{"language": "fi"}
fill-mask
TurkuNLP/bert-base-finnish-uncased-v1
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "fi", "arxiv:1912.07076", "arxiv:1908.04212", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1912.07076", "1908.04212" ]
[ "fi" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us
Quickstart ---------- Release 1.0 (November 25, 2019) Download the models here: * Cased Finnish BERT Base: URL * Uncased Finnish BERT Base: URL We generally recommend the use of the cased model. Paper presenting Finnish BERT: arXiv:1912.07076 What's this? ------------ A version of Google's BERT deep transfer learning model for Finnish. The model can be fine-tuned to achieve state-of-the-art results for various Finnish natural language processing tasks. FinBERT features a custom 50,000 wordpiece vocabulary that has much better coverage of Finnish words than e.g. the previously released multilingual BERT models from Google: FinBERT has been pre-trained for 1 million steps on over 3 billion tokens (24B characters) of Finnish text drawn from news, online discussion, and internet crawls. By contrast, Multilingual BERT was trained on Wikipedia texts, where the Finnish Wikipedia text is approximately 3% of the amount used to train FinBERT. These features allow FinBERT to outperform not only Multilingual BERT but also all previously proposed models when fine-tuned for Finnish natural language processing tasks. Results ------- ### Document classification !learning curves for Yle and Ylilauta document classification FinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.) [code][Yle data] [Ylilauta data] ### Named Entity Recognition Evaluation on FiNER corpus (Ruokolainen et al 2019) (FiNER tagger results from Ruokolainen et al. 2019) [code][data] ### Part of speech tagging Evaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD) [code][data] Use with PyTorch ---------------- If you want to use the model with the huggingface/transformers library, follow the steps in huggingface\_transformers.md Previous releases ----------------- ### Release 0.2 October 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: URL ### Release 0.1 September 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: URL
[ "### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]", "### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]", "### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nUse with PyTorch\n----------------\n\n\nIf you want to use the model with the huggingface/transformers library, follow the steps in huggingface\\_transformers.md\n\n\nPrevious releases\n-----------------", "### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL", "### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]", "### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]", "### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nUse with PyTorch\n----------------\n\n\nIf you want to use the model with the huggingface/transformers library, follow the steps in huggingface\\_transformers.md\n\n\nPrevious releases\n-----------------", "### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL", "### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ 66, 97, 43, 106, 46, 48 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #fi #arxiv-1912.07076 #arxiv-1908.04212 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Document classification\n\n\n!learning curves for Yle and Ylilauta document classification\n\n\nFinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with FastText included for reference.)\n\n\n[code][Yle data] [Ylilauta data]### Named Entity Recognition\n\n\nEvaluation on FiNER corpus (Ruokolainen et al 2019)\n\n\n\n(FiNER tagger results from Ruokolainen et al. 2019)\n\n\n[code][data]### Part of speech tagging\n\n\nEvaluation on three Finnish corpora annotated with Universal Dependencies part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD)\n\n\n\n[code][data]\n\n\nUse with PyTorch\n----------------\n\n\nIf you want to use the model with the huggingface/transformers library, follow the steps in huggingface\\_transformers.md\n\n\nPrevious releases\n-----------------### Release 0.2\n\n\nOctober 24, 2019 Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL### Release 0.1\n\n\nSeptember 30, 2019 We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data.\n\n\nDownload the model here: URL" ]
[ -0.016459526494145393, 0.1682063341140747, -0.005500731989741325, 0.040255945175886154, 0.12581294775009155, 0.005350025836378336, 0.07693135738372803, 0.08873694390058517, 0.03153182193636894, 0.0813116505742073, -0.04295848682522774, 0.03930307552218437, 0.1203828975558281, 0.07064181566238403, -0.022923164069652557, -0.2515557110309601, 0.05672238767147064, -0.07076292484998703, -0.060998864471912384, 0.042330656200647354, 0.10335375368595123, -0.03520252928137779, 0.037476230412721634, -0.007342580705881119, -0.06330335885286331, 0.01326826773583889, -0.054302845150232315, -0.08275216817855835, 0.04923883080482483, 0.06682824343442917, 0.05346301943063736, 0.01922287419438362, 0.014257057569921017, -0.14798176288604736, 0.007860135287046432, 0.04834068939089775, -0.025363193824887276, 0.007428300566971302, 0.16093558073043823, -0.004528708755970001, 0.1978408396244049, -0.1169278547167778, 0.030269162729382515, 0.02242627553641796, -0.06965850293636322, -0.13752369582653046, -0.13437233865261078, -0.0029772331472486258, 0.13071668148040771, 0.054256927222013474, -0.04013809934258461, 0.08725277334451675, -0.09770728647708893, 0.09705514460802078, 0.10867700725793839, -0.23224525153636932, -0.06562968343496323, 0.020082533359527588, 0.0588366836309433, -0.015117612667381763, -0.08787983655929565, 0.04153871908783913, -0.0022292076610028744, 0.014948434196412563, 0.019183296710252762, -0.03835063800215721, -0.08569382131099701, -0.07609423995018005, -0.11135096848011017, 0.010698503814637661, 0.11031892150640488, -0.008735455572605133, -0.027403825893998146, -0.15645930171012878, 0.010418018326163292, 0.11870910227298737, -0.02685548923909664, -0.020530587062239647, 0.045298002660274506, -0.05970003083348274, 0.12380840629339218, -0.06004709005355835, -0.0766298845410347, 0.05595170706510544, -0.03721863403916359, 0.20635998249053955, 0.030774837359786034, 0.022198043763637543, 0.045306723564863205, 0.011534462682902813, 0.03897285833954811, -0.09988325089216232, 0.0021802783012390137, -0.040909986943006516, -0.07989911735057831, -0.02555437572300434, -0.03820982575416565, -0.12748198211193085, 0.05217259004712105, 0.0626426488161087, -0.10343194007873535, -0.0030967567581683397, -0.04653984680771828, 0.0037246067076921463, 0.03708767145872116, 0.18451367318630219, -0.11400564759969711, -0.08805052191019058, 0.01740860566496849, -0.03899536281824112, 0.04969274625182152, -0.023589646443724632, -0.0519636832177639, 0.01688838191330433, 0.02028449811041355, 0.10324931889772415, 0.035366736352443695, 0.011841381900012493, -0.030672943219542503, -0.08493401110172272, 0.13553732633590698, -0.14931420981884003, 0.021712664514780045, 0.03267274051904678, -0.05646834522485733, 0.07132849097251892, -0.046377990394830704, -0.005863784346729517, -0.1405898630619049, 0.061822857707738876, -0.01959996111690998, 0.055387016385793686, -0.010371743701398373, -0.10623486340045929, 0.07085376232862473, -0.06287675350904465, -0.03544201701879501, -0.07789728045463562, -0.0013760874280706048, -0.07213663309812546, 0.042282577604055405, -0.06645096838474274, -0.02282310277223587, -0.03264206275343895, -0.03947760537266731, -0.01414298452436924, 0.016267357394099236, -0.006598606705665588, -0.060695432126522064, 0.006251427810639143, -0.11814354360103607, 0.05162206292152405, 0.09474882483482361, 0.050083812326192856, -0.08841398358345032, -0.03106759488582611, -0.1680154651403427, 0.07894860208034515, -0.13714605569839478, 0.027464954182505608, -0.06712525337934494, -0.0610782690346241, 0.1389915496110916, 0.004684113897383213, -0.007326548453420401, 0.12179335951805115, -0.10206989198923111, -0.062271494418382645, 0.10610944777727127, -0.11540643125772476, -0.022968344390392303, 0.14444418251514435, 0.033977482467889786, -0.06621771305799484, 0.09120649099349976, 0.1844773292541504, 0.10223819315433502, -0.08992891013622284, -0.08277463912963867, -0.053066179156303406, -0.04438704624772072, 0.0940149798989296, 0.0748714804649353, 0.001034104498103261, 0.07530327886343002, 0.05662302300333977, -0.06614243984222412, -0.010233297944068909, 0.036122649908065796, -0.0584966242313385, 0.062005169689655304, -0.021595021709799767, -0.012986782006919384, 0.05163580924272537, 0.009054742753505707, -0.059105146676301956, -0.07500327378511429, 0.029831133782863617, 0.08714315295219421, -0.044491320848464966, 0.04855639860033989, -0.04599733278155327, 0.14618057012557983, 0.0076638138853013515, 0.031004322692751884, -0.0962761715054512, -0.11537887901067734, 0.057666026055812836, -0.10459411144256592, 0.03044847585260868, -0.029725417494773865, 0.0068470798432827, 0.05403577908873558, -0.051727939397096634, -0.013014154508709908, -0.0008366706897504628, -0.032541435211896896, 0.008820110000669956, -0.15023325383663177, 0.03476758673787117, -0.038775574415922165, 0.12158045917749405, -0.07929617911577225, 0.002097295830026269, 0.09649558365345001, 0.19593320786952972, 0.0469503179192543, -0.010484951548278332, 0.058334093540906906, 0.06401512026786804, 0.024634985253214836, -0.042862799018621445, 0.019422056153416634, -0.026731787249445915, -0.038807857781648636, 0.12964585423469543, -0.054994385689496994, -0.009428896941244602, 0.0869450569152832, 0.08478337526321411, -0.05476309359073639, 0.06756097823381424, -0.04138984531164169, -0.021054310724139214, -0.028447981923818588, 0.015849847346544266, 0.12792694568634033, 0.02594105526804924, 0.047648604959249496, -0.08584928512573242, -0.06491430848836899, -0.005562460515648127, -0.03565160557627678, -0.08724868297576904, 0.16080959141254425, -0.00885334238409996, -0.14186686277389526, 0.08313753455877304, -0.018118055537343025, -0.02095549926161766, 0.2670285701751709, -0.013177601620554924, -0.10012730956077576, -0.0046768030151724815, 0.016913361847400665, 0.054033029824495316, 0.14663749933242798, -0.01343937311321497, 0.009999053552746773, 0.049394719302654266, -0.026895789429545403, 0.04997244104743004, -0.041534196585416794, -0.002064455533400178, -0.06936711072921753, -0.05866319313645363, 0.0019851841498166323, 0.030817223712801933, 0.055335868149995804, 0.10038302838802338, 0.010038124397397041, -0.00963346753269434, -0.052153605967760086, -0.060731083154678345, -0.033384185284376144, 0.14804038405418396, -0.12469655275344849, -0.4299547076225281, -0.12939304113388062, -0.003947719465941191, -0.1519143432378769, -0.03939023241400719, 0.043402619659900665, -0.07251112163066864, -0.11298520863056183, -0.07899576425552368, 0.12346473336219788, 0.07807984948158264, -0.09536271542310715, -0.07972732931375504, 0.05722597613930702, -0.021480416879057884, -0.11205974221229553, 0.007310875691473484, -0.02421821467578411, -0.03502627834677696, 0.0474499873816967, 0.03919614478945732, 0.08506282418966293, 0.05992179736495018, -0.03194199874997139, -0.028863467276096344, -0.021481938660144806, 0.09995663166046143, -0.1653272956609726, 0.07256888598203659, 0.08779982477426529, -0.008562611415982246, 0.04260299354791641, 0.1798441857099533, 0.039122313261032104, -0.0501384362578392, -0.02653256244957447, 0.06527912616729736, 0.015124163590371609, -0.2534119784832001, -0.11878623068332672, -0.07095173746347427, 0.08421096205711365, 0.02011881209909916, 0.015811773017048836, -0.04250846803188324, -0.03206830471754074, -0.10208043456077576, -0.03863316401839256, 0.09359446167945862, 0.06106536462903023, 0.1191522553563118, 0.030996661633253098, 0.07052981853485107, -0.05094848573207855, -0.00514587527140975, 0.11982998251914978, -0.0058219716884195805, 0.1834513545036316, -0.06609588861465454, 0.08778510987758636, 0.022788155823946, 0.05006256327033043, -0.0034865140914916992, 0.05900884419679642, -0.0038760281167924404, 0.027208073064684868, 0.02514047734439373, -0.06252729147672653, 0.044269777834415436, 0.027453182265162468, 0.09884198009967804, -0.10898099839687347, 0.008435248397290707, -0.08738180249929428, 0.12450649589300156, 0.24256283044815063, 0.04512754827737808, -0.059278931468725204, -0.07092992961406708, 0.04965474084019661, -0.09037864208221436, -0.06643477827310562, -0.01841120794415474, 0.03111424669623375, -0.16117118299007416, 0.10334669053554535, -0.039247192442417145, 0.08119825273752213, -0.026440566405653954, -0.05606571584939957, 0.0008231971296481788, 0.10126880556344986, -0.004481344949454069, 0.10016877949237823, -0.1145167201757431, 0.1110634058713913, -0.0062316725961863995, 0.07347829639911652, -0.050844065845012665, 0.04661933705210686, 0.08568065613508224, 0.048163920640945435, 0.11774323135614395, 0.04062284156680107, -0.06153823062777519, -0.024996772408485413, -0.12591604888439178, 0.021049052476882935, 0.026082994416356087, -0.11388719826936722, 0.0707942321896553, -0.0037434743717312813, -0.018309079110622406, -0.10460377484560013, -0.179313525557518, -0.03169543668627739, -0.15601219236850739, 0.07323523610830307, -0.15607823431491852, -0.00555031094700098, -0.02494518831372261, -0.12681786715984344, -0.11116904765367508, 0.22403976321220398, -0.005482018459588289, -0.138983353972435, -0.0976065993309021, -0.09217378497123718, 0.13957872986793518, -0.07279064506292343, 0.01319790631532669, -0.010218393988907337, 0.14744213223457336, -0.026027200743556023, -0.07310977578163147, 0.0029288590885698795, -0.06312248855829239, -0.1419103443622589, 0.048576295375823975, 0.15584009885787964, 0.013723750598728657, 0.014977988786995411, 0.022342806681990623, 0.0647921934723854, 0.023391811177134514, -0.08779849112033844, -0.03834511712193489, 0.09437088668346405, 0.0726926252245903, 0.12561194598674774, -0.06484954059123993, -0.20231612026691437, -0.17412611842155457, -0.031005196273326874, 0.08696972578763962, 0.1944238841533661, -0.047584522515535355, 0.1840057373046875, 0.10287651419639587, -0.07881279289722443, -0.21048781275749207, -0.010133888572454453, 0.03241141140460968, 0.036751389503479004, 0.02269030176103115, -0.15214964747428894, 0.12570829689502716, 0.11146631836891174, -0.0005588672938756645, 0.15994498133659363, -0.0945538580417633, -0.11053934693336487, 0.014375175349414349, 0.07557397335767746, -0.018364598974585533, -0.06820154935121536, -0.020789217203855515, -0.01507067121565342, -0.029420936480164528, 0.12449012696743011, -0.016839753836393356, 0.09663121402263641, -0.023824170231819153, 0.012983915396034718, 0.04253826662898064, 0.003791318042203784, 0.15361960232257843, -0.06421936303377151, -0.016470840200781822, -0.05906487628817558, 0.055356714874506, 0.0690862312912941, -0.03309805691242218, 0.12255021184682846, -0.06557641923427582, -0.023670582100749016, -0.08457788825035095, -0.0513634979724884, -0.058082547038793564, 0.1384105086326599, -0.07240250706672668, -0.004567144904285669, -0.07126307487487793, 0.1340719312429428, 0.10597801208496094, -0.027158290147781372, 0.059051238000392914, -0.03733225539326668, 0.01886097341775894, 0.0403483547270298, 0.13023988902568817, 0.0070521836169064045, -0.000911687093321234, -0.025213811546564102, -0.03167171776294708, 0.022915180772542953, -0.006132991518825293, 0.045143213123083115, 0.1046038269996643, -0.006464165635406971, 0.07195660471916199, -0.04734993353486061, -0.09721770882606506, -0.0026784820947796106, 0.08594325184822083, -0.1513497531414032, -0.1107015535235405, -0.04001368582248688, -0.1114392802119255, -0.02989281341433525, 0.010463099926710129, 0.14066319167613983, -0.024569140747189522, -0.06781668961048126, 0.03236421197652817, 0.10485105216503143, 0.04454878345131874, 0.044969744980335236, 0.0034847769420593977, 0.0390976220369339, -0.12145693600177765, 0.13873915374279022, 0.08531170338392258, -0.13156501948833466, -0.010707264766097069, 0.16249790787696838, -0.05056389793753624, -0.0704868957400322, -0.009933793917298317, 0.0861910730600357, 0.033847421407699585, -0.05432586371898651, -0.10194691270589828, -0.11173522472381592, -0.008638167753815651, 0.13539226353168488, 0.0497610867023468, 0.02325829304754734, 0.024380020797252655, 0.00303684757091105, -0.10101410746574402, 0.13640862703323364, 0.08153922110795975, -0.028409741818904877, -0.07846160233020782, 0.03685992956161499, 0.027025053277611732, 0.010904877446591854, -0.030918249860405922, -0.008264181204140186, -0.09697810560464859, -0.07333379983901978, -0.031239524483680725, 0.021867023780941963, -0.10142716020345688, 0.07628720998764038, -0.05206624045968056, -0.013309621252119541, -0.044501837342977524, 0.041601285338401794, -0.05979486182332039, -0.03367278352379799, -0.06272153556346893, 0.08168169111013412, -0.13841141760349274, -0.040390271693468094, 0.037097442895174026, -0.08731327950954437, 0.09111081808805466, 0.019776199012994766, 0.0035409184638410807, 0.08589067310094833, 0.00043291118345223367, -0.005127573385834694, -0.0319414883852005, 0.04442137852311134, 0.0347563736140728, -0.18811896443367004, -0.007632132153958082, 0.009611633606255054, -0.013807138428092003, 0.03778601810336113, 0.014313035644590855, -0.08340532332658768, 0.031768444925546646, -0.03703273832798004, -0.10524210333824158, -0.030056102201342583, 0.07692038267850876, 0.0992715135216713, 0.05746405944228172, 0.15565958619117737, -0.07343840599060059, 0.10958131402730942, -0.056840699166059494, 0.0034739512484520674, 0.009187055751681328, -0.09992828965187073, -0.02613169141113758, 0.017735783010721207, 0.061884015798568726, -0.009075645357370377, 0.13210821151733398, 0.07849329710006714, 0.10863984376192093, 0.03963770344853401, -0.03656451404094696, -0.003824184648692608, 0.07421961426734924, -0.019103772938251495, -0.04246388375759125, -0.018382424488663673, -0.025248907506465912, -0.06394193321466446, -0.05846795067191124, -0.06848016381263733, 0.0772591084241867, 0.1340511292219162, 0.10572309792041779, 0.02928311564028263, 0.05508048087358475, -0.045674487948417664, -0.14052972197532654, -0.020256035029888153, -0.049114733934402466, 0.06004603952169418, -0.0012772739864885807, 0.16124409437179565, 0.091158427298069, -0.206231027841568, 0.12781180441379547, -0.008516394533216953, -0.08505456894636154, -0.024903124198317528, -0.09798186272382736, -0.06570574641227722, -0.03613857179880142, 0.0034869720693677664, -0.16215673089027405, 0.04837963357567787, 0.07204296439886093, 0.04131118953227997, -0.04754133149981499, 0.06472336500883102, -0.09968350827693939, -0.08781757950782776, 0.15272735059261322, 0.030255453661084175, 0.0011264740023761988, 0.08382592350244522, 0.02166593074798584, -0.03090641461312771, 0.05091153085231781, 0.031288448721170425, 0.038389381021261215, 0.004788555204868317, 0.003278428688645363, -0.10140682756900787, -0.09186988323926926, 0.055862050503492355, 0.005175313912332058, 0.03819618374109268, 0.13247643411159515, 0.0774720162153244, -0.031705472618341446, -0.0161624513566494, 0.1882350742816925, 0.006472701672464609, -0.03579162433743477, -0.18430782854557037, 0.13915763795375824, -0.009638821706175804, -0.0032459162175655365, 0.035534657537937164, -0.10893309861421585, -0.04169054329395294, 0.15009759366512299, 0.13392022252082825, 0.039105650037527084, -0.008151968009769917, -0.03001304902136326, 0.00014296431618276983, -0.018777936697006226, 0.05580078437924385, 0.03654750436544418, 0.1779087632894516, -0.02065383270382881, -0.039633747190237045, -0.06110129505395889, -0.021551042795181274, -0.12114676088094711, 0.046418752521276474, 0.008622772991657257, -0.06156419962644577, -0.07657349854707718, 0.11831945180892944, -0.12998825311660767, -0.18973802030086517, 0.001068573328666389, -0.1328597217798233, -0.2045534998178482, -0.04304804652929306, 0.0409378781914711, -0.019952205941081047, 0.07891682535409927, 0.07666525989770889, -0.024824408814311028, 0.12186850607395172, 0.04907296597957611, -0.01931924931704998, -0.06478334218263626, 0.04166986420750618, -0.11267823725938797, 0.17536069452762604, 0.0054561602883040905, 0.02860603854060173, 0.06942953169345856, 0.027383137494325638, -0.05264514312148094, -0.005757403094321489, 0.036239899694919586, -0.09968847036361694, 0.07069385796785355, 0.2073935717344284, -0.021850524470210075, 0.022038009017705917, 0.09522484242916107, -0.021919576451182365, 0.005656084977090359, -0.021462231874465942, -0.0026220171712338924, 0.018433094024658203, 0.12960173189640045, -0.12135444581508636, 0.08444041758775711, 0.29081711173057556, 0.01566619798541069, -0.011559312231838703, -0.08968600630760193, 0.03191862255334854, 0.0074941557832062244, -0.0034287809394299984, 0.0024858468677848577, -0.16479860246181488, -0.016117937862873077, -0.03470271825790405, 0.04561734199523926, -0.08145778626203537, -0.04611608758568764, -0.03153905272483826, -0.02307894267141819, -0.08044853806495667, 0.09705144912004471, 0.023029429838061333, -0.041203297674655914, 0.004491907544434071, -0.06184210628271103, 0.05485061556100845, 0.07063785940408707, -0.07762451469898224, -0.02273055538535118 ]
null
null
sentence-transformers
# Cased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences can be found [here](http://epsilon-it.utu.fi/sbert400m). ## Training - Library: [sentence-transformers](https://www.sbert.net/) - FinBERT model: TurkuNLP/bert-base-finnish-cased-v1 - Data: The data provided [here](https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) - Pooling: mean pooling - Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels](https://aclanthology.org/2021.nodalida-main.29/) ## Usage The same as in the HuggingFace documentation of [the English Sentence Transformer](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` ### SentenceTransformer ```python from sentence_transformers import SentenceTransformer sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] model = SentenceTransformer('TurkuNLP/sbert-cased-finnish-paraphrase') embeddings = model.encode(sentences) print(embeddings) ``` ### HuggingFace Transformers ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-cased-finnish-paraphrase') model = AutoModel.from_pretrained('TurkuNLP/sbert-cased-finnish-paraphrase') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results A publication detailing the evaluation results is currently being drafted. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors While the publication is being drafted, please cite [this page](https://turkunlp.org/paraphrase.html). ## References - J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. - N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. - A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019.
{"language": ["fi"], "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity", "widget": [{"text": "Minusta t\u00e4\u00e4ll\u00e4 on ihana asua!"}]}
sentence-similarity
TurkuNLP/sbert-cased-finnish-paraphrase
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "fi", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us
# Cased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences can be found here. ## Training - Library: sentence-transformers - FinBERT model: TurkuNLP/bert-base-finnish-cased-v1 - Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) - Pooling: mean pooling - Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels ## Usage The same as in the HuggingFace documentation of the English Sentence Transformer. Either through 'SentenceTransformer' or 'HuggingFace Transformers' ### SentenceTransformer ### HuggingFace Transformers ## Evaluation Results A publication detailing the evaluation results is currently being drafted. ## Full Model Architecture ## Citing & Authors While the publication is being drafted, please cite this page. ## References - J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. - N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. - A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019.
[ "# Cased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences can be found here.", "## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-cased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels", "## Usage\n\nThe same as in the HuggingFace documentation of the English Sentence Transformer. Either through 'SentenceTransformer' or 'HuggingFace Transformers'", "### SentenceTransformer", "### HuggingFace Transformers", "## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.", "## Full Model Architecture", "## Citing & Authors\n\nWhile the publication is being drafted, please cite this page.", "## References\n\n- J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021.\n- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019.\n- A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us \n", "# Cased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences can be found here.", "## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-cased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels", "## Usage\n\nThe same as in the HuggingFace documentation of the English Sentence Transformer. Either through 'SentenceTransformer' or 'HuggingFace Transformers'", "### SentenceTransformer", "### HuggingFace Transformers", "## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.", "## Full Model Architecture", "## Citing & Authors\n\nWhile the publication is being drafted, please cite this page.", "## References\n\n- J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021.\n- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019.\n- A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019." ]
[ 44, 48, 123, 41, 6, 9, 17, 5, 19, 207 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us \n# Cased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences can be found here.## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-cased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels## Usage\n\nThe same as in the HuggingFace documentation of the English Sentence Transformer. Either through 'SentenceTransformer' or 'HuggingFace Transformers'### SentenceTransformer### HuggingFace Transformers## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.## Full Model Architecture## Citing & Authors\n\nWhile the publication is being drafted, please cite this page." ]
[ 0.043546125292778015, -0.020953383296728134, -0.004062683787196875, 0.013764023780822754, 0.0668538436293602, 0.002540862886235118, 0.13124534487724304, 0.0704149678349495, -0.0869741141796112, 0.09439986944198608, -0.001918025896884501, -0.018089534714818, 0.11244683712720871, -0.006226234138011932, 0.03507663309574127, -0.2973472476005554, 0.058604173362255096, -0.010141240432858467, 0.0030211203265935183, 0.07696643471717834, 0.18267686665058136, -0.03408099710941315, 0.06586149334907532, 0.08271986991167068, -0.033766668289899826, 0.022594692185521126, -0.00717961834743619, -0.042967021465301514, 0.07783231884241104, 0.07516650855541229, 0.09079108387231827, -0.004107193555682898, -0.007017469499260187, -0.1462153196334839, 0.009720203466713428, 0.08284766972064972, 0.01870708167552948, 0.01935676299035549, 0.11141863465309143, -0.05645214393734932, 0.21935267746448517, -0.037672191858291626, 0.07349729537963867, 0.021970083937048912, -0.109334297478199, -0.1674206256866455, -0.0658254399895668, 0.07283148914575577, 0.13083364069461823, 0.015203003771603107, -0.05187171697616577, 0.060158587992191315, -0.012097597122192383, 0.08492456376552582, 0.14405065774917603, -0.25438442826271057, -0.05921608954668045, -0.08119333535432816, 0.11489707976579666, 0.007597954478114843, -0.09508344531059265, 0.04910682514309883, 0.018167931586503983, 0.014311933889985085, -0.0763099268078804, 0.026312824338674545, 0.03718697652220726, -0.05325484275817871, -0.09347662329673767, 0.03524840250611305, 0.2234034538269043, -0.023452773690223694, -0.028496846556663513, -0.18421250581741333, -0.05887993425130844, 0.0764588937163353, -0.01365349255502224, -0.056074075400829315, -0.02552291750907898, -0.01879253424704075, 0.047332488000392914, -0.052574701607227325, -0.1426575630903244, 0.009631998836994171, -0.08109896630048752, 0.1598154753446579, -0.0005295381415635347, 0.002498321235179901, -0.07493413239717484, 0.06891082227230072, -0.020808473229408264, -0.11884116381406784, -0.003736810525879264, -0.059732090681791306, -0.020137177780270576, -0.007592205889523029, -0.06390112638473511, -0.21399597823619843, 0.01021695788949728, 0.010526488535106182, -0.01652621291577816, -0.03234493359923363, -0.06671345978975296, 0.0352749302983284, 0.08310096710920334, 0.14725138247013092, -0.040194012224674225, -0.01678309217095375, -0.061634913086891174, -0.05849480628967285, 0.011398181319236755, -0.047198716551065445, -0.02954954281449318, 0.0018565760692581534, 0.12203967571258545, 0.017786839976906776, -0.0153881274163723, 0.027421357110142708, -0.028887808322906494, -0.02603011019527912, 0.14524810016155243, -0.13696394860744476, 0.025542600080370903, 0.04866189509630203, 0.036991920322179794, 0.07622427493333817, 0.009785102680325508, -0.00978349894285202, -0.11432424932718277, 0.10656663030385971, -0.0828355997800827, 0.008576539345085621, -0.03045881725847721, -0.1471683830022812, -0.008216102607548237, -0.03018220141530037, -0.04963525012135506, -0.0313725508749485, 0.03512612357735634, -0.07504913210868835, 0.007810084614902735, -0.04997660219669342, -0.013597369194030762, -0.047444116324186325, 0.02356548421084881, 0.0363209992647171, 0.027081085368990898, -0.04930346831679344, -0.030240336433053017, 0.028107380494475365, -0.06811598688364029, 0.035520944744348526, 0.06245729699730873, 0.04605819284915924, -0.1420542597770691, -0.004554231185466051, -0.11909779161214828, 0.075523242354393, -0.05019678175449371, -0.029674164950847626, -0.07414177805185318, -0.061490610241889954, -0.006101094651967287, 0.028700867667794228, -0.03153068944811821, 0.12657713890075684, -0.15280723571777344, -0.12155479192733765, 0.19840426743030548, -0.14967131614685059, -0.04669061675667763, 0.12289347499608994, 0.004334004130214453, 0.05520890653133392, 0.10568105429410934, 0.1348656862974167, 0.003951553255319595, -0.1111476868391037, 0.005556283053010702, -0.01835509203374386, 0.0005527234170585871, 0.24310623109340668, 0.04224926605820656, -0.0767074003815651, 0.07375019043684006, 0.03293013572692871, -0.03454158455133438, -0.1255914270877838, -0.01337716169655323, -0.02634371630847454, 0.002537210937589407, 0.06586766988039017, -0.06171198561787605, -0.013521537184715271, -0.040169090032577515, -0.08489709347486496, -0.10518359392881393, 0.12008997052907944, 0.017160367220640182, -0.08966350555419922, 0.0682225301861763, -0.01544860191643238, 0.058198969811201096, 0.016379905864596367, -0.014966830611228943, -0.11618771404027939, -0.05819442495703697, 0.03082805499434471, -0.02199171483516693, 0.04352904483675957, 0.1113746166229248, 0.028805993497371674, 0.04877609387040138, -0.029081987217068672, 0.05914585292339325, -0.012982131913304329, -0.01033502072095871, -0.07310705631971359, -0.12600922584533691, 0.04879925400018692, -0.03837696835398674, 0.07831252366304398, -0.033187758177518845, -0.005350842606276274, 0.08760681003332138, 0.13536842167377472, 0.042869750410318375, -0.0666467472910881, -0.01555901113897562, -0.027692047879099846, -0.02683587558567524, 0.024277595803141594, 0.05987036973237991, -0.01655442826449871, -0.06814493983983994, 0.20737943053245544, -0.16582781076431274, -0.11496075987815857, 0.06278887391090393, 0.09254981577396393, -0.09018876403570175, -0.023413078859448433, -0.08391623944044113, -0.0019178399816155434, -0.056210026144981384, -0.06378459930419922, 0.16952423751354218, 0.02878812700510025, 0.10619927942752838, -0.106377974152565, -0.07361958920955658, -0.00572829507291317, -0.05691515654325485, -0.07413305342197418, 0.12538103759288788, -0.09215158969163895, -0.1847216784954071, 0.08556339889764786, 0.006297042593359947, 0.03779784217476845, 0.22380180656909943, 0.027869539335370064, -0.14010505378246307, 0.0033187896478921175, -0.02243415266275406, 0.03490768000483513, 0.052191462367773056, -0.13936655223369598, 0.007733560167253017, 0.07299627363681793, 0.026850484311580658, 0.05837591737508774, -0.08251100778579712, 0.023955482989549637, 0.01675066351890564, -0.03957222029566765, 0.007812576368451118, 0.05996183305978775, 0.03279859572649002, 0.10835441946983337, -0.009493594989180565, 0.06316518038511276, -0.11051885783672333, -0.06514529138803482, -0.09689708054065704, 0.15072719752788544, -0.08838944882154465, -0.3040374517440796, -0.23722206056118011, 0.08630017191171646, -0.11301135271787643, 0.02139468304812908, 0.07618711143732071, -0.02912146784365177, -0.09054166078567505, -0.0973256304860115, 0.1448490172624588, 0.03016042895615101, -0.06033525615930557, -0.03642076626420021, 0.011611845344305038, 0.018251387402415276, -0.1913546323776245, -0.01639353670179844, -0.04366069287061691, -0.0867786854505539, -0.028423940762877464, -0.049421943724155426, 0.026252364739775658, 0.0973629280924797, -0.01900567300617695, -0.016629088670015335, 0.014553294517099857, 0.21535658836364746, -0.12272822111845016, 0.07614061236381531, 0.07159275561571121, -0.07152726501226425, 0.046027567237615585, 0.02551240473985672, 0.00182305125053972, -0.043937310576438904, 0.04888816922903061, 0.07230374962091446, -0.009989810176193714, -0.17795708775520325, -0.09324444830417633, -0.03553134575486183, 0.06881112605333328, 0.056656911969184875, 0.04613198712468147, -0.0750894546508789, -0.010105075314640999, -0.10563381016254425, -0.13168224692344666, 0.12376968562602997, 0.06942223757505417, 0.1030104011297226, -0.01615561917424202, 0.11174317449331284, -0.046355023980140686, -0.08710876107215881, 0.043054044246673584, -0.0478987917304039, 0.10179981589317322, -0.0063536325469613075, 0.008248663507401943, 0.05901341885328293, -0.05991344526410103, 0.058470387011766434, 0.10091935843229294, -0.08472757786512375, 0.0006232397863641381, -0.03237226977944374, -0.088325634598732, 0.0019865825306624174, 0.08860090374946594, 0.03884778916835785, -0.04036233201622963, -0.0008791001164354384, -0.09001661837100983, 0.07263161242008209, 0.23554880917072296, 0.19600626826286316, -0.03891121968626976, -0.11983669549226761, 0.048484884202480316, -0.09439421445131302, -0.10238004475831985, 0.006118467077612877, 0.0055753435008227825, -0.15052726864814758, 0.0805111825466156, -0.011285089887678623, 0.0880771055817604, -0.0122234420850873, -0.008932756260037422, -0.052790120244026184, -0.007348715327680111, -0.039097338914871216, 0.08237326890230179, -0.0804462879896164, 0.1338992714881897, 0.013893671333789825, 0.057342804968357086, -0.035927582532167435, 0.016648296266794205, 0.0013625386636704206, 0.11993488669395447, 0.16204777359962463, 0.027436576783657074, 0.037229131907224655, 0.035756681114435196, -0.14727772772312164, 0.03527482971549034, 0.08036139607429504, -0.1383569836616516, 0.06807337701320648, -0.07415642589330673, 0.04828084632754326, -0.0383761040866375, 0.03788897022604942, -0.034096281975507736, -0.18478161096572876, 0.02613762393593788, -0.17185059189796448, -0.0246752742677927, -0.016727743670344353, -0.10516392439603806, -0.10193175077438354, 0.20591230690479279, -0.09560783207416534, -0.10278751701116562, -0.07993615418672562, -0.07229074090719223, 0.08588939160108566, -0.04891638457775116, -0.07042577117681503, -0.08171282708644867, 0.17708463966846466, -0.049674488604068756, -0.055267084389925, 0.03531501442193985, -0.042748529464006424, -0.15615494549274445, -0.00120711256749928, 0.18469356000423431, 0.08319451659917831, 0.05992159992456436, 0.04870670661330223, 0.11894617974758148, -0.054541416466236115, -0.061523593962192535, -0.007038999814540148, 0.07702562212944031, 0.023228587582707405, 0.050154708325862885, -0.15380357205867767, 0.0028174808248877525, -0.15415875613689423, -0.0318538062274456, 0.09584560990333557, 0.22019460797309875, -0.016661645844578743, 0.185616597533226, 0.11546289920806885, -0.12568479776382446, -0.2547852098941803, -0.07764770835638046, 0.04309294745326042, 0.08696569502353668, 0.06370741873979568, -0.07180357724428177, 0.12308169901371002, 0.10951323807239532, -0.010595925152301788, -0.010940070264041424, -0.15954263508319855, -0.15553486347198486, 0.11253198981285095, -0.004268597811460495, 0.01777532882988453, -0.09603217244148254, -0.01753148064017296, -0.04355098307132721, -0.10946712642908096, 0.11378718167543411, 0.009246100671589375, 0.12489768117666245, -0.009543906897306442, -0.05377351492643356, 0.01848411373794079, 0.010459689423441887, 0.14233268797397614, -0.0006928272196091712, 0.0304111260920763, -0.0639938935637474, 0.027821393683552742, 0.009785540401935577, 0.0030864852014929056, 0.13282009959220886, 0.003611296648159623, 0.0195574052631855, -0.08273942768573761, -0.05376658961176872, -0.08178231120109558, 0.15495547652244568, -0.05561798810958862, -0.03669116646051407, -0.09985673427581787, 0.04520311579108238, 0.06463191658258438, -0.03939688578248024, 0.15064939856529236, -0.1345691829919815, 0.17300304770469666, 0.10924848169088364, 0.1145963966846466, 0.0035112337209284306, -0.0634625256061554, -0.0070157162845134735, -0.015376088209450245, 0.06403344124555588, 0.03248262405395508, 0.07957417517900467, 0.0747266635298729, 0.0015647324034944177, 0.10982440412044525, 0.0006274066981859505, -0.07809451222419739, -0.042318183928728104, 0.08634639531373978, -0.16172672808170319, -0.1765468865633011, -0.05903799459338188, -0.0874565839767456, -0.04060308635234833, -0.027177980169653893, 0.17311352491378784, -0.0266870204359293, -0.034489452838897705, 0.03374841436743736, 0.08270715177059174, -0.019449030980467796, 0.07859152555465698, -0.0021672637667506933, 0.03764364868402481, -0.05047118291258812, 0.07161742448806763, 0.06347747892141342, -0.10336430370807648, 0.06523845344781876, 0.03758779540657997, -0.054815154522657394, 0.03520084545016289, -0.06916838139295578, 0.15254373848438263, -0.04042654111981392, -0.0242956280708313, -0.10257773846387863, -0.12368837743997574, -0.015925707295536995, 0.07445444911718369, 0.07179432362318039, 0.10038044303655624, -0.04116549715399742, 0.012009706348180771, -0.08128462731838226, 0.10185040533542633, 0.08576279133558273, -0.009003535844385624, 0.042459625750780106, 0.1547272950410843, -0.013853702694177628, 0.014343642629683018, -0.0458044707775116, -0.025527428835630417, -0.03848382830619812, -0.05886523798108101, -0.0022842902690172195, -0.0806054025888443, -0.0719178169965744, -0.022931527346372604, -0.005794050637632608, -0.020911110565066338, -0.012921581044793129, -0.026111746206879616, -0.028123822063207626, -0.002324199303984642, -0.10215894132852554, 0.07006017118692398, -0.1487838178873062, 0.04180571436882019, 0.1080542504787445, -0.09091068059206009, 0.05351404845714569, 0.02758915163576603, -0.03506629541516304, 0.036539226770401, -0.10535778850317001, 0.023450758308172226, -0.03963828459382057, 0.013930604793131351, -0.0064694322645664215, -0.1593124270439148, -0.015571601688861847, 0.015293590724468231, 0.0009522677282802761, 0.03597535565495491, 0.08624568581581116, -0.10273270308971405, -0.004485343117266893, -0.0017115641385316849, -0.09900873154401779, -0.037334028631448746, 0.031048275530338287, 0.0019190210150554776, 0.0786663368344307, 0.1502111554145813, -0.10729973018169403, 0.06576485186815262, -0.0915558934211731, 0.033073484897613525, 0.03931880742311478, -0.04616066813468933, 0.06411914527416229, -0.03683074936270714, 0.013020135462284088, 0.012585043907165527, 0.19784820079803467, 0.07477773725986481, 0.027882013469934464, 0.10573530942201614, 0.016340777277946472, -0.0631813034415245, 0.013811969198286533, 0.051411889493465424, 0.021374071016907692, 0.014687146060168743, -0.07930287718772888, -0.014067382551729679, -0.057902172207832336, -0.016371652483940125, 0.1373969167470932, 0.03151240199804306, -0.003026578575372696, 0.0588960200548172, 0.05378216877579689, 0.04353729262948036, -0.04232415556907654, -0.0151972696185112, 0.0018512881360948086, 0.08449272066354752, 0.024899937212467194, 0.06269834190607071, 0.18518541753292084, -0.16476976871490479, 0.12945370376110077, -0.022601770237088203, -0.100857675075531, -0.1442394256591797, -0.08845802396535873, -0.08164892345666885, -0.031793247908353806, 0.02255442552268505, -0.12783744931221008, 0.06561299413442612, -0.016908980906009674, 0.049955934286117554, -0.05069644749164581, 0.097596675157547, -0.1283365786075592, -0.10682468116283417, 0.1056353971362114, 0.0316070131957531, 0.08409637957811356, 0.04891340434551239, 0.009627703577280045, 0.02595822513103485, 0.14083275198936462, 0.05691511556506157, 0.07342367619276047, 0.056809015572071075, -0.04710032790899277, -0.05472198873758316, -0.07689221203327179, 0.023109696805477142, -0.018510617315769196, 0.012754075229167938, 0.12469156831502914, 0.0323140025138855, 0.02330438792705536, -0.011381709016859531, 0.1356697678565979, -0.04383169859647751, -0.10789821296930313, -0.18084865808486938, 0.17472070455551147, 0.007366446312516928, 0.07580079883337021, 0.026483437046408653, -0.09542551636695862, -0.0855555534362793, 0.16545604169368744, 0.17003986239433289, 0.012683987617492676, 0.041318025439977646, 0.004670633468776941, 0.029294220730662346, 0.08396954834461212, -0.027106616646051407, -0.0053028506226837635, 0.1743002086877823, -0.03261471539735794, 0.08735890686511993, -0.07811296731233597, 0.009123455733060837, -0.06225282698869705, 0.0991869568824768, 0.033075980842113495, -0.02592567726969719, -0.0834951400756836, 0.11812841147184372, -0.03774551302194595, -0.24767568707466125, -0.09924891591072083, -0.07671083509922028, -0.14927056431770325, -0.01065932959318161, 0.10282682627439499, -0.02829313464462757, 0.10238690674304962, 0.06760704517364502, -0.012938786298036575, 0.1601519137620926, 0.020914990454912186, 0.0003502854669932276, -0.009422997012734413, 0.09158627688884735, -0.14690691232681274, 0.05404829978942871, 0.05213818699121475, -0.021331576630473137, 0.037273310124874115, -0.01130023505538702, 0.042560115456581116, 0.04060013219714165, 0.0037008263170719147, 0.02736481837928295, 0.01906472258269787, 0.14460593461990356, 0.026250947266817093, -0.07271786779165268, 0.06782988458871841, -0.18353037536144257, 0.07044120877981186, -0.05750742182135582, -0.039272382855415344, -0.050320424139499664, 0.13284504413604736, -0.10702135413885117, 0.10423656553030014, 0.2931327819824219, 0.02294287644326687, -0.04531954973936081, -0.06159951537847519, -0.006408092100173235, 0.007572860922664404, 0.009446758776903152, 0.03786361962556839, -0.16771440207958221, -0.02802884392440319, 0.0020973063074052334, 0.0005883029662072659, -0.2528645396232605, -0.026094069704413414, 0.029152879491448402, -0.0401584729552269, -0.0028889370150864124, 0.09027597308158875, -0.012620972469449043, -0.003447110764682293, -0.045440733432769775, -0.08728356659412384, 0.11407247185707092, 0.04587004333734512, -0.05163634568452835, -0.02981775440275669 ]
null
null
sentence-transformers
# Uncased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using [the cased model](https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase)* can be found [here](http://epsilon-it.utu.fi/sbert400m). ## Training - Library: [sentence-transformers](https://www.sbert.net/) - FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 - Data: The data provided [here](https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) - Pooling: mean pooling - Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels](https://aclanthology.org/2021.nodalida-main.29/) ## Usage The same as in [HuggingFace documentation](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` ### SentenceTransformer ```python from sentence_transformers import SentenceTransformer sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') embeddings = model.encode(sentences) print(embeddings) ``` ### HuggingFace Transformers ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results A publication detailing the evaluation results is currently being drafted. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors While the publication is being drafted, please cite [this page](https://turkunlp.org/paraphrase.html). ## References - J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. - N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. - A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019.
{"language": ["fi"], "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity", "widget": [{"text": "Minusta t\u00e4\u00e4ll\u00e4 on ihana asua!"}]}
sentence-similarity
TurkuNLP/sbert-uncased-finnish-paraphrase
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "fi", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us
# Uncased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using the cased model* can be found here. ## Training - Library: sentence-transformers - FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 - Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) - Pooling: mean pooling - Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels ## Usage The same as in HuggingFace documentation. Either through 'SentenceTransformer' or 'HuggingFace Transformers' ### SentenceTransformer ### HuggingFace Transformers ## Evaluation Results A publication detailing the evaluation results is currently being drafted. ## Full Model Architecture ## Citing & Authors While the publication is being drafted, please cite this page. ## References - J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. - N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. - A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019.
[ "# Uncased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using the cased model* can be found here.", "## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels", "## Usage\n\nThe same as in HuggingFace documentation. Either through 'SentenceTransformer' or 'HuggingFace Transformers'", "### SentenceTransformer", "### HuggingFace Transformers", "## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.", "## Full Model Architecture", "## Citing & Authors\nWhile the publication is being drafted, please cite this page.", "## References\n\n- J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021.\n- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019.\n- A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us \n", "# Uncased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using the cased model* can be found here.", "## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels", "## Usage\n\nThe same as in HuggingFace documentation. Either through 'SentenceTransformer' or 'HuggingFace Transformers'", "### SentenceTransformer", "### HuggingFace Transformers", "## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.", "## Full Model Architecture", "## Citing & Authors\nWhile the publication is being drafted, please cite this page.", "## References\n\n- J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021.\n- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019.\n- A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019." ]
[ 44, 57, 124, 33, 6, 9, 17, 5, 19, 207 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #fi #endpoints_compatible #region-us \n# Uncased Finnish Sentence BERT model\n\nFinnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using the cased model* can be found here.## Training\n\n- Library: sentence-transformers\n- FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1\n- Data: The data provided here, including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)\n- Pooling: mean pooling\n- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. Details on labels## Usage\n\nThe same as in HuggingFace documentation. Either through 'SentenceTransformer' or 'HuggingFace Transformers'### SentenceTransformer### HuggingFace Transformers## Evaluation Results\n\nA publication detailing the evaluation results is currently being drafted.## Full Model Architecture## Citing & Authors\nWhile the publication is being drafted, please cite this page." ]
[ 0.042756423354148865, -0.013373694382607937, -0.0042309388518333435, 0.027789728716015816, 0.05863342434167862, -0.024911167100071907, 0.13313181698322296, 0.05700114369392395, -0.10393496602773666, 0.0976426750421524, -0.011438787914812565, -0.05038788542151451, 0.09918990731239319, 0.002404677914455533, 0.02063160389661789, -0.3264354467391968, 0.06333668529987335, -0.04686721786856651, 0.020926861092448235, 0.08874475210905075, 0.18474413454532623, -0.03380158543586731, 0.05030139535665512, 0.07029203325510025, -0.005769356153905392, 0.005682432092726231, -0.03247148543596268, -0.03485643491148949, 0.05065448582172394, 0.0711895003914833, 0.08204593509435654, 0.006832895800471306, 0.004651427268981934, -0.1205824613571167, 0.0008148870547302067, 0.07827327400445938, 0.028906578198075294, 0.027490317821502686, 0.10944424569606781, -0.019017783924937248, 0.21854068338871002, -0.04023111239075661, 0.07992646843194962, 0.021062275394797325, -0.08297286927700043, -0.14467640221118927, -0.04894085228443146, 0.05761084705591202, 0.1547223925590515, 0.04129735752940178, -0.061763692647218704, 0.0834738090634346, -0.04370092228055, 0.06383951753377914, 0.1290702223777771, -0.21902382373809814, -0.07489246129989624, -0.13493359088897705, 0.057549022138118744, 0.0037555843591690063, -0.09633244574069977, 0.04043619707226753, 0.020100325345993042, -0.008002161979675293, -0.07424644380807877, 0.03700206056237221, -0.010562139563262463, -0.09611961990594864, -0.08373584598302841, 0.047115787863731384, 0.21999618411064148, -0.02609945461153984, -0.02619369886815548, -0.17958113551139832, -0.03425373509526253, 0.09882975369691849, 0.01616474986076355, -0.06633494049310684, -0.019640767946839333, -0.034768011420965195, 0.052873123437166214, -0.06559443473815918, -0.141351118683815, 0.010054025799036026, -0.0480772964656353, 0.15069079399108887, -0.00041141195106320083, 0.011511516757309437, -0.05628836527466774, 0.0580928735435009, -0.01978209987282753, -0.1295158714056015, -0.010007503442466259, -0.05938782915472984, -0.028168529272079468, -0.018494222313165665, -0.06378351897001266, -0.2318156361579895, -0.014483778737485409, 0.037178635597229004, -0.009124845266342163, -0.05378401279449463, -0.056413210928440094, 0.031054971739649773, 0.09046928584575653, 0.10169138014316559, -0.025987980887293816, -0.009061330929398537, -0.061314817517995834, -0.09073042869567871, 0.03237190842628479, -0.06423331797122955, -0.03175700828433037, -0.0019694671500474215, 0.1151137575507164, 0.04108578711748123, -0.009527225978672504, 0.0022069127298891544, -0.03290092200040817, -0.0399203859269619, 0.15540556609630585, -0.13874375820159912, 0.016426201909780502, 0.03248449042439461, 0.028124693781137466, 0.08017098158597946, 0.006395639851689339, 0.014311103150248528, -0.12705406546592712, 0.10447102040052414, -0.07249676436185837, 0.028445323929190636, -0.014203321188688278, -0.11753658950328827, 0.001973467878997326, -0.002849796088412404, -0.06152643635869026, -0.03800395876169205, 0.05422041192650795, -0.07473260909318924, 0.025031639263033867, -0.07907470315694809, -0.01670912280678749, -0.03313830867409706, 0.019921952858567238, 0.02208831161260605, 0.012352222576737404, -0.02878934144973755, -0.014727872796356678, 0.01771784946322441, -0.09585625678300858, 0.01704798825085163, 0.06976284831762314, 0.04206043481826782, -0.1526612788438797, -0.018546434119343758, -0.15780028700828552, 0.09723837673664093, -0.08049646764993668, -0.05745866894721985, -0.07657420635223389, -0.058733418583869934, 0.011670407839119434, -0.006197292823344469, -0.03551817685365677, 0.1408625990152359, -0.14386028051376343, -0.0985652431845665, 0.1893642395734787, -0.19070842862129211, -0.010973107069730759, 0.13029418885707855, 0.006654784083366394, 0.06283546984195709, 0.11306624859571457, 0.14723314344882965, 0.023706812411546707, -0.13436762988567352, -0.003404096234589815, 0.0015422733267769217, 0.06094321608543396, 0.22682137787342072, 0.06744825839996338, -0.09715066850185394, 0.06313765794038773, 0.04386700689792633, -0.04900246858596802, -0.15899795293807983, -0.0016043344512581825, -0.051907673478126526, 0.012979255057871342, 0.039664849638938904, -0.03159179538488388, -0.008636731654405594, -0.0004816373693756759, -0.07605784386396408, -0.1181778684258461, 0.1105150356888771, 0.013425755314528942, -0.07659272104501724, 0.08130020648241043, -0.001769897760823369, 0.04247463122010231, 0.03155696019530296, -0.03374657779932022, -0.1428920030593872, -0.09100157767534256, 0.0410381518304348, -0.06702686846256256, 0.06704792380332947, 0.08695017546415329, 0.009916846640408039, 0.07503173500299454, -0.0390956811606884, 0.0926542654633522, -0.023120926693081856, 0.005160552449524403, -0.0878770500421524, -0.13030891120433807, 0.039608679711818695, -0.03855917230248451, 0.071153923869133, -0.04303990304470062, -0.014807069674134254, 0.10630054771900177, 0.16907088458538055, 0.06976017355918884, -0.08505300432443619, -0.02247217670083046, -0.0075552635826170444, -0.016837788745760918, 0.010749135166406631, 0.043635644018650055, -0.03194858133792877, -0.05678162723779678, 0.16256102919578552, -0.14470839500427246, -0.10560476034879684, 0.040261898189783096, 0.11504857242107391, -0.10284989327192307, -0.019692761823534966, -0.08045481890439987, -0.009676674380898476, -0.06712150573730469, -0.045690856873989105, 0.16875149309635162, 0.029411641880869865, 0.10225734859704971, -0.10662424564361572, -0.06658896803855896, -0.0028841665480285883, -0.06406690925359726, -0.08874689787626266, 0.12734970450401306, -0.08346829563379288, -0.18689730763435364, 0.07099319994449615, 0.0015306625282391906, 0.04247042536735535, 0.24450695514678955, 0.03096682019531727, -0.14223085343837738, -0.00956576969474554, -0.03478548303246498, 0.04555034637451172, 0.0534699447453022, -0.1310558319091797, 0.019106611609458923, 0.07094988226890564, 0.020366232842206955, 0.06814732402563095, -0.08708506077528, 0.027912350371479988, -0.006780671887099743, -0.04089512676000595, 0.018202947452664375, 0.042671144008636475, 0.019193528220057487, 0.10904301702976227, -0.00702598737552762, 0.07250150293111801, -0.08486594259738922, -0.05621350184082985, -0.09433568269014359, 0.15336531400680542, -0.09178946167230606, -0.3217886686325073, -0.22971878945827484, 0.1095622181892395, -0.11923741549253464, -0.0021357580553740263, 0.0772603377699852, -0.023637661710381508, -0.10687649250030518, -0.11433239281177521, 0.13602344691753387, 0.0002295324666192755, -0.07401158660650253, -0.023673955351114273, 0.043273672461509705, 0.034977708011865616, -0.12744955718517303, -0.001136633101850748, -0.03254116699099541, -0.0888950526714325, -0.040227651596069336, -0.037990864366292953, 0.028165217489004135, 0.08949683606624603, -0.014655484817922115, -0.024380166083574295, 0.0010386056965216994, 0.2212887555360794, -0.12837336957454681, 0.06490275263786316, 0.06574735045433044, -0.08033354580402374, 0.05678143724799156, 0.05220594257116318, -0.0013657998060807586, -0.035519588738679886, 0.037110358476638794, 0.07224128395318985, -0.024557435885071754, -0.19789542257785797, -0.10055729746818542, -0.024500930681824684, 0.02832159213721752, 0.07300364226102829, 0.04627712070941925, -0.05222751200199127, -0.013404620811343193, -0.0925154909491539, -0.1372365951538086, 0.13372750580310822, 0.07164797186851501, 0.11486149579286575, -0.01249107625335455, 0.10453096777200699, -0.03776741027832031, -0.055473197251558304, 0.07708881050348282, -0.049328360706567764, 0.13994577527046204, -0.004945042077451944, 0.012705773115158081, 0.04344218596816063, -0.04276888072490692, 0.032726190984249115, 0.06989296525716782, -0.03605186566710472, 0.02306755818426609, -0.028661314398050308, -0.09464284777641296, 0.02575857751071453, 0.08586719632148743, 0.061467573046684265, -0.07382623106241226, -0.017832500860095024, -0.05881912633776665, 0.06149055436253548, 0.22451502084732056, 0.16681040823459625, 0.013026381842792034, -0.1402164101600647, 0.04174576699733734, -0.11127539724111557, -0.09703145176172256, 0.009185477159917355, 0.013183116912841797, -0.15533243119716644, 0.0987197607755661, -0.02915927767753601, 0.09455715864896774, -0.017759457230567932, 0.00251721846871078, -0.05499507486820221, -0.018330268561840057, -0.010571761056780815, 0.11658623814582825, -0.04367773234844208, 0.14651495218276978, -0.004448236897587776, 0.07012347877025604, -0.05369972437620163, 0.020929688587784767, -0.025964731350541115, 0.11394848674535751, 0.19170531630516052, 0.03530221804976463, 0.021780626848340034, 0.04541647806763649, -0.17069979012012482, 0.021753761917352676, 0.09259095042943954, -0.17173422873020172, 0.037892524152994156, -0.060145605355501175, 0.05907323211431503, -0.05099616199731827, 0.009265538305044174, -0.07917749136686325, -0.20555433630943298, 0.06392163783311844, -0.18643271923065186, -0.04242094233632088, -0.023785477504134178, -0.12599776685237885, -0.07851584255695343, 0.229994997382164, -0.0943336933851242, -0.11703108251094818, -0.096491239964962, -0.08083708584308624, 0.1263243705034256, -0.06087285280227661, -0.09334146231412888, -0.07478490471839905, 0.2023593932390213, -0.06691285222768784, -0.050743572413921356, 0.020307423546910286, -0.03766625374555588, -0.17131735384464264, -0.0068458751775324345, 0.15759310126304626, 0.10167300701141357, 0.0334264300763607, 0.04563966020941734, 0.09465266019105911, -0.03634388744831085, -0.06741201132535934, -0.03697912395000458, 0.07207898050546646, 0.04086277633905411, 0.033933691680431366, -0.10077100247144699, 0.004304367583245039, -0.16468572616577148, -0.04909154027700424, 0.06779314577579498, 0.2330510914325714, -0.02760225161910057, 0.23393863439559937, 0.12793883681297302, -0.11236640065908432, -0.23894888162612915, -0.0950385332107544, 0.08665485680103302, 0.05588235706090927, 0.08784131705760956, -0.10877230018377304, 0.12038449198007584, 0.1269351691007614, -0.034986209124326706, -0.008762400597333908, -0.12896716594696045, -0.1621301770210266, 0.09726779907941818, -0.0250545721501112, -0.008052636869251728, -0.08725660294294357, -0.0391809344291687, -0.048876676708459854, -0.05472463741898537, 0.15565475821495056, 0.0015484949108213186, 0.12439204752445221, 0.0161226075142622, -0.049885235726833344, 0.015134239569306374, 0.017460867762565613, 0.17215128242969513, 0.0014839272480458021, -0.00042037159437313676, -0.058740243315696716, 0.012117486447095871, 0.021108970046043396, -0.03064621426165104, 0.10247009247541428, 0.02977255918085575, 0.029520997777581215, -0.08218489587306976, -0.07069583982229233, -0.056699592620134354, 0.1601095050573349, -0.06234658136963844, -0.03855165094137192, -0.11802604049444199, 0.0794224664568901, 0.07136205583810806, -0.03903897479176521, 0.18195849657058716, -0.1302255243062973, 0.1639903485774994, 0.14372433722019196, 0.10693506896495819, 0.022486817091703415, -0.052056655287742615, -0.030474593862891197, -0.03082653321325779, 0.07818242162466049, 0.04590757563710213, 0.07360109686851501, 0.06087575852870941, 0.0019075130112469196, 0.0955081582069397, -0.0374346487224102, -0.08288530260324478, -0.02130238525569439, 0.05179057642817497, -0.14376258850097656, -0.15006685256958008, -0.06200747191905975, -0.066584512591362, -0.047010961920022964, -0.02422519028186798, 0.20616848766803741, -0.04049931466579437, -0.027538074180483818, 0.024000706151127815, 0.08653754740953445, -0.008894290775060654, 0.07772203534841537, -0.008040542714297771, 0.04760420322418213, -0.057960011065006256, 0.09681779891252518, 0.09096390753984451, -0.05765516683459282, 0.06865353137254715, 0.03422165662050247, -0.04902959242463112, 0.028325773775577545, -0.08905226737260818, 0.10775884985923767, -0.029833249747753143, -0.033028874546289444, -0.0774657353758812, -0.10721120238304138, -0.000049346796004101634, 0.0814201608300209, 0.061355140060186386, 0.08025655895471573, -0.05566718056797981, 0.015986017882823944, -0.08079886436462402, 0.08908458054065704, 0.07895676791667938, -0.032682131975889206, 0.027163885533809662, 0.14390181005001068, 0.0034945253282785416, 0.01049095205962658, -0.043452873826026917, -0.04254504665732384, -0.035675838589668274, -0.0732031911611557, -0.010000412352383137, -0.029174543917179108, -0.0667363777756691, -0.0034133540466427803, -0.01046405266970396, -0.01502051018178463, -0.013360056094825268, -0.0020816917531192303, -0.024246690794825554, 0.004307772498577833, -0.09908819943666458, 0.05759077146649361, -0.15980198979377747, 0.053979795426130295, 0.09523902088403702, -0.08128245174884796, 0.0584280788898468, 0.016727963462471962, -0.03161793202161789, 0.02936783991754055, -0.13696685433387756, 0.039138223975896835, -0.05725035443902016, 0.024830583482980728, 0.004875099752098322, -0.12654739618301392, -0.05530371144413948, 0.015102863311767578, 0.029055500403046608, 0.03342624381184578, 0.08695856481790543, -0.10087281465530396, -0.03848939388990402, -0.0013560884399339557, -0.11187220364809036, -0.004395690746605396, 0.06813871115446091, -0.000935854041017592, 0.04070053622126579, 0.13711681962013245, -0.09571003913879395, 0.09685418009757996, -0.07911480218172073, 0.026592958718538284, 0.05144064500927925, -0.021253852173686028, 0.06971469521522522, -0.032989054918289185, 0.011570466682314873, -0.0011577983386814594, 0.2074369639158249, 0.10148262977600098, 0.08050025254487991, 0.09849664568901062, 0.007953781634569168, -0.08293464034795761, 0.012817512266337872, 0.06770945340394974, 0.03901894763112068, 0.037351395934820175, -0.0565219409763813, -0.045852795243263245, -0.06658075004816055, -0.043407510966062546, 0.16094762086868286, 0.03885723277926445, -0.03225027769804001, 0.03515714406967163, 0.04624759778380394, 0.032044414430856705, -0.09561487287282944, 0.0008208982180804014, 0.047266047447919846, 0.07649263739585876, 0.0195737574249506, -0.008198458701372147, 0.13521602749824524, -0.17438767850399017, 0.10808098316192627, -0.006402370519936085, -0.11173096299171448, -0.14963586628437042, -0.1467757672071457, -0.08302129805088043, 0.002235516207292676, 0.022031648084521294, -0.12237212806940079, 0.07948164641857147, 0.002869750838726759, 0.053321629762649536, -0.025225715711712837, 0.1091260015964508, -0.1403627246618271, -0.09417442232370377, 0.11766839772462845, 0.027048179879784584, 0.05398274213075638, 0.020583339035511017, 0.014520864933729172, 0.02612054906785488, 0.14315606653690338, 0.04122662916779518, 0.05293063074350357, 0.058658890426158905, -0.06274481117725372, -0.03725215792655945, -0.07862014323472977, 0.02068844996392727, -0.0006213089800439775, 0.01972426287829876, 0.16798175871372223, 0.036289311945438385, 0.00502259423956275, -0.033444155007600784, 0.1463308185338974, -0.04183853790163994, -0.10896036028862, -0.18286718428134918, 0.18263159692287445, -0.03629312664270401, 0.07364535331726074, 0.036793533712625504, -0.09396891295909882, -0.05676999315619469, 0.15299181640148163, 0.16740311682224274, 0.012803991325199604, 0.02803785540163517, 0.011598007753491402, 0.019001422449946404, 0.06740781664848328, 0.016053054481744766, -0.04211057722568512, 0.18389655649662018, -0.02842555195093155, 0.09140592068433762, -0.06085623800754547, -0.002753704786300659, -0.1047702431678772, 0.12116146087646484, 0.019480131566524506, -0.018649684265255928, -0.09419994801282883, 0.1413978636264801, -0.05844862386584282, -0.27348023653030396, -0.061711035668849945, -0.07096447795629501, -0.16704268753528595, 0.007975559681653976, 0.09265854954719543, -0.03330084681510925, 0.0808897316455841, 0.06028751656413078, -0.011188993230462074, 0.18090951442718506, 0.04135346785187721, 0.017143353819847107, -0.003839126555249095, 0.08076883852481842, -0.13261574506759644, 0.07770013809204102, 0.047489866614341736, 0.020497919991612434, 0.016352837905287743, -0.016848480328917503, 0.04219868779182434, 0.03797033056616783, 0.021107511594891548, 0.030615467578172684, 0.024034224450588226, 0.17541344463825226, 0.010495061054825783, -0.012627731077373028, 0.08211040496826172, -0.15558040142059326, 0.044693343341350555, 0.005231186747550964, -0.04946523904800415, -0.03318558260798454, 0.12119916081428528, -0.11906243860721588, 0.1029207706451416, 0.27719324827194214, 0.005716891959309578, -0.04864717647433281, -0.033267196267843246, 0.027405129745602608, -0.023149633780121803, 0.023798367008566856, 0.043958570808172226, -0.1610928326845169, -0.052182719111442566, 0.025871695950627327, 0.047712039202451706, -0.2490597814321518, -0.011912086047232151, 0.0327904187142849, -0.045954301953315735, 0.008383280597627163, 0.07653555274009705, -0.040758173912763596, -0.02983875572681427, -0.033132996410131454, -0.08306754380464554, 0.10226782411336899, 0.0319347158074379, -0.044768743216991425, 0.006623954512178898 ]
null
null
transformers
# MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb) ## Introduction [MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture). For further information or requests, please visite our website at [typica.ai Website](https://typica.ai/) or send us an email at [email protected] ## How to use MagBERT-NER with HuggingFace ##### Load MagBERT-NER and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("TypicaAI/magbert-ner") model = AutoModelForTokenClassification.from_pretrained("TypicaAI/magbert-ner") ##### Process text sample (from wikipedia about the current Prime Minister of Morocco) Using NER pipeline from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True) nlp("Saad Dine El Otmani, né le 16 janvier 1956 à Inezgane, est un homme d'État marocain, chef du gouvernement du Maroc depuis le 5 avril 2017") #[{'entity_group': 'I-PERSON', # 'score': 0.8941445276141167, # 'word': 'Saad Dine El Otmani'}, # {'entity_group': 'B-DATE', # 'score': 0.5967703461647034, # 'word': '16 janvier 1956'}, # {'entity_group': 'B-GPE', 'score': 0.7160899192094803, 'word': 'Inezgane'}, # {'entity_group': 'B-NORP', 'score': 0.7971733212471008, 'word': 'marocain'}, # {'entity_group': 'B-GPE', 'score': 0.8921478390693665, 'word': 'Maroc'}, # {'entity_group': 'B-DATE', # 'score': 0.5760444005330404, # 'word': '5 avril 2017'}] ``` ## Authors MagBert-NER Model was trained by Hicham Assoudi, Ph.D. For any questions, comments you can contact me at [email protected] ## Citation If you use our work, please cite: Hicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)
{"language": "fr", "widget": [{"text": "Je m'appelle Hicham et je vis a F\u00e8s"}]}
token-classification
TypicaAI/magbert-ner
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us
# MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb) ## Introduction [MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture). For further information or requests, please visite our website at URL Website or send us an email at contactus@URL ## How to use MagBERT-NER with HuggingFace ##### Load MagBERT-NER and its sub-word tokenizer : ## Authors MagBert-NER Model was trained by Hicham Assoudi, Ph.D. For any questions, comments you can contact me at assoudi@URL If you use our work, please cite: Hicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)
[ "# MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb)", "## Introduction\n\n[MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture).\n\nFor further information or requests, please visite our website at URL Website or send us an email at contactus@URL", "## How to use MagBERT-NER with HuggingFace", "##### Load MagBERT-NER and its sub-word tokenizer :", "## Authors \n\nMagBert-NER Model was trained by Hicham Assoudi, Ph.D. \nFor any questions, comments you can contact me at assoudi@URL\n\n\nIf you use our work, please cite:\nHicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)" ]
[ "TAGS\n#transformers #pytorch #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us \n", "# MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb)", "## Introduction\n\n[MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture).\n\nFor further information or requests, please visite our website at URL Website or send us an email at contactus@URL", "## How to use MagBERT-NER with HuggingFace", "##### Load MagBERT-NER and its sub-word tokenizer :", "## Authors \n\nMagBert-NER Model was trained by Hicham Assoudi, Ph.D. \nFor any questions, comments you can contact me at assoudi@URL\n\n\nIf you use our work, please cite:\nHicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)" ]
[ 41, 29, 93, 14, 18, 88 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #token-classification #fr #autotrain_compatible #endpoints_compatible #region-us \n# MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb)## Introduction\n\n[MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture).\n\nFor further information or requests, please visite our website at URL Website or send us an email at contactus@URL## How to use MagBERT-NER with HuggingFace##### Load MagBERT-NER and its sub-word tokenizer :## Authors \n\nMagBert-NER Model was trained by Hicham Assoudi, Ph.D. \nFor any questions, comments you can contact me at assoudi@URL\n\n\nIf you use our work, please cite:\nHicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)" ]
[ -0.023834504187107086, 0.07107424736022949, -0.005192853976041079, 0.05261341854929924, 0.039625998586416245, -0.0368068553507328, 0.10723448544740677, 0.01820770837366581, 0.011145281605422497, 0.008816346526145935, 0.06900617480278015, -0.023522766306996346, 0.048193659633398056, -0.029132278636097908, 0.11714337766170502, -0.21692968904972076, -0.0016467140521854162, -0.06449022889137268, -0.045862212777137756, 0.0503716804087162, 0.1399582028388977, 0.005471609532833099, 0.1547890603542328, 0.09414299577474594, 0.02258511260151863, 0.0878860205411911, -0.11364858597517014, -0.05383007228374481, 0.0941781997680664, 0.07558580487966537, 0.0755697563290596, 0.0019948026165366173, 0.036178894340991974, -0.19070014357566833, 0.015598752535879612, 0.044082436710596085, -0.06592801958322525, 0.012849336490035057, 0.10698195546865463, -0.1545778214931488, 0.24500440061092377, -0.13405899703502655, -0.06224061921238899, 0.06710870563983917, -0.1044100895524025, -0.09227029979228973, -0.08784323930740356, 0.09176133573055267, 0.008657068014144897, 0.057388123124837875, 0.005774179473519325, 0.005429237149655819, -0.10866574198007584, 0.029540013521909714, 0.15221574902534485, -0.16411694884300232, -0.0564633384346962, 0.02075796201825142, 0.03877657651901245, 0.16251814365386963, -0.08267876505851746, 0.06341708451509476, 0.014227757230401039, 0.026379641145467758, 0.061463091522455215, -0.10095282644033432, 0.1305149644613266, -0.0266179908066988, -0.12959302961826324, -0.02183256857097149, -0.029608719050884247, 0.011936886236071587, -0.03801888972520828, -0.03335500881075859, -0.018430696800351143, 0.05597049742937088, -0.04100271314382553, -0.05820697173476219, 0.02993939258158207, -0.03600096330046654, 0.08543922752141953, -0.12200057506561279, -0.03381660208106041, -0.06623725593090057, -0.09497209638357162, 0.06975587457418442, 0.005022854078561068, -0.005824980325996876, -0.020507270470261574, 0.02294834703207016, -0.21816685795783997, -0.07081504166126251, -0.06547962874174118, -0.0904277116060257, -0.07679425179958344, 0.00185563659761101, 0.058313362300395966, 0.03289167582988739, 0.05611516162753105, 0.12802734971046448, -0.034678082913160324, 0.049230754375457764, -0.020361291244626045, 0.04615486413240433, 0.004809990990906954, 0.07401188462972641, -0.07568549364805222, -0.17511358857154846, -0.05926043540239334, -0.007137596141546965, -0.03602225333452225, 0.045903969556093216, -0.06096493825316429, -0.0568997897207737, -0.06354249268770218, 0.03395136445760727, 0.043561164289712906, -0.029048366472125053, 0.06064926087856293, -0.04053569957613945, 0.1487807035446167, -0.07510510832071304, -0.015577699989080429, -0.007840903475880623, -0.09049266576766968, 0.054294783622026443, -0.0492001436650753, 0.005854410119354725, -0.07825760543346405, -0.0036527463234961033, -0.07350664585828781, -0.022691331803798676, -0.08830083161592484, -0.05838535726070404, 0.04387529939413071, 0.013034425675868988, -0.08454746752977371, -0.16384541988372803, -0.0347864031791687, 0.003047018311917782, 0.10157359391450882, -0.06744634360074997, 0.07496542483568192, 0.005626356694847345, -0.027559850364923477, 0.04822465032339096, -0.002649058122187853, 0.007145163137465715, -0.03973070904612541, -0.045222096145153046, 0.01794704981148243, 0.07156744599342346, -0.06341327726840973, 0.06283804029226303, 0.0037885962519794703, 0.05046859383583069, -0.24767331779003143, 0.07524217665195465, -0.14450225234031677, -0.03806520998477936, -0.18481746315956116, -0.07950720936059952, -0.049040429294109344, -0.036832306534051895, 0.07284794002771378, 0.1148657277226448, -0.06299039721488953, -0.06183979660272598, 0.14190207421779633, -0.053202543407678604, -0.1174406185746193, 0.25170886516571045, 0.03281071409583092, -0.060042593628168106, 0.033746279776096344, 0.08406331390142441, 0.11151718348264694, -0.10992895811796188, 0.031545430421829224, 0.04360627382993698, 0.027412185445427895, 0.0007211740012280643, 0.1148698702454567, -0.04310775175690651, 0.025360532104969025, -0.055878572165966034, -0.07792621850967407, 0.05503908917307854, -0.03424540534615517, -0.04155460745096207, 0.047075144946575165, -0.058486878871917725, 0.1421596109867096, 0.07623204588890076, 0.005007158499211073, 0.038858283311128616, -0.07638231664896011, -0.05251959711313248, 0.0526030957698822, -0.003098469227552414, -0.0032242864836007357, -0.02523978427052498, 0.07482865452766418, -0.01741829141974449, -0.03200208395719528, -0.11226462572813034, -0.059473324567079544, -0.03570505604147911, -0.14081011712551117, 0.11407101154327393, 0.023994093760848045, 0.10026396811008453, 0.08582213521003723, -0.10515841841697693, 0.06716060638427734, -0.056160785257816315, -0.025782059878110886, -0.006029723212122917, -0.08209974318742752, 0.05311313271522522, -0.008481357246637344, 0.17981165647506714, -0.16235215961933136, 0.01516349520534277, 0.009543176740407944, 0.08582119643688202, -0.037217870354652405, 0.04090624675154686, -0.05767005681991577, 0.07641246914863586, 0.01004899200052023, 0.0052864812314510345, 0.05554134398698807, -0.08588232845067978, -0.02958804741501808, 0.05415424704551697, -0.08138559758663177, 0.011901483871042728, 0.0659225806593895, 0.007387015502899885, -0.02591671608388424, -0.07025618106126785, -0.02790277637541294, -0.0064961570315063, 0.056002359837293625, -0.020995022729039192, 0.2111975997686386, 0.08331824839115143, 0.12414055317640305, -0.07455942034721375, 0.004236381500959396, 0.01605183817446232, -0.03727978467941284, -0.025260016322135925, 0.15685014426708221, 0.05628879368305206, -0.07251226902008057, 0.10777339339256287, 0.15555909276008606, -0.10197820514440536, 0.1673768013715744, 0.04578380659222603, -0.09366022795438766, 0.003399661974981427, 0.016476009041070938, 0.03605414554476738, 0.06467338651418686, -0.043407030403614044, -0.06658779084682465, 0.02389138750731945, -0.003099293215200305, 0.02768670953810215, -0.02496635913848877, 0.040366481989622116, -0.03139003738760948, -0.05553716793656349, -0.028846770524978638, 0.0842665284872055, -0.05037732794880867, 0.06486236304044724, 0.05931396782398224, -0.12095127999782562, -0.05207335203886032, -0.018391169607639313, -0.06933888047933578, 0.14104215800762177, -0.05836794152855873, -0.18313416838645935, -0.1187041774392128, -0.03985322266817093, -0.2107716053724289, -0.004827554803341627, -0.007051871158182621, -0.1268581598997116, 0.02176840789616108, -0.02297632023692131, 0.05652866140007973, -0.09117794036865234, -0.07470495253801346, -0.07789915800094604, -0.029009107500314713, -0.07519900798797607, -0.14221277832984924, -0.022105449810624123, -0.02656836248934269, -0.08135676383972168, -0.005451658740639687, -0.07292810082435608, 0.11236833035945892, 0.06564104557037354, -0.05586369335651398, -0.0218068715184927, 0.01760193519294262, 0.2781495153903961, -0.10630408674478531, 0.08120442926883698, 0.16538137197494507, 0.10903633385896683, 0.14210310578346252, 0.1388324350118637, 0.05964569002389908, 0.048295143991708755, 0.00463525066152215, 0.11756815761327744, -0.08163667470216751, -0.16095644235610962, -0.14342457056045532, -0.11033487319946289, -0.09250788390636444, 0.03983528912067413, 0.01335598062723875, 0.1765938699245453, 0.04715632647275925, -0.04551153630018234, -0.0953790619969368, 0.04511750116944313, 0.11583590507507324, 0.14947344362735748, 0.03529288247227669, 0.05922349542379379, -0.07785537093877792, -0.09723010659217834, 0.09307092428207397, 0.07392586022615433, 0.08437006920576096, 0.06459087133407593, 0.1502218395471573, 0.08462924510240555, 0.021747879683971405, 0.026806268841028214, -0.014611093327403069, -0.036761581897735596, -0.019412800669670105, -0.028307344764471054, -0.06796608865261078, -0.04604468122124672, 0.033965859562158585, 0.08623003214597702, -0.08955734223127365, -0.033023059368133545, -0.07430648803710938, 0.10075156390666962, 0.054409027099609375, 0.016924837604165077, -0.19484762847423553, -0.011639881879091263, 0.002223012503236532, -0.029161527752876282, -0.0342148020863533, -0.027563543990254402, 0.018569540232419968, -0.15577226877212524, 0.05791682004928589, -0.0025128866545856, 0.12066533416509628, 0.01644165627658367, 0.0072944206185638905, -0.06364569067955017, 0.07594005763530731, -0.013531587086617947, 0.06813335418701172, -0.20840467512607574, 0.23913146555423737, 0.05318782478570938, -0.011993711814284325, -0.04056405648589134, -0.026059448719024658, 0.0940723642706871, 0.18179218471050262, 0.1419198364019394, 0.06785830110311508, -0.028622198849916458, 0.006506096571683884, 0.030306318774819374, -0.011303306557238102, 0.12540245056152344, -0.05939576029777527, -0.0032153765205293894, 0.02465701289474964, -0.028858404606580734, -0.10459499061107635, 0.15503279864788055, -0.21143542230129242, -0.15253998339176178, 0.08799615502357483, -0.020508989691734314, 0.016247736290097237, -0.023157194256782532, -0.024590730667114258, -0.12146323919296265, 0.13611586391925812, -0.08624745160341263, -0.03225976228713989, -0.11926485598087311, -0.15559980273246765, 0.0785098746418953, -0.12314082682132721, 0.06027086079120636, -0.05892224609851837, 0.08948840200901031, -0.0756337121129036, -0.0408637672662735, -0.05216943100094795, -0.13671080768108368, 0.031935133039951324, -0.010374713689088821, 0.1128329411149025, 0.15096069872379303, 0.036380186676979065, 0.06798867136240005, -0.0020959386602044106, -0.05882605165243149, -0.15531407296657562, -0.04260563105344772, -0.006719326134771109, 0.02745790407061577, -0.005008834879845381, -0.04840816184878349, -0.03780655562877655, -0.08046472817659378, 0.032642025500535965, 0.16284574568271637, 0.0560590885579586, 0.009715537540614605, 0.08628421276807785, 0.3313440978527069, -0.02825062908232212, -0.20222489535808563, -0.06519782543182373, 0.1044125184416771, -0.06129491701722145, -0.05487839877605438, -0.17725104093551636, 0.03838735073804855, 0.06685713678598404, -0.0022740119602531195, -0.06344587355852127, -0.22799816727638245, -0.04317457228899002, 0.0784359946846962, 0.023003902286291122, 0.07000378519296646, -0.132489874958992, -0.006187455262988806, -0.10632047802209854, -0.2115866094827652, 0.11213506758213043, -0.08463027328252792, 0.03139064833521843, -0.010293067432940006, 0.07484365999698639, -0.016690410673618317, -0.018011251464486122, 0.19313204288482666, 0.10876963287591934, -0.03822355344891548, -0.07519769668579102, 0.024217380210757256, 0.10245867073535919, -0.05933639779686928, 0.06593210250139236, -0.02550116367638111, -0.01726488210260868, -0.2041652649641037, -0.010270521976053715, -0.11916009336709976, 0.0827699825167656, -0.028736788779497147, -0.055727727711200714, -0.031216152012348175, 0.11124931275844574, 0.08595357090234756, 0.008798118680715561, -0.06916358321905136, -0.12564440071582794, 0.06837505102157593, 0.11504796892404556, 0.15543095767498016, -0.06292036175727844, -0.07694783061742783, 0.03132743015885353, 0.013625076040625572, 0.05689997225999832, -0.11044706404209137, 0.07073954492807388, 0.12544803321361542, 0.0007779835723340511, 0.09092071652412415, -0.004913401324301958, -0.08333342522382736, -0.045830316841602325, 0.11351574212312698, 0.029230192303657532, -0.14819349348545074, -0.014904865995049477, 0.027538727968931198, -0.04607119783759117, 0.015187675133347511, 0.07345990091562271, -0.016383850947022438, -0.022976765409111977, 0.01586884632706642, 0.003912813495844603, -0.06197783350944519, 0.02029094099998474, 0.10963187366724014, 0.07056214660406113, -0.03928336501121521, 0.0026799319311976433, 0.06418808549642563, -0.08344004303216934, -0.07102899253368378, 0.19027072191238403, -0.030495038256049156, -0.08728888630867004, -0.04623252525925636, 0.00978020578622818, -0.15182626247406006, -0.07991473376750946, 0.05570530146360397, -0.025786107406020164, -0.03496796637773514, 0.12404096126556396, 0.029922856017947197, -0.10578805208206177, 0.038161344826221466, -0.046192239969968796, -0.004456354770809412, 0.021161511540412903, -0.043952010571956635, 0.014714575372636318, 0.0817309319972992, -0.02468421868979931, -0.019369997084140778, 0.11388657987117767, -0.020591245964169502, -0.011063949204981327, -0.13003864884376526, -0.0018918403657153249, -0.06898780912160873, -0.05235913395881653, -0.16100741922855377, 0.043408483266830444, -0.03514775633811951, -0.06053948774933815, -0.07847347855567932, -0.0249868743121624, -0.07240761071443558, 0.007297775708138943, 0.028062453493475914, 0.14199596643447876, -0.12923045456409454, 0.04633025825023651, 0.09333308041095734, -0.0077105010859668255, 0.031962089240550995, -0.053931623697280884, 0.01669851690530777, 0.04566851630806923, -0.1804324835538864, -0.04893304780125618, -0.1479211300611496, 0.05835746228694916, 0.03447749465703964, -0.13332287967205048, 0.017373763024806976, -0.034896280616521835, 0.06349964439868927, 0.01106977928429842, -0.032335106283426285, -0.0029755975119769573, -0.010938583873212337, -0.0205688513815403, -0.10260206460952759, -0.037527717649936676, 0.12802912294864655, 0.0677248165011406, 0.02866547368466854, 0.03559490665793419, 0.0077698868699371815, 0.03385130688548088, -0.02153800241649151, -0.00007701616414124146, 0.01512270700186491, -0.033135831356048584, 0.16166776418685913, -0.14067398011684418, 0.020704995840787888, 0.01665574498474598, 0.10465270280838013, 0.09062166512012482, 0.1339302659034729, 0.04010995849967003, -0.03720294311642647, -0.0834234207868576, -0.013500724919140339, 0.033841490745544434, 0.0582430325448513, 0.012632438912987709, 0.001110584707930684, 0.026468127965927124, -0.06734532862901688, 0.22802220284938812, 0.17928417026996613, 0.16521497070789337, 0.04122025892138481, 0.03786955401301384, 0.03881189972162247, -0.04038127884268761, 0.01469970028847456, -0.03054003044962883, 0.09690870344638824, 0.002837852342054248, -0.11669854819774628, 0.07524299621582031, 0.18677453696727753, -0.14532256126403809, 0.12280544638633728, 0.045863959938287735, -0.06184004992246628, -0.08106900751590729, -0.09976521879434586, 0.018798336386680603, -0.042211953550577164, 0.004497903399169445, -0.03195872902870178, 0.06087706238031387, 0.07815518975257874, 0.08233775943517685, 0.007139901630580425, 0.11503712832927704, -0.2044430822134018, -0.12147090584039688, 0.048896338790655136, -0.03493523970246315, 0.11863252520561218, -0.006655434146523476, 0.08238470554351807, -0.03170159086585045, 0.025818368420004845, 0.04296214133501053, 0.04405100643634796, -0.043368905782699585, 0.045631930232048035, -0.06379049271345139, -0.05158943682909012, -0.016111942008137703, 0.031474582850933075, 0.037710223346948624, 0.2535797655582428, 0.015867771580815315, -0.08806955814361572, 0.010115951299667358, 0.09403581917285919, 0.00268675503320992, -0.11191458255052567, -0.1354013830423355, 0.20215697586536407, 0.03387720510363579, 0.030789095908403397, -0.09093907475471497, -0.05214139446616173, -0.019852865487337112, 0.18037764728069305, 0.1878727674484253, -0.012917567975819111, 0.0003148238465655595, 0.00532478978857398, 0.04357381910085678, 0.07725800573825836, 0.0047881039790809155, 0.042056500911712646, 0.27142852544784546, -0.098436139523983, 0.07354333996772766, -0.03618606925010681, -0.03615524247288704, -0.08068104088306427, 0.16786445677280426, 0.04548736661672592, -0.016544358804821968, -0.004874115809798241, 0.1507767289876938, -0.10994459688663483, -0.10167592763900757, -0.007363173644989729, -0.020151864737272263, -0.05744361877441406, -0.026729505509138107, -0.08551940321922302, 0.07237803936004639, 0.032190922647714615, 0.014617043547332287, -0.02870768867433071, 0.05515025928616524, 0.05484814941883087, -0.028284650295972824, -0.12675325572490692, 0.12354151159524918, 0.06681305170059204, 0.23938944935798645, 0.007142890244722366, 0.0563824437558651, 0.1163969561457634, -0.06642031669616699, -0.040841590613126755, 0.008986430242657661, 0.09589699655771255, -0.08536585420370102, -0.017043905332684517, 0.10003617405891418, -0.007287074811756611, -0.09927923232316971, -0.006262870505452156, -0.011806678958237171, 0.06810479611158371, 0.040460504591464996, 0.03646204248070717, -0.043213553726673126, 0.1751425713300705, -0.1301710605621338, 0.09055967628955841, 0.15663518011569977, 0.04010474681854248, 0.014893138781189919, -0.09988771378993988, 0.01185446884483099, 0.018193859606981277, -0.039155296981334686, -0.07745832949876785, -0.0812089592218399, 0.047335248440504074, -0.12662772834300995, -0.01859491877257824, -0.1670524626970291, -0.009343866258859634, 0.01671544648706913, 0.05158158764243126, 0.008184605278074741, 0.030803611502051353, 0.07985005527734756, -0.05574959143996239, -0.01335290726274252, -0.2669486701488495, -0.05468406900763512, 0.030756425112485886, -0.05409221351146698, -0.007066534832119942 ]