sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
# HTLM
Pretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps
Paper: [HTLM: Hyper-Text Pre-Training and Prompting of Language Models](https://arxiv.org/abs/2107.06955)
Authors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Abstract
We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.
## Usage
For the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task.
```
from transformers import BartTokenizer, BartForConditionalGeneration
TXT = "My friends are <mask> but they eat too many carbs."
model_name = "SaulLu/test-add-new-model"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
logits = model(input_ids).logits
masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
tokenizer.decode(predictions).split()
```
|
{}
|
feature-extraction
|
SaulLu/test-add-new-model
|
[
"transformers",
"pytorch",
"bart",
"feature-extraction",
"arxiv:2107.06955",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[
"2107.06955"
] |
[] |
TAGS
#transformers #pytorch #bart #feature-extraction #arxiv-2107.06955 #endpoints_compatible #has_space #region-us
|
# HTLM
Pretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps
Paper: HTLM: Hyper-Text Pre-Training and Prompting of Language Models
Authors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Abstract
We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.
## Usage
For the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task.
|
[
"# HTLM\n\nPretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps\n\nPaper: HTLM: Hyper-Text Pre-Training and Prompting of Language Models\n\nAuthors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer\n\nDisclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Abstract\n\nWe introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.",
"## Usage\n\nFor the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task."
] |
[
"TAGS\n#transformers #pytorch #bart #feature-extraction #arxiv-2107.06955 #endpoints_compatible #has_space #region-us \n",
"# HTLM\n\nPretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps\n\nPaper: HTLM: Hyper-Text Pre-Training and Prompting of Language Models\n\nAuthors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer\n\nDisclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Abstract\n\nWe introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.",
"## Usage\n\nFor the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task."
] |
[
41,
112,
314,
39
] |
[
"passage: TAGS\n#transformers #pytorch #bart #feature-extraction #arxiv-2107.06955 #endpoints_compatible #has_space #region-us \n# HTLM\n\nPretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps\n\nPaper: HTLM: Hyper-Text Pre-Training and Prompting of Language Models\n\nAuthors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer\n\nDisclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.## Abstract\n\nWe introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.## Usage\n\nFor the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task."
] |
[
-0.058470092713832855,
0.018838493153452873,
-0.006339618936181068,
0.011689329519867897,
0.0685114711523056,
0.036060869693756104,
0.03839017450809479,
0.1069948673248291,
0.01750047318637371,
0.011151638813316822,
-0.030417507514357567,
-0.07948392629623413,
0.10717716813087463,
0.11496523022651672,
0.07502603530883789,
-0.22407230734825134,
0.024342551827430725,
-0.0650704950094223,
0.0046500214375555515,
0.03805648162961006,
0.12065771222114563,
-0.08597473055124283,
0.0720682293176651,
0.03767482191324234,
-0.036493923515081406,
0.06736135482788086,
-0.03390954062342644,
-0.018358634784817696,
0.07699750363826752,
0.051638681441545486,
0.09325812757015228,
0.028143057599663734,
0.08374188840389252,
-0.1757003217935562,
0.013805679976940155,
0.0892498642206192,
0.012135902419686317,
0.009910613298416138,
0.02518085017800331,
0.011664983816444874,
0.09319305419921875,
-0.10473914444446564,
0.035582952201366425,
0.05667996406555176,
-0.06304837763309479,
-0.06154467165470123,
-0.08306784927845001,
0.008777863346040249,
0.07018249481916428,
0.04658615589141846,
-0.014732742682099342,
0.03614368289709091,
-0.05725119262933731,
0.01303335651755333,
0.16278892755508423,
-0.10217205435037613,
-0.010664423927664757,
-0.025303710252046585,
-0.0022097588516771793,
0.001968438969925046,
-0.054663948714733124,
0.026944689452648163,
0.012833500280976295,
-0.008925659582018852,
0.07312092185020447,
-0.017049996182322502,
-0.004060904961079359,
0.0024865774903446436,
-0.08731310069561005,
0.007526666857302189,
0.15820473432540894,
-0.007671066094189882,
-0.0951647087931633,
-0.0842767059803009,
-0.07019555568695068,
0.051489219069480896,
-0.021457578986883163,
-0.017930645495653152,
0.06524115055799484,
-0.015048660337924957,
0.13696786761283875,
-0.07113225758075714,
-0.11891189217567444,
-0.02506205067038536,
0.0028970662970095873,
0.09199590981006622,
0.04948451370000839,
0.017180299386382103,
-0.03509365767240524,
0.09999391436576843,
-0.054442908614873886,
-0.082117959856987,
-0.07645972073078156,
-0.05128716677427292,
-0.12827448546886444,
0.015031339600682259,
-0.07145792245864868,
-0.2189033180475235,
-0.0036982870660722256,
0.10768631100654602,
0.015572824515402317,
0.08805559575557709,
0.022342197597026825,
0.013205982744693756,
0.05561283230781555,
0.17103928327560425,
0.03675742447376251,
-0.1223549097776413,
0.05673392862081528,
-0.012054257094860077,
0.08606666326522827,
-0.047869931906461716,
-0.0404108501970768,
-0.012967381626367569,
-0.027188455685973167,
-0.024326996877789497,
-0.05220487713813782,
0.048024073243141174,
-0.060237497091293335,
-0.0207845326513052,
0.056217484176158905,
-0.17443275451660156,
0.012801937758922577,
-0.0007864994695410132,
-0.024042466655373573,
0.03852515295147896,
0.10772150754928589,
-0.03139478713274002,
-0.08240914344787598,
0.040915682911872864,
-0.04523260146379471,
-0.009777949191629887,
-0.12880852818489075,
-0.0834219679236412,
-0.00037075404543429613,
-0.04768703877925873,
-0.04350714385509491,
-0.1077786535024643,
-0.2497694492340088,
-0.021246448159217834,
0.05076853930950165,
-0.03449290990829468,
0.016207249835133553,
-0.029573332518339157,
0.02239965833723545,
-0.007439101114869118,
0.028099995106458664,
-0.02833610773086548,
-0.022716332226991653,
-0.015176884829998016,
0.007664165459573269,
0.0708373636007309,
-0.049080416560173035,
0.01583373174071312,
-0.03416705131530762,
0.0024821057450026274,
-0.21532578766345978,
0.12371353060007095,
-0.07145354151725769,
0.06356944888830185,
-0.019829697906970978,
0.0006250396836549044,
-0.05103646218776703,
0.06195814162492752,
0.022131189703941345,
0.10679005086421967,
-0.15714150667190552,
-0.05821476876735687,
0.12183400988578796,
-0.16632555425167084,
-0.006597504485398531,
0.0801684558391571,
-0.048738475888967514,
0.1013227105140686,
0.10629875212907791,
0.1302550882101059,
0.15639987587928772,
-0.11100269109010696,
0.001484294654801488,
0.021038345992565155,
-0.03743451088666916,
0.06761416792869568,
0.027034450322389603,
-0.008488694205880165,
-0.006189045496284962,
0.02951064519584179,
-0.029345225542783737,
-0.01581443101167679,
0.018258368596434593,
-0.036523256450891495,
0.022374724969267845,
-0.02503715455532074,
0.011257829144597054,
-0.0165529977530241,
0.005713271908462048,
-0.018063126131892204,
-0.10054558515548706,
0.03928622603416443,
0.0971805602312088,
-0.05572185665369034,
0.05085074156522751,
-0.09191206097602844,
-0.01362331211566925,
0.02776392735540867,
-0.003517423290759325,
-0.1038823127746582,
-0.08389827609062195,
0.039537858217954636,
-0.09638067334890366,
0.08145973831415176,
0.08920025080442429,
0.006417430005967617,
0.0557066947221756,
-0.0055559840984642506,
-0.0015190287958830595,
-0.0794541984796524,
-0.021420611068606377,
-0.01637081988155842,
-0.09478640556335449,
-0.032312341034412384,
-0.016640787944197655,
0.12289030849933624,
-0.053009845316410065,
0.039804793894290924,
0.017214052379131317,
0.06877242028713226,
0.02727063000202179,
-0.02389763668179512,
-0.011198025196790695,
-0.017487309873104095,
-0.008266648277640343,
-0.032417573034763336,
-0.003929806873202324,
0.040876295417547226,
-0.06957785785198212,
-0.00027907942421734333,
-0.08121411502361298,
-0.1627936214208603,
0.04549012333154678,
-0.002098715864121914,
-0.08243611454963684,
0.02285332791507244,
0.009155592881143093,
-0.026762422174215317,
-0.09491696953773499,
-0.1292988359928131,
0.20269006490707397,
-0.00936894677579403,
0.09263499081134796,
-0.07699279487133026,
-0.05943622812628746,
-0.018720991909503937,
-0.010376568883657455,
0.037287190556526184,
-0.0002291683340445161,
0.09285672008991241,
-0.10801340639591217,
-0.011694671586155891,
-0.025236479938030243,
-0.016832808032631874,
0.19228658080101013,
0.010178804397583008,
-0.06787140667438507,
0.026331789791584015,
-0.041172780096530914,
-0.023090176284313202,
0.14853380620479584,
-0.06739886850118637,
-0.022563457489013672,
0.010361077263951302,
0.009431283921003342,
0.06482410430908203,
-0.1010330393910408,
0.0739944577217102,
0.04456119239330292,
-0.008249584585428238,
-0.0719301849603653,
-0.027832120656967163,
-0.027945417910814285,
0.043760061264038086,
0.01795254275202751,
0.07876519858837128,
0.004538440145552158,
-0.06418716162443161,
-0.0896831527352333,
0.12827558815479279,
-0.10071644186973572,
-0.2516762614250183,
-0.12474673986434937,
0.031402040272951126,
-0.01648607850074768,
0.00860067829489708,
0.032350536435842514,
-0.05966278538107872,
-0.1194036602973938,
-0.09809607267379761,
0.062088415026664734,
0.005963337607681751,
-0.04884184151887894,
0.0056929332204163074,
-0.012078279629349709,
0.026089970022439957,
-0.13682328164577484,
-0.015513326972723007,
-0.017699480056762695,
-0.03995180130004883,
0.018582027405500412,
-0.010859867557883263,
0.08135920763015747,
0.06696365028619766,
-0.011262577958405018,
0.002732248976826668,
-0.023862041532993317,
0.1059342622756958,
-0.057282138615846634,
0.11418585479259491,
0.14510636031627655,
-0.03709159791469574,
0.0735020712018013,
0.05740994215011597,
0.006132310256361961,
-0.04773065447807312,
0.02640310861170292,
0.051506899297237396,
-0.03644820302724838,
-0.1634158194065094,
-0.05567615479230881,
-0.06834471970796585,
-0.09528179466724396,
0.0021073545794934034,
0.03651201352477074,
-0.008920970372855663,
-0.0023158094845712185,
-0.024507135152816772,
0.04583779349923134,
0.046333253383636475,
0.07100410759449005,
0.06818102300167084,
-0.007655705790966749,
0.025039158761501312,
-0.060661934316158295,
0.003999681212007999,
0.07183815538883209,
0.010170314460992813,
0.2436775267124176,
-0.059099674224853516,
0.11451242864131927,
0.05788535997271538,
0.018358921632170677,
0.04682423546910286,
0.06717383116483688,
-0.06110206991434097,
0.03787922114133835,
-0.06057078018784523,
-0.0245340708643198,
-0.05918285250663757,
0.0801616907119751,
-0.062132325023412704,
-0.03537123650312424,
-0.04584124684333801,
0.04748110473155975,
0.08008423447608948,
0.17237047851085663,
-0.006107030436396599,
-0.12284669280052185,
0.008010845631361008,
0.031728021800518036,
-0.0449223667383194,
-0.05303917080163956,
0.012280704453587532,
0.043440885841846466,
-0.06919242441654205,
0.14675107598304749,
0.010744614526629448,
0.06183783337473869,
-0.044077154248952866,
0.014849621802568436,
0.015335842967033386,
0.13249585032463074,
0.002133374335244298,
0.07211054861545563,
-0.09982595592737198,
0.03323683887720108,
-0.0031488146632909775,
0.11575798690319061,
-0.045753248035907745,
0.0603761225938797,
0.04969378188252449,
0.03679432347416878,
0.0747188925743103,
0.03503049910068512,
-0.05270247161388397,
0.013470583595335484,
-0.026004398241639137,
0.07192918658256531,
0.07750990986824036,
-0.050894785672426224,
0.09238743782043457,
-0.05186932161450386,
-0.002849980490282178,
-0.007250890135765076,
0.014485079795122147,
-0.14521276950836182,
-0.17954081296920776,
0.061050236225128174,
-0.10747002065181732,
0.0006319223903119564,
-0.05921582877635956,
0.005671631544828415,
-0.024449070915579796,
0.12858299911022186,
-0.11621518433094025,
-0.11468197405338287,
-0.12837707996368408,
0.00482224952429533,
0.037499457597732544,
-0.03626742959022522,
0.04873333498835564,
0.0722055733203888,
0.14517711102962494,
-0.027387205511331558,
-0.08958625793457031,
0.02660689502954483,
-0.06396014988422394,
-0.09065880626440048,
-0.036924879997968674,
0.07085196673870087,
0.09526615589857101,
0.027891088277101517,
0.02045745961368084,
-0.019886109977960587,
0.01280871219933033,
-0.09401173889636993,
-0.021020933985710144,
0.2005755603313446,
-0.024986496195197105,
0.07166534662246704,
-0.07604637742042542,
-0.05678960680961609,
-0.03633415326476097,
0.015595423057675362,
0.04811595380306244,
0.12577062845230103,
-0.023607289418578148,
0.17902779579162598,
0.09792841970920563,
-0.1272297501564026,
-0.23765158653259277,
0.0028888313099741936,
0.042885955423116684,
0.0468389093875885,
-0.010704012587666512,
-0.1889643669128418,
0.09639768302440643,
0.025982599705457687,
-0.0020641377195715904,
-0.008924110792577267,
-0.14114069938659668,
-0.10485529899597168,
0.007050097920000553,
0.011452383361756802,
0.11618499457836151,
-0.05282394587993622,
0.0041295564733445644,
-0.06162174418568611,
-0.07334244251251221,
0.07727951556444168,
-0.08558239042758942,
0.058614496141672134,
0.017487745732069016,
0.02675570920109749,
0.03271367773413658,
-0.025632642209529877,
0.09457527101039886,
-0.020136792212724686,
0.0602276585996151,
-0.029052648693323135,
0.06958038359880447,
0.10810580849647522,
-0.06183513253927231,
0.10664916783571243,
-0.030674882233142853,
0.002082611434161663,
-0.05813603475689888,
-0.037862520664930344,
-0.035623397678136826,
0.07053102552890778,
-0.0434783436357975,
-0.030129022896289825,
-0.06234261766076088,
0.046088509261608124,
0.08550641685724258,
-0.0022939203772693872,
0.0262298546731472,
-0.06493952870368958,
-0.052297160029411316,
-0.0011612316593527794,
0.16448362171649933,
-0.10859857499599457,
-0.07898327708244324,
-0.012600650079548359,
0.008485747501254082,
0.0969717800617218,
-0.12697944045066833,
0.07321636378765106,
0.042498521506786346,
0.009184345602989197,
0.09282530099153519,
0.046804316341876984,
-0.14016291499137878,
0.03523259609937668,
0.09496012330055237,
-0.08160869777202606,
-0.08378598093986511,
-0.048178695142269135,
-0.010263160802423954,
-0.04936379939317703,
0.019984561949968338,
0.13482409715652466,
-0.04858500882983208,
-0.024367576465010643,
0.0034458504524081945,
0.06938262283802032,
0.0014254952548071742,
0.0454256609082222,
0.015773937106132507,
0.013713650405406952,
-0.06774856895208359,
0.12856319546699524,
0.03683539479970932,
-0.015479838475584984,
0.02969365566968918,
0.13697214424610138,
-0.0897655040025711,
-0.04281153157353401,
-0.0822230726480484,
0.20231036841869354,
-0.037554360926151276,
-0.07393959164619446,
-0.05639369785785675,
-0.10512563586235046,
-0.02432841993868351,
0.0864797979593277,
-0.000820657005533576,
0.009181728586554527,
-0.02251976542174816,
0.05390114337205887,
-0.05290483683347702,
0.04854411259293556,
0.03983502835035324,
0.028970716521143913,
-0.06487806886434555,
0.06508604437112808,
0.03710494562983513,
0.0316278412938118,
-0.022392887622117996,
-0.020522696897387505,
-0.04610533267259598,
-0.01760254055261612,
-0.11666379868984222,
0.0375344380736351,
0.0034170737490057945,
-0.004879879765212536,
0.02136841043829918,
0.021471291780471802,
0.0036804918199777603,
0.06329651176929474,
-0.03784335404634476,
-0.02785961702466011,
-0.028747159987688065,
0.034972868859767914,
-0.06416413187980652,
0.009246470406651497,
0.04863917827606201,
-0.09445677697658539,
0.09583993256092072,
-0.022859955206513405,
-0.03326461464166641,
0.07949216663837433,
-0.04495282471179962,
-0.03300732374191284,
-0.006020502187311649,
0.0519925132393837,
0.0037112112622708082,
-0.03748433291912079,
-0.011931322515010834,
-0.01939527690410614,
-0.061447642743587494,
-0.07146723568439484,
0.02534029819071293,
-0.05777538940310478,
0.1352924108505249,
0.001461359323002398,
-0.05056604743003845,
-0.0768451988697052,
0.005140811204910278,
0.030782051384449005,
0.0757618173956871,
0.05558229982852936,
-0.04646308720111847,
0.016536477953195572,
-0.11508860439062119,
-0.016473472118377686,
0.055139195173978806,
0.033634401857852936,
-0.08443029224872589,
-0.08778665214776993,
0.061654187738895416,
-0.03403279557824135,
0.13979333639144897,
0.014415391720831394,
0.002900963183492422,
0.01759883388876915,
-0.027815639972686768,
-0.05013129115104675,
0.01610727049410343,
0.045778803527355194,
-0.04284554719924927,
0.014063765294849873,
-0.008806880563497543,
-0.04851773381233215,
0.010216421447694302,
-0.08629561960697174,
0.20139363408088684,
0.07587742805480957,
0.1067793145775795,
0.09292255342006683,
-0.014698097482323647,
-0.03214532136917114,
-0.11592981964349747,
0.11098123341798782,
-0.005402551032602787,
0.058635495603084564,
-0.016023777425289154,
0.011577230878174305,
0.12971332669258118,
-0.1072361022233963,
0.11135660111904144,
-0.018678709864616394,
-0.07375819981098175,
-0.06651370227336884,
-0.13190096616744995,
-0.02822110988199711,
-0.07090945541858673,
0.002300362568348646,
-0.11545463651418686,
0.02363431267440319,
0.041614796966314316,
-0.0016442765481770039,
-0.01384061947464943,
0.1273106038570404,
-0.06146181374788284,
-0.0796496570110321,
0.04237231984734535,
0.008283363655209541,
0.00885673426091671,
0.06897810101509094,
-0.016773052513599396,
0.011994762346148491,
0.11058676242828369,
0.01961546763777733,
0.035680267959833145,
0.0519636794924736,
0.01555017102509737,
-0.004601143766194582,
-0.034138891845941544,
0.01739385724067688,
-0.040137965232133865,
0.01974979043006897,
0.018474619835615158,
0.035816267132759094,
-0.053982749581336975,
0.0003051415551453829,
0.1607113927602768,
-0.045097529888153076,
-0.1190934106707573,
-0.1401280164718628,
0.12395273894071579,
0.0641568973660469,
0.005989783443510532,
0.028341427445411682,
-0.13079634308815002,
-0.00816367194056511,
0.1792752891778946,
0.1216006949543953,
-0.051932163536548615,
-0.0051817684434354305,
-0.057327382266521454,
0.0016735141398385167,
-0.018657181411981583,
0.12235772609710693,
-0.005373289342969656,
0.2782309949398041,
0.013525529764592648,
0.08223339170217514,
-0.006026922725141048,
-0.023078545928001404,
-0.06911076605319977,
0.1619018018245697,
-0.015919430181384087,
0.010243186727166176,
-0.040658146142959595,
0.029132012277841568,
-0.007756676524877548,
-0.32520246505737305,
0.038011692464351654,
-0.055807266384363174,
-0.0645643025636673,
0.01923360675573349,
0.0709100291132927,
-0.00970764271914959,
0.07221613824367523,
-0.0035372450947761536,
-0.00708747049793601,
0.1723613739013672,
0.011695148423314095,
-0.06857673823833466,
-0.022667381912469864,
0.0832889974117279,
-0.117413230240345,
0.17405961453914642,
0.013633904047310352,
0.031994014978408813,
0.05052828788757324,
0.012940892949700356,
-0.06212271749973297,
0.038011349737644196,
-0.022797252982854843,
-0.07627163082361221,
0.011907266452908516,
0.13377058506011963,
-0.019419096410274506,
0.06007450819015503,
0.061354801058769226,
-0.034047916531562805,
0.018214896321296692,
0.05492235720157623,
-0.07125729322433472,
-0.04276970028877258,
0.04154109209775925,
-0.10686317086219788,
0.13097238540649414,
0.12603545188903809,
0.010753635317087173,
0.023769762367010117,
-0.06155329942703247,
0.046298205852508545,
0.01509435847401619,
0.08293232321739197,
-0.012276893481612206,
-0.08916544169187546,
0.00411955313757062,
0.004443975165486336,
0.03543868660926819,
-0.1323278844356537,
-0.055518098175525665,
-0.026095591485500336,
0.015588734298944473,
-0.012951633892953396,
0.08320511877536774,
0.09054332226514816,
0.03052615001797676,
-0.027687709778547287,
-0.01822628825902939,
0.00012866395991295576,
0.08011391758918762,
-0.09834946691989899,
-0.0520554780960083
] |
null | null |
transformers
|
# sahajBERT News Category Classification
## Model description
You can embed local or remote images using ``
## Intended uses & limitations
#### How to use
```python
# You can include sample code which will be formatted
```
#### Limitations and bias
Provide examples of latent issues and potential remediations.
## Training data
Describe the data you used to train the model.
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
## Training procedure
### Collaborative training procedure
[here](https://huggingface.co/albertvillanova)
###
Preprocessing, hardware used, hyperparameters...
## Eval results
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020}
}
```
|
{"language": [], "tags": [], "datasets": [], "metrics": []}
| null |
SaulLu/test-model
|
[
"transformers",
"pytorch",
"albert",
"pretraining",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #pretraining #endpoints_compatible #region-us
|
# sahajBERT News Category Classification
## Model description
You can embed local or remote images using ''
## Intended uses & limitations
#### How to use
#### Limitations and bias
Provide examples of latent issues and potential remediations.
## Training data
Describe the data you used to train the model.
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
## Training procedure
### Collaborative training procedure
here
###
Preprocessing, hardware used, hyperparameters...
## Eval results
### BibTeX entry and citation info
|
[
"# sahajBERT News Category Classification",
"## Model description\n\nYou can embed local or remote images using ''",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\nProvide examples of latent issues and potential remediations.",
"## Training data\n\nDescribe the data you used to train the model.\nIf you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.",
"## Training procedure",
"### Collaborative training procedure\n\nhere",
"### \nPreprocessing, hardware used, hyperparameters...",
"## Eval results",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #albert #pretraining #endpoints_compatible #region-us \n",
"# sahajBERT News Category Classification",
"## Model description\n\nYou can embed local or remote images using ''",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\nProvide examples of latent issues and potential remediations.",
"## Training data\n\nDescribe the data you used to train the model.\nIf you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.",
"## Training procedure",
"### Collaborative training procedure\n\nhere",
"### \nPreprocessing, hardware used, hyperparameters...",
"## Eval results",
"### BibTeX entry and citation info"
] |
[
27,
9,
18,
9,
5,
20,
51,
3,
8,
14,
4,
11
] |
[
"passage: TAGS\n#transformers #pytorch #albert #pretraining #endpoints_compatible #region-us \n# sahajBERT News Category Classification## Model description\n\nYou can embed local or remote images using ''## Intended uses & limitations#### How to use#### Limitations and bias\n\nProvide examples of latent issues and potential remediations.## Training data\n\nDescribe the data you used to train the model.\nIf you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.## Training procedure### Collaborative training procedure\n\nhere### \nPreprocessing, hardware used, hyperparameters...## Eval results### BibTeX entry and citation info"
] |
[
-0.0786404237151146,
0.07959341257810593,
0.0019275113008916378,
0.02341625653207302,
0.18642714619636536,
0.05050960183143616,
0.155000701546669,
0.09414739906787872,
-0.006048147100955248,
-0.03147696331143379,
0.12171196937561035,
0.10179473459720612,
0.06280913203954697,
0.20319721102714539,
0.023022852838039398,
-0.2765772342681885,
-0.00981837511062622,
0.04243118688464165,
0.021257657557725906,
0.09087272733449936,
0.09101177752017975,
-0.1267847865819931,
0.09597060084342957,
-0.01947423256933689,
-0.19714440405368805,
0.016429560258984566,
-0.07489768415689468,
-0.04189546778798103,
0.10084285587072372,
0.013363035395741463,
0.13993258774280548,
0.028253071010112762,
0.09882539510726929,
-0.22164899110794067,
0.04970257356762886,
0.06400933116674423,
-0.04046270251274109,
0.06615065038204193,
0.07653485983610153,
-0.06979043781757355,
0.0772818997502327,
-0.06018206477165222,
0.04946577176451683,
0.01673988811671734,
-0.13748414814472198,
-0.20973969995975494,
-0.012490114197134972,
0.023844512179493904,
0.13801538944244385,
0.0486389622092247,
-0.012203306891024113,
0.09179934859275818,
-0.10534603148698807,
0.05013014376163483,
0.11756126582622528,
-0.0800485759973526,
-0.04676907882094383,
0.13337263464927673,
0.0370597243309021,
0.06415408849716187,
-0.09414555132389069,
-0.0022687804885208607,
0.10665790736675262,
0.03550145775079727,
0.06368754804134369,
-0.0217897929251194,
0.015305412001907825,
0.013386289589107037,
-0.144484281539917,
-0.05465615913271904,
0.10398158431053162,
-0.011120956391096115,
-0.04692365974187851,
-0.10147585719823837,
-0.0011758252512663603,
-0.05305857956409454,
-0.025089843198657036,
0.025473104789853096,
0.029207410290837288,
-0.023616131395101547,
-0.014934210106730461,
-0.05338456481695175,
-0.09976532310247421,
-0.1381099820137024,
0.047374725341796875,
0.04063345864415169,
0.05127403140068054,
0.036267559975385666,
-0.1049494668841362,
0.14546926319599152,
0.04267406091094017,
-0.08551424741744995,
0.027954204007983208,
-0.08679478615522385,
-0.03242145851254463,
-0.04462696611881256,
-0.034308578819036484,
-0.015657950192689896,
-0.021959088742733,
0.1163618341088295,
0.03649276867508888,
0.028679311275482178,
0.01969039812684059,
0.09621477872133255,
0.06654075533151627,
0.0013808318180963397,
-0.10172578692436218,
-0.023432321846485138,
-0.048514675348997116,
0.0385613851249218,
-0.06929192692041397,
-0.029407475143671036,
-0.11634456366300583,
-0.0220583975315094,
0.030124906450510025,
0.03860070928931236,
-0.06109839677810669,
0.05084801837801933,
-0.02764662727713585,
-0.06495115160942078,
0.048432137817144394,
-0.07400006800889969,
-0.03927336260676384,
-0.04601232707500458,
-0.08251921832561493,
-0.0833638533949852,
0.09717167913913727,
-0.00595206068828702,
-0.01929960586130619,
0.13281284272670746,
-0.05614113807678223,
0.021345043554902077,
-0.16903544962406158,
-0.07349821925163269,
-0.018433939665555954,
-0.16356618702411652,
0.021175619214773178,
-0.07009248435497284,
-0.1924688220024109,
-0.04043542593717575,
0.09441295266151428,
-0.03388257324695587,
0.029628491029143333,
-0.042918890714645386,
0.008500847034156322,
-0.04125199839472771,
-0.03136918693780899,
0.15259580314159393,
-0.07345417886972427,
0.058987587690353394,
-0.027510380372405052,
0.12805987894535065,
-0.055743258446455,
0.05551644042134285,
-0.08493039757013321,
0.033356644213199615,
-0.1160205602645874,
0.10129574686288834,
-0.09075804799795151,
0.07072263211011887,
-0.09203843027353287,
-0.06623370200395584,
-0.04213844984769821,
0.07336758077144623,
0.046102575957775116,
0.11840575933456421,
-0.24269309639930725,
-0.056762706488370895,
0.1767534464597702,
-0.10006947815418243,
-0.08331616222858429,
0.068453848361969,
-0.11345832049846649,
0.16677653789520264,
0.050641924142837524,
0.14455504715442657,
0.03824314475059509,
-0.0515500046312809,
0.08009928464889526,
0.022070348262786865,
-0.04741265997290611,
-0.010382505133748055,
0.0529470331966877,
0.06495672464370728,
-0.09047457575798035,
-0.016225425526499748,
-0.008110083639621735,
0.0535377599298954,
-0.096800796687603,
-0.06120626628398895,
0.06361544877290726,
-0.10237392783164978,
0.021377000957727432,
0.04605739563703537,
0.030437448993325233,
0.01493069063872099,
-0.05854938551783562,
0.059134941548109055,
0.06765308231115341,
-0.011898691765964031,
-0.015845639631152153,
-0.09389815479516983,
0.021678684279322624,
-0.09888759255409241,
-0.02562093175947666,
-0.1623874306678772,
0.06869613379240036,
-0.01796187274158001,
-0.03170927241444588,
0.07743535190820694,
0.12296036630868912,
0.05850973725318909,
0.049794334918260574,
-0.032675065100193024,
0.003818942466750741,
-0.01757531799376011,
-0.028955452144145966,
-0.0883989930152893,
-0.16304980218410492,
-0.03506754711270332,
-0.08418411761522293,
0.15125222504138947,
-0.17453986406326294,
0.02040114253759384,
-0.022172512486577034,
0.06429870426654816,
0.03630760684609413,
-0.01761719584465027,
0.0010916998144239187,
0.020203612744808197,
-0.012120455503463745,
-0.033712562173604965,
0.07716985046863556,
-0.020346490666270256,
-0.07261250168085098,
0.04673032462596893,
-0.0710371807217598,
-0.07607565820217133,
0.1422879546880722,
-0.20830278098583221,
-0.10969209671020508,
-0.07857154309749603,
-0.043324366211891174,
-0.02093919925391674,
-0.06492763012647629,
0.045605968683958054,
0.15667374432086945,
-0.015538879670202732,
0.14162778854370117,
-0.06054696440696716,
-0.0035395468585193157,
-0.02383897826075554,
-0.00011282579362159595,
-0.0071152253076434135,
0.06657905876636505,
0.15106971561908722,
-0.10543462634086609,
0.08569028973579407,
0.056615401059389114,
-0.06977318972349167,
0.13437674939632416,
0.05169070139527321,
-0.09857268631458282,
0.05357147008180618,
-0.06345325708389282,
-0.02028783969581127,
0.16258230805397034,
-0.16969069838523865,
-0.03254123032093048,
0.04804700240492821,
-0.054676689207553864,
0.08049371838569641,
-0.16830317676067352,
-0.04042308032512665,
0.030888626351952553,
-0.016426213085651398,
-0.07567597925662994,
-0.00027893055812455714,
0.0007443833746947348,
0.08906939625740051,
0.04567242041230202,
0.019386794418096542,
0.026578199118375778,
-0.060936953872442245,
-0.08515036106109619,
0.1987420916557312,
-0.028049159795045853,
-0.1828462779521942,
-0.1039787083864212,
-0.05687173828482628,
0.0931224524974823,
0.06197088956832886,
0.046877823770046234,
-0.09807741641998291,
-0.02853819541633129,
-0.024715490639209747,
0.014917316846549511,
-0.04050183296203613,
-0.04687078297138214,
-0.05303244665265083,
0.009752636775374413,
-0.022491570562124252,
-0.07506313174962997,
0.02014206536114216,
-0.030618280172348022,
-0.044400084763765335,
0.04746028780937195,
-0.02966855838894844,
0.06098151206970215,
0.11734061688184738,
-0.01002733688801527,
0.03262723609805107,
-0.04006553441286087,
0.22664400935173035,
-0.10613967478275299,
-0.050741855055093765,
0.07777656614780426,
-0.11181734502315521,
0.03495647758245468,
0.11789686977863312,
0.05012916773557663,
-0.1033257320523262,
0.0278313048183918,
0.07449937611818314,
-0.08790907263755798,
-0.18408557772636414,
-0.061941832304000854,
-0.0185871385037899,
0.00011601029109442607,
0.11245375871658325,
0.047163523733615875,
0.07706371694803238,
0.14441177248954773,
-0.009078103117644787,
0.039886292070150375,
-0.009921240620315075,
0.1056029424071312,
-0.1623203456401825,
-0.002311797346919775,
0.058783166110515594,
-0.057699501514434814,
-0.027611706405878067,
0.05724906548857689,
0.004210957791656256,
0.2766106128692627,
0.023749420419335365,
0.05013972520828247,
0.13372419774532318,
0.009646848775446415,
0.08970381319522858,
0.06835515797138214,
-0.04611282795667648,
-0.0017927057342603803,
-0.05716188624501228,
-0.027197200804948807,
-0.07659387588500977,
0.08255958557128906,
-0.024592410773038864,
-0.010081835091114044,
-0.06690618395805359,
-0.10121681541204453,
0.004974928218871355,
0.20714546740055084,
0.0006134654977358878,
-0.3479318916797638,
0.0067346347495913506,
0.02798283100128174,
-0.04172533005475998,
-0.08180367946624756,
0.029421813786029816,
0.05619359761476517,
-0.1174355298280716,
0.04915567860007286,
-0.0743769183754921,
0.13606715202331543,
-0.1396581083536148,
-0.009331858716905117,
0.0836496576666832,
-0.033241115510463715,
-0.0409528873860836,
0.11822357028722763,
-0.2820116877555847,
0.240347221493721,
-0.014824124053120613,
-0.0027720164507627487,
-0.10880795121192932,
-0.024331437423825264,
0.044370707124471664,
0.04074300825595856,
0.1593768447637558,
-0.04470262676477432,
0.07390151917934418,
-0.1573493778705597,
0.0027447636239230633,
-0.030848802998661995,
0.04839847609400749,
-0.08398757129907608,
0.02648031711578369,
0.026769572868943214,
0.02468225359916687,
-0.034536924213171005,
-0.0722334235906601,
-0.15011456608772278,
-0.1323826014995575,
-0.006421009078621864,
-0.07281585037708282,
0.03994240239262581,
-0.04629028961062431,
-0.0541347898542881,
0.015372703783214092,
0.03780006244778633,
-0.059201136231422424,
-0.020670205354690552,
-0.08635036647319794,
0.058014146983623505,
0.007109228987246752,
-0.021916992962360382,
0.02698764018714428,
0.029724080115556717,
0.14119230210781097,
-0.034409187734127045,
-0.06258145719766617,
0.06503784656524658,
-0.10513870418071747,
-0.054262157529592514,
-0.04951447248458862,
0.03849423676729202,
0.1792093813419342,
0.031028203666210175,
0.0012031284859403968,
-0.022528283298015594,
-0.029773935675621033,
-0.06451943516731262,
0.0377362035214901,
0.07730132341384888,
0.15192237496376038,
0.10554570704698563,
-0.062454335391521454,
-0.014366550371050835,
-0.05287734791636467,
0.014952555298805237,
0.12172285467386246,
0.15898855030536652,
-0.06784490495920181,
0.07125324755907059,
0.09214027971029282,
-0.09985650330781937,
-0.28498488664627075,
0.13216528296470642,
0.06082728132605553,
-0.0007800982566550374,
0.017720652744174004,
-0.21254758536815643,
0.07441572099924088,
0.053231511265039444,
-0.01563091203570366,
0.035086534917354584,
-0.18060161173343658,
-0.10845323652029037,
0.1054217666387558,
0.14243793487548828,
0.010071882978081703,
-0.15189960598945618,
-0.01361291203647852,
-0.10693030804395676,
-0.11128807812929153,
0.15249454975128174,
-0.11710269749164581,
0.06044899672269821,
-0.007710857782512903,
0.042995430529117584,
0.008222649805247784,
-0.06058681011199951,
0.15895789861679077,
0.04871877282857895,
0.1009000763297081,
-0.11510901898145676,
-0.09530041366815567,
-0.0003437474078964442,
-0.05094907432794571,
-0.0010816579451784492,
0.03079734742641449,
-0.008479613810777664,
-0.20824216306209564,
-0.06863218545913696,
-0.037667036056518555,
0.016786321997642517,
-0.006158561911433935,
-0.09269450604915619,
-0.04303690046072006,
0.11554685235023499,
0.011670159175992012,
0.011977569200098515,
0.0575302392244339,
-0.12210637331008911,
0.05895397067070007,
0.03642797842621803,
0.22288665175437927,
0.004435257520526648,
0.01806599088013172,
-0.02564060688018799,
-0.006507816258817911,
0.10152540355920792,
-0.1800689697265625,
0.03692961856722832,
0.07783056050539017,
0.032639339566230774,
0.1408531665802002,
0.07031674683094025,
-0.03565281257033348,
0.03220655024051666,
0.10734241455793381,
-0.1054416373372078,
-0.10486327856779099,
-0.011716017499566078,
0.08547841757535934,
-0.049201350659132004,
-0.017342492938041687,
-0.01833759993314743,
-0.041704047471284866,
-0.013895411044359207,
0.02279628813266754,
0.015067697502672672,
-0.08047515153884888,
0.10802549123764038,
0.08164774626493454,
0.04614759236574173,
-0.1047423705458641,
0.11563421785831451,
0.043674252927303314,
-0.14126327633857727,
-0.020234892144799232,
0.05753551051020622,
-0.078086256980896,
-0.06047121062874794,
0.040033672004938126,
0.3143869638442993,
-0.0834915041923523,
-0.07491716742515564,
0.014262448996305466,
-0.03158489242196083,
0.033501386642456055,
0.1329524964094162,
0.0997159406542778,
-0.038095396012067795,
0.022234465926885605,
0.07194232195615768,
-0.1420227438211441,
0.05052715167403221,
0.04514538124203682,
0.07427731901407242,
-0.05830760300159454,
0.09363716840744019,
0.03935974836349487,
0.11910782754421234,
-0.0830313190817833,
-0.01575506292283535,
-0.1064823642373085,
0.07288531213998795,
-0.15984317660331726,
0.10473471134901047,
-0.07800739258527756,
-0.00497437734156847,
0.01501541305333376,
-0.006876586005091667,
-0.010777118615806103,
-0.037293098866939545,
-0.12553416192531586,
0.018219081684947014,
0.03434497117996216,
0.028427837416529655,
-0.06485387682914734,
-0.026385895907878876,
0.05308900400996208,
-0.01428352203220129,
0.07217653840780258,
0.0021570392418652773,
0.0007987098069861531,
0.011742021888494492,
-0.12045197188854218,
-0.02908409759402275,
0.011818156577646732,
-0.016758862882852554,
0.03216253221035004,
0.007369492668658495,
0.02411036193370819,
-0.0793188288807869,
-0.03144865110516548,
-0.011609329842031002,
0.03867800161242485,
-0.11163109540939331,
0.062289636582136154,
0.028358135372400284,
-0.029344825074076653,
-0.04790783300995827,
0.08540673553943634,
0.08078274875879288,
0.05877897888422012,
0.06557406485080719,
-0.048105351626873016,
0.0863538384437561,
-0.10517061501741409,
0.004152141977101564,
-0.010550539009273052,
-0.02743583172559738,
-0.026996690779924393,
-0.10817287862300873,
0.04414213448762894,
-0.08289139717817307,
0.2550431191921234,
0.09161083400249481,
0.011944742873311043,
0.021198220551013947,
-0.036737680435180664,
0.07082758843898773,
0.016030283644795418,
0.18643370270729065,
0.019675450399518013,
0.040217865258455276,
-0.027532454580068588,
0.12051870673894882,
0.02491254359483719,
0.03299267962574959,
0.14512866735458374,
0.1780003160238266,
0.028847970068454742,
0.034918420016765594,
-0.008049314841628075,
-0.06137758865952492,
-0.023829009383916855,
0.04564201086759567,
0.07090938836336136,
0.01229929644614458,
-0.055346984416246414,
0.12011938542127609,
0.12772466242313385,
-0.15503382682800293,
0.0713680237531662,
0.03991042450070381,
-0.0495232455432415,
-0.1079266294836998,
-0.07574465870857239,
-0.01754317246377468,
-0.11214792728424072,
0.03382934257388115,
-0.08051355928182602,
-0.047681283205747604,
0.20321586728096008,
0.037028245627880096,
-0.03663797304034233,
0.18512843549251556,
-0.0665254145860672,
0.008785686455667019,
0.02392071858048439,
-0.013977578841149807,
0.023668577894568443,
-0.1262565404176712,
-0.0593080073595047,
0.021202825009822845,
0.002108935499563813,
0.002693154849112034,
-0.05372712388634682,
-0.04221148416399956,
0.04880417883396149,
-0.025410231202840805,
-0.052997130900621414,
0.024148443713784218,
0.01760956086218357,
0.06577114760875702,
0.12263838201761246,
-0.024242741987109184,
0.0006143255741335452,
-0.013512279838323593,
0.22219057381153107,
-0.06340360641479492,
0.006022397894412279,
-0.10623625665903091,
0.1482384353876114,
-0.007725359406322241,
0.0278943944722414,
-0.024814993143081665,
-0.07864070683717728,
0.013256348669528961,
0.23410682380199432,
0.2311265915632248,
-0.07681149989366531,
-0.01209219079464674,
0.0514223575592041,
0.024754175916314125,
0.01635485701262951,
0.10202323645353317,
0.054721683263778687,
0.0893474817276001,
-0.12025749683380127,
-0.038709335029125214,
-0.006592205259948969,
-0.02751835435628891,
-0.0007311080116778612,
0.03762799873948097,
0.07732778787612915,
-0.028993763029575348,
-0.07067449390888214,
0.12080854177474976,
-0.12536820769309998,
-0.18274375796318054,
0.08067062497138977,
-0.056975435465574265,
-0.10120141506195068,
-0.029985656961798668,
-0.016819709911942482,
0.023670345544815063,
0.006958833895623684,
-0.0022151947487145662,
-0.0001309905492234975,
0.06636033952236176,
0.029976926743984222,
-0.10056429356336594,
-0.14847391843795776,
0.07599060237407684,
-0.030191563069820404,
0.24377045035362244,
-0.08559641242027283,
0.047449175268411636,
0.0755285918712616,
0.01005894597619772,
-0.02906394936144352,
0.01773509569466114,
0.02241211012005806,
-0.04800936579704285,
0.017027009278535843,
0.1491306871175766,
-0.05899760127067566,
0.019278960302472115,
0.0036126768682152033,
-0.23265264928340912,
0.024326816201210022,
-0.12481196969747543,
-0.07586356997489929,
-0.10288890451192856,
0.09296023100614548,
-0.0812818855047226,
0.1280040591955185,
0.14333482086658478,
-0.011288227513432503,
-0.0065709492191672325,
-0.06104065477848053,
0.06848933547735214,
0.024580512195825577,
0.03547938913106918,
-0.06691992282867432,
-0.10148212313652039,
-0.019087551161646843,
-0.0815591961145401,
0.02125101536512375,
-0.247224822640419,
0.012878269888460636,
-0.008122986182570457,
-0.04967094957828522,
-0.01480534952133894,
0.06561271846294403,
0.11601684242486954,
0.056624818593263626,
-0.08023278415203094,
-0.13079047203063965,
0.019697725772857666,
0.1352199763059616,
-0.17616023123264313,
-0.08938321471214294
] |
null | null | null |
test readme
test 2
test 3
test 4
test 5
test 6
test 7
test 8
test 9
test 10
test 11
|
{}
| null |
SaulLu/test-push-to-hub
|
[
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#region-us
|
test readme
test 2
test 3
test 4
test 5
test 6
test 7
test 8
test 9
test 10
test 11
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
[
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null |
transformers
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-albert-base
|
[
"transformers",
"pytorch",
"albert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-albert-large
|
[
"transformers",
"pytorch",
"albert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-bert-base-uncased
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-bert-large-uncased
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-roberta-base
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #roberta #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-roberta-large
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #roberta #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# FineTuning
| **Architecture** | **Weights** | **Training Loss** | **Validation Loss** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 |
| xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 |
| bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 |
| albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 |
| roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-finetuned-xlm-roberta-base
|
[
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-pretrained-albert-base
|
[
"transformers",
"pytorch",
"albert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-pretrained-bert-base-uncased
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #safetensors #bert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-pretrained-distilbert-base-uncased
|
[
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
| null |
SauravMaheshkar/clr-pretrained-electra-base
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #electra #pretraining #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
| null |
SauravMaheshkar/clr-pretrained-electra-large
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #electra #pretraining #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
| null |
SauravMaheshkar/clr-pretrained-electra-small
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #electra #pretraining #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #endpoints_compatible #region-us
|

# PreTraining
| **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** |
|:-----------------------:|:---------------:|:----------------:|:----------------------:|
| roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** |
| bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 |
| electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 |
| albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 |
| electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 |
| electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 |
| distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
|
{"license": "cc0-1.0", "tags": ["kaggle"], "datasets": ["Commonlit-Readibility"], "metrics": ["Perplexity"], "thumbnail": "https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true"}
|
fill-mask
|
SauravMaheshkar/clr-pretrained-roberta-base
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"fill-mask",
"kaggle",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #safetensors #roberta #fill-mask #kaggle #dataset-Commonlit-Readibility #license-cc0-1.0 #autotrain_compatible #endpoints_compatible #region-us
|
 model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:-
| Huggingface Hub Link | Public LB Score |
| :---: | :---: |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
|
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
|
question-answering
|
SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii
|
[
"kaggle",
"rembert",
"pytorch",
"question-answering",
"multilingual",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"multilingual"
] |
TAGS
#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
|
![]()
This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
|
[] |
[
"TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
45
] |
[
"passage: TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
-0.06501022726297379,
-0.0015145586803555489,
-0.007294468116015196,
0.03364747390151024,
0.0593646876513958,
0.09020667523145676,
0.13913704454898834,
0.0890129804611206,
0.15523339807987213,
-0.02681165561079979,
0.12800487875938416,
0.16155439615249634,
-0.00489851413294673,
0.019767722114920616,
-0.07827592641115189,
-0.1637139618396759,
0.04809056967496872,
-0.014700064435601234,
0.11812694370746613,
0.07324987649917603,
0.10389585047960281,
-0.06173224002122879,
0.01839648187160492,
-0.06369253247976303,
-0.05279891937971115,
0.020853376016020775,
0.011200099252164364,
-0.049172431230545044,
0.0854610800743103,
0.012296565808355808,
0.08895232528448105,
0.06759526580572128,
-0.02082747407257557,
-0.21199166774749756,
0.03363421559333801,
-0.06191583722829819,
-0.10346318036317825,
0.008707912638783455,
-0.0014742454513907433,
0.003977345768362284,
0.016188690438866615,
-0.00879860669374466,
-0.013893620111048222,
0.08370686322450638,
-0.09867994487285614,
-0.12474299222230911,
-0.1216152086853981,
0.06588463485240936,
0.014157298021018505,
0.03482070565223694,
-0.008716966956853867,
0.1085132583975792,
-0.16926175355911255,
0.07348474860191345,
0.02740248665213585,
-0.33754804730415344,
0.0006475619156844914,
0.2111365646123886,
0.07492819428443909,
0.1077708825469017,
-0.055432721972465515,
0.0747624933719635,
0.07591335475444794,
-0.004585459362715483,
-0.21766240894794464,
-0.11926604062318802,
-0.17764325439929962,
0.08144351094961166,
-0.03192957863211632,
-0.030327437445521355,
0.3315576910972595,
-0.012887791730463505,
0.006182161625474691,
-0.024326641112565994,
-0.00926720630377531,
0.17293192446231842,
0.012556739151477814,
0.0630381628870964,
-0.007119647227227688,
0.0612654872238636,
0.03882594406604767,
-0.12063303589820862,
-0.11306516826152802,
-0.03169118985533714,
-0.27176210284233093,
0.13792045414447784,
0.06660161912441254,
0.07465264946222305,
-0.07139036059379578,
-0.021108556538820267,
0.08776000887155533,
-0.058102019131183624,
-0.047286320477724075,
-0.09222188591957092,
0.031010571867227554,
0.0537504181265831,
-0.03350796923041344,
0.1303602010011673,
0.20931102335453033,
0.14424015581607819,
-0.008575024083256721,
0.04661773517727852,
-0.10165469348430634,
0.14097777009010315,
0.06654641777276993,
0.06081441044807434,
-0.03434459865093231,
0.07168267667293549,
0.04712530970573425,
-0.0687180608510971,
0.06154200807213783,
-0.04690399020910263,
-0.10434258729219437,
-0.003893812419846654,
-0.08852577209472656,
0.19121557474136353,
0.06404484808444977,
0.0026722196489572525,
-0.044358544051647186,
0.016533609479665756,
0.007256015203893185,
-0.06456094235181808,
-0.009260919876396656,
0.02420387975871563,
0.00021550575911533087,
0.0930839478969574,
-0.05846676975488663,
0.00535759748890996,
-0.056464068591594696,
0.00010416402074042708,
-0.04667410999536514,
-0.00597637053579092,
0.052441343665122986,
0.0003741070977412164,
0.10901418328285217,
-0.10581666231155396,
0.025757890194654465,
-0.0997995063662529,
-0.11476276069879532,
-0.01261390931904316,
-0.013523377478122711,
-0.015777958557009697,
-0.02633061632514,
-0.0057806652039289474,
0.011970010586082935,
-0.040547121316194534,
-0.06323607265949249,
-0.027762344107031822,
-0.08436790853738785,
0.13238751888275146,
-0.07446742802858353,
0.02346780151128769,
-0.16900217533111572,
0.0033139653969556093,
-0.0755152478814125,
-0.007072929292917252,
0.041633859276771545,
0.04558052495121956,
-0.15695682168006897,
0.04205464944243431,
-0.024845117703080177,
-0.039872560650110245,
0.02487439289689064,
0.003429039381444454,
-0.061885472387075424,
0.15008403360843658,
-0.09792497009038925,
-0.029709817841649055,
0.16366876661777496,
-0.08483835309743881,
-0.1827399581670761,
0.11887131631374359,
-0.006066599860787392,
-0.015230891294777393,
0.0926709920167923,
0.3162519335746765,
0.01573093794286251,
-0.12715916335582733,
0.010637554340064526,
0.15625691413879395,
-0.05156281217932701,
-0.07195746898651123,
0.07216206192970276,
-0.09359339624643326,
-0.11101162433624268,
0.07006771862506866,
-0.029857657849788666,
0.021722469478845596,
-0.04846318066120148,
-0.12137503176927567,
-0.007330096326768398,
-0.038778141140937805,
0.05533279851078987,
0.07048822939395905,
-0.007907806895673275,
-0.11695229262113571,
0.07121026515960693,
-0.09989078342914581,
0.06255681067705154,
0.04130867123603821,
0.007689621765166521,
-0.08137459307909012,
0.11827558279037476,
0.008582890965044498,
0.03862259164452553,
-0.09633146226406097,
-0.10070808231830597,
-0.02085166610777378,
0.11742490530014038,
0.05358714982867241,
0.18111906945705414,
0.008542938157916069,
-0.09559109061956406,
-0.06300288438796997,
0.01843731291592121,
0.07128044217824936,
0.02381575107574463,
0.008554287254810333,
-0.12011050432920456,
0.11192325502634048,
-0.03897501900792122,
0.06907764077186584,
0.025657644495368004,
-0.05746578052639961,
0.04383924603462219,
0.03993700444698334,
-0.07372581958770752,
0.11596708744764328,
-0.01590047962963581,
0.05087314173579216,
0.020304420962929726,
0.02840612456202507,
0.11586964130401611,
-0.02793765254318714,
-0.0753960832953453,
0.210878387093544,
0.03188129514455795,
0.12437562644481659,
0.17055140435695648,
-0.1376548409461975,
0.062676340341568,
-0.09932585805654526,
-0.008896834217011929,
0.016955547034740448,
-0.0071067470125854015,
0.030573926866054535,
0.06106117367744446,
-0.0002520496491342783,
0.05003958195447922,
-0.06670892238616943,
-0.018444571644067764,
-0.01286977156996727,
-0.028858497738838196,
-0.052768781781196594,
0.12619809806346893,
0.08883457630872726,
-0.23750165104866028,
0.14936986565589905,
0.18900735676288605,
0.06897638738155365,
0.18376325070858002,
-0.1302679032087326,
-0.007494116201996803,
-0.02706890180706978,
0.038144420832395554,
-0.06466365605592728,
0.16702428460121155,
-0.15132948756217957,
0.004471148829907179,
0.068133644759655,
-0.008017776533961296,
0.04626231640577316,
-0.1391284167766571,
-0.13525795936584473,
-0.10823787748813629,
-0.08082509785890579,
-0.14857293665409088,
0.0903066024184227,
0.03266380354762077,
0.09758344292640686,
-0.05760742723941803,
-0.039884164929389954,
0.12098952382802963,
-0.05799807980656624,
-0.009438803419470787,
0.13637658953666687,
-0.18219345808029175,
-0.13266023993492126,
-0.020864127203822136,
-0.06352389603853226,
-0.07952305674552917,
-0.04502437636256218,
0.09032868593931198,
-0.06768634915351868,
-0.0050912899896502495,
0.06090270355343819,
-0.05711229518055916,
-0.12898533046245575,
-0.12450744956731796,
-0.0538063645362854,
0.030822159722447395,
-0.09461681544780731,
-0.13655181229114532,
-0.026153506711125374,
-0.03534307703375816,
-0.09473437815904617,
0.13101494312286377,
-0.0978715643286705,
0.10357329249382019,
0.09080949425697327,
0.02945224940776825,
0.03142096847295761,
-0.08283025026321411,
0.1412314921617508,
-0.08309377729892731,
-0.061440352350473404,
0.05704819783568382,
0.038138505071401596,
0.0717034563422203,
0.16114802658557892,
0.048754919320344925,
-0.05364254489541054,
-0.010801954194903374,
-0.008973458781838417,
-0.03880982846021652,
-0.34306731820106506,
-0.09993208944797516,
-0.09971857815980911,
0.13984328508377075,
-0.05657191202044487,
0.04710704833269119,
-0.04749847948551178,
0.046292029321193695,
-0.04808206856250763,
-0.06692984700202942,
0.05475029721856117,
-0.013357137329876423,
0.389721155166626,
-0.08357251435518265,
0.06589500606060028,
-0.11487047374248505,
-0.05325998738408089,
0.14110064506530762,
0.14048704504966736,
0.13853389024734497,
0.07471096515655518,
0.017094533890485764,
0.12878113985061646,
0.1416756510734558,
0.02382289431989193,
0.03554655238986015,
0.0550357960164547,
0.01730313152074814,
-0.02724011056125164,
0.014388041570782661,
-0.027563422918319702,
-0.035728570073843,
0.18653419613838196,
-0.19641467928886414,
0.006449820939451456,
-0.13637907803058624,
0.10928415507078171,
0.03134633228182793,
0.08991982787847519,
0.07538741827011108,
0.08492689579725266,
0.08734489977359772,
0.05211508646607399,
-0.06954220682382584,
0.14988523721694946,
0.06323251873254776,
-0.13297630846500397,
0.08725839853286743,
0.032331667840480804,
0.11223698407411575,
-0.033654551953077316,
-0.02323996275663376,
-0.1412499099969864,
-0.15709088742733002,
0.05769042670726776,
0.1707618087530136,
-0.3069218695163727,
0.22781620919704437,
0.03680278733372688,
-0.035233668982982635,
-0.11514320969581604,
-0.07480240613222122,
0.012786929495632648,
0.0954752042889595,
0.16505758464336395,
0.0474151149392128,
0.005724907387048006,
-0.11855358630418777,
-0.02825809456408024,
0.08328241109848022,
0.09469791501760483,
0.05212439224123955,
-0.09205494821071625,
-0.018118208274245262,
0.05380994454026222,
-0.07442107796669006,
0.0018239592900499701,
-0.11725862324237823,
-0.12497443705797195,
0.04836941137909889,
0.0631953626871109,
-0.07272069156169891,
-0.05080408602952957,
-0.04910432547330856,
-0.08807319402694702,
0.03377707302570343,
-0.07670702040195465,
-0.10197747498750687,
-0.06148650124669075,
-0.1685541868209839,
0.1262238323688507,
-0.05656324699521065,
-0.0322953425347805,
-0.0516645647585392,
-0.14190106093883514,
-0.10664671659469604,
-0.1362438201904297,
0.03298533707857132,
-0.06217344477772713,
-0.04908794164657593,
-0.019242554903030396,
0.1527923196554184,
-0.08949753642082214,
0.041921716183423996,
0.04332812875509262,
0.040809907019138336,
-0.09465070813894272,
-0.15357455611228943,
0.07464562356472015,
-0.08791399002075195,
0.052323997020721436,
0.16590487957000732,
-0.07469228655099869,
-0.03806362673640251,
-0.03181706741452217,
-0.04376169294118881,
0.20768260955810547,
0.25900566577911377,
-0.04523417353630066,
0.16497530043125153,
0.2788541615009308,
-0.07516777515411377,
-0.3289100229740143,
-0.18622098863124847,
-0.19329559803009033,
-0.058037836104631424,
0.010670733638107777,
-0.1324043869972229,
0.018997564911842346,
0.08456453680992126,
-0.07749968767166138,
0.14644001424312592,
-0.24146132171154022,
-0.0327628068625927,
0.1448691487312317,
-0.018648693338036537,
0.3251129984855652,
-0.17911604046821594,
-0.09934142231941223,
-0.03696267306804657,
-0.11383066326379776,
0.09572527557611465,
-0.07526631653308868,
0.10622201859951019,
-0.02491118013858795,
0.08609228581190109,
-0.008964397944509983,
-0.02085939794778824,
0.1830512136220932,
-0.0009165002265945077,
0.0008933714707382023,
-0.09502744674682617,
-0.10590112209320068,
0.2111007124185562,
0.04871005937457085,
0.04197976365685463,
-0.12406136840581894,
0.07446236163377762,
-0.11313657462596893,
-0.010296293534338474,
-0.11357180774211884,
0.0308120995759964,
-0.042012788355350494,
-0.0506151057779789,
-0.07677667587995529,
0.05083279684185982,
-0.06296352297067642,
-0.02775930054485798,
0.16458745300769806,
0.015912769362330437,
0.05448900908231735,
-0.023932402953505516,
0.1213611364364624,
-0.06154143437743187,
0.0027697908226400614,
-0.12420113384723663,
-0.10146170854568481,
0.05773226544260979,
-0.04738093912601471,
-0.034898895770311356,
0.15428051352500916,
0.004282126668840647,
0.08790520578622818,
0.05753659829497337,
-0.06029723584651947,
0.040901608765125275,
0.09264872223138809,
-0.11952239274978638,
-0.1507275551557541,
0.03381838649511337,
-0.036877796053886414,
0.08963913470506668,
0.0529056042432785,
0.06094610318541527,
0.07847440987825394,
-0.019567130133509636,
0.01435504388064146,
0.04752922058105469,
-0.0013971466105431318,
0.05884189158678055,
0.1610788255929947,
0.016818366944789886,
-0.13259847462177277,
0.13939349353313446,
0.05500749498605728,
-0.1108194887638092,
-0.05142620578408241,
0.0276540145277977,
-0.08469181507825851,
-0.11740456521511078,
-0.11206681281328201,
0.027249544858932495,
-0.04705977067351341,
-0.07642681151628494,
-0.00203543808311224,
-0.1388026922941208,
-0.009362764656543732,
0.10710868239402771,
0.04060683771967888,
0.09765850752592087,
0.03966578096151352,
-0.0866624116897583,
0.10707765072584152,
0.08722660690546036,
-0.09005159139633179,
-0.01911507360637188,
-0.037846919149160385,
-0.11928863823413849,
0.0001871692220447585,
0.21324124932289124,
-0.043321359902620316,
-0.0531865730881691,
-0.16693508625030518,
0.0712568536400795,
-0.21606476604938507,
0.029813585802912712,
-0.06941148638725281,
0.01126642245799303,
0.00294139189645648,
-0.10240262746810913,
-0.02695990912616253,
-0.004284797236323357,
-0.09879311919212341,
0.027174798771739006,
0.06437163800001144,
0.11880401521921158,
-0.15591762959957123,
-0.1054372489452362,
0.10877159982919693,
0.01171787641942501,
0.13744686543941498,
0.08515123277902603,
-0.07940110564231873,
0.09742670506238937,
-0.1582125872373581,
-0.1066117212176323,
0.028335334733128548,
0.0669393464922905,
0.019889071583747864,
0.0043004946783185005,
-0.01850762963294983,
0.08292992413043976,
0.029226835817098618,
0.11432761698961258,
0.020432772114872932,
-0.09449740499258041,
-0.03939451649785042,
-0.07042112201452255,
-0.19026589393615723,
0.007112616207450628,
-0.08615338802337646,
0.10496769845485687,
0.06966526806354523,
0.11692720651626587,
-0.03416559472680092,
0.0717690959572792,
-0.024265501648187637,
-0.008501064032316208,
-0.03140532225370407,
-0.12838855385780334,
-0.04313865303993225,
-0.04602663964033127,
0.00008125678868964314,
-0.03472687676548958,
0.34501659870147705,
-0.01806926354765892,
-0.07680901139974594,
0.029588712379336357,
0.10806188732385635,
-0.058423519134521484,
-0.01391638070344925,
0.20950140058994293,
0.004661344923079014,
-0.013627508655190468,
-0.09200535714626312,
0.010092301294207573,
-0.096499003469944,
-0.03016596846282482,
0.07290586829185486,
0.09772638231515884,
0.1578352153301239,
-0.02117665484547615,
0.08952652662992477,
-0.04786594957113266,
0.13161349296569824,
-0.11596549302339554,
0.0421048179268837,
0.0031308678444474936,
-0.025677304714918137,
0.06917991489171982,
0.07268446683883667,
-0.05672336742281914,
0.02490350604057312,
-0.0926121324300766,
-0.06564587354660034,
-0.15622329711914062,
-0.024371875450015068,
-0.05211729556322098,
-0.04370029270648956,
0.0625031590461731,
-0.09142303466796875,
0.031488239765167236,
0.1380646973848343,
0.0888240784406662,
-0.07707569748163223,
-0.037217237055301666,
-0.03430619090795517,
-0.04778421297669411,
0.08054503798484802,
-0.004796796478331089,
0.06405182182788849,
-0.006399288307875395,
-0.030156629160046577,
-0.057165004312992096,
-0.06997107714414597,
-0.02581552043557167,
0.05730711296200752,
-0.05066346004605293,
0.015411695465445518,
-0.1946629136800766,
-0.04622899740934372,
-0.06654368340969086,
0.0851108506321907,
0.09301941096782684,
0.255593478679657,
0.05061699077486992,
0.047775935381650925,
0.08353903889656067,
0.15849874913692474,
0.032402604818344116,
-0.13117359578609467,
-0.015598833560943604,
0.04390784353017807,
-0.01831771805882454,
0.0537169948220253,
0.03634091094136238,
-0.05335582047700882,
0.00033558966242708266,
0.21103091537952423,
0.26172998547554016,
-0.11238549649715424,
0.039811328053474426,
0.0055279117077589035,
0.031418949365615845,
0.11913096904754639,
0.07560320943593979,
0.026701753959059715,
0.22800078988075256,
-0.060510337352752686,
-0.028149476274847984,
-0.05542478710412979,
0.024867501109838486,
-0.12046525627374649,
-0.00550337228924036,
0.021999070420861244,
-0.11212920397520065,
-0.05282856896519661,
0.14720721542835236,
-0.1426081359386444,
0.11277569830417633,
0.08971274644136429,
-0.10977264493703842,
-0.05278804898262024,
-0.03603373467922211,
0.15888546407222748,
0.03877745196223259,
0.03239119052886963,
-0.06455796957015991,
-0.0068311793729662895,
0.004677064251154661,
0.015913933515548706,
-0.2260618954896927,
-0.048680588603019714,
0.09050890058279037,
0.09213107079267502,
0.1438201516866684,
0.027643853798508644,
0.20522062480449677,
0.042865004390478134,
0.04345130920410156,
-0.03193829581141472,
0.1489977240562439,
0.09763896465301514,
-0.04480460286140442,
-0.04719902202486992,
-0.08475542813539505,
-0.013150649145245552,
-0.09255014359951019,
0.1453898549079895,
0.06797332316637039,
0.07288522273302078,
0.1757567822933197,
-0.025364471599459648,
-0.11809605360031128,
0.14660105109214783,
-0.1688639372587204,
0.029170848429203033,
0.04606736823916435,
-0.026695195585489273,
-0.06753714382648468,
-0.04962708428502083,
-0.05314206704497337,
0.014163228683173656,
-0.1375136375427246,
-0.0819784551858902,
0.07115274667739868,
-0.05492526665329933,
0.01098397932946682,
0.03739572688937187,
-0.09030555188655853,
0.03365233913064003,
-0.04802679643034935,
0.08291354775428772,
-0.11508020758628845,
0.07418423146009445,
0.04769745469093323,
-0.039117515087127686,
0.03446692228317261,
-0.13028022646903992,
0.013997789472341537,
-0.021554861217737198,
-0.10203830897808075,
-0.024385489523410797
] |
null | null | null |
<div align = "center">
<img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true">
</div>
This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:-
| Huggingface Hub Link | Public LB Score |
| :---: | :---: |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
|
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
|
question-answering
|
SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii
|
[
"kaggle",
"rembert",
"pytorch",
"question-answering",
"multilingual",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"multilingual"
] |
TAGS
#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
|
![]()
This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
|
[] |
[
"TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
45
] |
[
"passage: TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
-0.06501022726297379,
-0.0015145586803555489,
-0.007294468116015196,
0.03364747390151024,
0.0593646876513958,
0.09020667523145676,
0.13913704454898834,
0.0890129804611206,
0.15523339807987213,
-0.02681165561079979,
0.12800487875938416,
0.16155439615249634,
-0.00489851413294673,
0.019767722114920616,
-0.07827592641115189,
-0.1637139618396759,
0.04809056967496872,
-0.014700064435601234,
0.11812694370746613,
0.07324987649917603,
0.10389585047960281,
-0.06173224002122879,
0.01839648187160492,
-0.06369253247976303,
-0.05279891937971115,
0.020853376016020775,
0.011200099252164364,
-0.049172431230545044,
0.0854610800743103,
0.012296565808355808,
0.08895232528448105,
0.06759526580572128,
-0.02082747407257557,
-0.21199166774749756,
0.03363421559333801,
-0.06191583722829819,
-0.10346318036317825,
0.008707912638783455,
-0.0014742454513907433,
0.003977345768362284,
0.016188690438866615,
-0.00879860669374466,
-0.013893620111048222,
0.08370686322450638,
-0.09867994487285614,
-0.12474299222230911,
-0.1216152086853981,
0.06588463485240936,
0.014157298021018505,
0.03482070565223694,
-0.008716966956853867,
0.1085132583975792,
-0.16926175355911255,
0.07348474860191345,
0.02740248665213585,
-0.33754804730415344,
0.0006475619156844914,
0.2111365646123886,
0.07492819428443909,
0.1077708825469017,
-0.055432721972465515,
0.0747624933719635,
0.07591335475444794,
-0.004585459362715483,
-0.21766240894794464,
-0.11926604062318802,
-0.17764325439929962,
0.08144351094961166,
-0.03192957863211632,
-0.030327437445521355,
0.3315576910972595,
-0.012887791730463505,
0.006182161625474691,
-0.024326641112565994,
-0.00926720630377531,
0.17293192446231842,
0.012556739151477814,
0.0630381628870964,
-0.007119647227227688,
0.0612654872238636,
0.03882594406604767,
-0.12063303589820862,
-0.11306516826152802,
-0.03169118985533714,
-0.27176210284233093,
0.13792045414447784,
0.06660161912441254,
0.07465264946222305,
-0.07139036059379578,
-0.021108556538820267,
0.08776000887155533,
-0.058102019131183624,
-0.047286320477724075,
-0.09222188591957092,
0.031010571867227554,
0.0537504181265831,
-0.03350796923041344,
0.1303602010011673,
0.20931102335453033,
0.14424015581607819,
-0.008575024083256721,
0.04661773517727852,
-0.10165469348430634,
0.14097777009010315,
0.06654641777276993,
0.06081441044807434,
-0.03434459865093231,
0.07168267667293549,
0.04712530970573425,
-0.0687180608510971,
0.06154200807213783,
-0.04690399020910263,
-0.10434258729219437,
-0.003893812419846654,
-0.08852577209472656,
0.19121557474136353,
0.06404484808444977,
0.0026722196489572525,
-0.044358544051647186,
0.016533609479665756,
0.007256015203893185,
-0.06456094235181808,
-0.009260919876396656,
0.02420387975871563,
0.00021550575911533087,
0.0930839478969574,
-0.05846676975488663,
0.00535759748890996,
-0.056464068591594696,
0.00010416402074042708,
-0.04667410999536514,
-0.00597637053579092,
0.052441343665122986,
0.0003741070977412164,
0.10901418328285217,
-0.10581666231155396,
0.025757890194654465,
-0.0997995063662529,
-0.11476276069879532,
-0.01261390931904316,
-0.013523377478122711,
-0.015777958557009697,
-0.02633061632514,
-0.0057806652039289474,
0.011970010586082935,
-0.040547121316194534,
-0.06323607265949249,
-0.027762344107031822,
-0.08436790853738785,
0.13238751888275146,
-0.07446742802858353,
0.02346780151128769,
-0.16900217533111572,
0.0033139653969556093,
-0.0755152478814125,
-0.007072929292917252,
0.041633859276771545,
0.04558052495121956,
-0.15695682168006897,
0.04205464944243431,
-0.024845117703080177,
-0.039872560650110245,
0.02487439289689064,
0.003429039381444454,
-0.061885472387075424,
0.15008403360843658,
-0.09792497009038925,
-0.029709817841649055,
0.16366876661777496,
-0.08483835309743881,
-0.1827399581670761,
0.11887131631374359,
-0.006066599860787392,
-0.015230891294777393,
0.0926709920167923,
0.3162519335746765,
0.01573093794286251,
-0.12715916335582733,
0.010637554340064526,
0.15625691413879395,
-0.05156281217932701,
-0.07195746898651123,
0.07216206192970276,
-0.09359339624643326,
-0.11101162433624268,
0.07006771862506866,
-0.029857657849788666,
0.021722469478845596,
-0.04846318066120148,
-0.12137503176927567,
-0.007330096326768398,
-0.038778141140937805,
0.05533279851078987,
0.07048822939395905,
-0.007907806895673275,
-0.11695229262113571,
0.07121026515960693,
-0.09989078342914581,
0.06255681067705154,
0.04130867123603821,
0.007689621765166521,
-0.08137459307909012,
0.11827558279037476,
0.008582890965044498,
0.03862259164452553,
-0.09633146226406097,
-0.10070808231830597,
-0.02085166610777378,
0.11742490530014038,
0.05358714982867241,
0.18111906945705414,
0.008542938157916069,
-0.09559109061956406,
-0.06300288438796997,
0.01843731291592121,
0.07128044217824936,
0.02381575107574463,
0.008554287254810333,
-0.12011050432920456,
0.11192325502634048,
-0.03897501900792122,
0.06907764077186584,
0.025657644495368004,
-0.05746578052639961,
0.04383924603462219,
0.03993700444698334,
-0.07372581958770752,
0.11596708744764328,
-0.01590047962963581,
0.05087314173579216,
0.020304420962929726,
0.02840612456202507,
0.11586964130401611,
-0.02793765254318714,
-0.0753960832953453,
0.210878387093544,
0.03188129514455795,
0.12437562644481659,
0.17055140435695648,
-0.1376548409461975,
0.062676340341568,
-0.09932585805654526,
-0.008896834217011929,
0.016955547034740448,
-0.0071067470125854015,
0.030573926866054535,
0.06106117367744446,
-0.0002520496491342783,
0.05003958195447922,
-0.06670892238616943,
-0.018444571644067764,
-0.01286977156996727,
-0.028858497738838196,
-0.052768781781196594,
0.12619809806346893,
0.08883457630872726,
-0.23750165104866028,
0.14936986565589905,
0.18900735676288605,
0.06897638738155365,
0.18376325070858002,
-0.1302679032087326,
-0.007494116201996803,
-0.02706890180706978,
0.038144420832395554,
-0.06466365605592728,
0.16702428460121155,
-0.15132948756217957,
0.004471148829907179,
0.068133644759655,
-0.008017776533961296,
0.04626231640577316,
-0.1391284167766571,
-0.13525795936584473,
-0.10823787748813629,
-0.08082509785890579,
-0.14857293665409088,
0.0903066024184227,
0.03266380354762077,
0.09758344292640686,
-0.05760742723941803,
-0.039884164929389954,
0.12098952382802963,
-0.05799807980656624,
-0.009438803419470787,
0.13637658953666687,
-0.18219345808029175,
-0.13266023993492126,
-0.020864127203822136,
-0.06352389603853226,
-0.07952305674552917,
-0.04502437636256218,
0.09032868593931198,
-0.06768634915351868,
-0.0050912899896502495,
0.06090270355343819,
-0.05711229518055916,
-0.12898533046245575,
-0.12450744956731796,
-0.0538063645362854,
0.030822159722447395,
-0.09461681544780731,
-0.13655181229114532,
-0.026153506711125374,
-0.03534307703375816,
-0.09473437815904617,
0.13101494312286377,
-0.0978715643286705,
0.10357329249382019,
0.09080949425697327,
0.02945224940776825,
0.03142096847295761,
-0.08283025026321411,
0.1412314921617508,
-0.08309377729892731,
-0.061440352350473404,
0.05704819783568382,
0.038138505071401596,
0.0717034563422203,
0.16114802658557892,
0.048754919320344925,
-0.05364254489541054,
-0.010801954194903374,
-0.008973458781838417,
-0.03880982846021652,
-0.34306731820106506,
-0.09993208944797516,
-0.09971857815980911,
0.13984328508377075,
-0.05657191202044487,
0.04710704833269119,
-0.04749847948551178,
0.046292029321193695,
-0.04808206856250763,
-0.06692984700202942,
0.05475029721856117,
-0.013357137329876423,
0.389721155166626,
-0.08357251435518265,
0.06589500606060028,
-0.11487047374248505,
-0.05325998738408089,
0.14110064506530762,
0.14048704504966736,
0.13853389024734497,
0.07471096515655518,
0.017094533890485764,
0.12878113985061646,
0.1416756510734558,
0.02382289431989193,
0.03554655238986015,
0.0550357960164547,
0.01730313152074814,
-0.02724011056125164,
0.014388041570782661,
-0.027563422918319702,
-0.035728570073843,
0.18653419613838196,
-0.19641467928886414,
0.006449820939451456,
-0.13637907803058624,
0.10928415507078171,
0.03134633228182793,
0.08991982787847519,
0.07538741827011108,
0.08492689579725266,
0.08734489977359772,
0.05211508646607399,
-0.06954220682382584,
0.14988523721694946,
0.06323251873254776,
-0.13297630846500397,
0.08725839853286743,
0.032331667840480804,
0.11223698407411575,
-0.033654551953077316,
-0.02323996275663376,
-0.1412499099969864,
-0.15709088742733002,
0.05769042670726776,
0.1707618087530136,
-0.3069218695163727,
0.22781620919704437,
0.03680278733372688,
-0.035233668982982635,
-0.11514320969581604,
-0.07480240613222122,
0.012786929495632648,
0.0954752042889595,
0.16505758464336395,
0.0474151149392128,
0.005724907387048006,
-0.11855358630418777,
-0.02825809456408024,
0.08328241109848022,
0.09469791501760483,
0.05212439224123955,
-0.09205494821071625,
-0.018118208274245262,
0.05380994454026222,
-0.07442107796669006,
0.0018239592900499701,
-0.11725862324237823,
-0.12497443705797195,
0.04836941137909889,
0.0631953626871109,
-0.07272069156169891,
-0.05080408602952957,
-0.04910432547330856,
-0.08807319402694702,
0.03377707302570343,
-0.07670702040195465,
-0.10197747498750687,
-0.06148650124669075,
-0.1685541868209839,
0.1262238323688507,
-0.05656324699521065,
-0.0322953425347805,
-0.0516645647585392,
-0.14190106093883514,
-0.10664671659469604,
-0.1362438201904297,
0.03298533707857132,
-0.06217344477772713,
-0.04908794164657593,
-0.019242554903030396,
0.1527923196554184,
-0.08949753642082214,
0.041921716183423996,
0.04332812875509262,
0.040809907019138336,
-0.09465070813894272,
-0.15357455611228943,
0.07464562356472015,
-0.08791399002075195,
0.052323997020721436,
0.16590487957000732,
-0.07469228655099869,
-0.03806362673640251,
-0.03181706741452217,
-0.04376169294118881,
0.20768260955810547,
0.25900566577911377,
-0.04523417353630066,
0.16497530043125153,
0.2788541615009308,
-0.07516777515411377,
-0.3289100229740143,
-0.18622098863124847,
-0.19329559803009033,
-0.058037836104631424,
0.010670733638107777,
-0.1324043869972229,
0.018997564911842346,
0.08456453680992126,
-0.07749968767166138,
0.14644001424312592,
-0.24146132171154022,
-0.0327628068625927,
0.1448691487312317,
-0.018648693338036537,
0.3251129984855652,
-0.17911604046821594,
-0.09934142231941223,
-0.03696267306804657,
-0.11383066326379776,
0.09572527557611465,
-0.07526631653308868,
0.10622201859951019,
-0.02491118013858795,
0.08609228581190109,
-0.008964397944509983,
-0.02085939794778824,
0.1830512136220932,
-0.0009165002265945077,
0.0008933714707382023,
-0.09502744674682617,
-0.10590112209320068,
0.2111007124185562,
0.04871005937457085,
0.04197976365685463,
-0.12406136840581894,
0.07446236163377762,
-0.11313657462596893,
-0.010296293534338474,
-0.11357180774211884,
0.0308120995759964,
-0.042012788355350494,
-0.0506151057779789,
-0.07677667587995529,
0.05083279684185982,
-0.06296352297067642,
-0.02775930054485798,
0.16458745300769806,
0.015912769362330437,
0.05448900908231735,
-0.023932402953505516,
0.1213611364364624,
-0.06154143437743187,
0.0027697908226400614,
-0.12420113384723663,
-0.10146170854568481,
0.05773226544260979,
-0.04738093912601471,
-0.034898895770311356,
0.15428051352500916,
0.004282126668840647,
0.08790520578622818,
0.05753659829497337,
-0.06029723584651947,
0.040901608765125275,
0.09264872223138809,
-0.11952239274978638,
-0.1507275551557541,
0.03381838649511337,
-0.036877796053886414,
0.08963913470506668,
0.0529056042432785,
0.06094610318541527,
0.07847440987825394,
-0.019567130133509636,
0.01435504388064146,
0.04752922058105469,
-0.0013971466105431318,
0.05884189158678055,
0.1610788255929947,
0.016818366944789886,
-0.13259847462177277,
0.13939349353313446,
0.05500749498605728,
-0.1108194887638092,
-0.05142620578408241,
0.0276540145277977,
-0.08469181507825851,
-0.11740456521511078,
-0.11206681281328201,
0.027249544858932495,
-0.04705977067351341,
-0.07642681151628494,
-0.00203543808311224,
-0.1388026922941208,
-0.009362764656543732,
0.10710868239402771,
0.04060683771967888,
0.09765850752592087,
0.03966578096151352,
-0.0866624116897583,
0.10707765072584152,
0.08722660690546036,
-0.09005159139633179,
-0.01911507360637188,
-0.037846919149160385,
-0.11928863823413849,
0.0001871692220447585,
0.21324124932289124,
-0.043321359902620316,
-0.0531865730881691,
-0.16693508625030518,
0.0712568536400795,
-0.21606476604938507,
0.029813585802912712,
-0.06941148638725281,
0.01126642245799303,
0.00294139189645648,
-0.10240262746810913,
-0.02695990912616253,
-0.004284797236323357,
-0.09879311919212341,
0.027174798771739006,
0.06437163800001144,
0.11880401521921158,
-0.15591762959957123,
-0.1054372489452362,
0.10877159982919693,
0.01171787641942501,
0.13744686543941498,
0.08515123277902603,
-0.07940110564231873,
0.09742670506238937,
-0.1582125872373581,
-0.1066117212176323,
0.028335334733128548,
0.0669393464922905,
0.019889071583747864,
0.0043004946783185005,
-0.01850762963294983,
0.08292992413043976,
0.029226835817098618,
0.11432761698961258,
0.020432772114872932,
-0.09449740499258041,
-0.03939451649785042,
-0.07042112201452255,
-0.19026589393615723,
0.007112616207450628,
-0.08615338802337646,
0.10496769845485687,
0.06966526806354523,
0.11692720651626587,
-0.03416559472680092,
0.0717690959572792,
-0.024265501648187637,
-0.008501064032316208,
-0.03140532225370407,
-0.12838855385780334,
-0.04313865303993225,
-0.04602663964033127,
0.00008125678868964314,
-0.03472687676548958,
0.34501659870147705,
-0.01806926354765892,
-0.07680901139974594,
0.029588712379336357,
0.10806188732385635,
-0.058423519134521484,
-0.01391638070344925,
0.20950140058994293,
0.004661344923079014,
-0.013627508655190468,
-0.09200535714626312,
0.010092301294207573,
-0.096499003469944,
-0.03016596846282482,
0.07290586829185486,
0.09772638231515884,
0.1578352153301239,
-0.02117665484547615,
0.08952652662992477,
-0.04786594957113266,
0.13161349296569824,
-0.11596549302339554,
0.0421048179268837,
0.0031308678444474936,
-0.025677304714918137,
0.06917991489171982,
0.07268446683883667,
-0.05672336742281914,
0.02490350604057312,
-0.0926121324300766,
-0.06564587354660034,
-0.15622329711914062,
-0.024371875450015068,
-0.05211729556322098,
-0.04370029270648956,
0.0625031590461731,
-0.09142303466796875,
0.031488239765167236,
0.1380646973848343,
0.0888240784406662,
-0.07707569748163223,
-0.037217237055301666,
-0.03430619090795517,
-0.04778421297669411,
0.08054503798484802,
-0.004796796478331089,
0.06405182182788849,
-0.006399288307875395,
-0.030156629160046577,
-0.057165004312992096,
-0.06997107714414597,
-0.02581552043557167,
0.05730711296200752,
-0.05066346004605293,
0.015411695465445518,
-0.1946629136800766,
-0.04622899740934372,
-0.06654368340969086,
0.0851108506321907,
0.09301941096782684,
0.255593478679657,
0.05061699077486992,
0.047775935381650925,
0.08353903889656067,
0.15849874913692474,
0.032402604818344116,
-0.13117359578609467,
-0.015598833560943604,
0.04390784353017807,
-0.01831771805882454,
0.0537169948220253,
0.03634091094136238,
-0.05335582047700882,
0.00033558966242708266,
0.21103091537952423,
0.26172998547554016,
-0.11238549649715424,
0.039811328053474426,
0.0055279117077589035,
0.031418949365615845,
0.11913096904754639,
0.07560320943593979,
0.026701753959059715,
0.22800078988075256,
-0.060510337352752686,
-0.028149476274847984,
-0.05542478710412979,
0.024867501109838486,
-0.12046525627374649,
-0.00550337228924036,
0.021999070420861244,
-0.11212920397520065,
-0.05282856896519661,
0.14720721542835236,
-0.1426081359386444,
0.11277569830417633,
0.08971274644136429,
-0.10977264493703842,
-0.05278804898262024,
-0.03603373467922211,
0.15888546407222748,
0.03877745196223259,
0.03239119052886963,
-0.06455796957015991,
-0.0068311793729662895,
0.004677064251154661,
0.015913933515548706,
-0.2260618954896927,
-0.048680588603019714,
0.09050890058279037,
0.09213107079267502,
0.1438201516866684,
0.027643853798508644,
0.20522062480449677,
0.042865004390478134,
0.04345130920410156,
-0.03193829581141472,
0.1489977240562439,
0.09763896465301514,
-0.04480460286140442,
-0.04719902202486992,
-0.08475542813539505,
-0.013150649145245552,
-0.09255014359951019,
0.1453898549079895,
0.06797332316637039,
0.07288522273302078,
0.1757567822933197,
-0.025364471599459648,
-0.11809605360031128,
0.14660105109214783,
-0.1688639372587204,
0.029170848429203033,
0.04606736823916435,
-0.026695195585489273,
-0.06753714382648468,
-0.04962708428502083,
-0.05314206704497337,
0.014163228683173656,
-0.1375136375427246,
-0.0819784551858902,
0.07115274667739868,
-0.05492526665329933,
0.01098397932946682,
0.03739572688937187,
-0.09030555188655853,
0.03365233913064003,
-0.04802679643034935,
0.08291354775428772,
-0.11508020758628845,
0.07418423146009445,
0.04769745469093323,
-0.039117515087127686,
0.03446692228317261,
-0.13028022646903992,
0.013997789472341537,
-0.021554861217737198,
-0.10203830897808075,
-0.024385489523410797
] |
null | null | null |
<div align = "center">
<img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true">
</div>
This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:-
| Huggingface Hub Link | Public LB Score |
| :---: | :---: |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
|
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
|
question-answering
|
SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii
|
[
"kaggle",
"rembert",
"pytorch",
"question-answering",
"multilingual",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"multilingual"
] |
TAGS
#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
|
![]()
This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
|
[] |
[
"TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
45
] |
[
"passage: TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
-0.06501022726297379,
-0.0015145586803555489,
-0.007294468116015196,
0.03364747390151024,
0.0593646876513958,
0.09020667523145676,
0.13913704454898834,
0.0890129804611206,
0.15523339807987213,
-0.02681165561079979,
0.12800487875938416,
0.16155439615249634,
-0.00489851413294673,
0.019767722114920616,
-0.07827592641115189,
-0.1637139618396759,
0.04809056967496872,
-0.014700064435601234,
0.11812694370746613,
0.07324987649917603,
0.10389585047960281,
-0.06173224002122879,
0.01839648187160492,
-0.06369253247976303,
-0.05279891937971115,
0.020853376016020775,
0.011200099252164364,
-0.049172431230545044,
0.0854610800743103,
0.012296565808355808,
0.08895232528448105,
0.06759526580572128,
-0.02082747407257557,
-0.21199166774749756,
0.03363421559333801,
-0.06191583722829819,
-0.10346318036317825,
0.008707912638783455,
-0.0014742454513907433,
0.003977345768362284,
0.016188690438866615,
-0.00879860669374466,
-0.013893620111048222,
0.08370686322450638,
-0.09867994487285614,
-0.12474299222230911,
-0.1216152086853981,
0.06588463485240936,
0.014157298021018505,
0.03482070565223694,
-0.008716966956853867,
0.1085132583975792,
-0.16926175355911255,
0.07348474860191345,
0.02740248665213585,
-0.33754804730415344,
0.0006475619156844914,
0.2111365646123886,
0.07492819428443909,
0.1077708825469017,
-0.055432721972465515,
0.0747624933719635,
0.07591335475444794,
-0.004585459362715483,
-0.21766240894794464,
-0.11926604062318802,
-0.17764325439929962,
0.08144351094961166,
-0.03192957863211632,
-0.030327437445521355,
0.3315576910972595,
-0.012887791730463505,
0.006182161625474691,
-0.024326641112565994,
-0.00926720630377531,
0.17293192446231842,
0.012556739151477814,
0.0630381628870964,
-0.007119647227227688,
0.0612654872238636,
0.03882594406604767,
-0.12063303589820862,
-0.11306516826152802,
-0.03169118985533714,
-0.27176210284233093,
0.13792045414447784,
0.06660161912441254,
0.07465264946222305,
-0.07139036059379578,
-0.021108556538820267,
0.08776000887155533,
-0.058102019131183624,
-0.047286320477724075,
-0.09222188591957092,
0.031010571867227554,
0.0537504181265831,
-0.03350796923041344,
0.1303602010011673,
0.20931102335453033,
0.14424015581607819,
-0.008575024083256721,
0.04661773517727852,
-0.10165469348430634,
0.14097777009010315,
0.06654641777276993,
0.06081441044807434,
-0.03434459865093231,
0.07168267667293549,
0.04712530970573425,
-0.0687180608510971,
0.06154200807213783,
-0.04690399020910263,
-0.10434258729219437,
-0.003893812419846654,
-0.08852577209472656,
0.19121557474136353,
0.06404484808444977,
0.0026722196489572525,
-0.044358544051647186,
0.016533609479665756,
0.007256015203893185,
-0.06456094235181808,
-0.009260919876396656,
0.02420387975871563,
0.00021550575911533087,
0.0930839478969574,
-0.05846676975488663,
0.00535759748890996,
-0.056464068591594696,
0.00010416402074042708,
-0.04667410999536514,
-0.00597637053579092,
0.052441343665122986,
0.0003741070977412164,
0.10901418328285217,
-0.10581666231155396,
0.025757890194654465,
-0.0997995063662529,
-0.11476276069879532,
-0.01261390931904316,
-0.013523377478122711,
-0.015777958557009697,
-0.02633061632514,
-0.0057806652039289474,
0.011970010586082935,
-0.040547121316194534,
-0.06323607265949249,
-0.027762344107031822,
-0.08436790853738785,
0.13238751888275146,
-0.07446742802858353,
0.02346780151128769,
-0.16900217533111572,
0.0033139653969556093,
-0.0755152478814125,
-0.007072929292917252,
0.041633859276771545,
0.04558052495121956,
-0.15695682168006897,
0.04205464944243431,
-0.024845117703080177,
-0.039872560650110245,
0.02487439289689064,
0.003429039381444454,
-0.061885472387075424,
0.15008403360843658,
-0.09792497009038925,
-0.029709817841649055,
0.16366876661777496,
-0.08483835309743881,
-0.1827399581670761,
0.11887131631374359,
-0.006066599860787392,
-0.015230891294777393,
0.0926709920167923,
0.3162519335746765,
0.01573093794286251,
-0.12715916335582733,
0.010637554340064526,
0.15625691413879395,
-0.05156281217932701,
-0.07195746898651123,
0.07216206192970276,
-0.09359339624643326,
-0.11101162433624268,
0.07006771862506866,
-0.029857657849788666,
0.021722469478845596,
-0.04846318066120148,
-0.12137503176927567,
-0.007330096326768398,
-0.038778141140937805,
0.05533279851078987,
0.07048822939395905,
-0.007907806895673275,
-0.11695229262113571,
0.07121026515960693,
-0.09989078342914581,
0.06255681067705154,
0.04130867123603821,
0.007689621765166521,
-0.08137459307909012,
0.11827558279037476,
0.008582890965044498,
0.03862259164452553,
-0.09633146226406097,
-0.10070808231830597,
-0.02085166610777378,
0.11742490530014038,
0.05358714982867241,
0.18111906945705414,
0.008542938157916069,
-0.09559109061956406,
-0.06300288438796997,
0.01843731291592121,
0.07128044217824936,
0.02381575107574463,
0.008554287254810333,
-0.12011050432920456,
0.11192325502634048,
-0.03897501900792122,
0.06907764077186584,
0.025657644495368004,
-0.05746578052639961,
0.04383924603462219,
0.03993700444698334,
-0.07372581958770752,
0.11596708744764328,
-0.01590047962963581,
0.05087314173579216,
0.020304420962929726,
0.02840612456202507,
0.11586964130401611,
-0.02793765254318714,
-0.0753960832953453,
0.210878387093544,
0.03188129514455795,
0.12437562644481659,
0.17055140435695648,
-0.1376548409461975,
0.062676340341568,
-0.09932585805654526,
-0.008896834217011929,
0.016955547034740448,
-0.0071067470125854015,
0.030573926866054535,
0.06106117367744446,
-0.0002520496491342783,
0.05003958195447922,
-0.06670892238616943,
-0.018444571644067764,
-0.01286977156996727,
-0.028858497738838196,
-0.052768781781196594,
0.12619809806346893,
0.08883457630872726,
-0.23750165104866028,
0.14936986565589905,
0.18900735676288605,
0.06897638738155365,
0.18376325070858002,
-0.1302679032087326,
-0.007494116201996803,
-0.02706890180706978,
0.038144420832395554,
-0.06466365605592728,
0.16702428460121155,
-0.15132948756217957,
0.004471148829907179,
0.068133644759655,
-0.008017776533961296,
0.04626231640577316,
-0.1391284167766571,
-0.13525795936584473,
-0.10823787748813629,
-0.08082509785890579,
-0.14857293665409088,
0.0903066024184227,
0.03266380354762077,
0.09758344292640686,
-0.05760742723941803,
-0.039884164929389954,
0.12098952382802963,
-0.05799807980656624,
-0.009438803419470787,
0.13637658953666687,
-0.18219345808029175,
-0.13266023993492126,
-0.020864127203822136,
-0.06352389603853226,
-0.07952305674552917,
-0.04502437636256218,
0.09032868593931198,
-0.06768634915351868,
-0.0050912899896502495,
0.06090270355343819,
-0.05711229518055916,
-0.12898533046245575,
-0.12450744956731796,
-0.0538063645362854,
0.030822159722447395,
-0.09461681544780731,
-0.13655181229114532,
-0.026153506711125374,
-0.03534307703375816,
-0.09473437815904617,
0.13101494312286377,
-0.0978715643286705,
0.10357329249382019,
0.09080949425697327,
0.02945224940776825,
0.03142096847295761,
-0.08283025026321411,
0.1412314921617508,
-0.08309377729892731,
-0.061440352350473404,
0.05704819783568382,
0.038138505071401596,
0.0717034563422203,
0.16114802658557892,
0.048754919320344925,
-0.05364254489541054,
-0.010801954194903374,
-0.008973458781838417,
-0.03880982846021652,
-0.34306731820106506,
-0.09993208944797516,
-0.09971857815980911,
0.13984328508377075,
-0.05657191202044487,
0.04710704833269119,
-0.04749847948551178,
0.046292029321193695,
-0.04808206856250763,
-0.06692984700202942,
0.05475029721856117,
-0.013357137329876423,
0.389721155166626,
-0.08357251435518265,
0.06589500606060028,
-0.11487047374248505,
-0.05325998738408089,
0.14110064506530762,
0.14048704504966736,
0.13853389024734497,
0.07471096515655518,
0.017094533890485764,
0.12878113985061646,
0.1416756510734558,
0.02382289431989193,
0.03554655238986015,
0.0550357960164547,
0.01730313152074814,
-0.02724011056125164,
0.014388041570782661,
-0.027563422918319702,
-0.035728570073843,
0.18653419613838196,
-0.19641467928886414,
0.006449820939451456,
-0.13637907803058624,
0.10928415507078171,
0.03134633228182793,
0.08991982787847519,
0.07538741827011108,
0.08492689579725266,
0.08734489977359772,
0.05211508646607399,
-0.06954220682382584,
0.14988523721694946,
0.06323251873254776,
-0.13297630846500397,
0.08725839853286743,
0.032331667840480804,
0.11223698407411575,
-0.033654551953077316,
-0.02323996275663376,
-0.1412499099969864,
-0.15709088742733002,
0.05769042670726776,
0.1707618087530136,
-0.3069218695163727,
0.22781620919704437,
0.03680278733372688,
-0.035233668982982635,
-0.11514320969581604,
-0.07480240613222122,
0.012786929495632648,
0.0954752042889595,
0.16505758464336395,
0.0474151149392128,
0.005724907387048006,
-0.11855358630418777,
-0.02825809456408024,
0.08328241109848022,
0.09469791501760483,
0.05212439224123955,
-0.09205494821071625,
-0.018118208274245262,
0.05380994454026222,
-0.07442107796669006,
0.0018239592900499701,
-0.11725862324237823,
-0.12497443705797195,
0.04836941137909889,
0.0631953626871109,
-0.07272069156169891,
-0.05080408602952957,
-0.04910432547330856,
-0.08807319402694702,
0.03377707302570343,
-0.07670702040195465,
-0.10197747498750687,
-0.06148650124669075,
-0.1685541868209839,
0.1262238323688507,
-0.05656324699521065,
-0.0322953425347805,
-0.0516645647585392,
-0.14190106093883514,
-0.10664671659469604,
-0.1362438201904297,
0.03298533707857132,
-0.06217344477772713,
-0.04908794164657593,
-0.019242554903030396,
0.1527923196554184,
-0.08949753642082214,
0.041921716183423996,
0.04332812875509262,
0.040809907019138336,
-0.09465070813894272,
-0.15357455611228943,
0.07464562356472015,
-0.08791399002075195,
0.052323997020721436,
0.16590487957000732,
-0.07469228655099869,
-0.03806362673640251,
-0.03181706741452217,
-0.04376169294118881,
0.20768260955810547,
0.25900566577911377,
-0.04523417353630066,
0.16497530043125153,
0.2788541615009308,
-0.07516777515411377,
-0.3289100229740143,
-0.18622098863124847,
-0.19329559803009033,
-0.058037836104631424,
0.010670733638107777,
-0.1324043869972229,
0.018997564911842346,
0.08456453680992126,
-0.07749968767166138,
0.14644001424312592,
-0.24146132171154022,
-0.0327628068625927,
0.1448691487312317,
-0.018648693338036537,
0.3251129984855652,
-0.17911604046821594,
-0.09934142231941223,
-0.03696267306804657,
-0.11383066326379776,
0.09572527557611465,
-0.07526631653308868,
0.10622201859951019,
-0.02491118013858795,
0.08609228581190109,
-0.008964397944509983,
-0.02085939794778824,
0.1830512136220932,
-0.0009165002265945077,
0.0008933714707382023,
-0.09502744674682617,
-0.10590112209320068,
0.2111007124185562,
0.04871005937457085,
0.04197976365685463,
-0.12406136840581894,
0.07446236163377762,
-0.11313657462596893,
-0.010296293534338474,
-0.11357180774211884,
0.0308120995759964,
-0.042012788355350494,
-0.0506151057779789,
-0.07677667587995529,
0.05083279684185982,
-0.06296352297067642,
-0.02775930054485798,
0.16458745300769806,
0.015912769362330437,
0.05448900908231735,
-0.023932402953505516,
0.1213611364364624,
-0.06154143437743187,
0.0027697908226400614,
-0.12420113384723663,
-0.10146170854568481,
0.05773226544260979,
-0.04738093912601471,
-0.034898895770311356,
0.15428051352500916,
0.004282126668840647,
0.08790520578622818,
0.05753659829497337,
-0.06029723584651947,
0.040901608765125275,
0.09264872223138809,
-0.11952239274978638,
-0.1507275551557541,
0.03381838649511337,
-0.036877796053886414,
0.08963913470506668,
0.0529056042432785,
0.06094610318541527,
0.07847440987825394,
-0.019567130133509636,
0.01435504388064146,
0.04752922058105469,
-0.0013971466105431318,
0.05884189158678055,
0.1610788255929947,
0.016818366944789886,
-0.13259847462177277,
0.13939349353313446,
0.05500749498605728,
-0.1108194887638092,
-0.05142620578408241,
0.0276540145277977,
-0.08469181507825851,
-0.11740456521511078,
-0.11206681281328201,
0.027249544858932495,
-0.04705977067351341,
-0.07642681151628494,
-0.00203543808311224,
-0.1388026922941208,
-0.009362764656543732,
0.10710868239402771,
0.04060683771967888,
0.09765850752592087,
0.03966578096151352,
-0.0866624116897583,
0.10707765072584152,
0.08722660690546036,
-0.09005159139633179,
-0.01911507360637188,
-0.037846919149160385,
-0.11928863823413849,
0.0001871692220447585,
0.21324124932289124,
-0.043321359902620316,
-0.0531865730881691,
-0.16693508625030518,
0.0712568536400795,
-0.21606476604938507,
0.029813585802912712,
-0.06941148638725281,
0.01126642245799303,
0.00294139189645648,
-0.10240262746810913,
-0.02695990912616253,
-0.004284797236323357,
-0.09879311919212341,
0.027174798771739006,
0.06437163800001144,
0.11880401521921158,
-0.15591762959957123,
-0.1054372489452362,
0.10877159982919693,
0.01171787641942501,
0.13744686543941498,
0.08515123277902603,
-0.07940110564231873,
0.09742670506238937,
-0.1582125872373581,
-0.1066117212176323,
0.028335334733128548,
0.0669393464922905,
0.019889071583747864,
0.0043004946783185005,
-0.01850762963294983,
0.08292992413043976,
0.029226835817098618,
0.11432761698961258,
0.020432772114872932,
-0.09449740499258041,
-0.03939451649785042,
-0.07042112201452255,
-0.19026589393615723,
0.007112616207450628,
-0.08615338802337646,
0.10496769845485687,
0.06966526806354523,
0.11692720651626587,
-0.03416559472680092,
0.0717690959572792,
-0.024265501648187637,
-0.008501064032316208,
-0.03140532225370407,
-0.12838855385780334,
-0.04313865303993225,
-0.04602663964033127,
0.00008125678868964314,
-0.03472687676548958,
0.34501659870147705,
-0.01806926354765892,
-0.07680901139974594,
0.029588712379336357,
0.10806188732385635,
-0.058423519134521484,
-0.01391638070344925,
0.20950140058994293,
0.004661344923079014,
-0.013627508655190468,
-0.09200535714626312,
0.010092301294207573,
-0.096499003469944,
-0.03016596846282482,
0.07290586829185486,
0.09772638231515884,
0.1578352153301239,
-0.02117665484547615,
0.08952652662992477,
-0.04786594957113266,
0.13161349296569824,
-0.11596549302339554,
0.0421048179268837,
0.0031308678444474936,
-0.025677304714918137,
0.06917991489171982,
0.07268446683883667,
-0.05672336742281914,
0.02490350604057312,
-0.0926121324300766,
-0.06564587354660034,
-0.15622329711914062,
-0.024371875450015068,
-0.05211729556322098,
-0.04370029270648956,
0.0625031590461731,
-0.09142303466796875,
0.031488239765167236,
0.1380646973848343,
0.0888240784406662,
-0.07707569748163223,
-0.037217237055301666,
-0.03430619090795517,
-0.04778421297669411,
0.08054503798484802,
-0.004796796478331089,
0.06405182182788849,
-0.006399288307875395,
-0.030156629160046577,
-0.057165004312992096,
-0.06997107714414597,
-0.02581552043557167,
0.05730711296200752,
-0.05066346004605293,
0.015411695465445518,
-0.1946629136800766,
-0.04622899740934372,
-0.06654368340969086,
0.0851108506321907,
0.09301941096782684,
0.255593478679657,
0.05061699077486992,
0.047775935381650925,
0.08353903889656067,
0.15849874913692474,
0.032402604818344116,
-0.13117359578609467,
-0.015598833560943604,
0.04390784353017807,
-0.01831771805882454,
0.0537169948220253,
0.03634091094136238,
-0.05335582047700882,
0.00033558966242708266,
0.21103091537952423,
0.26172998547554016,
-0.11238549649715424,
0.039811328053474426,
0.0055279117077589035,
0.031418949365615845,
0.11913096904754639,
0.07560320943593979,
0.026701753959059715,
0.22800078988075256,
-0.060510337352752686,
-0.028149476274847984,
-0.05542478710412979,
0.024867501109838486,
-0.12046525627374649,
-0.00550337228924036,
0.021999070420861244,
-0.11212920397520065,
-0.05282856896519661,
0.14720721542835236,
-0.1426081359386444,
0.11277569830417633,
0.08971274644136429,
-0.10977264493703842,
-0.05278804898262024,
-0.03603373467922211,
0.15888546407222748,
0.03877745196223259,
0.03239119052886963,
-0.06455796957015991,
-0.0068311793729662895,
0.004677064251154661,
0.015913933515548706,
-0.2260618954896927,
-0.048680588603019714,
0.09050890058279037,
0.09213107079267502,
0.1438201516866684,
0.027643853798508644,
0.20522062480449677,
0.042865004390478134,
0.04345130920410156,
-0.03193829581141472,
0.1489977240562439,
0.09763896465301514,
-0.04480460286140442,
-0.04719902202486992,
-0.08475542813539505,
-0.013150649145245552,
-0.09255014359951019,
0.1453898549079895,
0.06797332316637039,
0.07288522273302078,
0.1757567822933197,
-0.025364471599459648,
-0.11809605360031128,
0.14660105109214783,
-0.1688639372587204,
0.029170848429203033,
0.04606736823916435,
-0.026695195585489273,
-0.06753714382648468,
-0.04962708428502083,
-0.05314206704497337,
0.014163228683173656,
-0.1375136375427246,
-0.0819784551858902,
0.07115274667739868,
-0.05492526665329933,
0.01098397932946682,
0.03739572688937187,
-0.09030555188655853,
0.03365233913064003,
-0.04802679643034935,
0.08291354775428772,
-0.11508020758628845,
0.07418423146009445,
0.04769745469093323,
-0.039117515087127686,
0.03446692228317261,
-0.13028022646903992,
0.013997789472341537,
-0.021554861217737198,
-0.10203830897808075,
-0.024385489523410797
] |
null | null | null |
<div align = "center">
<img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true">
</div>
This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:-
| Huggingface Hub Link | Public LB Score |
| :---: | :---: |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 |
| [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 |
| [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
|
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
|
question-answering
|
SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii
|
[
"kaggle",
"rembert",
"pytorch",
"question-answering",
"multilingual",
"dataset:Commonlit-Readibility",
"license:cc0-1.0",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"multilingual"
] |
TAGS
#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
|
![]()
This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
|
[] |
[
"TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
45
] |
[
"passage: TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n"
] |
[
-0.06501022726297379,
-0.0015145586803555489,
-0.007294468116015196,
0.03364747390151024,
0.0593646876513958,
0.09020667523145676,
0.13913704454898834,
0.0890129804611206,
0.15523339807987213,
-0.02681165561079979,
0.12800487875938416,
0.16155439615249634,
-0.00489851413294673,
0.019767722114920616,
-0.07827592641115189,
-0.1637139618396759,
0.04809056967496872,
-0.014700064435601234,
0.11812694370746613,
0.07324987649917603,
0.10389585047960281,
-0.06173224002122879,
0.01839648187160492,
-0.06369253247976303,
-0.05279891937971115,
0.020853376016020775,
0.011200099252164364,
-0.049172431230545044,
0.0854610800743103,
0.012296565808355808,
0.08895232528448105,
0.06759526580572128,
-0.02082747407257557,
-0.21199166774749756,
0.03363421559333801,
-0.06191583722829819,
-0.10346318036317825,
0.008707912638783455,
-0.0014742454513907433,
0.003977345768362284,
0.016188690438866615,
-0.00879860669374466,
-0.013893620111048222,
0.08370686322450638,
-0.09867994487285614,
-0.12474299222230911,
-0.1216152086853981,
0.06588463485240936,
0.014157298021018505,
0.03482070565223694,
-0.008716966956853867,
0.1085132583975792,
-0.16926175355911255,
0.07348474860191345,
0.02740248665213585,
-0.33754804730415344,
0.0006475619156844914,
0.2111365646123886,
0.07492819428443909,
0.1077708825469017,
-0.055432721972465515,
0.0747624933719635,
0.07591335475444794,
-0.004585459362715483,
-0.21766240894794464,
-0.11926604062318802,
-0.17764325439929962,
0.08144351094961166,
-0.03192957863211632,
-0.030327437445521355,
0.3315576910972595,
-0.012887791730463505,
0.006182161625474691,
-0.024326641112565994,
-0.00926720630377531,
0.17293192446231842,
0.012556739151477814,
0.0630381628870964,
-0.007119647227227688,
0.0612654872238636,
0.03882594406604767,
-0.12063303589820862,
-0.11306516826152802,
-0.03169118985533714,
-0.27176210284233093,
0.13792045414447784,
0.06660161912441254,
0.07465264946222305,
-0.07139036059379578,
-0.021108556538820267,
0.08776000887155533,
-0.058102019131183624,
-0.047286320477724075,
-0.09222188591957092,
0.031010571867227554,
0.0537504181265831,
-0.03350796923041344,
0.1303602010011673,
0.20931102335453033,
0.14424015581607819,
-0.008575024083256721,
0.04661773517727852,
-0.10165469348430634,
0.14097777009010315,
0.06654641777276993,
0.06081441044807434,
-0.03434459865093231,
0.07168267667293549,
0.04712530970573425,
-0.0687180608510971,
0.06154200807213783,
-0.04690399020910263,
-0.10434258729219437,
-0.003893812419846654,
-0.08852577209472656,
0.19121557474136353,
0.06404484808444977,
0.0026722196489572525,
-0.044358544051647186,
0.016533609479665756,
0.007256015203893185,
-0.06456094235181808,
-0.009260919876396656,
0.02420387975871563,
0.00021550575911533087,
0.0930839478969574,
-0.05846676975488663,
0.00535759748890996,
-0.056464068591594696,
0.00010416402074042708,
-0.04667410999536514,
-0.00597637053579092,
0.052441343665122986,
0.0003741070977412164,
0.10901418328285217,
-0.10581666231155396,
0.025757890194654465,
-0.0997995063662529,
-0.11476276069879532,
-0.01261390931904316,
-0.013523377478122711,
-0.015777958557009697,
-0.02633061632514,
-0.0057806652039289474,
0.011970010586082935,
-0.040547121316194534,
-0.06323607265949249,
-0.027762344107031822,
-0.08436790853738785,
0.13238751888275146,
-0.07446742802858353,
0.02346780151128769,
-0.16900217533111572,
0.0033139653969556093,
-0.0755152478814125,
-0.007072929292917252,
0.041633859276771545,
0.04558052495121956,
-0.15695682168006897,
0.04205464944243431,
-0.024845117703080177,
-0.039872560650110245,
0.02487439289689064,
0.003429039381444454,
-0.061885472387075424,
0.15008403360843658,
-0.09792497009038925,
-0.029709817841649055,
0.16366876661777496,
-0.08483835309743881,
-0.1827399581670761,
0.11887131631374359,
-0.006066599860787392,
-0.015230891294777393,
0.0926709920167923,
0.3162519335746765,
0.01573093794286251,
-0.12715916335582733,
0.010637554340064526,
0.15625691413879395,
-0.05156281217932701,
-0.07195746898651123,
0.07216206192970276,
-0.09359339624643326,
-0.11101162433624268,
0.07006771862506866,
-0.029857657849788666,
0.021722469478845596,
-0.04846318066120148,
-0.12137503176927567,
-0.007330096326768398,
-0.038778141140937805,
0.05533279851078987,
0.07048822939395905,
-0.007907806895673275,
-0.11695229262113571,
0.07121026515960693,
-0.09989078342914581,
0.06255681067705154,
0.04130867123603821,
0.007689621765166521,
-0.08137459307909012,
0.11827558279037476,
0.008582890965044498,
0.03862259164452553,
-0.09633146226406097,
-0.10070808231830597,
-0.02085166610777378,
0.11742490530014038,
0.05358714982867241,
0.18111906945705414,
0.008542938157916069,
-0.09559109061956406,
-0.06300288438796997,
0.01843731291592121,
0.07128044217824936,
0.02381575107574463,
0.008554287254810333,
-0.12011050432920456,
0.11192325502634048,
-0.03897501900792122,
0.06907764077186584,
0.025657644495368004,
-0.05746578052639961,
0.04383924603462219,
0.03993700444698334,
-0.07372581958770752,
0.11596708744764328,
-0.01590047962963581,
0.05087314173579216,
0.020304420962929726,
0.02840612456202507,
0.11586964130401611,
-0.02793765254318714,
-0.0753960832953453,
0.210878387093544,
0.03188129514455795,
0.12437562644481659,
0.17055140435695648,
-0.1376548409461975,
0.062676340341568,
-0.09932585805654526,
-0.008896834217011929,
0.016955547034740448,
-0.0071067470125854015,
0.030573926866054535,
0.06106117367744446,
-0.0002520496491342783,
0.05003958195447922,
-0.06670892238616943,
-0.018444571644067764,
-0.01286977156996727,
-0.028858497738838196,
-0.052768781781196594,
0.12619809806346893,
0.08883457630872726,
-0.23750165104866028,
0.14936986565589905,
0.18900735676288605,
0.06897638738155365,
0.18376325070858002,
-0.1302679032087326,
-0.007494116201996803,
-0.02706890180706978,
0.038144420832395554,
-0.06466365605592728,
0.16702428460121155,
-0.15132948756217957,
0.004471148829907179,
0.068133644759655,
-0.008017776533961296,
0.04626231640577316,
-0.1391284167766571,
-0.13525795936584473,
-0.10823787748813629,
-0.08082509785890579,
-0.14857293665409088,
0.0903066024184227,
0.03266380354762077,
0.09758344292640686,
-0.05760742723941803,
-0.039884164929389954,
0.12098952382802963,
-0.05799807980656624,
-0.009438803419470787,
0.13637658953666687,
-0.18219345808029175,
-0.13266023993492126,
-0.020864127203822136,
-0.06352389603853226,
-0.07952305674552917,
-0.04502437636256218,
0.09032868593931198,
-0.06768634915351868,
-0.0050912899896502495,
0.06090270355343819,
-0.05711229518055916,
-0.12898533046245575,
-0.12450744956731796,
-0.0538063645362854,
0.030822159722447395,
-0.09461681544780731,
-0.13655181229114532,
-0.026153506711125374,
-0.03534307703375816,
-0.09473437815904617,
0.13101494312286377,
-0.0978715643286705,
0.10357329249382019,
0.09080949425697327,
0.02945224940776825,
0.03142096847295761,
-0.08283025026321411,
0.1412314921617508,
-0.08309377729892731,
-0.061440352350473404,
0.05704819783568382,
0.038138505071401596,
0.0717034563422203,
0.16114802658557892,
0.048754919320344925,
-0.05364254489541054,
-0.010801954194903374,
-0.008973458781838417,
-0.03880982846021652,
-0.34306731820106506,
-0.09993208944797516,
-0.09971857815980911,
0.13984328508377075,
-0.05657191202044487,
0.04710704833269119,
-0.04749847948551178,
0.046292029321193695,
-0.04808206856250763,
-0.06692984700202942,
0.05475029721856117,
-0.013357137329876423,
0.389721155166626,
-0.08357251435518265,
0.06589500606060028,
-0.11487047374248505,
-0.05325998738408089,
0.14110064506530762,
0.14048704504966736,
0.13853389024734497,
0.07471096515655518,
0.017094533890485764,
0.12878113985061646,
0.1416756510734558,
0.02382289431989193,
0.03554655238986015,
0.0550357960164547,
0.01730313152074814,
-0.02724011056125164,
0.014388041570782661,
-0.027563422918319702,
-0.035728570073843,
0.18653419613838196,
-0.19641467928886414,
0.006449820939451456,
-0.13637907803058624,
0.10928415507078171,
0.03134633228182793,
0.08991982787847519,
0.07538741827011108,
0.08492689579725266,
0.08734489977359772,
0.05211508646607399,
-0.06954220682382584,
0.14988523721694946,
0.06323251873254776,
-0.13297630846500397,
0.08725839853286743,
0.032331667840480804,
0.11223698407411575,
-0.033654551953077316,
-0.02323996275663376,
-0.1412499099969864,
-0.15709088742733002,
0.05769042670726776,
0.1707618087530136,
-0.3069218695163727,
0.22781620919704437,
0.03680278733372688,
-0.035233668982982635,
-0.11514320969581604,
-0.07480240613222122,
0.012786929495632648,
0.0954752042889595,
0.16505758464336395,
0.0474151149392128,
0.005724907387048006,
-0.11855358630418777,
-0.02825809456408024,
0.08328241109848022,
0.09469791501760483,
0.05212439224123955,
-0.09205494821071625,
-0.018118208274245262,
0.05380994454026222,
-0.07442107796669006,
0.0018239592900499701,
-0.11725862324237823,
-0.12497443705797195,
0.04836941137909889,
0.0631953626871109,
-0.07272069156169891,
-0.05080408602952957,
-0.04910432547330856,
-0.08807319402694702,
0.03377707302570343,
-0.07670702040195465,
-0.10197747498750687,
-0.06148650124669075,
-0.1685541868209839,
0.1262238323688507,
-0.05656324699521065,
-0.0322953425347805,
-0.0516645647585392,
-0.14190106093883514,
-0.10664671659469604,
-0.1362438201904297,
0.03298533707857132,
-0.06217344477772713,
-0.04908794164657593,
-0.019242554903030396,
0.1527923196554184,
-0.08949753642082214,
0.041921716183423996,
0.04332812875509262,
0.040809907019138336,
-0.09465070813894272,
-0.15357455611228943,
0.07464562356472015,
-0.08791399002075195,
0.052323997020721436,
0.16590487957000732,
-0.07469228655099869,
-0.03806362673640251,
-0.03181706741452217,
-0.04376169294118881,
0.20768260955810547,
0.25900566577911377,
-0.04523417353630066,
0.16497530043125153,
0.2788541615009308,
-0.07516777515411377,
-0.3289100229740143,
-0.18622098863124847,
-0.19329559803009033,
-0.058037836104631424,
0.010670733638107777,
-0.1324043869972229,
0.018997564911842346,
0.08456453680992126,
-0.07749968767166138,
0.14644001424312592,
-0.24146132171154022,
-0.0327628068625927,
0.1448691487312317,
-0.018648693338036537,
0.3251129984855652,
-0.17911604046821594,
-0.09934142231941223,
-0.03696267306804657,
-0.11383066326379776,
0.09572527557611465,
-0.07526631653308868,
0.10622201859951019,
-0.02491118013858795,
0.08609228581190109,
-0.008964397944509983,
-0.02085939794778824,
0.1830512136220932,
-0.0009165002265945077,
0.0008933714707382023,
-0.09502744674682617,
-0.10590112209320068,
0.2111007124185562,
0.04871005937457085,
0.04197976365685463,
-0.12406136840581894,
0.07446236163377762,
-0.11313657462596893,
-0.010296293534338474,
-0.11357180774211884,
0.0308120995759964,
-0.042012788355350494,
-0.0506151057779789,
-0.07677667587995529,
0.05083279684185982,
-0.06296352297067642,
-0.02775930054485798,
0.16458745300769806,
0.015912769362330437,
0.05448900908231735,
-0.023932402953505516,
0.1213611364364624,
-0.06154143437743187,
0.0027697908226400614,
-0.12420113384723663,
-0.10146170854568481,
0.05773226544260979,
-0.04738093912601471,
-0.034898895770311356,
0.15428051352500916,
0.004282126668840647,
0.08790520578622818,
0.05753659829497337,
-0.06029723584651947,
0.040901608765125275,
0.09264872223138809,
-0.11952239274978638,
-0.1507275551557541,
0.03381838649511337,
-0.036877796053886414,
0.08963913470506668,
0.0529056042432785,
0.06094610318541527,
0.07847440987825394,
-0.019567130133509636,
0.01435504388064146,
0.04752922058105469,
-0.0013971466105431318,
0.05884189158678055,
0.1610788255929947,
0.016818366944789886,
-0.13259847462177277,
0.13939349353313446,
0.05500749498605728,
-0.1108194887638092,
-0.05142620578408241,
0.0276540145277977,
-0.08469181507825851,
-0.11740456521511078,
-0.11206681281328201,
0.027249544858932495,
-0.04705977067351341,
-0.07642681151628494,
-0.00203543808311224,
-0.1388026922941208,
-0.009362764656543732,
0.10710868239402771,
0.04060683771967888,
0.09765850752592087,
0.03966578096151352,
-0.0866624116897583,
0.10707765072584152,
0.08722660690546036,
-0.09005159139633179,
-0.01911507360637188,
-0.037846919149160385,
-0.11928863823413849,
0.0001871692220447585,
0.21324124932289124,
-0.043321359902620316,
-0.0531865730881691,
-0.16693508625030518,
0.0712568536400795,
-0.21606476604938507,
0.029813585802912712,
-0.06941148638725281,
0.01126642245799303,
0.00294139189645648,
-0.10240262746810913,
-0.02695990912616253,
-0.004284797236323357,
-0.09879311919212341,
0.027174798771739006,
0.06437163800001144,
0.11880401521921158,
-0.15591762959957123,
-0.1054372489452362,
0.10877159982919693,
0.01171787641942501,
0.13744686543941498,
0.08515123277902603,
-0.07940110564231873,
0.09742670506238937,
-0.1582125872373581,
-0.1066117212176323,
0.028335334733128548,
0.0669393464922905,
0.019889071583747864,
0.0043004946783185005,
-0.01850762963294983,
0.08292992413043976,
0.029226835817098618,
0.11432761698961258,
0.020432772114872932,
-0.09449740499258041,
-0.03939451649785042,
-0.07042112201452255,
-0.19026589393615723,
0.007112616207450628,
-0.08615338802337646,
0.10496769845485687,
0.06966526806354523,
0.11692720651626587,
-0.03416559472680092,
0.0717690959572792,
-0.024265501648187637,
-0.008501064032316208,
-0.03140532225370407,
-0.12838855385780334,
-0.04313865303993225,
-0.04602663964033127,
0.00008125678868964314,
-0.03472687676548958,
0.34501659870147705,
-0.01806926354765892,
-0.07680901139974594,
0.029588712379336357,
0.10806188732385635,
-0.058423519134521484,
-0.01391638070344925,
0.20950140058994293,
0.004661344923079014,
-0.013627508655190468,
-0.09200535714626312,
0.010092301294207573,
-0.096499003469944,
-0.03016596846282482,
0.07290586829185486,
0.09772638231515884,
0.1578352153301239,
-0.02117665484547615,
0.08952652662992477,
-0.04786594957113266,
0.13161349296569824,
-0.11596549302339554,
0.0421048179268837,
0.0031308678444474936,
-0.025677304714918137,
0.06917991489171982,
0.07268446683883667,
-0.05672336742281914,
0.02490350604057312,
-0.0926121324300766,
-0.06564587354660034,
-0.15622329711914062,
-0.024371875450015068,
-0.05211729556322098,
-0.04370029270648956,
0.0625031590461731,
-0.09142303466796875,
0.031488239765167236,
0.1380646973848343,
0.0888240784406662,
-0.07707569748163223,
-0.037217237055301666,
-0.03430619090795517,
-0.04778421297669411,
0.08054503798484802,
-0.004796796478331089,
0.06405182182788849,
-0.006399288307875395,
-0.030156629160046577,
-0.057165004312992096,
-0.06997107714414597,
-0.02581552043557167,
0.05730711296200752,
-0.05066346004605293,
0.015411695465445518,
-0.1946629136800766,
-0.04622899740934372,
-0.06654368340969086,
0.0851108506321907,
0.09301941096782684,
0.255593478679657,
0.05061699077486992,
0.047775935381650925,
0.08353903889656067,
0.15849874913692474,
0.032402604818344116,
-0.13117359578609467,
-0.015598833560943604,
0.04390784353017807,
-0.01831771805882454,
0.0537169948220253,
0.03634091094136238,
-0.05335582047700882,
0.00033558966242708266,
0.21103091537952423,
0.26172998547554016,
-0.11238549649715424,
0.039811328053474426,
0.0055279117077589035,
0.031418949365615845,
0.11913096904754639,
0.07560320943593979,
0.026701753959059715,
0.22800078988075256,
-0.060510337352752686,
-0.028149476274847984,
-0.05542478710412979,
0.024867501109838486,
-0.12046525627374649,
-0.00550337228924036,
0.021999070420861244,
-0.11212920397520065,
-0.05282856896519661,
0.14720721542835236,
-0.1426081359386444,
0.11277569830417633,
0.08971274644136429,
-0.10977264493703842,
-0.05278804898262024,
-0.03603373467922211,
0.15888546407222748,
0.03877745196223259,
0.03239119052886963,
-0.06455796957015991,
-0.0068311793729662895,
0.004677064251154661,
0.015913933515548706,
-0.2260618954896927,
-0.048680588603019714,
0.09050890058279037,
0.09213107079267502,
0.1438201516866684,
0.027643853798508644,
0.20522062480449677,
0.042865004390478134,
0.04345130920410156,
-0.03193829581141472,
0.1489977240562439,
0.09763896465301514,
-0.04480460286140442,
-0.04719902202486992,
-0.08475542813539505,
-0.013150649145245552,
-0.09255014359951019,
0.1453898549079895,
0.06797332316637039,
0.07288522273302078,
0.1757567822933197,
-0.025364471599459648,
-0.11809605360031128,
0.14660105109214783,
-0.1688639372587204,
0.029170848429203033,
0.04606736823916435,
-0.026695195585489273,
-0.06753714382648468,
-0.04962708428502083,
-0.05314206704497337,
0.014163228683173656,
-0.1375136375427246,
-0.0819784551858902,
0.07115274667739868,
-0.05492526665329933,
0.01098397932946682,
0.03739572688937187,
-0.09030555188655853,
0.03365233913064003,
-0.04802679643034935,
0.08291354775428772,
-0.11508020758628845,
0.07418423146009445,
0.04769745469093323,
-0.039117515087127686,
0.03446692228317261,
-0.13028022646903992,
0.013997789472341537,
-0.021554861217737198,
-0.10203830897808075,
-0.024385489523410797
] |
null | null |
transformers
|
Practice/Demo repository following the tutorial `run_image_classification_flax.py` script
|
{}
|
image-classification
|
SauravMaheshkar/vit-base-patch16-imagenette
|
[
"transformers",
"jax",
"tensorboard",
"vit",
"image-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #jax #tensorboard #vit #image-classification #autotrain_compatible #endpoints_compatible #region-us
|
Practice/Demo repository following the tutorial 'run_image_classification_flax.py' script
|
[] |
[
"TAGS\n#transformers #jax #tensorboard #vit #image-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
39
] |
[
"passage: TAGS\n#transformers #jax #tensorboard #vit #image-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.04418009892106056,
0.05281481519341469,
-0.005843781400471926,
0.05577445030212402,
0.19969017803668976,
0.044211387634277344,
0.0955321192741394,
0.11429575085639954,
0.05020493268966675,
-0.005992535036057234,
0.12439586967229843,
0.23446032404899597,
0.0005627288483083248,
0.03877365216612816,
-0.08113065361976624,
-0.3145732581615448,
0.02736218273639679,
0.09610532224178314,
-0.05950910598039627,
0.0485956072807312,
0.05568074807524681,
-0.11914017796516418,
0.11537385731935501,
-0.022493747994303703,
-0.2787289619445801,
0.04608658701181412,
0.08536817878484726,
-0.0793076679110527,
0.09980381280183792,
0.09777388721704483,
0.17738968133926392,
0.053163789212703705,
-0.00723645556718111,
-0.07114854454994202,
0.03689419850707054,
0.048398759216070175,
-0.1040884256362915,
0.056574899703264236,
0.1165517121553421,
-0.042884811758995056,
-0.04180489480495453,
0.049114860594272614,
0.010331733152270317,
0.01899631880223751,
-0.10793568193912506,
-0.0557316392660141,
-0.003938206937164068,
-0.04473990201950073,
0.10787675529718399,
0.0009276405908167362,
0.04132417216897011,
0.12117471545934677,
-0.04546768590807915,
0.11587662994861603,
0.04988997057080269,
-0.26861774921417236,
-0.06416089832782745,
0.17262616753578186,
0.03407207131385803,
0.03735291212797165,
-0.07407035678625107,
0.11562586575746536,
0.03424770385026932,
-0.013589030131697655,
0.03754810616374016,
-0.0782642662525177,
-0.08924075216054916,
0.026326118037104607,
-0.0724058672785759,
0.017401307821273804,
0.1504705846309662,
0.016904572024941444,
0.09172523021697998,
-0.022657325491309166,
-0.09632556140422821,
-0.03711133077740669,
-0.07078949362039566,
0.003441332373768091,
-0.010360690765082836,
0.03776802867650986,
-0.038031015545129776,
-0.029781224206089973,
-0.13568507134914398,
0.007326103746891022,
-0.18328265845775604,
0.05570904165506363,
0.003906109370291233,
0.0707160234451294,
-0.20842403173446655,
0.0013720740098506212,
-0.09957247227430344,
-0.0911116898059845,
0.04858202859759331,
-0.08466231822967529,
-0.04227176681160927,
-0.0490797720849514,
-0.010188612155616283,
-0.24405519664287567,
0.07285992801189423,
0.00375545397400856,
0.12938523292541504,
0.0769938975572586,
-0.07740327715873718,
0.11958304047584534,
0.013487055897712708,
0.1604779064655304,
-0.00821816548705101,
-0.01787741854786873,
0.022478055208921432,
-0.1112317144870758,
-0.013986856676638126,
-0.06323431432247162,
-0.1941596120595932,
-0.012895516119897366,
0.03353257104754448,
0.015868259593844414,
-0.014076372608542442,
0.07223299145698547,
-0.04854574427008629,
-0.04172550141811371,
0.08187591284513474,
-0.02446778118610382,
0.068019337952137,
-0.03824120759963989,
0.05780288204550743,
0.12431668490171432,
0.013451692648231983,
-0.024059899151325226,
-0.003979302477091551,
0.08525720983743668,
-0.07231996208429337,
0.023562591522932053,
-0.06071138381958008,
-0.09610668569803238,
0.026142755523324013,
-0.16180519759655,
0.05307239666581154,
-0.17676158249378204,
-0.02117365412414074,
0.022138027474284172,
0.08159616589546204,
-0.04688861221075058,
0.04488830268383026,
0.0055696009658277035,
-0.02247350476682186,
0.0720924660563469,
-0.014790903776884079,
-0.07355056703090668,
-0.028698325157165527,
0.040250685065984726,
-0.04306181147694588,
0.12289967387914658,
-0.108657106757164,
0.05372929200530052,
-0.03452290594577789,
0.014275362715125084,
-0.17975974082946777,
0.01645822823047638,
-0.05590957775712013,
0.16491135954856873,
-0.0391589030623436,
-0.009838365949690342,
-0.06990780681371689,
0.04252498224377632,
-0.044402021914720535,
0.0940595418214798,
-0.15843409299850464,
-0.07934090495109558,
0.14157123863697052,
-0.10448197275400162,
-0.12675030529499054,
0.08036863058805466,
-0.0017736650770530105,
-0.004364917520433664,
0.044422708451747894,
0.16158820688724518,
0.07328687608242035,
-0.10305432230234146,
0.08771779388189316,
0.09451588988304138,
-0.1308031678199768,
-0.1002727523446083,
-0.033119045197963715,
0.06713011115789413,
-0.09716586023569107,
0.019955245777964592,
0.048952944576740265,
0.1237083375453949,
-0.062304895371198654,
-0.04260850325226784,
-0.030531251803040504,
-0.017058083787560463,
0.06023711338639259,
0.09627119451761246,
0.1203332170844078,
-0.048323243856430054,
0.0034533878788352013,
0.07947299629449844,
-0.014916613698005676,
-0.032601695507764816,
-0.001211075927130878,
-0.09181472659111023,
0.11778401583433151,
-0.1656571924686432,
0.00819323305040598,
-0.14533476531505585,
-0.12912249565124512,
0.0035333135165274143,
0.03975827619433403,
-0.0035397878382354975,
0.143800750374794,
0.10374754667282104,
-0.047660041600465775,
-0.016401665285229683,
-0.016039790585637093,
0.15073232352733612,
0.04438920319080353,
-0.06652913242578506,
-0.1438179612159729,
0.05679966136813164,
-0.09291567653417587,
-0.06302393227815628,
-0.1494450569152832,
-0.02491024136543274,
0.13397124409675598,
0.12501274049282074,
0.09990814328193665,
0.04918495565652847,
-0.04414859041571617,
-0.0012974018463864923,
-0.10302339494228363,
-0.030131451785564423,
0.08613240718841553,
-0.021952882409095764,
-0.017321238294243813,
0.1702018529176712,
-0.12088301032781601,
0.2786397635936737,
0.20042619109153748,
-0.3045080602169037,
-0.03943314775824547,
0.005963664967566729,
0.04556124284863472,
0.017383011057972908,
0.002567401621490717,
0.033062852919101715,
-0.06298571079969406,
-0.03647857531905174,
0.15514768660068512,
-0.0035594888031482697,
0.011491628363728523,
0.07117706537246704,
-0.032950159162282944,
-0.12948423624038696,
0.015348673798143864,
0.17628149688243866,
-0.26830920577049255,
0.16941174864768982,
0.24076762795448303,
-0.04165247827768326,
0.1567125916481018,
0.04325629398226738,
-0.0009877155534923077,
0.05792990326881409,
-0.011276236735284328,
0.02730250358581543,
0.09855876117944717,
-0.22286275029182434,
-0.08595597743988037,
0.0398709811270237,
-0.03133973851799965,
0.0005834005423821509,
-0.1479964554309845,
-0.00541366171091795,
0.012517908588051796,
0.05814697965979576,
0.09120438247919083,
0.07145518809556961,
0.011400711722671986,
0.08962876349687576,
-0.0184994637966156,
-0.10001280158758163,
0.0832725539803505,
-0.004849886521697044,
-0.04105686768889427,
0.1581983119249344,
-0.10316785424947739,
-0.3427216708660126,
-0.12403567880392075,
-0.1767059564590454,
-0.0392972007393837,
0.06791272014379501,
0.05110076442360878,
-0.1271827220916748,
-0.09714624285697937,
0.03482368215918541,
-0.000003002410721819615,
-0.02934902161359787,
0.08069788664579391,
-0.0657019093632698,
0.06575563549995422,
-0.021832218393683434,
-0.035397008061409,
-0.04077543690800667,
-0.03018740937113762,
-0.01256581675261259,
0.14783591032028198,
-0.09323722124099731,
0.10166846960783005,
0.14777828752994537,
-0.04880042001605034,
0.07164757698774338,
-0.00941728800535202,
0.14012902975082397,
-0.12050221860408783,
0.05223329737782478,
0.13348418474197388,
-0.052637044340372086,
0.04640240594744682,
0.1762082278728485,
0.041863538324832916,
-0.09963174164295197,
-0.0072312131524086,
-0.00875059887766838,
-0.1311570405960083,
-0.11286305636167526,
-0.056610893458127975,
-0.13249309360980988,
0.022319965064525604,
0.14978905022144318,
0.0817723274230957,
0.14798994362354279,
0.1539793610572815,
0.07470346242189407,
0.083050936460495,
0.021294012665748596,
0.07665488868951797,
0.1418428272008896,
-0.008698239922523499,
0.13557158410549164,
-0.06338817626237869,
-0.1194380596280098,
0.06803251802921295,
0.10221005231142044,
0.13813208043575287,
0.12657350301742554,
0.005930402781814337,
0.009933012537658215,
0.11129847168922424,
0.1869460642337799,
0.07047062367200851,
-0.02582319639623165,
-0.0749501883983612,
-0.013460127636790276,
-0.006995019502937794,
0.04581846296787262,
0.05644093453884125,
0.12186409533023834,
-0.13868604600429535,
0.007703652139753103,
-0.08295570313930511,
0.0641489028930664,
0.04537533223628998,
0.11583201587200165,
-0.31208837032318115,
0.035863641649484634,
0.08020785450935364,
0.023035995662212372,
-0.1281440258026123,
0.04369444027543068,
0.07276206463575363,
-0.05252475664019585,
0.09771940112113953,
-0.1192789077758789,
0.1049334928393364,
-0.06895408779382706,
0.02649184688925743,
0.06260719150304794,
-0.09843294322490692,
0.03740134462714195,
0.04759206250309944,
-0.2149852216243744,
0.1904144436120987,
0.017470214515924454,
-0.055922091007232666,
-0.06104714795947075,
0.003823749488219619,
0.04950427636504173,
0.2665612995624542,
0.13541986048221588,
-0.008674278855323792,
-0.06715656816959381,
-0.10658082365989685,
0.033026937395334244,
-0.01228468120098114,
0.10467761009931564,
0.014889482408761978,
-0.04666272923350334,
-0.03503827750682831,
-0.06780804693698883,
0.012214689515531063,
-0.02045825868844986,
-0.00042464773287065327,
-0.1822488158941269,
0.04488692432641983,
0.012802225537598133,
-0.026860380545258522,
0.04438050836324692,
-0.03670738637447357,
-0.17624406516551971,
0.2045602798461914,
-0.03206590563058853,
0.012608679011464119,
-0.1346738040447235,
-0.013128671795129776,
-0.004246646538376808,
-0.06288725882768631,
0.10555901378393173,
-0.09046661853790283,
0.09380145370960236,
-0.03774311766028404,
-0.2402161955833435,
0.17447027564048767,
-0.09673517942428589,
0.03649279102683067,
-0.118480384349823,
0.01393066719174385,
-0.1145474761724472,
-0.022076774388551712,
0.03467448800802231,
0.05187855660915375,
-0.029413724318146706,
-0.029656359925866127,
0.05816290155053139,
0.0065514761954545975,
-0.009862009435892105,
-0.03865896537899971,
-0.03179703652858734,
-0.07264012843370438,
0.012771032750606537,
0.04515562951564789,
0.182267427444458,
0.1119995191693306,
-0.11189508438110352,
0.08055268228054047,
0.05768335238099098,
-0.05396994948387146,
-0.3862396478652954,
0.05111129209399223,
-0.08147308230400085,
-0.01984541304409504,
0.012382561340928078,
-0.1068793311715126,
0.1487920880317688,
-0.008642423897981644,
-0.04667140170931816,
0.12679381668567657,
-0.1570698767900467,
-0.09975456446409225,
0.13149236142635345,
0.13494445383548737,
0.29475364089012146,
-0.1413075178861618,
-0.062130484730005264,
-0.04104142636060715,
-0.09391907602548599,
0.15249229967594147,
0.016062693670392036,
0.07274823635816574,
0.02477175183594227,
-0.013860100880265236,
0.035448089241981506,
-0.0508604422211647,
0.09704505652189255,
-0.05423995479941368,
0.07230076938867569,
-0.12270259857177734,
-0.10997765511274338,
0.02508380264043808,
-0.04833497107028961,
-0.02689300663769245,
0.04991239681839943,
0.001501161023043096,
-0.07800817489624023,
-0.001257854513823986,
-0.04671332985162735,
0.07729224860668182,
0.06850484013557434,
-0.03321683034300804,
-0.030217977240681648,
-0.0027223152574151754,
-0.016576221212744713,
0.008926138281822205,
0.40915146470069885,
-0.0027178155723959208,
0.08528859913349152,
0.1106840968132019,
0.06665229052305222,
-0.1411367952823639,
-0.03133111074566841,
-0.07191194593906403,
-0.060917142778635025,
0.1454101800918579,
-0.14458420872688293,
0.10132840275764465,
0.08402429521083832,
-0.033515967428684235,
0.07303789258003235,
0.10745645314455032,
0.05159682035446167,
0.014608818106353283,
0.18176013231277466,
-0.14342492818832397,
-0.08009027689695358,
-0.04060733690857887,
-0.02779439464211464,
0.14443276822566986,
0.09931109845638275,
0.14068441092967987,
0.01363175455480814,
0.004983586724847555,
0.029578974470496178,
-0.0036759604699909687,
-0.00913410447537899,
0.04693569615483284,
0.07860180735588074,
-0.013865556567907333,
-0.11068198084831238,
0.06640413403511047,
0.04662683233618736,
-0.28964903950691223,
-0.03681805357336998,
0.0753578394651413,
-0.10888788104057312,
-0.12483426928520203,
0.06044383347034454,
0.16244877874851227,
-0.14017392694950104,
-0.0034327132161706686,
-0.034865546971559525,
-0.10248623043298721,
0.03342636302113533,
0.21132038533687592,
0.0949304848909378,
0.04039501026272774,
-0.023623881861567497,
-0.00319301662966609,
-0.056209538131952286,
0.012689800933003426,
-0.04289480298757553,
0.11769746243953705,
-0.23329629004001617,
-0.1152791753411293,
-0.009753916412591934,
0.14381223917007446,
-0.12426750361919403,
-0.04570994898676872,
-0.1722324788570404,
0.005674992688000202,
-0.0563773438334465,
0.019669800996780396,
-0.0796271488070488,
-0.0209480170160532,
0.028975464403629303,
-0.0711696445941925,
-0.07106863707304001,
-0.046928562223911285,
-0.12769606709480286,
0.007553050760179758,
0.01233825832605362,
0.023655015975236893,
-0.0025518916081637144,
-0.05257704481482506,
0.039280813187360764,
-0.038833655416965485,
0.07134877890348434,
0.022752901539206505,
-0.04961317032575607,
0.08107482641935349,
-0.15411199629306793,
-0.13123726844787598,
0.15243111550807953,
0.030259432271122932,
0.10458346456289291,
0.1235082671046257,
0.055868491530418396,
0.035447441041469574,
0.023222776129841805,
0.01403515599668026,
0.05037597566843033,
-0.08334431797266006,
0.01749304309487343,
-0.12992601096630096,
-0.14899203181266785,
-0.03839171677827835,
0.06258484721183777,
0.08487587422132492,
-0.008107533678412437,
0.11283338069915771,
-0.05711954087018967,
0.044680893421173096,
-0.07461132854223251,
0.015920298174023628,
-0.017478324472904205,
-0.19708003103733063,
-0.02255440689623356,
-0.04869438707828522,
0.00563727505505085,
-0.08233072608709335,
0.15226221084594727,
0.10810086131095886,
0.014527219347655773,
0.05314665660262108,
0.06365341693162918,
-0.035620663315057755,
0.05234302952885628,
0.167799711227417,
0.062359750270843506,
-0.016307847574353218,
-0.10373722016811371,
0.10370001941919327,
0.07476131618022919,
0.06625951826572418,
0.022266047075390816,
0.07275700569152832,
-0.1573127806186676,
0.11305287480354309,
0.0596492663025856,
0.047203291207551956,
-0.12990567088127136,
0.007975875400006771,
-0.1172715574502945,
0.15809936821460724,
0.009730224497616291,
-0.03886276111006737,
0.17626453936100006,
-0.027452491223812103,
0.03441659361124039,
-0.06450535356998444,
-0.05564345419406891,
-0.13636872172355652,
-0.24195733666419983,
-0.14991888403892517,
-0.15752851963043213,
0.040845926851034164,
-0.0310226920992136,
0.007150665391236544,
0.05959230288863182,
0.07080625742673874,
-0.03149353712797165,
0.12719844281673431,
0.03321027383208275,
-0.023706277832388878,
0.082964688539505,
0.01596818119287491,
-0.03491263464093208,
0.00846171472221613,
0.00807136856019497,
-0.08997856080532074,
0.004768842365592718,
-0.08156899362802505,
-0.0006541062030009925,
0.01992320828139782,
0.029607178643345833,
-0.05617490038275719,
-0.1329553723335266,
-0.012985404580831528,
0.025836117565631866,
-0.1066809818148613,
0.014019140042364597,
-0.012444336898624897,
0.04354338347911835,
0.021052606403827667,
0.14934512972831726,
-0.08306064456701279,
0.053507983684539795,
-0.07691418379545212,
0.1030525490641594,
0.004486440680921078,
0.1517462581396103,
-0.039758212864398956,
-0.009090324863791466,
-0.0503164678812027,
0.32410070300102234,
0.22657327353954315,
-0.06982073932886124,
0.03154122456908226,
0.05470675230026245,
0.008331267163157463,
0.023974530398845673,
0.14522789418697357,
-0.003208253998309374,
0.1607801467180252,
-0.06122888624668121,
-0.07681821286678314,
-0.01984872668981552,
-0.011000426486134529,
-0.04593714326620102,
0.02747826837003231,
0.08414274454116821,
-0.011780837550759315,
-0.09214495867490768,
0.09453655779361725,
-0.07226444035768509,
0.1094190925359726,
0.14885106682777405,
-0.19219651818275452,
-0.07622610032558441,
-0.023009687662124634,
0.19833533465862274,
-0.05192209780216217,
0.03508344665169716,
-0.07072626054286957,
-0.07367285341024399,
-0.013776072300970554,
0.015998845919966698,
-0.21889913082122803,
-0.031799785792827606,
0.0022581599187105894,
-0.10165990889072418,
0.09670789539813995,
-0.04000553488731384,
-0.06075727194547653,
0.06967678666114807,
0.044889915734529495,
-0.029851336032152176,
-0.024916574358940125,
-0.030647948384284973,
-0.07405440509319305,
-0.0026967942249029875,
0.12230569124221802,
-0.021014273166656494,
0.0038498640060424805,
0.06144218146800995,
-0.12678702175617218,
0.031040407717227936,
-0.16454477608203888,
-0.06308338046073914,
-0.0006353184580802917,
0.04610195755958557,
-0.05202048271894455,
0.07435190677642822,
0.06121797487139702,
0.06368135660886765,
-0.039862606674432755,
-0.05250275507569313,
-0.014085386879742146,
0.0736454501748085,
-0.020306874066591263,
-0.11124400049448013,
-0.05681188777089119,
-0.07698216289281845,
-0.03870069980621338,
0.01682044379413128,
-0.0756659209728241,
-0.04106048867106438,
-0.08571107685565948,
0.027635788545012474,
-0.14402209222316742,
0.09659993648529053,
0.18104135990142822,
0.025456417351961136,
-0.0446041002869606,
-0.12168152630329132,
0.06263755261898041,
0.059957846999168396,
-0.07966317236423492,
-0.10424324870109558
] |
null | null |
transformers
|
# My Awesome Model
|
{"tags": ["conversational"]}
|
text-generation
|
Saviour/ChandlerBot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# My Awesome Model
|
[
"# My Awesome Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# My Awesome Model"
] |
[
51,
4
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Awesome Model"
] |
[
-0.05259015038609505,
0.05521034821867943,
-0.005910294596105814,
0.017722278833389282,
0.15250112116336823,
0.02286236733198166,
0.07657632976770401,
0.09513414651155472,
-0.025391526520252228,
-0.047348517924547195,
0.15119488537311554,
0.19781284034252167,
-0.020334534347057343,
0.101333387196064,
-0.04688440263271332,
-0.3143521845340729,
0.06439975649118423,
0.05463787540793419,
-0.015605635941028595,
0.12023304402828217,
0.09468326717615128,
-0.0530015267431736,
0.08742043375968933,
-0.012155864387750626,
-0.1293085366487503,
-0.0027921805158257484,
-0.002384399762377143,
-0.10180269181728363,
0.11194873601198196,
0.033712033182382584,
0.05166437849402428,
0.0182647667825222,
-0.05843055993318558,
-0.139859139919281,
0.03845210000872612,
-0.015005595050752163,
-0.05602653697133064,
0.05648263916373253,
0.059830192476511,
-0.07164353132247925,
0.1669619083404541,
0.13275989890098572,
-0.04237370565533638,
0.056127581745386124,
-0.17620700597763062,
0.017941240221261978,
0.01800798624753952,
0.019184142351150513,
0.05306641012430191,
0.10830496996641159,
-0.03932326287031174,
0.09217294305562973,
-0.11410652846097946,
0.08313368260860443,
0.07800983637571335,
-0.29151955246925354,
-0.025312699377536774,
0.10440942645072937,
0.06437138468027115,
0.048375632613897324,
-0.013386772945523262,
0.0621674507856369,
0.02149512618780136,
0.008602659218013287,
0.02225899137556553,
-0.06727100163698196,
-0.05789240449666977,
0.032748885452747345,
-0.0967593789100647,
-0.03634428232908249,
0.19753605127334595,
-0.024647634476423264,
0.053590498864650726,
-0.06265407055616379,
-0.11300963163375854,
-0.039751436561346054,
-0.050429005175828934,
-0.029761891812086105,
-0.05090925097465515,
0.09489558637142181,
0.004352911841124296,
-0.09534718841314316,
-0.13405443727970123,
-0.01370926946401596,
-0.1618979275226593,
0.15892250835895538,
0.012579603120684624,
0.046201955527067184,
-0.19210097193717957,
0.11465331166982651,
-0.03857925534248352,
-0.08259090781211853,
0.030513519421219826,
-0.12010065466165543,
0.03160654753446579,
-0.008132083341479301,
-0.019599268212914467,
-0.049325279891490936,
0.061037879437208176,
0.08101806789636612,
0.018783701583743095,
0.005755073390901089,
0.018167443573474884,
0.05343452841043472,
0.05891622602939606,
0.10033947974443436,
-0.02891627699136734,
-0.0625043511390686,
0.0025436533614993095,
-0.12051084637641907,
-0.01122665498405695,
-0.05357983708381653,
-0.18095199763774872,
0.002246231772005558,
0.02455340512096882,
0.05192234739661217,
0.011778532527387142,
0.09955989569425583,
-0.028496338054537773,
-0.026898741722106934,
0.06898727267980576,
0.002862759632989764,
-0.015707949176430702,
-0.005368964280933142,
-0.010934269987046719,
0.11485416442155838,
-0.023099146783351898,
0.04774846136569977,
-0.12022071331739426,
0.020393015816807747,
-0.07851235568523407,
-0.0019349842332303524,
-0.06214260309934616,
-0.04864754155278206,
-0.0019346009939908981,
-0.06985589861869812,
0.021118074655532837,
-0.14833110570907593,
-0.17990200221538544,
-0.005064866971224546,
0.021302316337823868,
-0.052403319627046585,
-0.09162671118974686,
-0.0982397273182869,
-0.02586611732840538,
0.03574685752391815,
-0.05873546749353409,
0.013170980848371983,
-0.06884536147117615,
0.06542801111936569,
0.0029820678755640984,
0.05682007595896721,
-0.14085575938224792,
0.08719147741794586,
-0.12582023441791534,
-0.023288866505026817,
-0.061977192759513855,
0.1109607070684433,
0.024780582636594772,
0.1267160177230835,
0.004311583004891872,
-0.0033308975398540497,
-0.08729329705238342,
0.08271238207817078,
-0.04243258014321327,
0.22770646214485168,
-0.10479787737131119,
-0.08809807151556015,
0.2632525563240051,
-0.05423165112733841,
-0.16432519257068634,
0.10179096460342407,
-0.014350244775414467,
0.12198644131422043,
0.13850919902324677,
0.16080057621002197,
0.007628654129803181,
0.03313867375254631,
0.10115300863981247,
0.08631709218025208,
-0.08573295921087265,
-0.0611947737634182,
0.023627014830708504,
-0.011463395319879055,
-0.10670105367898941,
0.046802595257759094,
0.04794782027602196,
0.08188598603010178,
-0.04982871189713478,
-0.028600862249732018,
-0.01972118206322193,
-0.044152840971946716,
0.05264130234718323,
0.007675500120967627,
0.13217447698116302,
-0.03674980252981186,
-0.03692879155278206,
-0.023745311424136162,
0.01699630729854107,
-0.03115241602063179,
0.007061392068862915,
-0.05687357112765312,
0.11091547459363937,
-0.03406180441379547,
0.051789235323667526,
-0.16953988373279572,
-0.04873261600732803,
-0.02087729424238205,
0.1402055323123932,
0.04973345249891281,
0.1329866498708725,
0.06287940591573715,
-0.010758201591670513,
0.00859389640390873,
0.007998145185410976,
0.13181665539741516,
0.007865442894399166,
-0.07660657912492752,
-0.047718439251184464,
0.09176599979400635,
-0.05973208695650101,
0.06147782504558563,
-0.098741315305233,
-0.004747362341731787,
-0.01433002483099699,
0.08674649894237518,
0.006352655589580536,
0.029382232576608658,
-0.006192679051309824,
0.003654100699350238,
-0.06161240115761757,
0.017873648554086685,
0.12492607533931732,
-0.01421504095196724,
-0.07439801841974258,
0.22084392607212067,
-0.15798072516918182,
0.18006981909275055,
0.18165533244609833,
-0.3081994652748108,
0.024602634832262993,
-0.08860466629266739,
-0.036338552832603455,
0.03426366671919823,
0.0491504967212677,
-0.034147560596466064,
0.16587987542152405,
-0.016766328364610672,
0.201018825173378,
-0.03547777235507965,
-0.01287798210978508,
-0.010399105958640575,
-0.03656993433833122,
-0.010632630437612534,
0.09065473079681396,
0.15122920274734497,
-0.1677125245332718,
0.18270380795001984,
0.1660280078649521,
0.06873020529747009,
0.17776396870613098,
0.034313347190618515,
-0.006856906693428755,
0.07112615555524826,
-0.022670727223157883,
-0.07675548642873764,
-0.049287427216768265,
-0.26302891969680786,
-0.027947327122092247,
0.06471601128578186,
0.04510856419801712,
0.11924877762794495,
-0.10971947014331818,
-0.037208184599876404,
0.010892451740801334,
-0.013165894895792007,
0.02132410928606987,
0.09682225435972214,
0.01171150617301464,
0.11804302036762238,
-0.021027036011219025,
-0.05209195241332054,
0.0898953229188919,
0.02727191150188446,
-0.0787680521607399,
0.19168277084827423,
-0.10074768215417862,
-0.3233809769153595,
-0.11354339867830276,
-0.18166927993297577,
-0.017843691632151604,
0.05878754332661629,
0.08049646019935608,
-0.09228580445051193,
-0.02625267766416073,
-0.01639235019683838,
0.0758359357714653,
-0.09145816415548325,
-0.015880629420280457,
-0.09367848187685013,
0.034986745566129684,
-0.10827737301588058,
-0.07011983543634415,
-0.05141967162489891,
-0.03368452936410904,
-0.04457031562924385,
0.13157756626605988,
-0.12242637574672699,
0.06396433711051941,
0.2076517641544342,
0.06227295100688934,
0.05622440204024315,
-0.0229496993124485,
0.23288212716579437,
-0.10842552781105042,
0.02383521944284439,
0.1717897206544876,
-0.03566030040383339,
0.0727933868765831,
0.13435456156730652,
0.006721907295286655,
-0.08144525438547134,
0.03465581312775612,
-0.04592517390847206,
-0.08630958944559097,
-0.20441576838493347,
-0.14156180620193481,
-0.12814727425575256,
0.07913564145565033,
0.03285396471619606,
0.05478321388363838,
0.15024253726005554,
0.11386489123106003,
0.007987297140061855,
0.00976672861725092,
-0.006888182368129492,
0.05438044294714928,
0.17482298612594604,
-0.05838097631931305,
0.10041683167219162,
-0.037591226398944855,
-0.1924494504928589,
0.08022978901863098,
0.04309763014316559,
0.08280511945486069,
0.07474655658006668,
0.0856199786067009,
0.013537914492189884,
0.03723837807774544,
0.10897084325551987,
0.1165735274553299,
0.031679023057222366,
-0.038079675287008286,
-0.04882059991359711,
-0.026300756260752678,
-0.03285675123333931,
0.05745977535843849,
0.07790146768093109,
-0.1608346849679947,
-0.06348084658384323,
-0.06350091099739075,
0.07662643492221832,
0.09017108380794525,
0.11811108142137527,
-0.21219493448734283,
0.01579318381845951,
0.092556893825531,
-0.0494147390127182,
-0.1304239183664322,
0.07402537018060684,
-0.00466050673276186,
-0.1397053301334381,
0.037663187831640244,
-0.014095795340836048,
0.1359514445066452,
-0.0778401643037796,
0.10336452722549438,
-0.08307972550392151,
-0.06147889420390129,
0.03632286190986633,
0.1355396956205368,
-0.30774354934692383,
0.2137020230293274,
-0.022472934797406197,
-0.05296783149242401,
-0.10508129745721817,
-0.011727629229426384,
0.020913105458021164,
0.09079049527645111,
0.10090240091085434,
-0.0025442070327699184,
0.0061299679800868034,
-0.0345483273267746,
-0.053218815475702286,
0.024456629529595375,
0.07957815378904343,
-0.08542889356613159,
0.0017540202243253589,
-0.02361489273607731,
-0.004407065454870462,
-0.032844748347997665,
-0.01189463958144188,
-0.011617658659815788,
-0.16786961257457733,
0.06556065380573273,
-0.002625665394589305,
0.11129079759120941,
0.03491498529911041,
0.0024013579823076725,
-0.1009332686662674,
0.19977013766765594,
0.01796281896531582,
-0.08052749931812286,
-0.08830537647008896,
-0.03254766762256622,
0.03660419583320618,
-0.06121435388922691,
0.027481911703944206,
-0.06916457414627075,
0.033381566405296326,
-0.06441576033830643,
-0.18325145542621613,
0.1268530637025833,
-0.10945470631122589,
-0.03609596937894821,
-0.04321056231856346,
0.18323224782943726,
-0.00929707009345293,
-0.0011623724130913615,
0.05866571143269539,
0.0032208464108407497,
-0.1347510665655136,
-0.10740556567907333,
0.020214511081576347,
-0.015275230631232262,
0.009142245166003704,
0.05559912323951721,
-0.009665844030678272,
0.00045268211397342384,
-0.039558928459882736,
-0.023234419524669647,
0.32348164916038513,
0.10732097923755646,
-0.04944206401705742,
0.17007054388523102,
0.13087597489356995,
-0.0827672928571701,
-0.30699312686920166,
-0.10971353948116302,
-0.10529600828886032,
-0.026918673887848854,
-0.037983208894729614,
-0.19617970287799835,
0.09504909813404083,
-0.03528566658496857,
-0.022136637941002846,
0.11253651231527328,
-0.2759084105491638,
-0.0770430713891983,
0.1826775223016739,
0.003314757253974676,
0.3998824954032898,
-0.10265109688043594,
-0.08777514100074768,
-0.06741699576377869,
-0.1120782196521759,
0.2033512443304062,
-0.05560711398720741,
0.08663415163755417,
-0.00517998356372118,
0.15513743460178375,
0.055607251822948456,
-0.02176513522863388,
0.08932057023048401,
-0.005811662413179874,
-0.0546204075217247,
-0.1219351515173912,
-0.03444604203104973,
-0.009159418754279613,
0.007239421829581261,
0.03589896112680435,
-0.04242607578635216,
0.01279151439666748,
-0.1399589478969574,
-0.045490626245737076,
-0.0764620453119278,
0.024699507281184196,
0.021008269861340523,
-0.0652410089969635,
-0.01643640361726284,
-0.03945036977529526,
-0.012804778292775154,
0.03164318576455116,
0.15236099064350128,
-0.06478006392717361,
0.1476556956768036,
0.04904455319046974,
0.15412139892578125,
-0.14745712280273438,
-0.02258288487792015,
-0.06896031647920609,
-0.05498642474412918,
0.04900865629315376,
-0.10053684562444687,
0.050061121582984924,
0.1202658861875534,
-0.0742902010679245,
0.0987328365445137,
0.0922594666481018,
-0.01938629150390625,
0.0012483424507081509,
0.1226617842912674,
-0.2489612102508545,
-0.07742628455162048,
-0.10509459674358368,
0.013337249867618084,
0.10138551890850067,
0.06995654851198196,
0.17304721474647522,
-0.0037713919300585985,
-0.036284226924180984,
-0.0064643872901797295,
0.025414984673261642,
-0.03540204465389252,
0.05724727362394333,
-0.002706433180719614,
0.016663886606693268,
-0.15213344991207123,
0.060368724167346954,
-0.00024176653823815286,
-0.1438901126384735,
-0.013603870756924152,
0.16073721647262573,
-0.11208858340978622,
-0.15145981311798096,
-0.007263668347150087,
0.13685113191604614,
-0.13171035051345825,
-0.03302847594022751,
-0.03708777576684952,
-0.170182466506958,
0.07439173012971878,
0.1024777740240097,
0.08549231290817261,
0.08025266975164413,
-0.06620611250400543,
-0.00807863101363182,
-0.011656313203275204,
-0.026087598875164986,
0.031810320913791656,
-0.023377234116196632,
-0.09044221043586731,
0.03872343525290489,
-0.026654237881302834,
0.13591371476650238,
-0.09607382118701935,
-0.09331836551427841,
-0.135749951004982,
0.039314381778240204,
-0.12405620515346527,
-0.08138058334589005,
-0.12200927734375,
-0.0591500885784626,
0.00224387738853693,
-0.0001289021165575832,
-0.035674065351486206,
-0.06687422841787338,
-0.13582271337509155,
0.04366770386695862,
-0.04484611004590988,
0.0013091047294437885,
-0.040241483598947525,
0.04561002552509308,
0.06766383349895477,
-0.03493715822696686,
0.13722217082977295,
0.11722734570503235,
-0.07864081114530563,
0.08946478366851807,
-0.16657429933547974,
-0.0683990865945816,
0.08854512125253677,
0.008173754438757896,
0.06165994703769684,
0.06743349134922028,
0.033807408064603806,
0.06109451875090599,
0.04151686280965805,
0.03488299250602722,
0.01739438995718956,
-0.09271225333213806,
0.015541021712124348,
0.022296719253063202,
-0.1294609159231186,
-0.04801803454756737,
-0.029226921498775482,
0.00939185917377472,
0.008117396384477615,
0.11003357172012329,
-0.0426274873316288,
0.09439733624458313,
-0.05888751894235611,
0.036728594452142715,
0.016222506761550903,
-0.16461637616157532,
-0.020102784037590027,
-0.11915475130081177,
0.028684545308351517,
-0.0033096212428063154,
0.25625869631767273,
0.06346847862005234,
0.020517030730843544,
0.01250078622251749,
0.08567021042108536,
0.07241600006818771,
0.02562166005373001,
0.1956365555524826,
0.10854171961545944,
-0.05020022392272949,
-0.12334850430488586,
0.09686340391635895,
0.034720368683338165,
0.06432123482227325,
0.13385434448719025,
-0.026959087699651718,
0.002498799469321966,
0.11019360274076462,
0.011678861454129219,
0.04961980879306793,
-0.09859088063240051,
-0.16400282084941864,
-0.00994415208697319,
0.061864156275987625,
-0.04559077322483063,
0.12240655720233917,
0.11382720619440079,
-0.020697353407740593,
0.03180128335952759,
-0.010503606870770454,
-0.05694027617573738,
-0.16998925805091858,
-0.1630837321281433,
-0.08357038348913193,
-0.11794789135456085,
-0.0027763545513153076,
-0.11386270076036453,
0.013879159465432167,
0.06452289968729019,
0.0604364387691021,
-0.09019444137811661,
0.08891061693429947,
0.0687386617064476,
-0.11843101680278778,
0.08828350901603699,
-0.033263903111219406,
0.07249268144369125,
0.0015160300536081195,
0.003872724948450923,
-0.13800905644893646,
0.032393742352724075,
-0.008493867702782154,
0.04159298539161682,
-0.09244006127119064,
0.022458361461758614,
-0.11297028511762619,
-0.07659684121608734,
-0.07971972227096558,
0.05093973129987717,
-0.03541257977485657,
0.1390930563211441,
0.001295371213927865,
-0.035233911126852036,
0.024190181866288185,
0.22729112207889557,
-0.06350252777338028,
-0.030667411163449287,
-0.0618741400539875,
0.21414142847061157,
0.024466563016176224,
0.10703565180301666,
-0.016775688156485558,
0.019240234047174454,
-0.0764411985874176,
0.3689337372779846,
0.344390869140625,
-0.1225387305021286,
-0.0015968306688591838,
0.031062176451086998,
0.036916591227054596,
0.11621878296136856,
0.12602226436138153,
0.057955991476774216,
0.2995031177997589,
-0.08396036922931671,
-0.002026971662417054,
-0.02688612788915634,
-0.03624163940548897,
-0.04409930482506752,
0.10547586530447006,
0.06835740804672241,
-0.03330419585108757,
-0.027012333273887634,
0.1376710683107376,
-0.2966996431350708,
0.12323499470949173,
-0.15714547038078308,
-0.1487535685300827,
-0.06873904913663864,
-0.005042468197643757,
0.08589684963226318,
0.04748665541410446,
0.1069009080529213,
-0.019124338403344154,
-0.08203735202550888,
0.05766449123620987,
0.0320524163544178,
-0.22844897210597992,
0.011852608993649483,
0.08361081779003143,
-0.06153005734086037,
0.011767351068556309,
-0.017906347289681435,
0.038472190499305725,
0.07790610194206238,
0.025976579636335373,
-0.032770540565252304,
0.06325861811637878,
-0.005814229138195515,
-0.05033424496650696,
0.04302205145359039,
0.05059972032904625,
0.017107632011175156,
-0.1511564701795578,
0.07320158183574677,
-0.1762860119342804,
0.0566408596932888,
-0.005331212189048529,
-0.04948166385293007,
0.000018263708625454456,
0.01998119056224823,
-0.06808236241340637,
0.05880929157137871,
0.0952666699886322,
-0.012173139490187168,
-0.002317852806299925,
-0.056667573750019073,
0.007662574760615826,
-0.0679154172539711,
-0.0747012197971344,
-0.10497893393039703,
-0.1338900774717331,
-0.11392296850681305,
0.10846775025129318,
-0.011928223073482513,
-0.19833622872829437,
0.02906924858689308,
-0.11258108913898468,
0.04933213070034981,
-0.13360801339149475,
0.08599711954593658,
0.1282832771539688,
0.021543797105550766,
-0.01265349704772234,
0.04020093381404877,
0.01591683179140091,
0.08550478518009186,
-0.09200563281774521,
-0.10515180230140686
] |
null | null |
transformers
|
# Paimon DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
Saz/DialoGPT-small-paimon
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Paimon DialoGPT Model
|
[
"# Paimon DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Paimon DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Paimon DialoGPT Model"
] |
[
-0.02958753891289234,
0.055891357362270355,
-0.007041033823043108,
0.019497131928801537,
0.13835881650447845,
0.0031851502135396004,
0.13314132392406464,
0.12380728125572205,
-0.06308577954769135,
-0.031899455934762955,
0.12251278012990952,
0.16453121602535248,
0.022517932578921318,
0.08977777510881424,
-0.05330171436071396,
-0.33603352308273315,
0.04766570404171944,
0.061088789254426956,
0.048502471297979355,
0.12954051792621613,
0.08940839767456055,
-0.04787566140294075,
0.08181079477071762,
0.037201352417469025,
-0.08457209914922714,
-0.0009523563785478473,
0.006037096958607435,
-0.12743356823921204,
0.11201263964176178,
0.0379021018743515,
0.034670647233724594,
0.0012109691742807627,
-0.06202400475740433,
-0.14655689895153046,
0.0357869453728199,
0.0006006275652907789,
-0.015180754475295544,
0.03554113581776619,
0.052222516387701035,
-0.08747256547212601,
0.13533474504947662,
0.09693986177444458,
0.0012619318440556526,
0.038076240569353104,
-0.15336596965789795,
-0.043531179428100586,
0.006571740843355656,
0.07465679943561554,
0.0608665756881237,
0.10917678475379944,
-0.05425732582807541,
0.08233283460140228,
-0.06736289709806442,
0.09378302097320557,
0.11368880420923233,
-0.3197890818119049,
-0.015125980600714684,
0.052182141691446304,
0.03661905974149704,
0.03791216388344765,
-0.020857583731412888,
0.06163394823670387,
0.010455573908984661,
-0.00001622570925974287,
-0.05009349063038826,
-0.07374592125415802,
-0.03022797778248787,
-0.002401445060968399,
-0.11164037138223648,
-0.036518312990665436,
0.24083445966243744,
-0.06586896628141403,
0.056481923907995224,
-0.09326277673244476,
-0.10763068497180939,
-0.012227904051542282,
-0.05782691389322281,
-0.033161286264657974,
-0.08099118620157242,
0.08659332990646362,
0.022392654791474342,
-0.08016693592071533,
-0.12230238318443298,
-0.02394668385386467,
-0.17373842000961304,
0.126200869679451,
0.0669301450252533,
0.03020835854113102,
-0.20881597697734833,
0.09343419969081879,
-0.02804221771657467,
-0.07666578888893127,
0.030665753409266472,
-0.08908514678478241,
0.04500611498951912,
0.008268455043435097,
-0.020585520192980766,
-0.07348085939884186,
0.08394467085599899,
0.12624458968639374,
-0.02534201554954052,
0.013425137847661972,
-0.03712201863527298,
0.05617028474807739,
0.060300737619400024,
0.07060243934392929,
-0.045258644968271255,
-0.036499034613370895,
0.009191539138555527,
-0.09384092688560486,
-0.004626722075045109,
-0.04783227667212486,
-0.15728825330734253,
-0.0300121046602726,
0.07076431065797806,
0.05392466112971306,
0.04009741172194481,
0.12017673254013062,
-0.015539592131972313,
-0.054035212844610214,
0.04329966753721237,
-0.03206959366798401,
-0.020371675491333008,
0.018865566700696945,
0.007609124295413494,
0.19312140345573425,
0.005300017073750496,
0.04313986003398895,
-0.1676761358976364,
0.03122311644256115,
-0.03575649484992027,
0.0030829051975160837,
-0.027318257838487625,
-0.039884719997644424,
0.006662577390670776,
-0.024126265197992325,
0.0008134293020702899,
-0.14271433651447296,
-0.17660948634147644,
0.005516300909221172,
0.001860159682109952,
-0.04810259863734245,
-0.09074132889509201,
-0.08229934424161911,
-0.002685175510123372,
0.025688819587230682,
-0.08219078928232193,
0.002599868457764387,
-0.06570728123188019,
0.08959020674228668,
-0.03240492194890976,
0.0998462364077568,
-0.04570430517196655,
0.08941662311553955,
-0.09474947303533554,
-0.024582210928201675,
-0.08625911921262741,
0.10665872693061829,
0.03258082643151283,
0.022844353690743446,
-0.04102538898587227,
-0.029007883742451668,
-0.08195707201957703,
0.07471087574958801,
-0.024844380095601082,
0.23472104966640472,
-0.059814438223838806,
-0.1075894683599472,
0.2875894606113434,
-0.0834536924958229,
-0.1241140067577362,
0.1423923373222351,
0.017751473933458328,
0.08335414528846741,
0.13660193979740143,
0.1870761215686798,
-0.01797332800924778,
-0.0417238250374794,
0.08623040467500687,
0.08394492417573929,
-0.07413752377033234,
-0.021725786849856377,
0.03579253703355789,
-0.055525779724121094,
-0.07448763400316238,
0.03265635296702385,
0.07538716495037079,
0.06321344524621964,
-0.053573645651340485,
-0.01741313748061657,
0.011223151348531246,
0.0007283110753633082,
0.08765941858291626,
-0.018074598163366318,
0.12431592494249344,
-0.02284960262477398,
-0.06629243493080139,
-0.015069428831338882,
0.012247811071574688,
-0.05300060287117958,
0.05045450106263161,
-0.06111139804124832,
0.10253652185201645,
-0.0330289825797081,
0.07606435567140579,
-0.14405208826065063,
-0.014411280862987041,
-0.04410243034362793,
0.1072831004858017,
0.039950206875801086,
0.0686088353395462,
0.06608740240335464,
-0.03870343416929245,
-0.019170299172401428,
0.035676486790180206,
0.16514407098293304,
-0.017921222373843193,
-0.07707065343856812,
-0.0850890502333641,
0.10207157582044601,
-0.04216572642326355,
0.06450361013412476,
-0.020796507596969604,
0.011083765886723995,
-0.010246539488434792,
0.09601237624883652,
-0.024665897712111473,
0.030368126928806305,
0.018712757155299187,
0.007249598391354084,
-0.03843805938959122,
0.022132394835352898,
0.11444752663373947,
-0.00245662615634501,
-0.03607076033949852,
0.2368561029434204,
-0.17987629771232605,
0.14442482590675354,
0.19657234847545624,
-0.24830585718154907,
0.008047958835959435,
-0.11652307957410812,
-0.039494141936302185,
-0.0021903354208916426,
0.03868788480758667,
-0.016982493922114372,
0.23330266773700714,
-0.006654553115367889,
0.193724125623703,
-0.05773589387536049,
-0.013029146939516068,
-0.024225328117609024,
-0.07371731847524643,
0.008704153820872307,
0.0988488718867302,
0.11577614396810532,
-0.09375481307506561,
0.16766735911369324,
0.08978760242462158,
0.036971744149923325,
0.20163346827030182,
0.018130620941519737,
-0.03452743962407112,
0.07049351185560226,
0.02088819444179535,
-0.04813290014863014,
-0.0816473513841629,
-0.33269309997558594,
-0.03044259361922741,
0.08778353035449982,
0.04358580335974693,
0.13056443631649017,
-0.10750003904104233,
-0.01802697218954563,
0.0009019701392389834,
-0.020317183807492256,
0.00848823320120573,
0.12170607596635818,
0.02648056484758854,
0.12273949384689331,
-0.021150903776288033,
-0.043051376938819885,
0.04346539080142975,
0.03385915607213974,
-0.0828804150223732,
0.18380410969257355,
-0.11559417843818665,
-0.36690184473991394,
-0.08610046654939651,
-0.17813624441623688,
-0.06571293622255325,
0.05051073059439659,
0.10174643248319626,
-0.11797367036342621,
-0.017799414694309235,
0.0022077446337789297,
0.0875370055437088,
-0.09298716485500336,
0.015318303368985653,
-0.043931346386671066,
-0.01863447017967701,
-0.12482361495494843,
-0.07288166135549545,
-0.06281622499227524,
-0.05764862895011902,
-0.06600333005189896,
0.10619733482599258,
-0.13639461994171143,
0.028821874409914017,
0.23837852478027344,
0.052538540214300156,
0.058275360614061356,
-0.036434076726436615,
0.15563160181045532,
-0.10205120593309402,
-0.015505529008805752,
0.2406931072473526,
-0.0366356186568737,
0.05278923362493515,
0.11490835249423981,
-0.02251254953444004,
-0.06928559392690659,
0.02256869524717331,
-0.01905546896159649,
-0.0730624571442604,
-0.2343122363090515,
-0.1368800699710846,
-0.1172121986746788,
0.1122647374868393,
0.04100026562809944,
0.043371398001909256,
0.14611737430095673,
0.06532812118530273,
-0.03823453560471535,
-0.017645666375756264,
0.06766311824321747,
0.08404701948165894,
0.29333582520484924,
-0.08866317570209503,
0.13542421162128448,
-0.0017073977505788207,
-0.17145739495754242,
0.06951233744621277,
0.08431696146726608,
0.06587518006563187,
0.056251585483551025,
0.06719815731048584,
0.02916576713323593,
0.018251214176416397,
0.10657161474227905,
0.06601154804229736,
0.019643481820821762,
-0.02483328990638256,
-0.034161508083343506,
-0.04229674115777016,
-0.040213387459516525,
0.037968821823596954,
0.07548541575670242,
-0.15170367062091827,
-0.05370571091771126,
-0.018212446942925453,
0.06669820100069046,
0.04698954522609711,
0.08086267113685608,
-0.16281509399414062,
-0.006455329246819019,
0.04472225531935692,
-0.03469444066286087,
-0.12226737290620804,
0.09592480212450027,
-0.0320604182779789,
-0.12821932137012482,
0.030403364449739456,
-0.016493691131472588,
0.117122121155262,
-0.12718062102794647,
0.07488235086202621,
-0.10145290940999985,
-0.056014325469732285,
0.001935253501869738,
0.10370709002017975,
-0.2893415093421936,
0.19626036286354065,
-0.00553968595340848,
-0.020167214795947075,
-0.11202388256788254,
0.006589946802705526,
0.00031605077674612403,
0.10012586414813995,
0.11565974354743958,
-0.018745115026831627,
0.060452867299318314,
0.02431722916662693,
-0.06531111896038055,
0.025450091809034348,
0.08707135915756226,
-0.016935886815190315,
-0.03289490565657616,
-0.036672621965408325,
0.0069449120201170444,
-0.016190562397241592,
-0.07853426039218903,
-0.017002306878566742,
-0.17209379374980927,
0.09226932376623154,
0.06074260547757149,
0.07323653995990753,
0.03247937560081482,
-0.04964097589254379,
-0.08532920479774475,
0.23937605321407318,
0.024897653609514236,
-0.12377424538135529,
-0.0800936296582222,
-0.04360951483249664,
0.05184125900268555,
-0.05901475250720978,
0.02506229653954506,
-0.07183367013931274,
0.0030897182878106833,
-0.06796152889728546,
-0.1447182595729828,
0.12116142362356186,
-0.08993100374937057,
-0.04840971902012825,
-0.0259998831897974,
0.22366972267627716,
-0.020230932161211967,
0.012683400884270668,
0.03687496855854988,
0.00023098029487300664,
-0.12753555178642273,
-0.0859614834189415,
-0.016579242423176765,
0.04067862778902054,
0.05369700491428375,
0.016729561612010002,
-0.008724769577383995,
-0.053225912153720856,
-0.04486765339970589,
-0.023327425122261047,
0.32035359740257263,
0.13640782237052917,
-0.012162919156253338,
0.15750201046466827,
0.15491440892219543,
-0.0719781368970871,
-0.28414836525917053,
-0.14000387489795685,
-0.06797081977128983,
-0.0475597158074379,
-0.14310860633850098,
-0.1861715167760849,
0.0815967544913292,
-0.016835549846291542,
-0.018643269315361977,
0.0618065744638443,
-0.32827383279800415,
-0.12252764403820038,
0.21081259846687317,
-0.015387268736958504,
0.4017293453216553,
-0.11227182298898697,
-0.06926430761814117,
-0.043338675051927567,
-0.12535695731639862,
0.1175253689289093,
-0.022849278524518013,
0.1251998245716095,
-0.014548583887517452,
0.14824418723583221,
0.045652441680431366,
-0.020059723407030106,
0.08170702308416367,
0.05071675032377243,
-0.080464206635952,
-0.08524109423160553,
-0.024750635027885437,
-0.01575600355863571,
0.03794899582862854,
0.060389194637537,
-0.013333267532289028,
0.009172840975224972,
-0.14760400354862213,
-0.08066653460264206,
-0.08167383819818497,
0.04114414006471634,
0.040056262165308,
-0.08409246802330017,
0.0031680867541581392,
-0.057037752121686935,
-0.00529171759262681,
0.018335968255996704,
0.13195401430130005,
-0.10484881699085236,
0.11273957043886185,
0.11696608364582062,
0.1256915032863617,
-0.14730744063854218,
-0.04570156708359718,
-0.06243287771940231,
-0.05674189701676369,
0.07968264073133469,
-0.08652648329734802,
0.011826678179204464,
0.10941106081008911,
-0.025434119626879692,
0.07279644906520844,
0.09451077878475189,
-0.016933860257267952,
0.009153462015092373,
0.07123158127069473,
-0.24632152915000916,
-0.08237507194280624,
-0.060756757855415344,
-0.030401352792978287,
0.0674283429980278,
0.1035349890589714,
0.19555062055587769,
-0.016419557854533195,
-0.03311021625995636,
0.007686073891818523,
0.031061122193932533,
-0.03908456489443779,
0.10349307209253311,
-0.005378230009227991,
-0.002313019707798958,
-0.14711813628673553,
0.06798763573169708,
0.0012668176786974072,
-0.12246790528297424,
0.024778777733445168,
0.12430793792009354,
-0.09947380423545837,
-0.12261973321437836,
-0.0452917106449604,
0.09941771626472473,
-0.0927523747086525,
-0.03529297932982445,
-0.030992837622761726,
-0.13615331053733826,
0.09963563084602356,
0.06869073957204819,
0.049444422125816345,
0.05057792738080025,
-0.10604298114776611,
-0.018072281032800674,
-0.051481377333402634,
0.01844535395503044,
0.07149797677993774,
-0.03066728077828884,
-0.030111616477370262,
0.05490773916244507,
-0.021465964615345,
0.0992775708436966,
-0.08566364645957947,
-0.10569751262664795,
-0.1540583074092865,
0.05310831964015961,
-0.10136265307664871,
-0.0952908918261528,
-0.11916369199752808,
-0.04989953339099884,
0.0026006437838077545,
-0.0312773659825325,
-0.03162115439772606,
-0.03629257529973984,
-0.098856620490551,
0.03719185292720795,
-0.03630314767360687,
0.02561870776116848,
-0.09457836300134659,
0.04315244033932686,
0.04427632689476013,
-0.0173958670347929,
0.15008927881717682,
0.1372566968202591,
-0.11972306668758392,
0.07957866042852402,
-0.15795652568340302,
-0.0698181688785553,
0.09800487011671066,
0.010973998345434666,
0.04186755418777466,
0.043132711201906204,
0.028856666758656502,
0.07587532699108124,
0.03196100518107414,
0.05412127450108528,
0.054503779858350754,
-0.08596798777580261,
0.055928707122802734,
-0.03541598469018936,
-0.12071061879396439,
-0.023349646478891373,
-0.02153528667986393,
0.017178243026137352,
0.05606779828667641,
0.07213664799928665,
-0.06118909269571304,
0.09734810888767242,
-0.05624391883611679,
0.038614671677351,
0.020009620115160942,
-0.14848551154136658,
0.064445361495018,
-0.07971760630607605,
0.04319671541452408,
0.013667040504515171,
0.23028773069381714,
0.05320153012871742,
0.02396930567920208,
0.014121015556156635,
0.09608004242181778,
0.04037391021847725,
0.012591645121574402,
0.1962651163339615,
0.09711989015340805,
-0.04642805829644203,
-0.07888771593570709,
0.10607720911502838,
0.0437692292034626,
0.05949612334370613,
0.10065402835607529,
-0.019905243068933487,
-0.03254369646310806,
0.08454614877700806,
-0.021460644900798798,
0.043237995356321335,
-0.1735398918390274,
-0.1405765563249588,
-0.03264124318957329,
0.0733824297785759,
-0.06367279589176178,
0.15871192514896393,
0.15916040539741516,
-0.018424034118652344,
0.013164393603801727,
0.0015680688666179776,
-0.07061710208654404,
-0.19233392179012299,
-0.19825254380702972,
-0.06810379028320312,
-0.13632898032665253,
0.008731745183467865,
-0.12412625551223755,
0.01955956406891346,
0.05082438141107559,
0.09947790205478668,
-0.06215253844857216,
0.0912780910730362,
0.08019006997346878,
-0.12574057281017303,
0.08439546078443527,
-0.03578242287039757,
0.10095765441656113,
-0.04731016233563423,
-0.010761823505163193,
-0.07960797846317291,
0.0185572300106287,
0.02714972384274006,
0.04591522738337517,
-0.04995480924844742,
0.01210376713424921,
-0.12851005792617798,
-0.07092849910259247,
-0.06051970645785332,
0.0686296597123146,
0.011868353933095932,
0.1616559773683548,
0.0025948157999664545,
-0.046406202018260956,
0.030325299128890038,
0.2080489546060562,
-0.05554794892668724,
-0.10084401816129684,
-0.08240790665149689,
0.21694394946098328,
0.02577601745724678,
0.10424305498600006,
-0.011071907356381416,
0.01382988877594471,
-0.09181563556194305,
0.35762014985084534,
0.30204543471336365,
-0.07820849865674973,
0.0033666633535176516,
0.031240174546837807,
0.04050558805465698,
0.1215863898396492,
0.09642504900693893,
0.11768626421689987,
0.2925235331058502,
-0.05471401661634445,
-0.00239483336918056,
-0.025805385783314705,
-0.04511789232492447,
-0.09198665618896484,
0.07987990975379944,
0.08138319104909897,
-0.06382744014263153,
-0.024825353175401688,
0.1175636500120163,
-0.2444639950990677,
0.11821009963750839,
-0.17013810575008392,
-0.151566281914711,
-0.08645301312208176,
0.012801106087863445,
0.09384024888277054,
0.048119496554136276,
0.0888645201921463,
0.0065856799483299255,
-0.07236818224191666,
0.08152357488870621,
0.034581489861011505,
-0.18989823758602142,
0.012902586720883846,
0.06840720027685165,
-0.034877095371484756,
-0.02768658846616745,
-0.01451877411454916,
0.060299403965473175,
0.06803251802921295,
0.06337405741214752,
-0.008537787944078445,
0.02079058066010475,
-0.010952120646834373,
-0.03587730601429939,
0.039118342101573944,
0.017335865646600723,
0.017117386683821678,
-0.12138563394546509,
0.07128938287496567,
-0.13060994446277618,
0.03971416875720024,
-0.04096062108874321,
-0.02576928585767746,
-0.024256084114313126,
0.04514686018228531,
-0.0762970969080925,
0.052980341017246246,
0.07087787985801697,
-0.0036889102775603533,
-0.010710821487009525,
-0.04500587284564972,
-0.011645914055407047,
-0.04528563469648361,
-0.07485932111740112,
-0.07887551188468933,
-0.15507164597511292,
-0.12292280793190002,
0.05470481142401695,
0.0031319339759647846,
-0.15021370351314545,
0.033246781677007675,
-0.12153302878141403,
0.05075635388493538,
-0.1471167355775833,
0.08332724124193192,
0.041291505098342896,
0.005388896446675062,
-0.005890954751521349,
-0.0056103793904185295,
0.05998251959681511,
0.089389868080616,
-0.12751030921936035,
-0.06851927936077118
] |
null | null |
transformers
|
# Saz DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
Saz/DialoGPT-small-saz
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Saz DialoGPT Model
|
[
"# Saz DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Saz DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Saz DialoGPT Model"
] |
[
-0.03954209387302399,
-0.010367196053266525,
-0.005245261825621128,
-0.005147646646946669,
0.13823656737804413,
-1.3623919414840202e-7,
0.15142416954040527,
0.1059001088142395,
0.021782485768198967,
-0.02163708209991455,
0.11841543763875961,
0.16894181072711945,
0.01812189631164074,
0.1229749470949173,
-0.05220038443803787,
-0.28557994961738586,
0.05766664072871208,
0.01922302320599556,
0.025378666818141937,
0.1213005930185318,
0.10773948580026627,
-0.022524673491716385,
0.07673659175634384,
0.01435594167560339,
-0.14028629660606384,
-0.00006030097938491963,
0.022879596799612045,
-0.12973752617835999,
0.11876049637794495,
0.07871807366609573,
0.03298003971576691,
0.038453783839941025,
-0.03915182873606682,
-0.1525825709104538,
0.03579644858837128,
-0.031100371852517128,
-0.03469737246632576,
0.032587286084890366,
0.024778956547379494,
-0.10740073025226593,
0.1333819478750229,
0.07199227809906006,
-0.026670893654227257,
0.05410594493150711,
-0.15606504678726196,
-0.0012221222277730703,
-0.013861472718417645,
0.050342902541160583,
0.09041667729616165,
0.0866694226861,
-0.04326750710606575,
0.07092346251010895,
-0.08151742815971375,
0.08569853007793427,
0.07574892044067383,
-0.32366514205932617,
-0.020097747445106506,
0.12505866587162018,
0.038661085069179535,
0.07761671394109726,
-0.0433843694627285,
0.10857423394918442,
0.01606610044836998,
-0.014448058791458607,
-0.025240374729037285,
-0.07638727873563766,
-0.096526138484478,
0.017507091164588928,
-0.09535235166549683,
-0.025142984464764595,
0.23328079283237457,
-0.043658751994371414,
0.05157843232154846,
-0.10206092149019241,
-0.08313941955566406,
-0.0058187502436339855,
-0.07006355375051498,
-0.0037500469479709864,
-0.09437674283981323,
0.06847669184207916,
0.019973967224359512,
-0.07896213978528976,
-0.12495847791433334,
-0.05306239426136017,
-0.1632981151342392,
0.20705804228782654,
0.03772343695163727,
0.02984634041786194,
-0.23493552207946777,
0.08903922885656357,
-0.018782418221235275,
-0.10998059064149857,
0.022997822612524033,
-0.1163131520152092,
-0.01644977368414402,
0.03883007541298866,
-0.032419152557849884,
-0.05894138664007187,
0.08848904073238373,
0.12113633751869202,
0.012553934007883072,
0.059476278722286224,
-0.028287487104535103,
0.05469779297709465,
0.03596450760960579,
0.0934789627790451,
0.016782298684120178,
-0.08079289644956589,
0.006666210945695639,
-0.09106883406639099,
0.006821455433964729,
-0.06641417741775513,
-0.17669640481472015,
-0.04186670109629631,
0.020280640572309494,
0.0474836565554142,
0.023359764367341995,
0.13460014760494232,
0.004913835320621729,
-0.03732990100979805,
0.022643933072686195,
-0.017228607088327408,
-0.034776825457811356,
0.019413026049733162,
-0.0018450645729899406,
0.13719500601291656,
0.002781478688120842,
0.03912659361958504,
-0.11632823944091797,
0.03650727495551109,
-0.029607880860567093,
-0.011524197645485401,
-0.008574009872972965,
-0.022714028134942055,
-0.00016635467181913555,
-0.027778536081314087,
0.012864629738032818,
-0.1670752316713333,
-0.14991241693496704,
-0.007545235566794872,
0.00475320965051651,
-0.04544443637132645,
-0.08742401748895645,
-0.0816686749458313,
-0.003694726387038827,
0.06972876191139221,
-0.07312604784965515,
0.021283581852912903,
-0.05024752393364906,
0.08194906264543533,
-0.014037992805242538,
0.07810377329587936,
-0.0860205665230751,
0.07518535852432251,
-0.064071424305439,
-0.020421918481588364,
-0.10883773118257523,
0.13250645995140076,
-0.025704167783260345,
0.06657291948795319,
-0.04501582682132721,
-0.0015669437125325203,
-0.11689658463001251,
0.07018092274665833,
-0.02412971667945385,
0.24390091001987457,
-0.08984099328517914,
-0.09371863305568695,
0.2852671146392822,
-0.060054391622543335,
-0.11614318937063217,
0.13874439895153046,
-0.003691267454996705,
0.07597561925649643,
0.12327787280082703,
0.24480736255645752,
-0.01034756749868393,
0.0058288355357944965,
0.07809523493051529,
0.09377454966306686,
-0.05685977637767792,
0.0007405101205222309,
0.032833170145750046,
-0.02530122920870781,
-0.09880881011486053,
0.03615616261959076,
0.04729896038770676,
0.09900986403226852,
-0.027175763621926308,
-0.022038595750927925,
0.005388404708355665,
0.00022182436077855527,
0.11808688938617706,
-0.0343010276556015,
0.14020270109176636,
-0.025846805423498154,
-0.052268050611019135,
-0.051550112664699554,
0.03987763822078705,
-0.024772198870778084,
0.023759551346302032,
-0.08509297668933868,
0.08217466622591019,
-0.010329569689929485,
0.09082546085119247,
-0.12886126339435577,
-0.046216029673814774,
-0.05051122233271599,
0.11689160019159317,
0.05826141685247421,
0.0497417189180851,
0.05405005067586899,
-0.04459039121866226,
-0.00280535826459527,
0.027341263368725777,
0.16699160635471344,
-0.016368726268410683,
-0.08057074248790741,
-0.09687334299087524,
0.0821380764245987,
-0.04869244247674942,
0.14991718530654907,
-0.04958479106426239,
0.015110271982848644,
-0.014237233437597752,
0.0852755680680275,
-0.0362255834043026,
0.03548041358590126,
0.01991743966937065,
-0.025523019954562187,
-0.042536910623311996,
0.025433048605918884,
0.08120597153902054,
-0.010356736369431019,
-0.1064007356762886,
0.24412520229816437,
-0.18296144902706146,
0.07530370354652405,
0.1768343150615692,
-0.21120283007621765,
0.019556676968932152,
-0.12780670821666718,
-0.003235006704926491,
0.0055117919109761715,
0.06881574541330338,
-0.028775807470083237,
0.20932358503341675,
-0.0014233688125386834,
0.1762738823890686,
-0.046138353645801544,
-0.029693331569433212,
-0.01430877298116684,
-0.07142911851406097,
0.034050360321998596,
0.08979814499616623,
0.08444315195083618,
-0.1717512607574463,
0.16613124310970306,
0.1159629225730896,
0.0662974938750267,
0.19384747743606567,
0.015011361800134182,
0.009435753338038921,
0.06689701974391937,
0.018005941063165665,
-0.06609267741441727,
-0.04947810247540474,
-0.24542072415351868,
-0.05647938698530197,
0.08016464859247208,
0.05543746054172516,
0.10470909625291824,
-0.07981918007135391,
-0.019653478637337685,
-0.0021239358466118574,
-0.031162451952695847,
-0.001593489316292107,
0.12280140817165375,
0.004213889129459858,
0.12397132068872452,
0.0012692785821855068,
-0.046626970171928406,
0.06170051917433739,
0.006111408118158579,
-0.08908711373806,
0.17940890789031982,
-0.11639509350061417,
-0.3020421266555786,
-0.1090465560555458,
-0.19701656699180603,
-0.08068987727165222,
0.04301661252975464,
0.10483348369598389,
-0.12980906665325165,
0.002687697298824787,
0.03363192826509476,
0.11288958787918091,
-0.07239635288715363,
0.0041804444044828415,
-0.03474079817533493,
-0.028555406257510185,
-0.1287708580493927,
-0.0702318474650383,
-0.06368159502744675,
-0.05541625991463661,
-0.030650295317173004,
0.12054622918367386,
-0.14793111383914948,
0.03876374289393425,
0.2213817983865738,
0.06150719150900841,
0.05444581061601639,
-0.037559762597084045,
0.17761032283306122,
-0.129602313041687,
0.021498966962099075,
0.22554911673069,
-0.05381741747260094,
0.0553186796605587,
0.1391817182302475,
-0.012296082451939583,
-0.06306258589029312,
0.015414411202073097,
-0.03345237299799919,
-0.09060046076774597,
-0.22153334319591522,
-0.1486656218767166,
-0.13893093168735504,
0.05612540990114212,
-0.0012153207790106535,
0.04365745186805725,
0.16191451251506805,
0.09073328226804733,
-0.042740534991025925,
-0.018257437273859978,
0.0680488869547844,
0.08565886318683624,
0.24181529879570007,
-0.056091565638780594,
0.1426793932914734,
-0.03184175863862038,
-0.14310310781002045,
0.06389433890581131,
0.0682191550731659,
0.08380835503339767,
0.0721113309264183,
0.08438317477703094,
0.032920338213443756,
0.051639340817928314,
0.13853681087493896,
0.05013449862599373,
0.0234574805945158,
-0.05198948085308075,
-0.04247927665710449,
-0.04109054058790207,
-0.07125595957040787,
0.05916982516646385,
0.005291785579174757,
-0.15518194437026978,
-0.040958985686302185,
-0.0314069427549839,
0.0861004889011383,
0.04888429120182991,
0.05889271944761276,
-0.16263078153133392,
-0.024250710383057594,
0.08380228281021118,
-0.03322814032435417,
-0.12150337547063828,
0.06821473687887192,
-0.01113496907055378,
-0.15104587376117706,
0.06761891394853592,
-0.022110680118203163,
0.11738250404596329,
-0.046068836003541946,
0.08963096141815186,
-0.1266268938779831,
-0.07417074590921402,
-0.0006689186557196081,
0.11769234389066696,
-0.29950982332229614,
0.19973190128803253,
-0.007078667636960745,
-0.04420644789934158,
-0.12308365106582642,
-0.001798188895918429,
0.030378498136997223,
0.11391644179821014,
0.11216431856155396,
-0.0017810000572353601,
-0.04560837522149086,
0.018634524196386337,
-0.02259441465139389,
0.043436069041490555,
0.10368257761001587,
-0.049307264387607574,
-0.020480763167142868,
-0.04580061137676239,
0.0028595086187124252,
-0.03546518459916115,
-0.0408075787127018,
0.015354114584624767,
-0.19643300771713257,
0.07738252729177475,
0.06799179315567017,
0.0851847380399704,
0.021630985662341118,
0.0013170753372833133,
-0.10251174122095108,
0.21555879712104797,
-0.009469376876950264,
-0.1144176572561264,
-0.09900474548339844,
-0.06004311889410019,
0.03629077598452568,
-0.0830470472574234,
0.023436857387423515,
-0.058911170810461044,
0.015575888566672802,
-0.06855318695306778,
-0.1985141634941101,
0.1034020334482193,
-0.11077931523323059,
-0.032477401196956635,
-0.01707286760210991,
0.21459314227104187,
-0.03152721747756004,
0.013309607282280922,
0.04629760980606079,
-0.005061464849859476,
-0.09170078486204147,
-0.10105375200510025,
-0.013230813667178154,
0.03612438961863518,
-0.01727408915758133,
0.011606222949922085,
-0.0215168334543705,
-0.07624445110559464,
-0.07004739344120026,
-0.03677910193800926,
0.30980750918388367,
0.14376387000083923,
-0.04667302593588829,
0.19142326712608337,
0.16334082186222076,
-0.05403536930680275,
-0.2784688472747803,
-0.13801100850105286,
-0.06602469831705093,
-0.021042432636022568,
-0.07958926260471344,
-0.18994948267936707,
0.05027597025036812,
-0.051590900868177414,
-0.03262738510966301,
0.04753659665584564,
-0.32909855246543884,
-0.08945996314287186,
0.18610787391662598,
-0.05657229945063591,
0.40335264801979065,
-0.11737655103206635,
-0.09451810270547867,
-0.058146439492702484,
-0.13539618253707886,
0.1375744342803955,
-0.01250226330012083,
0.11168643832206726,
-0.0045898896642029285,
0.19948500394821167,
0.058206237852573395,
-0.0011163227027282119,
0.1013655960559845,
0.027245931327342987,
-0.06723444908857346,
-0.10611949115991592,
-0.042814791202545166,
-0.044368449598550797,
0.0011118639959022403,
0.03408180922269821,
-0.10013040900230408,
0.026105700060725212,
-0.16671960055828094,
-0.05475473403930664,
-0.09636707603931427,
0.026503808796405792,
0.036922428756952286,
-0.06380782276391983,
0.0011794737074524164,
-0.060412634164094925,
-0.004495232831686735,
0.016820410266518593,
0.14783251285552979,
-0.10726308077573776,
0.14479121565818787,
0.0660790354013443,
0.12449468672275543,
-0.09802044928073883,
-0.014895888045430183,
-0.0652323067188263,
-0.04731712117791176,
0.07083290070295334,
-0.14990414679050446,
0.024139665067195892,
0.09379278123378754,
-0.02621384710073471,
0.07347368448972702,
0.07855899631977081,
-0.013244155794382095,
0.008632850833237171,
0.09685829281806946,
-0.22052448987960815,
-0.07321356981992722,
-0.07215830683708191,
0.056316714733839035,
0.08204835653305054,
0.09587453305721283,
0.19124239683151245,
0.002718210918828845,
-0.03558819741010666,
-0.002448061713948846,
0.028173277154564857,
-0.040837083011865616,
0.08833140879869461,
-0.010365120135247707,
0.026273611932992935,
-0.1568111926317215,
0.04990338534116745,
0.0038874533493071795,
-0.052788980305194855,
0.030297359451651573,
0.1682273894548416,
-0.12244082242250443,
-0.12377455830574036,
-0.08133094757795334,
0.09733811765909195,
-0.12921635806560516,
-0.019937856122851372,
-0.005729363299906254,
-0.149860218167305,
0.03552693873643875,
0.07366275787353516,
0.04887503385543823,
0.032598190009593964,
-0.08028620481491089,
-0.026899462565779686,
-0.013384721241891384,
-0.009201359935104847,
0.04336613416671753,
0.009427226148545742,
-0.05326662212610245,
0.028731999918818474,
-0.03591572120785713,
0.14242109656333923,
-0.09590928256511688,
-0.08989036828279495,
-0.15010389685630798,
0.04960150644183159,
-0.14572817087173462,
-0.07696425169706345,
-0.10177375376224518,
-0.04580194503068924,
-0.012969092465937138,
-0.03709470480680466,
-0.037298135459423065,
-0.04960167780518532,
-0.12060527503490448,
0.04698320850729942,
-0.05127616971731186,
0.04411627724766731,
-0.06246413663029671,
0.03188928961753845,
0.0550105981528759,
-0.029481852427124977,
0.15425273776054382,
0.1693616360425949,
-0.0870760828256607,
0.11599162966012955,
-0.15629425644874573,
-0.06727344542741776,
0.08468838036060333,
0.019700605422258377,
0.042693205177783966,
0.07245390862226486,
0.020814884454011917,
0.04141361266374588,
0.03714077174663544,
0.04586656019091606,
0.028773538768291473,
-0.10014405846595764,
0.049460720270872116,
-0.047360703349113464,
-0.10704885423183441,
-0.03979606181383133,
-0.013126584701240063,
0.010969550348818302,
0.06237415224313736,
0.07550515979528427,
-0.05301431566476822,
0.08735920488834381,
-0.04081282019615173,
0.04057593271136284,
0.003518099430948496,
-0.15909011662006378,
-0.011734082363545895,
-0.12261354178190231,
0.03989533334970474,
-0.0033824800048023462,
0.17242756485939026,
0.026118215173482895,
-0.012286404147744179,
0.020671674981713295,
0.08670207113027573,
0.06395938992500305,
-0.009889638051390648,
0.16777539253234863,
0.11138761788606644,
-0.024856235831975937,
-0.08939380943775177,
0.07750477641820908,
0.009049500338733196,
0.03011215664446354,
0.10022507607936859,
0.024066440761089325,
-0.041703641414642334,
0.09236768633127213,
-0.010117033496499062,
0.0044338153675198555,
-0.11897969990968704,
-0.11377391219139099,
-0.07921501994132996,
0.03560067340731621,
-0.06683846563100815,
0.1448533833026886,
0.1504233479499817,
-0.01907721720635891,
0.03094833716750145,
-0.021031267940998077,
-0.0605732761323452,
-0.16897085309028625,
-0.19260498881340027,
-0.06341692805290222,
-0.12864769995212555,
-0.004931922070682049,
-0.09261304140090942,
0.05251280590891838,
0.07497159391641617,
0.08336751163005829,
-0.04835236445069313,
0.10593955963850021,
0.037052255123853683,
-0.14218559861183167,
0.06828007847070694,
-0.042270228266716,
0.08627671748399734,
-0.02700968086719513,
-0.0024622445926070213,
-0.04710329324007034,
0.0429842509329319,
0.02413427084684372,
0.045823436230421066,
-0.048453230410814285,
0.016170891001820564,
-0.11437717080116272,
-0.07139807939529419,
-0.05972370132803917,
0.055400680750608444,
0.03265594318509102,
0.1515863537788391,
0.015300881117582321,
-0.04509259760379791,
0.017699867486953735,
0.253936231136322,
-0.05624542385339737,
-0.10791882872581482,
-0.06794717162847519,
0.21270588040351868,
-0.00017493100313004106,
0.09581202268600464,
-0.04827253520488739,
0.012985304929316044,
-0.07967200130224228,
0.35371503233909607,
0.29269182682037354,
-0.09124645590782166,
0.006274842191487551,
-0.011824180372059345,
0.047636836767196655,
0.11052227765321732,
0.12276143580675125,
0.07580068707466125,
0.3123030960559845,
-0.05474711209535599,
0.0388796366751194,
-0.017589475959539413,
-0.03845065459609032,
-0.06803065538406372,
0.12059829384088516,
0.03960458189249039,
-0.08570585399866104,
-0.012911750003695488,
0.13131581246852875,
-0.25904324650764465,
0.10004794597625732,
-0.165790855884552,
-0.15913744270801544,
-0.0944090485572815,
0.0017350531416013837,
0.11550936847925186,
0.05549904704093933,
0.08792456984519958,
-0.011365280486643314,
-0.07451038062572479,
0.01570463366806507,
0.035631466656923294,
-0.15868040919303894,
-0.000823488284368068,
0.09145325422286987,
-0.031010525301098824,
-0.0385628268122673,
-0.022157693281769753,
0.06903965026140213,
0.07257254421710968,
0.04496737942099571,
-0.012095670215785503,
0.041453223675489426,
0.000534575607161969,
-0.06229713186621666,
0.05639886111021042,
0.050176504999399185,
0.024223841726779938,
-0.10017278790473938,
0.08218468725681305,
-0.13726301491260529,
0.04411156848073006,
-0.0032064085826277733,
-0.026790689677000046,
-0.018284587189555168,
0.05173253268003464,
-0.07392680644989014,
0.08128201961517334,
0.07140381634235382,
-0.01498381420969963,
-0.013415816240012646,
-0.04300687834620476,
-0.014979695901274681,
-0.02234978787600994,
-0.07342610508203506,
-0.08782045543193817,
-0.17472423613071442,
-0.11392815411090851,
0.06551916152238846,
0.01321836095303297,
-0.15584887564182281,
0.040117572993040085,
-0.13424994051456451,
0.0853361114859581,
-0.10973800718784332,
0.10039281845092773,
0.11367575824260712,
0.010612035170197487,
-0.005772965494543314,
-0.05334387719631195,
0.04241056367754936,
0.08068720251321793,
-0.12027176469564438,
-0.0823901817202568
] |
null | null |
transformers
|
#13th Doctor DialoGPT model
|
{"tags": ["conversational"]}
|
text-generation
|
Science-geek32/DialoGPT-small-doctor
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#13th Doctor DialoGPT model
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
13th doctor model DialoGPT-small
|
{"tags": ["conversational"]}
|
text-generation
|
Science-geek32/DialoGPT-small-doctor2.0
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
13th doctor model DialoGPT-small
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
# Sandal Bot
Quick and dumb model for a discord chat bot. Based on DialoGPT-Medium
|
{"tags": ["conversational"]}
|
text-generation
|
Scoops/SandalBot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Sandal Bot
Quick and dumb model for a discord chat bot. Based on DialoGPT-Medium
|
[
"# Sandal Bot\n\nQuick and dumb model for a discord chat bot. Based on DialoGPT-Medium"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Sandal Bot\n\nQuick and dumb model for a discord chat bot. Based on DialoGPT-Medium"
] |
[
51,
24
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Sandal Bot\n\nQuick and dumb model for a discord chat bot. Based on DialoGPT-Medium"
] |
[
0.01993427611887455,
-0.06616688519716263,
-0.005704013630747795,
-0.02618340216577053,
0.099655382335186,
-0.04620428755879402,
0.1787998527288437,
0.09558829665184021,
0.14910230040550232,
-0.014983836561441422,
0.04250314086675644,
0.15344902873039246,
0.019106289371848106,
0.2331821173429489,
-0.050516527146101,
-0.1991109699010849,
0.08024393022060394,
-0.002950099064037204,
0.07279863208532333,
0.12066570669412613,
0.09620945155620575,
-0.05346314609050751,
0.056858692318201065,
0.011820568703114986,
-0.14352887868881226,
0.0060400813817977905,
0.024273360148072243,
-0.08774924278259277,
0.050152864307165146,
0.024296874180436134,
0.07231292128562927,
0.034182216972112656,
-0.07643399387598038,
-0.07383879274129868,
0.05617080628871918,
-0.006452520377933979,
-0.025828901678323746,
0.03654743358492851,
-0.035687416791915894,
-0.09804712235927582,
0.16896377503871918,
0.12674598395824432,
0.025951223447918892,
0.10242267698049545,
-0.0982389897108078,
0.04576616734266281,
-0.013302559033036232,
0.04029848799109459,
0.14885303378105164,
0.12611840665340424,
-0.060879841446876526,
0.18132750689983368,
-0.09131232649087906,
0.094169482588768,
0.0751592144370079,
-0.3100723624229431,
-0.05779718607664108,
0.09247492253780365,
0.02842927910387516,
0.09817539155483246,
-0.03931504487991333,
0.043007366359233856,
-0.030225606635212898,
0.03533418849110603,
-0.052968911826610565,
-0.04519954323768616,
-0.15793149173259735,
-0.056550510227680206,
-0.07708746194839478,
-0.009308443404734135,
0.1847732812166214,
0.015722420066595078,
0.05118360370397568,
-0.10484084486961365,
-0.10799125581979752,
-0.034698210656642914,
-0.1116313561797142,
-0.04306207224726677,
-0.10226521641016006,
0.08137403428554535,
-0.04339034482836723,
-0.1138850674033165,
-0.09408880770206451,
-0.05665455758571625,
-0.1312684863805771,
0.1405016928911209,
0.0380532406270504,
0.05611897632479668,
-0.24738077819347382,
0.08291809260845184,
0.1477043330669403,
-0.08854641020298004,
0.038728129118680954,
-0.07194339483976364,
-0.021001536399126053,
0.01900670677423477,
0.010184448212385178,
-0.10321924090385437,
0.12227331101894379,
0.16595607995986938,
-0.02219703048467636,
0.06833216547966003,
-0.05579737201333046,
0.038764189928770065,
0.012960205785930157,
0.03382953628897667,
0.028924064710736275,
-0.014594226144254208,
0.09681655466556549,
-0.030338682234287262,
0.060406219214200974,
-0.04205562174320221,
-0.17288127541542053,
0.044941291213035583,
0.0239256639033556,
0.07266433537006378,
0.08288466185331345,
0.09831013530492783,
-0.04866894707083702,
-0.05737436190247536,
0.04902837797999382,
0.007513710297644138,
-0.01074395701289177,
0.056414972990751266,
-0.06856723129749298,
0.061572641134262085,
0.03317759931087494,
0.036744579672813416,
-0.1177738681435585,
-0.10030613839626312,
-0.033177223056554794,
0.01415156852453947,
-0.03631174564361572,
-0.017544090747833252,
0.008511851541697979,
0.04735204204916954,
-0.044880352914333344,
-0.19174771010875702,
-0.12311441451311111,
0.03452325612306595,
-0.029393142089247704,
-0.07147177308797836,
-0.09745611995458603,
-0.12683643400669098,
0.009985031560063362,
0.028697533532977104,
-0.049325790256261826,
-0.03220854699611664,
-0.039089880883693695,
0.06359560787677765,
-0.056594256311655045,
0.13186246156692505,
-0.11146444082260132,
0.03974654898047447,
-0.07660087943077087,
-0.06358546763658524,
-0.152666836977005,
0.16722162067890167,
-0.08183334767818451,
0.1391834020614624,
-0.06193460896611214,
0.05404131859540939,
-0.1570463329553604,
0.020447542890906334,
-0.01953641138970852,
0.2600422501564026,
-0.09632659703493118,
-0.105949267745018,
0.28202375769615173,
-0.07356231659650803,
-0.12095896899700165,
0.17315486073493958,
-0.003952540922909975,
0.0920652225613594,
0.17109619081020355,
0.16723358631134033,
-0.10788623988628387,
0.016522614285349846,
0.052366722375154495,
0.04670601710677147,
-0.1487441509962082,
0.0066346051171422005,
-0.028711553663015366,
-0.005843111779540777,
-0.019233930855989456,
0.018693752586841583,
0.2089574784040451,
0.15734809637069702,
-0.04055095463991165,
-0.024749308824539185,
0.02210506610572338,
-0.03890998288989067,
0.0705060288310051,
0.0014074729988351464,
0.12099787592887878,
-0.022665981203317642,
-0.09657572954893112,
-0.03274470567703247,
0.0262614618986845,
0.01013533491641283,
-0.005124606657773256,
-0.17969442903995514,
0.05142556503415108,
0.05688762664794922,
0.09155973792076111,
-0.10950380563735962,
-0.17828194797039032,
-0.01014263741672039,
0.18174518644809723,
0.10756173729896545,
0.09523056447505951,
0.10137659311294556,
-0.09874234348535538,
0.03128659352660179,
0.02754656784236431,
0.15621578693389893,
-0.007885430008172989,
-0.09697828441858292,
-0.053593847900629044,
0.0585155189037323,
-0.03789959102869034,
0.18182571232318878,
0.026049459353089333,
0.034951306879520416,
0.08050127327442169,
0.17692013084888458,
-0.0008997193071991205,
0.0040497491136193275,
0.10484825819730759,
-0.05320359393954277,
-0.008963985368609428,
-0.046318765729665756,
0.08502095192670822,
-0.012356707826256752,
-0.10074984282255173,
0.16558924317359924,
-0.0940609723329544,
0.040952738374471664,
0.1689823716878891,
-0.09671606868505478,
0.0015226639807224274,
0.014384204521775246,
-0.030635682865977287,
0.007490280084311962,
0.06431740522384644,
-0.04416479170322418,
0.22497087717056274,
-0.005676357075572014,
0.13444675505161285,
-0.03476743400096893,
-0.0016321110306307673,
-0.02938033640384674,
-0.03288685902953148,
0.018728477880358696,
0.08419570326805115,
0.06467067450284958,
-0.11772093921899796,
0.0713508129119873,
0.002221066039055586,
0.05634228140115738,
0.19543199241161346,
0.05068610608577728,
0.07597905397415161,
0.024345628917217255,
0.03406590223312378,
-0.04679097980260849,
-0.08822005987167358,
-0.31133002042770386,
-0.03651877120137215,
0.03520685061812401,
-0.00953422300517559,
0.13599103689193726,
-0.042639750987291336,
0.005344033241271973,
-0.07451211661100388,
-0.028771530836820602,
0.11954245716333389,
0.13216093182563782,
0.04951627179980278,
0.13761673867702484,
-0.016292525455355644,
-0.12222951650619507,
0.03728368505835533,
0.0042781103402376175,
-0.05962911620736122,
0.09758459776639938,
-0.1418817788362503,
-0.3226655423641205,
-0.03773472458124161,
-0.04028039425611496,
-0.067456915974617,
0.042751822620630264,
0.08916757255792618,
-0.17396077513694763,
-0.00543057220056653,
0.01635891944169998,
0.08037135004997253,
0.0314403772354126,
0.022874178364872932,
0.08531554788351059,
-0.03563746437430382,
-0.07705578953027725,
-0.11291324347257614,
-0.060374125838279724,
-0.07665864378213882,
-0.12418396770954132,
0.09342990070581436,
-0.16388554871082306,
0.014242500998079777,
0.20744946599006653,
0.04763747379183769,
0.09186109900474548,
-0.0102132773026824,
0.18861447274684906,
-0.09766300767660141,
0.07175124436616898,
0.19056731462478638,
0.06234635040163994,
0.010172850452363491,
0.10284357517957687,
-0.01905331201851368,
-0.11957382410764694,
0.048803433775901794,
-0.006574063561856747,
-0.07646526396274567,
-0.16427019238471985,
-0.16758117079734802,
-0.08241871744394302,
0.04839542880654335,
-0.016469061374664307,
0.08087455481290817,
0.11734264343976974,
0.03844953328371048,
-0.0677233338356018,
-0.0603845939040184,
0.12175481766462326,
0.054928865283727646,
0.13362044095993042,
-0.07720115780830383,
0.16698408126831055,
-0.029255326837301254,
-0.11440195888280869,
0.06250008940696716,
-0.0439571775496006,
0.0429222509264946,
0.05705823749303818,
0.10139571875333786,
0.01613997295498848,
0.0713401660323143,
0.13048887252807617,
-0.008824135176837444,
0.03423146903514862,
-0.08594983071088791,
0.003704983973875642,
-0.02232491970062256,
-0.1334872841835022,
0.013546924106776714,
0.10303787142038345,
-0.12555284798145294,
0.0030729419086128473,
0.047942787408828735,
0.13039465248584747,
0.09800747036933899,
0.0372270792722702,
-0.13901004195213318,
-0.0769728496670723,
0.06326247751712799,
-0.061553966253995895,
-0.07354356348514557,
0.07715872675180435,
0.0709192082285881,
-0.11862807720899582,
0.017335832118988037,
-0.010816994123160839,
0.10405980050563812,
-0.0727931410074234,
0.050171587616205215,
-0.12240917235612869,
0.0071922470815479755,
0.019227832555770874,
0.04650232568383217,
-0.207967147231102,
0.052053872495889664,
-0.026790380477905273,
0.026058312505483627,
-0.09289068728685379,
-0.024260535836219788,
0.02560170739889145,
0.019237076863646507,
0.041334960609674454,
0.0008096970268525183,
-0.032835569232702255,
0.0020266748033463955,
-0.10109376907348633,
0.03901735693216324,
0.01555493101477623,
-0.036126963794231415,
-0.03320448473095894,
-0.008340990170836449,
-0.033446304500103,
-0.015149848535656929,
-0.11699853837490082,
-0.03205656260251999,
-0.12480774521827698,
0.04024733230471611,
0.20843452215194702,
0.049474455416202545,
-0.0048448932357132435,
-0.005771810654550791,
0.05042928829789162,
0.2478630691766739,
0.01674799621105194,
-0.13665233552455902,
-0.06694574654102325,
0.02609044685959816,
0.002353723393753171,
-0.061005380004644394,
-0.006489157676696777,
-0.053719278424978256,
0.06329420208930969,
-0.06330182403326035,
-0.1708202362060547,
0.0957125797867775,
-0.11168289184570312,
-0.023374756798148155,
-0.0023056939244270325,
0.2032538503408432,
0.0800623744726181,
-0.004149496555328369,
0.07060200721025467,
-0.06663445383310318,
-0.08219822496175766,
-0.08509793132543564,
-0.022601498290896416,
0.0901380106806755,
-0.10798362642526627,
0.07269226014614105,
0.0009117322624661028,
-0.21167810261249542,
-0.07731123268604279,
0.018630724400281906,
0.2765745222568512,
0.07961732149124146,
-0.01580549031496048,
0.16532976925373077,
0.12177630513906479,
0.021273640915751457,
-0.22746805846691132,
-0.12090470641851425,
-0.03137734904885292,
-0.05943874269723892,
-0.09414388984441757,
-0.13447436690330505,
0.04866400361061096,
-0.07247662544250488,
-0.01325283758342266,
0.05097125470638275,
-0.313722163438797,
-0.08501072227954865,
0.18332313001155853,
-0.04920842498540878,
0.41600272059440613,
-0.08080215007066727,
-0.08964204043149948,
-0.008442351594567299,
-0.1482841670513153,
0.18016554415225983,
-0.03524596244096756,
0.06982707977294922,
-0.013950846157968044,
0.21816055476665497,
0.05574829503893852,
0.02314038947224617,
0.024086881428956985,
0.018897661939263344,
-0.06390414386987686,
-0.08648203313350677,
-0.06893932074308395,
0.009936138056218624,
0.015470068901777267,
0.09058130532503128,
-0.043811820447444916,
-0.023343509063124657,
-0.12870612740516663,
-0.027976054698228836,
-0.13112764060497284,
0.062251511961221695,
0.04247972369194031,
-0.011349106207489967,
-0.01127659436315298,
-0.06107255443930626,
-0.03446950018405914,
0.05687510967254639,
0.1466245949268341,
-0.06764591485261917,
0.21094921231269836,
0.17049989104270935,
0.06317274272441864,
-0.25576457381248474,
0.009288126602768898,
-0.016663668677210808,
-0.024613600224256516,
0.04834046587347984,
-0.06139902397990227,
0.0077422866597771645,
0.05872688442468643,
-0.061633821576833725,
0.09388843178749084,
0.03830881789326668,
-0.053528036922216415,
0.05825602263212204,
0.07793878763914108,
-0.17916534841060638,
-0.21540629863739014,
-0.03123171441257,
0.17037782073020935,
0.07316574454307556,
0.07300765812397003,
0.2041149139404297,
-0.01148025132715702,
-0.06509267538785934,
-0.013543393462896347,
0.04821162670850754,
-0.029815424233675003,
0.03313151001930237,
-0.06046723574399948,
0.026787392795085907,
-0.16138651967048645,
0.033642806112766266,
0.03325362503528595,
-0.03917812928557396,
0.07171820849180222,
0.1890353411436081,
-0.14474612474441528,
-0.11562606692314148,
-0.10804415494203568,
0.09100880473852158,
0.015964485704898834,
0.02982814982533455,
-0.06892943382263184,
-0.15024149417877197,
0.019617170095443726,
0.0013196634827181697,
0.02293357066810131,
0.05876399949193001,
-0.05561172962188721,
-0.011262299492955208,
0.019050125032663345,
-0.028857966884970665,
0.06151587888598442,
-0.08422907441854477,
-0.005805905908346176,
0.08933720737695694,
0.003765981877222657,
0.04878805950284004,
-0.0853327140212059,
-0.11872643977403641,
-0.19782954454421997,
0.04140414297580719,
-0.15598687529563904,
-0.09921339899301529,
-0.1369915008544922,
-0.050301145762205124,
0.008381045423448086,
-0.05835434049367905,
-0.05455688387155533,
-0.010936768725514412,
-0.09129540622234344,
0.0224135834723711,
-0.03388550877571106,
0.008739626035094261,
-0.09101444482803345,
0.058402422815561295,
-0.00018928850477095693,
-0.013558120466768742,
0.16543735563755035,
0.22790616750717163,
-0.09431346505880356,
0.07117012143135071,
-0.15513145923614502,
-0.07726820558309555,
0.10482538491487503,
0.0009923178004100919,
0.08492880314588547,
0.07669945061206818,
0.005567796528339386,
0.08919753134250641,
0.08742469549179077,
0.05028204247355461,
0.12554234266281128,
-0.0840214192867279,
0.02866501361131668,
-0.0020513972267508507,
-0.06748903542757034,
-0.04418955743312836,
0.014315677806735039,
0.07568313181400299,
0.08130988478660583,
0.12407427281141281,
-0.07389611005783081,
0.03341168165206909,
-0.07958750426769257,
0.01596388965845108,
0.008667413145303726,
-0.11173728853464127,
0.01969148777425289,
-0.07615093141794205,
0.04287390038371086,
-0.006351009011268616,
-0.00711332680657506,
0.024178331717848778,
-0.027942026033997536,
0.038665320724248886,
0.06121686100959778,
-0.02223104238510132,
-0.014176573604345322,
-0.06652376055717468,
0.048739951103925705,
-0.03657402843236923,
-0.036009375005960464,
-0.015311799012124538,
0.10092800110578537,
-0.022163402289152145,
0.15698660910129547,
-0.01884164847433567,
-0.009058649651706219,
0.10597869753837585,
0.029069803655147552,
0.048481255769729614,
-0.14152956008911133,
-0.037685707211494446,
-0.18269547820091248,
0.0421307235956192,
-0.1065715029835701,
0.04944059997797012,
0.1094595417380333,
0.03135908767580986,
-0.03221193328499794,
-0.012548158876597881,
-0.03570149838924408,
-0.10877881944179535,
-0.15075622498989105,
-0.0568976029753685,
-0.16649723052978516,
0.013165033422410488,
-0.05347859859466553,
0.01462859008461237,
-0.03832591697573662,
0.06680483371019363,
-0.06439176201820374,
0.1430933028459549,
-0.022112857550382614,
-0.07683908194303513,
0.0841684564948082,
-0.041403625160455704,
-0.012974242679774761,
0.013522515073418617,
-0.009878570213913918,
-0.07052963227033615,
0.08048239350318909,
0.008558555506169796,
0.05908524990081787,
-0.06693807244300842,
0.022297125309705734,
-0.0995635837316513,
-0.09508954733610153,
-0.05142752826213837,
0.03465954214334488,
-0.02483660727739334,
0.12389890104532242,
0.07400953769683838,
-0.0334070585668087,
0.01693791151046753,
0.22203916311264038,
-0.02347923070192337,
-0.08265742659568787,
-0.12441800534725189,
0.1372821182012558,
-0.054555218666791916,
0.04526377469301224,
-0.04962313547730446,
0.016638262197375298,
-0.14102451503276825,
0.23838238418102264,
0.22440840303897858,
-0.1144336387515068,
0.027441101148724556,
-0.05353304743766785,
0.03156629577279091,
0.007032355759292841,
0.1127588078379631,
0.10853651165962219,
0.25504767894744873,
-0.0045953900553286076,
0.0788838192820549,
0.013164342381060123,
-0.08833013474941254,
-0.09583251923322678,
-0.047280456870794296,
-0.009310894645750523,
0.017537949606776237,
-0.016338622197508812,
0.08870101720094681,
-0.2619670033454895,
0.03774590045213699,
-0.14287793636322021,
-0.20140498876571655,
-0.07215225696563721,
0.006227076984941959,
0.11622501164674759,
0.02607152983546257,
0.14306674897670746,
-0.0061434353701770306,
-0.03212902322411537,
0.07073534280061722,
-0.027029311284422874,
-0.15044525265693665,
-0.0662902295589447,
0.11791951209306717,
-0.12254253774881363,
-0.004945602733641863,
-0.04060308262705803,
0.054779257625341415,
0.07983066141605377,
0.011510799638926983,
-0.062136389315128326,
0.044620268046855927,
-0.015551039017736912,
-0.03479842469096184,
0.010217969305813313,
0.06260291486978531,
-0.006997813005000353,
0.03734855353832245,
0.06064658984541893,
-0.14547565579414368,
0.004595074336975813,
-0.09360798448324203,
0.0350087434053421,
-0.02666335180401802,
0.119524747133255,
-0.03312965855002403,
0.0396832674741745,
0.058353640139102936,
-0.06412491202354431,
0.0001449275587219745,
0.02576908841729164,
-0.002201557159423828,
-0.04823938384652138,
0.023281455039978027,
-0.13907398283481598,
-0.25558799505233765,
-0.10768473893404007,
0.030275676399469376,
0.03411830961704254,
-0.12337088584899902,
0.010410537011921406,
-0.1992444396018982,
0.041104741394519806,
-0.10253476351499557,
0.13277101516723633,
0.09404677897691727,
0.01062733493745327,
0.025814810767769814,
0.029681405052542686,
0.051188964396715164,
0.08659018576145172,
-0.08789260685443878,
-0.041418395936489105
] |
null | null |
transformers
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-Scott")
model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-Scott")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
|
text-generation
|
ScottaStrong/DialogGPT-medium-Scott
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.
I built a Discord AI chatbot based on this model. Check out my GitHub repo.
Chat with the model:
|
[
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
56,
85
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
-0.0031147964764386415,
0.06732115894556046,
-0.0013067268300801516,
0.08514242619276047,
0.17139746248722076,
-0.05924908071756363,
0.12617477774620056,
0.0799083411693573,
0.08703801780939102,
-0.040640994906425476,
0.09865135699510574,
0.15166106820106506,
0.06639465689659119,
0.26015958189964294,
0.06748297810554504,
-0.2166767716407776,
0.09042854607105255,
0.009781700558960438,
0.14762678742408752,
0.10603851079940796,
0.03259176388382912,
-0.012651562690734863,
0.07551001757383347,
0.0537620484828949,
-0.12053881585597992,
-0.07485842704772949,
0.049080029129981995,
-0.05262351408600807,
0.10985377430915833,
0.0326290987432003,
0.0011800689389929175,
-0.06636396050453186,
-0.060811057686805725,
-0.11183462291955948,
0.054497040808200836,
-0.020316729322075844,
0.025942007079720497,
-0.023969823494553566,
-0.0761088877916336,
0.043018732219934464,
0.2065882384777069,
0.1925574690103531,
-0.003715767990797758,
0.11557372659444809,
-0.09181936830282211,
-0.07027190923690796,
-0.008943583816289902,
-0.010887449607253075,
0.09428542852401733,
0.14223144948482513,
-0.052547309547662735,
0.1164209321141243,
0.030120862647891045,
0.08968808501958847,
0.09557663649320602,
-0.30280008912086487,
-0.06269078701734543,
0.1896524429321289,
0.14514757692813873,
0.09006146341562271,
-0.004860272631049156,
0.04613162949681282,
-0.016084257513284683,
0.042685672640800476,
-0.07131824642419815,
-0.06363458186388016,
-0.06207709386944771,
-0.013701862655580044,
-0.04109498858451843,
0.032851651310920715,
0.21964295208454132,
-0.05304189771413803,
-0.0012605000520125031,
-0.10158216953277588,
0.02889380231499672,
-0.07857594639062881,
0.006279823835939169,
-0.015444518998265266,
-0.08043298125267029,
0.02239905297756195,
-0.10645433515310287,
-0.09650347381830215,
-0.10456476360559464,
-0.11673839390277863,
-0.14361365139484406,
0.1581493467092514,
0.0036106668412685394,
0.027527498081326485,
-0.22285567224025726,
0.07127777487039566,
-0.06955346465110779,
-0.06709212809801102,
-0.13967759907245636,
-0.07220139354467392,
-0.05874469503760338,
0.02639712765812874,
-0.039070338010787964,
0.010172453708946705,
0.11153968423604965,
0.10220948606729507,
-0.015011770650744438,
0.0663495659828186,
-0.04067784175276756,
0.00508307758718729,
0.08601579070091248,
0.11630362272262573,
0.025117220357060432,
-0.040995534509420395,
0.06296996027231216,
-0.052003372460603714,
0.05753657966852188,
-0.08591731637716293,
-0.1793648600578308,
0.04251581057906151,
-0.03240792453289032,
0.01183853019028902,
0.03231256082653999,
0.135732501745224,
-0.04336540400981903,
0.004511404782533646,
0.06039701774716377,
0.015720339491963387,
-0.02502482943236828,
0.042093221098184586,
-0.07461360096931458,
-0.010624321177601814,
-0.013015096075832844,
0.052517298609018326,
-0.051824189722537994,
-0.15755249559879303,
-0.035501185804605484,
-0.021135928109288216,
-0.055415187031030655,
-0.01495642215013504,
0.07213792204856873,
0.020297126844525337,
0.008616352453827858,
-0.19487543404102325,
-0.05666554719209671,
-0.004664150532335043,
0.01319226622581482,
-0.03994959592819214,
-0.10630248486995697,
-0.1293857991695404,
0.013755998574197292,
-0.040394432842731476,
-0.035737961530685425,
-0.08786512911319733,
-0.036755576729774475,
0.06344093382358551,
-0.030033104121685028,
0.1439601182937622,
-0.17301642894744873,
0.02397586964070797,
-0.07987119257450104,
-0.050448738038539886,
-0.21711544692516327,
0.1045946404337883,
-0.04102172702550888,
0.04050207883119583,
-0.05102238804101944,
0.03573952987790108,
-0.014871410094201565,
0.023169919848442078,
-0.009183007292449474,
0.10987359285354614,
-0.05130113288760185,
-0.08197061717510223,
0.17725427448749542,
-0.09274270385503769,
-0.17268869280815125,
0.12096322327852249,
-0.03158750757575035,
0.09933687001466751,
0.16315093636512756,
0.2664259970188141,
0.02924969047307968,
-0.09100408852100372,
-0.01388342585414648,
0.045583926141262054,
-0.1441788524389267,
-0.05617104843258858,
0.08597345650196075,
0.04499935358762741,
-0.02300192415714264,
0.03508932515978813,
-0.003388997633010149,
0.15746335685253143,
-0.021448364481329918,
-0.004685848020017147,
0.045848626643419266,
-0.09311918169260025,
-0.03474969044327736,
0.021572954952716827,
0.06577044725418091,
-0.03632090613245964,
-0.012542466633021832,
-0.08227407187223434,
0.08700960129499435,
-0.040284186601638794,
0.03981190174818039,
-0.16747671365737915,
0.1216021329164505,
0.063031867146492,
0.08475670218467712,
-0.06779973208904266,
-0.10710138827562332,
0.004696952179074287,
0.08862527459859848,
0.11724554747343063,
-0.06300824880599976,
0.06485693901777267,
0.011076870374381542,
0.035907082259655,
0.01984940655529499,
0.09252229332923889,
-0.01403129007667303,
-0.002446738537400961,
-0.07792431116104126,
0.0005116026732139289,
-0.0537346713244915,
0.10298074036836624,
0.0029184967279434204,
-0.0038195897359400988,
-0.03080935962498188,
0.03822001814842224,
-0.03200863301753998,
-0.03679351136088371,
0.021230001002550125,
-0.010561109520494938,
-0.06926065683364868,
-0.018990645185112953,
0.04214978218078613,
0.01391681469976902,
-0.09843625873327255,
0.246256023645401,
-0.06256922334432602,
0.026338685303926468,
0.18968340754508972,
-0.054220862686634064,
0.013334804214537144,
0.010509321466088295,
0.04148964583873749,
-0.015268164686858654,
0.02831433154642582,
0.008178255520761013,
0.32151171565055847,
-0.005720508750528097,
0.11298117786645889,
-0.016806883737444878,
0.06403318047523499,
-0.002627673326060176,
-0.09157170355319977,
0.023229550570249557,
0.06588231772184372,
0.020969463512301445,
-0.1318393498659134,
0.08590610325336456,
-0.12181679159402847,
0.05266232416033745,
0.2910378873348236,
0.03869658336043358,
0.04753478616476059,
-0.03598809242248535,
-0.013979402370750904,
-0.04317321628332138,
0.00636728061363101,
-0.3254452347755432,
-0.053074002265930176,
0.02572035789489746,
-0.04702194035053253,
0.036957748234272,
-0.05742398649454117,
-0.07462330162525177,
-0.00789574533700943,
-0.01986667327582836,
-0.01561642810702324,
0.15938006341457367,
-0.06516602635383606,
0.0953904390335083,
0.03691563010215759,
-0.05972260981798172,
0.06266246736049652,
-0.028394291177392006,
-0.08168071508407593,
0.1269349604845047,
-0.15365123748779297,
-0.28577736020088196,
-0.05034773051738739,
-0.172665536403656,
-0.06549736857414246,
0.11429552733898163,
0.06900772452354431,
-0.1634967178106308,
0.04574845731258392,
0.01931222528219223,
0.11807379871606827,
-0.07174720615148544,
-0.05250421538949013,
0.03210172429680824,
-0.051741477102041245,
-0.15131595730781555,
-0.09154228121042252,
-0.038760457187891006,
-0.013580136001110077,
-0.1567402482032776,
0.07578964531421661,
-0.15565408766269684,
0.10840665549039841,
0.21831972897052765,
0.03679003193974495,
0.07952064275741577,
-0.055326685309410095,
0.1402796357870102,
-0.10072973370552063,
-0.011204714886844158,
0.17939221858978271,
0.027633124962449074,
0.008227039128541946,
0.034166280180215836,
-0.016880370676517487,
-0.008174357935786247,
0.07707682996988297,
-0.11814677715301514,
-0.11624512821435928,
-0.07972405105829239,
-0.06679795682430267,
-0.0543847419321537,
0.213211327791214,
0.0035395885352045298,
0.0195466261357069,
0.06775680184364319,
0.0696386769413948,
0.04656293988227844,
-0.04439973458647728,
0.0851188376545906,
0.08880534023046494,
0.06585965305566788,
-0.12964878976345062,
0.09487010538578033,
0.008303438313305378,
-0.026815786957740784,
0.0760316476225853,
0.07328462600708008,
0.07419195771217346,
-0.002466772682964802,
0.11983100324869156,
0.04499497264623642,
0.04875878617167473,
0.06579519808292389,
0.0026829014532268047,
0.0701359361410141,
-0.03725602477788925,
-0.01609269343316555,
-0.02517789416015148,
-0.11394907534122467,
0.08883117139339447,
0.051915816962718964,
-0.10835720598697662,
-0.020880598574876785,
0.10710673034191132,
0.036071959882974625,
0.04342232272028923,
0.038116227835416794,
-0.17609456181526184,
-0.1036573126912117,
0.03272689878940582,
-0.05155547335743904,
-0.08508650958538055,
0.15064917504787445,
0.1155121773481369,
-0.15908800065517426,
0.031387943774461746,
0.05468567833304405,
0.04232461377978325,
-0.0628746971487999,
0.03300628438591957,
-0.037913840264081955,
-0.04214128479361534,
-0.018559876829385757,
0.06160943955183029,
-0.31546705961227417,
0.03246850147843361,
-0.072703056037426,
0.01234830915927887,
-0.11343377083539963,
-0.06907325983047485,
0.046936407685279846,
-0.0018205823143944144,
0.0671897828578949,
0.016383597627282143,
0.024157002568244934,
-0.07676273584365845,
-0.03877127915620804,
0.049177419394254684,
-0.019542336463928223,
-0.051427070051431656,
-0.003829778404906392,
0.020374920219182968,
0.0021580499596893787,
-0.06250053644180298,
-0.05887866020202637,
0.059464797377586365,
-0.08010420948266983,
-0.01252499595284462,
0.22823777794837952,
0.1375076025724411,
-0.00797496922314167,
0.0018790984759107232,
0.0113553861156106,
0.1419505476951599,
0.17624135315418243,
-0.09074564278125763,
-0.01622101664543152,
-0.020325686782598495,
-0.05274626985192299,
-0.0732380822300911,
0.05523919686675072,
-0.07525955140590668,
0.04907070845365524,
-0.0824773982167244,
-0.08574929088354111,
0.06782457232475281,
-0.07033342123031616,
-0.03526948392391205,
0.008485627360641956,
0.10314785689115524,
0.12668727338314056,
0.020149467512965202,
0.007812948897480965,
-0.028893908485770226,
-0.08124694973230362,
-0.04867898300290108,
-0.008836652152240276,
0.05661032348871231,
-0.033222634345293045,
0.0408560074865818,
0.1243140771985054,
-0.09792464226484299,
-0.13139928877353668,
-0.0711052343249321,
0.2009604573249817,
0.017934085801243782,
-0.06270181387662888,
0.11515235900878906,
0.11760029196739197,
0.024191124364733696,
-0.24666182696819305,
-0.16231650114059448,
-0.04495996981859207,
-0.06561741977930069,
-0.056524068117141724,
-0.20412063598632812,
0.09112474322319031,
-0.10756931453943253,
-0.02830350212752819,
0.12179158627986908,
-0.22898556292057037,
-0.09320573508739471,
0.09793175756931305,
0.07865314930677414,
0.31643927097320557,
-0.07607927173376083,
0.0004126155690755695,
0.02559424191713333,
-0.16775168478488922,
0.10883722454309464,
-0.12542349100112915,
0.12323673069477081,
0.009087102487683296,
0.18333329260349274,
0.03534495085477829,
-0.034692127257585526,
0.06270311027765274,
0.04448620602488518,
-0.06802482903003693,
-0.1098371148109436,
-0.1240452229976654,
-0.019011378288269043,
-0.007260920479893684,
0.0923379585146904,
-0.05944574251770973,
-0.011192659847438335,
-0.07787241041660309,
-0.033784471452236176,
-0.1001528948545456,
-0.03470374643802643,
0.07094941288232803,
-0.0365634560585022,
-0.10615286976099014,
0.08814811706542969,
-0.046988777816295624,
0.09179646521806717,
0.14299225807189941,
-0.08328588306903839,
0.10810422152280807,
0.12482663989067078,
0.04402589425444603,
-0.04685913771390915,
-0.002562912879511714,
-0.01272390503436327,
-0.08542842417955399,
0.08563172072172165,
-0.05052819475531578,
-0.025493232533335686,
0.09388254582881927,
-0.005823195446282625,
0.0592208057641983,
0.0684245377779007,
-0.11942598968744278,
0.14598077535629272,
0.07932211458683014,
-0.11200851202011108,
-0.1536560207605362,
-0.010391395539045334,
0.026164855808019638,
0.1401754915714264,
0.09662923961877823,
0.11528567969799042,
-0.05424760654568672,
-0.016809429973363876,
-0.03609089553356171,
0.04158152639865875,
-0.08691895008087158,
0.02727843075990677,
-0.08177103847265244,
-0.009953982196748257,
-0.17431192100048065,
0.07772307097911835,
0.017915522679686546,
0.0627085492014885,
0.11146987229585648,
0.0638047382235527,
-0.11413238942623138,
-0.10543655604124069,
-0.17500238120555878,
0.021141357719898224,
-0.03267564997076988,
-0.10889682173728943,
0.02893615886569023,
-0.11685733497142792,
0.038523491472005844,
0.041160549968481064,
0.05709085240960121,
0.035900019109249115,
-0.025526588782668114,
-0.006880686152726412,
-0.04280221089720726,
0.026799572631716728,
-0.009853152558207512,
-0.08249422162771225,
-0.0959516242146492,
0.0317029170691967,
0.04438503459095955,
0.117732934653759,
-0.0496365912258625,
-0.15649084746837616,
-0.1548064649105072,
0.08268877863883972,
-0.035110361874103546,
-0.05479501932859421,
-0.14208196103572845,
-0.03960596024990082,
-0.018364131450653076,
-0.07095805555582047,
-0.029234830290079117,
0.03401472792029381,
-0.0660240426659584,
0.019216712564229965,
-0.013834218494594097,
0.0031100476626306772,
-0.0731673538684845,
0.003773164004087448,
0.018380967900156975,
-0.01315051969140768,
0.1451115757226944,
0.1620226353406906,
-0.08617361634969711,
0.08378943800926208,
-0.13446898758411407,
-0.004143013618886471,
0.07568055391311646,
0.02045813389122486,
0.018965845927596092,
0.0011805399553850293,
-0.060211893171072006,
0.04724649712443352,
0.04026579484343529,
0.03216424211859703,
0.14901325106620789,
-0.04217749089002609,
-0.005997751839458942,
0.017278308048844337,
0.0024516000412404537,
-0.041762810200452805,
0.02437383309006691,
0.0882442370057106,
0.0545492023229599,
0.08031298965215683,
-0.044148627668619156,
0.06290026754140854,
-0.06388428062200546,
0.040647316724061966,
0.012749451212584972,
-0.1079692542552948,
-0.009563596919178963,
-0.08677249401807785,
-0.011617100797593594,
-0.0042060548439621925,
0.09381235390901566,
-0.024098169058561325,
-0.03867017477750778,
-0.042092833667993546,
0.029534757137298584,
0.07159409672021866,
-0.01331583596765995,
0.08889967203140259,
0.0007953951135277748,
-0.012284807860851288,
0.002106946427375078,
0.12863309681415558,
0.0740257278084755,
0.04333112761378288,
0.1039426401257515,
-0.11880568414926529,
0.044739313423633575,
0.09758209437131882,
0.014725943095982075,
0.06252812594175339,
-0.11832105368375778,
-0.16387717425823212,
-0.160047248005867,
0.01534242182970047,
-0.08010297268629074,
0.10412414371967316,
0.100117988884449,
-0.01219935528934002,
-0.010196366347372532,
-0.031200971454381943,
-0.037229303270578384,
-0.08693677186965942,
-0.16864822804927826,
-0.04797305539250374,
-0.20969967544078827,
0.04166078194975853,
-0.09778973460197449,
0.068707175552845,
-0.0307359267026186,
0.08350959420204163,
-0.0895291417837143,
0.16760849952697754,
0.017623111605644226,
-0.05577890947461128,
0.06909088790416718,
-0.07037624716758728,
-0.022619925439357758,
0.022979894652962685,
0.029088642448186874,
0.00797769520431757,
0.01521561574190855,
0.09111456573009491,
0.08625976741313934,
-0.05984101817011833,
0.06440552324056625,
-0.02832171693444252,
-0.05071032792329788,
-0.05574966222047806,
0.06220712885260582,
0.003368728095665574,
0.17166607081890106,
0.07168801128864288,
-0.05780524015426636,
0.025934183970093727,
0.13688640296459198,
0.002139918738976121,
-0.08151834458112717,
-0.09504035860300064,
0.24658361077308655,
-0.03966546058654785,
-0.0508730486035347,
-0.07158456742763519,
-0.024127835407853127,
-0.1293240189552307,
0.322580486536026,
0.1635950356721878,
-0.0348820798099041,
-0.022354595363140106,
-0.06670354306697845,
0.030874239280819893,
-0.021597011014819145,
0.15884464979171753,
0.08054805546998978,
0.24340544641017914,
-0.06516893208026886,
-0.033777251839637756,
-0.028073826804757118,
-0.037246186286211014,
0.011824671179056168,
-0.132349893450737,
0.04170753061771393,
-0.019181307405233383,
-0.05534849315881729,
0.01909051090478897,
-0.3636821508407593,
-0.04714269936084747,
-0.11587821692228317,
-0.08146978169679642,
-0.0011924059363082051,
0.006344009190797806,
0.11560651659965515,
0.0383719801902771,
0.14451542496681213,
0.0015261657536029816,
0.07261746376752853,
0.06433944404125214,
-0.016791800037026405,
-0.17430107295513153,
0.005822034552693367,
0.11722774058580399,
-0.1704660952091217,
0.06193343922495842,
-0.09498834609985352,
0.08183544874191284,
0.06209022179245949,
0.04195117577910423,
-0.026259811595082283,
0.10113848000764847,
-0.06678180396556854,
-0.004045250825583935,
-0.06102550029754639,
0.07127904891967773,
0.004320331383496523,
0.0728127509355545,
0.05306752026081085,
-0.052441731095314026,
0.033626802265644073,
-0.006191626191139221,
0.04575784504413605,
-0.11502913385629654,
0.04379618167877197,
-0.09175752103328705,
0.10923270881175995,
0.06640689074993134,
-0.07400389760732651,
0.013908933848142624,
0.023940682411193848,
0.012116141617298126,
-0.03594847023487091,
0.018786732107400894,
-0.06880206614732742,
-0.18643833696842194,
-0.09399034082889557,
-0.08447959274053574,
0.01254255324602127,
-0.16595131158828735,
0.0758962482213974,
-0.15258453786373138,
-0.02572663314640522,
0.019163254648447037,
0.05277562141418457,
0.08561776578426361,
0.023624172434210777,
-0.000344697677064687,
0.09522122889757156,
0.056325241923332214,
0.12139234691858292,
-0.11756613105535507,
-0.1389833688735962
] |
null | null |
transformers
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-joshua")
model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-joshua")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
|
text-generation
|
ScottaStrong/DialogGPT-medium-joshua
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.
I built a Discord AI chatbot based on this model. Check out my GitHub repo.
Chat with the model:
|
[
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
56,
85
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
-0.0031147964764386415,
0.06732115894556046,
-0.0013067268300801516,
0.08514242619276047,
0.17139746248722076,
-0.05924908071756363,
0.12617477774620056,
0.0799083411693573,
0.08703801780939102,
-0.040640994906425476,
0.09865135699510574,
0.15166106820106506,
0.06639465689659119,
0.26015958189964294,
0.06748297810554504,
-0.2166767716407776,
0.09042854607105255,
0.009781700558960438,
0.14762678742408752,
0.10603851079940796,
0.03259176388382912,
-0.012651562690734863,
0.07551001757383347,
0.0537620484828949,
-0.12053881585597992,
-0.07485842704772949,
0.049080029129981995,
-0.05262351408600807,
0.10985377430915833,
0.0326290987432003,
0.0011800689389929175,
-0.06636396050453186,
-0.060811057686805725,
-0.11183462291955948,
0.054497040808200836,
-0.020316729322075844,
0.025942007079720497,
-0.023969823494553566,
-0.0761088877916336,
0.043018732219934464,
0.2065882384777069,
0.1925574690103531,
-0.003715767990797758,
0.11557372659444809,
-0.09181936830282211,
-0.07027190923690796,
-0.008943583816289902,
-0.010887449607253075,
0.09428542852401733,
0.14223144948482513,
-0.052547309547662735,
0.1164209321141243,
0.030120862647891045,
0.08968808501958847,
0.09557663649320602,
-0.30280008912086487,
-0.06269078701734543,
0.1896524429321289,
0.14514757692813873,
0.09006146341562271,
-0.004860272631049156,
0.04613162949681282,
-0.016084257513284683,
0.042685672640800476,
-0.07131824642419815,
-0.06363458186388016,
-0.06207709386944771,
-0.013701862655580044,
-0.04109498858451843,
0.032851651310920715,
0.21964295208454132,
-0.05304189771413803,
-0.0012605000520125031,
-0.10158216953277588,
0.02889380231499672,
-0.07857594639062881,
0.006279823835939169,
-0.015444518998265266,
-0.08043298125267029,
0.02239905297756195,
-0.10645433515310287,
-0.09650347381830215,
-0.10456476360559464,
-0.11673839390277863,
-0.14361365139484406,
0.1581493467092514,
0.0036106668412685394,
0.027527498081326485,
-0.22285567224025726,
0.07127777487039566,
-0.06955346465110779,
-0.06709212809801102,
-0.13967759907245636,
-0.07220139354467392,
-0.05874469503760338,
0.02639712765812874,
-0.039070338010787964,
0.010172453708946705,
0.11153968423604965,
0.10220948606729507,
-0.015011770650744438,
0.0663495659828186,
-0.04067784175276756,
0.00508307758718729,
0.08601579070091248,
0.11630362272262573,
0.025117220357060432,
-0.040995534509420395,
0.06296996027231216,
-0.052003372460603714,
0.05753657966852188,
-0.08591731637716293,
-0.1793648600578308,
0.04251581057906151,
-0.03240792453289032,
0.01183853019028902,
0.03231256082653999,
0.135732501745224,
-0.04336540400981903,
0.004511404782533646,
0.06039701774716377,
0.015720339491963387,
-0.02502482943236828,
0.042093221098184586,
-0.07461360096931458,
-0.010624321177601814,
-0.013015096075832844,
0.052517298609018326,
-0.051824189722537994,
-0.15755249559879303,
-0.035501185804605484,
-0.021135928109288216,
-0.055415187031030655,
-0.01495642215013504,
0.07213792204856873,
0.020297126844525337,
0.008616352453827858,
-0.19487543404102325,
-0.05666554719209671,
-0.004664150532335043,
0.01319226622581482,
-0.03994959592819214,
-0.10630248486995697,
-0.1293857991695404,
0.013755998574197292,
-0.040394432842731476,
-0.035737961530685425,
-0.08786512911319733,
-0.036755576729774475,
0.06344093382358551,
-0.030033104121685028,
0.1439601182937622,
-0.17301642894744873,
0.02397586964070797,
-0.07987119257450104,
-0.050448738038539886,
-0.21711544692516327,
0.1045946404337883,
-0.04102172702550888,
0.04050207883119583,
-0.05102238804101944,
0.03573952987790108,
-0.014871410094201565,
0.023169919848442078,
-0.009183007292449474,
0.10987359285354614,
-0.05130113288760185,
-0.08197061717510223,
0.17725427448749542,
-0.09274270385503769,
-0.17268869280815125,
0.12096322327852249,
-0.03158750757575035,
0.09933687001466751,
0.16315093636512756,
0.2664259970188141,
0.02924969047307968,
-0.09100408852100372,
-0.01388342585414648,
0.045583926141262054,
-0.1441788524389267,
-0.05617104843258858,
0.08597345650196075,
0.04499935358762741,
-0.02300192415714264,
0.03508932515978813,
-0.003388997633010149,
0.15746335685253143,
-0.021448364481329918,
-0.004685848020017147,
0.045848626643419266,
-0.09311918169260025,
-0.03474969044327736,
0.021572954952716827,
0.06577044725418091,
-0.03632090613245964,
-0.012542466633021832,
-0.08227407187223434,
0.08700960129499435,
-0.040284186601638794,
0.03981190174818039,
-0.16747671365737915,
0.1216021329164505,
0.063031867146492,
0.08475670218467712,
-0.06779973208904266,
-0.10710138827562332,
0.004696952179074287,
0.08862527459859848,
0.11724554747343063,
-0.06300824880599976,
0.06485693901777267,
0.011076870374381542,
0.035907082259655,
0.01984940655529499,
0.09252229332923889,
-0.01403129007667303,
-0.002446738537400961,
-0.07792431116104126,
0.0005116026732139289,
-0.0537346713244915,
0.10298074036836624,
0.0029184967279434204,
-0.0038195897359400988,
-0.03080935962498188,
0.03822001814842224,
-0.03200863301753998,
-0.03679351136088371,
0.021230001002550125,
-0.010561109520494938,
-0.06926065683364868,
-0.018990645185112953,
0.04214978218078613,
0.01391681469976902,
-0.09843625873327255,
0.246256023645401,
-0.06256922334432602,
0.026338685303926468,
0.18968340754508972,
-0.054220862686634064,
0.013334804214537144,
0.010509321466088295,
0.04148964583873749,
-0.015268164686858654,
0.02831433154642582,
0.008178255520761013,
0.32151171565055847,
-0.005720508750528097,
0.11298117786645889,
-0.016806883737444878,
0.06403318047523499,
-0.002627673326060176,
-0.09157170355319977,
0.023229550570249557,
0.06588231772184372,
0.020969463512301445,
-0.1318393498659134,
0.08590610325336456,
-0.12181679159402847,
0.05266232416033745,
0.2910378873348236,
0.03869658336043358,
0.04753478616476059,
-0.03598809242248535,
-0.013979402370750904,
-0.04317321628332138,
0.00636728061363101,
-0.3254452347755432,
-0.053074002265930176,
0.02572035789489746,
-0.04702194035053253,
0.036957748234272,
-0.05742398649454117,
-0.07462330162525177,
-0.00789574533700943,
-0.01986667327582836,
-0.01561642810702324,
0.15938006341457367,
-0.06516602635383606,
0.0953904390335083,
0.03691563010215759,
-0.05972260981798172,
0.06266246736049652,
-0.028394291177392006,
-0.08168071508407593,
0.1269349604845047,
-0.15365123748779297,
-0.28577736020088196,
-0.05034773051738739,
-0.172665536403656,
-0.06549736857414246,
0.11429552733898163,
0.06900772452354431,
-0.1634967178106308,
0.04574845731258392,
0.01931222528219223,
0.11807379871606827,
-0.07174720615148544,
-0.05250421538949013,
0.03210172429680824,
-0.051741477102041245,
-0.15131595730781555,
-0.09154228121042252,
-0.038760457187891006,
-0.013580136001110077,
-0.1567402482032776,
0.07578964531421661,
-0.15565408766269684,
0.10840665549039841,
0.21831972897052765,
0.03679003193974495,
0.07952064275741577,
-0.055326685309410095,
0.1402796357870102,
-0.10072973370552063,
-0.011204714886844158,
0.17939221858978271,
0.027633124962449074,
0.008227039128541946,
0.034166280180215836,
-0.016880370676517487,
-0.008174357935786247,
0.07707682996988297,
-0.11814677715301514,
-0.11624512821435928,
-0.07972405105829239,
-0.06679795682430267,
-0.0543847419321537,
0.213211327791214,
0.0035395885352045298,
0.0195466261357069,
0.06775680184364319,
0.0696386769413948,
0.04656293988227844,
-0.04439973458647728,
0.0851188376545906,
0.08880534023046494,
0.06585965305566788,
-0.12964878976345062,
0.09487010538578033,
0.008303438313305378,
-0.026815786957740784,
0.0760316476225853,
0.07328462600708008,
0.07419195771217346,
-0.002466772682964802,
0.11983100324869156,
0.04499497264623642,
0.04875878617167473,
0.06579519808292389,
0.0026829014532268047,
0.0701359361410141,
-0.03725602477788925,
-0.01609269343316555,
-0.02517789416015148,
-0.11394907534122467,
0.08883117139339447,
0.051915816962718964,
-0.10835720598697662,
-0.020880598574876785,
0.10710673034191132,
0.036071959882974625,
0.04342232272028923,
0.038116227835416794,
-0.17609456181526184,
-0.1036573126912117,
0.03272689878940582,
-0.05155547335743904,
-0.08508650958538055,
0.15064917504787445,
0.1155121773481369,
-0.15908800065517426,
0.031387943774461746,
0.05468567833304405,
0.04232461377978325,
-0.0628746971487999,
0.03300628438591957,
-0.037913840264081955,
-0.04214128479361534,
-0.018559876829385757,
0.06160943955183029,
-0.31546705961227417,
0.03246850147843361,
-0.072703056037426,
0.01234830915927887,
-0.11343377083539963,
-0.06907325983047485,
0.046936407685279846,
-0.0018205823143944144,
0.0671897828578949,
0.016383597627282143,
0.024157002568244934,
-0.07676273584365845,
-0.03877127915620804,
0.049177419394254684,
-0.019542336463928223,
-0.051427070051431656,
-0.003829778404906392,
0.020374920219182968,
0.0021580499596893787,
-0.06250053644180298,
-0.05887866020202637,
0.059464797377586365,
-0.08010420948266983,
-0.01252499595284462,
0.22823777794837952,
0.1375076025724411,
-0.00797496922314167,
0.0018790984759107232,
0.0113553861156106,
0.1419505476951599,
0.17624135315418243,
-0.09074564278125763,
-0.01622101664543152,
-0.020325686782598495,
-0.05274626985192299,
-0.0732380822300911,
0.05523919686675072,
-0.07525955140590668,
0.04907070845365524,
-0.0824773982167244,
-0.08574929088354111,
0.06782457232475281,
-0.07033342123031616,
-0.03526948392391205,
0.008485627360641956,
0.10314785689115524,
0.12668727338314056,
0.020149467512965202,
0.007812948897480965,
-0.028893908485770226,
-0.08124694973230362,
-0.04867898300290108,
-0.008836652152240276,
0.05661032348871231,
-0.033222634345293045,
0.0408560074865818,
0.1243140771985054,
-0.09792464226484299,
-0.13139928877353668,
-0.0711052343249321,
0.2009604573249817,
0.017934085801243782,
-0.06270181387662888,
0.11515235900878906,
0.11760029196739197,
0.024191124364733696,
-0.24666182696819305,
-0.16231650114059448,
-0.04495996981859207,
-0.06561741977930069,
-0.056524068117141724,
-0.20412063598632812,
0.09112474322319031,
-0.10756931453943253,
-0.02830350212752819,
0.12179158627986908,
-0.22898556292057037,
-0.09320573508739471,
0.09793175756931305,
0.07865314930677414,
0.31643927097320557,
-0.07607927173376083,
0.0004126155690755695,
0.02559424191713333,
-0.16775168478488922,
0.10883722454309464,
-0.12542349100112915,
0.12323673069477081,
0.009087102487683296,
0.18333329260349274,
0.03534495085477829,
-0.034692127257585526,
0.06270311027765274,
0.04448620602488518,
-0.06802482903003693,
-0.1098371148109436,
-0.1240452229976654,
-0.019011378288269043,
-0.007260920479893684,
0.0923379585146904,
-0.05944574251770973,
-0.011192659847438335,
-0.07787241041660309,
-0.033784471452236176,
-0.1001528948545456,
-0.03470374643802643,
0.07094941288232803,
-0.0365634560585022,
-0.10615286976099014,
0.08814811706542969,
-0.046988777816295624,
0.09179646521806717,
0.14299225807189941,
-0.08328588306903839,
0.10810422152280807,
0.12482663989067078,
0.04402589425444603,
-0.04685913771390915,
-0.002562912879511714,
-0.01272390503436327,
-0.08542842417955399,
0.08563172072172165,
-0.05052819475531578,
-0.025493232533335686,
0.09388254582881927,
-0.005823195446282625,
0.0592208057641983,
0.0684245377779007,
-0.11942598968744278,
0.14598077535629272,
0.07932211458683014,
-0.11200851202011108,
-0.1536560207605362,
-0.010391395539045334,
0.026164855808019638,
0.1401754915714264,
0.09662923961877823,
0.11528567969799042,
-0.05424760654568672,
-0.016809429973363876,
-0.03609089553356171,
0.04158152639865875,
-0.08691895008087158,
0.02727843075990677,
-0.08177103847265244,
-0.009953982196748257,
-0.17431192100048065,
0.07772307097911835,
0.017915522679686546,
0.0627085492014885,
0.11146987229585648,
0.0638047382235527,
-0.11413238942623138,
-0.10543655604124069,
-0.17500238120555878,
0.021141357719898224,
-0.03267564997076988,
-0.10889682173728943,
0.02893615886569023,
-0.11685733497142792,
0.038523491472005844,
0.041160549968481064,
0.05709085240960121,
0.035900019109249115,
-0.025526588782668114,
-0.006880686152726412,
-0.04280221089720726,
0.026799572631716728,
-0.009853152558207512,
-0.08249422162771225,
-0.0959516242146492,
0.0317029170691967,
0.04438503459095955,
0.117732934653759,
-0.0496365912258625,
-0.15649084746837616,
-0.1548064649105072,
0.08268877863883972,
-0.035110361874103546,
-0.05479501932859421,
-0.14208196103572845,
-0.03960596024990082,
-0.018364131450653076,
-0.07095805555582047,
-0.029234830290079117,
0.03401472792029381,
-0.0660240426659584,
0.019216712564229965,
-0.013834218494594097,
0.0031100476626306772,
-0.0731673538684845,
0.003773164004087448,
0.018380967900156975,
-0.01315051969140768,
0.1451115757226944,
0.1620226353406906,
-0.08617361634969711,
0.08378943800926208,
-0.13446898758411407,
-0.004143013618886471,
0.07568055391311646,
0.02045813389122486,
0.018965845927596092,
0.0011805399553850293,
-0.060211893171072006,
0.04724649712443352,
0.04026579484343529,
0.03216424211859703,
0.14901325106620789,
-0.04217749089002609,
-0.005997751839458942,
0.017278308048844337,
0.0024516000412404537,
-0.041762810200452805,
0.02437383309006691,
0.0882442370057106,
0.0545492023229599,
0.08031298965215683,
-0.044148627668619156,
0.06290026754140854,
-0.06388428062200546,
0.040647316724061966,
0.012749451212584972,
-0.1079692542552948,
-0.009563596919178963,
-0.08677249401807785,
-0.011617100797593594,
-0.0042060548439621925,
0.09381235390901566,
-0.024098169058561325,
-0.03867017477750778,
-0.042092833667993546,
0.029534757137298584,
0.07159409672021866,
-0.01331583596765995,
0.08889967203140259,
0.0007953951135277748,
-0.012284807860851288,
0.002106946427375078,
0.12863309681415558,
0.0740257278084755,
0.04333112761378288,
0.1039426401257515,
-0.11880568414926529,
0.044739313423633575,
0.09758209437131882,
0.014725943095982075,
0.06252812594175339,
-0.11832105368375778,
-0.16387717425823212,
-0.160047248005867,
0.01534242182970047,
-0.08010297268629074,
0.10412414371967316,
0.100117988884449,
-0.01219935528934002,
-0.010196366347372532,
-0.031200971454381943,
-0.037229303270578384,
-0.08693677186965942,
-0.16864822804927826,
-0.04797305539250374,
-0.20969967544078827,
0.04166078194975853,
-0.09778973460197449,
0.068707175552845,
-0.0307359267026186,
0.08350959420204163,
-0.0895291417837143,
0.16760849952697754,
0.017623111605644226,
-0.05577890947461128,
0.06909088790416718,
-0.07037624716758728,
-0.022619925439357758,
0.022979894652962685,
0.029088642448186874,
0.00797769520431757,
0.01521561574190855,
0.09111456573009491,
0.08625976741313934,
-0.05984101817011833,
0.06440552324056625,
-0.02832171693444252,
-0.05071032792329788,
-0.05574966222047806,
0.06220712885260582,
0.003368728095665574,
0.17166607081890106,
0.07168801128864288,
-0.05780524015426636,
0.025934183970093727,
0.13688640296459198,
0.002139918738976121,
-0.08151834458112717,
-0.09504035860300064,
0.24658361077308655,
-0.03966546058654785,
-0.0508730486035347,
-0.07158456742763519,
-0.024127835407853127,
-0.1293240189552307,
0.322580486536026,
0.1635950356721878,
-0.0348820798099041,
-0.022354595363140106,
-0.06670354306697845,
0.030874239280819893,
-0.021597011014819145,
0.15884464979171753,
0.08054805546998978,
0.24340544641017914,
-0.06516893208026886,
-0.033777251839637756,
-0.028073826804757118,
-0.037246186286211014,
0.011824671179056168,
-0.132349893450737,
0.04170753061771393,
-0.019181307405233383,
-0.05534849315881729,
0.01909051090478897,
-0.3636821508407593,
-0.04714269936084747,
-0.11587821692228317,
-0.08146978169679642,
-0.0011924059363082051,
0.006344009190797806,
0.11560651659965515,
0.0383719801902771,
0.14451542496681213,
0.0015261657536029816,
0.07261746376752853,
0.06433944404125214,
-0.016791800037026405,
-0.17430107295513153,
0.005822034552693367,
0.11722774058580399,
-0.1704660952091217,
0.06193343922495842,
-0.09498834609985352,
0.08183544874191284,
0.06209022179245949,
0.04195117577910423,
-0.026259811595082283,
0.10113848000764847,
-0.06678180396556854,
-0.004045250825583935,
-0.06102550029754639,
0.07127904891967773,
0.004320331383496523,
0.0728127509355545,
0.05306752026081085,
-0.052441731095314026,
0.033626802265644073,
-0.006191626191139221,
0.04575784504413605,
-0.11502913385629654,
0.04379618167877197,
-0.09175752103328705,
0.10923270881175995,
0.06640689074993134,
-0.07400389760732651,
0.013908933848142624,
0.023940682411193848,
0.012116141617298126,
-0.03594847023487091,
0.018786732107400894,
-0.06880206614732742,
-0.18643833696842194,
-0.09399034082889557,
-0.08447959274053574,
0.01254255324602127,
-0.16595131158828735,
0.0758962482213974,
-0.15258453786373138,
-0.02572663314640522,
0.019163254648447037,
0.05277562141418457,
0.08561776578426361,
0.023624172434210777,
-0.000344697677064687,
0.09522122889757156,
0.056325241923332214,
0.12139234691858292,
-0.11756613105535507,
-0.1389833688735962
] |
null | null |
transformers
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-small-Scott")
model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-small-Scott")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
|
text-generation
|
ScottaStrong/DialogGPT-small-Scott
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.
I built a Discord AI chatbot based on this model. Check out my GitHub repo.
Chat with the model:
|
[
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
56,
85
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
-0.0031147964764386415,
0.06732115894556046,
-0.0013067268300801516,
0.08514242619276047,
0.17139746248722076,
-0.05924908071756363,
0.12617477774620056,
0.0799083411693573,
0.08703801780939102,
-0.040640994906425476,
0.09865135699510574,
0.15166106820106506,
0.06639465689659119,
0.26015958189964294,
0.06748297810554504,
-0.2166767716407776,
0.09042854607105255,
0.009781700558960438,
0.14762678742408752,
0.10603851079940796,
0.03259176388382912,
-0.012651562690734863,
0.07551001757383347,
0.0537620484828949,
-0.12053881585597992,
-0.07485842704772949,
0.049080029129981995,
-0.05262351408600807,
0.10985377430915833,
0.0326290987432003,
0.0011800689389929175,
-0.06636396050453186,
-0.060811057686805725,
-0.11183462291955948,
0.054497040808200836,
-0.020316729322075844,
0.025942007079720497,
-0.023969823494553566,
-0.0761088877916336,
0.043018732219934464,
0.2065882384777069,
0.1925574690103531,
-0.003715767990797758,
0.11557372659444809,
-0.09181936830282211,
-0.07027190923690796,
-0.008943583816289902,
-0.010887449607253075,
0.09428542852401733,
0.14223144948482513,
-0.052547309547662735,
0.1164209321141243,
0.030120862647891045,
0.08968808501958847,
0.09557663649320602,
-0.30280008912086487,
-0.06269078701734543,
0.1896524429321289,
0.14514757692813873,
0.09006146341562271,
-0.004860272631049156,
0.04613162949681282,
-0.016084257513284683,
0.042685672640800476,
-0.07131824642419815,
-0.06363458186388016,
-0.06207709386944771,
-0.013701862655580044,
-0.04109498858451843,
0.032851651310920715,
0.21964295208454132,
-0.05304189771413803,
-0.0012605000520125031,
-0.10158216953277588,
0.02889380231499672,
-0.07857594639062881,
0.006279823835939169,
-0.015444518998265266,
-0.08043298125267029,
0.02239905297756195,
-0.10645433515310287,
-0.09650347381830215,
-0.10456476360559464,
-0.11673839390277863,
-0.14361365139484406,
0.1581493467092514,
0.0036106668412685394,
0.027527498081326485,
-0.22285567224025726,
0.07127777487039566,
-0.06955346465110779,
-0.06709212809801102,
-0.13967759907245636,
-0.07220139354467392,
-0.05874469503760338,
0.02639712765812874,
-0.039070338010787964,
0.010172453708946705,
0.11153968423604965,
0.10220948606729507,
-0.015011770650744438,
0.0663495659828186,
-0.04067784175276756,
0.00508307758718729,
0.08601579070091248,
0.11630362272262573,
0.025117220357060432,
-0.040995534509420395,
0.06296996027231216,
-0.052003372460603714,
0.05753657966852188,
-0.08591731637716293,
-0.1793648600578308,
0.04251581057906151,
-0.03240792453289032,
0.01183853019028902,
0.03231256082653999,
0.135732501745224,
-0.04336540400981903,
0.004511404782533646,
0.06039701774716377,
0.015720339491963387,
-0.02502482943236828,
0.042093221098184586,
-0.07461360096931458,
-0.010624321177601814,
-0.013015096075832844,
0.052517298609018326,
-0.051824189722537994,
-0.15755249559879303,
-0.035501185804605484,
-0.021135928109288216,
-0.055415187031030655,
-0.01495642215013504,
0.07213792204856873,
0.020297126844525337,
0.008616352453827858,
-0.19487543404102325,
-0.05666554719209671,
-0.004664150532335043,
0.01319226622581482,
-0.03994959592819214,
-0.10630248486995697,
-0.1293857991695404,
0.013755998574197292,
-0.040394432842731476,
-0.035737961530685425,
-0.08786512911319733,
-0.036755576729774475,
0.06344093382358551,
-0.030033104121685028,
0.1439601182937622,
-0.17301642894744873,
0.02397586964070797,
-0.07987119257450104,
-0.050448738038539886,
-0.21711544692516327,
0.1045946404337883,
-0.04102172702550888,
0.04050207883119583,
-0.05102238804101944,
0.03573952987790108,
-0.014871410094201565,
0.023169919848442078,
-0.009183007292449474,
0.10987359285354614,
-0.05130113288760185,
-0.08197061717510223,
0.17725427448749542,
-0.09274270385503769,
-0.17268869280815125,
0.12096322327852249,
-0.03158750757575035,
0.09933687001466751,
0.16315093636512756,
0.2664259970188141,
0.02924969047307968,
-0.09100408852100372,
-0.01388342585414648,
0.045583926141262054,
-0.1441788524389267,
-0.05617104843258858,
0.08597345650196075,
0.04499935358762741,
-0.02300192415714264,
0.03508932515978813,
-0.003388997633010149,
0.15746335685253143,
-0.021448364481329918,
-0.004685848020017147,
0.045848626643419266,
-0.09311918169260025,
-0.03474969044327736,
0.021572954952716827,
0.06577044725418091,
-0.03632090613245964,
-0.012542466633021832,
-0.08227407187223434,
0.08700960129499435,
-0.040284186601638794,
0.03981190174818039,
-0.16747671365737915,
0.1216021329164505,
0.063031867146492,
0.08475670218467712,
-0.06779973208904266,
-0.10710138827562332,
0.004696952179074287,
0.08862527459859848,
0.11724554747343063,
-0.06300824880599976,
0.06485693901777267,
0.011076870374381542,
0.035907082259655,
0.01984940655529499,
0.09252229332923889,
-0.01403129007667303,
-0.002446738537400961,
-0.07792431116104126,
0.0005116026732139289,
-0.0537346713244915,
0.10298074036836624,
0.0029184967279434204,
-0.0038195897359400988,
-0.03080935962498188,
0.03822001814842224,
-0.03200863301753998,
-0.03679351136088371,
0.021230001002550125,
-0.010561109520494938,
-0.06926065683364868,
-0.018990645185112953,
0.04214978218078613,
0.01391681469976902,
-0.09843625873327255,
0.246256023645401,
-0.06256922334432602,
0.026338685303926468,
0.18968340754508972,
-0.054220862686634064,
0.013334804214537144,
0.010509321466088295,
0.04148964583873749,
-0.015268164686858654,
0.02831433154642582,
0.008178255520761013,
0.32151171565055847,
-0.005720508750528097,
0.11298117786645889,
-0.016806883737444878,
0.06403318047523499,
-0.002627673326060176,
-0.09157170355319977,
0.023229550570249557,
0.06588231772184372,
0.020969463512301445,
-0.1318393498659134,
0.08590610325336456,
-0.12181679159402847,
0.05266232416033745,
0.2910378873348236,
0.03869658336043358,
0.04753478616476059,
-0.03598809242248535,
-0.013979402370750904,
-0.04317321628332138,
0.00636728061363101,
-0.3254452347755432,
-0.053074002265930176,
0.02572035789489746,
-0.04702194035053253,
0.036957748234272,
-0.05742398649454117,
-0.07462330162525177,
-0.00789574533700943,
-0.01986667327582836,
-0.01561642810702324,
0.15938006341457367,
-0.06516602635383606,
0.0953904390335083,
0.03691563010215759,
-0.05972260981798172,
0.06266246736049652,
-0.028394291177392006,
-0.08168071508407593,
0.1269349604845047,
-0.15365123748779297,
-0.28577736020088196,
-0.05034773051738739,
-0.172665536403656,
-0.06549736857414246,
0.11429552733898163,
0.06900772452354431,
-0.1634967178106308,
0.04574845731258392,
0.01931222528219223,
0.11807379871606827,
-0.07174720615148544,
-0.05250421538949013,
0.03210172429680824,
-0.051741477102041245,
-0.15131595730781555,
-0.09154228121042252,
-0.038760457187891006,
-0.013580136001110077,
-0.1567402482032776,
0.07578964531421661,
-0.15565408766269684,
0.10840665549039841,
0.21831972897052765,
0.03679003193974495,
0.07952064275741577,
-0.055326685309410095,
0.1402796357870102,
-0.10072973370552063,
-0.011204714886844158,
0.17939221858978271,
0.027633124962449074,
0.008227039128541946,
0.034166280180215836,
-0.016880370676517487,
-0.008174357935786247,
0.07707682996988297,
-0.11814677715301514,
-0.11624512821435928,
-0.07972405105829239,
-0.06679795682430267,
-0.0543847419321537,
0.213211327791214,
0.0035395885352045298,
0.0195466261357069,
0.06775680184364319,
0.0696386769413948,
0.04656293988227844,
-0.04439973458647728,
0.0851188376545906,
0.08880534023046494,
0.06585965305566788,
-0.12964878976345062,
0.09487010538578033,
0.008303438313305378,
-0.026815786957740784,
0.0760316476225853,
0.07328462600708008,
0.07419195771217346,
-0.002466772682964802,
0.11983100324869156,
0.04499497264623642,
0.04875878617167473,
0.06579519808292389,
0.0026829014532268047,
0.0701359361410141,
-0.03725602477788925,
-0.01609269343316555,
-0.02517789416015148,
-0.11394907534122467,
0.08883117139339447,
0.051915816962718964,
-0.10835720598697662,
-0.020880598574876785,
0.10710673034191132,
0.036071959882974625,
0.04342232272028923,
0.038116227835416794,
-0.17609456181526184,
-0.1036573126912117,
0.03272689878940582,
-0.05155547335743904,
-0.08508650958538055,
0.15064917504787445,
0.1155121773481369,
-0.15908800065517426,
0.031387943774461746,
0.05468567833304405,
0.04232461377978325,
-0.0628746971487999,
0.03300628438591957,
-0.037913840264081955,
-0.04214128479361534,
-0.018559876829385757,
0.06160943955183029,
-0.31546705961227417,
0.03246850147843361,
-0.072703056037426,
0.01234830915927887,
-0.11343377083539963,
-0.06907325983047485,
0.046936407685279846,
-0.0018205823143944144,
0.0671897828578949,
0.016383597627282143,
0.024157002568244934,
-0.07676273584365845,
-0.03877127915620804,
0.049177419394254684,
-0.019542336463928223,
-0.051427070051431656,
-0.003829778404906392,
0.020374920219182968,
0.0021580499596893787,
-0.06250053644180298,
-0.05887866020202637,
0.059464797377586365,
-0.08010420948266983,
-0.01252499595284462,
0.22823777794837952,
0.1375076025724411,
-0.00797496922314167,
0.0018790984759107232,
0.0113553861156106,
0.1419505476951599,
0.17624135315418243,
-0.09074564278125763,
-0.01622101664543152,
-0.020325686782598495,
-0.05274626985192299,
-0.0732380822300911,
0.05523919686675072,
-0.07525955140590668,
0.04907070845365524,
-0.0824773982167244,
-0.08574929088354111,
0.06782457232475281,
-0.07033342123031616,
-0.03526948392391205,
0.008485627360641956,
0.10314785689115524,
0.12668727338314056,
0.020149467512965202,
0.007812948897480965,
-0.028893908485770226,
-0.08124694973230362,
-0.04867898300290108,
-0.008836652152240276,
0.05661032348871231,
-0.033222634345293045,
0.0408560074865818,
0.1243140771985054,
-0.09792464226484299,
-0.13139928877353668,
-0.0711052343249321,
0.2009604573249817,
0.017934085801243782,
-0.06270181387662888,
0.11515235900878906,
0.11760029196739197,
0.024191124364733696,
-0.24666182696819305,
-0.16231650114059448,
-0.04495996981859207,
-0.06561741977930069,
-0.056524068117141724,
-0.20412063598632812,
0.09112474322319031,
-0.10756931453943253,
-0.02830350212752819,
0.12179158627986908,
-0.22898556292057037,
-0.09320573508739471,
0.09793175756931305,
0.07865314930677414,
0.31643927097320557,
-0.07607927173376083,
0.0004126155690755695,
0.02559424191713333,
-0.16775168478488922,
0.10883722454309464,
-0.12542349100112915,
0.12323673069477081,
0.009087102487683296,
0.18333329260349274,
0.03534495085477829,
-0.034692127257585526,
0.06270311027765274,
0.04448620602488518,
-0.06802482903003693,
-0.1098371148109436,
-0.1240452229976654,
-0.019011378288269043,
-0.007260920479893684,
0.0923379585146904,
-0.05944574251770973,
-0.011192659847438335,
-0.07787241041660309,
-0.033784471452236176,
-0.1001528948545456,
-0.03470374643802643,
0.07094941288232803,
-0.0365634560585022,
-0.10615286976099014,
0.08814811706542969,
-0.046988777816295624,
0.09179646521806717,
0.14299225807189941,
-0.08328588306903839,
0.10810422152280807,
0.12482663989067078,
0.04402589425444603,
-0.04685913771390915,
-0.002562912879511714,
-0.01272390503436327,
-0.08542842417955399,
0.08563172072172165,
-0.05052819475531578,
-0.025493232533335686,
0.09388254582881927,
-0.005823195446282625,
0.0592208057641983,
0.0684245377779007,
-0.11942598968744278,
0.14598077535629272,
0.07932211458683014,
-0.11200851202011108,
-0.1536560207605362,
-0.010391395539045334,
0.026164855808019638,
0.1401754915714264,
0.09662923961877823,
0.11528567969799042,
-0.05424760654568672,
-0.016809429973363876,
-0.03609089553356171,
0.04158152639865875,
-0.08691895008087158,
0.02727843075990677,
-0.08177103847265244,
-0.009953982196748257,
-0.17431192100048065,
0.07772307097911835,
0.017915522679686546,
0.0627085492014885,
0.11146987229585648,
0.0638047382235527,
-0.11413238942623138,
-0.10543655604124069,
-0.17500238120555878,
0.021141357719898224,
-0.03267564997076988,
-0.10889682173728943,
0.02893615886569023,
-0.11685733497142792,
0.038523491472005844,
0.041160549968481064,
0.05709085240960121,
0.035900019109249115,
-0.025526588782668114,
-0.006880686152726412,
-0.04280221089720726,
0.026799572631716728,
-0.009853152558207512,
-0.08249422162771225,
-0.0959516242146492,
0.0317029170691967,
0.04438503459095955,
0.117732934653759,
-0.0496365912258625,
-0.15649084746837616,
-0.1548064649105072,
0.08268877863883972,
-0.035110361874103546,
-0.05479501932859421,
-0.14208196103572845,
-0.03960596024990082,
-0.018364131450653076,
-0.07095805555582047,
-0.029234830290079117,
0.03401472792029381,
-0.0660240426659584,
0.019216712564229965,
-0.013834218494594097,
0.0031100476626306772,
-0.0731673538684845,
0.003773164004087448,
0.018380967900156975,
-0.01315051969140768,
0.1451115757226944,
0.1620226353406906,
-0.08617361634969711,
0.08378943800926208,
-0.13446898758411407,
-0.004143013618886471,
0.07568055391311646,
0.02045813389122486,
0.018965845927596092,
0.0011805399553850293,
-0.060211893171072006,
0.04724649712443352,
0.04026579484343529,
0.03216424211859703,
0.14901325106620789,
-0.04217749089002609,
-0.005997751839458942,
0.017278308048844337,
0.0024516000412404537,
-0.041762810200452805,
0.02437383309006691,
0.0882442370057106,
0.0545492023229599,
0.08031298965215683,
-0.044148627668619156,
0.06290026754140854,
-0.06388428062200546,
0.040647316724061966,
0.012749451212584972,
-0.1079692542552948,
-0.009563596919178963,
-0.08677249401807785,
-0.011617100797593594,
-0.0042060548439621925,
0.09381235390901566,
-0.024098169058561325,
-0.03867017477750778,
-0.042092833667993546,
0.029534757137298584,
0.07159409672021866,
-0.01331583596765995,
0.08889967203140259,
0.0007953951135277748,
-0.012284807860851288,
0.002106946427375078,
0.12863309681415558,
0.0740257278084755,
0.04333112761378288,
0.1039426401257515,
-0.11880568414926529,
0.044739313423633575,
0.09758209437131882,
0.014725943095982075,
0.06252812594175339,
-0.11832105368375778,
-0.16387717425823212,
-0.160047248005867,
0.01534242182970047,
-0.08010297268629074,
0.10412414371967316,
0.100117988884449,
-0.01219935528934002,
-0.010196366347372532,
-0.031200971454381943,
-0.037229303270578384,
-0.08693677186965942,
-0.16864822804927826,
-0.04797305539250374,
-0.20969967544078827,
0.04166078194975853,
-0.09778973460197449,
0.068707175552845,
-0.0307359267026186,
0.08350959420204163,
-0.0895291417837143,
0.16760849952697754,
0.017623111605644226,
-0.05577890947461128,
0.06909088790416718,
-0.07037624716758728,
-0.022619925439357758,
0.022979894652962685,
0.029088642448186874,
0.00797769520431757,
0.01521561574190855,
0.09111456573009491,
0.08625976741313934,
-0.05984101817011833,
0.06440552324056625,
-0.02832171693444252,
-0.05071032792329788,
-0.05574966222047806,
0.06220712885260582,
0.003368728095665574,
0.17166607081890106,
0.07168801128864288,
-0.05780524015426636,
0.025934183970093727,
0.13688640296459198,
0.002139918738976121,
-0.08151834458112717,
-0.09504035860300064,
0.24658361077308655,
-0.03966546058654785,
-0.0508730486035347,
-0.07158456742763519,
-0.024127835407853127,
-0.1293240189552307,
0.322580486536026,
0.1635950356721878,
-0.0348820798099041,
-0.022354595363140106,
-0.06670354306697845,
0.030874239280819893,
-0.021597011014819145,
0.15884464979171753,
0.08054805546998978,
0.24340544641017914,
-0.06516893208026886,
-0.033777251839637756,
-0.028073826804757118,
-0.037246186286211014,
0.011824671179056168,
-0.132349893450737,
0.04170753061771393,
-0.019181307405233383,
-0.05534849315881729,
0.01909051090478897,
-0.3636821508407593,
-0.04714269936084747,
-0.11587821692228317,
-0.08146978169679642,
-0.0011924059363082051,
0.006344009190797806,
0.11560651659965515,
0.0383719801902771,
0.14451542496681213,
0.0015261657536029816,
0.07261746376752853,
0.06433944404125214,
-0.016791800037026405,
-0.17430107295513153,
0.005822034552693367,
0.11722774058580399,
-0.1704660952091217,
0.06193343922495842,
-0.09498834609985352,
0.08183544874191284,
0.06209022179245949,
0.04195117577910423,
-0.026259811595082283,
0.10113848000764847,
-0.06678180396556854,
-0.004045250825583935,
-0.06102550029754639,
0.07127904891967773,
0.004320331383496523,
0.0728127509355545,
0.05306752026081085,
-0.052441731095314026,
0.033626802265644073,
-0.006191626191139221,
0.04575784504413605,
-0.11502913385629654,
0.04379618167877197,
-0.09175752103328705,
0.10923270881175995,
0.06640689074993134,
-0.07400389760732651,
0.013908933848142624,
0.023940682411193848,
0.012116141617298126,
-0.03594847023487091,
0.018786732107400894,
-0.06880206614732742,
-0.18643833696842194,
-0.09399034082889557,
-0.08447959274053574,
0.01254255324602127,
-0.16595131158828735,
0.0758962482213974,
-0.15258453786373138,
-0.02572663314640522,
0.019163254648447037,
0.05277562141418457,
0.08561776578426361,
0.023624172434210777,
-0.000344697677064687,
0.09522122889757156,
0.056325241923332214,
0.12139234691858292,
-0.11756613105535507,
-0.1389833688735962
] |
null | null |
transformers
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-small-joshua")
model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-small-joshua")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
|
text-generation
|
ScottaStrong/DialogGPT-small-joshua
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# DialoGPT Trained on the Speech of a Game Character
This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.
I built a Discord AI chatbot based on this model. Check out my GitHub repo.
Chat with the model:
|
[
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
56,
85
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:"
] |
[
-0.0031147964764386415,
0.06732115894556046,
-0.0013067268300801516,
0.08514242619276047,
0.17139746248722076,
-0.05924908071756363,
0.12617477774620056,
0.0799083411693573,
0.08703801780939102,
-0.040640994906425476,
0.09865135699510574,
0.15166106820106506,
0.06639465689659119,
0.26015958189964294,
0.06748297810554504,
-0.2166767716407776,
0.09042854607105255,
0.009781700558960438,
0.14762678742408752,
0.10603851079940796,
0.03259176388382912,
-0.012651562690734863,
0.07551001757383347,
0.0537620484828949,
-0.12053881585597992,
-0.07485842704772949,
0.049080029129981995,
-0.05262351408600807,
0.10985377430915833,
0.0326290987432003,
0.0011800689389929175,
-0.06636396050453186,
-0.060811057686805725,
-0.11183462291955948,
0.054497040808200836,
-0.020316729322075844,
0.025942007079720497,
-0.023969823494553566,
-0.0761088877916336,
0.043018732219934464,
0.2065882384777069,
0.1925574690103531,
-0.003715767990797758,
0.11557372659444809,
-0.09181936830282211,
-0.07027190923690796,
-0.008943583816289902,
-0.010887449607253075,
0.09428542852401733,
0.14223144948482513,
-0.052547309547662735,
0.1164209321141243,
0.030120862647891045,
0.08968808501958847,
0.09557663649320602,
-0.30280008912086487,
-0.06269078701734543,
0.1896524429321289,
0.14514757692813873,
0.09006146341562271,
-0.004860272631049156,
0.04613162949681282,
-0.016084257513284683,
0.042685672640800476,
-0.07131824642419815,
-0.06363458186388016,
-0.06207709386944771,
-0.013701862655580044,
-0.04109498858451843,
0.032851651310920715,
0.21964295208454132,
-0.05304189771413803,
-0.0012605000520125031,
-0.10158216953277588,
0.02889380231499672,
-0.07857594639062881,
0.006279823835939169,
-0.015444518998265266,
-0.08043298125267029,
0.02239905297756195,
-0.10645433515310287,
-0.09650347381830215,
-0.10456476360559464,
-0.11673839390277863,
-0.14361365139484406,
0.1581493467092514,
0.0036106668412685394,
0.027527498081326485,
-0.22285567224025726,
0.07127777487039566,
-0.06955346465110779,
-0.06709212809801102,
-0.13967759907245636,
-0.07220139354467392,
-0.05874469503760338,
0.02639712765812874,
-0.039070338010787964,
0.010172453708946705,
0.11153968423604965,
0.10220948606729507,
-0.015011770650744438,
0.0663495659828186,
-0.04067784175276756,
0.00508307758718729,
0.08601579070091248,
0.11630362272262573,
0.025117220357060432,
-0.040995534509420395,
0.06296996027231216,
-0.052003372460603714,
0.05753657966852188,
-0.08591731637716293,
-0.1793648600578308,
0.04251581057906151,
-0.03240792453289032,
0.01183853019028902,
0.03231256082653999,
0.135732501745224,
-0.04336540400981903,
0.004511404782533646,
0.06039701774716377,
0.015720339491963387,
-0.02502482943236828,
0.042093221098184586,
-0.07461360096931458,
-0.010624321177601814,
-0.013015096075832844,
0.052517298609018326,
-0.051824189722537994,
-0.15755249559879303,
-0.035501185804605484,
-0.021135928109288216,
-0.055415187031030655,
-0.01495642215013504,
0.07213792204856873,
0.020297126844525337,
0.008616352453827858,
-0.19487543404102325,
-0.05666554719209671,
-0.004664150532335043,
0.01319226622581482,
-0.03994959592819214,
-0.10630248486995697,
-0.1293857991695404,
0.013755998574197292,
-0.040394432842731476,
-0.035737961530685425,
-0.08786512911319733,
-0.036755576729774475,
0.06344093382358551,
-0.030033104121685028,
0.1439601182937622,
-0.17301642894744873,
0.02397586964070797,
-0.07987119257450104,
-0.050448738038539886,
-0.21711544692516327,
0.1045946404337883,
-0.04102172702550888,
0.04050207883119583,
-0.05102238804101944,
0.03573952987790108,
-0.014871410094201565,
0.023169919848442078,
-0.009183007292449474,
0.10987359285354614,
-0.05130113288760185,
-0.08197061717510223,
0.17725427448749542,
-0.09274270385503769,
-0.17268869280815125,
0.12096322327852249,
-0.03158750757575035,
0.09933687001466751,
0.16315093636512756,
0.2664259970188141,
0.02924969047307968,
-0.09100408852100372,
-0.01388342585414648,
0.045583926141262054,
-0.1441788524389267,
-0.05617104843258858,
0.08597345650196075,
0.04499935358762741,
-0.02300192415714264,
0.03508932515978813,
-0.003388997633010149,
0.15746335685253143,
-0.021448364481329918,
-0.004685848020017147,
0.045848626643419266,
-0.09311918169260025,
-0.03474969044327736,
0.021572954952716827,
0.06577044725418091,
-0.03632090613245964,
-0.012542466633021832,
-0.08227407187223434,
0.08700960129499435,
-0.040284186601638794,
0.03981190174818039,
-0.16747671365737915,
0.1216021329164505,
0.063031867146492,
0.08475670218467712,
-0.06779973208904266,
-0.10710138827562332,
0.004696952179074287,
0.08862527459859848,
0.11724554747343063,
-0.06300824880599976,
0.06485693901777267,
0.011076870374381542,
0.035907082259655,
0.01984940655529499,
0.09252229332923889,
-0.01403129007667303,
-0.002446738537400961,
-0.07792431116104126,
0.0005116026732139289,
-0.0537346713244915,
0.10298074036836624,
0.0029184967279434204,
-0.0038195897359400988,
-0.03080935962498188,
0.03822001814842224,
-0.03200863301753998,
-0.03679351136088371,
0.021230001002550125,
-0.010561109520494938,
-0.06926065683364868,
-0.018990645185112953,
0.04214978218078613,
0.01391681469976902,
-0.09843625873327255,
0.246256023645401,
-0.06256922334432602,
0.026338685303926468,
0.18968340754508972,
-0.054220862686634064,
0.013334804214537144,
0.010509321466088295,
0.04148964583873749,
-0.015268164686858654,
0.02831433154642582,
0.008178255520761013,
0.32151171565055847,
-0.005720508750528097,
0.11298117786645889,
-0.016806883737444878,
0.06403318047523499,
-0.002627673326060176,
-0.09157170355319977,
0.023229550570249557,
0.06588231772184372,
0.020969463512301445,
-0.1318393498659134,
0.08590610325336456,
-0.12181679159402847,
0.05266232416033745,
0.2910378873348236,
0.03869658336043358,
0.04753478616476059,
-0.03598809242248535,
-0.013979402370750904,
-0.04317321628332138,
0.00636728061363101,
-0.3254452347755432,
-0.053074002265930176,
0.02572035789489746,
-0.04702194035053253,
0.036957748234272,
-0.05742398649454117,
-0.07462330162525177,
-0.00789574533700943,
-0.01986667327582836,
-0.01561642810702324,
0.15938006341457367,
-0.06516602635383606,
0.0953904390335083,
0.03691563010215759,
-0.05972260981798172,
0.06266246736049652,
-0.028394291177392006,
-0.08168071508407593,
0.1269349604845047,
-0.15365123748779297,
-0.28577736020088196,
-0.05034773051738739,
-0.172665536403656,
-0.06549736857414246,
0.11429552733898163,
0.06900772452354431,
-0.1634967178106308,
0.04574845731258392,
0.01931222528219223,
0.11807379871606827,
-0.07174720615148544,
-0.05250421538949013,
0.03210172429680824,
-0.051741477102041245,
-0.15131595730781555,
-0.09154228121042252,
-0.038760457187891006,
-0.013580136001110077,
-0.1567402482032776,
0.07578964531421661,
-0.15565408766269684,
0.10840665549039841,
0.21831972897052765,
0.03679003193974495,
0.07952064275741577,
-0.055326685309410095,
0.1402796357870102,
-0.10072973370552063,
-0.011204714886844158,
0.17939221858978271,
0.027633124962449074,
0.008227039128541946,
0.034166280180215836,
-0.016880370676517487,
-0.008174357935786247,
0.07707682996988297,
-0.11814677715301514,
-0.11624512821435928,
-0.07972405105829239,
-0.06679795682430267,
-0.0543847419321537,
0.213211327791214,
0.0035395885352045298,
0.0195466261357069,
0.06775680184364319,
0.0696386769413948,
0.04656293988227844,
-0.04439973458647728,
0.0851188376545906,
0.08880534023046494,
0.06585965305566788,
-0.12964878976345062,
0.09487010538578033,
0.008303438313305378,
-0.026815786957740784,
0.0760316476225853,
0.07328462600708008,
0.07419195771217346,
-0.002466772682964802,
0.11983100324869156,
0.04499497264623642,
0.04875878617167473,
0.06579519808292389,
0.0026829014532268047,
0.0701359361410141,
-0.03725602477788925,
-0.01609269343316555,
-0.02517789416015148,
-0.11394907534122467,
0.08883117139339447,
0.051915816962718964,
-0.10835720598697662,
-0.020880598574876785,
0.10710673034191132,
0.036071959882974625,
0.04342232272028923,
0.038116227835416794,
-0.17609456181526184,
-0.1036573126912117,
0.03272689878940582,
-0.05155547335743904,
-0.08508650958538055,
0.15064917504787445,
0.1155121773481369,
-0.15908800065517426,
0.031387943774461746,
0.05468567833304405,
0.04232461377978325,
-0.0628746971487999,
0.03300628438591957,
-0.037913840264081955,
-0.04214128479361534,
-0.018559876829385757,
0.06160943955183029,
-0.31546705961227417,
0.03246850147843361,
-0.072703056037426,
0.01234830915927887,
-0.11343377083539963,
-0.06907325983047485,
0.046936407685279846,
-0.0018205823143944144,
0.0671897828578949,
0.016383597627282143,
0.024157002568244934,
-0.07676273584365845,
-0.03877127915620804,
0.049177419394254684,
-0.019542336463928223,
-0.051427070051431656,
-0.003829778404906392,
0.020374920219182968,
0.0021580499596893787,
-0.06250053644180298,
-0.05887866020202637,
0.059464797377586365,
-0.08010420948266983,
-0.01252499595284462,
0.22823777794837952,
0.1375076025724411,
-0.00797496922314167,
0.0018790984759107232,
0.0113553861156106,
0.1419505476951599,
0.17624135315418243,
-0.09074564278125763,
-0.01622101664543152,
-0.020325686782598495,
-0.05274626985192299,
-0.0732380822300911,
0.05523919686675072,
-0.07525955140590668,
0.04907070845365524,
-0.0824773982167244,
-0.08574929088354111,
0.06782457232475281,
-0.07033342123031616,
-0.03526948392391205,
0.008485627360641956,
0.10314785689115524,
0.12668727338314056,
0.020149467512965202,
0.007812948897480965,
-0.028893908485770226,
-0.08124694973230362,
-0.04867898300290108,
-0.008836652152240276,
0.05661032348871231,
-0.033222634345293045,
0.0408560074865818,
0.1243140771985054,
-0.09792464226484299,
-0.13139928877353668,
-0.0711052343249321,
0.2009604573249817,
0.017934085801243782,
-0.06270181387662888,
0.11515235900878906,
0.11760029196739197,
0.024191124364733696,
-0.24666182696819305,
-0.16231650114059448,
-0.04495996981859207,
-0.06561741977930069,
-0.056524068117141724,
-0.20412063598632812,
0.09112474322319031,
-0.10756931453943253,
-0.02830350212752819,
0.12179158627986908,
-0.22898556292057037,
-0.09320573508739471,
0.09793175756931305,
0.07865314930677414,
0.31643927097320557,
-0.07607927173376083,
0.0004126155690755695,
0.02559424191713333,
-0.16775168478488922,
0.10883722454309464,
-0.12542349100112915,
0.12323673069477081,
0.009087102487683296,
0.18333329260349274,
0.03534495085477829,
-0.034692127257585526,
0.06270311027765274,
0.04448620602488518,
-0.06802482903003693,
-0.1098371148109436,
-0.1240452229976654,
-0.019011378288269043,
-0.007260920479893684,
0.0923379585146904,
-0.05944574251770973,
-0.011192659847438335,
-0.07787241041660309,
-0.033784471452236176,
-0.1001528948545456,
-0.03470374643802643,
0.07094941288232803,
-0.0365634560585022,
-0.10615286976099014,
0.08814811706542969,
-0.046988777816295624,
0.09179646521806717,
0.14299225807189941,
-0.08328588306903839,
0.10810422152280807,
0.12482663989067078,
0.04402589425444603,
-0.04685913771390915,
-0.002562912879511714,
-0.01272390503436327,
-0.08542842417955399,
0.08563172072172165,
-0.05052819475531578,
-0.025493232533335686,
0.09388254582881927,
-0.005823195446282625,
0.0592208057641983,
0.0684245377779007,
-0.11942598968744278,
0.14598077535629272,
0.07932211458683014,
-0.11200851202011108,
-0.1536560207605362,
-0.010391395539045334,
0.026164855808019638,
0.1401754915714264,
0.09662923961877823,
0.11528567969799042,
-0.05424760654568672,
-0.016809429973363876,
-0.03609089553356171,
0.04158152639865875,
-0.08691895008087158,
0.02727843075990677,
-0.08177103847265244,
-0.009953982196748257,
-0.17431192100048065,
0.07772307097911835,
0.017915522679686546,
0.0627085492014885,
0.11146987229585648,
0.0638047382235527,
-0.11413238942623138,
-0.10543655604124069,
-0.17500238120555878,
0.021141357719898224,
-0.03267564997076988,
-0.10889682173728943,
0.02893615886569023,
-0.11685733497142792,
0.038523491472005844,
0.041160549968481064,
0.05709085240960121,
0.035900019109249115,
-0.025526588782668114,
-0.006880686152726412,
-0.04280221089720726,
0.026799572631716728,
-0.009853152558207512,
-0.08249422162771225,
-0.0959516242146492,
0.0317029170691967,
0.04438503459095955,
0.117732934653759,
-0.0496365912258625,
-0.15649084746837616,
-0.1548064649105072,
0.08268877863883972,
-0.035110361874103546,
-0.05479501932859421,
-0.14208196103572845,
-0.03960596024990082,
-0.018364131450653076,
-0.07095805555582047,
-0.029234830290079117,
0.03401472792029381,
-0.0660240426659584,
0.019216712564229965,
-0.013834218494594097,
0.0031100476626306772,
-0.0731673538684845,
0.003773164004087448,
0.018380967900156975,
-0.01315051969140768,
0.1451115757226944,
0.1620226353406906,
-0.08617361634969711,
0.08378943800926208,
-0.13446898758411407,
-0.004143013618886471,
0.07568055391311646,
0.02045813389122486,
0.018965845927596092,
0.0011805399553850293,
-0.060211893171072006,
0.04724649712443352,
0.04026579484343529,
0.03216424211859703,
0.14901325106620789,
-0.04217749089002609,
-0.005997751839458942,
0.017278308048844337,
0.0024516000412404537,
-0.041762810200452805,
0.02437383309006691,
0.0882442370057106,
0.0545492023229599,
0.08031298965215683,
-0.044148627668619156,
0.06290026754140854,
-0.06388428062200546,
0.040647316724061966,
0.012749451212584972,
-0.1079692542552948,
-0.009563596919178963,
-0.08677249401807785,
-0.011617100797593594,
-0.0042060548439621925,
0.09381235390901566,
-0.024098169058561325,
-0.03867017477750778,
-0.042092833667993546,
0.029534757137298584,
0.07159409672021866,
-0.01331583596765995,
0.08889967203140259,
0.0007953951135277748,
-0.012284807860851288,
0.002106946427375078,
0.12863309681415558,
0.0740257278084755,
0.04333112761378288,
0.1039426401257515,
-0.11880568414926529,
0.044739313423633575,
0.09758209437131882,
0.014725943095982075,
0.06252812594175339,
-0.11832105368375778,
-0.16387717425823212,
-0.160047248005867,
0.01534242182970047,
-0.08010297268629074,
0.10412414371967316,
0.100117988884449,
-0.01219935528934002,
-0.010196366347372532,
-0.031200971454381943,
-0.037229303270578384,
-0.08693677186965942,
-0.16864822804927826,
-0.04797305539250374,
-0.20969967544078827,
0.04166078194975853,
-0.09778973460197449,
0.068707175552845,
-0.0307359267026186,
0.08350959420204163,
-0.0895291417837143,
0.16760849952697754,
0.017623111605644226,
-0.05577890947461128,
0.06909088790416718,
-0.07037624716758728,
-0.022619925439357758,
0.022979894652962685,
0.029088642448186874,
0.00797769520431757,
0.01521561574190855,
0.09111456573009491,
0.08625976741313934,
-0.05984101817011833,
0.06440552324056625,
-0.02832171693444252,
-0.05071032792329788,
-0.05574966222047806,
0.06220712885260582,
0.003368728095665574,
0.17166607081890106,
0.07168801128864288,
-0.05780524015426636,
0.025934183970093727,
0.13688640296459198,
0.002139918738976121,
-0.08151834458112717,
-0.09504035860300064,
0.24658361077308655,
-0.03966546058654785,
-0.0508730486035347,
-0.07158456742763519,
-0.024127835407853127,
-0.1293240189552307,
0.322580486536026,
0.1635950356721878,
-0.0348820798099041,
-0.022354595363140106,
-0.06670354306697845,
0.030874239280819893,
-0.021597011014819145,
0.15884464979171753,
0.08054805546998978,
0.24340544641017914,
-0.06516893208026886,
-0.033777251839637756,
-0.028073826804757118,
-0.037246186286211014,
0.011824671179056168,
-0.132349893450737,
0.04170753061771393,
-0.019181307405233383,
-0.05534849315881729,
0.01909051090478897,
-0.3636821508407593,
-0.04714269936084747,
-0.11587821692228317,
-0.08146978169679642,
-0.0011924059363082051,
0.006344009190797806,
0.11560651659965515,
0.0383719801902771,
0.14451542496681213,
0.0015261657536029816,
0.07261746376752853,
0.06433944404125214,
-0.016791800037026405,
-0.17430107295513153,
0.005822034552693367,
0.11722774058580399,
-0.1704660952091217,
0.06193343922495842,
-0.09498834609985352,
0.08183544874191284,
0.06209022179245949,
0.04195117577910423,
-0.026259811595082283,
0.10113848000764847,
-0.06678180396556854,
-0.004045250825583935,
-0.06102550029754639,
0.07127904891967773,
0.004320331383496523,
0.0728127509355545,
0.05306752026081085,
-0.052441731095314026,
0.033626802265644073,
-0.006191626191139221,
0.04575784504413605,
-0.11502913385629654,
0.04379618167877197,
-0.09175752103328705,
0.10923270881175995,
0.06640689074993134,
-0.07400389760732651,
0.013908933848142624,
0.023940682411193848,
0.012116141617298126,
-0.03594847023487091,
0.018786732107400894,
-0.06880206614732742,
-0.18643833696842194,
-0.09399034082889557,
-0.08447959274053574,
0.01254255324602127,
-0.16595131158828735,
0.0758962482213974,
-0.15258453786373138,
-0.02572663314640522,
0.019163254648447037,
0.05277562141418457,
0.08561776578426361,
0.023624172434210777,
-0.000344697677064687,
0.09522122889757156,
0.056325241923332214,
0.12139234691858292,
-0.11756613105535507,
-0.1389833688735962
] |
null | null |
transformers
|
# dummy
this is only a dummy model originally based on RoBERT model
## intended uses and limitations
not intended to be used, same limitations as camembert-base model
## how to use
it cant be used (lol)
## training data
French subcorpus of the newly available multilingual corpus OSCAR
## training procedure
evaluated on multiple downstream tasks
## variable and metrics
not explicitly stated
## evaluation metrics
maybe OSCAR
## evaluation results
not explicitly stated
|
{"language": "fr", "license": "mit", "datasets": ["oscar"]}
|
fill-mask
|
SebastianS/dummy-model
|
[
"transformers",
"pytorch",
"camembert",
"fill-mask",
"fr",
"dataset:oscar",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"fr"
] |
TAGS
#transformers #pytorch #camembert #fill-mask #fr #dataset-oscar #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# dummy
this is only a dummy model originally based on RoBERT model
## intended uses and limitations
not intended to be used, same limitations as camembert-base model
## how to use
it cant be used (lol)
## training data
French subcorpus of the newly available multilingual corpus OSCAR
## training procedure
evaluated on multiple downstream tasks
## variable and metrics
not explicitly stated
## evaluation metrics
maybe OSCAR
## evaluation results
not explicitly stated
|
[
"# dummy\nthis is only a dummy model originally based on RoBERT model",
"## intended uses and limitations\nnot intended to be used, same limitations as camembert-base model",
"## how to use\nit cant be used (lol)",
"## training data\nFrench subcorpus of the newly available multilingual corpus OSCAR",
"## training procedure\nevaluated on multiple downstream tasks",
"## variable and metrics\nnot explicitly stated",
"## evaluation metrics\nmaybe OSCAR",
"## evaluation results\nnot explicitly stated"
] |
[
"TAGS\n#transformers #pytorch #camembert #fill-mask #fr #dataset-oscar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# dummy\nthis is only a dummy model originally based on RoBERT model",
"## intended uses and limitations\nnot intended to be used, same limitations as camembert-base model",
"## how to use\nit cant be used (lol)",
"## training data\nFrench subcorpus of the newly available multilingual corpus OSCAR",
"## training procedure\nevaluated on multiple downstream tasks",
"## variable and metrics\nnot explicitly stated",
"## evaluation metrics\nmaybe OSCAR",
"## evaluation results\nnot explicitly stated"
] |
[
51,
18,
23,
11,
18,
11,
10,
7,
8
] |
[
"passage: TAGS\n#transformers #pytorch #camembert #fill-mask #fr #dataset-oscar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# dummy\nthis is only a dummy model originally based on RoBERT model## intended uses and limitations\nnot intended to be used, same limitations as camembert-base model## how to use\nit cant be used (lol)## training data\nFrench subcorpus of the newly available multilingual corpus OSCAR## training procedure\nevaluated on multiple downstream tasks## variable and metrics\nnot explicitly stated## evaluation metrics\nmaybe OSCAR## evaluation results\nnot explicitly stated"
] |
[
-0.05417115241289139,
0.07626721262931824,
-0.00018418878607917577,
0.11841481178998947,
0.12355074286460876,
0.018252789974212646,
0.1821039915084839,
0.06830710917711258,
-0.009880919940769672,
-0.016231659799814224,
0.11886250227689743,
0.09641161561012268,
0.0028674989007413387,
0.06340919435024261,
-0.017309006303548813,
-0.25241491198539734,
0.06214084476232529,
-0.03729943558573723,
0.022493235766887665,
0.0747075229883194,
0.08793624490499496,
-0.08657053112983704,
0.07737426459789276,
0.04906222224235535,
-0.10483899712562561,
0.04856077954173088,
0.036314547061920166,
-0.08370237797498703,
0.0754559338092804,
0.08962050825357437,
0.057851213961839676,
0.05572546645998955,
0.06806634366512299,
-0.1464638113975525,
0.013618861325085163,
-0.027398504316806793,
0.008146848529577255,
0.04459157586097717,
0.012742058373987675,
-0.07926801592111588,
0.15507414937019348,
0.06049761921167374,
0.09449005872011185,
0.04843689873814583,
-0.08261588215827942,
-0.13647286593914032,
-0.046794213354587555,
0.013620427809655666,
-0.055564530193805695,
0.1721845120191574,
-0.02408374473452568,
0.21280822157859802,
-0.18338337540626526,
0.01780911721289158,
0.04585389420390129,
-0.25454384088516235,
-0.028403470292687416,
0.13939274847507477,
0.08237332850694656,
-0.057488616555929184,
-0.07196049392223358,
0.02435910701751709,
0.09560321271419525,
0.05822964012622833,
0.02076542377471924,
-0.06971916556358337,
-0.08035798370838165,
-0.0009558750898577273,
-0.09166844934225082,
-0.05180642753839493,
0.20322413742542267,
0.04005373269319534,
-0.10422498732805252,
-0.07530807703733444,
0.05301542580127716,
-0.09440187364816666,
-0.041307482868433,
-0.0004143075493630022,
0.041443485766649246,
-0.027409980073571205,
-0.06852398067712784,
0.025589119642972946,
-0.07433639466762543,
-0.0499238558113575,
-0.10009943693876266,
0.059480492025613785,
0.01984011009335518,
0.059163134545087814,
-0.12940554320812225,
0.15472829341888428,
-0.12992151081562042,
-0.03940610960125923,
0.01173373032361269,
-0.06078381836414337,
-0.0351024754345417,
0.0013659278629347682,
-0.038406047970056534,
0.00021862646099179983,
0.014644099399447441,
0.12797901034355164,
-0.04482756927609444,
0.03976449742913246,
0.014594979584217072,
0.09875549376010895,
0.08068448305130005,
0.16517022252082825,
-0.10965722799301147,
0.012555241584777832,
-0.01445819903165102,
0.05532175675034523,
-0.011658120900392532,
0.020853592082858086,
-0.08297046273946762,
-0.04959835484623909,
-0.022120052948594093,
0.04531014710664749,
-0.012170528061687946,
0.05115649849176407,
-0.16297633945941925,
-0.021850600838661194,
0.023733094334602356,
-0.07349614799022675,
-0.012278957292437553,
-0.016974518075585365,
-0.10101001709699631,
0.06871739774942398,
0.0987289622426033,
0.03441700339317322,
0.013330323621630669,
0.10249992460012436,
-0.08777979016304016,
0.0036853100173175335,
-0.10250966995954514,
-0.1018160879611969,
0.01733783632516861,
-0.06293707340955734,
0.05803944543004036,
-0.060773514211177826,
-0.1041456088423729,
-0.043101344257593155,
0.08247219026088715,
-0.08053769171237946,
0.011699888855218887,
-0.11494864523410797,
-0.003728109411895275,
-0.009624801576137543,
0.008654631674289703,
0.027836140245199203,
-0.07138431817293167,
0.017150918021798134,
-0.028074081987142563,
0.09843646734952927,
-0.11056388914585114,
0.04978589341044426,
-0.11575344949960709,
0.005212423857301474,
-0.16832506656646729,
0.10996751487255096,
-0.07900398969650269,
0.03414769843220711,
-0.07266571372747421,
-0.13486921787261963,
-0.04828236624598503,
0.053668681532144547,
0.026206305250525475,
0.22230178117752075,
-0.1600472331047058,
-0.07426460832357407,
0.14637324213981628,
-0.07825446873903275,
-0.07174868881702423,
0.15738126635551453,
-0.0958326905965805,
0.12899306416511536,
0.02603849396109581,
0.08023904263973236,
-0.020484233275055885,
-0.18456275761127472,
0.060793619602918625,
0.0717800110578537,
0.008176776580512524,
0.039534080773591995,
0.09334224462509155,
-0.016939647495746613,
-0.11729206144809723,
0.02521379292011261,
-0.004385967273265123,
0.011293825693428516,
-0.10441465675830841,
-0.10038445889949799,
0.029771635308861732,
-0.03174164891242981,
0.05689078941941261,
0.0360671691596508,
0.11949364095926285,
-0.03801998496055603,
-0.09820134192705154,
-0.06516271084547043,
0.06535826623439789,
-0.00035831061541102827,
0.008619029074907303,
-0.13035567104816437,
-0.005142523441463709,
0.028347518295049667,
-0.032140154391527176,
-0.1578095555305481,
0.049539100378751755,
-0.025364067405462265,
0.11001552641391754,
0.05967336520552635,
0.16245579719543457,
0.044179484248161316,
0.007930721156299114,
-0.038350772112607956,
0.030634913593530655,
-0.013879654929041862,
0.003508842783048749,
-0.052772000432014465,
-0.24074557423591614,
-0.010717608965933323,
-0.09931379556655884,
0.19929087162017822,
-0.10922200232744217,
-0.011797057464718819,
-0.0779794380068779,
0.05900518223643303,
0.02040458656847477,
-0.021628469228744507,
-0.011355062946677208,
0.06356644630432129,
-0.04120893031358719,
-0.02033822424709797,
0.05674879252910614,
0.027562536299228668,
-0.10833124071359634,
0.047306496649980545,
-0.0167088583111763,
0.0033770445734262466,
0.14758795499801636,
-0.01868964172899723,
-0.12811456620693207,
0.05543552711606026,
-0.02180570736527443,
0.01042897254228592,
-0.027971342206001282,
0.07427205890417099,
0.23336446285247803,
-0.007816728204488754,
0.1567922681570053,
-0.044829923659563065,
0.004373196046799421,
0.03486477956175804,
-0.08146511018276215,
-0.07455047219991684,
0.1230820044875145,
0.08099581301212311,
-0.04007551074028015,
0.08946336805820465,
0.013505827635526657,
-0.061937276273965836,
0.1682976484298706,
0.015643274411559105,
-0.02137669362127781,
-0.009265915490686893,
-0.003851075191050768,
0.018650632351636887,
0.12637630105018616,
-0.19770805537700653,
0.02529042959213257,
0.047893039882183075,
-0.010610578581690788,
0.028631269931793213,
-0.17391745746135712,
-0.05308837071061134,
0.01054217480123043,
-0.029192546382546425,
-0.12143664062023163,
0.05579359084367752,
-0.0094910878688097,
0.08387196063995361,
0.055979371070861816,
-0.07439971715211868,
0.07387813180685043,
-0.028557024896144867,
-0.11757706105709076,
0.2071911096572876,
-0.10176888108253479,
-0.09932802617549896,
-0.11299798637628555,
0.01791355386376381,
-0.02864345721900463,
0.0327671617269516,
0.054422128945589066,
-0.057159241288900375,
-0.06522675603628159,
-0.05565034598112106,
-0.018289819359779358,
-0.10591068863868713,
-0.03165983408689499,
0.02263694629073143,
-0.0028887910302728415,
-0.018816839903593063,
-0.08980749547481537,
-0.03854333981871605,
-0.06126737594604492,
-0.10415057837963104,
0.08051203936338425,
-0.11904534697532654,
0.020179029554128647,
0.12290579825639725,
-0.022865718230605125,
0.0389375165104866,
-0.04494557902216911,
0.24956563115119934,
-0.040441758930683136,
-0.13234926760196686,
0.09252677112817764,
0.0647069662809372,
0.019694477319717407,
0.10605014115571976,
0.03249761089682579,
-0.06042734161019325,
0.010592065751552582,
-0.0012039528228342533,
-0.07504526525735855,
-0.2309066206216812,
-0.10576226562261581,
-0.021667925640940666,
0.007386267185211182,
0.04251466318964958,
0.008961709216237068,
0.06170378997921944,
0.11813150346279144,
-0.002965712919831276,
0.06605573743581772,
-0.05198797583580017,
0.03010084480047226,
0.11218088120222092,
0.010522603057324886,
0.08832915872335434,
-0.07016690820455551,
-0.08843657374382019,
0.08787977695465088,
-0.021231791004538536,
0.2199631929397583,
0.037200406193733215,
-0.0947972908616066,
0.1127014011144638,
0.10501529276371002,
0.009845341555774212,
0.0812348797917366,
0.04247347638010979,
-0.05211737006902695,
-0.05934736877679825,
-0.06182918697595596,
-0.06576398015022278,
0.08100607991218567,
0.029473403468728065,
-0.04745246097445488,
-0.17165248095989227,
0.0619245320558548,
-0.0136036928743124,
0.16745704412460327,
0.03544611111283302,
-0.2994614243507385,
-0.07059586048126221,
0.011544878594577312,
0.04451468586921692,
-0.037006013095378876,
0.04399147257208824,
0.10269975662231445,
-0.19925658404827118,
0.053405653685331345,
-0.004264934919774532,
0.06811434030532837,
-0.04113589972257614,
0.025108862668275833,
0.0042306589893996716,
-0.029482262209057808,
-0.0038578538224101067,
0.08328551054000854,
-0.22619374096393585,
0.24009807407855988,
-0.008624288253486156,
0.07751680910587311,
-0.08453388512134552,
-0.00042767584091052413,
0.024045027792453766,
0.15330658853054047,
0.2655083239078522,
-0.003340490162372589,
0.07392152398824692,
-0.05690885707736015,
-0.012322201393544674,
0.016301769763231277,
0.005491980351507664,
0.035155683755874634,
0.04788195341825485,
0.0016380513552576303,
0.013046586886048317,
0.021227873861789703,
-0.012712085619568825,
-0.17781659960746765,
-0.12742558121681213,
0.008071347139775753,
0.07066522538661957,
-0.05110880360007286,
-0.04710080102086067,
-0.12958309054374695,
-0.03292709216475487,
0.15576139092445374,
-0.02120097167789936,
-0.00268736039288342,
-0.08992274850606918,
0.01631658896803856,
0.07740584760904312,
-0.05157279223203659,
0.0648532584309578,
-0.08909231424331665,
-0.014127335511147976,
-0.03829098120331764,
-0.10220341384410858,
0.14910021424293518,
-0.12847374379634857,
-0.029420869424939156,
-0.050948068499565125,
-0.01827862299978733,
0.028368348255753517,
0.10377170890569687,
0.01237849984318018,
-0.03066033497452736,
-0.033078208565711975,
-0.12587977945804596,
-0.07360092550516129,
0.04231615737080574,
0.08188167214393616,
0.12841062247753143,
-0.13329996168613434,
-0.17852827906608582,
-0.029889404773712158,
-0.020367298275232315,
0.18020406365394592,
0.23832295835018158,
-0.1378398835659027,
0.10530480742454529,
0.09865511953830719,
-0.05895160883665085,
-0.30851560831069946,
0.08634992688894272,
0.029862111434340477,
0.0551220178604126,
0.07143819332122803,
-0.1350780725479126,
0.00860047247260809,
0.02913673222064972,
-0.023201903328299522,
0.016143813729286194,
-0.3165223300457001,
-0.11917277425527573,
0.15088525414466858,
0.09583834558725357,
0.25508683919906616,
-0.06314915418624878,
-0.029576245695352554,
-0.041487518697977066,
-0.1519308239221573,
0.06230228394269943,
-0.031144490465521812,
0.14575648307800293,
-0.018809037283062935,
0.018987327814102173,
0.009593592956662178,
-0.05833819881081581,
0.13245049118995667,
0.05889081954956055,
0.07831548899412155,
0.003058312926441431,
-0.1008705422282219,
0.07207788527011871,
0.017757341265678406,
0.10150071233510971,
0.03764179348945618,
0.026019712910056114,
-0.11460737884044647,
-0.03692098706960678,
-0.08321765065193176,
0.06769601255655289,
-0.01529158279299736,
-0.0712597444653511,
-0.08822642266750336,
0.07262636721134186,
0.07634041458368301,
-0.01636289618909359,
0.016341019421815872,
-0.09271951764822006,
0.01651417277753353,
0.14794093370437622,
0.14552854001522064,
0.009957770816981792,
-0.02756648324429989,
0.026389047503471375,
-0.01962868683040142,
0.08914726972579956,
-0.13446137309074402,
-0.019744597375392914,
0.10607205331325531,
-0.00038677951670251787,
0.16900634765625,
0.07112356275320053,
-0.05685991793870926,
0.03375822678208351,
0.12005637586116791,
-0.11888085305690765,
-0.06584595143795013,
-0.01765679009258747,
-0.0018178363097831607,
-0.022730369120836258,
-0.021693160757422447,
0.03276849910616875,
-0.10393999516963959,
0.018569216132164,
-0.05621681734919548,
-0.03320566564798355,
-0.10479620844125748,
0.09910149872303009,
-0.01724938489496708,
0.03712870925664902,
-0.10720182955265045,
0.07144645601511002,
-0.009305715560913086,
-0.1029326543211937,
0.03190740570425987,
-0.026390329003334045,
-0.0797346979379654,
-0.03445616364479065,
-0.09146662801504135,
0.21803514659404755,
-0.16834771633148193,
-0.05400002747774124,
-0.12856942415237427,
-0.11900219321250916,
-0.003053550608456135,
0.014181730337440968,
0.07293754816055298,
0.043178122490644455,
-0.0752931609749794,
-0.06644760072231293,
-0.0877484455704689,
0.014682956971228123,
0.11782516539096832,
-0.040665607899427414,
-0.08510614931583405,
0.038878895342350006,
0.014688944444060326,
0.11294077336788177,
-0.06913423538208008,
-0.03459729254245758,
-0.10219462960958481,
0.06545619666576385,
-0.1773291826248169,
0.0038539674133062363,
-0.046467579901218414,
-0.014933998696506023,
0.022888628765940666,
-0.05546564608812332,
-0.03215948864817619,
-0.013529770076274872,
-0.1156454086303711,
0.006670994218438864,
0.005043440032750368,
0.057148586958646774,
-0.050285741686820984,
0.0003311603795737028,
0.02985810860991478,
-0.057377610355615616,
0.037135474383831024,
0.10050705820322037,
-0.03533531725406647,
0.0010686443420127034,
-0.19986513257026672,
-0.026969680562615395,
0.03731019049882889,
-0.01043213251978159,
0.1089927926659584,
-0.01803480088710785,
0.01365838572382927,
0.035479433834552765,
0.08818725496530533,
0.04583180695772171,
0.03067943826317787,
-0.1487773358821869,
-0.058079224079847336,
0.06214406341314316,
-0.06588112562894821,
-0.06556546688079834,
0.08481758832931519,
0.08101166784763336,
0.057774487882852554,
0.1583552062511444,
-0.0887550488114357,
0.03679868206381798,
-0.04813574627041817,
-0.01892065443098545,
-0.026967661455273628,
0.0055520543828606606,
-0.03637091442942619,
-0.03500525280833244,
0.05986803397536278,
0.012650741264224052,
0.21234194934368134,
0.08120705932378769,
0.0013999664224684238,
0.01783081144094467,
-0.05216171219944954,
0.08287648111581802,
-0.03665858134627342,
0.11034762114286423,
0.07656113058328629,
0.004419952165335417,
-0.06932839006185532,
0.0677347481250763,
0.0652308538556099,
0.056684523820877075,
0.1559019833803177,
0.08354757726192474,
0.0019038940081372857,
0.15204280614852905,
0.03477661684155464,
0.05367979407310486,
-0.003150352742522955,
0.0294216126203537,
0.01233236026018858,
0.06757844984531403,
-0.06431914865970612,
0.018772706389427185,
0.10069450736045837,
-0.11656700819730759,
0.09145309031009674,
-0.03413909301161766,
-0.07218730449676514,
-0.15748995542526245,
-0.07610034197568893,
-0.06717178225517273,
-0.14711816608905792,
0.038442499935626984,
-0.07375608384609222,
0.039387475699186325,
0.08644847571849823,
0.09984707832336426,
-0.04924993962049484,
0.13359710574150085,
-0.23158252239227295,
0.0038133913185447454,
0.11827273666858673,
0.004922371357679367,
0.014110304415225983,
-0.10631704330444336,
0.002144829137250781,
0.014034745283424854,
0.02794482372701168,
0.022466395050287247,
0.03215587139129639,
-0.006977401208132505,
0.04600067436695099,
0.006294087506830692,
-0.056002967059612274,
-0.03593434765934944,
0.0501849427819252,
0.07888400554656982,
0.14093196392059326,
0.019633131101727486,
-0.017898984253406525,
0.0026473505422472954,
0.17953918874263763,
-0.10728927701711655,
-0.12051179260015488,
-0.1677614450454712,
0.31741905212402344,
0.02235073782503605,
0.04904245585203171,
0.01957853138446808,
-0.050231900066137314,
-0.025185665115714073,
0.2156183123588562,
0.30208447575569153,
-0.10717929899692535,
-0.022727370262145996,
-0.02604631893336773,
0.0038148185703903437,
-0.02751426212489605,
0.05512898787856102,
-0.0015600818442180753,
0.1783580183982849,
-0.11649014055728912,
0.06992413103580475,
-0.06943684816360474,
-0.014047173783183098,
-0.023759961128234863,
-0.03783896565437317,
0.04145669564604759,
-0.035055458545684814,
-0.05935914069414139,
0.09080978482961655,
-0.1521763801574707,
-0.08465816080570221,
0.1583675742149353,
-0.07359439134597778,
-0.09671441465616226,
-0.039731018245220184,
-0.023429105058312416,
0.06017988175153732,
0.12635210156440735,
-0.03745155781507492,
-0.0150036895647645,
0.002407868392765522,
-0.0021568487863987684,
-0.09875542670488358,
-0.11867524683475494,
0.08919063955545425,
0.09242433309555054,
0.23857809603214264,
0.007132605649530888,
0.13750340044498444,
0.051912564784288406,
0.050858475267887115,
-0.052361685782670975,
0.0852246880531311,
0.0066946703009307384,
0.023792928084731102,
-0.0005805245600640774,
-0.011066371574997902,
-0.03364322707056999,
0.07829076051712036,
-0.05630136653780937,
-0.03240961581468582,
0.09646998345851898,
-0.1625729352235794,
-0.04800891876220703,
-0.09548238664865494,
0.06199011206626892,
-0.07602330297231674,
0.11385228484869003,
0.1765425056219101,
-0.023361917585134506,
0.008876193314790726,
-0.044195789843797684,
0.0611644983291626,
0.07100528478622437,
-0.09038934856653214,
-0.037735555320978165,
-0.11879964172840118,
0.04871372506022453,
0.05751791596412659,
0.010632992722094059,
-0.3427251875400543,
-0.011880801059305668,
-0.07196163386106491,
-0.010536191053688526,
0.01259353943169117,
0.035297125577926636,
0.044648997485637665,
0.03460240364074707,
-0.04547315090894699,
-0.13899707794189453,
-0.0040255640633404255,
0.08003140985965729,
-0.032122328877449036,
-0.10317737609148026
] |
null | null |
transformers
|
# Melchior DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
Sebastianthecrab/DialoGPT-small-melchior
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Melchior DialoGPT Model
|
[
"# Melchior DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Melchior DialoGPT Model"
] |
[
51,
9
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Melchior DialoGPT Model"
] |
[
-0.03335259109735489,
0.05125914514064789,
-0.00593778770416975,
0.026835458353161812,
0.16154585778713226,
0.004813661333173513,
0.15566129982471466,
0.11361226439476013,
-0.004783152136951685,
-0.029823224991559982,
0.12116839736700058,
0.1833311915397644,
0.0018108272925019264,
0.036764442920684814,
-0.0885288268327713,
-0.3265300393104553,
0.021685246378183365,
0.05466730147600174,
0.06361223012208939,
0.11374546587467194,
0.09564688801765442,
-0.038757264614105225,
0.10879993438720703,
0.019209854304790497,
-0.1393369436264038,
0.012856069952249527,
0.004381007980555296,
-0.11051982641220093,
0.11089912056922913,
0.06449209153652191,
-0.005336458794772625,
0.018009278923273087,
-0.03729467839002609,
-0.12612009048461914,
0.029865732416510582,
-0.03719884157180786,
-0.030619658529758453,
0.044445835053920746,
0.05228159576654434,
-0.09976503998041153,
0.1985953152179718,
0.0850270539522171,
0.002140382770448923,
0.04247028008103371,
-0.157775416970253,
0.03151586651802063,
-0.01006924919784069,
-0.020586147904396057,
0.05190359801054001,
0.11797501146793365,
-0.04410173371434212,
0.14706119894981384,
-0.05591694265604019,
0.11836741119623184,
0.09720040112733841,
-0.36808329820632935,
-0.018205702304840088,
0.11805146932601929,
0.06743475794792175,
0.041474051773548126,
-0.04768356308341026,
0.10361918807029724,
-0.0006630504503846169,
0.020817384123802185,
-0.01269500982016325,
-0.07170480489730835,
-0.06953200697898865,
-0.00539427762851119,
-0.09650342166423798,
-0.0050542522221803665,
0.2097538709640503,
-0.043293993920087814,
0.07890613377094269,
-0.11028680205345154,
-0.0995178073644638,
-0.06006668508052826,
-0.027041656896471977,
-0.010842859745025635,
-0.0765557587146759,
0.07622780650854111,
0.018801867961883545,
-0.07930406928062439,
-0.09900087863206863,
-0.017679408192634583,
-0.18141750991344452,
0.14127753674983978,
0.044098712503910065,
0.029008373618125916,
-0.19782139360904694,
0.08524250239133835,
0.013448775745928288,
-0.10558323562145233,
0.01989288441836834,
-0.07054328918457031,
0.01843896508216858,
0.02176523394882679,
-0.036030177026987076,
-0.0689789354801178,
0.07868480682373047,
0.08275723457336426,
-0.018301596865057945,
0.024712368845939636,
-0.009109856560826302,
0.041078757494688034,
0.049772992730140686,
0.1320776492357254,
0.0017390181310474873,
-0.08313952386379242,
0.024551307782530785,
-0.12020419538021088,
0.00372911524027586,
-0.04939320683479309,
-0.18110065162181854,
-0.02521241270005703,
0.03394422307610512,
0.06617322564125061,
0.008242016658186913,
0.12894578278064728,
-0.006357809528708458,
-0.047559063881635666,
0.033307455480098724,
-0.033248987048864365,
-0.019230350852012634,
0.02265990898013115,
-0.013362464495003223,
0.11386358737945557,
0.0315881073474884,
0.03254963830113411,
-0.12661989033222198,
0.007750336080789566,
-0.043272633105516434,
0.0029028861317783594,
-0.028235692530870438,
-0.04824436455965042,
-0.013910776935517788,
-0.06030934303998947,
0.012852085754275322,
-0.15969829261302948,
-0.11820583790540695,
-0.008880116045475006,
-0.015582418069243431,
-0.07766295969486237,
-0.061700377613306046,
-0.09837982058525085,
0.006567571312189102,
0.02281295508146286,
-0.04992951452732086,
-0.0357695072889328,
-0.05139593034982681,
0.07548938691616058,
0.006348908878862858,
0.08921322226524353,
-0.10623916983604431,
0.08166885375976562,
-0.0861138179898262,
-0.007897431030869484,
-0.05815861374139786,
0.12958087027072906,
0.034671783447265625,
0.05006895586848259,
-0.034566838294267654,
-0.031317394226789474,
-0.08571547269821167,
0.050518009811639786,
-0.025425875559449196,
0.22240795195102692,
-0.016589533537626266,
-0.07879230380058289,
0.25735267996788025,
-0.034633610397577286,
-0.1360798180103302,
0.12964379787445068,
0.006415629759430885,
0.05355508252978325,
0.12369062006473541,
0.20720121264457703,
-0.0070371911861002445,
0.002810704056173563,
0.08644907176494598,
0.08852435648441315,
-0.06933621317148209,
-0.023179907351732254,
0.041215989738702774,
-0.025173719972372055,
-0.10489290952682495,
0.03855505213141441,
0.09461842477321625,
0.06421742588281631,
-0.06875056773424149,
-0.013631811365485191,
0.001841637771576643,
-0.012121036648750305,
0.08899307250976562,
-0.033431947231292725,
0.13263599574565887,
-0.027102984488010406,
-0.03220557048916817,
-0.011398207396268845,
0.00891412328928709,
-0.05123072862625122,
0.015417815186083317,
-0.08617787063121796,
0.0545884370803833,
-0.02947615087032318,
0.04700509458780289,
-0.15237358212471008,
-0.05903342366218567,
-0.020787566900253296,
0.1450081169605255,
0.07180549204349518,
0.08603855967521667,
0.0535636842250824,
0.0002958874683827162,
-0.0193176232278347,
0.045382820069789886,
0.17794868350028992,
-0.00368389580398798,
-0.07131978869438171,
-0.09617991000413895,
0.08505471050739288,
-0.052942171692848206,
0.095252625644207,
-0.06979299336671829,
0.010663153603672981,
-0.00004423130303621292,
0.09132838994264603,
-0.016261080279946327,
0.013261610642075539,
0.030173445120453835,
-0.003360271453857422,
-0.03277696296572685,
0.012182805687189102,
0.1063590943813324,
-0.0029507060535252094,
-0.0811343863606453,
0.23944246768951416,
-0.21601502597332,
0.16060689091682434,
0.17774808406829834,
-0.18431039154529572,
0.010498094372451305,
-0.13496606051921844,
-0.029326466843485832,
0.011321170255541801,
0.06492678821086884,
-0.016509242355823517,
0.2494381219148636,
-0.02128300815820694,
0.20330891013145447,
-0.044859640300273895,
-0.04203629493713379,
-0.02535824477672577,
-0.057400546967983246,
0.008952139876782894,
0.11412961035966873,
0.14707079529762268,
-0.1964535266160965,
0.13715288043022156,
0.08953384310007095,
0.07282157987356186,
0.191743865609169,
0.035306692123413086,
0.020223909988999367,
0.023941967636346817,
-0.0021232319995760918,
-0.0411951020359993,
-0.0743381679058075,
-0.31730926036834717,
-0.01600896194577217,
0.05503859370946884,
0.04405650869011879,
0.12065543979406357,
-0.08547262847423553,
-0.00872010551393032,
0.010852251201868057,
-0.0035481201484799385,
0.026446755975484848,
0.135176420211792,
0.04307600110769272,
0.10171610862016678,
-0.019175810739398003,
-0.0380886048078537,
0.045303575694561005,
0.019005969166755676,
-0.08503639698028564,
0.19323651492595673,
-0.12530319392681122,
-0.3154963254928589,
-0.11487111449241638,
-0.20985518395900726,
-0.0922459065914154,
0.04989887773990631,
0.10900864750146866,
-0.08544140309095383,
-0.008896942250430584,
-0.009517020545899868,
0.15528661012649536,
-0.07683210074901581,
0.014982634223997593,
-0.029352419078350067,
-0.005813792813569307,
-0.1203681230545044,
-0.1019502654671669,
-0.06715051084756851,
-0.039384834468364716,
-0.07224872708320618,
0.09737633168697357,
-0.1404615044593811,
0.02834116667509079,
0.20462319254875183,
0.049215760082006454,
0.06295379996299744,
-0.03826657310128212,
0.23228275775909424,
-0.09322298318147659,
-0.01858953759074211,
0.22087892889976501,
-0.028071921318769455,
0.04071773961186409,
0.11956054717302322,
0.004354849923402071,
-0.10521022975444794,
0.035004206001758575,
-0.03474519029259682,
-0.06526336073875427,
-0.2289101779460907,
-0.1538342535495758,
-0.11177738010883331,
0.06849904358386993,
0.025712966918945312,
0.04423512518405914,
0.1164022833108902,
0.06750260293483734,
-0.0172458253800869,
-0.029709909111261368,
0.038825832307338715,
0.06870503723621368,
0.3007146418094635,
-0.07296428084373474,
0.12269748002290726,
-0.01776379719376564,
-0.14868700504302979,
0.07686389237642288,
0.036820679903030396,
0.07624492049217224,
0.06923925131559372,
0.05685482919216156,
0.03231727331876755,
0.041347913444042206,
0.09764780104160309,
0.04940038546919823,
0.016640815883874893,
-0.032596103847026825,
-0.03565949946641922,
-0.046533677726984024,
-0.04059629142284393,
0.013474518433213234,
0.08552876114845276,
-0.1471552550792694,
-0.06007785350084305,
-0.012333639897406101,
0.0671096220612526,
0.027026301249861717,
0.07193560898303986,
-0.2155393809080124,
-0.025281274691224098,
0.03431110084056854,
-0.03419027477502823,
-0.12072007358074188,
0.07548392564058304,
0.02876010537147522,
-0.14225627481937408,
0.03698941692709923,
-0.020000044256448746,
0.11711400747299194,
-0.10825808346271515,
0.07471965998411179,
-0.08488914370536804,
-0.0407983623445034,
0.022422075271606445,
0.09924110025167465,
-0.2217584103345871,
0.21230262517929077,
-0.007706023752689362,
-0.0450202114880085,
-0.10554136335849762,
-0.00894402526319027,
0.01270044781267643,
0.14181040227413177,
0.0894610583782196,
-0.009752058424055576,
0.04971770569682121,
-0.016779309138655663,
-0.045938242226839066,
0.020558837801218033,
0.12257806956768036,
-0.05636374279856682,
-0.003398689441382885,
-0.03995584696531296,
-0.02352765202522278,
-0.019971836358308792,
-0.12663041055202484,
-0.0020260559394955635,
-0.18680723011493683,
0.07620110362768173,
0.08248485624790192,
0.11186109483242035,
0.03417474776506424,
-0.021096328273415565,
-0.10091669857501984,
0.23311680555343628,
0.02592475898563862,
-0.07772533595561981,
-0.09207651764154434,
-0.017798354849219322,
0.0626271441578865,
-0.06542594730854034,
0.04370321333408356,
-0.07433620095252991,
0.013801400549709797,
-0.059421416372060776,
-0.16501042246818542,
0.12918347120285034,
-0.09292459487915039,
-0.03701593354344368,
-0.01084253191947937,
0.22506043314933777,
-0.03475630655884743,
0.005121754482388496,
0.06342525780200958,
-0.00014443881809711456,
-0.09531476348638535,
-0.10201991349458694,
-0.02888144552707672,
0.05803327262401581,
0.006921287160366774,
0.03805186226963997,
-0.037629757076501846,
-0.05874565243721008,
-0.05208596587181091,
-0.03896394371986389,
0.32620376348495483,
0.13052278757095337,
-0.04645612835884094,
0.1566537618637085,
0.09718837589025497,
-0.07174805551767349,
-0.25692909955978394,
-0.11383674293756485,
-0.061521824449300766,
-0.031370654702186584,
-0.03352145850658417,
-0.15791599452495575,
0.07706902921199799,
-0.0543985441327095,
-0.010996323078870773,
0.06015859916806221,
-0.3745534420013428,
-0.10630572587251663,
0.14383427798748016,
-0.017668621614575386,
0.39311307668685913,
-0.0860518217086792,
-0.09548389911651611,
-0.053563959896564484,
-0.1631394922733307,
0.1225866824388504,
0.044013332575559616,
0.1440592259168625,
-0.013221075758337975,
0.1225753128528595,
0.04678552597761154,
0.006721789948642254,
0.09586513042449951,
0.01704447902739048,
-0.05212723836302757,
-0.08607615530490875,
-0.05538804829120636,
-0.015059162862598896,
0.036794163286685944,
0.05537627637386322,
-0.06307250261306763,
0.04243744909763336,
-0.1694270819425583,
-0.07583007216453552,
-0.0658099427819252,
0.04704633355140686,
0.03544135391712189,
-0.046305205672979355,
0.012425985187292099,
-0.06470513343811035,
0.0021312329918146133,
0.0019482271745800972,
0.07335654646158218,
-0.10721215605735779,
0.07037905603647232,
0.1057085394859314,
0.11333657801151276,
-0.10386580228805542,
-0.03599721938371658,
-0.06774386018514633,
-0.03890378028154373,
0.06047390401363373,
-0.034884318709373474,
0.008418423123657703,
0.11011091619729996,
-0.04192062467336655,
0.07907617837190628,
0.07985939830541611,
0.013840122148394585,
0.01265755295753479,
0.08098286390304565,
-0.22609756886959076,
-0.09953787922859192,
-0.08814385533332825,
0.05134573578834534,
0.09814324975013733,
0.09477654099464417,
0.2138536274433136,
-0.00991060584783554,
-0.031837429851293564,
-0.005591045133769512,
0.009299352765083313,
-0.0381963774561882,
0.06524723768234253,
-0.04062823951244354,
0.008987242355942726,
-0.1487959921360016,
0.05750773847103119,
0.009397914633154869,
-0.12092197686433792,
0.015090114437043667,
0.18601655960083008,
-0.10126610845327377,
-0.1259373426437378,
-0.04849903658032417,
0.1346103996038437,
-0.11647634953260422,
-0.007805011700838804,
-0.045417144894599915,
-0.14872433245182037,
0.06859080493450165,
0.13454794883728027,
0.06827563792467117,
0.07074324041604996,
-0.11807987093925476,
-0.037198252975940704,
-0.032426878809928894,
-0.00882905162870884,
0.05523107200860977,
-0.014837872236967087,
-0.04917237535119057,
0.042124856263399124,
-0.03195890039205551,
0.10012216120958328,
-0.08673059195280075,
-0.10295320302248001,
-0.1331019401550293,
0.020542941987514496,
-0.07375930994749069,
-0.07316990196704865,
-0.09164433926343918,
-0.03637440502643585,
-0.0152987539768219,
-0.030930036678910255,
-0.03716051205992699,
-0.03134608268737793,
-0.09952246397733688,
0.023121019825339317,
-0.06082678958773613,
0.032488126307725906,
-0.07290531694889069,
0.01943599246442318,
0.04509102925658226,
-0.03674308955669403,
0.170169860124588,
0.1367039680480957,
-0.12323841452598572,
0.060259606689214706,
-0.13350072503089905,
-0.088332399725914,
0.10641748458147049,
0.020114392042160034,
0.04307062178850174,
0.016078442335128784,
0.031228812411427498,
0.0598745122551918,
0.06086987257003784,
0.05946429818868637,
0.10399164259433746,
-0.11828003078699112,
-0.006284007802605629,
-0.05024709552526474,
-0.11654046177864075,
-0.032053712755441666,
-0.03901515156030655,
-0.0012521141907200217,
0.03024570271372795,
0.08952444791793823,
-0.075128935277462,
0.09201893955469131,
-0.05907560512423515,
0.036217477172613144,
0.008745338767766953,
-0.17430737614631653,
-0.031713418662548065,
-0.09560801088809967,
0.06399974226951599,
0.027596011757850647,
0.2143966257572174,
0.0739787295460701,
-0.01700354553759098,
0.023639027029275894,
0.1263125240802765,
0.006478208117187023,
-0.011200353503227234,
0.1869591921567917,
0.08504685014486313,
-0.032620061188936234,
-0.07484900951385498,
0.09261980652809143,
0.03166157007217407,
0.03313087671995163,
0.10775350034236908,
0.021042581647634506,
-0.004413277842104435,
0.08480558544397354,
0.0228414386510849,
0.04550801217556,
-0.16659897565841675,
-0.14019715785980225,
-0.026630153879523277,
0.08618849515914917,
-0.08857209980487823,
0.09667432308197021,
0.09283982217311859,
-0.010478897020220757,
0.034770071506500244,
-0.011328235268592834,
-0.06620314717292786,
-0.1754225194454193,
-0.1549575924873352,
-0.07975775748491287,
-0.138954758644104,
-0.0029628651682287455,
-0.11943992972373962,
0.04651104658842087,
0.032567188143730164,
0.0877612829208374,
-0.06852347403764725,
0.1491355001926422,
-0.028722889721393585,
-0.11258432269096375,
0.0679759532213211,
-0.03265717625617981,
0.10255225002765656,
-0.041396260261535645,
0.01962405815720558,
-0.08196122944355011,
0.04312967509031296,
0.015028145164251328,
0.053727179765701294,
-0.06554371863603592,
-0.00859157182276249,
-0.12356061488389969,
-0.08633209019899368,
-0.06267301738262177,
0.06911329925060272,
-0.006352979689836502,
0.1824388951063156,
0.00808725319802761,
-0.05222218111157417,
0.016868511214852333,
0.2535652220249176,
-0.07282242178916931,
-0.10575088858604431,
-0.07322253286838531,
0.22640028595924377,
0.02766772359609604,
0.0933825820684433,
-0.03840286284685135,
0.02345898374915123,
-0.08210375905036926,
0.3517092764377594,
0.3118184208869934,
-0.09291200339794159,
0.010809830389916897,
0.03358358517289162,
0.04596817493438721,
0.1274658888578415,
0.1062057614326477,
0.09470860660076141,
0.283651739358902,
-0.04940268024802208,
-0.014164763502776623,
-0.033767085522413254,
-0.025107691064476967,
-0.06383144110441208,
0.04490850865840912,
0.06550274044275284,
-0.0633072704076767,
-0.003588787280023098,
0.12914615869522095,
-0.230312317609787,
0.0735517218708992,
-0.13926896452903748,
-0.2013784945011139,
-0.08230476081371307,
-0.011147554032504559,
0.11626805365085602,
0.05393329635262489,
0.09874836355447769,
0.0007585175335407257,
-0.07562961429357529,
0.08436062932014465,
0.03160730004310608,
-0.21424922347068787,
0.01609816774725914,
0.06348945200443268,
-0.07550815492868423,
-0.026686877012252808,
-0.02337184175848961,
0.07220084220170975,
0.07132136821746826,
0.045225925743579865,
-0.020785272121429443,
0.05680479109287262,
-0.013463478535413742,
-0.04292924329638481,
0.06671389937400818,
0.03736956790089607,
0.012397199869155884,
-0.0583004429936409,
0.031138785183429718,
-0.144132599234581,
0.060402266681194305,
-0.025705907493829727,
-0.03070123866200447,
0.0019837520085275173,
0.03743157908320427,
-0.05973991006612778,
0.07168448716402054,
0.10222238302230835,
-0.00653965724632144,
-0.010256616398692131,
-0.007153495214879513,
0.000558032188564539,
-0.016886159777641296,
-0.10125482827425003,
-0.08952710777521133,
-0.17861104011535645,
-0.11914020031690598,
0.057429950684309006,
0.012457825243473053,
-0.19820398092269897,
-0.00855308212339878,
-0.13269147276878357,
0.06389138102531433,
-0.14916960895061493,
0.10040701180696487,
0.07574707269668579,
0.005115804262459278,
-0.003218949306756258,
-0.07161556929349899,
0.04098644107580185,
0.08097333461046219,
-0.15638165175914764,
-0.08889946341514587
] |
null | null |
transformers
|
# Sedged DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
Sedge/DialoGPT-small-Sedge
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Sedged DialoGPT Model
|
[
"# Sedged DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Sedged DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Sedged DialoGPT Model"
] |
[
-0.02510739676654339,
0.03295517712831497,
-0.006978888530284166,
-0.0025964758824557066,
0.1368805468082428,
-0.011664335615932941,
0.15284842252731323,
0.12043746560811996,
-0.01665053702890873,
-0.04504784569144249,
0.09960868209600449,
0.17277340590953827,
-0.005965131800621748,
0.08617822080850601,
-0.06316204369068146,
-0.2884051501750946,
0.06737221777439117,
0.03920004144310951,
0.02582068368792534,
0.11165115982294083,
0.09509242326021194,
-0.03028111904859543,
0.07192660868167877,
0.014207563363015652,
-0.13213565945625305,
0.020314011722803116,
0.008539622649550438,
-0.09572688490152359,
0.11478705704212189,
0.06013379245996475,
0.03594004735350609,
0.014708764851093292,
-0.0363275483250618,
-0.17528006434440613,
0.030375275760889053,
-0.017289509996771812,
-0.03770732134580612,
0.022103725001215935,
-0.0033734606113284826,
-0.08274345099925995,
0.11867602169513702,
0.0857463926076889,
0.010067852213978767,
0.03909004479646683,
-0.1345115751028061,
-0.0024392586201429367,
0.010651160962879658,
0.04643692821264267,
0.09681186079978943,
0.1052587628364563,
-0.05185599625110626,
0.08066482841968536,
-0.07635927945375443,
0.11160449683666229,
0.0731254294514656,
-0.2946024239063263,
-0.000049676746129989624,
0.09660965949296951,
0.03307332843542099,
0.047805480659008026,
-0.03763622045516968,
0.07240009307861328,
0.011511053889989853,
0.002165638143196702,
-0.03357424587011337,
-0.0762556940317154,
-0.10367215424776077,
0.0068004257045686245,
-0.10970752686262131,
-0.01520693488419056,
0.24032026529312134,
-0.027567045763134956,
0.06184237450361252,
-0.08965039998292923,
-0.10843995958566666,
-0.027445562183856964,
-0.05884470045566559,
-0.02902652509510517,
-0.07882345467805862,
0.09335235506296158,
0.02180473692715168,
-0.10010659694671631,
-0.12063504010438919,
-0.04402904212474823,
-0.17552918195724487,
0.15532366931438446,
0.04876789450645447,
0.039019063115119934,
-0.22757786512374878,
0.09397654235363007,
-0.0030837664380669594,
-0.07057593017816544,
0.026372136548161507,
-0.08535236865282059,
-0.017262984067201614,
0.02881731279194355,
-0.04313413426280022,
-0.04593783989548683,
0.07536744326353073,
0.1589815765619278,
-0.006126811727881432,
0.01074810978025198,
0.0005409715231508017,
0.04842808470129967,
0.03889554366469383,
0.07084406912326813,
-0.014294660650193691,
-0.0448644757270813,
0.022539405152201653,
-0.10497698932886124,
0.009127119556069374,
-0.05761235952377319,
-0.1840377300977707,
-0.024574317038059235,
0.05041327700018883,
0.049737997353076935,
0.027099696919322014,
0.13342127203941345,
-0.011440033093094826,
-0.04324227571487427,
0.03383852168917656,
-0.02862006612122059,
-0.029784254729747772,
0.014869238249957561,
0.008878900669515133,
0.11259418725967407,
0.03296827897429466,
0.06175745278596878,
-0.12514130771160126,
0.0038138332311064005,
-0.04468395560979843,
0.0026433486491441727,
-0.014218669384717941,
-0.03657114878296852,
-0.0148344486951828,
-0.048185061663389206,
0.01224384643137455,
-0.14983399212360382,
-0.18486274778842926,
-0.014289159327745438,
-0.030044492334127426,
-0.03897695615887642,
-0.09419678896665573,
-0.12130352854728699,
-0.009466652758419514,
0.04698226600885391,
-0.07554511725902557,
-0.04325013607740402,
-0.05184761807322502,
0.07211558520793915,
-0.02082006447017193,
0.0790487602353096,
-0.12538346648216248,
0.07148226350545883,
-0.09515031427145004,
-0.028652962297201157,
-0.04545953497290611,
0.1517249494791031,
0.0032702740281820297,
0.058984044939279556,
-0.022665100172162056,
-0.0027484323363751173,
-0.1016642153263092,
0.07220409065485,
-0.01927337236702442,
0.2501383125782013,
-0.12421639263629913,
-0.10565231740474701,
0.2820969223976135,
-0.055736467242240906,
-0.11699025332927704,
0.1459512859582901,
-0.005941295530647039,
0.0770585909485817,
0.12271624058485031,
0.22737781703472137,
0.012772941961884499,
-0.0038042066153138876,
0.06373044103384018,
0.10345888137817383,
-0.08184032887220383,
0.009044450707733631,
0.018174096941947937,
-0.04150310903787613,
-0.05736922472715378,
0.03411058709025383,
0.08411502838134766,
0.0616111233830452,
-0.04734637215733528,
-0.031434331089258194,
-0.006459353491663933,
-0.002899396000429988,
0.0877077504992485,
-0.03840816766023636,
0.11741100996732712,
-0.02680421993136406,
-0.0397612638771534,
0.0442514643073082,
0.03179626911878586,
-0.05926916003227234,
0.05343092978000641,
-0.0826500654220581,
0.04572246968746185,
-0.000497238477692008,
0.06552091240882874,
-0.1396949589252472,
-0.08361046016216278,
-0.04407085105776787,
0.18467286229133606,
0.06679617613554001,
0.08570969849824905,
0.05827489495277405,
-0.060276515781879425,
-0.008846866898238659,
0.02669426053762436,
0.14628788828849792,
-0.0060620298609137535,
-0.08278919756412506,
-0.08899274468421936,
0.09637635946273804,
-0.058026451617479324,
0.10496459156274796,
-0.024804241955280304,
0.021817151457071304,
0.004962212406098843,
0.11275945603847504,
-0.022332867607474327,
0.02015773579478264,
0.018169479444622993,
-0.014329265803098679,
-0.04337291046977043,
0.020285237580537796,
0.09132875502109528,
0.0000780858681537211,
-0.1133304312825203,
0.23299601674079895,
-0.18190167844295502,
0.10408506542444229,
0.16523851454257965,
-0.2226416915655136,
0.009845211170613766,
-0.128021702170372,
-0.0389205701649189,
0.00029650755459442735,
0.0543513149023056,
-0.055105697363615036,
0.23699995875358582,
-0.023692967370152473,
0.17192703485488892,
-0.033573780208826065,
-0.02872295305132866,
-0.04446394369006157,
-0.07037494331598282,
0.008065477944910526,
0.08997972309589386,
0.10049984604120255,
-0.11636982858181,
0.15865349769592285,
0.06555841863155365,
0.03606322035193443,
0.2053632289171219,
0.024981370195746422,
0.0040473067201673985,
0.057476505637168884,
0.00048726110253483057,
-0.06421929597854614,
-0.07324974238872528,
-0.29833129048347473,
-0.03218308836221695,
0.06867627799510956,
0.054332632571458817,
0.12437667697668076,
-0.09431417286396027,
-0.019830189645290375,
-0.006261198315769434,
-0.04095810651779175,
0.045815855264663696,
0.12216474860906601,
0.020752470940351486,
0.11657409369945526,
-0.027466626837849617,
-0.07630094140768051,
0.06234263628721237,
0.010930592194199562,
-0.09729917347431183,
0.17059114575386047,
-0.1455848067998886,
-0.33819082379341125,
-0.11508750170469284,
-0.1588122695684433,
-0.06972172111272812,
0.060836873948574066,
0.11228323727846146,
-0.1233544647693634,
-0.01260344684123993,
-0.002892471384257078,
0.09740175306797028,
-0.06816171109676361,
0.017555704340338707,
-0.022646764293313026,
-0.015577585436403751,
-0.11173651367425919,
-0.08992228657007217,
-0.05178243666887283,
-0.05614510551095009,
-0.04912960156798363,
0.0980403795838356,
-0.13403435051441193,
0.04010014235973358,
0.24472163617610931,
0.07109085470438004,
0.0455276221036911,
-0.04435021057724953,
0.21086671948432922,
-0.09911791235208511,
-0.011327292770147324,
0.18780659139156342,
-0.0479608029127121,
0.04868781194090843,
0.15946708619594574,
-0.007426741532981396,
-0.08676917850971222,
0.0429699681699276,
-0.003555411472916603,
-0.06703319400548935,
-0.20330661535263062,
-0.15461519360542297,
-0.11445581167936325,
0.08597863465547562,
-0.009340731427073479,
0.05072318762540817,
0.13107194006443024,
0.05026184022426605,
-0.04387298971414566,
0.009440923109650612,
0.06159038096666336,
0.07696371525526047,
0.266705721616745,
-0.08061306178569794,
0.14040866494178772,
-0.012015660293400288,
-0.1631941944360733,
0.06847097724676132,
0.07801631093025208,
0.04704905301332474,
0.06604674458503723,
0.09665578603744507,
0.030996648594737053,
0.029122043401002884,
0.11707085371017456,
0.01793203316628933,
0.02604040689766407,
-0.03546067699790001,
-0.02656152844429016,
-0.03430260345339775,
-0.04550626128911972,
0.0514301173388958,
0.06931273639202118,
-0.15363913774490356,
-0.048347100615501404,
-0.0017539631808176637,
0.08762990683317184,
0.049464430660009384,
0.08541746437549591,
-0.1496206521987915,
-0.018867291510105133,
0.07567264884710312,
-0.03676072135567665,
-0.1090867891907692,
0.07921525835990906,
0.014166070148348808,
-0.11683192849159241,
0.03686452656984329,
-0.002766090678051114,
0.10686934739351273,
-0.09275905787944794,
0.08471725136041641,
-0.11298531293869019,
-0.05111314356327057,
0.0096742520108819,
0.09751436114311218,
-0.28990501165390015,
0.1869761198759079,
-0.009939705953001976,
-0.05630562826991081,
-0.0870242491364479,
-0.0007112679304555058,
-0.001396212843246758,
0.10363083332777023,
0.1225995272397995,
-0.008362886495888233,
0.03514944389462471,
0.025372376665472984,
-0.06387058645486832,
0.02542280964553356,
0.10919313132762909,
-0.046553004533052444,
-0.02466990053653717,
-0.045319560915231705,
-0.003479539416730404,
-0.0009146997472271323,
-0.07961355149745941,
0.011587814427912235,
-0.18117347359657288,
0.0758344829082489,
0.09936085343360901,
0.06087370589375496,
0.031878139823675156,
-0.013866731896996498,
-0.10711747407913208,
0.27727818489074707,
-0.01432073675096035,
-0.10372521728277206,
-0.09632787853479385,
-0.051286764442920685,
0.04786624014377594,
-0.06507116556167603,
0.028633059933781624,
-0.04394342377781868,
0.017541823908686638,
-0.06651872396469116,
-0.17714747786521912,
0.11813592165708542,
-0.09929177165031433,
-0.03341371938586235,
-0.03477581590414047,
0.22206808626651764,
-0.01656203158199787,
0.010692386887967587,
0.04143785312771797,
-0.015762299299240112,
-0.10086609423160553,
-0.09388351440429688,
-0.00336528941988945,
0.08764734119176865,
-0.011098138988018036,
0.06697279214859009,
-0.0363800935447216,
-0.059040650725364685,
-0.05455823242664337,
-0.026674941182136536,
0.3150900900363922,
0.14016768336296082,
-0.043985530734062195,
0.18211089074611664,
0.1312055140733719,
-0.07715895026922226,
-0.28001418709754944,
-0.1313299685716629,
-0.06132567673921585,
-0.03129858896136284,
-0.08981898427009583,
-0.16303953528404236,
0.049158260226249695,
-0.03591279312968254,
-0.019337914884090424,
0.034034863114356995,
-0.3234832286834717,
-0.11532451957464218,
0.2035175859928131,
-0.03524964675307274,
0.396651953458786,
-0.09283819794654846,
-0.09716227650642395,
-0.050431255251169205,
-0.13915897905826569,
0.1462942510843277,
0.005354456603527069,
0.11085233092308044,
-0.001133086159825325,
0.169838547706604,
0.055603452026844025,
0.006681588012725115,
0.0865236148238182,
0.051268719136714935,
-0.05497845634818077,
-0.08788877725601196,
-0.02803114429116249,
-0.0505148284137249,
0.018565412610769272,
0.06501661986112595,
-0.03510626032948494,
0.03327437490224838,
-0.13262957334518433,
-0.06010587885975838,
-0.07257489860057831,
0.03833536058664322,
0.03769587352871895,
-0.07676779478788376,
-0.011721555143594742,
-0.0740891695022583,
-0.002482236362993717,
0.015541570261120796,
0.1605197638273239,
-0.10383333265781403,
0.11270906031131744,
0.07333597540855408,
0.14329743385314941,
-0.11383549869060516,
-0.04526926949620247,
-0.06308617442846298,
-0.05959431454539299,
0.0619613416492939,
-0.05034857988357544,
0.032157134264707565,
0.10590114444494247,
-0.034268174320459366,
0.09815898537635803,
0.08726993203163147,
-0.007772643584758043,
0.012936877086758614,
0.08379460126161575,
-0.24665267765522003,
-0.08985242247581482,
-0.07362188398838043,
-0.020360808819532394,
0.06082707270979881,
0.1214175671339035,
0.21116715669631958,
-0.003629402257502079,
-0.026010192930698395,
0.006963356863707304,
0.03345182538032532,
-0.03929244354367256,
0.08686942607164383,
0.0009049844229593873,
0.010010579600930214,
-0.14501738548278809,
0.07872120290994644,
-0.01234518364071846,
-0.07059099525213242,
0.05165214091539383,
0.13880494236946106,
-0.10822409391403198,
-0.11303991079330444,
-0.08049119263887405,
0.09713678807020187,
-0.14084583520889282,
-0.016115481033921242,
-0.050066784024238586,
-0.11983604729175568,
0.06327911466360092,
0.10693288594484329,
0.05540147423744202,
0.07932509481906891,
-0.09791181981563568,
-0.017094051465392113,
-0.024876326322555542,
0.008639095351099968,
0.03664357215166092,
-0.018585991114377975,
-0.0489201657474041,
0.06843563169240952,
-0.0387997068464756,
0.12407620996236801,
-0.0903729647397995,
-0.09910007566213608,
-0.15435907244682312,
0.050926100462675095,
-0.10701733827590942,
-0.0880824625492096,
-0.08962094783782959,
-0.036108020693063736,
0.007344401907175779,
-0.019181618466973305,
-0.024678140878677368,
-0.03767605125904083,
-0.10098796337842941,
0.0349067747592926,
-0.038028232753276825,
0.008536216802895069,
-0.08657047152519226,
0.033627577126026154,
0.05523240938782692,
-0.01608174294233322,
0.16456319391727448,
0.15292076766490936,
-0.10246582329273224,
0.09758345037698746,
-0.15506719052791595,
-0.05656195804476738,
0.12148013710975647,
0.017522845417261124,
0.04639465734362602,
0.0691937655210495,
-0.009232457727193832,
0.06487158685922623,
0.049895815551280975,
0.04357113316655159,
0.04409435763955116,
-0.08493231981992722,
0.03848780691623688,
-0.045243240892887115,
-0.09948496520519257,
-0.05066054314374924,
-0.03351407125592232,
0.003430200507864356,
0.07528294622898102,
0.08051329851150513,
-0.06215610355138779,
0.07842200249433517,
-0.043790992349386215,
0.04214414581656456,
0.02316194958984852,
-0.13604888319969177,
0.009418581612408161,
-0.0888856053352356,
0.04914287477731705,
0.011409532278776169,
0.20136167109012604,
0.011986528523266315,
0.009805968962609768,
0.015459145419299603,
0.06160484254360199,
0.0624115951359272,
0.002488480880856514,
0.1792508363723755,
0.10198883712291718,
-0.048152342438697815,
-0.08133547753095627,
0.07865360379219055,
0.04367579519748688,
0.04211660102009773,
0.10237868130207062,
-0.05825011059641838,
-0.029583284631371498,
0.11175616085529327,
0.002156571252271533,
0.018307756632566452,
-0.1398421972990036,
-0.16147993505001068,
-0.054850123822689056,
0.037621840834617615,
-0.06586169451475143,
0.13766981661319733,
0.14459189772605896,
-0.01740276999771595,
0.03960089385509491,
0.025713637471199036,
-0.07391828298568726,
-0.19603005051612854,
-0.1730874478816986,
-0.06833483278751373,
-0.14319883286952972,
0.0016881265910342336,
-0.1286352276802063,
0.02831950969994068,
0.008324322290718555,
0.08292607963085175,
-0.05326584354043007,
0.09135718643665314,
0.02908262051641941,
-0.10570134222507477,
0.05716013163328171,
-0.04026240110397339,
0.08506090193986893,
-0.03435353562235832,
-0.007937605492770672,
-0.04556071385741234,
0.04857700318098068,
0.01580529473721981,
0.033774588257074356,
-0.038590822368860245,
0.00882563553750515,
-0.10864569991827011,
-0.05880369618535042,
-0.06687889248132706,
0.062025077641010284,
0.0015167517121881247,
0.1559303253889084,
0.04714227095246315,
-0.0435752272605896,
0.024351313710212708,
0.23827309906482697,
-0.0761210173368454,
-0.09678351879119873,
-0.08250785619020462,
0.20192812383174896,
0.013190037570893764,
0.11065855622291565,
-0.02823541685938835,
-0.009025553241372108,
-0.08898124098777771,
0.32809150218963623,
0.2803490459918976,
-0.10624650865793228,
0.020243046805262566,
0.00259584141895175,
0.04283107817173004,
0.10432267934083939,
0.09048835933208466,
0.10450848937034607,
0.3027423024177551,
-0.04127637296915054,
-0.03471580520272255,
-0.008084905333817005,
-0.042843256145715714,
-0.05539895221590996,
0.05612324923276901,
0.03589993342757225,
-0.05743033066391945,
-0.019840596243739128,
0.10512717068195343,
-0.2745044529438019,
0.08165953308343887,
-0.1778583526611328,
-0.14199939370155334,
-0.06367109715938568,
0.013370429165661335,
0.09735529124736786,
0.037987641990184784,
0.07199519872665405,
0.0042494297958910465,
-0.07398232817649841,
0.09589547663927078,
0.023142151534557343,
-0.19283156096935272,
-0.010026375763118267,
0.06530874967575073,
-0.04360945522785187,
-0.040180955082178116,
-0.025189109146595,
0.0728837177157402,
0.06341870874166489,
0.06877170503139496,
0.0010281152790412307,
0.06197575852274895,
-0.015926769003272057,
-0.03715064004063606,
0.03830765560269356,
0.0563194714486599,
0.018812967464327812,
-0.059073083102703094,
0.06949806213378906,
-0.13859368860721588,
0.04172259941697121,
-0.01575949415564537,
-0.035516805946826935,
-0.028386883437633514,
0.04233626276254654,
-0.08116833865642548,
0.06624573469161987,
0.07019519805908203,
-0.009930421598255634,
0.0012782443081960082,
-0.020939495414495468,
-0.02273043803870678,
-0.04353143274784088,
-0.06942165642976761,
-0.07868313044309616,
-0.16002759337425232,
-0.10213451087474823,
0.10591327399015427,
-0.006617961451411247,
-0.14604070782661438,
-0.005780886393040419,
-0.10729291290044785,
0.06379257887601852,
-0.11739698797464371,
0.10216829180717468,
0.07633475959300995,
0.022209057584404945,
-0.006651580799371004,
-0.014690861105918884,
0.05333186313509941,
0.08378516137599945,
-0.1361447274684906,
-0.09308106452226639
] |
null | null |
transformers
|
# wav2vec2-irish-lite Speech to Text
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Semih/wav2vec2_Irish_Large")
model = Wav2Vec2ForCTC.from_pretrained("Semih/wav2vec2_Irish_Large")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
```
Test Result: 55.11
|
{"language": "ga-IE", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice"], "metrics": ["wer"]}
|
automatic-speech-recognition
|
Semih/wav2vec2_Irish_Large
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"ga-IE"
] |
TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
|
# wav2vec2-irish-lite Speech to Text
## Usage
The model can be used directly (without a language model) as follows:
Test Result: 55.11
|
[
"# wav2vec2-irish-lite Speech to Text",
"## Usage\nThe model can be used directly (without a language model) as follows:\n\nTest Result: 55.11"
] |
[
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"# wav2vec2-irish-lite Speech to Text",
"## Usage\nThe model can be used directly (without a language model) as follows:\n\nTest Result: 55.11"
] |
[
63,
13,
26
] |
[
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-irish-lite Speech to Text## Usage\nThe model can be used directly (without a language model) as follows:\n\nTest Result: 55.11"
] |
[
-0.135940283536911,
0.06460617482662201,
-0.0031124220695346594,
-0.017614195123314857,
0.026877665892243385,
-0.05802525207400322,
0.12413235008716583,
0.11355312913656235,
0.06713679432868958,
-0.01037722546607256,
0.12996013462543488,
0.16787652671337128,
0.013652371242642403,
0.012016760185360909,
-0.04657822474837303,
-0.18210750818252563,
0.06764587759971619,
-0.003474176861345768,
0.07809469848871231,
0.11354333907365799,
0.11898782104253769,
-0.04525654762983322,
0.017446346580982208,
0.08981218189001083,
-0.03525266423821449,
0.05260712280869484,
0.024309702217578888,
-0.12949226796627045,
0.1223735362291336,
0.08391266316175461,
-0.014965697191655636,
0.029055597260594368,
0.03544703498482704,
-0.23548682034015656,
0.014029288664460182,
-0.051760636270046234,
0.0353238619863987,
0.0034543946385383606,
0.013125244528055191,
-0.024544700980186462,
0.06566262245178223,
0.12521633505821228,
-0.009549956768751144,
0.06503286212682724,
0.002033551689237356,
-0.18377211689949036,
0.030636217445135117,
0.03059133142232895,
0.07419509440660477,
0.11184748262166977,
-0.07573733478784561,
0.11385830491781235,
-0.05763240158557892,
0.08320243656635284,
0.10601238161325455,
-0.2973572611808777,
0.020166555419564247,
0.042466022074222565,
0.07642430812120438,
0.040083467960357666,
-0.015051715075969696,
0.055987246334552765,
0.02468561753630638,
0.04508531838655472,
-0.09822051972150803,
-0.055563971400260925,
-0.1434434950351715,
0.02378041110932827,
-0.10451125353574753,
-0.01664545387029648,
0.2510681450366974,
-0.008794190362095833,
-0.02673587016761303,
-0.12688389420509338,
0.001297862152568996,
0.053213201463222504,
-0.04042738303542137,
-0.06574354320764542,
-0.015136484988033772,
0.07161545008420944,
-0.0036406347062438726,
-0.06854330748319626,
-0.12101813405752182,
-0.09583345800638199,
-0.1160862147808075,
0.11655492335557938,
0.037118494510650635,
0.056506067514419556,
-0.14435747265815735,
0.025707527995109558,
-0.07411976158618927,
-0.05454986169934273,
-0.055387817323207855,
-0.007321157958358526,
0.033579546958208084,
0.046444572508335114,
-0.08668022602796555,
-0.052030570805072784,
0.1420770287513733,
0.010251115076243877,
0.06993814557790756,
0.03211884945631027,
-0.06506214290857315,
0.08248205482959747,
0.0025156675837934017,
0.12288423627614975,
-0.06865806877613068,
-0.06291034817695618,
0.044487424194812775,
-0.0483890175819397,
0.04698040708899498,
0.0013130238512530923,
-0.13519197702407837,
-0.05871252343058586,
-0.04273628070950508,
0.06231091916561127,
0.016263417899608612,
0.00788878370076418,
-0.04309000447392464,
-0.04408078268170357,
0.040666937828063965,
-0.08272083848714828,
-0.038009095937013626,
0.06418711692094803,
0.03314106911420822,
0.17044587433338165,
0.07236448675394058,
0.09084861725568771,
-0.12938053905963898,
-0.040779177099466324,
0.048083215951919556,
0.03247758373618126,
0.03796924278140068,
-0.01994965597987175,
0.023609047755599022,
0.04800064489245415,
0.013847392983734608,
-0.08922968804836273,
-0.12058351933956146,
-0.028540121391415596,
0.025454578921198845,
0.01142673846334219,
-0.08420144766569138,
-0.1354181468486786,
0.009779760614037514,
-0.018036114051938057,
-0.06565149128437042,
0.005019917618483305,
-0.0411202609539032,
0.06569607555866241,
0.008301516994833946,
0.06435908377170563,
-0.12325914204120636,
0.08846087008714676,
-0.10464680939912796,
-0.07359404116868973,
0.015720898285508156,
0.07607764005661011,
-0.03699970245361328,
0.022163765504956245,
-0.1143232136964798,
-0.05584501847624779,
-0.053774379193782806,
0.05557067692279816,
-0.01501886174082756,
0.12278753519058228,
-0.16057217121124268,
-0.0731624960899353,
0.1456311196088791,
-0.09658072143793106,
-0.1279190331697464,
0.17998450994491577,
0.03205108270049095,
0.0791281908750534,
0.120941162109375,
0.24138224124908447,
0.01455724611878395,
-0.20618736743927002,
0.09460131078958511,
0.08603677898645401,
-0.023652998730540276,
-0.07659683376550674,
0.09229645133018494,
-0.11559129506349564,
-0.04577840864658356,
0.04799136146903038,
-0.011654337868094444,
0.0313764363527298,
0.0069789583794772625,
-0.09307033568620682,
-0.03120056912302971,
-0.1131543219089508,
0.02680841274559498,
-0.009443436749279499,
0.02450965903699398,
-0.02268405258655548,
-0.027054643258452415,
-0.025867629796266556,
0.10038968920707703,
-0.11042377352714539,
0.06404893845319748,
-0.17012470960617065,
0.10267505794763565,
-0.06503942608833313,
0.008554712869226933,
-0.11144504696130753,
0.23657137155532837,
-0.043598901480436325,
0.044221483170986176,
0.12398198992013931,
0.06964992731809616,
0.03177788853645325,
-0.0540950633585453,
-0.0013573456089943647,
0.017009487375617027,
0.1562778502702713,
0.002439984353259206,
-0.027811963111162186,
-0.14765270054340363,
0.05595190450549126,
-0.047606583684682846,
0.029593301936984062,
-0.037820860743522644,
-0.048697009682655334,
-0.006685859058052301,
0.006560269743204117,
-0.06398308277130127,
0.03215659782290459,
0.03332582488656044,
0.028303418308496475,
-0.028762565925717354,
0.03908539563417435,
0.07046548277139664,
0.00792714860290289,
-0.09234550595283508,
0.21624703705310822,
-0.09665630012750626,
0.13480734825134277,
0.19446496665477753,
-0.14068536460399628,
0.09252270311117172,
0.08083784580230713,
0.010766911320388317,
0.004693865776062012,
-0.011725503951311111,
0.018109796568751335,
0.2827465534210205,
-0.008552374318242073,
0.12754973769187927,
-0.1000313013792038,
-0.02610447257757187,
0.012869130820035934,
-0.04964183270931244,
-0.0066291941329836845,
0.06640934944152832,
0.025660641491413116,
-0.06843152642250061,
0.035891298204660416,
0.07814580947160721,
-0.13076886534690857,
0.18816326558589935,
-0.03043854422867298,
-0.07083941996097565,
0.02760142832994461,
0.010201601311564445,
-0.04560455307364464,
0.06699010729789734,
-0.3217996656894684,
-0.034809377044439316,
0.0803392082452774,
0.0002319500781595707,
0.08606923371553421,
-0.10767851769924164,
0.016659807413816452,
0.004447003826498985,
-0.12709657847881317,
-0.13744910061359406,
0.06801050156354904,
-0.034504204988479614,
0.031212197616696358,
-0.09163075685501099,
-0.1101401150226593,
0.04948122799396515,
-0.038908399641513824,
-0.16859781742095947,
0.07626248896121979,
-0.11939062178134918,
-0.21442757546901703,
-0.138263538479805,
-0.04642690718173981,
-0.022243831306695938,
0.02431044541299343,
0.14085550606250763,
-0.07677588611841202,
-0.03274014592170715,
-0.022890452295541763,
0.009583168663084507,
-0.06202017888426781,
-0.04143853485584259,
0.007619122974574566,
-0.013344498351216316,
0.005528564099222422,
-0.13542750477790833,
-0.017230365425348282,
-0.006938940845429897,
0.03529133275151253,
-0.009240985848009586,
-0.08700183779001236,
0.0011614427203312516,
0.19048017263412476,
0.06003271043300629,
0.059265974909067154,
-0.042973365634679794,
0.17392206192016602,
-0.05440286546945572,
-0.0575917512178421,
0.17748118937015533,
-0.04604162275791168,
-0.008675565011799335,
0.15336616337299347,
0.016956189647316933,
-0.050088752061128616,
-0.028968598693609238,
-0.08715783804655075,
-0.04955761879682541,
-0.2706725299358368,
-0.12814781069755554,
-0.08049783855676651,
0.000025068487957469188,
-0.026115790009498596,
0.022557372227311134,
0.06901013106107712,
0.03159509599208832,
-0.013506662100553513,
-0.0699787586927414,
0.05736958980560303,
0.03467026352882385,
0.2941140830516815,
-0.05248492956161499,
0.11609182506799698,
-0.07412155717611313,
-0.06311389803886414,
0.05589314177632332,
0.03321373835206032,
0.07579276710748672,
0.1463337540626526,
0.10615544766187668,
0.04588813707232475,
0.16845856606960297,
0.09741618484258652,
0.10981270670890808,
-0.0076295798644423485,
0.014144078828394413,
-0.015954991802573204,
-0.08622284233570099,
-0.004366787150502205,
0.07455829530954361,
0.16406358778476715,
-0.06927786022424698,
0.02925274707376957,
-0.07758340984582901,
0.01167111936956644,
0.15919283032417297,
0.0960063636302948,
-0.1573706865310669,
-0.025151070207357407,
0.01202000118792057,
-0.07382611185312271,
-0.04721503704786301,
0.13462987542152405,
0.0428377129137516,
-0.08320999890565872,
0.10759203881025314,
0.03378337621688843,
0.06607379019260406,
0.030121568590402603,
0.05434316396713257,
-0.11309101432561874,
-0.1127404123544693,
0.045404884964227676,
0.11252524703741074,
-0.26853621006011963,
0.21167391538619995,
0.0004548736906144768,
0.08153972774744034,
-0.061318252235651016,
0.020134998485445976,
0.026330990716814995,
0.10154248028993607,
0.1640988141298294,
-0.01787029765546322,
0.031210975721478462,
0.04151083528995514,
-0.0655127614736557,
0.08890092372894287,
0.02138000912964344,
0.08511022478342056,
-0.014245322905480862,
-0.02599189430475235,
-0.04382326453924179,
-0.004094061907380819,
-0.0553600899875164,
-0.13769960403442383,
-0.10691120475530624,
0.015352151356637478,
0.2485269159078598,
0.12032904475927353,
0.00456432206556201,
-0.061508867889642715,
-0.1315830796957016,
0.11249551177024841,
-0.13573122024536133,
-0.04437240585684776,
-0.03933389112353325,
-0.1573074907064438,
0.1368618607521057,
-0.03353646397590637,
0.019572485238313675,
-0.012021410278975964,
0.041140422224998474,
-0.0487443171441555,
-0.08034813404083252,
0.08116089552640915,
-0.12869976460933685,
-0.04881365969777107,
-0.010245248675346375,
0.21093995869159698,
0.0033142194151878357,
0.05690691992640495,
0.10278348624706268,
-0.003292353358119726,
-0.11305940896272659,
-0.06983469426631927,
-0.017098745331168175,
0.1001940369606018,
-0.14436078071594238,
-0.012811705470085144,
0.056847214698791504,
-0.19078026711940765,
-0.08902059495449066,
-0.06955563277006149,
0.22753091156482697,
0.05780893936753273,
-0.04705021157860756,
0.177797332406044,
0.26430416107177734,
-0.09257982671260834,
-0.22493411600589752,
-0.1708722710609436,
-0.012087548151612282,
0.04804643243551254,
-0.06454547494649887,
-0.11532007157802582,
0.1341201364994049,
-0.0699755921959877,
-0.07241190969944,
-0.03200916945934296,
-0.21161240339279175,
-0.15385693311691284,
0.262722373008728,
-0.046136703342199326,
0.27790001034736633,
-0.045086465775966644,
-0.068384550511837,
-0.0630812793970108,
-0.06921492516994476,
0.03604238107800484,
-0.06265988200902939,
0.07527294009923935,
0.026330895721912384,
0.16389648616313934,
0.028632979840040207,
-0.013064518570899963,
0.09662836045026779,
0.04259166494011879,
-0.06904610991477966,
-0.0037459274753928185,
-0.0024518324062228203,
0.024789217859506607,
0.03882133215665817,
0.15731772780418396,
-0.13428187370300293,
0.05001872032880783,
-0.0510282926261425,
-0.09534122794866562,
-0.061640359461307526,
0.04996836557984352,
0.03325262665748596,
-0.0205384474247694,
-0.013294854201376438,
-0.11472334712743759,
0.008949881419539452,
0.0407797135412693,
0.08733625710010529,
-0.12195667624473572,
-0.009280255064368248,
0.1671925187110901,
0.22658222913742065,
-0.09015309810638428,
-0.03780415281653404,
-0.02816779352724552,
-0.10555872321128845,
0.0923398956656456,
-0.09531394392251968,
0.029073582962155342,
0.09083234518766403,
0.03893306478857994,
0.06304590404033661,
0.03274787589907646,
-0.04902460798621178,
0.028971299529075623,
0.04524388536810875,
-0.06815201044082642,
-0.10668317973613739,
-0.024257682263851166,
0.04157441481947899,
0.025461483746767044,
0.046893149614334106,
0.13713189959526062,
-0.05274609848856926,
-0.02844696119427681,
-0.021084997802972794,
-0.029595838859677315,
-0.14679434895515442,
0.16802842915058136,
0.021067149937152863,
0.021879583597183228,
-0.1508595496416092,
0.018299350515007973,
-0.04442707449197769,
-0.08003584295511246,
0.0159582681953907,
-0.0281707514077425,
-0.040826745331287384,
-0.11226219683885574,
-0.050206754356622696,
0.07854007929563522,
-0.04525211825966835,
-0.15258663892745972,
-0.006114357616752386,
-0.11839562654495239,
0.04253380373120308,
0.12847931683063507,
0.07435578852891922,
0.032969556748867035,
-0.12145056575536728,
-0.07481878995895386,
-0.0018772506155073643,
0.08215894550085068,
0.01875663734972477,
-0.040699996054172516,
-0.12852062284946442,
0.011987981386482716,
0.02185986377298832,
0.038944751024246216,
-0.053828224539756775,
-0.08995797485113144,
-0.01123974472284317,
0.08863899111747742,
-0.1677536815404892,
0.04131598398089409,
-0.08004823327064514,
0.00689546437934041,
0.07318098843097687,
-0.10250762850046158,
-0.017175981774926186,
0.056133609265089035,
-0.10171528160572052,
0.044529929757118225,
0.004140675067901611,
0.06743969023227692,
-0.1021803617477417,
0.031100613996386528,
0.04094209894537926,
-0.017182793468236923,
0.10428908467292786,
0.1705184280872345,
-0.18558558821678162,
0.09707874804735184,
-0.22812367975711823,
-0.07200124114751816,
0.09332471340894699,
0.07025378197431564,
-0.005628037732094526,
-0.09973911941051483,
-0.008479581214487553,
0.17221859097480774,
0.06271742284297943,
0.0007797518628649414,
0.13797132670879364,
-0.07322164624929428,
-0.021624302491545677,
-0.04974764585494995,
-0.053346630185842514,
0.005668689031153917,
-0.05612510070204735,
0.08271749317646027,
0.08974589407444,
0.16162961721420288,
-0.07789592444896698,
0.04095505177974701,
-0.039554815739393234,
0.06773220002651215,
-0.05935336649417877,
-0.02112625725567341,
-0.17489777505397797,
-0.07243064790964127,
0.002893920289352536,
-0.04386546090245247,
0.19961442053318024,
-0.06485376507043839,
0.039437562227249146,
0.006137339863926172,
-0.009065309539437294,
-0.026674652472138405,
-0.003043047385290265,
0.3032413721084595,
0.05454837158322334,
0.02280755341053009,
-0.06915280967950821,
-0.025630168616771698,
0.023161739110946655,
0.07578527182340622,
-0.09433690458536148,
0.0863555371761322,
0.0695899948477745,
0.13563363254070282,
0.08804428577423096,
0.044597920030355453,
-0.08324962854385376,
-0.04223277047276497,
-0.024468110874295235,
0.04407281428575516,
-0.04528229311108589,
0.20891444385051727,
0.16131529211997986,
-0.030886756256222725,
0.02705860137939453,
-0.015052691102027893,
-0.0382407121360302,
-0.19415821135044098,
-0.1415286660194397,
-0.10085616260766983,
-0.17159736156463623,
0.02607424184679985,
-0.06931934505701065,
0.05865883454680443,
-0.0020170670468360186,
0.09616152942180634,
-0.0445222333073616,
0.06479500234127045,
-0.0234431903809309,
-0.1023586094379425,
0.08897446095943451,
-0.07753152400255203,
0.010212808847427368,
-0.01891017146408558,
0.02064221352338791,
0.08728722482919693,
-0.027810731902718544,
0.04512248933315277,
0.034356843680143356,
-0.08605803549289703,
0.007310930173844099,
-0.11561756581068039,
-0.033049438148736954,
-0.03834681585431099,
0.0033845435827970505,
0.08290345966815948,
0.18461334705352783,
0.08942455053329468,
-0.05674952641129494,
0.05200742930173874,
0.10318183898925781,
-0.11112741380929947,
-0.25638335943222046,
-0.07732542604207993,
0.14910775423049927,
0.008015630766749382,
0.07971478253602982,
-0.02396440878510475,
0.0023909767623990774,
-0.02677999436855316,
0.30341315269470215,
0.2135206162929535,
0.015443715266883373,
0.0035464384127408266,
0.002873664256185293,
0.01578233577311039,
-0.01141671184450388,
-0.056384578347206116,
0.11909765750169754,
0.27314507961273193,
-0.014879264868795872,
-0.032201845198869705,
-0.0794965922832489,
-0.04854413866996765,
-0.07688145339488983,
0.01222398690879345,
-0.05913109704852104,
-0.1640588343143463,
0.039337754249572754,
0.12172205001115799,
-0.15616291761398315,
0.01605616696178913,
-0.13192206621170044,
-0.06990402191877365,
-0.05512932315468788,
0.005680195055902004,
0.10619435459375381,
0.12301144748926163,
-0.012235919013619423,
-0.06117360666394234,
-0.053023479878902435,
0.12692612409591675,
-0.020637286826968193,
-0.19344063103199005,
0.03275363892316818,
0.03038438968360424,
-0.17822891473770142,
-0.016787612810730934,
0.03176001086831093,
0.18698054552078247,
0.0078069958835840225,
0.12568353116512299,
0.01193950418382883,
0.1468709260225296,
-0.002529977587983012,
-0.06868021190166473,
0.06725488603115082,
0.05519624799489975,
0.010457499884068966,
0.11826368421316147,
0.025677381083369255,
-0.07106811553239822,
0.07751568406820297,
-0.00300430366769433,
-0.051854249089956284,
-0.0962332934141159,
0.05207189545035362,
-0.06818897277116776,
0.04915296286344528,
-0.03572402894496918,
-0.039484135806560516,
-0.048075851052999496,
-0.02079389989376068,
0.06119569391012192,
0.009804910980165005,
-0.10454098880290985,
-0.04685031250119209,
-0.1504480242729187,
-0.032942332327365875,
-0.10526328533887863,
-0.004254448693245649,
-0.1858999878168106,
-0.010912965051829815,
-0.0550851970911026,
-0.010517388582229614,
-0.04974133148789406,
0.02712525799870491,
0.127285897731781,
-0.03199266269803047,
0.03276531770825386,
0.0042725736275315285,
0.06404256075620651,
0.08846329897642136,
-0.12215963006019592,
-0.09791664034128189
] |
null | null |
transformers
|
# dog
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### buldog

#### golden

#### pug

|
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
|
image-classification
|
Sena/dog
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
|
# dog
Autogenerated by HuggingPics️
Create your own image classifier for anything by running the demo on Google Colab.
Report any issues with the demo at the github repo.
## Example Images
#### buldog
!buldog
#### golden
!golden
#### pug
!pug
|
[
"# dog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.",
"## Example Images",
"#### buldog\n\n!buldog",
"#### golden\n\n!golden",
"#### pug\n\n!pug"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"# dog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.",
"## Example Images",
"#### buldog\n\n!buldog",
"#### golden\n\n!golden",
"#### pug\n\n!pug"
] |
[
49,
40,
4,
7,
6,
7
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# dog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### buldog\n\n!buldog#### golden\n\n!golden#### pug\n\n!pug"
] |
[
-0.044947344809770584,
0.16475173830986023,
-0.0029163772705942392,
0.08128251880407333,
0.19203589856624603,
0.052534978836774826,
0.15868079662322998,
0.12941955029964447,
-0.0040541705675423145,
-0.013839141465723515,
0.13037987053394318,
0.21416716277599335,
-0.03740993142127991,
0.11372547596693039,
0.07638191431760788,
-0.29712870717048645,
0.0366547591984272,
0.06361464411020279,
0.09047461301088333,
0.026935599744319916,
0.020157018676400185,
-0.0930609405040741,
0.11782440543174744,
0.06437255442142487,
-0.2538084387779236,
-0.007186125032603741,
-0.0363924503326416,
-0.02349858172237873,
0.06267890334129333,
-0.03411371260881424,
0.03776225447654724,
-0.0046366495080292225,
0.00423799641430378,
0.026324547827243805,
0.03330198675394058,
0.020875079557299614,
-0.07406201958656311,
0.08129183202981949,
0.19683878123760223,
-0.06794129312038422,
0.1100107803940773,
0.010301983915269375,
-0.030823826789855957,
0.020708639174699783,
-0.06058281287550926,
-0.11607920378446579,
-0.020137883722782135,
0.10011220723390579,
0.0960460752248764,
0.10431835800409317,
-0.05926257371902466,
0.09970273822546005,
-0.04597894847393036,
0.10514161735773087,
0.19515369832515717,
-0.1888267993927002,
-0.10938484966754913,
0.1326785683631897,
-0.0334179513156414,
-0.07488860189914703,
-0.04096197709441185,
0.07590542733669281,
0.0632551833987236,
-0.018582744523882866,
-0.05641356483101845,
-0.04479449614882469,
-0.05063735321164131,
-0.043299321085214615,
-0.13761207461357117,
-0.017745086923241615,
-0.02005448192358017,
0.006440224591642618,
-0.04438754916191101,
-0.04050351679325104,
-0.021008197218179703,
-0.030084742233157158,
-0.05366186425089836,
0.10676484555006027,
0.013993347063660622,
0.009494561702013016,
-0.1471901535987854,
-0.06724431365728378,
-0.08417942374944687,
-0.09646853804588318,
-0.0881965309381485,
0.1459362804889679,
0.06469010561704636,
0.05510522052645683,
-0.10708269476890564,
0.12344465404748917,
-0.011673559434711933,
-0.03701144456863403,
0.03690207377076149,
0.001559778000228107,
-0.07227195054292679,
-0.00647731265053153,
-0.01747853308916092,
-0.0034538391046226025,
0.1622101366519928,
0.12641936540603638,
0.103973887860775,
0.02825668454170227,
-0.018213240429759026,
0.03246009722352028,
0.02892315573990345,
0.13794080913066864,
-0.08444125205278397,
0.000983435777015984,
0.05718960985541344,
-0.004771714564412832,
-0.01183325331658125,
-0.0029512285254895687,
-0.14988474547863007,
-0.059828441590070724,
0.04246332868933678,
-0.02463335543870926,
0.09648396074771881,
0.08320438861846924,
-0.04349943995475769,
-0.00506826676428318,
0.08433602005243301,
0.01632729172706604,
0.02708979696035385,
-0.025443492457270622,
-0.018954770639538765,
-0.0640106126666069,
0.01267244666814804,
0.038594502955675125,
-0.00006405226304195821,
0.06749629229307175,
-0.053551703691482544,
0.0020734972786158323,
-0.08342543989419937,
-0.03019334375858307,
-0.03525923192501068,
-0.17620612680912018,
0.03282596543431282,
-0.18454012274742126,
-0.07395756989717484,
0.02400224842131138,
0.023104757070541382,
-0.06528080999851227,
-0.08916858583688736,
-0.03242575377225876,
-0.04212004318833351,
-0.055933717638254166,
0.04237278178334236,
0.05414928123354912,
-0.05890362709760666,
0.03114824928343296,
0.03934245929121971,
0.11931545287370682,
-0.15523706376552582,
0.03200947865843773,
-0.12179155647754669,
-0.014020170085132122,
-0.15150195360183716,
0.11456222087144852,
-0.022923950105905533,
0.17528878152370453,
-0.04706818237900734,
0.009837789461016655,
-0.00197996967472136,
-0.01306883990764618,
0.037944450974464417,
0.11016566306352615,
-0.09595658630132675,
-0.10338390618562698,
0.0905928835272789,
-0.10795136541128159,
-0.06626160442829132,
0.1489759087562561,
0.027063021436333656,
0.05564993992447853,
0.11858589947223663,
0.14563685655593872,
0.08071329444646835,
-0.10737483948469162,
0.008684602566063404,
-0.03877858445048332,
-0.13351596891880035,
0.0596003457903862,
-0.01390245370566845,
0.025845909491181374,
-0.17241911590099335,
0.03538242354989052,
-0.06689690798521042,
0.15538662672042847,
-0.07393471151590347,
-0.02933049388229847,
-0.016741255298256874,
-0.09340887516736984,
0.0815245732665062,
0.08155003935098648,
0.115627221763134,
0.01832769438624382,
-0.03560129180550575,
-0.06898224353790283,
0.0140906423330307,
0.02307784929871559,
-0.05213593691587448,
-0.053705666214227676,
0.1951581984758377,
-0.009315521456301212,
0.0392015278339386,
-0.10549863427877426,
0.014395010657608509,
0.02149701490998268,
0.012447953224182129,
0.13097123801708221,
0.039894916117191315,
0.07587502896785736,
0.019511988386511803,
0.01628905162215233,
-0.03036697767674923,
0.07623269408941269,
-0.03180346265435219,
-0.16352078318595886,
-0.07232573628425598,
0.10996559262275696,
-0.038976605981588364,
0.16540199518203735,
-0.11881140619516373,
0.059657394886016846,
0.0796094611287117,
0.12132472544908524,
0.016926422715187073,
-0.04613214731216431,
0.034601762890815735,
-0.05001290887594223,
-0.05281541869044304,
-0.046488016843795776,
0.12782134115695953,
0.02033878117799759,
-0.05032491311430931,
0.0886087492108345,
0.004050979856401682,
0.0028171029407531023,
0.20522771775722504,
-0.13126717507839203,
-0.059690866619348526,
-0.06822410970926285,
-0.05994262918829918,
0.05249512568116188,
-0.04548981413245201,
-0.011731861159205437,
0.12532652914524078,
-0.033893879503011703,
0.12873131036758423,
-0.0011967787286266685,
0.01700728014111519,
0.014645143412053585,
-0.037017565220594406,
-0.031930647790431976,
0.08414143323898315,
0.03022361360490322,
0.0167436134070158,
0.07300948351621628,
0.02454354427754879,
-0.07823741436004639,
0.1478576511144638,
0.06642117351293564,
-0.015156063251197338,
0.04669521749019623,
-0.06692220270633698,
0.05361757427453995,
0.09018713235855103,
-0.1666017770767212,
-0.05936487391591072,
0.06717976927757263,
-0.10767172276973724,
0.023920206353068352,
-0.20334433019161224,
0.016572745516896248,
-0.05624924972653389,
-0.022167054936289787,
0.049684468656778336,
0.05858119577169418,
-0.03272562474012375,
0.07559405267238617,
0.010561926290392876,
-0.0056554232724010944,
0.030341308563947678,
0.05677429959177971,
-0.04162849485874176,
0.09776360541582108,
-0.06416985392570496,
-0.20788806676864624,
-0.07835599035024643,
-0.078487329185009,
-0.06467574834823608,
0.10601934045553207,
0.09365957230329514,
-0.18951886892318726,
0.0021477185655385256,
0.030058303847908974,
0.03820883110165596,
0.03580459579825401,
0.130710169672966,
-0.05519438907504082,
0.04761449247598648,
0.02530858851969242,
-0.009650610387325287,
-0.029317522421479225,
-0.040129147469997406,
-0.11373423039913177,
0.13263949751853943,
-0.009903855621814728,
0.1101839616894722,
0.05832738056778908,
-0.03149190917611122,
0.024445150047540665,
-0.01615794748067856,
0.2429434210062027,
-0.11342985183000565,
-0.029681596904993057,
0.09566832333803177,
-0.02756412699818611,
0.04163781926035881,
0.08573216944932938,
-0.004251235630363226,
-0.10537920147180557,
0.03251897916197777,
0.0612812340259552,
-0.15174846351146698,
-0.05019129812717438,
-0.029716795310378075,
-0.052360862493515015,
0.158386692404747,
0.1681150197982788,
0.09966298937797546,
0.0908840000629425,
0.2063429057598114,
0.01822236366569996,
0.05316244438290596,
-0.025859327986836433,
0.06889843195676804,
-0.0032147057354450226,
-0.033046137541532516,
0.10822305828332901,
-0.03274368494749069,
-0.09712730348110199,
0.05558139085769653,
0.017333507537841797,
0.1696278154850006,
0.0034516146406531334,
-0.10239441692829132,
0.028674878180027008,
0.04680827260017395,
0.05892488360404968,
-0.006985461339354515,
-0.03091258741915226,
-0.048113979399204254,
0.0016944999806582928,
-0.08140021562576294,
-0.02838994935154915,
0.05664916709065437,
0.09862673282623291,
-0.043461624532938004,
-0.007167486939579248,
-0.034821514040231705,
0.05824302136898041,
0.1743687093257904,
0.03227810561656952,
-0.3315940201282501,
0.03830830380320549,
-0.04624403268098831,
-0.012073430232703686,
-0.012815985828638077,
-0.03970997780561447,
-0.0029498597141355276,
-0.08883801847696304,
0.08576285094022751,
-0.035422760993242264,
0.07859991490840912,
-0.1444685012102127,
0.05493606626987457,
0.047301582992076874,
0.04939911887049675,
-0.014639697037637234,
0.03025665134191513,
-0.19099700450897217,
0.08245254307985306,
-0.014643309637904167,
-0.015202906914055347,
-0.05885947123169899,
0.03527635335922241,
0.11187617480754852,
0.08416896313428879,
0.055116791278123856,
-0.011477749794721603,
0.09233905375003815,
-0.15948939323425293,
-0.06296698749065399,
-0.014458601363003254,
-0.034326352179050446,
-0.10752243548631668,
0.016149869188666344,
0.0026533864438533783,
-0.02412707358598709,
-0.06043760105967522,
0.06400187313556671,
-0.14250832796096802,
-0.1005890741944313,
-0.020389476791024208,
0.06284533441066742,
0.12254875153303146,
-0.004222352057695389,
-0.04597483202815056,
-0.13341526687145233,
0.028118237853050232,
0.12493359297513962,
-0.04433169960975647,
-0.08489377051591873,
0.11536634713411331,
-0.04170079529285431,
-0.04169934242963791,
0.05389111489057541,
-0.08913487195968628,
0.09518235176801682,
0.000841244647745043,
-0.15634490549564362,
0.009714256972074509,
-0.11001452058553696,
-0.12122953683137894,
-0.09894739836454391,
0.003242875449359417,
0.08558490872383118,
0.06799327582120895,
0.04174427315592766,
0.05924471095204353,
-0.058347396552562714,
-0.03198831528425217,
0.07237113267183304,
0.041873011738061905,
-0.006629824638366699,
0.05314536392688751,
-0.021136097609996796,
-0.10151001811027527,
-0.09048932045698166,
0.016555305570364,
0.11037690192461014,
0.14849640429019928,
-0.05296370014548302,
0.03647947311401367,
-0.008364233188331127,
-0.013894632458686829,
-0.2889046370983124,
0.05194241181015968,
0.10423272848129272,
-0.017310580238699913,
-0.050728149712085724,
-0.18364541232585907,
0.17281970381736755,
0.12351129204034805,
-0.029770398512482643,
0.13365672528743744,
-0.08632459491491318,
-0.1372171938419342,
0.11071762442588806,
0.15776509046554565,
0.112420454621315,
-0.2205733209848404,
-0.06798623502254486,
-0.005603421479463577,
-0.02839885838329792,
0.15999305248260498,
-0.08413313329219818,
0.06066787987947464,
-0.012533354572951794,
0.009753504768013954,
0.05678939446806908,
-0.0012574215652421117,
0.119784414768219,
0.0439445823431015,
-0.0714925080537796,
-0.09759975969791412,
-0.09146521240472794,
-0.04479565843939781,
-0.012967569753527641,
-0.022147132083773613,
-0.017060093581676483,
-0.02535414882004261,
-0.13695304095745087,
0.02131173014640808,
-0.027105186134576797,
0.056718990206718445,
0.06264608353376389,
-0.08731082081794739,
-0.09321655333042145,
0.010602284222841263,
-0.07693250477313995,
0.022063007578253746,
0.14346320927143097,
-0.03758097440004349,
0.03630126267671585,
0.04117172583937645,
-0.010521913878619671,
-0.050889648497104645,
-0.010444303043186665,
-0.040768273174762726,
-0.05968716740608215,
0.11993395537137985,
-0.0684913918375969,
0.005250246729701757,
0.04569941759109497,
0.034672148525714874,
0.026054687798023224,
0.03172043338418007,
0.0132158063352108,
0.04945157840847969,
0.16826343536376953,
-0.12375780194997787,
-0.027216438204050064,
-0.033912427723407745,
-0.11196836084127426,
0.05795625224709511,
0.0036986281629651785,
0.07003553211688995,
0.008595078252255917,
-0.04276192560791969,
0.05666138231754303,
-0.023125287145376205,
-0.023346180096268654,
0.11656991392374039,
0.02395268902182579,
-0.02758907712996006,
-0.13101692497730255,
0.0038076515775173903,
0.017112040892243385,
-0.07883549481630325,
-0.021582040935754776,
0.010532335378229618,
-0.06373251229524612,
-0.08455652743577957,
-0.01512019895017147,
0.18028107285499573,
-0.08556127548217773,
0.002778067486360669,
-0.04025357961654663,
-0.04005875810980797,
0.038518719375133514,
-0.14409250020980835,
0.10546045005321503,
0.00552872521802783,
0.037152793258428574,
0.09361406415700912,
-0.0764237567782402,
0.022450581192970276,
-0.00658793980255723,
0.12346947193145752,
-0.24768394231796265,
0.051024436950683594,
0.016460098326206207,
0.060330115258693695,
-0.09141626954078674,
-0.04327826574444771,
-0.20803719758987427,
-0.014338797889649868,
-0.012707862071692944,
0.04717661067843437,
-0.12102929502725601,
-0.037381887435913086,
0.024925177916884422,
-0.052316900342702866,
0.010748285800218582,
-0.06270243972539902,
-0.1183200255036354,
-0.033212993294000626,
0.04007799178361893,
0.06268114596605301,
0.028759390115737915,
-0.003769024508073926,
0.038519032299518585,
-0.01206851378083229,
0.12547099590301514,
0.07513023912906647,
-0.0026241394225507975,
-0.023569727316498756,
-0.18857493996620178,
-0.03632201626896858,
0.16530567407608032,
-0.06565356254577637,
0.011217473074793816,
0.07523339986801147,
0.06889713555574417,
-0.04408794268965721,
0.02213020995259285,
0.04635271802544594,
0.24055354297161102,
-0.11579205095767975,
-0.0019357146229594946,
-0.0327172689139843,
-0.03851572424173355,
-0.017791222780942917,
0.028785347938537598,
0.10471916943788528,
0.034757886081933975,
0.15170642733573914,
-0.12825419008731842,
0.012045525014400482,
-0.06744321435689926,
0.021876363083720207,
-0.05275643244385719,
-0.12843768298625946,
0.00040484737837687135,
-0.1437644362449646,
0.03146614506840706,
0.023168716579675674,
0.09226677566766739,
0.15398120880126953,
-0.006362262647598982,
0.009188422001898289,
0.20350438356399536,
0.09735693037509918,
-0.00211643660441041,
0.1484868824481964,
0.012373646721243858,
0.03847828507423401,
-0.05412312597036362,
0.12257622927427292,
0.12253989279270172,
-0.10726442188024521,
0.007303559221327305,
-0.04324217885732651,
-0.05044325441122055,
0.04515080899000168,
0.13538505136966705,
0.05426683649420738,
-0.19842307269573212,
0.04392014816403389,
-0.09371010214090347,
0.15202759206295013,
-0.07737378776073456,
0.15044723451137543,
0.08364946395158768,
-0.064254529774189,
0.0148956049233675,
0.06118519976735115,
0.032612141221761703,
-0.03416067734360695,
-0.07669775187969208,
-0.03305583447217941,
-0.22659918665885925,
0.0439305417239666,
0.02628904953598976,
-0.07725236564874649,
0.002364957705140114,
-0.011042296886444092,
-0.05372759699821472,
0.14201563596725464,
-0.0050313109531998634,
-0.03714378923177719,
0.06426142156124115,
-0.01838119514286518,
-0.14168421924114227,
0.014944211579859257,
-0.12946391105651855,
-8.047890105444822e-7,
0.09835074841976166,
0.0022484948858618736,
-0.011140926741063595,
-0.02079208567738533,
0.01719583012163639,
-0.01782011054456234,
-0.02444339357316494,
0.02455928549170494,
0.032483309507369995,
0.03324023634195328,
0.03334373980760574,
-0.0022147982381284237,
-0.04403691366314888,
-0.005137324333190918,
0.1607731282711029,
-0.03466347977519035,
0.09356643259525299,
-0.09117666631937027,
0.11305075138807297,
-0.1383570283651352,
0.026659488677978516,
-0.04822562262415886,
-0.09287980943918228,
-0.07410265505313873,
0.3058258593082428,
0.17739713191986084,
-0.030454259365797043,
-0.01636163890361786,
-0.007797180209308863,
0.0015678501222282648,
0.0167537834495306,
0.07803993672132492,
0.041250910609960556,
0.19318707287311554,
-0.02895474247634411,
-0.012943776324391365,
-0.030000094324350357,
-0.03973900526762009,
-0.11336173117160797,
-0.06576083600521088,
0.07649149000644684,
-0.007322949357330799,
-0.06884743273258209,
0.07208255678415298,
-0.1273186355829239,
-0.03975418210029602,
0.10309284180402756,
-0.07407880574464798,
-0.09539658576250076,
-0.004479293245822191,
-0.0017727224621921778,
0.042817819863557816,
0.10732104629278183,
-0.04340869188308716,
0.07822664082050323,
-0.0561874657869339,
-0.0896088182926178,
-0.1266869753599167,
-0.03224531561136246,
0.008858012966811657,
-0.1245625764131546,
0.22589784860610962,
-0.10632755607366562,
-0.02830311842262745,
0.07003894448280334,
0.010852361097931862,
-0.15140902996063232,
-0.0566820353269577,
-0.11040952056646347,
-0.17081065475940704,
0.026925113052129745,
0.08935093134641647,
-0.006741320248693228,
-0.15962135791778564,
0.05586906149983406,
0.06419829279184341,
0.015282129868865013,
-0.0785205140709877,
0.07681959122419357,
-0.10221254825592041,
0.1367076337337494,
-0.1512545347213745,
0.07368596643209457,
0.08398684114217758,
0.016186518594622612,
-0.011935354210436344,
-0.026495888829231262,
0.004207408055663109,
0.038293126970529556,
-0.11699438095092773,
-0.09187982231378555,
-0.08427151292562485,
-0.041885025799274445,
0.012903996743261814,
-0.09466054290533066,
-0.17324680089950562,
-0.05831171199679375,
-0.15170811116695404,
0.017422080039978027,
-0.06096916273236275,
0.09398657828569412,
0.1672094464302063,
-0.00838344544172287,
0.03204783797264099,
-0.20759108662605286,
-0.031892478466033936,
0.08477192372083664,
-0.051513638347387314,
-0.1025361716747284
] |
null | null |
transformers
|
# flowers
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### karanfil

#### leylak

#### menekse

#### nergis

#### zambak

|
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
|
image-classification
|
Sena/flowers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
|
# flowers
Autogenerated by HuggingPics️
Create your own image classifier for anything by running the demo on Google Colab.
Report any issues with the demo at the github repo.
## Example Images
#### karanfil
!karanfil
#### leylak
!leylak
#### menekse
!menekse
#### nergis
!nergis
#### zambak
!zambak
|
[
"# flowers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.",
"## Example Images",
"#### karanfil\n\n!karanfil",
"#### leylak\n\n!leylak",
"#### menekse\n\n!menekse",
"#### nergis\n\n!nergis",
"#### zambak\n\n!zambak"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"# flowers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.",
"## Example Images",
"#### karanfil\n\n!karanfil",
"#### leylak\n\n!leylak",
"#### menekse\n\n!menekse",
"#### nergis\n\n!nergis",
"#### zambak\n\n!zambak"
] |
[
49,
40,
4,
8,
7,
7,
7,
7
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# flowers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### karanfil\n\n!karanfil#### leylak\n\n!leylak#### menekse\n\n!menekse#### nergis\n\n!nergis#### zambak\n\n!zambak"
] |
[
-0.1077653244137764,
0.1399262398481369,
-0.004300752654671669,
0.15500478446483612,
0.12184233963489532,
-0.034733809530735016,
0.1302577406167984,
0.0952770933508873,
0.10847863554954529,
0.06276117265224457,
0.1962374597787857,
0.22629518806934357,
-0.026377011090517044,
0.15343239903450012,
0.012069434858858585,
-0.28837117552757263,
0.0010425683576613665,
0.07166270911693573,
-0.0451665036380291,
0.08179540187120438,
0.10172413289546967,
-0.10688956826925278,
0.1694534569978714,
0.03596584126353264,
-0.2260962426662445,
-0.01590121164917946,
-0.04675238952040672,
-0.043295297771692276,
0.09064982086420059,
0.03245867043733597,
0.004220597445964813,
0.01883082278072834,
-0.02776363119482994,
-0.10290243476629257,
0.048665858805179596,
-0.02110454998910427,
-0.036825135350227356,
0.08643094450235367,
0.14202946424484253,
-0.05055299401283264,
0.136853888630867,
-0.028679093345999718,
-0.07402602583169937,
0.015097442083060741,
-0.11190177500247955,
0.011971753090620041,
-0.12586992979049683,
0.10931143164634705,
0.13447195291519165,
0.06425271928310394,
0.013780461624264717,
0.1794365644454956,
-0.026483990252017975,
0.10073336213827133,
0.26174989342689514,
-0.10023638606071472,
-0.12002808600664139,
-0.012548321858048439,
0.032154716551303864,
-0.00720789423212409,
-0.11474303156137466,
0.08473861962556839,
0.04911986365914345,
-0.04037720710039139,
-0.013894647359848022,
-0.08221414685249329,
-0.0939600020647049,
-0.032171670347452164,
-0.11647924035787582,
0.010850329883396626,
0.09663153439760208,
0.09850231558084488,
0.011780261993408203,
-0.02116067335009575,
-0.054684679955244064,
0.00307443062774837,
-0.06681706011295319,
0.04073406755924225,
0.015883032232522964,
-0.03966740891337395,
-0.062377240508794785,
-0.11589241027832031,
-0.11547676473855972,
-0.0023530812468379736,
-0.006905016023665667,
0.09150081872940063,
0.053299155086278915,
0.048674702644348145,
-0.05077790096402168,
-0.004717906005680561,
0.007947282865643501,
-0.10277612507343292,
-0.004851345904171467,
-0.07116907089948654,
0.03503689169883728,
-0.029294896870851517,
0.06712399423122406,
-0.034480538219213486,
0.13113334774971008,
0.10489840805530548,
0.016321279108524323,
0.08348588645458221,
0.039442580193281174,
0.07441344857215881,
0.03314974531531334,
0.11492060869932175,
-0.08768617361783981,
-0.004802966956049204,
0.08894578367471695,
-0.021739477291703224,
0.022803569212555885,
-0.013582681305706501,
-0.10276184976100922,
-0.03440874069929123,
0.015836581587791443,
0.022497301921248436,
0.03974098712205887,
0.054777391254901886,
-0.05550346150994301,
-0.05480533465743065,
0.10014806687831879,
0.025514842942357063,
0.02022218331694603,
-0.03479907661676407,
-0.02266906201839447,
0.052263714373111725,
0.046671248972415924,
-0.028004944324493408,
-0.0016519093187525868,
0.013073577545583248,
-0.07553604990243912,
0.059324976056814194,
-0.014681164175271988,
0.04777444899082184,
0.044288270175457,
-0.1941658854484558,
0.014827816747128963,
-0.15853747725486755,
0.02704174630343914,
-0.017980890348553658,
0.05954504758119583,
-0.014293376356363297,
-0.06794912368059158,
-0.0018608474638313055,
-0.0037238916847854853,
-0.07042180746793747,
0.050131868571043015,
-0.03269130364060402,
-0.011742969043552876,
0.022557053714990616,
-0.0037373846862465143,
0.12618428468704224,
-0.08000575006008148,
0.011484195478260517,
-0.09827747941017151,
0.03209123760461807,
-0.15643541514873505,
0.058161661028862,
-0.09813282638788223,
0.16313384473323822,
-0.09783730655908585,
0.0004429233376868069,
0.05523746460676193,
-0.029759040102362633,
0.0454801581799984,
0.1880916953086853,
-0.12945201992988586,
-0.07301996648311615,
0.02602359838783741,
-0.04822387546300888,
-0.11796283721923828,
0.10839802771806717,
-0.023246683180332184,
0.04045363515615463,
0.03000529110431671,
0.16233302652835846,
0.05517176166176796,
-0.03382426127791405,
0.050797659903764725,
-0.04870174825191498,
-0.11700810492038727,
-0.026291007176041603,
-0.03534512221813202,
0.056465473026037216,
-0.10993106663227081,
0.06427475064992905,
-0.09574917703866959,
0.04955056682229042,
-0.06678988039493561,
-0.06701508909463882,
-0.036567479372024536,
-0.12250157445669174,
0.021263213828206062,
0.06115194037556648,
0.08043215423822403,
-0.011028468608856201,
0.008942832238972187,
-0.0775681883096695,
0.034170087426900864,
-0.010622888803482056,
0.01701735332608223,
-0.036939412355422974,
0.1252024918794632,
0.04123786464333534,
-0.019689878448843956,
-0.08332373946905136,
0.0013021203922107816,
0.030402421951293945,
-0.05132070183753967,
0.10219788551330566,
-0.06284873187541962,
0.056952670216560364,
0.033344611525535583,
-0.004251805599778891,
0.038629475980997086,
0.0532342866063118,
-0.029119156301021576,
-0.0605592355132103,
-0.14892499148845673,
0.06339996308088303,
-0.022404100745916367,
0.07125592231750488,
-0.12215101718902588,
-0.03383782133460045,
0.07062697410583496,
0.12132300436496735,
0.026224179193377495,
-0.05542891472578049,
0.0578303225338459,
-0.04377918690443039,
-0.06351271271705627,
-0.026673071086406708,
0.11504950374364853,
-0.016955744475126266,
0.0027764311525970697,
0.096847303211689,
0.010573183186352253,
-0.002910623559728265,
0.13899464905261993,
-0.14796201884746552,
-0.09513943642377853,
-0.021283041685819626,
-0.07141195982694626,
0.023350363597273827,
0.015480856411159039,
0.12398084998130798,
-0.02627822570502758,
-0.001065803924575448,
0.10452848672866821,
-0.014478476718068123,
-0.02758530154824257,
0.07736647129058838,
-0.0782550573348999,
-0.10195232182741165,
0.1496352106332779,
0.18001297116279602,
-0.09160634130239487,
0.08164989203214645,
0.12436839938163757,
-0.0843156948685646,
0.08367019891738892,
0.040530454367399216,
0.04933105781674385,
-0.0219710860401392,
0.023345721885561943,
0.052141692489385605,
0.15547619760036469,
-0.2118595987558365,
-0.03608541190624237,
0.03695535287261009,
-0.14419017732143402,
0.03804294019937515,
-0.12220359593629837,
-0.022278405725955963,
-0.03587251529097557,
0.004109463654458523,
0.1726282835006714,
0.08305829763412476,
-0.060335613787174225,
0.08259472250938416,
-0.0329122468829155,
-0.03324707970023155,
-0.006655907724052668,
0.07101891934871674,
-0.03292778134346008,
0.14585740864276886,
-0.025529894977808,
-0.2712644636631012,
-0.0706004872918129,
-0.11529771238565445,
-0.12717539072036743,
0.06399869173765182,
0.06024019792675972,
-0.11628887802362442,
-0.03576783835887909,
-0.03373507782816887,
0.014666739851236343,
0.04783153906464577,
0.012749816291034222,
-0.07757029682397842,
0.013212265446782112,
-0.019796738401055336,
-0.042971111834049225,
-0.01460606325417757,
-0.05612878128886223,
0.012579075992107391,
0.15498800575733185,
-0.03289724513888359,
0.13960498571395874,
0.07186438888311386,
-0.01776166260242462,
0.037211425602436066,
0.03574841842055321,
0.22455285489559174,
-0.11510340869426727,
0.13897152245044708,
0.18382108211517334,
0.014477463439106941,
0.09657547622919083,
0.09371423721313477,
0.013150403276085854,
-0.1006922572851181,
0.013803841546177864,
0.03651732951402664,
-0.12067130208015442,
-0.13482876121997833,
-0.05899985507130623,
-0.08456474542617798,
0.11288216710090637,
0.11469759047031403,
0.06961046159267426,
0.09104471653699875,
0.20779044926166534,
0.0047907233238220215,
0.019938157871365547,
-0.07434818148612976,
0.08204330503940582,
0.057663071900606155,
-0.013023585081100464,
0.03134738653898239,
-0.03811817988753319,
-0.11051253229379654,
0.10025575011968613,
0.02318447083234787,
0.1345124989748001,
0.05732540041208267,
0.04274756461381912,
0.06767882406711578,
0.1271754950284958,
0.0653541088104248,
-0.088864766061306,
0.009785979054868221,
-0.02882222644984722,
-0.021090054884552956,
-0.08767059445381165,
0.03874073550105095,
0.012788834981620312,
0.013524233363568783,
-0.13912221789360046,
-0.01218379195779562,
-0.0680914893746376,
0.04432487487792969,
0.11621146649122238,
0.06971089541912079,
-0.23768767714500427,
0.031113585457205772,
-0.04303215444087982,
0.046239566057920456,
-0.04038528725504875,
-0.021465478464961052,
-0.0712205022573471,
-0.10582652688026428,
0.08400363475084305,
-0.07827354222536087,
0.1060386598110199,
-0.10839101672172546,
0.018861837685108185,
0.009513557888567448,
0.07972121983766556,
0.003608720377087593,
0.024525335058569908,
-0.10464410483837128,
0.15955451130867004,
-0.036470767110586166,
-0.04878302663564682,
-0.036433618515729904,
-0.05403443053364754,
0.08736471831798553,
0.10301610082387924,
0.11306767910718918,
0.040235623717308044,
-0.041118886321783066,
-0.09654619544744492,
-0.04796241596341133,
-0.030405493453145027,
0.02951817400753498,
-0.04833764582872391,
-0.02235601283609867,
0.05483901500701904,
-0.07177390158176422,
-0.03644048422574997,
0.05558263510465622,
-0.1701558232307434,
-0.12631787359714508,
0.033100686967372894,
0.031145600602030754,
-0.0030179633758962154,
0.009813687764108181,
-0.047818493098020554,
-0.14088578522205353,
0.13357242941856384,
0.16041132807731628,
-0.02347390726208687,
-0.09870655834674835,
0.016554109752178192,
0.041612815111875534,
-0.10162439197301865,
0.06651850789785385,
-0.13563519716262817,
0.11474164575338364,
-0.05968146026134491,
-0.08055297285318375,
0.05174243077635765,
-0.05430759862065315,
-0.0789133682847023,
-0.05941558629274368,
0.11936254054307938,
0.04210362583398819,
-0.05889977142214775,
0.03139212355017662,
0.03689602389931679,
-0.07744842022657394,
-0.11737985908985138,
0.10356170684099197,
0.0007009765831753612,
-0.07121703773736954,
-0.0036051396746188402,
0.016033576801419258,
-0.004978531040251255,
-0.1283314973115921,
-0.033428311347961426,
0.1620609164237976,
0.23790912330150604,
-0.08672281354665756,
0.06191487982869148,
0.0030229492112994194,
-0.024628670886158943,
-0.30089429020881653,
0.020795654505491257,
0.03321167826652527,
-0.05656307190656662,
0.009217084385454655,
-0.12332648783922195,
0.12007750570774078,
0.07186020910739899,
-0.02953769452869892,
0.14497363567352295,
-0.16038653254508972,
-0.09843207150697708,
0.0835518017411232,
0.15564803779125214,
0.138289675116539,
-0.16351546347141266,
-0.04712633416056633,
-0.0512237511575222,
-0.012130111455917358,
0.23701193928718567,
0.05593881011009216,
0.054602716118097305,
-0.08573976904153824,
0.07185306400060654,
0.03171182796359062,
-0.012776928953826427,
0.14027659595012665,
0.014226391911506653,
0.026374636217951775,
-0.08647038787603378,
-0.10195506364107132,
-0.011968739330768585,
-0.04548643156886101,
0.02087870053946972,
-0.005611903965473175,
0.050898998975753784,
-0.03057294525206089,
0.011852681636810303,
-0.1011141687631607,
0.1624809205532074,
-0.0007377438596449792,
-0.006941779982298613,
-0.1220395416021347,
0.03607984632253647,
-0.08632320165634155,
0.07778709381818771,
0.18494603037834167,
0.019274214282631874,
-0.059159260243177414,
0.13081185519695282,
-0.009407345205545425,
-0.017463553696870804,
-0.07468274235725403,
-0.07227988541126251,
-0.06355366855859756,
0.06723468005657196,
-0.1700565069913864,
0.011287929490208626,
0.05461418256163597,
0.04651947692036629,
-0.003557936754077673,
0.0029413877055048943,
-0.03708112612366676,
0.006580650806427002,
0.11094244569540024,
-0.13575176894664764,
-0.08458326011896133,
-0.07451798766851425,
-0.028437457978725433,
0.05565880984067917,
0.057736948132514954,
0.09923164546489716,
-0.04663597792387009,
-0.03278327360749245,
0.025767749175429344,
-0.031516801565885544,
0.014840938150882721,
0.06712750345468521,
0.18851758539676666,
-0.03305647149682045,
-0.07473152130842209,
0.03260704129934311,
0.02519436553120613,
-0.060972001403570175,
-0.06056104600429535,
0.16875848174095154,
-0.0882570743560791,
-0.11883267760276794,
0.052144236862659454,
0.09213443845510483,
-0.20121468603610992,
0.0526997409760952,
-0.02773306332528591,
-0.03871791437268257,
0.01294003613293171,
0.06492985785007477,
0.08697549253702164,
-0.022322556003928185,
0.03769927844405174,
-0.0023247147910296917,
-0.10682366043329239,
0.038414593786001205,
0.06922412663698196,
0.15479983389377594,
-0.18599198758602142,
-0.08399185538291931,
-0.015527045354247093,
0.15950721502304077,
-0.06154504418373108,
-0.0507524199783802,
-0.16566896438598633,
-0.05817976966500282,
-0.03935304284095764,
0.0689699798822403,
-0.12221373617649078,
-0.018135100603103638,
-0.05664850398898125,
-0.02931864932179451,
-0.028897905722260475,
-0.00647202180698514,
-0.09162043780088425,
-0.049272019416093826,
-0.0030964091420173645,
0.0635751485824585,
-0.027633389458060265,
-0.03485288843512535,
0.1546686440706253,
-0.07831013202667236,
0.13614483177661896,
-0.002122343983501196,
-0.016008874401450157,
-0.007851740345358849,
-0.2448941469192505,
-0.023393550887703896,
0.07020850479602814,
-0.006287650670856237,
0.028604166582226753,
0.002475158544257283,
0.03909207880496979,
-0.028152920305728912,
0.07655361294746399,
-0.030290845781564713,
0.1468951553106308,
-0.12296105921268463,
-0.004049158189445734,
-0.04952092468738556,
-0.11484060436487198,
-0.020868277177214622,
0.06026171147823334,
0.031139783561229706,
0.02488034963607788,
0.06699296832084656,
-0.03307651728391647,
0.08352261036634445,
-0.1029791459441185,
0.03933792561292648,
-0.015921298414468765,
-0.16163857281208038,
-0.05828119441866875,
-0.0558537021279335,
0.041825857013463974,
-0.027406437322497368,
0.0626729279756546,
0.10065684467554092,
-0.02551140822470188,
-0.020242461934685707,
0.11814704537391663,
0.026409458369016647,
0.02035023644566536,
0.11736483871936798,
-0.022236468270421028,
0.02892284095287323,
-0.03603062778711319,
0.06212978810071945,
0.06165459752082825,
-0.011451797559857368,
0.04243425652384758,
0.09159526973962784,
-0.09711237251758575,
0.0383010171353817,
0.06928018480539322,
0.07512060552835464,
-0.03968131169676781,
0.048837754875421524,
-0.02139490842819214,
0.11741769313812256,
-0.05134470760822296,
0.028793485835194588,
0.11655208468437195,
-0.07498305290937424,
0.045525550842285156,
0.03412198647856712,
-0.07048049569129944,
-0.019882172346115112,
-0.18678772449493408,
-0.10271365195512772,
-0.16095902025699615,
0.08045090734958649,
0.0049599106423556805,
-0.03785310685634613,
-0.09438252449035645,
-0.03849354386329651,
-0.10113772004842758,
0.09020888805389404,
0.05651073902845383,
-0.06470637768507004,
0.1198527067899704,
-0.0012703855754807591,
-0.1457337886095047,
0.06140010058879852,
-0.029017139226198196,
-0.08523865789175034,
0.04969797655940056,
-0.017630599439144135,
0.01717805489897728,
0.004833283834159374,
0.047280941158533096,
-0.06252621859312057,
-0.09397553652524948,
0.005794228054583073,
-0.018888380378484726,
0.04360700771212578,
-0.003505680011585355,
-0.03062233328819275,
-0.006836998276412487,
-0.01026097871363163,
0.14562305808067322,
0.02957950346171856,
0.06407346576452255,
-0.03272315114736557,
0.05571860820055008,
-0.055754587054252625,
-0.003346937010064721,
-0.07999274134635925,
-0.018687322735786438,
0.0010806383797898889,
0.3209587037563324,
0.18735691905021667,
-0.07753803580999374,
0.0027559304144233465,
-0.03368886560201645,
0.008387708105146885,
0.03331435099244118,
0.13095088303089142,
-0.00040260941023007035,
0.10638846457004547,
-0.07479067891836166,
-0.016471397131681442,
-0.07188107073307037,
-0.011152729392051697,
-0.1521805077791214,
0.04210853949189186,
0.12638098001480103,
-0.05384283885359764,
-0.11024127155542374,
0.10110848397016525,
-0.15439489483833313,
-0.009806615300476551,
0.0811152309179306,
-0.11524780839681625,
-0.10451086610555649,
0.024109767749905586,
0.02290111593902111,
0.040006671100854874,
0.05349639430642128,
-0.03357554227113724,
0.02594306692481041,
-0.012822563759982586,
-0.012386939488351345,
-0.16898103058338165,
-0.020161937922239304,
0.016770390793681145,
-0.12301305681467056,
0.18872110545635223,
-0.04427210986614227,
-0.0042936597019433975,
0.08116099238395691,
0.009123395197093487,
-0.124173603951931,
-0.029802965000271797,
-0.022779613733291626,
-0.059404000639915466,
0.05887415260076523,
0.07401837408542633,
0.02264522761106491,
-0.11804415285587311,
0.025181984528899193,
0.025681328028440475,
-0.009320775978267193,
0.0038275558035820723,
0.07552322745323181,
-0.06681407988071442,
0.17517422139644623,
-0.13122370839118958,
0.07128354161977768,
0.052220869809389114,
-0.043796733021736145,
-0.052215125411748886,
-0.047110654413700104,
0.018215520307421684,
0.012854448519647121,
-0.067179374396801,
-0.0648985430598259,
-0.08046617358922958,
-0.0646553486585617,
-0.00031861395109444857,
-0.026686454191803932,
-0.07225531339645386,
-0.07028889656066895,
-0.1522034853696823,
0.025196747854351997,
-0.006200592033565044,
0.10056158900260925,
0.11417384445667267,
-0.009500349871814251,
0.025464946404099464,
-0.007177224848419428,
-0.022072216495871544,
0.050215523689985275,
0.00045958562986925244,
-0.08566534519195557
] |
null | null | null |
# UniFormer (image model)
UniFormer models are trained on ImageNet at resolution 224x224.
It was introduced in the paper [UniFormer: Unifying Convolution and Self-attention for Visual Recognition](https://arxiv.org/abs/2201.09450) by Li et al,
and first released in [this repository](https://github.com/Sense-X/UniFormer).
## Model description
The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
Without any extra training data,
UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification.
With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600,
and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks.
It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task,
**50.8** mIoU on ADE20K semantic segmentation task,
and **77.4** AP on COCO pose estimation task.

[Source](https://paperswithcode.com/paper/uniformer-unifying-convolution-and-self)
## Intended uses & limitations
You can use the raw model for image classification.
We now only upload the models trained without Token Labeling and Layer Scale.
More powerful models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/image_classification).
### ImageNet
| Model | Pretrain | Resolution | Top-1 | #Param. | FLOPs |
| --------------- | ----------- | ---------- | ----- | ------- | ----- |
| UniFormer-S | ImageNet-1K | 224x224 | 82.9 | 22M | 3.6G |
| UniFormer-S† | ImageNet-1K | 224x224 | 83.4 | 24M | 4.2G |
| UniFormer-B | ImageNet-1K | 224x224 | 83.8 | 50M | 8.3G |
### How to use
You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_image_demo/tree/main) to use our models.
```python
from uniformer import uniformer_small
from imagenet_class_index import imagenet_classnames
model = uniformer_small()
# load state
model_path = hf_hub_download(repo_id="Sense-X/uniformer_image", filename="uniformer_small_in1k.pth")
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict)
# set to eval mode
model = model.to(device)
model = model.eval()
# process image
image = img
image_transform = T.Compose(
[
T.Resize(224),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image = image_transform(image)
image = image.unsqueeze(0)
# model predicts one of the 1000 ImageNet classes
prediction = model(image)
predicted_class_idx = prediction.flatten().argmax(-1).item()
print("Predicted class:", imagenet_classnames[str(predicted_class_idx)][1])
```
### BibTeX entry and citation info
```bibtex
@misc{li2022uniformer,
title={UniFormer: Unifying Convolution and Self-attention for Visual Recognition},
author={Kunchang Li and Yali Wang and Junhao Zhang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.09450},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|
{"license": "mit", "tags": ["vision", "image-classification"], "datasets": ["imagenet"]}
|
image-classification
|
Sense-X/uniformer_image
|
[
"vision",
"image-classification",
"dataset:imagenet",
"arxiv:2201.09450",
"license:mit",
"has_space",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[
"2201.09450"
] |
[] |
TAGS
#vision #image-classification #dataset-imagenet #arxiv-2201.09450 #license-mit #has_space #region-us
|
UniFormer (image model)
=======================
UniFormer models are trained on ImageNet at resolution 224x224.
It was introduced in the paper UniFormer: Unifying Convolution and Self-attention for Visual Recognition by Li et al,
and first released in this repository.
Model description
-----------------
The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
Without any extra training data,
UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification.
With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
UniFormer obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600,
and 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks.
It also achieves 53.8 box AP and 46.4 mask AP on COCO object detection task,
50.8 mIoU on ADE20K semantic segmentation task,
and 77.4 AP on COCO pose estimation task.
!teaser
Source
Intended uses & limitations
---------------------------
You can use the raw model for image classification.
We now only upload the models trained without Token Labeling and Layer Scale.
More powerful models can be found in the model hub.
### ImageNet
### How to use
You can followed our demo to use our models.
### BibTeX entry and citation info
|
[
"### ImageNet",
"### How to use\n\n\nYou can followed our demo to use our models.",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#vision #image-classification #dataset-imagenet #arxiv-2201.09450 #license-mit #has_space #region-us \n",
"### ImageNet",
"### How to use\n\n\nYou can followed our demo to use our models.",
"### BibTeX entry and citation info"
] |
[
37,
4,
15,
11
] |
[
"passage: TAGS\n#vision #image-classification #dataset-imagenet #arxiv-2201.09450 #license-mit #has_space #region-us \n### ImageNet### How to use\n\n\nYou can followed our demo to use our models.### BibTeX entry and citation info"
] |
[
-0.07426059246063232,
0.1958993375301361,
0.0005465408903546631,
0.05516600236296654,
0.02954491414129734,
0.028334766626358032,
0.1803966760635376,
0.10457500070333481,
0.10365981608629227,
-0.01563512533903122,
0.16337068378925323,
0.054044753313064575,
0.03591641038656235,
0.21177275478839874,
-0.009401576593518257,
-0.3025783598423004,
-0.0010825147619470954,
0.05096438154578209,
0.02558293379843235,
0.08935479074716568,
0.07090174406766891,
-0.13914582133293152,
0.09420087933540344,
-0.001440207357518375,
-0.1391175240278244,
0.03221813216805458,
-0.06484773755073547,
-0.05443965643644333,
0.09210175275802612,
0.028130967170000076,
0.04880344122648239,
0.0651330053806305,
0.1283501833677292,
-0.10574780404567719,
0.035709623247385025,
-0.022255651652812958,
-0.08559899032115936,
0.1367325782775879,
0.07394228875637054,
0.0523851104080677,
0.21393650770187378,
0.01884373277425766,
-0.04089478403329849,
0.004100589547306299,
-0.1598615050315857,
-0.14106808602809906,
-0.007291110698133707,
0.16675615310668945,
0.06980367004871368,
-0.014418396167457104,
0.005337713751941919,
0.1298973709344864,
-0.013562687672674656,
0.06874439120292664,
0.12859855592250824,
-0.045263975858688354,
-0.06488016992807388,
0.1917029768228531,
0.06762026995420456,
0.041317060589790344,
-0.09294252842664719,
0.09037362784147263,
0.08912700414657593,
-0.00045292143477126956,
-0.027326155453920364,
-0.038954414427280426,
-0.05187969282269478,
0.025541160255670547,
-0.09379194676876068,
-0.09282107651233673,
0.22296319901943207,
0.07895035296678543,
-0.001138955820351839,
-0.005005828104913235,
-0.07052477449178696,
-0.01930052973330021,
-0.07337585091590881,
0.019508887082338333,
0.04928290843963623,
0.007042513228952885,
-0.04395647719502449,
-0.08632804453372955,
-0.16121430695056915,
-0.05347606539726257,
-0.055048856884241104,
-0.07219365984201431,
-0.05093645304441452,
0.11216912418603897,
-0.12646228075027466,
0.07713519781827927,
-0.0064544170163571835,
-0.11363812536001205,
0.019676553085446358,
-0.1721358299255371,
0.10385333001613617,
0.05579512193799019,
0.0724567323923111,
0.0618039146065712,
0.0622255764901638,
0.0751853883266449,
0.04118062183260918,
-0.013382678851485252,
-0.0863523855805397,
0.14944182336330414,
0.0921679362654686,
0.02860000729560852,
-0.11964643001556396,
-0.004361879546195269,
-0.005349877756088972,
0.025246217846870422,
-0.003499298822134733,
-0.03238966315984726,
-0.1876285970211029,
-0.021793877705931664,
0.002568848431110382,
0.015479049645364285,
0.08692086488008499,
-0.026459770277142525,
-0.041008997708559036,
-0.05794992297887802,
0.25287091732025146,
0.028542127460241318,
0.030250221490859985,
-0.042969029396772385,
-0.09274615347385406,
-0.1820039600133896,
0.1272641122341156,
0.0022351995576173067,
0.04057282209396362,
-0.018088076263666153,
-0.10687773674726486,
0.005996797699481249,
-0.07473032176494598,
-0.06068629026412964,
0.034368131309747696,
0.005232646130025387,
0.05679420754313469,
-0.1425495743751526,
-0.09029430896043777,
0.015067133121192455,
0.09092404693365097,
-0.08835728466510773,
0.058969758450984955,
0.049615826457738876,
-0.0110047347843647,
0.03570181876420975,
-0.04351403936743736,
0.03472429886460304,
-0.08212330937385559,
0.07680726051330566,
-0.09016700088977814,
0.13866831362247467,
-0.20704126358032227,
0.0021634043660014868,
-0.1128505989909172,
0.0522686243057251,
-0.05135638639330864,
0.05753225460648537,
-0.07524733245372772,
0.04675964638590813,
-0.11291565001010895,
-0.037479620426893234,
-0.0726802796125412,
0.024623487144708633,
0.05393035709857941,
0.1868009716272354,
-0.3082013428211212,
0.023135168477892876,
0.003919853363186121,
-0.08836499601602554,
-0.1562356799840927,
-0.008721324615180492,
-0.07272426784038544,
0.1059299036860466,
-0.010732573457062244,
0.26017123460769653,
0.016347728669643402,
-0.1664685308933258,
-0.006137569900602102,
0.06262920796871185,
-0.03998415544629097,
-0.08724267780780792,
0.07028792053461075,
0.07304109632968903,
0.03474359214305878,
-0.040429871529340744,
-0.03462107852101326,
0.06326326727867126,
-0.07250593602657318,
-0.10554676502943039,
0.03156057372689247,
-0.027130955830216408,
0.02001201920211315,
0.09369251877069473,
0.010729010216891766,
-0.024810444563627243,
0.00812637060880661,
0.07789299637079239,
0.09988918155431747,
0.04556959122419357,
-0.05415768921375275,
-0.03231251612305641,
0.06615936756134033,
-0.20706376433372498,
-0.028508013114333153,
-0.08224719762802124,
0.027014154940843582,
-0.04269447177648544,
0.06183996796607971,
0.12644153833389282,
0.1432381123304367,
0.041522715240716934,
-0.0034058154560625553,
-0.013807001523673534,
-0.025626178830862045,
0.01940801367163658,
0.04790453612804413,
-0.021747399121522903,
-0.1680610328912735,
-0.045317817479372025,
-0.04909935221076012,
-0.1108495220541954,
-0.20692145824432373,
-0.029301460832357407,
0.08548902720212936,
0.06405682116746902,
0.024531854316592216,
0.021341882646083832,
0.04355356842279434,
-0.09082875400781631,
-0.06649258732795715,
-0.06721191108226776,
0.05901012569665909,
-0.04695485532283783,
0.03607430309057236,
0.14162492752075195,
-0.016663342714309692,
0.029541391879320145,
0.1652470827102661,
-0.15397688746452332,
-0.016650330275297165,
-0.06466870754957199,
-0.04774467274546623,
0.0037805684842169285,
0.013044645078480244,
0.009073671884834766,
-0.13049370050430298,
-0.04072283208370209,
0.05557282641530037,
-0.08469996601343155,
0.023931952193379402,
0.010829020291566849,
-0.08837639540433884,
-0.1156391054391861,
0.06994748115539551,
0.16093376278877258,
-0.3669552803039551,
0.16597244143486023,
0.21609023213386536,
0.06711640954017639,
0.20626604557037354,
0.06435008347034454,
-0.05511363968253136,
-0.02694454789161682,
-0.08186023682355881,
-0.035108741372823715,
0.3351200819015503,
-0.04960402846336365,
-0.0010937467450276017,
0.05624047666788101,
-0.06973253935575485,
0.07333412766456604,
-0.14464154839515686,
-0.05258406326174736,
0.015912292525172234,
0.026606304571032524,
-0.03287064656615257,
0.01798429526388645,
-0.07211575657129288,
0.11816354840993881,
0.0077573093585669994,
-0.0850817933678627,
-0.013085741549730301,
-0.05621886998414993,
-0.06974771618843079,
0.12169452011585236,
-0.06297776103019714,
-0.27471989393234253,
-0.11417438089847565,
-0.04101906344294548,
0.015269643627107143,
0.062122005969285965,
-0.009806734509766102,
-0.04810475930571556,
-0.012616187334060669,
-0.02539963647723198,
-0.09307008981704712,
-0.061213430017232895,
-0.05990022048354149,
-0.06365738809108734,
0.03952169790863991,
0.005762213841080666,
-0.15059293806552887,
-0.04149506613612175,
-0.037134021520614624,
0.10855653136968613,
0.059705935418605804,
-0.08081746846437454,
0.13269704580307007,
0.0989120751619339,
-0.07056760787963867,
0.038387369364500046,
0.014164047315716743,
0.3042333722114563,
-0.14139556884765625,
0.0685030147433281,
0.0931190475821495,
-0.023179274052381516,
0.015318072400987148,
0.23672762513160706,
0.08727969229221344,
-0.07448834180831909,
-0.03083064965903759,
-0.0552639439702034,
-0.12113167345523834,
-0.103958360850811,
-0.12108563631772995,
-0.0913161113858223,
0.015131572261452675,
0.16704612970352173,
0.07995254546403885,
0.11030838638544083,
0.1142289862036705,
0.0014126268215477467,
-0.002969390945509076,
-0.016313694417476654,
0.08005297183990479,
-0.0029085581190884113,
-0.03217020630836487,
0.05350281298160553,
-0.0700957328081131,
-0.062258027493953705,
0.10376549512147903,
0.16557589173316956,
0.18647663295269012,
0.08506441861391068,
-0.05252676457166672,
0.11538811028003693,
-0.015288528986275196,
0.1336832195520401,
0.053399790078401566,
-0.008005444891750813,
-0.012540599331259727,
-0.06434480100870132,
-0.08413887023925781,
0.01760086417198181,
0.12562203407287598,
0.05413143336772919,
-0.05588288977742195,
0.07129905372858047,
-0.16683174669742584,
0.023062340915203094,
-0.028063368052244186,
0.16658642888069153,
-0.31887558102607727,
0.0646844282746315,
0.0567028783261776,
0.04743518680334091,
-0.11244051158428192,
0.001870281295850873,
0.1256491243839264,
-0.06423275917768478,
0.03834992274641991,
-0.01293137390166521,
0.0954892635345459,
-0.08550652861595154,
-0.03069194220006466,
-0.0646352469921112,
-0.17950819432735443,
-0.046730704605579376,
0.08250037580728531,
-0.15575020015239716,
0.2799510955810547,
0.03761381655931473,
-0.07499182224273682,
-0.05088571086525917,
-0.05096512660384178,
0.0667528286576271,
0.10626915842294693,
0.15705782175064087,
0.024633284658193588,
-0.05763939768075943,
-0.06541059166193008,
-0.03525146469473839,
-0.029246119782328606,
-0.026436697691679,
-0.007332223933190107,
-0.04270476475358009,
0.04843835160136223,
-0.01868833601474762,
-0.014084716327488422,
0.08504638820886612,
-0.11000027507543564,
-0.11163201183080673,
-0.00988768506795168,
-0.027166342362761497,
-0.0477314218878746,
0.0001666896278038621,
-0.03001205064356327,
0.08823008835315704,
-0.002027662703767419,
-0.00673362473025918,
-0.03777046501636505,
-0.07717420160770416,
0.11142369359731674,
0.1189897358417511,
0.00832606852054596,
0.07003968209028244,
-0.028717121109366417,
0.09336088597774506,
-0.08408216387033463,
-0.11140668392181396,
0.09154410660266876,
-0.11379894614219666,
-0.031157836318016052,
-0.12379922717809677,
0.023016992956399918,
0.011585854925215244,
0.020950686186552048,
0.043874453753232956,
0.06751546263694763,
-0.09655654430389404,
-0.048330843448638916,
0.08268348127603531,
-0.10359129309654236,
0.06584871560335159,
0.0064128730446100235,
0.02300466038286686,
-0.17018529772758484,
-0.007737253792583942,
0.025195179507136345,
0.06110526621341705,
0.2566997706890106,
-0.10479632019996643,
0.06524235010147095,
0.15926717221736908,
-0.05914191156625748,
-0.2683553099632263,
0.05760130286216736,
-0.06481039524078369,
-0.039822056889534,
0.06769224256277084,
-0.0862717553973198,
-0.012135738506913185,
0.027265707030892372,
-0.11944234371185303,
0.16146516799926758,
-0.17719517648220062,
-0.08466017991304398,
0.15602773427963257,
0.06786589324474335,
0.07820505648851395,
-0.16082721948623657,
-0.047875966876745224,
-0.08315112441778183,
-0.09191136807203293,
0.20675396919250488,
0.11099310219287872,
0.02841353416442871,
-0.014943013899028301,
-0.023086726665496826,
0.02376103214919567,
-0.020542429760098457,
0.2229609191417694,
-0.06997984647750854,
0.08442434668540955,
-0.11281842738389969,
-0.2222006916999817,
0.08617809414863586,
-0.06705751270055771,
0.05305888503789902,
0.05909610167145729,
0.05277353152632713,
-0.17711132764816284,
0.024804526939988136,
-0.0635993480682373,
0.03898899629712105,
0.001883213990367949,
-0.11055856198072433,
-0.1332583725452423,
0.08205508440732956,
-0.08068466931581497,
0.03755633905529976,
0.15749959647655487,
-0.07639344036579132,
-0.01188154798001051,
0.19733229279518127,
0.023818407207727432,
0.04129408299922943,
0.008900080807507038,
-0.020048541948199272,
-0.04827072471380234,
0.12657392024993896,
-0.2871820032596588,
-0.006625920068472624,
0.07399303466081619,
0.01791408844292164,
0.09677580744028091,
0.051633067429065704,
-0.07946041226387024,
0.027563564479351044,
0.17904864251613617,
-0.07077282667160034,
-0.06295905262231827,
-0.040947962552309036,
0.14283323287963867,
0.08001573383808136,
0.017605425789952278,
0.08255637437105179,
-0.07624848932027817,
-0.014942070469260216,
0.059924375265836716,
0.03783683478832245,
-0.07941191643476486,
0.08110813796520233,
0.22434130311012268,
0.03153868019580841,
-0.07553790509700775,
0.06943799555301666,
0.08263673633337021,
0.048321206122636795,
-0.030043726786971092,
0.020671751350164413,
0.01571204513311386,
-0.11227115243673325,
-0.029524948447942734,
0.09814728796482086,
-0.14705094695091248,
-0.03781658783555031,
0.07827697694301605,
0.03004738874733448,
0.01994098722934723,
0.10461579263210297,
0.057333264499902725,
-0.033769428730010986,
0.023431312292814255,
-0.015339970588684082,
-0.0006136540323495865,
0.08479829877614975,
-0.0727064311504364,
0.08700249344110489,
-0.11434311419725418,
-0.15454578399658203,
0.007344270125031471,
0.11626966297626495,
-0.09733878076076508,
-0.022533703595399857,
-0.15563206374645233,
0.05692141875624657,
-0.1061583086848259,
0.09129125624895096,
-0.113746777176857,
-0.0061285411939024925,
-0.02484973333775997,
-0.053935613483190536,
-0.09218413382768631,
-0.028233442455530167,
-0.14109715819358826,
0.018625449389219284,
0.016504306346178055,
0.08301367610692978,
-0.09938236325979233,
-0.01846832036972046,
0.05900793522596359,
0.001439674524590373,
0.02446524053812027,
-0.082621268928051,
0.009254778735339642,
-0.048779744654893875,
-0.17635099589824677,
-0.07240938395261765,
0.11522980779409409,
0.014538498595356941,
0.006405731197446585,
0.0289054736495018,
0.02741922438144684,
-0.019065510481595993,
-0.027631092816591263,
-0.03225789591670036,
0.02494155243039131,
-0.07780230045318604,
-0.04148484766483307,
-0.062116220593452454,
-0.06566964089870453,
0.016143502667546272,
0.1356634944677353,
0.06157175824046135,
0.06285608559846878,
0.009502584114670753,
0.009959494695067406,
0.012559190392494202,
-0.12477221339941025,
0.0006955499411560595,
-0.06465207040309906,
-0.12535196542739868,
0.05439448356628418,
-0.07870613783597946,
-0.007585023529827595,
-0.06997638940811157,
0.24342669546604156,
0.17885048687458038,
-0.10639908909797668,
-0.017903154715895653,
0.12125957757234573,
-0.03945454955101013,
0.02534940093755722,
0.24021463096141815,
-0.06008348613977432,
0.02436148189008236,
-0.10422959178686142,
0.1267537772655487,
0.015283197164535522,
0.12893663346767426,
-0.04317864030599594,
0.18677063286304474,
-0.049975182861089706,
0.04295189306139946,
0.15697845816612244,
-0.03254501894116402,
-0.035131145268678665,
-0.07593414187431335,
0.07421349734067917,
0.07710585743188858,
-0.07910531759262085,
-0.008261624723672867,
0.20819304883480072,
-0.12126650661230087,
0.03941987827420235,
0.011070380918681622,
0.006198017857968807,
-0.05120467022061348,
-0.15340343117713928,
-0.019988587126135826,
-0.11614114046096802,
0.02622615173459053,
-0.05532999336719513,
0.0298218484967947,
0.21633672714233398,
0.02233028970658779,
-0.044432975351810455,
0.03715820237994194,
-0.00021707687119487673,
-0.07868439704179764,
0.04658249765634537,
0.055845122784376144,
-0.016306249424815178,
-0.1799677312374115,
0.05983220785856247,
0.0426471084356308,
0.02757577784359455,
-0.028020313009619713,
-0.030716504901647568,
0.03090682253241539,
-0.01392418798059225,
-0.024706900119781494,
-0.07886368036270142,
-0.056211210787296295,
-0.015654239803552628,
0.009746507741510868,
0.12323709577322006,
-0.012579885311424732,
0.03825652599334717,
0.03578798845410347,
0.16803060472011566,
-0.06734611093997955,
-0.08455359190702438,
-0.04776909202337265,
0.1171373724937439,
-0.14632417261600494,
0.07801571488380432,
-0.09642566740512848,
-0.10084575414657593,
0.0021994528360664845,
0.1146547794342041,
0.3069431781768799,
-0.13189749419689178,
0.00936865620315075,
0.019813382998108864,
0.010893313214182854,
-0.016663948073983192,
0.09735822677612305,
-0.0423363596200943,
0.22201304137706757,
-0.09422601014375687,
0.017012841999530792,
-0.0740809291601181,
-0.036328624933958054,
0.0748855397105217,
0.053169988095760345,
0.10913564264774323,
-0.05719150975346565,
-0.13517619669437408,
0.13901278376579285,
-0.08420586585998535,
-0.06200430542230606,
0.13096241652965546,
-0.1580480933189392,
-0.0885336622595787,
0.028731266036629677,
0.032341454178094864,
0.006706976797431707,
-0.006992736365646124,
-0.14722590148448944,
0.024304119870066643,
-0.13325810432434082,
0.008064329624176025,
-0.18313437700271606,
-0.09095903486013412,
0.032853223383426666,
-0.09539730101823807,
0.27349191904067993,
-0.07498537749052048,
0.02129405550658703,
0.07010576874017715,
-0.01931491121649742,
-0.11730024218559265,
0.005011400673538446,
0.02380223385989666,
0.03944157809019089,
0.012601477093994617,
0.0534578338265419,
-0.004666598979383707,
-0.016203677281737328,
0.10542424768209457,
-0.11289000511169434,
-0.01245533861219883,
0.010495191439986229,
-0.018613038584589958,
-0.08741113543510437,
0.05514107272028923,
-0.09519707411527634,
0.10390181839466095,
-0.047126252204179764,
-0.0436520017683506,
-0.07853173464536667,
-0.05778495967388153,
0.06313078105449677,
0.10309650003910065,
0.0033723667729645967,
0.0018904494354501367,
0.045501139014959335,
-0.06040555238723755,
-0.029174480587244034,
0.022136276587843895,
-0.16086938977241516,
0.0010294629028066993,
-0.07941249012947083,
-0.01803670823574066,
0.01909036561846733,
0.10931678861379623,
0.17124919593334198,
-0.010629219003021717,
-0.031712036579847336,
-0.060784269124269485,
0.04598143324255943,
-0.0011505093425512314,
-0.029867026954889297,
-0.03951834887266159
] |
null | null | null |
# UniFormer (video model)
UniFormer models are trained on [Kinetics](https://deepmind.com/research/open-source/kinetics) and [Something-Something](https://20bn.com/datasets/something-something) at resolution 224x224.
It was introduced in the paper [UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning](https://arxiv.org/abs/2201.04676) by Li et al,
and first released in [this repository](https://github.com/Sense-X/UniFormer).
## Model description
The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
Without any extra training data,
UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification.
With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600,
and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks.
It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task,
**50.8** mIoU on ADE20K semantic segmentation task,
and **77.4** AP on COCO pose estimation task.

[Source](https://paperswithcode.com/paper/uniformer-unified-transformer-for-efficient)
## Intended uses & limitations
You can use the raw model for video classification.
We now only upload the powerful models with **single clip**.
More models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/video_classification).
### Kinetics
| Model | #Frame | Sampling Stride | FLOPs | K400 Top-1 | K600 Top-1 |
| ----------- | ------ | --------------- | ----- | ---------- | ---------- |
| UniFormer-S | 16x1x1 | 8 | 41.8G | 78.4 | 80.8 |
| UniFormer-B | 16x1x1 | 8 | 96.7G | 79.3 | 81.7 |
| UniFormer-B | 32x1x1 | 4 | 259G | 80.9 | 82.4 |
### Something-Something
| Model | #Frame | FLOPs | SSV1 Top-1 | SSV2 Top-1 |
| ----------- | ------ | ----- | ---------- | ---------- |
| UniFormer-S | 16x1x1 | 41.8G | 54.4 | 65.0 |
| UniFormer-B | 32x1x1 | 259G | 58.0 | 67.5 |
### How to use
You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_video_demo/tree/main) to use our models.
```python
from uniformer import uniformer_small
from kinetics_class_index import kinetics_classnames
model = uniformer_small()
# load state
model_path = hf_hub_download(repo_id="Sense-X/uniformer_video", filename="uniformer_small_k400_16x8.pth")
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict)
# set to eval mode
model = model.to(device)
model = model.eval()
# please refer to the following url to process video of Kinetics:
# https://huggingface.co/spaces/Sense-X/uniformer_video_demo/blob/main/app.py
vid = load_video(video)
# model predicts one of the 400 Kintics classes
prediction = model(vid)
predicted_class_idx = prediction.flatten().argmax(-1).item()
print("Predicted class:", kinetics_classnames[str(predicted_class_idx)])
```
### BibTeX entry and citation info
```bibtex
@misc{li2022uniformer,
title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning},
author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.04676},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|
{"license": "mit", "tags": ["vision", "video-classification"], "datasets": ["kinetics-400", "kinetics-600", "something-something-v1", "something-something-v2"]}
|
video-classification
|
Sense-X/uniformer_video
|
[
"vision",
"video-classification",
"dataset:kinetics-400",
"dataset:kinetics-600",
"dataset:something-something-v1",
"dataset:something-something-v2",
"arxiv:2201.04676",
"license:mit",
"has_space",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[
"2201.04676"
] |
[] |
TAGS
#vision #video-classification #dataset-kinetics-400 #dataset-kinetics-600 #dataset-something-something-v1 #dataset-something-something-v2 #arxiv-2201.04676 #license-mit #has_space #region-us
|
UniFormer (video model)
=======================
UniFormer models are trained on Kinetics and Something-Something at resolution 224x224.
It was introduced in the paper UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning by Li et al,
and first released in this repository.
Model description
-----------------
The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
Without any extra training data,
UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification.
With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
UniFormer obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600,
and 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks.
It also achieves 53.8 box AP and 46.4 mask AP on COCO object detection task,
50.8 mIoU on ADE20K semantic segmentation task,
and 77.4 AP on COCO pose estimation task.
!teaser
Source
Intended uses & limitations
---------------------------
You can use the raw model for video classification.
We now only upload the powerful models with single clip.
More models can be found in the model hub.
### Kinetics
### Something-Something
### How to use
You can followed our demo to use our models.
### BibTeX entry and citation info
|
[
"### Kinetics",
"### Something-Something",
"### How to use\n\n\nYou can followed our demo to use our models.",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#vision #video-classification #dataset-kinetics-400 #dataset-kinetics-600 #dataset-something-something-v1 #dataset-something-something-v2 #arxiv-2201.04676 #license-mit #has_space #region-us \n",
"### Kinetics",
"### Something-Something",
"### How to use\n\n\nYou can followed our demo to use our models.",
"### BibTeX entry and citation info"
] |
[
72,
4,
7,
15,
11
] |
[
"passage: TAGS\n#vision #video-classification #dataset-kinetics-400 #dataset-kinetics-600 #dataset-something-something-v1 #dataset-something-something-v2 #arxiv-2201.04676 #license-mit #has_space #region-us \n### Kinetics### Something-Something### How to use\n\n\nYou can followed our demo to use our models.### BibTeX entry and citation info"
] |
[
-0.0801343247294426,
0.12807059288024902,
0.0008491963963024318,
0.09435208886861801,
0.08935744315385818,
0.041150812059640884,
0.10441608726978302,
0.1351303607225418,
0.08708782494068146,
0.0146161625161767,
0.17964886128902435,
0.07484573125839233,
0.059326473623514175,
0.24632856249809265,
0.04889737814664841,
-0.31881392002105713,
-0.020374977961182594,
0.0203000046312809,
0.006469868589192629,
0.105283223092556,
0.10536545515060425,
-0.15658527612686157,
0.11157063394784927,
-0.05018944665789604,
-0.15184877812862396,
-0.0037103346548974514,
-0.0106699513271451,
-0.047267135232686996,
0.1266259402036667,
0.017985474318265915,
0.04816913604736328,
0.041732825338840485,
0.1733507215976715,
-0.12150684744119644,
0.019107861444354057,
-0.02925056405365467,
-0.044375304132699966,
0.10166003555059433,
0.053880102932453156,
0.07782157510519028,
0.15816804766654968,
-0.09339715540409088,
-0.018360411748290062,
0.046391021460294724,
-0.13942547142505646,
-0.17593853175640106,
-0.02204008586704731,
-0.001692222780548036,
0.0016355091938748956,
-0.025825541466474533,
-0.021592488512396812,
0.07744310051202774,
-0.018791599199175835,
0.0718010812997818,
0.1824873834848404,
-0.08289004117250443,
-0.08558670431375504,
0.16621269285678864,
0.1648644506931305,
0.07524897903203964,
-0.1320299357175827,
0.06300421059131622,
0.09366892278194427,
0.003865661099553108,
0.03963572159409523,
-0.03203648701310158,
-0.04246044158935547,
0.026368197053670883,
-0.1016814112663269,
-0.0652097687125206,
0.3219863772392273,
0.08449309319257736,
0.01845397986471653,
-0.04384346306324005,
0.004628374706953764,
-0.08548639714717865,
-0.10739235579967499,
-0.0018038077978417277,
0.041605085134506226,
-0.047739919275045395,
-0.04482478275895119,
-0.04659289866685867,
-0.1471189260482788,
-0.09139996767044067,
-0.0408598817884922,
-0.10460802167654037,
-0.07478120177984238,
0.09096833318471909,
-0.09462488442659378,
0.10565266013145447,
0.05508695915341377,
-0.1006479263305664,
0.012740246020257473,
-0.12883062660694122,
0.0002928969624917954,
0.016948431730270386,
0.032510098069906235,
0.16854459047317505,
0.046940483152866364,
0.014034338295459747,
0.12908415496349335,
0.014836872927844524,
0.01225581206381321,
0.09538676589727402,
0.05071025341749191,
0.04953693225979805,
-0.09281939268112183,
-0.10857883095741272,
-0.043752383440732956,
0.09952504187822342,
-0.053097113966941833,
-0.029663601890206337,
-0.13141073286533356,
-0.0013367804931476712,
-0.0033308397978544235,
0.021970057860016823,
0.15119661390781403,
0.01049521379172802,
-0.10311898589134216,
-0.012817567214369774,
0.0003275730414316058,
-0.0004895800957456231,
0.040575362741947174,
-0.05622882768511772,
-0.05682463198900223,
-0.10258517414331436,
0.0543217696249485,
0.021953308954834938,
0.0888683870434761,
-0.0372549332678318,
-0.09516436606645584,
-0.0004897578037343919,
-0.09353091567754745,
-0.05653608962893486,
0.04232195392251015,
-0.04059566184878349,
0.042333249002695084,
-0.05930370092391968,
-0.11913462728261948,
-0.0002520341658964753,
0.10535773634910583,
-0.06861865520477295,
0.0026730350218713284,
-0.018312616273760796,
-0.02140982449054718,
0.0676175132393837,
-0.013458951376378536,
0.15905603766441345,
-0.06248066574335098,
0.09057318419218063,
-0.05914870277047157,
0.17298592627048492,
-0.12006273865699768,
0.02495037578046322,
-0.08161786943674088,
0.04940231516957283,
0.03551284968852997,
0.11026235669851303,
-0.11144659668207169,
0.0041080983355641365,
-0.08257634937763214,
0.026915017515420914,
-0.03869059681892395,
0.02098509855568409,
0.0022226152941584587,
0.22709091007709503,
-0.4347834587097168,
-0.0006488019716925919,
-0.011188154108822346,
-0.057012442499399185,
-0.17831861972808838,
0.004227292258292437,
-0.07168953865766525,
0.18703478574752808,
0.012297352775931358,
0.21586856245994568,
-0.00959005393087864,
-0.20180119574069977,
-0.019647229462862015,
0.11657584458589554,
-0.08871763944625854,
-0.034732636064291,
0.14083680510520935,
0.09304140508174896,
0.02638271078467369,
-0.004250423517078161,
-0.04534567520022392,
0.020042989403009415,
-0.12132871896028519,
-0.12412303686141968,
0.03446415811777115,
-0.02434845268726349,
0.03399644047021866,
0.08930257707834244,
-0.011859677731990814,
-0.015330306254327297,
-0.01880912110209465,
0.037656307220458984,
0.06948035210371017,
0.032799236476421356,
-0.010766355320811272,
-0.024845905601978302,
0.048650871962308884,
-0.1506020426750183,
-0.0286483746021986,
-0.11159048974514008,
-0.06362192332744598,
-0.048674557358026505,
0.09514707326889038,
0.05865645408630371,
0.14712753891944885,
0.06248381733894348,
0.019552161917090416,
-0.017671804875135422,
-0.012612137012183666,
-0.031239362433552742,
0.07410367578268051,
-0.04527086764574051,
-0.24215680360794067,
-0.05376550182700157,
-0.08660674840211868,
0.0025115706957876682,
-0.14013586938381195,
-0.04687897861003876,
0.09197800606489182,
0.09256207942962646,
0.06699591130018234,
-0.03074650838971138,
-0.01724620908498764,
-0.06045525148510933,
-0.017062023282051086,
-0.05140331760048866,
0.07925020903348923,
-0.049753107130527496,
-0.007983001880347729,
0.07108453661203384,
0.055199865251779556,
0.04934025928378105,
0.1554008424282074,
-0.09017477929592133,
-0.0058982837945222855,
-0.05941319465637207,
-0.042888667434453964,
0.016177764162421227,
0.013852551579475403,
-0.030574550852179527,
-0.17571046948432922,
-0.013791436329483986,
0.020614327862858772,
-0.02231045626103878,
0.00991731695830822,
0.05368293449282646,
-0.058057934045791626,
-0.10846187174320221,
0.12263038009405136,
0.1595456898212433,
-0.20309118926525116,
0.17102043330669403,
0.21258436143398285,
0.07151545584201813,
0.22351805865764618,
0.0047459788620471954,
-0.07829665392637253,
-0.06531398743391037,
-0.12524618208408356,
-0.023233400657773018,
0.30870479345321655,
-0.060021791607141495,
-0.008607229217886925,
0.07172927260398865,
-0.08834809064865112,
0.007972183637320995,
-0.12433156371116638,
-0.08151313662528992,
0.023286862298846245,
0.03013456240296364,
-0.06311675161123276,
0.0036558141000568867,
-0.08675176650285721,
0.126254603266716,
0.04631826654076576,
-0.05851198360323906,
0.024678045883774757,
-0.05280129611492157,
-0.07986164093017578,
0.11097382754087448,
-0.03919187933206558,
-0.20189505815505981,
-0.10280605405569077,
-0.08075190335512161,
0.05097511410713196,
0.03941940888762474,
-0.00010354749247198924,
-0.07361216098070145,
-0.007753726094961166,
-0.008714674971997738,
-0.03309871628880501,
-0.03360370546579361,
-0.02924524061381817,
-0.05852026492357254,
0.06795971095561981,
-0.03933924064040184,
-0.09908316284418106,
-0.028462566435337067,
-0.062102705240249634,
0.08003377169370651,
0.05504631996154785,
-0.0642101839184761,
0.18111908435821533,
0.04402947798371315,
-0.027952909469604492,
0.05588279291987419,
-0.019678814336657524,
0.31479254364967346,
-0.15258948504924774,
0.053452227264642715,
0.06787890940904617,
0.04040998965501785,
0.011210949160158634,
0.2341437190771103,
0.09613344073295593,
-0.04813898727297783,
-0.01531412173062563,
-0.015588929876685143,
-0.0933494046330452,
-0.08145302534103394,
-0.0786571279168129,
-0.10754633694887161,
0.05345664173364639,
0.11141891777515411,
0.017743220552802086,
-0.00803403090685606,
0.09187193214893341,
0.02719307504594326,
0.05501701682806015,
-0.046744752675294876,
0.05056470260024071,
0.011356091126799583,
-0.060839395970106125,
0.07759509235620499,
-0.07247404754161835,
-0.061709169298410416,
0.08458686619997025,
0.10554482042789459,
0.1983226239681244,
0.07974760979413986,
0.0190129391849041,
0.08810465037822723,
0.024263156577944756,
0.06564650684595108,
0.04582814872264862,
0.0575830414891243,
-0.02870551310479641,
-0.07093372941017151,
-0.08731220662593842,
-0.026420343667268753,
0.1274409145116806,
0.09178159385919571,
-0.08558958023786545,
-0.004278290085494518,
-0.013488794676959515,
0.025416584685444832,
-0.001687522861175239,
0.11790622025728226,
-0.33525508642196655,
0.02080954797565937,
0.07552973926067352,
0.11233412474393845,
-0.11202941089868546,
-0.010555288754403591,
0.08884900063276291,
-0.10461436212062836,
0.0028253013733774424,
-0.006716288160532713,
0.06629939377307892,
-0.05805958807468414,
-0.006214468274265528,
-0.028387557715177536,
-0.13040991127490997,
-0.04029437154531479,
0.07918554544448853,
-0.23152954876422882,
0.25491589307785034,
0.04024675488471985,
-0.029051993042230606,
-0.04447482153773308,
-0.049281153827905655,
0.06411483138799667,
0.03857491537928581,
0.25034859776496887,
0.010936039499938488,
-0.005091892555356026,
-0.1266549676656723,
-0.014974366873502731,
0.021511022001504898,
0.008689602836966515,
-0.0793953612446785,
0.003342969808727503,
0.01116958074271679,
-0.014870716258883476,
0.003330391366034746,
0.03541470691561699,
-0.12470985949039459,
-0.12166670709848404,
0.0067516230046749115,
-0.04812542721629143,
-0.0051820287480950356,
-0.005471603944897652,
-0.1039104089140892,
0.050347041338682175,
0.011172937229275703,
-0.14068861305713654,
-0.024821285158395767,
-0.09997044503688812,
0.06760895997285843,
0.10699116438627243,
0.0020041039679199457,
0.06348620355129242,
-0.02262658253312111,
0.10325464606285095,
-0.07623087614774704,
-0.09499236196279526,
0.10841461271047592,
-0.12324422597885132,
-0.03583786264061928,
-0.1508886218070984,
0.041192427277565,
-0.008375756442546844,
0.07157497107982635,
0.0029278912115842104,
0.07297312468290329,
-0.0919622927904129,
-0.047551658004522324,
0.11115915328264236,
-0.07071179896593094,
0.03683895990252495,
-0.054524995386600494,
0.012650859542191029,
-0.1384558528661728,
-0.001733307959511876,
0.001298646442592144,
0.10621917247772217,
0.24521523714065552,
-0.12074384093284607,
0.12579119205474854,
0.15601761639118195,
-0.04428359866142273,
-0.32050320506095886,
0.03276373818516731,
0.022886108607053757,
-0.01245584711432457,
0.09453470259904861,
-0.10248008370399475,
0.03409867361187935,
-0.00768932094797492,
-0.08221723139286041,
0.10566169023513794,
-0.13653779029846191,
-0.12014467269182205,
0.0837828665971756,
0.08442506194114685,
0.018190743401646614,
-0.09702424705028534,
-0.0545211024582386,
-0.055978067219257355,
-0.188359797000885,
0.23896649479866028,
0.0774991437792778,
0.05277571827173233,
-0.024626467376947403,
-0.014329921454191208,
0.019156439229846,
-0.03383926302194595,
0.21161644160747528,
-0.07268453389406204,
0.048363786190748215,
-0.08847968280315399,
-0.2871910631656647,
0.13377419114112854,
-0.04482126981019974,
0.008257978595793247,
0.06017015501856804,
-0.000128583749756217,
-0.20076362788677216,
0.00814143568277359,
-0.10671431571245193,
0.04127282649278641,
-0.026082662865519524,
-0.13292637467384338,
-0.09899298846721649,
0.10960006713867188,
-0.06577271223068237,
-0.00041606073500588536,
0.13861605525016785,
-0.06229682266712189,
-0.03559880331158638,
0.18549466133117676,
0.060189589858055115,
-0.04626581072807312,
-0.03249603509902954,
-0.015836570411920547,
-0.07867991179227829,
0.09721814841032028,
-0.23251928389072418,
-0.01856219209730625,
0.13168862462043762,
0.02029091864824295,
0.12175960838794708,
0.08130936324596405,
-0.0621475875377655,
0.06064488738775253,
0.18066085875034332,
-0.06582195311784744,
-0.12395767867565155,
-0.07020818442106247,
-0.013189627788960934,
-0.04433543607592583,
-0.01602405123412609,
0.003574596717953682,
-0.05229774862527847,
0.01697305031120777,
-0.014073003083467484,
0.036497149616479874,
-0.07268989831209183,
0.08362104743719101,
0.20587557554244995,
0.06046980246901512,
-0.10585691034793854,
0.03279741480946541,
0.040054190903902054,
-0.03628820180892944,
-0.035659436136484146,
0.02507910318672657,
-0.03227929398417473,
-0.07922480255365372,
0.043449029326438904,
0.12856684625148773,
-0.10239481180906296,
-0.006131340283900499,
0.012196123600006104,
-0.05489611253142357,
0.02985237166285515,
0.020345665514469147,
0.050692133605480194,
0.013842306099832058,
0.012445459142327309,
-0.007173656485974789,
-0.015351989306509495,
0.14685098826885223,
-0.06682980805635452,
0.043113891035318375,
-0.15316222608089447,
-0.08983846753835678,
-0.007254927884787321,
0.12884166836738586,
-0.08859384059906006,
-0.02863962948322296,
-0.11829023063182831,
0.0271330364048481,
-0.014013908803462982,
0.03488092124462128,
-0.10440581291913986,
0.010811508633196354,
-0.024575605988502502,
-0.07871808111667633,
-0.07947418093681335,
-0.0001009353218250908,
-0.09306487441062927,
-0.008318544365465641,
0.015405509620904922,
0.10845186561346054,
-0.14593029022216797,
-0.03014007769525051,
0.06533742696046829,
-0.02020459622144699,
0.007641263771802187,
-0.04868019372224808,
0.0709904357790947,
-0.043401919305324554,
-0.1238950565457344,
-0.026013867929577827,
0.06523501873016357,
0.008298984728753567,
0.01523920614272356,
-0.02626946195960045,
-0.007215471006929874,
-0.051574330776929855,
-0.013989401049911976,
-0.014857141301035881,
0.04597144573926926,
-0.09426775574684143,
0.05823250114917755,
-0.048132069408893585,
-0.08375311642885208,
-0.024034613743424416,
0.14326848089694977,
0.1014658585190773,
0.033096522092819214,
0.04676596447825432,
0.012162303552031517,
-0.011515019461512566,
-0.1853334903717041,
0.004666206892579794,
-0.046824730932712555,
-0.06511997431516647,
0.00115873699542135,
-0.09880558401346207,
0.019484402611851692,
-0.049429651349782944,
0.17132864892482758,
0.16934967041015625,
-0.07130209356546402,
0.009217088110744953,
0.08346960693597794,
-0.0044489395804703236,
0.018510421738028526,
0.17045772075653076,
0.019519688561558723,
0.022297421470284462,
-0.08276167511940002,
0.11626620590686798,
0.037625402212142944,
0.1538492888212204,
-0.010683989152312279,
0.05874248966574669,
0.009724668227136135,
0.04630424827337265,
0.14513017237186432,
-0.026195138692855835,
-0.057379987090826035,
0.07368910312652588,
0.036765750497579575,
0.011148281395435333,
-0.06495960056781769,
-0.02135331928730011,
0.1689918488264084,
-0.15007410943508148,
0.04318011552095413,
-0.051677457988262177,
-0.03396289423108101,
-0.032132040709257126,
-0.1205369234085083,
-0.03497534617781639,
-0.07942021638154984,
-0.00036889410694129765,
-0.0741657018661499,
0.06126009672880173,
0.17758119106292725,
0.012915639206767082,
0.0017043713014572859,
0.09877340495586395,
0.011293609626591206,
-0.019889814779162407,
0.06893520057201385,
0.04808976873755455,
-0.03832089155912399,
-0.19738803803920746,
0.05403465777635574,
0.035623230040073395,
-0.019025176763534546,
-0.04498611390590668,
-0.01970387063920498,
-0.0689016580581665,
0.003956349100917578,
0.006084447726607323,
-0.0990058183670044,
-0.04174856096506119,
-0.016514593735337257,
-0.005184583831578493,
0.10757552087306976,
0.01497206836938858,
0.03897642716765404,
0.047268256545066833,
0.19857405126094818,
-0.060797713696956635,
-0.060667071491479874,
-0.0546179935336113,
0.0878489688038826,
-0.12282051891088486,
0.08514509350061417,
-0.07083194702863693,
-0.10416114330291748,
0.021166466176509857,
0.09176930785179138,
0.2827572822570801,
-0.11846443265676498,
-0.04699985310435295,
0.019021496176719666,
0.02508348971605301,
-0.04301660135388374,
0.08671853691339493,
-0.06296229362487793,
0.1829587072134018,
-0.13807205855846405,
0.07923705130815506,
-0.074334517121315,
-0.03909117355942726,
0.09644726663827896,
0.018856139853596687,
0.13329997658729553,
-0.020413700491189957,
-0.12761445343494415,
0.12873004376888275,
-0.09812811762094498,
-0.06747657060623169,
0.1522446870803833,
-0.192396879196167,
-0.08619984984397888,
-0.004472935106605291,
0.08870599418878555,
0.008643098175525665,
-0.0018240622011944652,
-0.09971942752599716,
0.016013244166970253,
-0.10759203135967255,
0.025172585621476173,
-0.1882350742816925,
-0.0819411501288414,
0.07220400124788284,
-0.04284149780869484,
0.2491835504770279,
-0.07674289494752884,
0.09433846920728683,
0.046061743050813675,
-0.01634787954390049,
-0.13398481905460358,
0.011504667811095715,
0.05185394361615181,
0.04569549113512039,
-0.00477721868082881,
0.05266338959336281,
-0.003276914358139038,
0.06055226922035217,
0.09180957078933716,
-0.0392032191157341,
0.05797242000699043,
0.08215196430683136,
-0.04206507280468941,
-0.06271152198314667,
0.06004106625914574,
-0.05765197426080704,
0.1148076131939888,
-0.020136527717113495,
-0.0306447371840477,
-0.026055695489048958,
-0.08451749384403229,
0.047111451625823975,
0.13146761059761047,
0.0275393296033144,
-0.022202344611287117,
0.026934748515486717,
-0.026781558990478516,
0.02995363064110279,
-0.018373388797044754,
-0.1662367731332779,
-0.06663040071725845,
-0.05529812350869179,
-0.02037723734974861,
0.04976072907447815,
0.06566823273897171,
0.11004617810249329,
-0.010068375617265701,
-0.019619883969426155,
-0.09934525936841965,
0.049214646220207214,
0.06421411037445068,
-0.05937817320227623,
-0.05249622464179993
] |
null | null |
transformers
|
GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning.
Newlines are replaced by `<N>`
Input to the model is code, up to the context length of 1024, with newlines replaced by `<N>`
Here's a quick example of using this model:
```py
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("Sentdex/GPyT")
model = AutoModelWithLMHead.from_pretrained("Sentdex/GPyT")
# copy and paste some code in here
inp = """import"""
newlinechar = "<N>"
converted = inp.replace("\n", newlinechar)
tokenized = tokenizer.encode(converted, return_tensors='pt')
resp = model.generate(tokenized)
decoded = tokenizer.decode(resp[0])
reformatted = decoded.replace("<N>","\n")
print(reformatted)
```
Should produce:
```
import numpy as np
import pytest
import pandas as pd<N
```
This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities:
https://pythonprogramming.net/GPT-python-code-transformer-model-GPyT/
Considerations:
1. This model is intended for educational and research use only. Do not trust model outputs.
2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code.
3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things.
4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
|
{"language": "code", "license": "mit", "tags": ["Code", "GPyT", "code generator"]}
|
text-generation
|
Sentdex/GPyT
|
[
"transformers",
"pytorch",
"tf",
"gpt2",
"text-generation",
"Code",
"GPyT",
"code generator",
"code",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[
"code"
] |
TAGS
#transformers #pytorch #tf #gpt2 #text-generation #Code #GPyT #code generator #code #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning.
Newlines are replaced by '<N>'
Input to the model is code, up to the context length of 1024, with newlines replaced by '<N>'
Here's a quick example of using this model:
Should produce:
This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities:
URL
Considerations:
1. This model is intended for educational and research use only. Do not trust model outputs.
2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code.
3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things.
4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
|
[] |
[
"TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #Code #GPyT #code generator #code #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
70
] |
[
"passage: TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #Code #GPyT #code generator #code #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.03230968862771988,
0.085567906498909,
-0.004144550766795874,
0.05687926337122917,
0.13903559744358063,
0.02051808312535286,
0.07748784124851227,
0.1575031578540802,
-0.035197578370571136,
0.007109682075679302,
0.17001807689666748,
0.20712989568710327,
0.019680708646774292,
0.10303200036287308,
-0.032386355102062225,
-0.24094118177890778,
0.045074500143527985,
0.06255191564559937,
-0.011505207978188992,
0.12113334983587265,
0.09743446856737137,
-0.03477996960282326,
0.10511457920074463,
-0.013850202783942223,
-0.16313660144805908,
0.011473448015749454,
0.04534507915377617,
-0.12627854943275452,
0.12018654495477676,
0.05805026367306709,
0.05428412929177284,
0.05321376770734787,
-0.04679422080516815,
-0.10825420171022415,
0.015571610070765018,
0.04404817521572113,
-0.09650003910064697,
0.07703498750925064,
0.062418654561042786,
-0.025410586968064308,
0.16508767008781433,
0.046655699610710144,
-0.024103574454784393,
0.06583338230848312,
-0.17522142827510834,
-0.15779642760753632,
-0.04010526463389397,
0.018461473286151886,
0.015347111970186234,
0.10155483335256577,
-0.001740523730404675,
0.15639722347259521,
-0.0790121778845787,
0.09056815505027771,
0.1416197270154953,
-0.3819243311882019,
-0.0006917082937434316,
0.16513808071613312,
0.10951869189739227,
0.026265960186719894,
-0.03759369999170303,
0.04173624515533447,
0.06394889205694199,
0.03568505495786667,
0.06040879711508751,
-0.06816232949495316,
-0.14913605153560638,
0.07153847068548203,
-0.10658864676952362,
-0.09683072566986084,
0.21361680328845978,
-0.06443090736865997,
0.045915182679891586,
-0.03503766283392906,
-0.09634396433830261,
-0.10871995240449905,
0.010492930188775063,
0.03605680912733078,
-0.04988277330994606,
0.10853302478790283,
0.024784928187727928,
-0.04474351182579994,
-0.1436069756746292,
-0.03410888835787773,
-0.1684838980436325,
0.10180003941059113,
-0.005997430998831987,
0.0522814616560936,
-0.16840262711048126,
0.11714214831590652,
-0.013022887520492077,
-0.12487740069627762,
-0.00836354959756136,
-0.055485326796770096,
0.07032261788845062,
0.008365833200514317,
-0.04724033921957016,
0.01982143521308899,
0.11596081405878067,
0.1812545359134674,
-0.03525150939822197,
0.015424725599586964,
-0.02366715297102928,
0.07925290614366531,
-0.013097072020173073,
0.10350535064935684,
-0.03961709886789322,
0.011358605697751045,
0.04776714742183685,
-0.1141824722290039,
0.015238053165376186,
-0.08137862384319305,
-0.18051335215568542,
-0.059487234801054,
0.03441575542092323,
0.1046176329255104,
0.048794981092214584,
0.11531542241573334,
-0.04586699232459068,
0.02323763072490692,
0.13541413843631744,
-0.07880540192127228,
0.02675972320139408,
0.006942351348698139,
0.05977398529648781,
-0.002847888506948948,
0.006846017204225063,
-0.0013117698254063725,
-0.08460753411054611,
-0.024139540269970894,
-0.10305923968553543,
-0.028779957443475723,
-0.0556086003780365,
-0.08455517143011093,
0.05482907593250275,
-0.10269566625356674,
0.02325696498155594,
-0.15590748190879822,
-0.10865580290555954,
0.025246774777770042,
0.008803263306617737,
-0.04187336564064026,
-0.0368160679936409,
0.011371541768312454,
-0.10855303704738617,
0.0598183199763298,
-0.052331533282995224,
-0.009828880429267883,
-0.06763773411512375,
0.11245422065258026,
-0.02497495524585247,
0.0747566744685173,
-0.1617324948310852,
0.052326131612062454,
-0.12309139966964722,
0.011897317133843899,
-0.038869332522153854,
0.03188606724143028,
-0.027414485812187195,
0.09058073163032532,
-0.029962610453367233,
-0.06301996856927872,
-0.04553213715553284,
0.0477382056415081,
-0.011218341998755932,
0.1586015224456787,
-0.1262243390083313,
-0.06347692012786865,
0.2460145652294159,
-0.09459348767995834,
-0.1616230458021164,
0.07910708338022232,
0.023150067776441574,
0.038137663155794144,
0.022313838824629784,
0.1830691546201706,
0.07709071785211563,
-0.045220501720905304,
0.04712566360831261,
0.14694172143936157,
-0.08557245135307312,
-0.11388091742992401,
0.06547132879495621,
-0.04881763458251953,
-0.0785144492983818,
0.0476418137550354,
0.010130000300705433,
0.0798778310418129,
-0.028047684580087662,
-0.05518435686826706,
-0.054993778467178345,
0.011884022504091263,
0.0628325566649437,
0.0252202320843935,
0.0670919269323349,
-0.08272822946310043,
-0.07522052526473999,
-0.012826021760702133,
0.01016091275960207,
-0.020230503752827644,
0.027519844472408295,
-0.07758083939552307,
0.1299600899219513,
0.0046556987799704075,
0.026787811890244484,
-0.1362931728363037,
-0.05718820169568062,
-0.019629858434200287,
0.08771058917045593,
-0.007769912481307983,
0.10744437575340271,
0.04825493320822716,
-0.0011895770439878106,
0.018315032124519348,
-0.006369872018694878,
0.10579068958759308,
0.020657969638705254,
-0.037209317088127136,
-0.06872580200433731,
0.013669212348759174,
-0.048155322670936584,
0.010767899453639984,
-0.07100953161716461,
0.043480195105075836,
0.14902175962924957,
0.07658979296684265,
-0.019478095695376396,
0.0358450673520565,
-0.020665790885686874,
0.029860978946089745,
-0.10951243340969086,
-0.02510090172290802,
0.08112844824790955,
0.025333436205983162,
-0.05188608542084694,
0.1752336174249649,
-0.1859886646270752,
0.2596643567085266,
0.20915064215660095,
-0.2101978361606598,
-0.018497291952371597,
0.022934988141059875,
-0.027823422104120255,
0.04387751966714859,
0.05706058442592621,
-0.07366680353879929,
0.050798699259757996,
-0.04489772394299507,
0.1666886955499649,
-0.06269969791173935,
-0.06078244000673294,
0.0242411307990551,
-0.0617087259888649,
-0.015456120483577251,
0.06698022782802582,
0.14146162569522858,
-0.07534019649028778,
0.2176292985677719,
0.23300595581531525,
0.04647449404001236,
0.20888738334178925,
-0.04160355404019356,
-0.0004497057816479355,
0.014571170322597027,
0.005048186518251896,
-0.008180215023458004,
-0.033074069768190384,
-0.20369477570056915,
-0.029413681477308273,
0.07615797966718674,
0.02005787380039692,
0.07796817272901535,
-0.1597248613834381,
-0.06258443742990494,
0.0025276546366512775,
-0.03354615345597267,
-0.03857768699526787,
0.10080917179584503,
0.013012334704399109,
0.10587058216333389,
-0.003044017357751727,
-0.05950239673256874,
0.11717665940523148,
0.023457570001482964,
-0.09402470290660858,
0.1919926255941391,
-0.1517600268125534,
-0.29333046078681946,
-0.1604452133178711,
-0.04206560179591179,
-0.015879638493061066,
0.043001674115657806,
0.12525922060012817,
-0.08446136862039566,
-0.02389080822467804,
-0.044650133699178696,
0.04281044378876686,
-0.0944414809346199,
0.018137579783797264,
-0.08317412436008453,
0.026306528598070145,
-0.06217149645090103,
-0.14625035226345062,
-0.06178063154220581,
0.04246457666158676,
-0.1142871081829071,
0.14510327577590942,
-0.07386630028486252,
0.08406255394220352,
0.2171514630317688,
0.010782023891806602,
0.04741920158267021,
-0.06124185770750046,
0.24108092486858368,
-0.07384894043207169,
0.03573265299201012,
0.22554118931293488,
0.010605167597532272,
0.07601043581962585,
0.122014120221138,
0.021726172417402267,
-0.09054026007652283,
0.0020175673998892307,
-0.07003050297498703,
-0.11172392219305038,
-0.18591561913490295,
-0.10554568469524384,
-0.14754663407802582,
0.08882273733615875,
0.03018268011510372,
0.08148825168609619,
0.14238597452640533,
0.07235247641801834,
-0.004351320676505566,
0.024250322952866554,
-0.011959761381149292,
0.07895085960626602,
0.19742007553577423,
-0.011629349552094936,
0.11921832710504532,
-0.09374313056468964,
-0.0923125296831131,
0.10658982396125793,
0.0782054215669632,
0.09360957145690918,
0.05421076714992523,
0.1253008395433426,
0.056394584476947784,
0.15755248069763184,
0.11618732661008835,
0.10168655216693878,
-0.007179398089647293,
-0.006626935675740242,
-0.027777500450611115,
-0.04243667051196098,
-0.028224652633070946,
0.03732110559940338,
-0.02315474860370159,
-0.1769225299358368,
-0.02226407825946808,
-0.1659497767686844,
0.07621794193983078,
0.054958831518888474,
0.09956514090299606,
-0.234732985496521,
-0.009060581214725971,
0.0661611407995224,
0.011181422509253025,
-0.11208251863718033,
0.08464048057794571,
0.04676986485719681,
-0.11039628088474274,
0.049199335277080536,
-0.028995810076594353,
0.08759729564189911,
0.021004699170589447,
0.07386414706707001,
0.00023451527522411197,
-0.08600631356239319,
0.02814329043030739,
0.12133322656154633,
-0.30298295617103577,
0.21353520452976227,
0.0012706451816484332,
-0.03764670714735985,
-0.12042473256587982,
0.033315788954496384,
0.005243079271167517,
0.13924352824687958,
0.10178849846124649,
0.01598779857158661,
-0.05213290452957153,
-0.15710557997226715,
0.030340023338794708,
0.02170988917350769,
0.09808971732854843,
-0.05892496556043625,
-0.01095148827880621,
-0.04283345863223076,
0.008437947370111942,
0.004258397035300732,
0.02337072417140007,
0.033815402537584305,
-0.16082386672496796,
0.0962718054652214,
0.05100627988576889,
0.09819496423006058,
-0.02312595397233963,
-0.01572689786553383,
-0.12293926626443863,
0.1776505410671234,
-0.13244783878326416,
-0.09748046100139618,
-0.11583802849054337,
-0.08689630031585693,
0.0777653381228447,
-0.0786871686577797,
0.08926093578338623,
-0.07666821032762527,
0.006274660117924213,
-0.04393825680017471,
-0.19962860643863678,
0.13781589269638062,
-0.07539546489715576,
-0.08215443044900894,
-0.02446022629737854,
0.1595013290643692,
-0.12388105690479279,
0.021756473928689957,
0.02656257525086403,
0.07210409641265869,
-0.11864688247442245,
-0.15007075667381287,
0.01432280894368887,
-0.05910142511129379,
0.05275179445743561,
-0.04468967020511627,
-0.02436348982155323,
-0.00529772462323308,
0.04776575788855553,
-0.016463028267025948,
0.2543848752975464,
0.2019202560186386,
-0.11456042528152466,
0.13768801093101501,
0.0702902153134346,
-0.07125011086463928,
-0.3345486521720886,
-0.096711166203022,
-0.13082265853881836,
-0.04012345150113106,
0.008618243969976902,
-0.18104422092437744,
0.03866107389330864,
0.0121903195977211,
-0.03556538373231888,
0.15456977486610413,
-0.27057379484176636,
-0.07598934322595596,
0.1113920584321022,
-0.03614950180053711,
0.22625918686389923,
-0.17911313474178314,
-0.09373462200164795,
-0.010097024962306023,
-0.23024259507656097,
0.17531415820121765,
-0.10247495025396347,
0.10167472064495087,
-0.0200149305164814,
0.05250300467014313,
0.03247677534818649,
-0.0698353573679924,
0.10823343694210052,
-0.003094115061685443,
0.027352668344974518,
-0.12082557380199432,
-0.06963150203227997,
0.14889223873615265,
0.015015244483947754,
0.06565472483634949,
-0.1078622043132782,
0.04964274913072586,
-0.13274258375167847,
-0.01793302781879902,
-0.10491855442523956,
0.07881782203912735,
-0.002752271480858326,
-0.09185529500246048,
-0.06063744053244591,
-0.03312007710337639,
-0.015807831659913063,
-0.026125077158212662,
0.16960006952285767,
-0.026988470926880836,
0.16529080271720886,
0.16275230050086975,
0.08788225799798965,
-0.14769403636455536,
0.004605856724083424,
-0.021307799965143204,
-0.06663414090871811,
0.0814913734793663,
-0.1611984372138977,
0.03789927065372467,
0.09635043144226074,
-0.0181015282869339,
0.06465943157672882,
0.10839460045099258,
-0.02258763462305069,
0.015034368261694908,
0.1483287811279297,
-0.2048967182636261,
-0.04534868150949478,
-0.07712838798761368,
-0.03208019956946373,
0.06505224853754044,
0.08278848230838776,
0.14065466821193695,
0.014387451112270355,
-0.023984277620911598,
0.00013178425433579832,
0.00634513096883893,
-0.0683135986328125,
0.0465557724237442,
0.06010416895151138,
0.038209687918424606,
-0.1323920041322708,
-0.0010310193756595254,
0.03400233015418053,
-0.06961467117071152,
0.031553711742162704,
0.13875578343868256,
-0.12810149788856506,
-0.14457660913467407,
-0.02988702617585659,
0.048228707164525986,
-0.17474046349525452,
-0.03229197487235069,
-0.029372189193964005,
-0.10818172246217728,
0.058509934693574905,
0.13125929236412048,
0.07876454293727875,
0.13612240552902222,
-0.008120467886328697,
-0.031744081526994705,
-0.015177944675087929,
-0.021082453429698944,
-0.08100517094135284,
0.03616984561085701,
-0.09426839649677277,
0.15649400651454926,
-0.0019922147039324045,
0.1149044930934906,
-0.07767853885889053,
-0.031392406672239304,
-0.16837620735168457,
-0.0011781184002757072,
-0.06332660466432571,
-0.06536464393138885,
-0.09056312590837479,
-0.03858396038413048,
0.009550889022648335,
-0.03631700947880745,
-0.05244901776313782,
0.0002737753966357559,
-0.12153111398220062,
-0.01242922618985176,
-0.05629991739988327,
0.061097726225852966,
-0.10277769714593887,
-0.0007764814072288573,
0.07294407486915588,
-0.04169568419456482,
0.11574379354715347,
0.02086116373538971,
-0.06901296228170395,
0.0937538668513298,
-0.1352924108505249,
-0.05402372404932976,
0.08152157813310623,
0.016450732946395874,
0.02798319421708584,
0.07361523061990738,
0.028836144134402275,
0.06460346281528473,
0.006993021350353956,
0.051683466881513596,
0.01995108462870121,
-0.13467097282409668,
0.0144661795347929,
-0.03639071434736252,
-0.1297239363193512,
-0.02275628224015236,
-0.022320397198200226,
0.08585293591022491,
-0.031894903630018234,
0.12706208229064941,
-0.03588235750794411,
0.06443164497613907,
-0.11816731095314026,
-0.00566789461299777,
-0.018266206607222557,
-0.14356254041194916,
-0.09847767651081085,
-0.06405067443847656,
0.027013568207621574,
-0.01395504828542471,
0.2444092333316803,
0.08532550930976868,
-0.06438390910625458,
0.02732091024518013,
0.08757368475198746,
0.08087485283613205,
0.006975321564823389,
0.25343459844589233,
0.0813421756029129,
-0.03632644563913345,
-0.1278369426727295,
0.0650968924164772,
-0.01640586368739605,
-0.021339943632483482,
0.09639224410057068,
0.00871642678976059,
-0.003632145933806896,
0.05957584083080292,
0.02543298713862896,
-0.03740822151303291,
-0.13373208045959473,
-0.11888096481561661,
-0.011463730596005917,
0.09676017612218857,
-0.05968966335058212,
0.04099809750914574,
0.175873801112175,
-0.04821079596877098,
0.04059334471821785,
-0.03987451642751694,
-0.03144390881061554,
-0.15929237008094788,
-0.16830061376094818,
-0.07145243138074875,
-0.14829401671886444,
0.0010706741595640779,
-0.08690840750932693,
0.06513490527868271,
0.10605488717556,
0.03159740939736366,
-0.05450183153152466,
0.10194694995880127,
0.037618331611156464,
-0.0804213136434555,
0.013258819468319416,
-0.016099849715828896,
0.06173260137438774,
-0.05234057456254959,
0.0031917577143758535,
-0.055814821273088455,
-0.009710154496133327,
0.000794842024333775,
0.0494256392121315,
-0.03164318948984146,
0.018456660211086273,
-0.15592093765735626,
-0.07433959096670151,
-0.045805398374795914,
0.06270565092563629,
-0.032863836735486984,
0.13096033036708832,
0.00012856782996095717,
-0.02195260301232338,
0.060133278369903564,
0.156591534614563,
-0.06552514433860779,
-0.11619734019041061,
-0.05447453260421753,
0.22657182812690735,
0.04833608120679855,
0.09116940945386887,
-0.01645294390618801,
-0.030274178832769394,
-0.05751870200037956,
0.3236071467399597,
0.31571149826049805,
-0.016706809401512146,
0.039566271007061005,
0.023194169625639915,
0.024897580966353416,
0.10727851092815399,
0.18417200446128845,
0.09251284599304199,
0.2869528830051422,
-0.07795815914869308,
-0.06529098004102707,
-0.04381025210022926,
0.0010153615148738027,
-0.11180305480957031,
0.09039944410324097,
0.007573531940579414,
-0.08840768039226532,
-0.004329657182097435,
0.0683680921792984,
-0.15090687572956085,
0.10037586092948914,
-0.0069229151122272015,
-0.17510339617729187,
-0.027579162269830704,
0.02502637729048729,
0.11056442558765411,
-0.009779583662748337,
0.07696568965911865,
-0.011759091168642044,
-0.03785144165158272,
0.038777224719524384,
0.01804821752011776,
-0.22599950432777405,
0.019081395119428635,
0.0574539490044117,
-0.10462357103824615,
0.0748772844672203,
-0.03982474282383919,
0.05233421176671982,
0.12484942376613617,
0.055078938603401184,
-0.07464095950126648,
0.11596062034368515,
0.02306334860622883,
0.0051280721090734005,
0.018774403259158134,
-0.0758737251162529,
0.02833269163966179,
-0.1088409274816513,
0.038767214864492416,
-0.11586745828390121,
0.05315455049276352,
0.018189650028944016,
-0.003810435999184847,
-0.06318226456642151,
-0.019909141585230827,
-0.06668877601623535,
0.0798085629940033,
0.0517016164958477,
-0.0331035740673542,
-0.039690833538770676,
-0.0788964256644249,
-0.0075048948638141155,
-0.0012661911314353347,
-0.12201420217752457,
-0.09502909332513809,
-0.09828133136034012,
-0.0632537379860878,
0.07361122220754623,
0.005767895840108395,
-0.13961243629455566,
0.013070985674858093,
-0.07976016402244568,
0.0659065768122673,
-0.18161815404891968,
0.06783895194530487,
0.09606873989105225,
0.004477526526898146,
-0.0033324109390378,
-0.010110977105796337,
-0.00046688082511536777,
0.07223664969205856,
-0.1111154705286026,
-0.08261377364397049
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0458
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0179 | 1.0 | 6194 | 0.9548 |
| 0.7277 | 2.0 | 12388 | 0.9717 |
| 0.507 | 3.0 | 18582 | 1.0458 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-cased-finetuned-squad", "results": []}]}
|
question-answering
|
Seongkyu/bert-base-cased-finetuned-squad
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
|
bert-base-cased-finetuned-squad
===============================
This model is a fine-tuned version of bert-base-cased on the squad dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0458
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
54,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.1053910180926323,
0.06997613608837128,
-0.0018376039806753397,
0.11919506639242172,
0.16726654767990112,
0.03141744062304497,
0.10496030002832413,
0.11894216388463974,
-0.09106363356113434,
0.025346435606479645,
0.13651074469089508,
0.1735277771949768,
0.0024927123449742794,
0.03517280891537666,
-0.04182582348585129,
-0.22094766795635223,
-0.0221012644469738,
0.046693652868270874,
-0.10992360860109329,
0.1405567079782486,
0.08089173585176468,
-0.149837464094162,
0.07897383719682693,
-0.0009395979577675462,
-0.20643538236618042,
0.022845039144158363,
0.0073859249241650105,
-0.03114788606762886,
0.15131092071533203,
0.008510940708220005,
0.12069179117679596,
-0.00043722137343138456,
0.0687478631734848,
-0.19112642109394073,
0.017172859981656075,
0.049445755779743195,
0.003861869452521205,
0.08274468779563904,
0.05173158273100853,
0.005886598490178585,
0.11783205717802048,
-0.0906291976571083,
0.03932763636112213,
0.02825191244482994,
-0.13224001228809357,
-0.25214359164237976,
-0.10132957249879837,
-0.0032055224291980267,
0.06067392975091934,
0.11839823424816132,
-0.005825120024383068,
0.16370654106140137,
-0.11012065410614014,
0.08823893964290619,
0.26349061727523804,
-0.30734291672706604,
-0.07421164214611053,
0.035262636840343475,
0.022955646738409996,
0.08056120574474335,
-0.10797829180955887,
-0.019967351108789444,
0.05115429311990738,
0.049033768475055695,
0.10668566823005676,
-0.049335844814777374,
-0.11553698778152466,
0.05410240963101387,
-0.14843064546585083,
-0.04217857867479324,
0.1368364691734314,
0.05197333171963692,
-0.027042116969823837,
-0.017890481278300285,
-0.061876486986875534,
-0.11956211924552917,
-0.021209202706813812,
-0.01493931096047163,
0.0504683181643486,
-0.04511376470327377,
-0.09186121821403503,
-0.01435463223606348,
-0.1109749972820282,
-0.09030690789222717,
-0.06832674890756607,
0.13645166158676147,
0.03940540552139282,
0.031650345772504807,
-0.04895696043968201,
0.1018763929605484,
0.016336824744939804,
-0.13137173652648926,
0.01748077943921089,
0.037712253630161285,
-0.02075272426009178,
-0.029957197606563568,
-0.06263011693954468,
-0.061271972954273224,
0.033901065587997437,
0.11648671329021454,
-0.05340257287025452,
0.03527826443314552,
0.055580560117959976,
0.03941537067294121,
-0.0992221012711525,
0.18072475492954254,
-0.06794479489326477,
-0.01684807613492012,
-0.012788232415914536,
0.03543587028980255,
0.004262703470885754,
-0.002745281904935837,
-0.1005445122718811,
-0.003796245437115431,
0.07800669223070145,
0.023327624425292015,
-0.036214303225278854,
0.050385814160108566,
-0.05111442506313324,
-0.0279080830514431,
-0.0058008464984595776,
-0.08268972486257553,
0.03017680160701275,
-0.0022415006533265114,
-0.08600278198719025,
-0.027497384697198868,
-0.0008121651480905712,
0.020273707807064056,
-0.00988510251045227,
0.09931103885173798,
-0.09046104550361633,
0.03356782719492912,
-0.09764519333839417,
-0.10056469589471817,
0.022606223821640015,
-0.07815761864185333,
0.03450936824083328,
-0.07483159005641937,
-0.15559573471546173,
-0.007567026186734438,
0.05704289674758911,
-0.029538944363594055,
-0.043053507804870605,
-0.03286038339138031,
-0.08855465054512024,
-0.009219118393957615,
-0.01381265465170145,
0.17904193699359894,
-0.061265040189027786,
0.11469491571187973,
0.0474487729370594,
0.06114225089550018,
-0.04750517010688782,
0.05442621186375618,
-0.10274480283260345,
0.010996649973094463,
-0.16056528687477112,
0.029761049896478653,
-0.05833094194531441,
0.06698271632194519,
-0.10362306237220764,
-0.11147277057170868,
0.029761284589767456,
-0.013225173577666283,
0.08321160823106766,
0.09571016579866409,
-0.17196254432201385,
-0.06467495113611221,
0.1430271863937378,
-0.04571803659200668,
-0.15078455209732056,
0.12296701967716217,
-0.059891197830438614,
0.02915078029036522,
0.06198790296912193,
0.16069595515727997,
0.05471301078796387,
-0.08852800726890564,
0.02300991117954254,
0.0011525745503604412,
0.04035840928554535,
-0.08071160316467285,
0.0827547162771225,
-0.012732005678117275,
0.0067239063791930676,
0.021408909931778908,
-0.06615293025970459,
0.05216525122523308,
-0.11040591448545456,
-0.1016564592719078,
-0.04955426603555679,
-0.10438968241214752,
0.03863004222512245,
0.0889982134103775,
0.06580428779125214,
-0.10415385663509369,
-0.06980422139167786,
0.06447944790124893,
0.07025131583213806,
-0.053290192037820816,
0.028445309028029442,
-0.056486114859580994,
0.061404649168252945,
-0.07339852303266525,
-0.028869429603219032,
-0.1888861507177353,
-0.02986106649041176,
0.0018665333045646548,
0.0046777608804404736,
0.01549185998737812,
0.0592336468398571,
0.08025489747524261,
0.043987542390823364,
-0.05721655488014221,
-0.017419729381799698,
-0.04816967621445656,
-0.009482036344707012,
-0.13255123794078827,
-0.20686328411102295,
-0.038219597190618515,
-0.014061872847378254,
0.09273780882358551,
-0.1883041262626648,
0.021498415619134903,
-0.020104773342609406,
0.06396203488111496,
-0.006493984255939722,
-0.012426791712641716,
-0.043102994561195374,
0.0812651589512825,
-0.017847876995801926,
-0.046019215136766434,
0.07681311666965485,
-0.00777977192774415,
-0.10122944414615631,
-0.06088109686970711,
-0.059734415262937546,
0.15841403603553772,
0.13011865317821503,
-0.1334698498249054,
-0.0517403818666935,
0.006062060594558716,
-0.06689382344484329,
-0.03461421653628349,
-0.04287495091557503,
0.043200742453336716,
0.18121694028377533,
-0.005751436110585928,
0.12132527679204941,
-0.08329509198665619,
-0.04833405092358589,
0.013584013096988201,
-0.03267804905772209,
0.04193149134516716,
0.13857604563236237,
0.12198427319526672,
-0.07445485889911652,
0.13850578665733337,
0.16548605263233185,
-0.08769489824771881,
0.10595156252384186,
-0.06168738007545471,
-0.08607471734285355,
-0.03707391768693924,
0.0029521097894757986,
-0.0031019137240946293,
0.13187275826931,
-0.16464947164058685,
0.008717944845557213,
0.029016906395554543,
0.017290083691477776,
0.019985700026154518,
-0.23277747631072998,
-0.06787294894456863,
0.024176694452762604,
-0.04939199611544609,
-0.030088746920228004,
-0.009632032364606857,
0.010685744695365429,
0.09897364675998688,
-0.003909075167030096,
-0.06520543247461319,
0.03950050473213196,
-0.005778175313025713,
-0.06563075631856918,
0.22001458704471588,
-0.06674322485923767,
-0.10278202593326569,
-0.10299928486347198,
-0.053297605365514755,
-0.057416610419750214,
-0.0057691726833581924,
0.06710537523031235,
-0.1016850471496582,
-0.014330970123410225,
-0.045305393636226654,
0.02596445009112358,
-0.01866706646978855,
0.02557021751999855,
-0.0045693968422710896,
-0.007477189879864454,
0.07481575012207031,
-0.12035011500120163,
0.004566101357340813,
-0.05907309800386429,
-0.08890234678983688,
0.04764716699719429,
0.05771612375974655,
0.13653427362442017,
0.13137860596179962,
-0.008544434793293476,
0.004477268550544977,
-0.01984904147684574,
0.25075170397758484,
-0.06928061693906784,
-0.04315531626343727,
0.13569119572639465,
0.01403536181896925,
0.056768517941236496,
0.10116859525442123,
0.08382458984851837,
-0.09148463606834412,
0.007287716493010521,
0.044573500752449036,
-0.037455495446920395,
-0.25394758582115173,
-0.022748596966266632,
-0.06085413694381714,
-0.028348226100206375,
0.07114426791667938,
0.025845834985375404,
0.03265161067247391,
0.07232829928398132,
0.037460971623659134,
0.05137600749731064,
-0.07326239347457886,
0.043272897601127625,
0.09591639786958694,
0.0456356443464756,
0.11185489594936371,
-0.049945805221796036,
-0.061338767409324646,
0.03208386152982712,
-0.003705093404278159,
0.24582572281360626,
0.006431553978472948,
0.1626335233449936,
0.08485227823257446,
0.2224217802286148,
-0.022097764536738396,
0.08063921332359314,
-0.013325680047273636,
-0.05194822698831558,
-0.009772682562470436,
-0.039030127227306366,
-0.022248057648539543,
0.008249844424426556,
-0.045951712876558304,
0.076024629175663,
-0.09729969501495361,
-0.01654690131545067,
0.056137990206480026,
0.2756452262401581,
0.028094656765460968,
-0.28596457839012146,
-0.07657208293676376,
-0.0014909181045368314,
-0.02141248807311058,
-0.0006333396304398775,
0.016611110419034958,
0.1285969465970993,
-0.09027572721242905,
0.0012802346609532833,
-0.070576511323452,
0.10066089034080505,
-0.012124443426728249,
0.04368196427822113,
0.07169066369533539,
0.09035605937242508,
0.010128545574843884,
0.09685081988573074,
-0.31839215755462646,
0.2850143015384674,
0.006810702383518219,
0.07548758387565613,
-0.08136238902807236,
-0.018954124301671982,
0.01773390918970108,
0.023079557344317436,
0.0801088958978653,
-0.006712910253554583,
0.01672600582242012,
-0.1734093427658081,
-0.03660650923848152,
0.044494178146123886,
0.08811073005199432,
-0.03138501197099686,
0.09552479535341263,
-0.018105220049619675,
0.010634003207087517,
0.07755301892757416,
0.028760647401213646,
-0.04805520921945572,
-0.07898928970098495,
-0.020440300926566124,
0.014014988206326962,
-0.06794232130050659,
-0.06881968677043915,
-0.09833572804927826,
-0.11512688547372818,
0.12316028773784637,
-0.00845326203852892,
-0.030003957450389862,
-0.10702858120203018,
0.0874878466129303,
0.10149673372507095,
-0.09067687392234802,
0.02790803089737892,
0.010616026818752289,
0.02860184572637081,
0.04808959737420082,
-0.061907749623060226,
0.10325444489717484,
-0.05991966649889946,
-0.15612900257110596,
-0.049201615154743195,
0.10655031353235245,
0.04876187816262245,
0.06606487184762955,
-0.01358881313353777,
0.01633487641811371,
-0.0620347335934639,
-0.10519697517156601,
0.03437425568699837,
-0.04813935235142708,
0.08617057651281357,
0.020693114027380943,
-0.026703286916017532,
0.06610815972089767,
-0.061071671545505524,
-0.02895277366042137,
0.18917739391326904,
0.23885628581047058,
-0.09959421306848526,
0.006242963019758463,
0.032751232385635376,
-0.05054761841893196,
-0.18124595284461975,
0.05350375548005104,
0.05896490067243576,
-0.012307521887123585,
0.06029198318719864,
-0.16635113954544067,
0.156638503074646,
0.11216786503791809,
-0.004694308154284954,
0.10479088872671127,
-0.35783958435058594,
-0.11619523912668228,
0.10108410567045212,
0.16974498331546783,
0.13760554790496826,
-0.16777032613754272,
-0.026642873883247375,
-0.007489334791898727,
-0.16245217621326447,
0.10438209027051926,
-0.11384385079145432,
0.1179850623011589,
-0.040972478687763214,
0.09983251243829727,
-0.002747083781287074,
-0.07105148583650589,
0.13559608161449432,
0.030850159004330635,
0.10933110862970352,
-0.046177852898836136,
-0.039956431835889816,
0.07884291559457779,
-0.01770673878490925,
0.007254599127918482,
-0.08316773176193237,
0.03741281479597092,
-0.10726125538349152,
-0.01210172101855278,
-0.10400686413049698,
0.037238117307424545,
-0.04555029794573784,
-0.05726373940706253,
-0.035528723150491714,
0.019616784527897835,
0.040833305567502975,
-0.010664664208889008,
0.13668452203273773,
0.029584061354398727,
0.1466677039861679,
0.07546830177307129,
0.0758533701300621,
-0.05751040577888489,
-0.1077670082449913,
-0.018699893727898598,
-0.005292613059282303,
0.056121762841939926,
-0.14192770421504974,
0.021396726369857788,
0.1491323858499527,
0.049145348370075226,
0.11919167637825012,
0.07600686699151993,
-0.034305933862924576,
0.012271425686776638,
0.04175684601068497,
-0.15794312953948975,
-0.14686910808086395,
0.006731621455401182,
-0.0673530250787735,
-0.12367568910121918,
0.06377734243869781,
0.06393919140100479,
-0.04907084256410599,
-0.013317479752004147,
-0.004977692849934101,
-0.009433150291442871,
-0.07301736623048782,
0.20571467280387878,
0.08123090118169785,
0.05251051113009453,
-0.11510027945041656,
0.0788201242685318,
0.042275894433259964,
-0.07831121236085892,
-0.014035343192517757,
0.05760163813829422,
-0.06446342170238495,
-0.04483746364712715,
0.10709363222122192,
0.1755356341600418,
-0.06144147738814354,
-0.03432323411107063,
-0.12887069582939148,
-0.10908219963312149,
0.07055161148309708,
0.1434548944234848,
0.11422813683748245,
0.004430343862622976,
-0.04458490386605263,
0.013887048698961735,
-0.11020522564649582,
0.0824420228600502,
0.029866190627217293,
0.06341557949781418,
-0.12279504537582397,
0.1262049674987793,
0.00628440547734499,
0.0549769289791584,
-0.014511005021631718,
0.0330997072160244,
-0.10321968793869019,
0.027557268738746643,
-0.15635882318019867,
-0.041653234511613846,
-0.023231981322169304,
-0.0040596239268779755,
-0.006253564730286598,
-0.09058046340942383,
-0.0647393986582756,
0.021793430671095848,
-0.12495502084493637,
-0.025567911565303802,
0.05496683344244957,
0.04946638643741608,
-0.14378470182418823,
-0.04399871453642845,
0.03943274915218353,
-0.049902524799108505,
0.0590796060860157,
0.06572345644235611,
0.01932312361896038,
0.06369513273239136,
-0.1430058479309082,
-0.010523531585931778,
0.04207458347082138,
0.014996723271906376,
0.08324041217565536,
-0.08205632865428925,
-0.024468401446938515,
0.0026359145995229483,
0.07744313776493073,
0.016317231580615044,
0.04839128628373146,
-0.14143097400665283,
-0.012213083915412426,
-0.024521460756659508,
-0.0892428383231163,
-0.06932128220796585,
0.012612375430762768,
0.09656406193971634,
0.02599727176129818,
0.19939559698104858,
-0.05839308351278305,
0.05537344515323639,
-0.22550277411937714,
-0.0037063967902213335,
-0.012761479243636131,
-0.09932933747768402,
-0.1207175925374031,
-0.0525909885764122,
0.066399484872818,
-0.06180809810757637,
0.12621988356113434,
-0.008190235123038292,
0.06144177168607712,
0.02106742188334465,
-0.0029545335564762354,
0.04356265440583229,
0.012326803058385849,
0.2367893010377884,
0.026777392253279686,
-0.030208032578229904,
0.07995512336492538,
0.06049444153904915,
0.07576687633991241,
0.13082842528820038,
0.20675082504749298,
0.17796942591667175,
0.01372489146888256,
0.07124818116426468,
0.03680667281150818,
-0.0484623946249485,
-0.13349032402038574,
0.03247953578829765,
-0.018846238031983376,
0.08438072353601456,
-0.01797235757112503,
0.24884632229804993,
0.06642738729715347,
-0.1838281899690628,
0.05728507786989212,
-0.06321927905082703,
-0.08972755819559097,
-0.09105277061462402,
-0.030572954565286636,
-0.06766027212142944,
-0.14825992286205292,
0.009943968616425991,
-0.12013532966375351,
0.018755115568637848,
0.14156335592269897,
0.008511348627507687,
-0.02687077224254608,
0.1809394806623459,
0.06708651781082153,
0.03375427424907684,
0.0372137613594532,
0.0005036603542976081,
-0.022634094581007957,
-0.08227410912513733,
-0.042450688779354095,
-0.0037485938519239426,
-0.03395739570260048,
0.03441418707370758,
-0.05771413818001747,
-0.08635098487138748,
0.03450451418757439,
-0.03334347903728485,
-0.1038794219493866,
0.008324443362653255,
0.024937110021710396,
0.06836957484483719,
0.05258703976869583,
0.015031649731099606,
0.034851934760808945,
-0.0184308011084795,
0.22967970371246338,
-0.07836791127920151,
-0.07906647771596909,
-0.08225438743829727,
0.24428896605968475,
0.024713054299354553,
-0.01884278655052185,
0.03903823345899582,
-0.06975877285003662,
0.013986673206090927,
0.2510512173175812,
0.1866355687379837,
-0.1051841452717781,
-0.013555805198848248,
0.010414833202958107,
-0.009562701918184757,
-0.035388026386499405,
0.0887538269162178,
0.13330191373825073,
0.03946007788181305,
-0.11312784999608994,
-0.042029913514852524,
-0.0689534917473793,
-0.011227993294596672,
-0.03534427657723427,
0.05678922310471535,
0.06390870362520218,
-0.006373845972120762,
-0.03984898701310158,
0.06617209315299988,
-0.05391451343894005,
-0.1256348043680191,
0.08077231794595718,
-0.19021300971508026,
-0.15930141508579254,
-0.027822721749544144,
0.11764490604400635,
0.009279515594244003,
0.06931010633707047,
-0.03296663612127304,
0.012653402984142303,
0.06159853935241699,
-0.01293307077139616,
-0.10710994154214859,
-0.09102349728345871,
0.12631338834762573,
-0.12568944692611694,
0.19448046386241913,
-0.04327575862407684,
0.07783949375152588,
0.13293486833572388,
0.05832698941230774,
-0.08254851400852203,
0.058588817715644836,
0.06374887377023697,
-0.11027861386537552,
0.01522584818303585,
0.07094898819923401,
-0.012313037179410458,
0.04320321977138519,
0.03840389847755432,
-0.10482469201087952,
0.022215232253074646,
-0.02944036014378071,
-0.027422066777944565,
-0.05855712667107582,
-0.035657789558172226,
-0.062416329979896545,
0.1206808015704155,
0.2140730619430542,
-0.03829633817076683,
0.01797385886311531,
-0.0797622874379158,
0.009347229264676571,
0.06022701784968376,
0.036345917731523514,
-0.08130750060081482,
-0.2032361477613449,
0.0252057071775198,
0.06327025592327118,
-0.032986681908369064,
-0.21989768743515015,
-0.09105006605386734,
0.02684968337416649,
-0.0797906145453453,
-0.06542209535837173,
0.05599600076675415,
0.08322998881340027,
0.05981918051838875,
-0.04555084556341171,
-0.08344379812479019,
-0.08792688697576523,
0.16017663478851318,
-0.14640170335769653,
-0.08356674760580063
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLM-L12-H384-uncased__sst2__all-train
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2632
- Accuracy: 0.9055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4183 | 1.0 | 433 | 0.3456 | 0.8720 |
| 0.2714 | 2.0 | 866 | 0.2632 | 0.9055 |
| 0.2016 | 3.0 | 1299 | 0.3357 | 0.8990 |
| 0.1501 | 4.0 | 1732 | 0.4474 | 0.8863 |
| 0.1119 | 5.0 | 2165 | 0.3998 | 0.8979 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "MiniLM-L12-H384-uncased__sst2__all-train", "results": []}]}
|
text-classification
|
SetFit/MiniLM-L12-H384-uncased__sst2__all-train
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
MiniLM-L12-H384-uncased\_\_sst2\_\_all-train
============================================
This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2632
* Accuracy: 0.9055
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu102
* Datasets 1.17.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
48,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
-0.08167007565498352,
0.03685745596885681,
-0.001791162183508277,
0.10550489276647568,
0.1988743543624878,
0.030679194256663322,
0.11844111233949661,
0.105624720454216,
-0.11088839173316956,
0.008494315668940544,
0.104209765791893,
0.17021894454956055,
0.015965478494763374,
0.1190946102142334,
-0.06144484132528305,
-0.29647096991539,
-0.011143003590404987,
0.03914032131433487,
-0.04771747440099716,
0.12939825654029846,
0.09147386252880096,
-0.15410839021205902,
0.07113271951675415,
0.006266091950237751,
-0.23094899952411652,
0.01778247207403183,
0.03110641799867153,
-0.0559634193778038,
0.15243130922317505,
0.024834660813212395,
0.14014266431331635,
0.010038010776042938,
0.1066039651632309,
-0.19283826649188995,
0.012867865152657032,
0.05162742733955383,
0.015243825502693653,
0.07981229573488235,
0.06551992148160934,
-0.005249148700386286,
0.11791454255580902,
-0.0761822760105133,
0.06207268685102463,
0.019145840778946877,
-0.13828183710575104,
-0.23529350757598877,
-0.07822301238775253,
0.005655915942043066,
0.059013303369283676,
0.09356269985437393,
-0.011235459707677364,
0.15724541246891022,
-0.11570219695568085,
0.09322109073400497,
0.21409791707992554,
-0.2793259918689728,
-0.07121878862380981,
0.018877269700169563,
-0.0025313645601272583,
0.07961319386959076,
-0.11870460212230682,
-0.020307593047618866,
0.04697481170296669,
0.05196795612573624,
0.13181370496749878,
-0.026437489315867424,
-0.10991468280553818,
0.016418088227510452,
-0.14409112930297852,
-0.011140439659357071,
0.06539501249790192,
0.03449961915612221,
-0.03687058761715889,
-0.021978044882416725,
-0.04970604553818703,
-0.15282972157001495,
-0.055376432836055756,
-0.015715159475803375,
0.0506773367524147,
-0.037744633853435516,
-0.08814651519060135,
0.0206585880368948,
-0.08327317982912064,
-0.06872573494911194,
-0.07192336767911911,
0.16495509445667267,
0.04247911274433136,
0.004973249509930611,
-0.02201562002301216,
0.09456594288349152,
-0.028452642261981964,
-0.12683233618736267,
0.033116940408945084,
0.027356352657079697,
-0.023111768066883087,
-0.0710456371307373,
-0.07024417072534561,
-0.059475407004356384,
-0.006309797987341881,
0.09732181578874588,
-0.06537982821464539,
0.05361621081829071,
0.004884700290858746,
0.03265281766653061,
-0.09977369010448456,
0.191470667719841,
-0.02746603451669216,
-0.004052089061588049,
0.00005049914034316316,
0.04139518365263939,
-0.008053227327764034,
-0.01652606949210167,
-0.11403089761734009,
0.00706245144829154,
0.10699237883090973,
0.004490111023187637,
-0.09437188506126404,
0.06986501067876816,
-0.050869476050138474,
-0.020965738222002983,
-0.020274018868803978,
-0.09074055403470993,
0.05292730778455734,
-0.008215876296162605,
-0.08558108657598495,
-0.015353165566921234,
0.001277172239497304,
0.02955492027103901,
-0.01680312305688858,
0.16017809510231018,
-0.08725438266992569,
0.058387789875268936,
-0.11922509968280792,
-0.1385391652584076,
0.004361897706985474,
-0.049610935151576996,
0.018587196245789528,
-0.09705004096031189,
-0.1448861062526703,
-0.011033977381885052,
0.05092104896903038,
-0.0307324156165123,
-0.041002705693244934,
-0.04867786914110184,
-0.05734561011195183,
0.015510838478803635,
-0.022518785670399666,
0.14769360423088074,
-0.061523765325546265,
0.11144386976957321,
0.0474139079451561,
0.06142788007855415,
-0.06262394785881042,
0.06257117539644241,
-0.10157932341098785,
-0.0073234764859080315,
-0.21992716193199158,
0.05078311264514923,
-0.055712103843688965,
0.07554107904434204,
-0.07395430654287338,
-0.12043184041976929,
0.02357626147568226,
-0.001990910619497299,
0.09563424438238144,
0.08334667980670929,
-0.1732405424118042,
-0.08456306159496307,
0.16119207441806793,
-0.06592216342687607,
-0.08841180801391602,
0.12166926264762878,
-0.07479967921972275,
0.03326691314578056,
0.0852179080247879,
0.17151327431201935,
0.051370710134506226,
-0.0731610357761383,
0.04125683754682541,
-0.04436761885881424,
0.06194823235273361,
-0.04404423385858536,
0.052160296589136124,
0.011161607690155506,
-0.01599586196243763,
0.023729093372821808,
-0.004215211607515812,
0.0689869150519371,
-0.11860820651054382,
-0.08728989958763123,
-0.03249742090702057,
-0.09135542064905167,
0.05563760921359062,
0.07205989956855774,
0.08646994829177856,
-0.11450085043907166,
-0.07380753755569458,
0.10512306541204453,
0.058576006442308426,
-0.04139934480190277,
0.030908482149243355,
-0.0666607916355133,
0.049499377608299255,
-0.02289329282939434,
-0.021247342228889465,
-0.1912955641746521,
-0.007745891343802214,
0.015995115041732788,
0.023725725710392,
0.04924894869327545,
0.000615724187809974,
0.06718670576810837,
0.0732300654053688,
-0.06353794038295746,
-0.010937917046248913,
-0.03444165363907814,
0.003180902684107423,
-0.1466394066810608,
-0.20077741146087646,
-0.019645119085907936,
-0.004431163892149925,
0.09875063598155975,
-0.2121739536523819,
0.02829783968627453,
-0.02800271101295948,
0.07786603271961212,
0.0034859722945839167,
-0.0042679524049162865,
-0.06270015984773636,
0.11924641579389572,
-0.022532328963279724,
-0.03863485902547836,
0.08156245201826096,
-0.004035917576402426,
-0.08353787660598755,
-0.05319923907518387,
-0.10679151862859726,
0.1847953200340271,
0.13773584365844727,
-0.15336817502975464,
-0.09047900140285492,
-0.01969003491103649,
-0.048077426850795746,
-0.021496977657079697,
-0.06021328270435333,
0.05686405301094055,
0.19119331240653992,
-0.009054278954863548,
0.149868443608284,
-0.062092799693346024,
-0.02812962792813778,
0.014849605970084667,
-0.02710558846592903,
0.048134736716747284,
0.11378251761198044,
0.1261947751045227,
-0.09668993204832077,
0.13246451318264008,
0.14948168396949768,
-0.09171145409345627,
0.131788432598114,
-0.03135572746396065,
-0.06917944550514221,
-0.012888935394585133,
-0.042410217225551605,
-0.0016860179603099823,
0.08487258851528168,
-0.11796633899211884,
-0.009529522620141506,
0.009523779153823853,
0.032302990555763245,
0.009180393069982529,
-0.22697757184505463,
-0.04093775898218155,
0.03307905048131943,
-0.031054144725203514,
-0.045556340366601944,
-0.029614534229040146,
0.02367592789232731,
0.11695690453052521,
0.0033208620734512806,
-0.0763818547129631,
0.025971276685595512,
0.004815718159079552,
-0.06739059835672379,
0.20008136332035065,
-0.08924529701471329,
-0.11990731954574585,
-0.10648337006568909,
-0.1000891700387001,
-0.0459512360394001,
0.013827035203576088,
0.05675477534532547,
-0.11359190940856934,
-0.02267928421497345,
-0.03924483433365822,
0.029289962723851204,
-0.005894101690500975,
0.036357056349515915,
-0.01185916643589735,
-0.007014140021055937,
0.0648256465792656,
-0.10197338461875916,
-0.019818289205431938,
-0.05540056154131889,
-0.07552920281887054,
0.06914494186639786,
0.050606388598680496,
0.11206018179655075,
0.15407881140708923,
-0.0536305271089077,
0.005267112981528044,
-0.040386319160461426,
0.2422085702419281,
-0.06525032967329025,
-0.04246692731976509,
0.11912506818771362,
-0.009378286078572273,
0.05543810874223709,
0.12124740332365036,
0.08110878616571426,
-0.10034242272377014,
0.02312907762825489,
0.04146388918161392,
-0.0291609987616539,
-0.20837914943695068,
-0.03520577773451805,
-0.0533909909427166,
-0.05016722530126572,
0.08502041548490524,
0.013641297817230225,
0.025993090122938156,
0.06135933846235275,
0.03886111080646515,
0.0768536627292633,
-0.04347052425146103,
0.06281482428312302,
0.13311316072940826,
0.05677756294608116,
0.14432862401008606,
-0.03350211679935455,
-0.08424193412065506,
0.02800079435110092,
-0.045360542833805084,
0.22076067328453064,
0.031111273914575577,
0.0972813293337822,
0.050616245716810226,
0.1768513321876526,
0.021996771916747093,
0.08110926300287247,
0.015889424830675125,
-0.050174519419670105,
-0.01565347984433174,
-0.03720197081565857,
-0.04764295741915703,
0.013448617421090603,
-0.04104578495025635,
0.048004575073719025,
-0.1341642588376999,
-0.03493046015501022,
0.05280528590083122,
0.2581970989704132,
0.012435507960617542,
-0.3113355040550232,
-0.08086147159337997,
0.0005469655734486878,
-0.04803146794438362,
-0.013257104903459549,
0.007765595801174641,
0.07425010949373245,
-0.10393838584423065,
0.03799143061041832,
-0.06277025490999222,
0.10899621993303299,
-0.020768078044056892,
0.05792757123708725,
0.05063212290406227,
0.11198002845048904,
-0.011505612172186375,
0.07111206650733948,
-0.35226544737815857,
0.2845610976219177,
0.009589758701622486,
0.07909136265516281,
-0.0715268924832344,
-0.011578397825360298,
0.04217534884810448,
0.0625159814953804,
0.013301708735525608,
-0.01684064231812954,
-0.06336262822151184,
-0.23773235082626343,
-0.01605573110282421,
0.032800380140542984,
0.11747873574495316,
-0.005605148151516914,
0.1047045961022377,
-0.030333729460835457,
0.018848098814487457,
0.08418947458267212,
-0.002318307990208268,
-0.09702856093645096,
-0.0724225640296936,
-0.026235459372401237,
0.0279991514980793,
-0.005923063959926367,
-0.06386744976043701,
-0.11969427764415741,
-0.11937537789344788,
0.1369067132472992,
0.02764328010380268,
-0.015759164467453957,
-0.12090656161308289,
0.10854919254779816,
0.06021638214588165,
-0.08218279480934143,
0.030945301055908203,
0.010518963448703289,
0.06842081248760223,
0.026429595425724983,
-0.05779354274272919,
0.12894168496131897,
-0.05232677981257439,
-0.1603803038597107,
-0.06245681643486023,
0.07923325896263123,
0.04193730652332306,
0.07953718304634094,
-0.012985272333025932,
0.021775374189019203,
-0.015380325727164745,
-0.09115900099277496,
0.02682066708803177,
-0.03432970866560936,
0.05713122710585594,
0.037472497671842575,
-0.0708303153514862,
0.010059501975774765,
-0.06991754472255707,
-0.03897646442055702,
0.18966519832611084,
0.24551105499267578,
-0.08965752273797989,
0.011961692944169044,
0.04343986511230469,
-0.07160608470439911,
-0.18563790619373322,
0.07979690283536911,
0.07158701866865158,
0.005222945939749479,
0.04981883615255356,
-0.18686391413211823,
0.12574562430381775,
0.10873430222272873,
-0.003964335657656193,
0.08998384326696396,
-0.28771495819091797,
-0.13327059149742126,
0.1115591824054718,
0.1643366664648056,
0.13050976395606995,
-0.14567922055721283,
-0.00595464464277029,
-0.04595077037811279,
-0.11688897758722305,
0.11407341063022614,
-0.06891895085573196,
0.12416727095842361,
-0.021912992000579834,
0.10777053236961365,
0.007739421911537647,
-0.04609860107302666,
0.09934548288583755,
0.0054015712812542915,
0.11885916441679001,
-0.06986165046691895,
-0.024051200598478317,
0.026756498962640762,
-0.020662058144807816,
-0.015813348814845085,
-0.057569071650505066,
0.0106205390766263,
-0.0852222740650177,
-0.023585576564073563,
-0.0847390741109848,
0.03245629370212555,
-0.033028751611709595,
-0.07189270853996277,
-0.02317667566239834,
0.038568779826164246,
0.04574619233608246,
-0.021418338641524315,
0.11486491560935974,
-0.01551551092416048,
0.1863025724887848,
0.07313702255487442,
0.09240324795246124,
-0.08178550004959106,
-0.02065286599099636,
-0.00003356695015099831,
-0.017678815871477127,
0.054772600531578064,
-0.11019662767648697,
0.02829204499721527,
0.15395528078079224,
0.015688983723521233,
0.1404525339603424,
0.09258004277944565,
-0.016646796837449074,
0.014642667956650257,
0.06697583198547363,
-0.1416914314031601,
-0.08330654352903366,
0.004891279153525829,
-0.025117218494415283,
-0.08353085815906525,
0.031672023236751556,
0.08500675112009048,
-0.0764535441994667,
-0.01777840405702591,
-0.007837649434804916,
-0.013697833754122257,
-0.06613093614578247,
0.20360665023326874,
0.05509607493877411,
0.04826795682311058,
-0.10367231070995331,
0.0619521364569664,
0.06714285165071487,
-0.07695543020963669,
0.002750912681221962,
0.0842658206820488,
-0.07538124918937683,
-0.028465943410992622,
0.10074715316295624,
0.20877204835414886,
-0.07398829609155655,
-0.030696559697389603,
-0.13191437721252441,
-0.1341141164302826,
0.07778085023164749,
0.1761702001094818,
0.10172558575868607,
-0.015054116025567055,
-0.0585925467312336,
0.0271172933280468,
-0.1269838660955429,
0.06694456189870834,
0.03333668038249016,
0.0716865286231041,
-0.12397371977567673,
0.20573385059833527,
0.003787952708080411,
0.03299770876765251,
-0.02454131282866001,
0.025818118825554848,
-0.12238103151321411,
0.025209838524460793,
-0.13797764480113983,
-0.048592209815979004,
-0.013805558905005455,
0.006822568364441395,
-0.005984900053590536,
-0.07447531074285507,
-0.057811323553323746,
0.0011387406848371029,
-0.13167022168636322,
-0.02211732789874077,
0.03647667542099953,
0.04984240233898163,
-0.10938642174005508,
-0.04136123135685921,
0.02524876408278942,
-0.04444008693099022,
0.046962570399045944,
0.04536972939968109,
0.011523889377713203,
0.07185018807649612,
-0.1686306595802307,
-0.010171506553888321,
0.052642449736595154,
-0.00010517984628677368,
0.07909676432609558,
-0.07968020439147949,
0.0017353222938254476,
0.0027910368517041206,
0.09269144386053085,
0.02897358499467373,
0.07908718287944794,
-0.13507722318172455,
-0.013390847481787205,
-0.016477467492222786,
-0.1055956482887268,
-0.05540673807263374,
0.02981976978480816,
0.07534588128328323,
0.011530796065926552,
0.19236178696155548,
-0.09449348598718643,
0.042807698249816895,
-0.2175297737121582,
-0.007359377574175596,
-0.022901663556694984,
-0.11383115500211716,
-0.12661659717559814,
-0.08614564687013626,
0.07414688915014267,
-0.048603497445583344,
0.13508735597133636,
0.04954012855887413,
0.06612446904182434,
0.03942536190152168,
-0.04248855635523796,
-0.005703644827008247,
0.01834663189947605,
0.22170507907867432,
0.05483506619930267,
-0.042094193398952484,
0.08287312835454941,
0.06521196663379669,
0.09226029366254807,
0.1300240010023117,
0.21736247837543488,
0.16393093764781952,
0.0001071134174708277,
0.07056018710136414,
0.0368911549448967,
-0.053261447697877884,
-0.14397259056568146,
0.02667168900370598,
-0.03078879788517952,
0.08970654755830765,
-0.043382588773965836,
0.23119810223579407,
0.055745333433151245,
-0.1673526167869568,
0.06341873854398727,
-0.07387441396713257,
-0.09099280089139938,
-0.1163327768445015,
-0.012310688383877277,
-0.08881623297929764,
-0.1606162041425705,
0.005636736284941435,
-0.10958494246006012,
0.04022497683763504,
0.10953681915998459,
0.010187814012169838,
-0.02283550798892975,
0.1478346288204193,
0.02187671698629856,
0.03202514350414276,
0.0676179900765419,
-0.013502850197255611,
-0.017659388482570648,
-0.10256259143352509,
-0.08268505334854126,
-0.01165356021374464,
-0.019132690504193306,
0.03595472127199173,
-0.05353177711367607,
-0.09310358762741089,
0.023787381127476692,
-0.02624865621328354,
-0.10733643174171448,
0.029294850304722786,
0.0193640124052763,
0.07454896718263626,
0.05964934825897217,
0.0011350293643772602,
0.015960698947310448,
-0.018954329192638397,
0.22194720804691315,
-0.07907039672136307,
-0.09622152149677277,
-0.08598260581493378,
0.31805655360221863,
0.050200220197439194,
0.0030471831560134888,
0.02325344644486904,
-0.058881353586912155,
0.012042365968227386,
0.21896226704120636,
0.18131598830223083,
-0.11495397239923477,
-0.00873597338795662,
-0.010065457783639431,
-0.015240834094583988,
-0.017590118572115898,
0.13901442289352417,
0.1363896131515503,
-0.0015025479951873422,
-0.10237272083759308,
-0.01564650982618332,
-0.06485269218683243,
-0.016303209587931633,
-0.04121404513716698,
0.059073105454444885,
0.057227473706007004,
0.01221492886543274,
-0.044944677501916885,
0.06678514182567596,
-0.0610106885433197,
-0.08646063506603241,
0.04215044155716896,
-0.1980559229850769,
-0.1634730100631714,
-0.014069875702261925,
0.08322566002607346,
0.007420190144330263,
0.06197332218289375,
-0.029780227690935135,
0.010424676351249218,
0.042507994920015335,
-0.023516394197940826,
-0.05306124687194824,
-0.10355492681264877,
0.11473453789949417,
-0.11377468705177307,
0.17530220746994019,
-0.042465753853321075,
0.06075338274240494,
0.12953561544418335,
0.07549396902322769,
-0.04687511548399925,
0.08858268707990646,
0.03456360101699829,
-0.10393980145454407,
0.025906749069690704,
0.10891390591859818,
-0.04024976119399071,
0.061335012316703796,
0.03792501613497734,
-0.1482408344745636,
0.045270103961229324,
-0.10525694489479065,
-0.06476268172264099,
-0.03189421445131302,
-0.036530960351228714,
-0.054073404520750046,
0.1204242929816246,
0.2385031282901764,
-0.0185625571757555,
0.02066914364695549,
-0.08752728253602982,
0.003498449921607971,
0.04701590538024902,
0.039966024458408356,
-0.1009521409869194,
-0.24992944300174713,
0.012393614277243614,
0.10472014546394348,
-0.026111893355846405,
-0.2448718398809433,
-0.08412566781044006,
0.005659120157361031,
-0.06702008098363876,
-0.09678632766008377,
0.1032208725810051,
0.06954313069581985,
0.05242699012160301,
-0.05165231600403786,
-0.16036361455917358,
-0.0733429491519928,
0.17482177913188934,
-0.14060568809509277,
-0.07562412321567535
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base__sst2__all-train
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6964
- Accuracy: 0.49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 7 | 0.6964 | 0.49 |
| No log | 2.0 | 14 | 0.7010 | 0.49 |
| No log | 3.0 | 21 | 0.7031 | 0.49 |
| No log | 4.0 | 28 | 0.7054 | 0.49 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-base__sst2__all-train", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-base__sst2__all-train
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-base\_\_sst2\_\_all-train
====================================
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6964
* Accuracy: 0.49
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08853937685489655,
0.049012526869773865,
-0.0019148587016388774,
0.11422202736139297,
0.18462775647640228,
0.032178301364183426,
0.12384194880723953,
0.10722515732049942,
-0.10873816907405853,
0.01387492660433054,
0.11810366064310074,
0.1696874499320984,
0.011437480337917805,
0.12697532773017883,
-0.06672335416078568,
-0.3020641505718231,
-0.006820674054324627,
0.03856095299124718,
-0.05267289653420448,
0.12423893809318542,
0.10863559693098068,
-0.13811704516410828,
0.0715651884675026,
0.00099158042576164,
-0.21171081066131592,
0.02246594801545143,
0.019879397004842758,
-0.052043840289115906,
0.16230161488056183,
0.026261236518621445,
0.137167826294899,
0.014201698824763298,
0.10186435282230377,
-0.19703994691371918,
0.011907681822776794,
0.045471955090761185,
0.006591577082872391,
0.07355887442827225,
0.0556182861328125,
-0.003765398170799017,
0.1209331601858139,
-0.09073787927627563,
0.07235683500766754,
0.007470601238310337,
-0.14473861455917358,
-0.22152991592884064,
-0.07920829951763153,
-0.005286703817546368,
0.07128860801458359,
0.08819743245840073,
-0.011988365091383457,
0.14287614822387695,
-0.10508587211370468,
0.08929192274808884,
0.18466797471046448,
-0.2828126549720764,
-0.06302658468484879,
0.01482598390430212,
0.007155830040574074,
0.08590895682573318,
-0.11141782253980637,
-0.025213005021214485,
0.051087066531181335,
0.053389739245176315,
0.13201674818992615,
-0.03220243379473686,
-0.10167402774095535,
0.015276681631803513,
-0.13978707790374756,
-0.024902312085032463,
0.10190418362617493,
0.038626473397016525,
-0.04077945277094841,
-0.03396070376038551,
-0.044751666486263275,
-0.15371952950954437,
-0.03948989883065224,
-0.02608378417789936,
0.050459641963243484,
-0.030868276953697205,
-0.07862017303705215,
0.013042244128882885,
-0.09624169766902924,
-0.07235636562108994,
-0.06673451513051987,
0.15444843471050262,
0.03902792930603027,
-0.0011888918234035373,
-0.029519224539399147,
0.10419897735118866,
-0.025147296488285065,
-0.13363707065582275,
0.022561077028512955,
0.029489554464817047,
-0.021335722878575325,
-0.07689075171947479,
-0.07609346508979797,
-0.06259222328662872,
-0.003503655781969428,
0.12170132249593735,
-0.0526452362537384,
0.0516219437122345,
0.015886127948760986,
0.02673691138625145,
-0.08382757008075714,
0.19066371023654938,
-0.022329451516270638,
-0.008985654450953007,
0.007159843575209379,
0.046688154339790344,
-0.0043787648901343346,
-0.014247661456465721,
-0.11947911232709885,
-0.006793338339775801,
0.12802475690841675,
0.01739799976348877,
-0.1019463911652565,
0.061440449208021164,
-0.06213526800274849,
-0.025097597390413284,
0.003769707167521119,
-0.08796045929193497,
0.043101292103528976,
-0.013538333587348461,
-0.08664572238922119,
-0.03140817955136299,
-0.013223333284258842,
0.03261107951402664,
-0.007151525001972914,
0.1413426697254181,
-0.08613169938325882,
0.04053327068686485,
-0.10920270532369614,
-0.13379928469657898,
0.0039409613236784935,
-0.06243053451180458,
0.03004942648112774,
-0.10628154873847961,
-0.16322992742061615,
-0.023235056549310684,
0.03920359909534454,
-0.02896510250866413,
-0.04778607562184334,
-0.06259044259786606,
-0.050682682543992996,
0.011774774640798569,
-0.022213835269212723,
0.135210320353508,
-0.06556809693574905,
0.1068020761013031,
0.04445003718137741,
0.05994592607021332,
-0.06573929637670517,
0.06431050598621368,
-0.09836792200803757,
-0.000016823774785734713,
-0.20067059993743896,
0.06168573349714279,
-0.041388679295778275,
0.07775791734457016,
-0.0869666114449501,
-0.11191366612911224,
0.030193975195288658,
-0.001008520950563252,
0.09416546672582626,
0.08547263592481613,
-0.18794357776641846,
-0.07197847962379456,
0.14869174361228943,
-0.06368055939674377,
-0.09068425744771957,
0.11824189126491547,
-0.08708187937736511,
0.05345235764980316,
0.09343521296977997,
0.17992404103279114,
0.06520066410303116,
-0.0731174498796463,
0.05083908140659332,
-0.049904581159353256,
0.05807645246386528,
-0.036641668528318405,
0.05366240069270134,
0.009894043207168579,
-0.008236455731093884,
0.020225297659635544,
-0.015170703642070293,
0.06338094174861908,
-0.10537946969270706,
-0.08717786520719528,
-0.019886111840605736,
-0.08981924504041672,
0.045738182961940765,
0.061917636543512344,
0.0851573646068573,
-0.11287844926118851,
-0.06551046669483185,
0.09619046002626419,
0.07315131276845932,
-0.05060169845819473,
0.024399302899837494,
-0.059013646095991135,
0.04067230969667435,
-0.021520625799894333,
-0.025125613436102867,
-0.18616729974746704,
-0.01982877589762211,
0.02232884243130684,
0.01645534485578537,
0.045329369604587555,
0.014715698547661304,
0.06466754525899887,
0.06718522310256958,
-0.05668647587299347,
-0.017948077991604805,
-0.04270727559924126,
0.007878652773797512,
-0.13746552169322968,
-0.19591672718524933,
-0.015667561441659927,
-0.017513243481516838,
0.12104843556880951,
-0.21860377490520477,
0.026895157992839813,
-0.006920939311385155,
0.07803713530302048,
0.017011117190122604,
-0.0006893482059240341,
-0.0539049468934536,
0.109671950340271,
-0.028155358508229256,
-0.04768161475658417,
0.07120301574468613,
-0.004520060028880835,
-0.0892568826675415,
-0.04988594353199005,
-0.10397500544786453,
0.17570270597934723,
0.1216639056801796,
-0.12708625197410583,
-0.09987196326255798,
-0.027284564450383186,
-0.043325237929821014,
-0.02349112182855606,
-0.05639515817165375,
0.040663816034793854,
0.20577988028526306,
-0.011250964365899563,
0.15115028619766235,
-0.06520339101552963,
-0.03429916128516197,
0.009734269231557846,
-0.020124388858675957,
0.03557214140892029,
0.11409740895032883,
0.11052882671356201,
-0.12360793352127075,
0.1309753805398941,
0.1455174833536148,
-0.08731523901224136,
0.13606710731983185,
-0.03298661485314369,
-0.07074538618326187,
-0.0239616259932518,
-0.03290015831589699,
-0.0016155361663550138,
0.08893267065286636,
-0.11883141100406647,
-0.015392059460282326,
0.0025424945633858442,
0.03874022141098976,
0.012402073480188847,
-0.22461581230163574,
-0.0435013510286808,
0.036531638354063034,
-0.03711849823594093,
-0.03240922465920448,
-0.021843155845999718,
0.010972613468766212,
0.11307066679000854,
0.009987937286496162,
-0.09723146259784698,
0.032475508749485016,
0.007428148295730352,
-0.07147365808486938,
0.2098628282546997,
-0.08978543430566788,
-0.1294260323047638,
-0.1079559177160263,
-0.06982620805501938,
-0.04231691733002663,
0.017820114269852638,
0.058317165821790695,
-0.09304910898208618,
-0.024832377210259438,
-0.04799635335803032,
0.02337656542658806,
-0.015578157268464565,
0.03151766210794449,
-0.02823084592819214,
-0.0018896269612014294,
0.05515564605593681,
-0.10960102826356888,
-0.018290050327777863,
-0.050658099353313446,
-0.06396722048521042,
0.06757522374391556,
0.034484151750802994,
0.11383884400129318,
0.15008164942264557,
-0.041361916810274124,
-0.0004433544527273625,
-0.043563053011894226,
0.253024697303772,
-0.07733459770679474,
-0.034478865563869476,
0.10865645110607147,
-0.007753346581012011,
0.051378242671489716,
0.12974430620670319,
0.06908082216978073,
-0.11293189972639084,
0.032683826982975006,
0.031101617962121964,
-0.022093191742897034,
-0.2112315148115158,
-0.03429951146245003,
-0.05308317020535469,
-0.05528957396745682,
0.09566616266965866,
0.019710518419742584,
0.04436697065830231,
0.05376763641834259,
0.043707143515348434,
0.08856899291276932,
-0.031095916405320168,
0.06876160204410553,
0.1518935114145279,
0.05763915553689003,
0.13576045632362366,
-0.03204336017370224,
-0.09597423672676086,
0.03159277141094208,
-0.019267093390226364,
0.22329704463481903,
0.037260912358760834,
0.12177987396717072,
0.04759225994348526,
0.14850196242332458,
0.014339020475745201,
0.073118194937706,
0.02054072730243206,
-0.03907925263047218,
-0.025967370718717575,
-0.032161224633455276,
-0.03843017295002937,
0.026777388527989388,
-0.0371079221367836,
0.02134762704372406,
-0.13525070250034332,
-0.03616093844175339,
0.0494505800306797,
0.254098504781723,
0.0378863625228405,
-0.3228382468223572,
-0.07672153413295746,
0.010623333044350147,
-0.051263291388750076,
-0.021942486986517906,
0.010296129621565342,
0.07302003353834152,
-0.09879298508167267,
0.037709791213274,
-0.052090249955654144,
0.1040196642279625,
-0.06358646601438522,
0.05563777685165405,
0.048437755554914474,
0.09231562912464142,
-0.012918338179588318,
0.06923536211252213,
-0.34776684641838074,
0.27837899327278137,
0.013098370283842087,
0.07759766280651093,
-0.07178298383951187,
-0.015389829874038696,
0.03877287730574608,
0.06274295598268509,
0.021479619666934013,
-0.017737558111548424,
-0.06516563892364502,
-0.2309224009513855,
-0.02194344624876976,
0.03346691653132439,
0.10814506560564041,
-0.02188117802143097,
0.10097114741802216,
-0.023503733798861504,
0.0243366751819849,
0.08073663711547852,
-0.016704192385077477,
-0.09545708447694778,
-0.07245300710201263,
-0.018245162442326546,
0.030545765534043312,
0.013448120094835758,
-0.06024995818734169,
-0.10812494158744812,
-0.09095656871795654,
0.11967980861663818,
0.00856887735426426,
-0.02205563336610794,
-0.11694959551095963,
0.0978918969631195,
0.06260964274406433,
-0.08225852996110916,
0.030637454241514206,
0.019533775746822357,
0.06876712292432785,
0.02426784113049507,
-0.04712908715009689,
0.12630920112133026,
-0.03737122565507889,
-0.15902237594127655,
-0.06872349977493286,
0.08157719671726227,
0.044162191450595856,
0.06483376771211624,
0.00023663316096644849,
0.018315916880965233,
-0.018170226365327835,
-0.0883144736289978,
0.026601005345582962,
-0.04670482873916626,
0.05538568273186684,
0.030211403965950012,
-0.05892344191670418,
0.021299051120877266,
-0.07434707134962082,
-0.03786977753043175,
0.1871854066848755,
0.26332077383995056,
-0.08178133517503738,
0.005405509378761053,
0.042303577065467834,
-0.06982152909040451,
-0.17320922017097473,
0.07124415040016174,
0.06695476919412613,
0.0165549386292696,
0.05016078054904938,
-0.19595055282115936,
0.09674448519945145,
0.11432120203971863,
-0.006368603557348251,
0.11002670228481293,
-0.2931475043296814,
-0.13674551248550415,
0.11541807651519775,
0.15205365419387817,
0.12508617341518402,
-0.14096102118492126,
-0.008782847784459591,
-0.05004267022013664,
-0.10217969864606857,
0.11372894048690796,
-0.06511279195547104,
0.12642720341682434,
-0.02171211503446102,
0.12061405926942825,
0.0059796408750116825,
-0.03812596946954727,
0.12059956789016724,
0.026639528572559357,
0.12945489585399628,
-0.061047062277793884,
-0.030513213947415352,
0.03012482076883316,
-0.02984566055238247,
-0.0032179509289562702,
-0.06348102539777756,
0.014722331427037716,
-0.10521450638771057,
-0.030885998159646988,
-0.07047360390424728,
0.03221704065799713,
-0.03374819830060005,
-0.07665702700614929,
-0.028756896033883095,
0.04232964292168617,
0.03889390081167221,
-0.021484076976776123,
0.1141340583562851,
-0.009319566190242767,
0.15006671845912933,
0.06531515717506409,
0.0865057110786438,
-0.05930190533399582,
-0.01488536037504673,
0.0004528115678112954,
-0.016934135928750038,
0.06002465635538101,
-0.12111371755599976,
0.03094722144305706,
0.15255294740200043,
0.009748115204274654,
0.1595514416694641,
0.0834011435508728,
-0.02273762784898281,
0.02210109494626522,
0.06432129442691803,
-0.13866721093654633,
-0.07440055906772614,
0.0033325375989079475,
-0.03948114439845085,
-0.07387616485357285,
0.0344528965651989,
0.10160262137651443,
-0.07016551494598389,
-0.02109898068010807,
-0.008670073933899403,
-0.013547415845096111,
-0.06652481108903885,
0.1987447291612625,
0.05725434422492981,
0.044326670467853546,
-0.09390828013420105,
0.06287835538387299,
0.07390408962965012,
-0.07408847659826279,
0.009835225529968739,
0.07227381318807602,
-0.07265771925449371,
-0.03495669737458229,
0.08226838707923889,
0.21220684051513672,
-0.07477271556854248,
-0.03813264146447182,
-0.13409127295017242,
-0.12569040060043335,
0.07785417884588242,
0.16465552151203156,
0.10391144454479218,
0.005549326539039612,
-0.05680098757147789,
0.016807230189442635,
-0.12267279624938965,
0.06416919827461243,
0.03693261370062828,
0.07109387964010239,
-0.12247870862483978,
0.1843961626291275,
-0.003846482839435339,
0.022907566279172897,
-0.020482400432229042,
0.01870480179786682,
-0.11866465210914612,
0.02031845785677433,
-0.1429031789302826,
-0.034398775547742844,
-0.015110311098396778,
0.016231141984462738,
0.0014496826333925128,
-0.06511348485946655,
-0.05418593809008598,
0.0010259324917569757,
-0.12405402958393097,
-0.024948861449956894,
0.03357652574777603,
0.05814184248447418,
-0.11204633861780167,
-0.05848240852355957,
0.017731187865138054,
-0.05763963982462883,
0.0627383142709732,
0.031309451907873154,
0.022335810586810112,
0.05826302990317345,
-0.14420582354068756,
0.011769106611609459,
0.060830071568489075,
0.0009041427401825786,
0.0713801383972168,
-0.09431362897157669,
-0.0035115876235067844,
-0.00023301708279177547,
0.08400703966617584,
0.027008764445781708,
0.07344423979520798,
-0.13344022631645203,
-0.01658271998167038,
-0.017310768365859985,
-0.10531624406576157,
-0.05892802029848099,
0.027009129524230957,
0.07366501539945602,
0.017105719074606895,
0.1968967318534851,
-0.08790228515863419,
0.03821782022714615,
-0.2065363973379135,
-0.006708385422825813,
-0.0168167594820261,
-0.10972759872674942,
-0.12083499133586884,
-0.0855923742055893,
0.07209530472755432,
-0.056153636425733566,
0.13778552412986755,
0.04705095663666725,
0.06678322702646255,
0.038108766078948975,
-0.03265981748700142,
-0.0021739983931183815,
0.026713663712143898,
0.20713184773921967,
0.05206119269132614,
-0.04167080670595169,
0.057866450399160385,
0.06366989016532898,
0.09957121312618256,
0.1452723741531372,
0.19979515671730042,
0.15629425644874573,
-0.007080200128257275,
0.07426153868436813,
0.035556986927986145,
-0.05168868228793144,
-0.1445978283882141,
0.03613709658384323,
-0.00847927387803793,
0.08562836796045303,
-0.03007764369249344,
0.21092897653579712,
0.0573844276368618,
-0.1759953498840332,
0.04818553104996681,
-0.06604395061731339,
-0.09614263474941254,
-0.11033954471349716,
-0.023092174902558327,
-0.09346812218427658,
-0.1437143236398697,
0.00022348172205965966,
-0.10989031195640564,
0.026778602972626686,
0.0928238034248352,
0.0057664960622787476,
-0.02760270982980728,
0.13470956683158875,
0.028688786551356316,
0.026675326749682426,
0.08088862150907516,
-0.0076406849548220634,
-0.01449216902256012,
-0.09698732942342758,
-0.0834212601184845,
-0.017325062304735184,
-0.025679271668195724,
0.027373258024454117,
-0.06282511353492737,
-0.08214934915304184,
0.014727556146681309,
-0.028457436710596085,
-0.10361051559448242,
0.0225070808082819,
0.02712322399020195,
0.05940069258213043,
0.06666719168424606,
0.015642603859305382,
0.0058073848485946655,
-0.004035741090774536,
0.21165482699871063,
-0.06010826304554939,
-0.0908668041229248,
-0.09185558557510376,
0.29378679394721985,
0.055242326110601425,
0.01452909130603075,
0.03471951559185982,
-0.07099315524101257,
0.019416358321905136,
0.1945122331380844,
0.17928877472877502,
-0.11409977823495865,
-0.006061145104467869,
-0.010717994533479214,
-0.014495771378278732,
-0.006358593702316284,
0.1290408968925476,
0.11845645308494568,
0.008812225423753262,
-0.09655076265335083,
-0.021396009251475334,
-0.06037423759698868,
-0.01263376884162426,
-0.029984164983034134,
0.05965013429522514,
0.05485421046614647,
0.00976516306400299,
-0.04546795412898064,
0.07861941307783127,
-0.06179889664053917,
-0.08362295478582382,
0.05552893504500389,
-0.19640973210334778,
-0.1660773903131485,
-0.011410394683480263,
0.06471244245767593,
0.001046842080540955,
0.06871604174375534,
-0.03532218188047409,
0.004436388611793518,
0.047682855278253555,
-0.02550133317708969,
-0.05907171592116356,
-0.09331962466239929,
0.1144450455904007,
-0.08587215095758438,
0.16383400559425354,
-0.04841596260666847,
0.07990159094333649,
0.12944765388965607,
0.080229252576828,
-0.049649495631456375,
0.09473950415849686,
0.041850876063108444,
-0.07077596336603165,
0.031568851321935654,
0.09456794708967209,
-0.04699748381972313,
0.06081801652908325,
0.047957614064216614,
-0.14639905095100403,
0.04067657142877579,
-0.081492118537426,
-0.0634702518582344,
-0.04773818328976631,
-0.0371159128844738,
-0.0520259290933609,
0.12193024903535843,
0.2206040322780609,
-0.021027106791734695,
0.02218090184032917,
-0.07672847807407379,
0.0040519521571695805,
0.06063741445541382,
0.03077133744955063,
-0.10207200050354004,
-0.23511560261249542,
0.006525523029267788,
0.11215000599622726,
-0.02193192020058632,
-0.24563217163085938,
-0.08801659196615219,
-0.003137323074042797,
-0.06476981192827225,
-0.0891675278544426,
0.11023731529712677,
0.05616024136543274,
0.0478607602417469,
-0.056962594389915466,
-0.1322634220123291,
-0.08302609622478485,
0.16687577962875366,
-0.14193737506866455,
-0.08851242810487747
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-0
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9917
- Accuracy: 0.7705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7001 | 1.0 | 7 | 0.7327 | 0.2857 |
| 0.6326 | 2.0 | 14 | 0.6479 | 0.5714 |
| 0.5232 | 3.0 | 21 | 0.5714 | 0.5714 |
| 0.3313 | 4.0 | 28 | 0.6340 | 0.7143 |
| 0.3161 | 5.0 | 35 | 0.6304 | 0.7143 |
| 0.0943 | 6.0 | 42 | 0.4719 | 0.8571 |
| 0.0593 | 7.0 | 49 | 0.5000 | 0.7143 |
| 0.0402 | 8.0 | 56 | 0.3530 | 0.8571 |
| 0.0307 | 9.0 | 63 | 0.3499 | 0.8571 |
| 0.0033 | 10.0 | 70 | 0.3258 | 0.8571 |
| 0.0021 | 11.0 | 77 | 0.3362 | 0.8571 |
| 0.0012 | 12.0 | 84 | 0.4591 | 0.8571 |
| 0.0036 | 13.0 | 91 | 0.4661 | 0.8571 |
| 0.001 | 14.0 | 98 | 0.5084 | 0.8571 |
| 0.0017 | 15.0 | 105 | 0.5844 | 0.8571 |
| 0.0005 | 16.0 | 112 | 0.6645 | 0.8571 |
| 0.002 | 17.0 | 119 | 0.7422 | 0.8571 |
| 0.0006 | 18.0 | 126 | 0.7354 | 0.8571 |
| 0.0005 | 19.0 | 133 | 0.7265 | 0.8571 |
| 0.0005 | 20.0 | 140 | 0.7207 | 0.8571 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-0", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-0
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-0
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9917
* Accuracy: 0.7705
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-1
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6804
- Accuracy: 0.5497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7086 | 1.0 | 7 | 0.7176 | 0.2857 |
| 0.6897 | 2.0 | 14 | 0.7057 | 0.2857 |
| 0.6491 | 3.0 | 21 | 0.6582 | 0.8571 |
| 0.567 | 4.0 | 28 | 0.4480 | 0.8571 |
| 0.4304 | 5.0 | 35 | 0.5465 | 0.7143 |
| 0.0684 | 6.0 | 42 | 0.5408 | 0.8571 |
| 0.0339 | 7.0 | 49 | 0.6501 | 0.8571 |
| 0.0082 | 8.0 | 56 | 0.9152 | 0.8571 |
| 0.0067 | 9.0 | 63 | 2.5162 | 0.5714 |
| 0.0045 | 10.0 | 70 | 1.1136 | 0.8571 |
| 0.0012 | 11.0 | 77 | 1.1668 | 0.8571 |
| 0.0007 | 12.0 | 84 | 1.2071 | 0.8571 |
| 0.0005 | 13.0 | 91 | 1.2310 | 0.8571 |
| 0.0006 | 14.0 | 98 | 1.2476 | 0.8571 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-1", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-1
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-1
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6804
* Accuracy: 0.5497
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-2
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6959
- Accuracy: 0.5008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 |
| 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 |
| 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 |
| 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 |
| 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 |
| 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 |
| 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 |
| 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 |
| 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 |
| 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 |
| 0.001 | 11.0 | 77 | 1.1101 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-2", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-2
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-2
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6959
* Accuracy: 0.5008
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-3
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6286
- Accuracy: 0.7068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6955 | 1.0 | 7 | 0.7370 | 0.2857 |
| 0.6919 | 2.0 | 14 | 0.6855 | 0.4286 |
| 0.6347 | 3.0 | 21 | 0.5872 | 0.7143 |
| 0.4016 | 4.0 | 28 | 0.6644 | 0.7143 |
| 0.3097 | 5.0 | 35 | 0.5120 | 0.7143 |
| 0.0785 | 6.0 | 42 | 0.5845 | 0.7143 |
| 0.024 | 7.0 | 49 | 0.6951 | 0.7143 |
| 0.0132 | 8.0 | 56 | 0.8972 | 0.7143 |
| 0.0037 | 9.0 | 63 | 1.5798 | 0.7143 |
| 0.0034 | 10.0 | 70 | 1.5178 | 0.7143 |
| 0.003 | 11.0 | 77 | 1.3511 | 0.7143 |
| 0.0012 | 12.0 | 84 | 1.1346 | 0.7143 |
| 0.0007 | 13.0 | 91 | 0.9752 | 0.7143 |
| 0.0008 | 14.0 | 98 | 0.8531 | 0.7143 |
| 0.0007 | 15.0 | 105 | 0.8149 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-3", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-3
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-3
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6286
* Accuracy: 0.7068
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-4
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6329
- Accuracy: 0.6392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 |
| 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 |
| 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 |
| 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 |
| 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 |
| 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 |
| 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 |
| 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 |
| 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 |
| 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 |
| 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 |
| 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 |
| 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 |
| 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-4", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-4
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-4
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6329
* Accuracy: 0.6392
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-5
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5433
- Accuracy: 0.7924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6774 | 1.0 | 7 | 0.7450 | 0.2857 |
| 0.7017 | 2.0 | 14 | 0.7552 | 0.2857 |
| 0.6438 | 3.0 | 21 | 0.7140 | 0.4286 |
| 0.3525 | 4.0 | 28 | 0.5570 | 0.7143 |
| 0.2061 | 5.0 | 35 | 0.5303 | 0.8571 |
| 0.0205 | 6.0 | 42 | 0.6706 | 0.8571 |
| 0.0068 | 7.0 | 49 | 0.8284 | 0.8571 |
| 0.0029 | 8.0 | 56 | 0.9281 | 0.8571 |
| 0.0015 | 9.0 | 63 | 0.9871 | 0.8571 |
| 0.0013 | 10.0 | 70 | 1.0208 | 0.8571 |
| 0.0008 | 11.0 | 77 | 1.0329 | 0.8571 |
| 0.0005 | 12.0 | 84 | 1.0348 | 0.8571 |
| 0.0004 | 13.0 | 91 | 1.0437 | 0.8571 |
| 0.0005 | 14.0 | 98 | 1.0512 | 0.8571 |
| 0.0004 | 15.0 | 105 | 1.0639 | 0.8571 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-5", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-5
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-5
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5433
* Accuracy: 0.7924
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-6
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6846
- Accuracy: 0.5058
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6673 | 1.0 | 7 | 0.7580 | 0.2857 |
| 0.5896 | 2.0 | 14 | 0.7885 | 0.5714 |
| 0.5294 | 3.0 | 21 | 1.0040 | 0.4286 |
| 0.3163 | 4.0 | 28 | 1.1761 | 0.5714 |
| 0.1315 | 5.0 | 35 | 1.4315 | 0.4286 |
| 0.0312 | 6.0 | 42 | 2.6115 | 0.2857 |
| 0.1774 | 7.0 | 49 | 2.1631 | 0.5714 |
| 0.0052 | 8.0 | 56 | 2.3838 | 0.4286 |
| 0.0043 | 9.0 | 63 | 2.6553 | 0.4286 |
| 0.0032 | 10.0 | 70 | 2.2774 | 0.4286 |
| 0.0015 | 11.0 | 77 | 1.9467 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-6", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-6
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-6
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6846
* Accuracy: 0.5058
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-7
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6953
- Accuracy: 0.5063
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6911 | 1.0 | 7 | 0.7455 | 0.2857 |
| 0.6844 | 2.0 | 14 | 0.7242 | 0.2857 |
| 0.6137 | 3.0 | 21 | 0.7341 | 0.4286 |
| 0.3805 | 4.0 | 28 | 1.0217 | 0.4286 |
| 0.2201 | 5.0 | 35 | 1.1437 | 0.2857 |
| 0.0296 | 6.0 | 42 | 1.5997 | 0.4286 |
| 0.0103 | 7.0 | 49 | 2.6835 | 0.4286 |
| 0.0046 | 8.0 | 56 | 3.3521 | 0.4286 |
| 0.002 | 9.0 | 63 | 3.7846 | 0.4286 |
| 0.0017 | 10.0 | 70 | 4.0088 | 0.4286 |
| 0.0018 | 11.0 | 77 | 4.1483 | 0.4286 |
| 0.0006 | 12.0 | 84 | 4.2235 | 0.4286 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-7", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-7
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-7
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6953
* Accuracy: 0.5063
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-8
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6915
- Accuracy: 0.6579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7129 | 1.0 | 7 | 0.7309 | 0.2857 |
| 0.6549 | 2.0 | 14 | 0.7316 | 0.4286 |
| 0.621 | 3.0 | 21 | 0.7131 | 0.5714 |
| 0.3472 | 4.0 | 28 | 0.5703 | 0.4286 |
| 0.2041 | 5.0 | 35 | 0.6675 | 0.5714 |
| 0.031 | 6.0 | 42 | 1.6750 | 0.5714 |
| 0.0141 | 7.0 | 49 | 1.8743 | 0.5714 |
| 0.0055 | 8.0 | 56 | 1.1778 | 0.5714 |
| 0.0024 | 9.0 | 63 | 1.0699 | 0.5714 |
| 0.0019 | 10.0 | 70 | 1.0933 | 0.5714 |
| 0.0012 | 11.0 | 77 | 1.1218 | 0.7143 |
| 0.0007 | 12.0 | 84 | 1.1468 | 0.7143 |
| 0.0006 | 13.0 | 91 | 1.1584 | 0.7143 |
| 0.0006 | 14.0 | 98 | 1.3092 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-16-8", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-8
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-8
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6915
* Accuracy: 0.6579
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-9
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2598
- Accuracy: 0.7809
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6887 | 1.0 | 7 | 0.7452 | 0.2857 |
| 0.6889 | 2.0 | 14 | 0.7988 | 0.2857 |
| 0.6501 | 3.0 | 21 | 0.8987 | 0.2857 |
| 0.4286 | 4.0 | 28 | 0.9186 | 0.4286 |
| 0.3591 | 5.0 | 35 | 0.5566 | 0.7143 |
| 0.0339 | 6.0 | 42 | 1.1130 | 0.5714 |
| 0.013 | 7.0 | 49 | 1.8296 | 0.7143 |
| 0.0041 | 8.0 | 56 | 1.7069 | 0.7143 |
| 0.0023 | 9.0 | 63 | 1.1942 | 0.7143 |
| 0.0022 | 10.0 | 70 | 0.6054 | 0.7143 |
| 0.0011 | 11.0 | 77 | 0.3872 | 0.7143 |
| 0.0006 | 12.0 | 84 | 0.3217 | 0.7143 |
| 0.0005 | 13.0 | 91 | 0.2879 | 0.8571 |
| 0.0005 | 14.0 | 98 | 0.2640 | 0.8571 |
| 0.0004 | 15.0 | 105 | 0.2531 | 0.8571 |
| 0.0003 | 16.0 | 112 | 0.2384 | 0.8571 |
| 0.0004 | 17.0 | 119 | 0.2338 | 0.8571 |
| 0.0003 | 18.0 | 126 | 0.2314 | 0.8571 |
| 0.0003 | 19.0 | 133 | 0.2276 | 0.8571 |
| 0.0003 | 20.0 | 140 | 0.2172 | 0.8571 |
| 0.0003 | 21.0 | 147 | 0.2069 | 0.8571 |
| 0.0002 | 22.0 | 154 | 0.2018 | 0.8571 |
| 0.0002 | 23.0 | 161 | 0.2005 | 0.8571 |
| 0.0002 | 24.0 | 168 | 0.1985 | 0.8571 |
| 0.0002 | 25.0 | 175 | 0.1985 | 1.0 |
| 0.0002 | 26.0 | 182 | 0.1955 | 1.0 |
| 0.0002 | 27.0 | 189 | 0.1967 | 1.0 |
| 0.0002 | 28.0 | 196 | 0.1918 | 1.0 |
| 0.0002 | 29.0 | 203 | 0.1888 | 1.0 |
| 0.0002 | 30.0 | 210 | 0.1864 | 1.0 |
| 0.0002 | 31.0 | 217 | 0.1870 | 1.0 |
| 0.0002 | 32.0 | 224 | 0.1892 | 1.0 |
| 0.0002 | 33.0 | 231 | 0.1917 | 1.0 |
| 0.0002 | 34.0 | 238 | 0.1869 | 1.0 |
| 0.0002 | 35.0 | 245 | 0.1812 | 1.0 |
| 0.0001 | 36.0 | 252 | 0.1777 | 1.0 |
| 0.0002 | 37.0 | 259 | 0.1798 | 1.0 |
| 0.0002 | 38.0 | 266 | 0.1824 | 0.8571 |
| 0.0002 | 39.0 | 273 | 0.1846 | 0.8571 |
| 0.0002 | 40.0 | 280 | 0.1839 | 0.8571 |
| 0.0001 | 41.0 | 287 | 0.1826 | 0.8571 |
| 0.0001 | 42.0 | 294 | 0.1779 | 0.8571 |
| 0.0002 | 43.0 | 301 | 0.1762 | 0.8571 |
| 0.0001 | 44.0 | 308 | 0.1742 | 1.0 |
| 0.0002 | 45.0 | 315 | 0.1708 | 1.0 |
| 0.0001 | 46.0 | 322 | 0.1702 | 1.0 |
| 0.0001 | 47.0 | 329 | 0.1699 | 1.0 |
| 0.0001 | 48.0 | 336 | 0.1695 | 1.0 |
| 0.0001 | 49.0 | 343 | 0.1683 | 1.0 |
| 0.0001 | 50.0 | 350 | 0.1681 | 1.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-9", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-16-9
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-16-9
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2598
* Accuracy: 0.7809
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-32-0
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4849
- Accuracy: 0.7716
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7059 | 1.0 | 13 | 0.6840 | 0.5385 |
| 0.6595 | 2.0 | 26 | 0.6214 | 0.6923 |
| 0.4153 | 3.0 | 39 | 0.1981 | 0.9231 |
| 0.0733 | 4.0 | 52 | 0.5068 | 0.9231 |
| 0.2092 | 5.0 | 65 | 1.3114 | 0.6923 |
| 0.003 | 6.0 | 78 | 1.1062 | 0.8462 |
| 0.0012 | 7.0 | 91 | 1.5948 | 0.7692 |
| 0.0008 | 8.0 | 104 | 1.6913 | 0.7692 |
| 0.0006 | 9.0 | 117 | 1.7191 | 0.7692 |
| 0.0005 | 10.0 | 130 | 1.6527 | 0.7692 |
| 0.0003 | 11.0 | 143 | 1.4840 | 0.7692 |
| 0.0002 | 12.0 | 156 | 1.3076 | 0.8462 |
| 0.0002 | 13.0 | 169 | 1.3130 | 0.8462 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-32-0", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-32-0
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-32-0
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4849
* Accuracy: 0.7716
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-32-1
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4201
- Accuracy: 0.8759
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7162 | 1.0 | 13 | 0.6832 | 0.5385 |
| 0.6561 | 2.0 | 26 | 0.7270 | 0.4615 |
| 0.4685 | 3.0 | 39 | 1.0674 | 0.5385 |
| 0.2837 | 4.0 | 52 | 1.0841 | 0.5385 |
| 0.1129 | 5.0 | 65 | 0.3502 | 0.9231 |
| 0.0118 | 6.0 | 78 | 0.4829 | 0.9231 |
| 0.0022 | 7.0 | 91 | 0.7430 | 0.8462 |
| 0.0007 | 8.0 | 104 | 0.8219 | 0.8462 |
| 0.0005 | 9.0 | 117 | 0.8787 | 0.8462 |
| 0.0003 | 10.0 | 130 | 0.8713 | 0.8462 |
| 0.0003 | 11.0 | 143 | 0.8473 | 0.8462 |
| 0.0002 | 12.0 | 156 | 0.8482 | 0.8462 |
| 0.0002 | 13.0 | 169 | 0.8494 | 0.8462 |
| 0.0002 | 14.0 | 182 | 0.8638 | 0.8462 |
| 0.0002 | 15.0 | 195 | 0.8492 | 0.8462 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-32-1", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-32-1
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-32-1
======================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4201
* Accuracy: 0.8759
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-0
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7088
- Accuracy: 0.5008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6705 | 1.0 | 3 | 0.7961 | 0.25 |
| 0.6571 | 2.0 | 6 | 0.8092 | 0.25 |
| 0.7043 | 3.0 | 9 | 0.7977 | 0.25 |
| 0.6207 | 4.0 | 12 | 0.8478 | 0.25 |
| 0.5181 | 5.0 | 15 | 0.9782 | 0.25 |
| 0.4136 | 6.0 | 18 | 1.3151 | 0.25 |
| 0.3702 | 7.0 | 21 | 1.8633 | 0.25 |
| 0.338 | 8.0 | 24 | 2.2119 | 0.25 |
| 0.2812 | 9.0 | 27 | 2.3058 | 0.25 |
| 0.2563 | 10.0 | 30 | 2.3353 | 0.25 |
| 0.2132 | 11.0 | 33 | 2.5921 | 0.25 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-8-0", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-0
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-0
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7088
* Accuracy: 0.5008
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
68,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08539195358753204,
0.05861661583185196,
-0.003420836292207241,
0.10584263503551483,
0.15488062798976898,
0.031082365661859512,
0.12205628305673599,
0.12494374066591263,
-0.0875493735074997,
0.04042420908808708,
0.11663655191659927,
0.13368892669677734,
0.030716177076101303,
0.12853598594665527,
-0.06020494922995567,
-0.298930287361145,
0.016673265025019646,
0.038365039974451065,
-0.03152216598391533,
0.1242760419845581,
0.1006755456328392,
-0.1253676861524582,
0.08612876385450363,
0.010175426490604877,
-0.16938547790050507,
0.012154478579759598,
0.007106216158717871,
-0.05801583081483841,
0.13481451570987701,
0.04585430771112442,
0.12294216454029083,
0.02140314318239689,
0.0956699401140213,
-0.20305290818214417,
0.0034398504067212343,
0.0448504202067852,
-0.000567571900319308,
0.07869907468557358,
0.04719645157456398,
0.009480790235102177,
0.14221900701522827,
-0.09220322966575623,
0.0656939446926117,
0.03162418678402901,
-0.1313628852367401,
-0.24458274245262146,
-0.08126985281705856,
0.04726054519414902,
0.07169460505247116,
0.09451919794082642,
-0.008775344118475914,
0.10979902744293213,
-0.07725948840379715,
0.08903196454048157,
0.23553787171840668,
-0.2813557982444763,
-0.05677393823862076,
0.021821511909365654,
0.027396120131015778,
0.06968170404434204,
-0.08879701793193817,
-0.025297271087765694,
0.04507867246866226,
0.04234801232814789,
0.12280930578708649,
-0.009268384426832199,
-0.04141031578183174,
-0.004524901043623686,
-0.1419108361005783,
-0.05455983430147171,
0.14453059434890747,
0.0450761504471302,
-0.03854552283883095,
-0.05535968020558357,
-0.05742217227816582,
-0.1720726191997528,
-0.03837071731686592,
-0.015653742477297783,
0.05207670107483864,
-0.03502867370843887,
-0.04807397350668907,
-0.015847938135266304,
-0.0917544886469841,
-0.07638885825872421,
-0.057025983929634094,
0.15183809399604797,
0.04544936865568161,
0.006780277006328106,
-0.02084817737340927,
0.09827128052711487,
-0.04345159977674484,
-0.1352696269750595,
-0.007410203106701374,
0.012372386641800404,
0.013760505244135857,
-0.03998551890254021,
-0.06393280625343323,
-0.032647423446178436,
-0.0023379013873636723,
0.14266285300254822,
-0.07405397295951843,
0.04337628185749054,
0.0229491014033556,
0.03346395120024681,
-0.09379618614912033,
0.19281049072742462,
-0.028621148318052292,
-0.010115881450474262,
0.007673393003642559,
0.0641418993473053,
0.03304698318243027,
-0.020616168156266212,
-0.12903928756713867,
-0.017445366829633713,
0.1058066189289093,
0.025888103991746902,
-0.07966486364603043,
0.06789030879735947,
-0.05361485481262207,
-0.030930310487747192,
0.02183813601732254,
-0.09942325949668884,
0.03419630229473114,
0.005689331796020269,
-0.07215172052383423,
-0.0010748245986178517,
0.025007648393511772,
0.0010289425263181329,
-0.02217302843928337,
0.11513194441795349,
-0.08400621265172958,
0.018822817131876945,
-0.1002197191119194,
-0.13744522631168365,
0.020529935136437416,
-0.08547379076480865,
0.012384905479848385,
-0.10342150926589966,
-0.16389702260494232,
-0.015575729310512543,
0.03765407204627991,
-0.033659014850854874,
-0.05022289231419563,
-0.054578155279159546,
-0.068227618932724,
0.023564931005239487,
-0.01777896098792553,
0.08683253079652786,
-0.06384695321321487,
0.09725766628980637,
0.053883761167526245,
0.06646760553121567,
-0.06151318922638893,
0.06258285045623779,
-0.08963976055383682,
0.016093699261546135,
-0.18444742262363434,
0.04849212244153023,
-0.05124903470277786,
0.05352220684289932,
-0.08277787268161774,
-0.11952280253171921,
0.014870778657495975,
0.0019320242572575808,
0.07813915610313416,
0.08546493947505951,
-0.16139592230319977,
-0.08699052780866623,
0.1593547761440277,
-0.09332425892353058,
-0.10107322037220001,
0.11059283465147018,
-0.05146818980574608,
0.024763349443674088,
0.06331542879343033,
0.16595447063446045,
0.06965144723653793,
-0.09450743347406387,
0.010494439862668514,
-0.02753397263586521,
0.05298442021012306,
-0.031321048736572266,
0.07347165793180466,
-0.009008324705064297,
0.02539733052253723,
0.023480121046304703,
-0.03229871764779091,
0.036105796694755554,
-0.09371449053287506,
-0.08513461798429489,
-0.04067861661314964,
-0.0697002187371254,
0.040823958814144135,
0.05379084497690201,
0.05953844636678696,
-0.10795243084430695,
-0.09428704530000687,
0.0912662222981453,
0.07856471836566925,
-0.06750171631574631,
0.032668475061655045,
-0.0733875036239624,
0.06909848749637604,
-0.018227754160761833,
-0.012604364193975925,
-0.17081739008426666,
-0.030641676858067513,
0.0292165856808424,
-0.01997508481144905,
0.0304880291223526,
0.013110426254570484,
0.05539504066109657,
0.06760961562395096,
-0.05602288618683815,
-0.022569142282009125,
-0.0844733938574791,
0.004038058687001467,
-0.11341677606105804,
-0.18728533387184143,
-0.046808790415525436,
-0.007784804794937372,
0.09526301920413971,
-0.19381995499134064,
0.04752122238278389,
0.020484372973442078,
0.08814762532711029,
0.021339625120162964,
-0.0025570839643478394,
-0.0474555604159832,
0.09710773080587387,
-0.03809627145528793,
-0.04401396960020065,
0.07346048206090927,
-0.006031217984855175,
-0.09501621872186661,
-0.04771013185381889,
-0.11826151609420776,
0.15766634047031403,
0.12814800441265106,
-0.09082696586847305,
-0.07246045023202896,
-0.01151033490896225,
-0.053767990320920944,
-0.022492585703730583,
-0.043936941772699356,
0.0006400467245839536,
0.16969646513462067,
-0.0071174525655806065,
0.14810431003570557,
-0.08345857262611389,
-0.03255758434534073,
0.027077538892626762,
-0.02329437993466854,
0.009940078482031822,
0.11600643396377563,
0.10873248428106308,
-0.08948332071304321,
0.1381954401731491,
0.1513407826423645,
-0.07782340794801712,
0.15228217840194702,
-0.034672241657972336,
-0.07333607226610184,
-0.024800127372145653,
-0.03872480243444443,
0.0023578323889523745,
0.091189906001091,
-0.15443368256092072,
-0.007453177589923143,
0.017944317311048508,
0.03218837082386017,
0.01422041840851307,
-0.20795486867427826,
-0.02081424929201603,
0.04532552883028984,
-0.06205480918288231,
-0.032940883189439774,
-0.004888143390417099,
0.017167361453175545,
0.10836838185787201,
0.019272349774837494,
-0.07170980423688889,
0.0256120003759861,
-0.006075061392039061,
-0.08047239482402802,
0.1931374967098236,
-0.08122634887695312,
-0.1638558804988861,
-0.13561853766441345,
-0.05272463709115982,
-0.05715986713767052,
0.01666569896042347,
0.06920871883630753,
-0.07946214824914932,
-0.03361354023218155,
-0.07782283425331116,
0.047061435878276825,
-0.022548293694853783,
0.03119886852800846,
0.003882742254063487,
0.01776476390659809,
0.06513296812772751,
-0.115528404712677,
-0.02751154452562332,
-0.05025921389460564,
-0.06680625677108765,
0.04379762336611748,
0.024269787594676018,
0.11246301978826523,
0.1318422108888626,
-0.032502468675374985,
0.013434932567179203,
-0.04261072352528572,
0.2336283028125763,
-0.06304299086332321,
-0.03166898339986801,
0.16063106060028076,
-0.003672288963571191,
0.052850671112537384,
0.1377989500761032,
0.06867561489343643,
-0.09583991765975952,
0.007169447839260101,
0.030119340866804123,
-0.026375558227300644,
-0.21352095901966095,
-0.046150997281074524,
-0.05720033496618271,
0.00014000182272866368,
0.09663953632116318,
0.0212034173309803,
0.02481541782617569,
0.042744990438222885,
0.010662268847227097,
0.06993383169174194,
-0.01735086739063263,
0.08602020889520645,
0.1888798326253891,
0.0401398129761219,
0.13842959702014923,
-0.03521498665213585,
-0.047569140791893005,
0.041384536772966385,
-0.020586809143424034,
0.22080790996551514,
0.03220822289586067,
0.14005757868289948,
0.054498013108968735,
0.14124222099781036,
0.020175404846668243,
0.062120407819747925,
0.009592670947313309,
-0.022875960916280746,
-0.019533509388566017,
-0.04370136559009552,
-0.042567767202854156,
0.033249303698539734,
-0.04758720472455025,
0.05190891772508621,
-0.149454265832901,
-0.019244952127337456,
0.04537001624703407,
0.2598362863063812,
0.0394662544131279,
-0.3198867738246918,
-0.10875722765922546,
0.008090298622846603,
-0.05161244794726372,
-0.01570717617869377,
0.015360942110419273,
0.07222055643796921,
-0.08881580084562302,
0.054433196783065796,
-0.05113660916686058,
0.09917013347148895,
-0.05953023582696915,
0.05580176040530205,
0.054813459515571594,
0.09814721345901489,
0.0040418729186058044,
0.07522255182266235,
-0.3066856265068054,
0.2725371718406677,
0.010516144335269928,
0.06653052568435669,
-0.058613769710063934,
0.006062497850507498,
0.02495383284986019,
0.07182838022708893,
0.049523014575242996,
-0.02497379295527935,
-0.05498446896672249,
-0.2027289867401123,
-0.047800227999687195,
0.024852147325873375,
0.10365073382854462,
-0.035083502531051636,
0.11360861361026764,
-0.03469353914260864,
0.01561890821903944,
0.06888790428638458,
0.014967006631195545,
-0.09596390277147293,
-0.0933404341340065,
0.007130179554224014,
0.02192850597202778,
0.003375076223164797,
-0.07190059870481491,
-0.11113959550857544,
-0.07628916949033737,
0.15239885449409485,
-0.05368230119347572,
-0.046685591340065,
-0.11061281710863113,
0.08627244830131531,
0.07505413144826889,
-0.088260218501091,
0.049602702260017395,
0.0008456184295937419,
0.09620483219623566,
0.013532519340515137,
-0.05690054967999458,
0.11805311590433121,
-0.051901716738939285,
-0.19853205978870392,
-0.05545748770236969,
0.11708692461252213,
0.01629851758480072,
0.06529433280229568,
-0.014051144942641258,
0.01948697119951248,
-0.01481595542281866,
-0.08863777667284012,
0.0283169187605381,
0.03725678101181984,
0.043157659471035004,
0.018339090049266815,
-0.072426438331604,
0.005703359842300415,
-0.05642108619213104,
-0.03175408020615578,
0.17343169450759888,
0.26180899143218994,
-0.09627412259578705,
0.02551453746855259,
0.030952218919992447,
-0.06575750559568405,
-0.1815265417098999,
0.025835301727056503,
0.06844116002321243,
0.014596901834011078,
0.021468745544552803,
-0.1878853142261505,
0.06266304105520248,
0.12458114326000214,
-0.010886971838772297,
0.09251147508621216,
-0.30797091126441956,
-0.13865379989147186,
0.09553637355566025,
0.1279516965150833,
0.09929729998111725,
-0.13862082362174988,
-0.027931589633226395,
-0.03842125087976456,
-0.12563079595565796,
0.1288052350282669,
-0.04271050542593002,
0.13390591740608215,
-0.040890779346227646,
0.08516183495521545,
0.008527026511728764,
-0.03920825570821762,
0.12433328479528427,
-0.0020716197323054075,
0.09494493156671524,
-0.0597531832754612,
-0.01889519765973091,
0.039490144699811935,
-0.04473339393734932,
0.029365375638008118,
-0.07984690368175507,
0.020386677235364914,
-0.09816571325063705,
-0.041569314897060394,
-0.0701466053724289,
0.03914719820022583,
-0.04196064546704292,
-0.06548959016799927,
-0.04031418636441231,
0.023994460701942444,
0.03829384222626686,
-0.019464638084173203,
0.14248260855674744,
-0.018319061025977135,
0.1376872956752777,
0.10759712010622025,
0.0926792174577713,
-0.06594938784837723,
-0.04080083221197128,
0.000736486108507961,
-0.02318040281534195,
0.07052505016326904,
-0.13244710862636566,
0.025524811819195747,
0.14587527513504028,
0.013448853977024555,
0.1491234302520752,
0.08139852434396744,
-0.02871338278055191,
0.012593659572303295,
0.062257230281829834,
-0.13810262084007263,
-0.10923568904399872,
-0.01331215538084507,
-0.03312752768397331,
-0.1103288009762764,
0.04956931993365288,
0.11277046799659729,
-0.07989304512739182,
-0.013699550181627274,
-0.004386697895824909,
0.004183471668511629,
-0.042468659579753876,
0.17082615196704865,
0.04996851086616516,
0.051509443670511246,
-0.08947712928056717,
0.08362741768360138,
0.054645467549562454,
-0.09052974730730057,
0.016406184062361717,
0.08915731310844421,
-0.0778554379940033,
-0.0341232605278492,
0.017448624595999718,
0.165558859705925,
-0.08557281643152237,
-0.04519856721162796,
-0.1407334953546524,
-0.13840462267398834,
0.09173233807086945,
0.16602185368537903,
0.09452220052480698,
0.013777542859315872,
-0.04731006175279617,
0.021594271063804626,
-0.1037195548415184,
0.08773993700742722,
0.02218754030764103,
0.06313768029212952,
-0.1354624330997467,
0.14856687188148499,
0.008331903256475925,
0.021492237225174904,
-0.015820849686861038,
0.027146445587277412,
-0.10972600430250168,
0.0009065101039595902,
-0.1260337233543396,
-0.024244289845228195,
-0.02555612474679947,
0.0070367055013775826,
-0.0036149511579424143,
-0.05403151363134384,
-0.058724068105220795,
0.01616048440337181,
-0.10736095160245895,
-0.03676817566156387,
0.011300045996904373,
0.0707893967628479,
-0.10768667608499527,
-0.02953074499964714,
0.017293935641646385,
-0.07224929332733154,
0.07904306799173355,
0.03232838585972786,
0.0255027636885643,
0.04425942152738571,
-0.11834702640771866,
0.024020815268158913,
0.056775230914354324,
0.015956440940499306,
0.05374082922935486,
-0.09977728873491287,
-0.0008171671070158482,
-0.005063168238848448,
0.03208153322339058,
0.020084848627448082,
0.06999748200178146,
-0.14078055322170258,
-0.0015340965474024415,
0.00046953599667176604,
-0.08140882849693298,
-0.053845591843128204,
0.03162374719977379,
0.08610719442367554,
0.019411377608776093,
0.18471530079841614,
-0.08886553347110748,
0.045438580214977264,
-0.21649961173534393,
0.005975782405585051,
-0.00574464863166213,
-0.09886189550161362,
-0.11213712394237518,
-0.07560952007770538,
0.06257811933755875,
-0.05236900970339775,
0.14207333326339722,
0.024936765432357788,
0.05291232094168663,
0.04617549851536751,
-0.039791520684957504,
0.009523352608084679,
0.015660587698221207,
0.20834532380104065,
0.04824690893292427,
-0.035337477922439575,
0.061331719160079956,
0.02947923354804516,
0.09015502035617828,
0.1154637336730957,
0.2050338089466095,
0.15217240154743195,
-0.0006791468476876616,
0.09268341958522797,
0.06378285586833954,
-0.05566652864217758,
-0.166574165225029,
0.04223360866308212,
0.008725259453058243,
0.11081106215715408,
-0.02997552417218685,
0.19213753938674927,
0.09278862178325653,
-0.1689746379852295,
0.04861295595765114,
-0.04074791073799133,
-0.07784794270992279,
-0.11963815987110138,
-0.04794176667928696,
-0.09388738870620728,
-0.15528050065040588,
0.004128479398787022,
-0.12157922238111496,
0.02939186617732048,
0.06352069228887558,
0.003993273247033358,
-0.022096354514360428,
0.11790318042039871,
0.01570606604218483,
0.010870249010622501,
0.0742930993437767,
0.004908178932964802,
-0.023892566561698914,
-0.09436485916376114,
-0.08004330098628998,
0.005792709998786449,
-0.024817785248160362,
0.027365321293473244,
-0.03299422189593315,
-0.06305397301912308,
0.012865395285189152,
-0.013791234232485294,
-0.10097499936819077,
0.015709782019257545,
0.023272201418876648,
0.058133259415626526,
0.08104800432920456,
0.003771789139136672,
-0.002325741806998849,
-0.0064738900400698185,
0.19868361949920654,
-0.06980125606060028,
-0.07580476999282837,
-0.08526160567998886,
0.27151185274124146,
0.05245957523584366,
0.005156398750841618,
0.025526029989123344,
-0.07028035819530487,
-0.004359211772680283,
0.20318512618541718,
0.17910701036453247,
-0.05870131403207779,
0.0014754598960280418,
0.0037682491820305586,
-0.00992867723107338,
-0.0024146204814314842,
0.09520675241947174,
0.11736450344324112,
0.0532086119055748,
-0.07246837019920349,
-0.02225114218890667,
-0.05147111788392067,
0.0007711494108662009,
-0.03438467159867287,
0.06988295167684555,
0.0392330139875412,
-0.001544125727377832,
-0.04127095267176628,
0.050715696066617966,
-0.051842715591192245,
-0.07678523659706116,
0.07144259661436081,
-0.2093144953250885,
-0.15311136841773987,
-0.009951198473572731,
0.08474602550268173,
0.007194071542471647,
0.07026234269142151,
-0.02838704362511635,
-0.008135516196489334,
0.09489955008029938,
-0.018121732398867607,
-0.08668269217014313,
-0.09456492215394974,
0.09850853681564331,
-0.07376941293478012,
0.18591846525669098,
-0.04442019760608673,
0.06064712628722191,
0.12363263219594955,
0.07352062314748764,
-0.07073286920785904,
0.09226369112730026,
0.04634610190987587,
-0.06261254101991653,
0.024250071495771408,
0.10213325172662735,
-0.037448834627866745,
0.09446834027767181,
0.04715336114168167,
-0.16817621886730194,
0.018515124917030334,
-0.038207344710826874,
-0.08490735292434692,
-0.034924689680337906,
-0.025452159345149994,
-0.05460639297962189,
0.12599827349185944,
0.22642280161380768,
-0.037182413041591644,
-0.016874872148036957,
-0.06339208781719208,
0.018128709867596626,
0.06661180406808853,
0.0436197854578495,
-0.055007174611091614,
-0.23001979291439056,
0.018446605652570724,
0.08900783210992813,
-0.013446529395878315,
-0.23243007063865662,
-0.09426204860210419,
0.007239942438900471,
-0.051687631756067276,
-0.0992971733212471,
0.0928666889667511,
0.06816849857568741,
0.04721555858850479,
-0.04882626235485077,
-0.08880529552698135,
-0.06424656510353088,
0.1646219789981842,
-0.15412023663520813,
-0.0858052670955658
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-1
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7020
- Accuracy: 0.5008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6773 | 1.0 | 3 | 0.7822 | 0.25 |
| 0.6587 | 2.0 | 6 | 0.8033 | 0.25 |
| 0.693 | 3.0 | 9 | 0.8101 | 0.25 |
| 0.5979 | 4.0 | 12 | 1.1235 | 0.25 |
| 0.4095 | 5.0 | 15 | 1.3563 | 0.25 |
| 0.2836 | 6.0 | 18 | 1.5325 | 0.5 |
| 0.1627 | 7.0 | 21 | 1.7786 | 0.25 |
| 0.0956 | 8.0 | 24 | 2.0067 | 0.5 |
| 0.0535 | 9.0 | 27 | 2.3351 | 0.5 |
| 0.0315 | 10.0 | 30 | 2.6204 | 0.5 |
| 0.0182 | 11.0 | 33 | 2.8483 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-1", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-1
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-1
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7020
* Accuracy: 0.5008
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-2
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6794
- Accuracy: 0.6063
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6942 | 1.0 | 3 | 0.7940 | 0.25 |
| 0.6068 | 2.0 | 6 | 0.9326 | 0.25 |
| 0.6553 | 3.0 | 9 | 0.7979 | 0.25 |
| 0.475 | 4.0 | 12 | 0.7775 | 0.25 |
| 0.377 | 5.0 | 15 | 0.7477 | 0.25 |
| 0.3176 | 6.0 | 18 | 0.6856 | 0.75 |
| 0.2708 | 7.0 | 21 | 0.6554 | 0.75 |
| 0.2855 | 8.0 | 24 | 0.8129 | 0.5 |
| 0.148 | 9.0 | 27 | 0.7074 | 0.75 |
| 0.0947 | 10.0 | 30 | 0.7090 | 0.75 |
| 0.049 | 11.0 | 33 | 0.7885 | 0.75 |
| 0.0252 | 12.0 | 36 | 0.9203 | 0.75 |
| 0.0165 | 13.0 | 39 | 1.0937 | 0.75 |
| 0.0084 | 14.0 | 42 | 1.2502 | 0.75 |
| 0.0059 | 15.0 | 45 | 1.3726 | 0.75 |
| 0.0037 | 16.0 | 48 | 1.4784 | 0.75 |
| 0.003 | 17.0 | 51 | 1.5615 | 0.75 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-2", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-2
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-2
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6794
* Accuracy: 0.6063
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-3
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6421
- Accuracy: 0.6310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6696 | 1.0 | 3 | 0.7917 | 0.25 |
| 0.6436 | 2.0 | 6 | 0.8107 | 0.25 |
| 0.6923 | 3.0 | 9 | 0.8302 | 0.25 |
| 0.5051 | 4.0 | 12 | 0.9828 | 0.25 |
| 0.3688 | 5.0 | 15 | 0.7402 | 0.25 |
| 0.2671 | 6.0 | 18 | 0.5820 | 0.75 |
| 0.1935 | 7.0 | 21 | 0.8356 | 0.5 |
| 0.0815 | 8.0 | 24 | 1.0431 | 0.25 |
| 0.0591 | 9.0 | 27 | 0.9679 | 0.75 |
| 0.0276 | 10.0 | 30 | 1.0659 | 0.75 |
| 0.0175 | 11.0 | 33 | 0.9689 | 0.75 |
| 0.0152 | 12.0 | 36 | 0.8820 | 0.75 |
| 0.006 | 13.0 | 39 | 0.8337 | 0.75 |
| 0.0041 | 14.0 | 42 | 0.7650 | 0.75 |
| 0.0036 | 15.0 | 45 | 0.6960 | 0.75 |
| 0.0034 | 16.0 | 48 | 0.6548 | 0.75 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-3", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-3
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-3
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6421
* Accuracy: 0.6310
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-4
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3023
- Accuracy: 0.7057
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6816 | 1.0 | 3 | 0.8072 | 0.25 |
| 0.6672 | 2.0 | 6 | 0.8740 | 0.25 |
| 0.6667 | 3.0 | 9 | 0.8578 | 0.25 |
| 0.5346 | 4.0 | 12 | 1.0353 | 0.25 |
| 0.4517 | 5.0 | 15 | 1.1030 | 0.25 |
| 0.3095 | 6.0 | 18 | 0.9986 | 0.25 |
| 0.2464 | 7.0 | 21 | 0.9286 | 0.5 |
| 0.1342 | 8.0 | 24 | 0.4063 | 1.0 |
| 0.0851 | 9.0 | 27 | 0.2210 | 1.0 |
| 0.0491 | 10.0 | 30 | 0.2302 | 1.0 |
| 0.0211 | 11.0 | 33 | 0.4020 | 0.75 |
| 0.017 | 12.0 | 36 | 0.2382 | 1.0 |
| 0.0084 | 13.0 | 39 | 0.0852 | 1.0 |
| 0.0051 | 14.0 | 42 | 0.0354 | 1.0 |
| 0.0047 | 15.0 | 45 | 0.0208 | 1.0 |
| 0.0029 | 16.0 | 48 | 0.0155 | 1.0 |
| 0.0022 | 17.0 | 51 | 0.0139 | 1.0 |
| 0.0019 | 18.0 | 54 | 0.0144 | 1.0 |
| 0.0016 | 19.0 | 57 | 0.0168 | 1.0 |
| 0.0013 | 20.0 | 60 | 0.0231 | 1.0 |
| 0.0011 | 21.0 | 63 | 0.0369 | 1.0 |
| 0.0009 | 22.0 | 66 | 0.0528 | 1.0 |
| 0.001 | 23.0 | 69 | 0.0639 | 1.0 |
| 0.0009 | 24.0 | 72 | 0.0670 | 1.0 |
| 0.0009 | 25.0 | 75 | 0.0526 | 1.0 |
| 0.0008 | 26.0 | 78 | 0.0425 | 1.0 |
| 0.0011 | 27.0 | 81 | 0.0135 | 1.0 |
| 0.0007 | 28.0 | 84 | 0.0076 | 1.0 |
| 0.0007 | 29.0 | 87 | 0.0057 | 1.0 |
| 0.0007 | 30.0 | 90 | 0.0049 | 1.0 |
| 0.0008 | 31.0 | 93 | 0.0045 | 1.0 |
| 0.0007 | 32.0 | 96 | 0.0044 | 1.0 |
| 0.0008 | 33.0 | 99 | 0.0043 | 1.0 |
| 0.0005 | 34.0 | 102 | 0.0044 | 1.0 |
| 0.0006 | 35.0 | 105 | 0.0045 | 1.0 |
| 0.0006 | 36.0 | 108 | 0.0046 | 1.0 |
| 0.0007 | 37.0 | 111 | 0.0048 | 1.0 |
| 0.0006 | 38.0 | 114 | 0.0049 | 1.0 |
| 0.0005 | 39.0 | 117 | 0.0050 | 1.0 |
| 0.0005 | 40.0 | 120 | 0.0050 | 1.0 |
| 0.0004 | 41.0 | 123 | 0.0051 | 1.0 |
| 0.0005 | 42.0 | 126 | 0.0051 | 1.0 |
| 0.0004 | 43.0 | 129 | 0.0051 | 1.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-4", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-4
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-4
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3023
* Accuracy: 0.7057
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-5
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3078
- Accuracy: 0.6930
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6813 | 1.0 | 3 | 0.7842 | 0.25 |
| 0.6617 | 2.0 | 6 | 0.7968 | 0.25 |
| 0.6945 | 3.0 | 9 | 0.7746 | 0.25 |
| 0.5967 | 4.0 | 12 | 0.7557 | 0.25 |
| 0.4824 | 5.0 | 15 | 0.6920 | 0.25 |
| 0.3037 | 6.0 | 18 | 0.6958 | 0.5 |
| 0.2329 | 7.0 | 21 | 0.6736 | 0.5 |
| 0.1441 | 8.0 | 24 | 0.3749 | 1.0 |
| 0.0875 | 9.0 | 27 | 0.3263 | 0.75 |
| 0.0655 | 10.0 | 30 | 0.3525 | 0.75 |
| 0.0373 | 11.0 | 33 | 0.1993 | 1.0 |
| 0.0173 | 12.0 | 36 | 0.1396 | 1.0 |
| 0.0147 | 13.0 | 39 | 0.0655 | 1.0 |
| 0.0084 | 14.0 | 42 | 0.0343 | 1.0 |
| 0.0049 | 15.0 | 45 | 0.0225 | 1.0 |
| 0.004 | 16.0 | 48 | 0.0167 | 1.0 |
| 0.003 | 17.0 | 51 | 0.0134 | 1.0 |
| 0.0027 | 18.0 | 54 | 0.0114 | 1.0 |
| 0.002 | 19.0 | 57 | 0.0104 | 1.0 |
| 0.0015 | 20.0 | 60 | 0.0099 | 1.0 |
| 0.0014 | 21.0 | 63 | 0.0095 | 1.0 |
| 0.0013 | 22.0 | 66 | 0.0095 | 1.0 |
| 0.0012 | 23.0 | 69 | 0.0091 | 1.0 |
| 0.0011 | 24.0 | 72 | 0.0085 | 1.0 |
| 0.0009 | 25.0 | 75 | 0.0081 | 1.0 |
| 0.001 | 26.0 | 78 | 0.0077 | 1.0 |
| 0.0008 | 27.0 | 81 | 0.0074 | 1.0 |
| 0.0009 | 28.0 | 84 | 0.0071 | 1.0 |
| 0.0007 | 29.0 | 87 | 0.0068 | 1.0 |
| 0.0008 | 30.0 | 90 | 0.0064 | 1.0 |
| 0.0007 | 31.0 | 93 | 0.0062 | 1.0 |
| 0.0007 | 32.0 | 96 | 0.0059 | 1.0 |
| 0.0007 | 33.0 | 99 | 0.0056 | 1.0 |
| 0.0005 | 34.0 | 102 | 0.0054 | 1.0 |
| 0.0006 | 35.0 | 105 | 0.0053 | 1.0 |
| 0.0008 | 36.0 | 108 | 0.0051 | 1.0 |
| 0.0007 | 37.0 | 111 | 0.0050 | 1.0 |
| 0.0007 | 38.0 | 114 | 0.0049 | 1.0 |
| 0.0006 | 39.0 | 117 | 0.0048 | 1.0 |
| 0.0005 | 40.0 | 120 | 0.0048 | 1.0 |
| 0.0005 | 41.0 | 123 | 0.0048 | 1.0 |
| 0.0005 | 42.0 | 126 | 0.0047 | 1.0 |
| 0.0005 | 43.0 | 129 | 0.0047 | 1.0 |
| 0.0005 | 44.0 | 132 | 0.0047 | 1.0 |
| 0.0006 | 45.0 | 135 | 0.0047 | 1.0 |
| 0.0005 | 46.0 | 138 | 0.0047 | 1.0 |
| 0.0005 | 47.0 | 141 | 0.0047 | 1.0 |
| 0.0006 | 48.0 | 144 | 0.0047 | 1.0 |
| 0.0005 | 49.0 | 147 | 0.0047 | 1.0 |
| 0.0005 | 50.0 | 150 | 0.0047 | 1.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-5", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-5
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-5
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3078
* Accuracy: 0.6930
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-6
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4331
- Accuracy: 0.7106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6486 | 1.0 | 3 | 0.7901 | 0.25 |
| 0.6418 | 2.0 | 6 | 0.9259 | 0.25 |
| 0.6169 | 3.0 | 9 | 1.0574 | 0.25 |
| 0.5639 | 4.0 | 12 | 1.1372 | 0.25 |
| 0.4562 | 5.0 | 15 | 0.6090 | 0.5 |
| 0.3105 | 6.0 | 18 | 0.4435 | 1.0 |
| 0.2303 | 7.0 | 21 | 0.2804 | 1.0 |
| 0.1388 | 8.0 | 24 | 0.2205 | 1.0 |
| 0.0918 | 9.0 | 27 | 0.1282 | 1.0 |
| 0.0447 | 10.0 | 30 | 0.0643 | 1.0 |
| 0.0297 | 11.0 | 33 | 0.0361 | 1.0 |
| 0.0159 | 12.0 | 36 | 0.0211 | 1.0 |
| 0.0102 | 13.0 | 39 | 0.0155 | 1.0 |
| 0.0061 | 14.0 | 42 | 0.0158 | 1.0 |
| 0.0049 | 15.0 | 45 | 0.0189 | 1.0 |
| 0.0035 | 16.0 | 48 | 0.0254 | 1.0 |
| 0.0027 | 17.0 | 51 | 0.0305 | 1.0 |
| 0.0021 | 18.0 | 54 | 0.0287 | 1.0 |
| 0.0016 | 19.0 | 57 | 0.0215 | 1.0 |
| 0.0016 | 20.0 | 60 | 0.0163 | 1.0 |
| 0.0014 | 21.0 | 63 | 0.0138 | 1.0 |
| 0.0015 | 22.0 | 66 | 0.0131 | 1.0 |
| 0.001 | 23.0 | 69 | 0.0132 | 1.0 |
| 0.0014 | 24.0 | 72 | 0.0126 | 1.0 |
| 0.0011 | 25.0 | 75 | 0.0125 | 1.0 |
| 0.001 | 26.0 | 78 | 0.0119 | 1.0 |
| 0.0008 | 27.0 | 81 | 0.0110 | 1.0 |
| 0.0007 | 28.0 | 84 | 0.0106 | 1.0 |
| 0.0008 | 29.0 | 87 | 0.0095 | 1.0 |
| 0.0009 | 30.0 | 90 | 0.0089 | 1.0 |
| 0.0008 | 31.0 | 93 | 0.0083 | 1.0 |
| 0.0007 | 32.0 | 96 | 0.0075 | 1.0 |
| 0.0008 | 33.0 | 99 | 0.0066 | 1.0 |
| 0.0006 | 34.0 | 102 | 0.0059 | 1.0 |
| 0.0007 | 35.0 | 105 | 0.0054 | 1.0 |
| 0.0008 | 36.0 | 108 | 0.0051 | 1.0 |
| 0.0007 | 37.0 | 111 | 0.0049 | 1.0 |
| 0.0007 | 38.0 | 114 | 0.0047 | 1.0 |
| 0.0006 | 39.0 | 117 | 0.0045 | 1.0 |
| 0.0006 | 40.0 | 120 | 0.0046 | 1.0 |
| 0.0005 | 41.0 | 123 | 0.0045 | 1.0 |
| 0.0006 | 42.0 | 126 | 0.0044 | 1.0 |
| 0.0006 | 43.0 | 129 | 0.0043 | 1.0 |
| 0.0006 | 44.0 | 132 | 0.0044 | 1.0 |
| 0.0005 | 45.0 | 135 | 0.0045 | 1.0 |
| 0.0006 | 46.0 | 138 | 0.0043 | 1.0 |
| 0.0006 | 47.0 | 141 | 0.0043 | 1.0 |
| 0.0006 | 48.0 | 144 | 0.0041 | 1.0 |
| 0.0007 | 49.0 | 147 | 0.0042 | 1.0 |
| 0.0005 | 50.0 | 150 | 0.0042 | 1.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-6", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-6
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-6
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.4331
* Accuracy: 0.7106
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-7
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7037
- Accuracy: 0.5008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6864 | 1.0 | 3 | 0.7800 | 0.25 |
| 0.6483 | 2.0 | 6 | 0.8067 | 0.25 |
| 0.6028 | 3.0 | 9 | 0.8500 | 0.25 |
| 0.4086 | 4.0 | 12 | 1.0661 | 0.25 |
| 0.2923 | 5.0 | 15 | 1.2302 | 0.25 |
| 0.2059 | 6.0 | 18 | 1.0312 | 0.5 |
| 0.1238 | 7.0 | 21 | 1.1271 | 0.5 |
| 0.0711 | 8.0 | 24 | 1.3100 | 0.5 |
| 0.0453 | 9.0 | 27 | 1.4208 | 0.5 |
| 0.0198 | 10.0 | 30 | 1.5988 | 0.5 |
| 0.0135 | 11.0 | 33 | 1.9174 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-7", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-7
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-7
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7037
* Accuracy: 0.5008
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-8
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7414
- Accuracy: 0.5623
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6597 | 1.0 | 3 | 0.7716 | 0.25 |
| 0.6376 | 2.0 | 6 | 0.7802 | 0.25 |
| 0.5857 | 3.0 | 9 | 0.6625 | 0.75 |
| 0.4024 | 4.0 | 12 | 0.5195 | 0.75 |
| 0.2635 | 5.0 | 15 | 0.4222 | 1.0 |
| 0.1714 | 6.0 | 18 | 0.4410 | 0.5 |
| 0.1267 | 7.0 | 21 | 0.7773 | 0.75 |
| 0.0582 | 8.0 | 24 | 0.9070 | 0.75 |
| 0.0374 | 9.0 | 27 | 0.9539 | 0.75 |
| 0.0204 | 10.0 | 30 | 1.0507 | 0.75 |
| 0.012 | 11.0 | 33 | 1.2802 | 0.5 |
| 0.0086 | 12.0 | 36 | 1.4272 | 0.5 |
| 0.0049 | 13.0 | 39 | 1.4803 | 0.5 |
| 0.0039 | 14.0 | 42 | 1.4912 | 0.5 |
| 0.0031 | 15.0 | 45 | 1.5231 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-8", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-8
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-8
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7414
* Accuracy: 0.5623
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-8-9
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6013
- Accuracy: 0.7210
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6757 | 1.0 | 3 | 0.7810 | 0.25 |
| 0.6506 | 2.0 | 6 | 0.8102 | 0.25 |
| 0.6463 | 3.0 | 9 | 0.8313 | 0.25 |
| 0.5813 | 4.0 | 12 | 0.8858 | 0.25 |
| 0.4635 | 5.0 | 15 | 0.8220 | 0.25 |
| 0.3992 | 6.0 | 18 | 0.7226 | 0.5 |
| 0.3281 | 7.0 | 21 | 0.6707 | 0.75 |
| 0.2276 | 8.0 | 24 | 0.7515 | 0.75 |
| 0.1674 | 9.0 | 27 | 0.6971 | 0.75 |
| 0.0873 | 10.0 | 30 | 0.5419 | 0.75 |
| 0.0525 | 11.0 | 33 | 0.5025 | 0.75 |
| 0.0286 | 12.0 | 36 | 0.5229 | 0.75 |
| 0.0149 | 13.0 | 39 | 0.5660 | 0.75 |
| 0.0082 | 14.0 | 42 | 0.6954 | 0.75 |
| 0.006 | 15.0 | 45 | 0.8649 | 0.75 |
| 0.0043 | 16.0 | 48 | 1.0011 | 0.75 |
| 0.0035 | 17.0 | 51 | 1.0909 | 0.75 |
| 0.0021 | 18.0 | 54 | 1.1615 | 0.75 |
| 0.0017 | 19.0 | 57 | 1.2147 | 0.75 |
| 0.0013 | 20.0 | 60 | 1.2585 | 0.75 |
| 0.0016 | 21.0 | 63 | 1.2917 | 0.75 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-9", "results": []}]}
|
text-classification
|
SetFit/deberta-v3-large__sst2__train-8-9
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
deberta-v3-large\_\_sst2\_\_train-8-9
=====================================
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6013
* Accuracy: 0.7210
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.0867982804775238,
0.049316879361867905,
-0.001981880282983184,
0.11496269702911377,
0.1841500997543335,
0.03353271633386612,
0.1257355958223343,
0.10729110240936279,
-0.10761133581399918,
0.013750866055488586,
0.1174575537443161,
0.1699226051568985,
0.011318609118461609,
0.1273544877767563,
-0.06696382164955139,
-0.3029082417488098,
-0.006059690844267607,
0.03802994638681412,
-0.05138425901532173,
0.12498404085636139,
0.10801352560520172,
-0.13750609755516052,
0.07216639816761017,
-0.00048121303552761674,
-0.2126629501581192,
0.022999605163931847,
0.019468052312731743,
-0.05315211042761803,
0.16180773079395294,
0.02469669282436371,
0.13678763806819916,
0.01525796577334404,
0.10229133069515228,
-0.19991004467010498,
0.011875866912305355,
0.04432206600904465,
0.0058737765066325665,
0.07189425826072693,
0.05450776591897011,
-0.00560534093528986,
0.11807848513126373,
-0.09167628735303879,
0.07378453761339188,
0.007178500760346651,
-0.1447279304265976,
-0.2225082367658615,
-0.07912275940179825,
-0.003745235502719879,
0.07156023383140564,
0.08886495232582092,
-0.012655351310968399,
0.1412041038274765,
-0.10541573166847229,
0.08810541778802872,
0.18524722754955292,
-0.2867770195007324,
-0.062827929854393,
0.014780133031308651,
0.0075231632217764854,
0.08845499902963638,
-0.11218849569559097,
-0.02336076647043228,
0.05140857398509979,
0.05425595864653587,
0.13147206604480743,
-0.032565753906965256,
-0.09591451287269592,
0.01562904752790928,
-0.13951218128204346,
-0.024821007624268532,
0.10480724275112152,
0.039755526930093765,
-0.04169813543558121,
-0.03509373590350151,
-0.042556989938020706,
-0.15390825271606445,
-0.039270106703042984,
-0.027341708540916443,
0.0503348782658577,
-0.03169356286525726,
-0.08062294125556946,
0.014466999098658562,
-0.09769081324338913,
-0.07007575780153275,
-0.06565573811531067,
0.15296335518360138,
0.039375096559524536,
-0.0014627729542553425,
-0.028100138530135155,
0.10565473884344101,
-0.02403474971652031,
-0.13318417966365814,
0.02291182614862919,
0.027280326932668686,
-0.020906323567032814,
-0.07676750421524048,
-0.07540828734636307,
-0.058357346802949905,
-0.002441099612042308,
0.12246334552764893,
-0.049686867743730545,
0.05263104662299156,
0.01636810414493084,
0.02555518038570881,
-0.08252010494470596,
0.18889059126377106,
-0.020594917237758636,
-0.013230996206402779,
0.006106989458203316,
0.0486401729285717,
-0.00478256493806839,
-0.01515884604305029,
-0.11992014199495316,
-0.00556789617985487,
0.12977100908756256,
0.018613137304782867,
-0.10289714485406876,
0.06204887107014656,
-0.061404112726449966,
-0.02512924000620842,
-0.0008942767162807286,
-0.08887148648500443,
0.0438331700861454,
-0.012391055934131145,
-0.0842299833893776,
-0.029131393879652023,
-0.014381802640855312,
0.032827071845531464,
-0.006942038424313068,
0.13895192742347717,
-0.08466105908155441,
0.0405476950109005,
-0.10701939463615417,
-0.13363851606845856,
0.003219986567273736,
-0.061175473034381866,
0.029518427327275276,
-0.10748956352472305,
-0.15934763848781586,
-0.023953109979629517,
0.04000353068113327,
-0.02935033105313778,
-0.048126835376024246,
-0.0630495473742485,
-0.05122419819235802,
0.010646766982972622,
-0.021924665197730064,
0.13479776680469513,
-0.06619937717914581,
0.10506179928779602,
0.0450984388589859,
0.059568461030721664,
-0.06597946584224701,
0.06296733021736145,
-0.09599876403808594,
-0.0005699085304513574,
-0.2007724493741989,
0.06085970625281334,
-0.04116594418883324,
0.07653443515300751,
-0.08755269646644592,
-0.11176670342683792,
0.033209990710020065,
-0.0013942293589934707,
0.09107230603694916,
0.08600170165300369,
-0.18798580765724182,
-0.07224362343549728,
0.14847365021705627,
-0.0637747123837471,
-0.09123304486274719,
0.1176370233297348,
-0.08713607490062714,
0.05489913374185562,
0.09415461868047714,
0.17947441339492798,
0.06516517698764801,
-0.07433567941188812,
0.05013301968574524,
-0.05154156684875488,
0.0597480908036232,
-0.03317030146718025,
0.053005438297986984,
0.009323281235992908,
-0.007849645800888538,
0.020831825211644173,
-0.016483258455991745,
0.06106950715184212,
-0.10468120127916336,
-0.08825110644102097,
-0.0188805740326643,
-0.0886945053935051,
0.04659430310130119,
0.060118790715932846,
0.0856378972530365,
-0.11351659148931503,
-0.06562373042106628,
0.0941852554678917,
0.07220765203237534,
-0.05192766711115837,
0.025010548532009125,
-0.06028461456298828,
0.04123528301715851,
-0.022222129628062248,
-0.025161437690258026,
-0.18473975360393524,
-0.021984804421663284,
0.022430570796132088,
0.015153832733631134,
0.04507200047373772,
0.015283243730664253,
0.06492536514997482,
0.0666213259100914,
-0.05739526450634003,
-0.018912438303232193,
-0.04325262829661369,
0.009697780013084412,
-0.1373470276594162,
-0.1977592259645462,
-0.016280459240078926,
-0.01785050518810749,
0.12357719242572784,
-0.2186591476202011,
0.027014736086130142,
-0.005029203835874796,
0.077967070043087,
0.0167534202337265,
-0.0002603036700747907,
-0.05509516969323158,
0.11036207526922226,
-0.027237432077527046,
-0.046965260058641434,
0.0720224529504776,
-0.004846873227506876,
-0.08985690772533417,
-0.051846977323293686,
-0.10537277162075043,
0.17445828020572662,
0.12138970196247101,
-0.12598170340061188,
-0.10011876374483109,
-0.02782503142952919,
-0.04358697310090065,
-0.024140402674674988,
-0.05599016696214676,
0.03893725201487541,
0.2062055468559265,
-0.01048621442168951,
0.14922502636909485,
-0.06280815601348877,
-0.033810805529356,
0.009696757420897484,
-0.019899455830454826,
0.035050809383392334,
0.11221709102392197,
0.10908081382513046,
-0.12277906388044357,
0.12940211594104767,
0.14824819564819336,
-0.08653652667999268,
0.1351381093263626,
-0.03286293148994446,
-0.06968638300895691,
-0.025142408907413483,
-0.03331774100661278,
-0.002667830092832446,
0.09007050842046738,
-0.1186261996626854,
-0.01656084880232811,
0.002093419199809432,
0.03919200599193573,
0.011998897418379784,
-0.22439652681350708,
-0.04325372353196144,
0.036309752613306046,
-0.037231720983982086,
-0.032577577978372574,
-0.021733030676841736,
0.010897576808929443,
0.11247749626636505,
0.011375977657735348,
-0.09874584525823593,
0.033752284944057465,
0.005795083940029144,
-0.07174801826477051,
0.2085997462272644,
-0.08921565860509872,
-0.12846790254116058,
-0.10588396340608597,
-0.07236228138208389,
-0.042754534631967545,
0.01695096679031849,
0.05928587540984154,
-0.0921030342578888,
-0.02459372580051422,
-0.049065686762332916,
0.02189597859978676,
-0.014890950173139572,
0.032470401376485825,
-0.027648430317640305,
-0.002116112969815731,
0.05460729822516441,
-0.10761718451976776,
-0.01879100129008293,
-0.050708308815956116,
-0.06552118808031082,
0.06851403415203094,
0.033891718834638596,
0.11366686969995499,
0.1499939113855362,
-0.0387532077729702,
0.0011430769227445126,
-0.04407360777258873,
0.2528473436832428,
-0.07729671150445938,
-0.03443619981408119,
0.10625625401735306,
-0.009020614437758923,
0.050841595977544785,
0.13275039196014404,
0.06943606585264206,
-0.11248797923326492,
0.03218786045908928,
0.03114486299455166,
-0.021456262096762657,
-0.20947206020355225,
-0.03256476670503616,
-0.05259498581290245,
-0.054541412740945816,
0.09612521529197693,
0.019394230097532272,
0.043297506868839264,
0.053316354751586914,
0.04641978442668915,
0.08619645982980728,
-0.02897503599524498,
0.06943271309137344,
0.15242798626422882,
0.05667133629322052,
0.13570761680603027,
-0.03165428340435028,
-0.09624633193016052,
0.030848169699311256,
-0.017681067809462547,
0.22553259134292603,
0.038609348237514496,
0.11833183467388153,
0.04972568154335022,
0.1490417718887329,
0.014063245616853237,
0.0705399289727211,
0.021886005997657776,
-0.03855627402663231,
-0.025578180328011513,
-0.03188764676451683,
-0.035480279475450516,
0.027889344841241837,
-0.03438317030668259,
0.02079077996313572,
-0.1366257518529892,
-0.03862633556127548,
0.050406601279973984,
0.25590482354164124,
0.039025869220495224,
-0.32237690687179565,
-0.07505552470684052,
0.011988287791609764,
-0.051480092108249664,
-0.018566599115729332,
0.01010696217417717,
0.07182414084672928,
-0.10092370212078094,
0.03930974379181862,
-0.052281081676483154,
0.10196809470653534,
-0.06286381185054779,
0.0565095990896225,
0.050201453268527985,
0.0898180827498436,
-0.01262105256319046,
0.06811989843845367,
-0.34733062982559204,
0.2750489115715027,
0.011995894834399223,
0.07814541459083557,
-0.07105514407157898,
-0.015081647783517838,
0.03928230702877045,
0.06372055411338806,
0.02234206721186638,
-0.01930871792137623,
-0.06540275365114212,
-0.2296726554632187,
-0.022382335737347603,
0.035980042070150375,
0.10918326675891876,
-0.024416426196694374,
0.1031157523393631,
-0.02388796955347061,
0.02420908957719803,
0.07978170365095139,
-0.013670556247234344,
-0.09727112948894501,
-0.07333634048700333,
-0.01705043762922287,
0.02896992489695549,
0.015650827437639236,
-0.06064854934811592,
-0.10910213738679886,
-0.09309940785169601,
0.12162966281175613,
0.00824680645018816,
-0.022007612511515617,
-0.11616457253694534,
0.09517565369606018,
0.06177789345383644,
-0.08143819123506546,
0.030171243473887444,
0.020791687071323395,
0.06893506646156311,
0.025999395176768303,
-0.04652988165616989,
0.12526345252990723,
-0.03686248138546944,
-0.15959912538528442,
-0.06835060566663742,
0.0831974670290947,
0.04401847720146179,
0.06350480020046234,
0.002274099737405777,
0.018067272379994392,
-0.016883233562111855,
-0.08878341317176819,
0.027744872495532036,
-0.044691167771816254,
0.055603452026844025,
0.029492804780602455,
-0.06096762791275978,
0.019876163452863693,
-0.07505638152360916,
-0.0385134182870388,
0.18770039081573486,
0.26447010040283203,
-0.08211611956357956,
0.006313905119895935,
0.040624748915433884,
-0.06973542273044586,
-0.17136599123477936,
0.0702362209558487,
0.06600534915924072,
0.015494664199650288,
0.050485361367464066,
-0.19449423253536224,
0.09652278572320938,
0.11260407418012619,
-0.0058491649106144905,
0.110475555062294,
-0.29315778613090515,
-0.13597528636455536,
0.11507251113653183,
0.15312586724758148,
0.1253582239151001,
-0.14113298058509827,
-0.00909107830375433,
-0.049435317516326904,
-0.1037662997841835,
0.1136322170495987,
-0.06945236772298813,
0.1266799420118332,
-0.02104158326983452,
0.12170933932065964,
0.005495620891451836,
-0.03752343729138374,
0.12116166204214096,
0.027958327904343605,
0.12781193852424622,
-0.0608750656247139,
-0.03149062767624855,
0.029411232098937035,
-0.030795110389590263,
-0.00517264474183321,
-0.06332214921712875,
0.012288949452340603,
-0.10348259657621384,
-0.030675653368234634,
-0.07152588665485382,
0.03143385797739029,
-0.03456401452422142,
-0.07653319835662842,
-0.027460554614663124,
0.04179728031158447,
0.04002021253108978,
-0.021303344517946243,
0.11365288496017456,
-0.011229888536036015,
0.1500958651304245,
0.06533593684434891,
0.08606795966625214,
-0.05709359794855118,
-0.016993824392557144,
-0.0004838622990064323,
-0.019481098279356956,
0.058661799877882004,
-0.11903975158929825,
0.03133033588528633,
0.15160095691680908,
0.007942304015159607,
0.16135556995868683,
0.08449772000312805,
-0.021566195413470268,
0.022611459717154503,
0.06556575000286102,
-0.13912388682365417,
-0.07397439330816269,
0.005230221897363663,
-0.04439140856266022,
-0.07561096549034119,
0.03533576801419258,
0.10397231578826904,
-0.06818077713251114,
-0.02162901684641838,
-0.008608976379036903,
-0.012798729352653027,
-0.06791339814662933,
0.19833867251873016,
0.05597485229372978,
0.043438781052827835,
-0.09374958276748657,
0.06289785355329514,
0.07204725593328476,
-0.0755525752902031,
0.009828628972172737,
0.0717913806438446,
-0.07440738379955292,
-0.03501822426915169,
0.08134041726589203,
0.212931826710701,
-0.07406466454267502,
-0.03749239444732666,
-0.13546870648860931,
-0.12756513059139252,
0.07616731524467468,
0.161590114235878,
0.10313435643911362,
0.0057985903695225716,
-0.05714932084083557,
0.017345469444990158,
-0.12214350700378418,
0.06384493410587311,
0.03829117864370346,
0.07142811268568039,
-0.12335240095853806,
0.18422003090381622,
-0.004857912659645081,
0.022974427789449692,
-0.02034863643348217,
0.018174199387431145,
-0.11952033638954163,
0.0205889530479908,
-0.14495167136192322,
-0.03471098095178604,
-0.01469459105283022,
0.015700116753578186,
0.002869573188945651,
-0.06427072733640671,
-0.05490385740995407,
0.0011707480298355222,
-0.12468641996383667,
-0.02519887313246727,
0.03457263484597206,
0.060346364974975586,
-0.11081432551145554,
-0.058068230748176575,
0.016795100644230843,
-0.05973672494292259,
0.06408116221427917,
0.03219972550868988,
0.02172904834151268,
0.05823230370879173,
-0.14191150665283203,
0.010725995525717735,
0.0607878714799881,
-0.000490026141051203,
0.07082012295722961,
-0.09658974409103394,
-0.0048113917000591755,
-0.0004495814209803939,
0.08363132178783417,
0.028806740418076515,
0.07512031495571136,
-0.13258416950702667,
-0.01565978117287159,
-0.016876043751835823,
-0.10529693961143494,
-0.05897144600749016,
0.026614246889948845,
0.07323931157588959,
0.017713667824864388,
0.19787439703941345,
-0.08910488337278366,
0.03869542106986046,
-0.20471954345703125,
-0.006864938419312239,
-0.016877297312021255,
-0.10826173424720764,
-0.11859344691038132,
-0.08582530915737152,
0.071695476770401,
-0.057735126465559006,
0.1383734941482544,
0.043427351862192154,
0.06610525399446487,
0.03808454051613808,
-0.034762583673000336,
-0.0018628379330039024,
0.028198260813951492,
0.20709484815597534,
0.052023500204086304,
-0.042893584817647934,
0.057067256420850754,
0.06276615709066391,
0.09773911535739899,
0.14416897296905518,
0.1998836249113083,
0.15616393089294434,
-0.0056207627058029175,
0.07435616850852966,
0.035549428313970566,
-0.05122440308332443,
-0.1443537026643753,
0.038653161376714706,
-0.007707155775278807,
0.08719336241483688,
-0.03139769285917282,
0.2096075415611267,
0.056699879467487335,
-0.17611576616764069,
0.04640268161892891,
-0.06727655231952667,
-0.0966116189956665,
-0.1095481887459755,
-0.022248780354857445,
-0.09405873715877533,
-0.1437835991382599,
0.0009487811475992203,
-0.10897745192050934,
0.02684522047638893,
0.09285414963960648,
0.00666126050055027,
-0.026411544531583786,
0.13302722573280334,
0.028351325541734695,
0.026046395301818848,
0.08177823573350906,
-0.007934045977890491,
-0.016117721796035767,
-0.09497065097093582,
-0.08114520460367203,
-0.019487865269184113,
-0.026131900027394295,
0.026449700817465782,
-0.06265077739953995,
-0.0823182463645935,
0.01409794669598341,
-0.030001124367117882,
-0.10376450419425964,
0.022571900859475136,
0.027360357344150543,
0.05931951105594635,
0.06715460866689682,
0.01686398684978485,
0.003595298621803522,
-0.0031786211766302586,
0.21209819614887238,
-0.0615055188536644,
-0.09206496179103851,
-0.09350130707025528,
0.29437530040740967,
0.05416082218289375,
0.014056643471121788,
0.03374465927481651,
-0.07062225043773651,
0.020609986037015915,
0.19368678331375122,
0.18174146115779877,
-0.1144675761461258,
-0.005020446144044399,
-0.010156833566725254,
-0.014359640888869762,
-0.00569224264472723,
0.1285630315542221,
0.11681506782770157,
0.00835083331912756,
-0.09711315482854843,
-0.018316389992833138,
-0.05925963446497917,
-0.012446831911802292,
-0.030870361253619194,
0.062366895377635956,
0.055290501564741135,
0.009984788484871387,
-0.046242449432611465,
0.0792236328125,
-0.06204184144735336,
-0.08223690092563629,
0.05603672191500664,
-0.19464440643787384,
-0.16658969223499298,
-0.010713877156376839,
0.0663919746875763,
0.00004064716995344497,
0.0694650337100029,
-0.03571295738220215,
0.002478018868714571,
0.05163845047354698,
-0.024990560486912727,
-0.057665616273880005,
-0.09242993593215942,
0.11642429232597351,
-0.08801186084747314,
0.16300764679908752,
-0.048136647790670395,
0.08048614859580994,
0.1299968659877777,
0.08021178841590881,
-0.0488116480410099,
0.09441053867340088,
0.041635435074567795,
-0.07082740217447281,
0.031440284103155136,
0.09477698802947998,
-0.047706928104162216,
0.0616542287170887,
0.048578958958387375,
-0.14265504479408264,
0.04052169620990753,
-0.08061118423938751,
-0.06416106969118118,
-0.04743842035531998,
-0.038091037422418594,
-0.05221893638372421,
0.12199284881353378,
0.2202029526233673,
-0.02194450981914997,
0.02379605546593666,
-0.07622253149747849,
0.004795643966645002,
0.061930976808071136,
0.030292168259620667,
-0.10275785624980927,
-0.23486000299453735,
0.006658853963017464,
0.11276276409626007,
-0.021155966445803642,
-0.2454662173986435,
-0.08998490869998932,
-0.0017707751831039786,
-0.06325223296880722,
-0.08994860202074051,
0.11149966716766357,
0.05721535533666611,
0.048413727432489395,
-0.057064712047576904,
-0.13253562152385712,
-0.08317819237709045,
0.16708846390247345,
-0.1425240933895111,
-0.08977256715297699
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-0
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2707
- Accuracy: 0.517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0943 | 1.0 | 10 | 1.1095 | 0.3 |
| 1.0602 | 2.0 | 20 | 1.1086 | 0.4 |
| 1.0159 | 3.0 | 30 | 1.1165 | 0.4 |
| 0.9027 | 4.0 | 40 | 1.1377 | 0.4 |
| 0.8364 | 5.0 | 50 | 1.0126 | 0.5 |
| 0.6653 | 6.0 | 60 | 0.9298 | 0.5 |
| 0.535 | 7.0 | 70 | 0.9555 | 0.5 |
| 0.3713 | 8.0 | 80 | 0.8543 | 0.4 |
| 0.1633 | 9.0 | 90 | 0.9876 | 0.4 |
| 0.1069 | 10.0 | 100 | 0.8383 | 0.6 |
| 0.0591 | 11.0 | 110 | 0.8056 | 0.6 |
| 0.0344 | 12.0 | 120 | 0.8915 | 0.6 |
| 0.0265 | 13.0 | 130 | 0.8722 | 0.6 |
| 0.0196 | 14.0 | 140 | 1.0064 | 0.6 |
| 0.0158 | 15.0 | 150 | 1.0479 | 0.6 |
| 0.0128 | 16.0 | 160 | 1.0723 | 0.6 |
| 0.0121 | 17.0 | 170 | 1.0758 | 0.6 |
| 0.0093 | 18.0 | 180 | 1.1236 | 0.6 |
| 0.0085 | 19.0 | 190 | 1.1480 | 0.6 |
| 0.0084 | 20.0 | 200 | 1.1651 | 0.6 |
| 0.0077 | 21.0 | 210 | 1.1832 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-0", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-0
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-0
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2707
* Accuracy: 0.517
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0424
- Accuracy: 0.5355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0989 | 1.0 | 10 | 1.1049 | 0.1 |
| 1.0641 | 2.0 | 20 | 1.0768 | 0.3 |
| 0.9742 | 3.0 | 30 | 1.0430 | 0.4 |
| 0.8765 | 4.0 | 40 | 1.0058 | 0.4 |
| 0.6979 | 5.0 | 50 | 0.8488 | 0.7 |
| 0.563 | 6.0 | 60 | 0.7221 | 0.7 |
| 0.4135 | 7.0 | 70 | 0.6587 | 0.8 |
| 0.2509 | 8.0 | 80 | 0.5577 | 0.7 |
| 0.0943 | 9.0 | 90 | 0.5840 | 0.7 |
| 0.0541 | 10.0 | 100 | 0.6959 | 0.7 |
| 0.0362 | 11.0 | 110 | 0.6884 | 0.6 |
| 0.0254 | 12.0 | 120 | 0.9263 | 0.6 |
| 0.0184 | 13.0 | 130 | 0.7992 | 0.6 |
| 0.0172 | 14.0 | 140 | 0.7351 | 0.6 |
| 0.0131 | 15.0 | 150 | 0.7664 | 0.6 |
| 0.0117 | 16.0 | 160 | 0.8262 | 0.6 |
| 0.0101 | 17.0 | 170 | 0.8839 | 0.6 |
| 0.0089 | 18.0 | 180 | 0.9018 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-1", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-1
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-1
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0424
* Accuracy: 0.5355
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9210
- Accuracy: 0.5635
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0915 | 1.0 | 10 | 1.1051 | 0.4 |
| 1.0663 | 2.0 | 20 | 1.0794 | 0.3 |
| 1.0307 | 3.0 | 30 | 1.0664 | 0.5 |
| 0.9443 | 4.0 | 40 | 1.0729 | 0.5 |
| 0.8373 | 5.0 | 50 | 1.0175 | 0.4 |
| 0.6892 | 6.0 | 60 | 0.9624 | 0.5 |
| 0.538 | 7.0 | 70 | 0.9924 | 0.5 |
| 0.4173 | 8.0 | 80 | 1.0136 | 0.6 |
| 0.1846 | 9.0 | 90 | 1.0683 | 0.6 |
| 0.1125 | 10.0 | 100 | 1.2376 | 0.6 |
| 0.0754 | 11.0 | 110 | 1.2537 | 0.6 |
| 0.0401 | 12.0 | 120 | 1.4387 | 0.6 |
| 0.0285 | 13.0 | 130 | 1.5702 | 0.6 |
| 0.0241 | 14.0 | 140 | 1.6795 | 0.6 |
| 0.0175 | 15.0 | 150 | 1.7228 | 0.6 |
| 0.0147 | 16.0 | 160 | 1.7892 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-2", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-2
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-2
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9210
* Accuracy: 0.5635
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0675
- Accuracy: 0.44
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0951 | 1.0 | 10 | 1.1346 | 0.1 |
| 1.0424 | 2.0 | 20 | 1.1120 | 0.2 |
| 0.957 | 3.0 | 30 | 1.1002 | 0.3 |
| 0.7889 | 4.0 | 40 | 1.0838 | 0.4 |
| 0.6162 | 5.0 | 50 | 1.0935 | 0.5 |
| 0.4849 | 6.0 | 60 | 1.0867 | 0.5 |
| 0.3089 | 7.0 | 70 | 1.1145 | 0.5 |
| 0.2145 | 8.0 | 80 | 1.1278 | 0.6 |
| 0.0805 | 9.0 | 90 | 1.2801 | 0.6 |
| 0.0497 | 10.0 | 100 | 1.3296 | 0.6 |
| 0.0328 | 11.0 | 110 | 1.2913 | 0.6 |
| 0.0229 | 12.0 | 120 | 1.3692 | 0.6 |
| 0.0186 | 13.0 | 130 | 1.4642 | 0.6 |
| 0.0161 | 14.0 | 140 | 1.5568 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-3", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-3
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0675
* Accuracy: 0.44
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-4
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0903
- Accuracy: 0.4805
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0974 | 1.0 | 10 | 1.1139 | 0.1 |
| 1.0637 | 2.0 | 20 | 1.0988 | 0.1 |
| 0.9758 | 3.0 | 30 | 1.1013 | 0.1 |
| 0.9012 | 4.0 | 40 | 1.0769 | 0.3 |
| 0.6993 | 5.0 | 50 | 1.0484 | 0.6 |
| 0.5676 | 6.0 | 60 | 1.0223 | 0.6 |
| 0.4069 | 7.0 | 70 | 0.9190 | 0.6 |
| 0.3192 | 8.0 | 80 | 1.1370 | 0.6 |
| 0.1112 | 9.0 | 90 | 1.1728 | 0.6 |
| 0.07 | 10.0 | 100 | 1.1998 | 0.6 |
| 0.0397 | 11.0 | 110 | 1.3700 | 0.6 |
| 0.027 | 12.0 | 120 | 1.3329 | 0.6 |
| 0.021 | 13.0 | 130 | 1.2697 | 0.6 |
| 0.0177 | 14.0 | 140 | 1.4195 | 0.6 |
| 0.0142 | 15.0 | 150 | 1.5342 | 0.6 |
| 0.0118 | 16.0 | 160 | 1.5999 | 0.6 |
| 0.0108 | 17.0 | 170 | 1.6327 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-4", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-4
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0903
* Accuracy: 0.4805
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-5
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9907
- Accuracy: 0.49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0941 | 1.0 | 10 | 1.1287 | 0.2 |
| 1.0481 | 2.0 | 20 | 1.1136 | 0.2 |
| 0.9498 | 3.0 | 30 | 1.1200 | 0.2 |
| 0.8157 | 4.0 | 40 | 1.0771 | 0.2 |
| 0.65 | 5.0 | 50 | 0.9733 | 0.4 |
| 0.5021 | 6.0 | 60 | 1.0626 | 0.4 |
| 0.3358 | 7.0 | 70 | 1.0787 | 0.4 |
| 0.2017 | 8.0 | 80 | 1.3183 | 0.4 |
| 0.088 | 9.0 | 90 | 1.2204 | 0.5 |
| 0.0527 | 10.0 | 100 | 1.6892 | 0.4 |
| 0.0337 | 11.0 | 110 | 1.6967 | 0.5 |
| 0.0238 | 12.0 | 120 | 1.5436 | 0.5 |
| 0.0183 | 13.0 | 130 | 1.7447 | 0.4 |
| 0.0159 | 14.0 | 140 | 1.8999 | 0.4 |
| 0.014 | 15.0 | 150 | 1.9004 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-5", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-5
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9907
* Accuracy: 0.49
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-6
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8331
- Accuracy: 0.625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0881 | 1.0 | 10 | 1.1248 | 0.1 |
| 1.0586 | 2.0 | 20 | 1.1162 | 0.2 |
| 0.9834 | 3.0 | 30 | 1.1199 | 0.3 |
| 0.9271 | 4.0 | 40 | 1.0740 | 0.3 |
| 0.7663 | 5.0 | 50 | 1.0183 | 0.5 |
| 0.6042 | 6.0 | 60 | 1.0259 | 0.5 |
| 0.4482 | 7.0 | 70 | 0.8699 | 0.7 |
| 0.3072 | 8.0 | 80 | 1.0615 | 0.5 |
| 0.1458 | 9.0 | 90 | 1.0164 | 0.5 |
| 0.0838 | 10.0 | 100 | 1.0620 | 0.5 |
| 0.055 | 11.0 | 110 | 1.1829 | 0.5 |
| 0.0347 | 12.0 | 120 | 1.2815 | 0.4 |
| 0.0244 | 13.0 | 130 | 1.2607 | 0.6 |
| 0.0213 | 14.0 | 140 | 1.3695 | 0.5 |
| 0.0169 | 15.0 | 150 | 1.4397 | 0.5 |
| 0.0141 | 16.0 | 160 | 1.4388 | 0.6 |
| 0.0122 | 17.0 | 170 | 1.4242 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-6", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-6
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8331
* Accuracy: 0.625
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-7
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9011
- Accuracy: 0.578
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0968 | 1.0 | 10 | 1.1309 | 0.0 |
| 1.0709 | 2.0 | 20 | 1.1237 | 0.1 |
| 0.9929 | 3.0 | 30 | 1.1254 | 0.1 |
| 0.878 | 4.0 | 40 | 1.1206 | 0.5 |
| 0.7409 | 5.0 | 50 | 1.0831 | 0.1 |
| 0.5663 | 6.0 | 60 | 0.9830 | 0.6 |
| 0.4105 | 7.0 | 70 | 0.9919 | 0.5 |
| 0.2912 | 8.0 | 80 | 1.0472 | 0.6 |
| 0.1013 | 9.0 | 90 | 1.1617 | 0.4 |
| 0.0611 | 10.0 | 100 | 1.2789 | 0.6 |
| 0.039 | 11.0 | 110 | 1.4091 | 0.4 |
| 0.0272 | 12.0 | 120 | 1.4974 | 0.4 |
| 0.0189 | 13.0 | 130 | 1.4845 | 0.5 |
| 0.018 | 14.0 | 140 | 1.4924 | 0.5 |
| 0.0131 | 15.0 | 150 | 1.5206 | 0.6 |
| 0.0116 | 16.0 | 160 | 1.5858 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-7", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-7
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9011
* Accuracy: 0.578
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-8
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0704
- Accuracy: 0.394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1031 | 1.0 | 10 | 1.1286 | 0.1 |
| 1.0648 | 2.0 | 20 | 1.1157 | 0.3 |
| 0.9982 | 3.0 | 30 | 1.1412 | 0.2 |
| 0.9283 | 4.0 | 40 | 1.2053 | 0.2 |
| 0.7958 | 5.0 | 50 | 1.1466 | 0.2 |
| 0.6668 | 6.0 | 60 | 1.1783 | 0.3 |
| 0.5068 | 7.0 | 70 | 1.2992 | 0.3 |
| 0.3741 | 8.0 | 80 | 1.3483 | 0.3 |
| 0.1653 | 9.0 | 90 | 1.4533 | 0.2 |
| 0.0946 | 10.0 | 100 | 1.6292 | 0.2 |
| 0.0569 | 11.0 | 110 | 1.8381 | 0.2 |
| 0.0346 | 12.0 | 120 | 2.0781 | 0.2 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-8", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-8
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0704
* Accuracy: 0.394
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-9
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1121
- Accuracy: 0.16
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1038 | 1.0 | 10 | 1.1243 | 0.1 |
| 1.0859 | 2.0 | 20 | 1.1182 | 0.2 |
| 1.0234 | 3.0 | 30 | 1.1442 | 0.3 |
| 0.9493 | 4.0 | 40 | 1.2239 | 0.1 |
| 0.8114 | 5.0 | 50 | 1.2023 | 0.4 |
| 0.6464 | 6.0 | 60 | 1.2329 | 0.4 |
| 0.4731 | 7.0 | 70 | 1.2971 | 0.5 |
| 0.3355 | 8.0 | 80 | 1.3913 | 0.4 |
| 0.1268 | 9.0 | 90 | 1.4670 | 0.5 |
| 0.0747 | 10.0 | 100 | 1.7961 | 0.4 |
| 0.0449 | 11.0 | 110 | 1.8168 | 0.5 |
| 0.0307 | 12.0 | 120 | 1.9307 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-9", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-9
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-9
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1121
* Accuracy: 0.16
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-0
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7714
- Accuracy: 0.705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0871 | 1.0 | 19 | 1.0704 | 0.45 |
| 1.0019 | 2.0 | 38 | 1.0167 | 0.55 |
| 0.8412 | 3.0 | 57 | 0.9134 | 0.55 |
| 0.6047 | 4.0 | 76 | 0.8430 | 0.6 |
| 0.3746 | 5.0 | 95 | 0.8315 | 0.6 |
| 0.1885 | 6.0 | 114 | 0.8585 | 0.6 |
| 0.0772 | 7.0 | 133 | 0.9443 | 0.65 |
| 0.0312 | 8.0 | 152 | 1.1019 | 0.65 |
| 0.0161 | 9.0 | 171 | 1.1420 | 0.65 |
| 0.0102 | 10.0 | 190 | 1.2773 | 0.65 |
| 0.0077 | 11.0 | 209 | 1.2454 | 0.65 |
| 0.0064 | 12.0 | 228 | 1.2785 | 0.65 |
| 0.006 | 13.0 | 247 | 1.3834 | 0.65 |
| 0.0045 | 14.0 | 266 | 1.4139 | 0.65 |
| 0.0043 | 15.0 | 285 | 1.4056 | 0.65 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-0", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-0
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-0
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7714
* Accuracy: 0.705
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0606
- Accuracy: 0.4745
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0941 | 1.0 | 19 | 1.1045 | 0.2 |
| 0.9967 | 2.0 | 38 | 1.1164 | 0.35 |
| 0.8164 | 3.0 | 57 | 1.1570 | 0.4 |
| 0.5884 | 4.0 | 76 | 1.2403 | 0.35 |
| 0.3322 | 5.0 | 95 | 1.3815 | 0.35 |
| 0.156 | 6.0 | 114 | 1.8102 | 0.3 |
| 0.0576 | 7.0 | 133 | 2.1439 | 0.4 |
| 0.0227 | 8.0 | 152 | 2.4368 | 0.3 |
| 0.0133 | 9.0 | 171 | 2.5994 | 0.4 |
| 0.009 | 10.0 | 190 | 2.7388 | 0.35 |
| 0.0072 | 11.0 | 209 | 2.8287 | 0.35 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-1", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-1
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0606
* Accuracy: 0.4745
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7136
- Accuracy: 0.679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1052 | 1.0 | 19 | 1.0726 | 0.45 |
| 1.0421 | 2.0 | 38 | 1.0225 | 0.5 |
| 0.9173 | 3.0 | 57 | 0.9164 | 0.6 |
| 0.6822 | 4.0 | 76 | 0.8251 | 0.7 |
| 0.4407 | 5.0 | 95 | 0.8908 | 0.5 |
| 0.2367 | 6.0 | 114 | 0.6772 | 0.75 |
| 0.1145 | 7.0 | 133 | 0.7792 | 0.65 |
| 0.0479 | 8.0 | 152 | 1.0657 | 0.6 |
| 0.0186 | 9.0 | 171 | 1.2228 | 0.65 |
| 0.0111 | 10.0 | 190 | 1.1100 | 0.6 |
| 0.0083 | 11.0 | 209 | 1.1991 | 0.65 |
| 0.0067 | 12.0 | 228 | 1.2654 | 0.65 |
| 0.0061 | 13.0 | 247 | 1.2837 | 0.65 |
| 0.0046 | 14.0 | 266 | 1.2860 | 0.6 |
| 0.0043 | 15.0 | 285 | 1.3160 | 0.65 |
| 0.0037 | 16.0 | 304 | 1.3323 | 0.65 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-2", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-2
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7136
* Accuracy: 0.679
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8286
- Accuracy: 0.661
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1041 | 1.0 | 19 | 1.0658 | 0.5 |
| 1.009 | 2.0 | 38 | 0.9892 | 0.7 |
| 0.7925 | 3.0 | 57 | 0.8516 | 0.7 |
| 0.5279 | 4.0 | 76 | 0.7877 | 0.65 |
| 0.2932 | 5.0 | 95 | 0.7592 | 0.65 |
| 0.1166 | 6.0 | 114 | 0.9437 | 0.65 |
| 0.044 | 7.0 | 133 | 1.0315 | 0.75 |
| 0.0197 | 8.0 | 152 | 1.3513 | 0.55 |
| 0.0126 | 9.0 | 171 | 1.1702 | 0.7 |
| 0.0083 | 10.0 | 190 | 1.2272 | 0.7 |
| 0.0068 | 11.0 | 209 | 1.2889 | 0.7 |
| 0.0059 | 12.0 | 228 | 1.3073 | 0.7 |
| 0.0052 | 13.0 | 247 | 1.3595 | 0.7 |
| 0.0041 | 14.0 | 266 | 1.4443 | 0.7 |
| 0.0038 | 15.0 | 285 | 1.4709 | 0.7 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-3", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-3
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8286
* Accuracy: 0.661
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-4
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7384
- Accuracy: 0.724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1013 | 1.0 | 19 | 1.0733 | 0.55 |
| 1.0226 | 2.0 | 38 | 1.0064 | 0.65 |
| 0.8539 | 3.0 | 57 | 0.8758 | 0.75 |
| 0.584 | 4.0 | 76 | 0.6941 | 0.7 |
| 0.2813 | 5.0 | 95 | 0.5151 | 0.7 |
| 0.1122 | 6.0 | 114 | 0.4351 | 0.8 |
| 0.0432 | 7.0 | 133 | 0.4896 | 0.85 |
| 0.0199 | 8.0 | 152 | 0.5391 | 0.85 |
| 0.0126 | 9.0 | 171 | 0.5200 | 0.85 |
| 0.0085 | 10.0 | 190 | 0.5622 | 0.85 |
| 0.0069 | 11.0 | 209 | 0.5950 | 0.85 |
| 0.0058 | 12.0 | 228 | 0.6015 | 0.85 |
| 0.0053 | 13.0 | 247 | 0.6120 | 0.85 |
| 0.0042 | 14.0 | 266 | 0.6347 | 0.85 |
| 0.0039 | 15.0 | 285 | 0.6453 | 0.85 |
| 0.0034 | 16.0 | 304 | 0.6660 | 0.85 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-4", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-4
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7384
* Accuracy: 0.724
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-5
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1327
- Accuracy: 0.57
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0972 | 1.0 | 19 | 1.0470 | 0.45 |
| 0.9738 | 2.0 | 38 | 0.9244 | 0.65 |
| 0.7722 | 3.0 | 57 | 0.8612 | 0.65 |
| 0.4929 | 4.0 | 76 | 0.6759 | 0.75 |
| 0.2435 | 5.0 | 95 | 0.7273 | 0.7 |
| 0.0929 | 6.0 | 114 | 0.6444 | 0.85 |
| 0.0357 | 7.0 | 133 | 0.7671 | 0.8 |
| 0.0173 | 8.0 | 152 | 0.7599 | 0.75 |
| 0.0121 | 9.0 | 171 | 0.8140 | 0.8 |
| 0.0081 | 10.0 | 190 | 0.7861 | 0.8 |
| 0.0066 | 11.0 | 209 | 0.8318 | 0.8 |
| 0.0057 | 12.0 | 228 | 0.8777 | 0.8 |
| 0.0053 | 13.0 | 247 | 0.8501 | 0.8 |
| 0.004 | 14.0 | 266 | 0.8603 | 0.8 |
| 0.004 | 15.0 | 285 | 0.8787 | 0.8 |
| 0.0034 | 16.0 | 304 | 0.8969 | 0.8 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-5", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-5
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-5
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1327
* Accuracy: 0.57
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
67,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08806811273097992,
0.10434073209762573,
-0.0032848583068698645,
0.10866844654083252,
0.154110386967659,
0.026389162987470627,
0.12644615769386292,
0.1337207704782486,
-0.08933607488870621,
0.0332300141453743,
0.10587923973798752,
0.13475783169269562,
0.02545134164392948,
0.12209559231996536,
-0.06082795187830925,
-0.2793703079223633,
0.013651382178068161,
0.027365854009985924,
-0.04271726310253143,
0.13079042732715607,
0.09549646079540253,
-0.11087720096111298,
0.08091277629137039,
0.006049739196896553,
-0.1606549322605133,
0.013722208328545094,
-0.0008927013259381056,
-0.051099758595228195,
0.12613540887832642,
0.033053506165742874,
0.1149841696023941,
0.012258603237569332,
0.09253858029842377,
-0.21514803171157837,
0.002530882600694895,
0.055240947753190994,
0.004684522282332182,
0.08364297449588776,
0.04866465553641319,
-0.0052748024463653564,
0.12554697692394257,
-0.07875443249940872,
0.05992403253912926,
0.034849200397729874,
-0.12349140644073486,
-0.2298959344625473,
-0.08844176679849625,
0.05946633219718933,
0.08071712404489517,
0.09616320580244064,
-0.009423505514860153,
0.08728545904159546,
-0.08221341669559479,
0.08911052346229553,
0.22691595554351807,
-0.2849624752998352,
-0.059094808995723724,
0.007052564062178135,
0.008627042174339294,
0.06543692201375961,
-0.09179020673036575,
-0.03720295801758766,
0.038565099239349365,
0.047057315707206726,
0.12210601568222046,
-0.016434084624052048,
-0.09183518588542938,
-0.00046750903129577637,
-0.1472099870443344,
-0.04085233435034752,
0.1560439020395279,
0.05066448822617531,
-0.04143495112657547,
-0.040824562311172485,
-0.0661415234208107,
-0.16594235599040985,
-0.04161849990487099,
0.001272045075893402,
0.05206773057579994,
-0.010753883048892021,
-0.037958115339279175,
-0.012976768426597118,
-0.07935632765293121,
-0.06523505598306656,
-0.0567670539021492,
0.14081688225269318,
0.04639875143766403,
0.0037550688721239567,
-0.005087640136480331,
0.10290755331516266,
-0.03359115123748779,
-0.13838033378124237,
0.007905575446784496,
0.012820721603929996,
0.007707361597567797,
-0.03616885840892792,
-0.05941305309534073,
-0.01615101471543312,
0.007622361648827791,
0.17053107917308807,
-0.06810587644577026,
0.05062796175479889,
0.013462841510772705,
0.03794190287590027,
-0.09650638699531555,
0.17116305232048035,
-0.03629410266876221,
-0.023756863549351692,
0.0088619664311409,
0.07414467632770538,
0.030983302742242813,
-0.01775914430618286,
-0.11658977717161179,
0.006311393808573484,
0.09981471300125122,
0.01946268044412136,
-0.06333528459072113,
0.06480316817760468,
-0.06035766750574112,
-0.03239351511001587,
0.021738052368164062,
-0.10223265737295151,
0.029914602637290955,
0.007731389719992876,
-0.07428297400474548,
-0.0019746609032154083,
0.03665123134851456,
0.013287065550684929,
-0.026186538860201836,
0.11023639142513275,
-0.0809374675154686,
0.025797665119171143,
-0.09514004737138748,
-0.12138097733259201,
0.01483197696506977,
-0.06535062193870544,
0.0070880744606256485,
-0.0923192948102951,
-0.18319876492023468,
-0.02033061347901821,
0.057735949754714966,
-0.030628131702542305,
-0.06404401361942291,
-0.06340503692626953,
-0.074396513402462,
0.027332954108715057,
-0.016402529552578926,
0.08917529135942459,
-0.06808137148618698,
0.09398515522480011,
0.03135812282562256,
0.051671914756298065,
-0.05518500134348869,
0.07036970555782318,
-0.10006200522184372,
0.022092023864388466,
-0.18370266258716583,
0.05557198449969292,
-0.06546657532453537,
0.05640473961830139,
-0.092634417116642,
-0.1096586063504219,
0.01199587993323803,
-0.0052897934801876545,
0.08010471612215042,
0.09631229192018509,
-0.1585720181465149,
-0.07929351925849915,
0.15130209922790527,
-0.07975943386554718,
-0.09842882305383682,
0.11546073108911514,
-0.05548704415559769,
0.02231818065047264,
0.05332920327782631,
0.17085619270801544,
0.08036001026630402,
-0.06907501816749573,
0.006860671564936638,
-0.00882318802177906,
0.07522868365049362,
-0.02479335479438305,
0.07375796139240265,
-0.020189939066767693,
-0.004844284150749445,
0.025059018284082413,
-0.045272354036569595,
0.0476100817322731,
-0.0882873460650444,
-0.09124945104122162,
-0.045140720903873444,
-0.07635956257581711,
0.05392138287425041,
0.0549733005464077,
0.05586673691868782,
-0.0980561226606369,
-0.10116469860076904,
0.07760609686374664,
0.09427826851606369,
-0.06935232132673264,
0.03611232340335846,
-0.058473747223615646,
0.07743040472269058,
-0.010465974919497967,
-0.013521363958716393,
-0.18472029268741608,
-0.02306503802537918,
0.02824142761528492,
-0.015295836143195629,
0.031436987221241,
-0.01320062205195427,
0.051622338593006134,
0.06487808376550674,
-0.05753082036972046,
-0.038362767547369,
-0.06876308470964432,
0.0021066770423203707,
-0.11214661598205566,
-0.20050567388534546,
-0.04021656885743141,
-0.011003983207046986,
0.131543830037117,
-0.19675806164741516,
0.046108443289995193,
-0.011862405575811863,
0.08325162529945374,
0.01207513827830553,
-0.006125836633145809,
-0.04308563470840454,
0.09307201206684113,
-0.044165611267089844,
-0.05350777879357338,
0.07642942667007446,
0.00811375305056572,
-0.08910631388425827,
-0.05303658917546272,
-0.10874339938163757,
0.132205069065094,
0.12136837840080261,
-0.10168977081775665,
-0.07548138499259949,
-0.008437826298177242,
-0.05413069948554039,
-0.03270803391933441,
-0.041263069957494736,
0.01671779714524746,
0.18080522119998932,
-0.002126882318407297,
0.14985549449920654,
-0.07280255109071732,
-0.03200625255703926,
0.0100491838529706,
-0.026206864044070244,
0.023841900750994682,
0.11909785866737366,
0.12231573462486267,
-0.07865161448717117,
0.14592087268829346,
0.16376736760139465,
-0.08951941877603531,
0.1316169649362564,
-0.04561654478311539,
-0.07358310371637344,
-0.019559483975172043,
-0.02154742181301117,
-0.008235160261392593,
0.07857576757669449,
-0.14160363376140594,
0.0016934073064476252,
0.024092381820082664,
0.03043786995112896,
0.018856143578886986,
-0.20654134452342987,
-0.012880667112767696,
0.03711763024330139,
-0.06382115185260773,
-0.026417896151542664,
-0.01699056103825569,
0.011471705511212349,
0.10058935731649399,
0.01345455925911665,
-0.08864819258451462,
0.032641470432281494,
-0.003542238613590598,
-0.075677290558815,
0.19410191476345062,
-0.10658232867717743,
-0.1474226862192154,
-0.13667967915534973,
-0.06556238234043121,
-0.06619035452604294,
0.007829678244888783,
0.06884327530860901,
-0.07341504842042923,
-0.03618637099862099,
-0.07919646799564362,
0.020229078829288483,
-0.013237970881164074,
0.019098425284028053,
0.009900582954287529,
-0.00005854169648955576,
0.07443953305482864,
-0.1066470667719841,
-0.021821442991495132,
-0.03797159716486931,
-0.06118164584040642,
0.03813004121184349,
0.02547517977654934,
0.10037349909543991,
0.15186692774295807,
-0.01685800589621067,
0.008818616159260273,
-0.027057765051722527,
0.22921714186668396,
-0.050867363810539246,
-0.021760622039437294,
0.14615850150585175,
-0.004109417553991079,
0.0645613893866539,
0.14079983532428741,
0.06849674135446548,
-0.08836546540260315,
0.012751113623380661,
0.045350030064582825,
-0.01556949783116579,
-0.2263738065958023,
-0.051676370203495026,
-0.05808816850185394,
-0.010727465152740479,
0.10045154392719269,
0.024680308997631073,
0.03006465919315815,
0.05008544772863388,
0.01446221861988306,
0.06423841416835785,
-0.022489070892333984,
0.08181149512529373,
0.16505713760852814,
0.04325438290834427,
0.13665950298309326,
-0.032721806317567825,
-0.03942502662539482,
0.049171093851327896,
-0.024695659056305885,
0.22280588746070862,
0.020715808495879173,
0.1378304362297058,
0.057153526693582535,
0.1651497185230255,
0.005016842857003212,
0.060032378882169724,
0.006216301582753658,
-0.01222333312034607,
-0.019084958359599113,
-0.04650622233748436,
-0.045476000756025314,
0.029759256169199944,
-0.061434146016836166,
0.06419359147548676,
-0.1369585394859314,
-0.01110369898378849,
0.051339391618967056,
0.29159289598464966,
0.03949475660920143,
-0.30779406428337097,
-0.10151048749685287,
0.007008807267993689,
-0.0521058551967144,
-0.02307122014462948,
0.027144894003868103,
0.06360047310590744,
-0.08697016537189484,
0.04979857802391052,
-0.05853895843029022,
0.10505449771881104,
-0.04201216623187065,
0.04719958454370499,
0.07212582230567932,
0.10321617871522903,
0.006727923173457384,
0.07642271369695663,
-0.28972017765045166,
0.259289026260376,
0.007281155791133642,
0.06059180945158005,
-0.05014577880501747,
0.016673875972628593,
0.04805465042591095,
0.08044350892305374,
0.05333214998245239,
-0.014951435849070549,
-0.053898923099040985,
-0.18267087638378143,
-0.06271455436944962,
0.021454734727740288,
0.09375457465648651,
-0.04616642743349075,
0.10760930925607681,
-0.04526615887880325,
0.009696794673800468,
0.06902152299880981,
-0.005587310530245304,
-0.09959941357374191,
-0.09867837280035019,
0.0052138427272439,
0.02985832281410694,
-0.0007048309198580682,
-0.07319317013025284,
-0.10691329836845398,
-0.0878995880484581,
0.16658054292201996,
-0.046490833163261414,
-0.048482295125722885,
-0.11088878661394119,
0.07112699747085571,
0.08479954302310944,
-0.08640842884778976,
0.04845784977078438,
-0.0015078920405358076,
0.08115707337856293,
0.030483344569802284,
-0.07238221913576126,
0.11036297678947449,
-0.06270358711481094,
-0.18528465926647186,
-0.05494605377316475,
0.11566632986068726,
0.02959362603724003,
0.06257990747690201,
-0.022598477080464363,
0.016073232516646385,
-0.028903497382998466,
-0.09172938019037247,
0.005366678815335035,
0.03347010165452957,
0.06279527395963669,
0.04983709380030632,
-0.08962202817201614,
0.007869218476116657,
-0.06491734832525253,
-0.026652731001377106,
0.17356041073799133,
0.2529628872871399,
-0.0926993191242218,
0.03080243244767189,
0.04096648097038269,
-0.07391605526208878,
-0.18281066417694092,
0.017980197444558144,
0.06567053496837616,
0.0008470715256407857,
0.02502196840941906,
-0.20724019408226013,
0.0892852395772934,
0.11280640959739685,
-0.014696042984724045,
0.09330637753009796,
-0.31712353229522705,
-0.12440139800310135,
0.12077443301677704,
0.11518590152263641,
0.09728804975748062,
-0.14662902057170868,
-0.031162472441792488,
-0.03170592710375786,
-0.12092676758766174,
0.12257269769906998,
-0.06991815567016602,
0.1261880099773407,
-0.03292383626103401,
0.08815779536962509,
0.005198046565055847,
-0.03461892157793045,
0.12848490476608276,
0.013335865922272205,
0.09305093437433243,
-0.05398010089993477,
-0.003446422517299652,
0.031291719526052475,
-0.05012635886669159,
0.024771280586719513,
-0.08898085355758667,
0.03503430634737015,
-0.10759194195270538,
-0.02386624366044998,
-0.06786470860242844,
0.03557852283120155,
-0.039354875683784485,
-0.062468383461236954,
-0.03701616823673248,
0.02502303570508957,
0.05875218287110329,
-0.00616960134357214,
0.1396322399377823,
0.0002072924398817122,
0.14251501858234406,
0.11200182139873505,
0.0772286057472229,
-0.05397675931453705,
-0.05449969321489334,
-0.011862888000905514,
-0.024644950404763222,
0.06569977104663849,
-0.1426292210817337,
0.031061748042702675,
0.14669735729694366,
0.01679423451423645,
0.1562923938035965,
0.07874113321304321,
-0.024033209308981895,
-0.0029737534932792187,
0.05523183196783066,
-0.15139882266521454,
-0.08624926209449768,
-0.013334698975086212,
-0.022704152390360832,
-0.12195925414562225,
0.03517827391624451,
0.11319431662559509,
-0.07108017802238464,
-0.01414749026298523,
0.003828145796433091,
0.016977062448859215,
-0.049732476472854614,
0.17447857558727264,
0.050206463783979416,
0.04479321464896202,
-0.09593497961759567,
0.1004413515329361,
0.05772487446665764,
-0.07478503882884979,
0.01378606352955103,
0.08508847653865814,
-0.08255788683891296,
-0.04317673668265343,
0.03865852579474449,
0.17060700058937073,
-0.06566803902387619,
-0.0510137565433979,
-0.13245746493339539,
-0.12228559702634811,
0.09266416728496552,
0.14228308200836182,
0.0980386883020401,
0.007491480093449354,
-0.05575774610042572,
0.01394384354352951,
-0.10019443184137344,
0.09031295031309128,
0.04139614850282669,
0.06444370001554489,
-0.13345637917518616,
0.13270825147628784,
0.006465970538556576,
0.024929089471697807,
-0.013529183343052864,
0.0241459421813488,
-0.1017795279622078,
-0.002119166776537895,
-0.13391730189323425,
-0.018642783164978027,
-0.028862396255135536,
0.014597248286008835,
0.001383356866426766,
-0.0499299056828022,
-0.061997558921575546,
0.016274958848953247,
-0.11327940225601196,
-0.041149456053972244,
0.014299626462161541,
0.07190889865159988,
-0.1162932738661766,
-0.02954074926674366,
0.028773676604032516,
-0.07687293738126755,
0.0776519626379013,
0.046726666390895844,
0.021701401099562645,
0.04580330848693848,
-0.13322223722934723,
0.010641547851264477,
0.05002375692129135,
0.020826801657676697,
0.045138053596019745,
-0.10927082598209381,
-0.006768850609660149,
-0.01026703231036663,
0.03557280823588371,
0.013720524497330189,
0.08323144912719727,
-0.14189398288726807,
-0.00991109199821949,
-0.015354936011135578,
-0.06981587409973145,
-0.05954466760158539,
0.034744102507829666,
0.09014376997947693,
0.031166503205895424,
0.19587098062038422,
-0.0866491049528122,
0.03949890285730362,
-0.20869094133377075,
0.0076656220480799675,
-0.011016148142516613,
-0.0977364107966423,
-0.10518495738506317,
-0.07461895048618317,
0.05379405617713928,
-0.05248648673295975,
0.1303396224975586,
0.013611028902232647,
0.05090375989675522,
0.03479710966348648,
-0.03767506405711174,
0.008871889673173428,
0.017220446839928627,
0.2125813513994217,
0.04798479378223419,
-0.037478089332580566,
0.059965264052152634,
0.02458328753709793,
0.09528448432683945,
0.11548751592636108,
0.19364410638809204,
0.15824738144874573,
-0.005292197689414024,
0.08508726954460144,
0.041208844631910324,
-0.0699322521686554,
-0.15084069967269897,
0.06809039413928986,
-0.0036693604197353125,
0.11971237510442734,
-0.02489214576780796,
0.23010529577732086,
0.06457995623350143,
-0.1692737191915512,
0.05906306579709053,
-0.04041192680597305,
-0.07988082617521286,
-0.12174085527658463,
-0.04399002343416214,
-0.08318876475095749,
-0.16476760804653168,
-0.0060419961810112,
-0.12200164049863815,
0.037968557327985764,
0.09001678228378296,
0.0007382582989521325,
-0.01613887958228588,
0.11143823713064194,
-0.004826443735510111,
0.0060088010504841805,
0.07626143842935562,
-0.004258364904671907,
-0.03434615582227707,
-0.10245170444250107,
-0.09188850969076157,
0.012434860691428185,
-0.011270557530224323,
0.036559514701366425,
-0.03666502982378006,
-0.04843210056424141,
0.03011186420917511,
-0.02193434163928032,
-0.09809840470552444,
0.018783489242196083,
0.015540240332484245,
0.05471322312951088,
0.0831761583685875,
0.011373797431588173,
0.0019888714887201786,
0.0031046418007463217,
0.22240538895130157,
-0.08364782482385635,
-0.07644402235746384,
-0.10777842998504639,
0.2609843909740448,
0.03894877806305885,
-0.008345901034772396,
0.03048880584537983,
-0.06863202154636383,
-0.005085350945591927,
0.20343080163002014,
0.17371460795402527,
-0.07534444332122803,
-0.008134141564369202,
0.0044060577638447285,
-0.01226892601698637,
-0.016145000234246254,
0.09077300876379013,
0.1322610080242157,
0.019383059814572334,
-0.0777522623538971,
-0.033632803708314896,
-0.05033404752612114,
-0.009742575697600842,
-0.05248402804136276,
0.06634210050106049,
0.028213821351528168,
-0.007662459276616573,
-0.035291485488414764,
0.05332810804247856,
-0.06009894236922264,
-0.08179499953985214,
0.04609871283173561,
-0.19328267872333527,
-0.16501113772392273,
-0.02209930494427681,
0.07923921942710876,
0.016203464940190315,
0.05255873501300812,
-0.029262075200676918,
-0.00948372296988964,
0.11809834092855453,
-0.02695351652801037,
-0.07343803346157074,
-0.09568783640861511,
0.09239841997623444,
-0.0993194729089737,
0.19958308339118958,
-0.030521050095558167,
0.043699074536561966,
0.12540893256664276,
0.07195283472537994,
-0.07111604511737823,
0.07823742926120758,
0.0479382760822773,
-0.062025584280490875,
0.02913692779839039,
0.09454529732465744,
-0.03973691910505295,
0.09327450394630432,
0.04477367177605629,
-0.1385088860988617,
0.013159668073058128,
-0.04578553885221481,
-0.08616868406534195,
-0.04138965532183647,
-0.03791823983192444,
-0.060524750500917435,
0.13209231197834015,
0.21980206668376923,
-0.04120396822690964,
-0.009024095721542835,
-0.06625695526599884,
0.0118035189807415,
0.05593261867761612,
0.04477059841156006,
-0.05250079929828644,
-0.21572719514369965,
0.021563656628131866,
0.07774187624454498,
-0.003449404379352927,
-0.2369524985551834,
-0.091834157705307,
0.013707448728382587,
-0.048682790249586105,
-0.10518992692232132,
0.09956102818250656,
0.06407001614570618,
0.04416797682642937,
-0.05205390602350235,
-0.09103240072727203,
-0.07576186209917068,
0.1619880050420761,
-0.14427681267261505,
-0.07993312180042267
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-6
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0523
- Accuracy: 0.663
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0957 | 1.0 | 19 | 1.0696 | 0.6 |
| 1.0107 | 2.0 | 38 | 1.0047 | 0.55 |
| 0.8257 | 3.0 | 57 | 0.8358 | 0.8 |
| 0.6006 | 4.0 | 76 | 0.7641 | 0.6 |
| 0.4172 | 5.0 | 95 | 0.5931 | 0.8 |
| 0.2639 | 6.0 | 114 | 0.5570 | 0.7 |
| 0.1314 | 7.0 | 133 | 0.5017 | 0.65 |
| 0.0503 | 8.0 | 152 | 0.3115 | 0.75 |
| 0.023 | 9.0 | 171 | 0.4353 | 0.85 |
| 0.0128 | 10.0 | 190 | 0.5461 | 0.75 |
| 0.0092 | 11.0 | 209 | 0.5045 | 0.8 |
| 0.007 | 12.0 | 228 | 0.5014 | 0.8 |
| 0.0064 | 13.0 | 247 | 0.5070 | 0.8 |
| 0.0049 | 14.0 | 266 | 0.4681 | 0.8 |
| 0.0044 | 15.0 | 285 | 0.4701 | 0.8 |
| 0.0039 | 16.0 | 304 | 0.4862 | 0.8 |
| 0.0036 | 17.0 | 323 | 0.4742 | 0.8 |
| 0.0035 | 18.0 | 342 | 0.4652 | 0.8 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-6", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-6
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-6
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0523
* Accuracy: 0.663
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-7
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8210
- Accuracy: 0.6305
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0989 | 1.0 | 19 | 1.0655 | 0.4 |
| 1.0102 | 2.0 | 38 | 0.9927 | 0.6 |
| 0.8063 | 3.0 | 57 | 0.9117 | 0.5 |
| 0.5284 | 4.0 | 76 | 0.8058 | 0.55 |
| 0.2447 | 5.0 | 95 | 0.8393 | 0.45 |
| 0.098 | 6.0 | 114 | 0.8438 | 0.6 |
| 0.0388 | 7.0 | 133 | 1.1901 | 0.45 |
| 0.0188 | 8.0 | 152 | 1.4429 | 0.45 |
| 0.0121 | 9.0 | 171 | 1.3648 | 0.4 |
| 0.0082 | 10.0 | 190 | 1.4768 | 0.4 |
| 0.0066 | 11.0 | 209 | 1.4830 | 0.45 |
| 0.0057 | 12.0 | 228 | 1.4936 | 0.45 |
| 0.0053 | 13.0 | 247 | 1.5649 | 0.4 |
| 0.0041 | 14.0 | 266 | 1.6306 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-7", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-7
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8210
* Accuracy: 0.6305
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-8
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9191
- Accuracy: 0.632
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1008 | 1.0 | 19 | 1.0877 | 0.4 |
| 1.0354 | 2.0 | 38 | 1.0593 | 0.35 |
| 0.8765 | 3.0 | 57 | 0.9722 | 0.5 |
| 0.6365 | 4.0 | 76 | 0.9271 | 0.55 |
| 0.3944 | 5.0 | 95 | 0.7852 | 0.5 |
| 0.2219 | 6.0 | 114 | 0.9360 | 0.55 |
| 0.126 | 7.0 | 133 | 1.0610 | 0.55 |
| 0.0389 | 8.0 | 152 | 1.0884 | 0.6 |
| 0.0191 | 9.0 | 171 | 1.3483 | 0.55 |
| 0.0108 | 10.0 | 190 | 1.4226 | 0.55 |
| 0.0082 | 11.0 | 209 | 1.4270 | 0.55 |
| 0.0065 | 12.0 | 228 | 1.5074 | 0.55 |
| 0.0059 | 13.0 | 247 | 1.5577 | 0.55 |
| 0.0044 | 14.0 | 266 | 1.5798 | 0.55 |
| 0.0042 | 15.0 | 285 | 1.6196 | 0.55 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-8", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-8
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-8
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9191
* Accuracy: 0.632
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-9
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7075
- Accuracy: 0.692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1054 | 1.0 | 19 | 1.0938 | 0.35 |
| 1.0338 | 2.0 | 38 | 1.0563 | 0.65 |
| 0.8622 | 3.0 | 57 | 0.9372 | 0.6 |
| 0.5919 | 4.0 | 76 | 0.8461 | 0.6 |
| 0.3357 | 5.0 | 95 | 1.0206 | 0.45 |
| 0.1621 | 6.0 | 114 | 0.9802 | 0.7 |
| 0.0637 | 7.0 | 133 | 1.2434 | 0.65 |
| 0.0261 | 8.0 | 152 | 1.3865 | 0.65 |
| 0.0156 | 9.0 | 171 | 1.4414 | 0.7 |
| 0.01 | 10.0 | 190 | 1.5502 | 0.7 |
| 0.0079 | 11.0 | 209 | 1.6102 | 0.7 |
| 0.0062 | 12.0 | 228 | 1.6525 | 0.7 |
| 0.0058 | 13.0 | 247 | 1.6884 | 0.7 |
| 0.0046 | 14.0 | 266 | 1.7479 | 0.7 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-9", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-9
================================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7075
* Accuracy: 0.692
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-0
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1097
- Accuracy: 0.132
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1065 | 1.0 | 5 | 1.1287 | 0.0 |
| 1.0592 | 2.0 | 10 | 1.1729 | 0.0 |
| 1.0059 | 3.0 | 15 | 1.1959 | 0.0 |
| 0.9129 | 4.0 | 20 | 1.2410 | 0.0 |
| 0.8231 | 5.0 | 25 | 1.2820 | 0.0 |
| 0.7192 | 6.0 | 30 | 1.3361 | 0.0 |
| 0.6121 | 7.0 | 35 | 1.4176 | 0.0 |
| 0.5055 | 8.0 | 40 | 1.5111 | 0.0 |
| 0.4002 | 9.0 | 45 | 1.5572 | 0.0 |
| 0.3788 | 10.0 | 50 | 1.6733 | 0.0 |
| 0.2755 | 11.0 | 55 | 1.7381 | 0.2 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-0", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-0
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-0
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1097
* Accuracy: 0.132
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1013
- Accuracy: 0.0915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0866 | 1.0 | 5 | 1.1363 | 0.0 |
| 1.0439 | 2.0 | 10 | 1.1803 | 0.0 |
| 1.0227 | 3.0 | 15 | 1.2162 | 0.2 |
| 0.9111 | 4.0 | 20 | 1.2619 | 0.0 |
| 0.8243 | 5.0 | 25 | 1.2929 | 0.2 |
| 0.7488 | 6.0 | 30 | 1.3010 | 0.2 |
| 0.62 | 7.0 | 35 | 1.3011 | 0.2 |
| 0.5054 | 8.0 | 40 | 1.2931 | 0.4 |
| 0.4191 | 9.0 | 45 | 1.3274 | 0.4 |
| 0.4107 | 10.0 | 50 | 1.3259 | 0.4 |
| 0.3376 | 11.0 | 55 | 1.2800 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-1", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-1
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1013
* Accuracy: 0.0915
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1019
- Accuracy: 0.139
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1082 | 1.0 | 5 | 1.1432 | 0.0 |
| 1.0524 | 2.0 | 10 | 1.1613 | 0.0 |
| 1.0641 | 3.0 | 15 | 1.1547 | 0.0 |
| 0.9592 | 4.0 | 20 | 1.1680 | 0.0 |
| 0.9085 | 5.0 | 25 | 1.1762 | 0.0 |
| 0.8508 | 6.0 | 30 | 1.1809 | 0.2 |
| 0.7263 | 7.0 | 35 | 1.1912 | 0.2 |
| 0.6448 | 8.0 | 40 | 1.2100 | 0.2 |
| 0.5378 | 9.0 | 45 | 1.2037 | 0.2 |
| 0.5031 | 10.0 | 50 | 1.2096 | 0.2 |
| 0.4041 | 11.0 | 55 | 1.2203 | 0.2 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-2", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-2
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1019
* Accuracy: 0.139
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9681
- Accuracy: 0.549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1073 | 1.0 | 5 | 1.1393 | 0.0 |
| 1.0392 | 2.0 | 10 | 1.1729 | 0.0 |
| 1.0302 | 3.0 | 15 | 1.1694 | 0.2 |
| 0.9176 | 4.0 | 20 | 1.1846 | 0.2 |
| 0.8339 | 5.0 | 25 | 1.1663 | 0.2 |
| 0.7533 | 6.0 | 30 | 1.1513 | 0.4 |
| 0.6327 | 7.0 | 35 | 1.1474 | 0.4 |
| 0.4402 | 8.0 | 40 | 1.1385 | 0.4 |
| 0.3752 | 9.0 | 45 | 1.0965 | 0.2 |
| 0.3448 | 10.0 | 50 | 1.0357 | 0.2 |
| 0.2582 | 11.0 | 55 | 1.0438 | 0.2 |
| 0.1903 | 12.0 | 60 | 1.0561 | 0.2 |
| 0.1479 | 13.0 | 65 | 1.0569 | 0.2 |
| 0.1129 | 14.0 | 70 | 1.0455 | 0.2 |
| 0.1071 | 15.0 | 75 | 1.0416 | 0.4 |
| 0.0672 | 16.0 | 80 | 1.1164 | 0.4 |
| 0.0561 | 17.0 | 85 | 1.1846 | 0.6 |
| 0.0463 | 18.0 | 90 | 1.2040 | 0.6 |
| 0.0431 | 19.0 | 95 | 1.2078 | 0.6 |
| 0.0314 | 20.0 | 100 | 1.2368 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-3", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-3
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9681
* Accuracy: 0.549
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-4
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1045
- Accuracy: 0.128
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1115 | 1.0 | 5 | 1.1174 | 0.0 |
| 1.0518 | 2.0 | 10 | 1.1379 | 0.0 |
| 1.0445 | 3.0 | 15 | 1.1287 | 0.0 |
| 0.9306 | 4.0 | 20 | 1.1324 | 0.2 |
| 0.8242 | 5.0 | 25 | 1.1219 | 0.2 |
| 0.7986 | 6.0 | 30 | 1.1369 | 0.4 |
| 0.7369 | 7.0 | 35 | 1.1732 | 0.2 |
| 0.534 | 8.0 | 40 | 1.1828 | 0.6 |
| 0.4285 | 9.0 | 45 | 1.1482 | 0.6 |
| 0.3691 | 10.0 | 50 | 1.1401 | 0.6 |
| 0.3215 | 11.0 | 55 | 1.1286 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-4", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-4
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-4
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1045
* Accuracy: 0.128
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-5
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7214
- Accuracy: 0.37
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0995 | 1.0 | 5 | 1.1301 | 0.0 |
| 1.0227 | 2.0 | 10 | 1.1727 | 0.0 |
| 1.0337 | 3.0 | 15 | 1.1734 | 0.2 |
| 0.9137 | 4.0 | 20 | 1.1829 | 0.2 |
| 0.8065 | 5.0 | 25 | 1.1496 | 0.4 |
| 0.7038 | 6.0 | 30 | 1.1101 | 0.4 |
| 0.6246 | 7.0 | 35 | 1.0982 | 0.2 |
| 0.4481 | 8.0 | 40 | 1.0913 | 0.2 |
| 0.3696 | 9.0 | 45 | 1.0585 | 0.4 |
| 0.3137 | 10.0 | 50 | 1.0418 | 0.4 |
| 0.2482 | 11.0 | 55 | 1.0078 | 0.4 |
| 0.196 | 12.0 | 60 | 0.9887 | 0.6 |
| 0.1344 | 13.0 | 65 | 0.9719 | 0.6 |
| 0.1014 | 14.0 | 70 | 1.0053 | 0.6 |
| 0.111 | 15.0 | 75 | 0.9653 | 0.6 |
| 0.0643 | 16.0 | 80 | 0.9018 | 0.6 |
| 0.0559 | 17.0 | 85 | 0.9393 | 0.6 |
| 0.0412 | 18.0 | 90 | 1.0210 | 0.6 |
| 0.0465 | 19.0 | 95 | 0.9965 | 0.6 |
| 0.0328 | 20.0 | 100 | 0.9739 | 0.6 |
| 0.0289 | 21.0 | 105 | 0.9796 | 0.6 |
| 0.0271 | 22.0 | 110 | 0.9968 | 0.6 |
| 0.0239 | 23.0 | 115 | 1.0143 | 0.6 |
| 0.0201 | 24.0 | 120 | 1.0459 | 0.6 |
| 0.0185 | 25.0 | 125 | 1.0698 | 0.6 |
| 0.0183 | 26.0 | 130 | 1.0970 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-5", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-5
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-5
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.7214
* Accuracy: 0.37
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
67,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08806811273097992,
0.10434073209762573,
-0.0032848583068698645,
0.10866844654083252,
0.154110386967659,
0.026389162987470627,
0.12644615769386292,
0.1337207704782486,
-0.08933607488870621,
0.0332300141453743,
0.10587923973798752,
0.13475783169269562,
0.02545134164392948,
0.12209559231996536,
-0.06082795187830925,
-0.2793703079223633,
0.013651382178068161,
0.027365854009985924,
-0.04271726310253143,
0.13079042732715607,
0.09549646079540253,
-0.11087720096111298,
0.08091277629137039,
0.006049739196896553,
-0.1606549322605133,
0.013722208328545094,
-0.0008927013259381056,
-0.051099758595228195,
0.12613540887832642,
0.033053506165742874,
0.1149841696023941,
0.012258603237569332,
0.09253858029842377,
-0.21514803171157837,
0.002530882600694895,
0.055240947753190994,
0.004684522282332182,
0.08364297449588776,
0.04866465553641319,
-0.0052748024463653564,
0.12554697692394257,
-0.07875443249940872,
0.05992403253912926,
0.034849200397729874,
-0.12349140644073486,
-0.2298959344625473,
-0.08844176679849625,
0.05946633219718933,
0.08071712404489517,
0.09616320580244064,
-0.009423505514860153,
0.08728545904159546,
-0.08221341669559479,
0.08911052346229553,
0.22691595554351807,
-0.2849624752998352,
-0.059094808995723724,
0.007052564062178135,
0.008627042174339294,
0.06543692201375961,
-0.09179020673036575,
-0.03720295801758766,
0.038565099239349365,
0.047057315707206726,
0.12210601568222046,
-0.016434084624052048,
-0.09183518588542938,
-0.00046750903129577637,
-0.1472099870443344,
-0.04085233435034752,
0.1560439020395279,
0.05066448822617531,
-0.04143495112657547,
-0.040824562311172485,
-0.0661415234208107,
-0.16594235599040985,
-0.04161849990487099,
0.001272045075893402,
0.05206773057579994,
-0.010753883048892021,
-0.037958115339279175,
-0.012976768426597118,
-0.07935632765293121,
-0.06523505598306656,
-0.0567670539021492,
0.14081688225269318,
0.04639875143766403,
0.0037550688721239567,
-0.005087640136480331,
0.10290755331516266,
-0.03359115123748779,
-0.13838033378124237,
0.007905575446784496,
0.012820721603929996,
0.007707361597567797,
-0.03616885840892792,
-0.05941305309534073,
-0.01615101471543312,
0.007622361648827791,
0.17053107917308807,
-0.06810587644577026,
0.05062796175479889,
0.013462841510772705,
0.03794190287590027,
-0.09650638699531555,
0.17116305232048035,
-0.03629410266876221,
-0.023756863549351692,
0.0088619664311409,
0.07414467632770538,
0.030983302742242813,
-0.01775914430618286,
-0.11658977717161179,
0.006311393808573484,
0.09981471300125122,
0.01946268044412136,
-0.06333528459072113,
0.06480316817760468,
-0.06035766750574112,
-0.03239351511001587,
0.021738052368164062,
-0.10223265737295151,
0.029914602637290955,
0.007731389719992876,
-0.07428297400474548,
-0.0019746609032154083,
0.03665123134851456,
0.013287065550684929,
-0.026186538860201836,
0.11023639142513275,
-0.0809374675154686,
0.025797665119171143,
-0.09514004737138748,
-0.12138097733259201,
0.01483197696506977,
-0.06535062193870544,
0.0070880744606256485,
-0.0923192948102951,
-0.18319876492023468,
-0.02033061347901821,
0.057735949754714966,
-0.030628131702542305,
-0.06404401361942291,
-0.06340503692626953,
-0.074396513402462,
0.027332954108715057,
-0.016402529552578926,
0.08917529135942459,
-0.06808137148618698,
0.09398515522480011,
0.03135812282562256,
0.051671914756298065,
-0.05518500134348869,
0.07036970555782318,
-0.10006200522184372,
0.022092023864388466,
-0.18370266258716583,
0.05557198449969292,
-0.06546657532453537,
0.05640473961830139,
-0.092634417116642,
-0.1096586063504219,
0.01199587993323803,
-0.0052897934801876545,
0.08010471612215042,
0.09631229192018509,
-0.1585720181465149,
-0.07929351925849915,
0.15130209922790527,
-0.07975943386554718,
-0.09842882305383682,
0.11546073108911514,
-0.05548704415559769,
0.02231818065047264,
0.05332920327782631,
0.17085619270801544,
0.08036001026630402,
-0.06907501816749573,
0.006860671564936638,
-0.00882318802177906,
0.07522868365049362,
-0.02479335479438305,
0.07375796139240265,
-0.020189939066767693,
-0.004844284150749445,
0.025059018284082413,
-0.045272354036569595,
0.0476100817322731,
-0.0882873460650444,
-0.09124945104122162,
-0.045140720903873444,
-0.07635956257581711,
0.05392138287425041,
0.0549733005464077,
0.05586673691868782,
-0.0980561226606369,
-0.10116469860076904,
0.07760609686374664,
0.09427826851606369,
-0.06935232132673264,
0.03611232340335846,
-0.058473747223615646,
0.07743040472269058,
-0.010465974919497967,
-0.013521363958716393,
-0.18472029268741608,
-0.02306503802537918,
0.02824142761528492,
-0.015295836143195629,
0.031436987221241,
-0.01320062205195427,
0.051622338593006134,
0.06487808376550674,
-0.05753082036972046,
-0.038362767547369,
-0.06876308470964432,
0.0021066770423203707,
-0.11214661598205566,
-0.20050567388534546,
-0.04021656885743141,
-0.011003983207046986,
0.131543830037117,
-0.19675806164741516,
0.046108443289995193,
-0.011862405575811863,
0.08325162529945374,
0.01207513827830553,
-0.006125836633145809,
-0.04308563470840454,
0.09307201206684113,
-0.044165611267089844,
-0.05350777879357338,
0.07642942667007446,
0.00811375305056572,
-0.08910631388425827,
-0.05303658917546272,
-0.10874339938163757,
0.132205069065094,
0.12136837840080261,
-0.10168977081775665,
-0.07548138499259949,
-0.008437826298177242,
-0.05413069948554039,
-0.03270803391933441,
-0.041263069957494736,
0.01671779714524746,
0.18080522119998932,
-0.002126882318407297,
0.14985549449920654,
-0.07280255109071732,
-0.03200625255703926,
0.0100491838529706,
-0.026206864044070244,
0.023841900750994682,
0.11909785866737366,
0.12231573462486267,
-0.07865161448717117,
0.14592087268829346,
0.16376736760139465,
-0.08951941877603531,
0.1316169649362564,
-0.04561654478311539,
-0.07358310371637344,
-0.019559483975172043,
-0.02154742181301117,
-0.008235160261392593,
0.07857576757669449,
-0.14160363376140594,
0.0016934073064476252,
0.024092381820082664,
0.03043786995112896,
0.018856143578886986,
-0.20654134452342987,
-0.012880667112767696,
0.03711763024330139,
-0.06382115185260773,
-0.026417896151542664,
-0.01699056103825569,
0.011471705511212349,
0.10058935731649399,
0.01345455925911665,
-0.08864819258451462,
0.032641470432281494,
-0.003542238613590598,
-0.075677290558815,
0.19410191476345062,
-0.10658232867717743,
-0.1474226862192154,
-0.13667967915534973,
-0.06556238234043121,
-0.06619035452604294,
0.007829678244888783,
0.06884327530860901,
-0.07341504842042923,
-0.03618637099862099,
-0.07919646799564362,
0.020229078829288483,
-0.013237970881164074,
0.019098425284028053,
0.009900582954287529,
-0.00005854169648955576,
0.07443953305482864,
-0.1066470667719841,
-0.021821442991495132,
-0.03797159716486931,
-0.06118164584040642,
0.03813004121184349,
0.02547517977654934,
0.10037349909543991,
0.15186692774295807,
-0.01685800589621067,
0.008818616159260273,
-0.027057765051722527,
0.22921714186668396,
-0.050867363810539246,
-0.021760622039437294,
0.14615850150585175,
-0.004109417553991079,
0.0645613893866539,
0.14079983532428741,
0.06849674135446548,
-0.08836546540260315,
0.012751113623380661,
0.045350030064582825,
-0.01556949783116579,
-0.2263738065958023,
-0.051676370203495026,
-0.05808816850185394,
-0.010727465152740479,
0.10045154392719269,
0.024680308997631073,
0.03006465919315815,
0.05008544772863388,
0.01446221861988306,
0.06423841416835785,
-0.022489070892333984,
0.08181149512529373,
0.16505713760852814,
0.04325438290834427,
0.13665950298309326,
-0.032721806317567825,
-0.03942502662539482,
0.049171093851327896,
-0.024695659056305885,
0.22280588746070862,
0.020715808495879173,
0.1378304362297058,
0.057153526693582535,
0.1651497185230255,
0.005016842857003212,
0.060032378882169724,
0.006216301582753658,
-0.01222333312034607,
-0.019084958359599113,
-0.04650622233748436,
-0.045476000756025314,
0.029759256169199944,
-0.061434146016836166,
0.06419359147548676,
-0.1369585394859314,
-0.01110369898378849,
0.051339391618967056,
0.29159289598464966,
0.03949475660920143,
-0.30779406428337097,
-0.10151048749685287,
0.007008807267993689,
-0.0521058551967144,
-0.02307122014462948,
0.027144894003868103,
0.06360047310590744,
-0.08697016537189484,
0.04979857802391052,
-0.05853895843029022,
0.10505449771881104,
-0.04201216623187065,
0.04719958454370499,
0.07212582230567932,
0.10321617871522903,
0.006727923173457384,
0.07642271369695663,
-0.28972017765045166,
0.259289026260376,
0.007281155791133642,
0.06059180945158005,
-0.05014577880501747,
0.016673875972628593,
0.04805465042591095,
0.08044350892305374,
0.05333214998245239,
-0.014951435849070549,
-0.053898923099040985,
-0.18267087638378143,
-0.06271455436944962,
0.021454734727740288,
0.09375457465648651,
-0.04616642743349075,
0.10760930925607681,
-0.04526615887880325,
0.009696794673800468,
0.06902152299880981,
-0.005587310530245304,
-0.09959941357374191,
-0.09867837280035019,
0.0052138427272439,
0.02985832281410694,
-0.0007048309198580682,
-0.07319317013025284,
-0.10691329836845398,
-0.0878995880484581,
0.16658054292201996,
-0.046490833163261414,
-0.048482295125722885,
-0.11088878661394119,
0.07112699747085571,
0.08479954302310944,
-0.08640842884778976,
0.04845784977078438,
-0.0015078920405358076,
0.08115707337856293,
0.030483344569802284,
-0.07238221913576126,
0.11036297678947449,
-0.06270358711481094,
-0.18528465926647186,
-0.05494605377316475,
0.11566632986068726,
0.02959362603724003,
0.06257990747690201,
-0.022598477080464363,
0.016073232516646385,
-0.028903497382998466,
-0.09172938019037247,
0.005366678815335035,
0.03347010165452957,
0.06279527395963669,
0.04983709380030632,
-0.08962202817201614,
0.007869218476116657,
-0.06491734832525253,
-0.026652731001377106,
0.17356041073799133,
0.2529628872871399,
-0.0926993191242218,
0.03080243244767189,
0.04096648097038269,
-0.07391605526208878,
-0.18281066417694092,
0.017980197444558144,
0.06567053496837616,
0.0008470715256407857,
0.02502196840941906,
-0.20724019408226013,
0.0892852395772934,
0.11280640959739685,
-0.014696042984724045,
0.09330637753009796,
-0.31712353229522705,
-0.12440139800310135,
0.12077443301677704,
0.11518590152263641,
0.09728804975748062,
-0.14662902057170868,
-0.031162472441792488,
-0.03170592710375786,
-0.12092676758766174,
0.12257269769906998,
-0.06991815567016602,
0.1261880099773407,
-0.03292383626103401,
0.08815779536962509,
0.005198046565055847,
-0.03461892157793045,
0.12848490476608276,
0.013335865922272205,
0.09305093437433243,
-0.05398010089993477,
-0.003446422517299652,
0.031291719526052475,
-0.05012635886669159,
0.024771280586719513,
-0.08898085355758667,
0.03503430634737015,
-0.10759194195270538,
-0.02386624366044998,
-0.06786470860242844,
0.03557852283120155,
-0.039354875683784485,
-0.062468383461236954,
-0.03701616823673248,
0.02502303570508957,
0.05875218287110329,
-0.00616960134357214,
0.1396322399377823,
0.0002072924398817122,
0.14251501858234406,
0.11200182139873505,
0.0772286057472229,
-0.05397675931453705,
-0.05449969321489334,
-0.011862888000905514,
-0.024644950404763222,
0.06569977104663849,
-0.1426292210817337,
0.031061748042702675,
0.14669735729694366,
0.01679423451423645,
0.1562923938035965,
0.07874113321304321,
-0.024033209308981895,
-0.0029737534932792187,
0.05523183196783066,
-0.15139882266521454,
-0.08624926209449768,
-0.013334698975086212,
-0.022704152390360832,
-0.12195925414562225,
0.03517827391624451,
0.11319431662559509,
-0.07108017802238464,
-0.01414749026298523,
0.003828145796433091,
0.016977062448859215,
-0.049732476472854614,
0.17447857558727264,
0.050206463783979416,
0.04479321464896202,
-0.09593497961759567,
0.1004413515329361,
0.05772487446665764,
-0.07478503882884979,
0.01378606352955103,
0.08508847653865814,
-0.08255788683891296,
-0.04317673668265343,
0.03865852579474449,
0.17060700058937073,
-0.06566803902387619,
-0.0510137565433979,
-0.13245746493339539,
-0.12228559702634811,
0.09266416728496552,
0.14228308200836182,
0.0980386883020401,
0.007491480093449354,
-0.05575774610042572,
0.01394384354352951,
-0.10019443184137344,
0.09031295031309128,
0.04139614850282669,
0.06444370001554489,
-0.13345637917518616,
0.13270825147628784,
0.006465970538556576,
0.024929089471697807,
-0.013529183343052864,
0.0241459421813488,
-0.1017795279622078,
-0.002119166776537895,
-0.13391730189323425,
-0.018642783164978027,
-0.028862396255135536,
0.014597248286008835,
0.001383356866426766,
-0.0499299056828022,
-0.061997558921575546,
0.016274958848953247,
-0.11327940225601196,
-0.041149456053972244,
0.014299626462161541,
0.07190889865159988,
-0.1162932738661766,
-0.02954074926674366,
0.028773676604032516,
-0.07687293738126755,
0.0776519626379013,
0.046726666390895844,
0.021701401099562645,
0.04580330848693848,
-0.13322223722934723,
0.010641547851264477,
0.05002375692129135,
0.020826801657676697,
0.045138053596019745,
-0.10927082598209381,
-0.006768850609660149,
-0.01026703231036663,
0.03557280823588371,
0.013720524497330189,
0.08323144912719727,
-0.14189398288726807,
-0.00991109199821949,
-0.015354936011135578,
-0.06981587409973145,
-0.05954466760158539,
0.034744102507829666,
0.09014376997947693,
0.031166503205895424,
0.19587098062038422,
-0.0866491049528122,
0.03949890285730362,
-0.20869094133377075,
0.0076656220480799675,
-0.011016148142516613,
-0.0977364107966423,
-0.10518495738506317,
-0.07461895048618317,
0.05379405617713928,
-0.05248648673295975,
0.1303396224975586,
0.013611028902232647,
0.05090375989675522,
0.03479710966348648,
-0.03767506405711174,
0.008871889673173428,
0.017220446839928627,
0.2125813513994217,
0.04798479378223419,
-0.037478089332580566,
0.059965264052152634,
0.02458328753709793,
0.09528448432683945,
0.11548751592636108,
0.19364410638809204,
0.15824738144874573,
-0.005292197689414024,
0.08508726954460144,
0.041208844631910324,
-0.0699322521686554,
-0.15084069967269897,
0.06809039413928986,
-0.0036693604197353125,
0.11971237510442734,
-0.02489214576780796,
0.23010529577732086,
0.06457995623350143,
-0.1692737191915512,
0.05906306579709053,
-0.04041192680597305,
-0.07988082617521286,
-0.12174085527658463,
-0.04399002343416214,
-0.08318876475095749,
-0.16476760804653168,
-0.0060419961810112,
-0.12200164049863815,
0.037968557327985764,
0.09001678228378296,
0.0007382582989521325,
-0.01613887958228588,
0.11143823713064194,
-0.004826443735510111,
0.0060088010504841805,
0.07626143842935562,
-0.004258364904671907,
-0.03434615582227707,
-0.10245170444250107,
-0.09188850969076157,
0.012434860691428185,
-0.011270557530224323,
0.036559514701366425,
-0.03666502982378006,
-0.04843210056424141,
0.03011186420917511,
-0.02193434163928032,
-0.09809840470552444,
0.018783489242196083,
0.015540240332484245,
0.05471322312951088,
0.0831761583685875,
0.011373797431588173,
0.0019888714887201786,
0.0031046418007463217,
0.22240538895130157,
-0.08364782482385635,
-0.07644402235746384,
-0.10777842998504639,
0.2609843909740448,
0.03894877806305885,
-0.008345901034772396,
0.03048880584537983,
-0.06863202154636383,
-0.005085350945591927,
0.20343080163002014,
0.17371460795402527,
-0.07534444332122803,
-0.008134141564369202,
0.0044060577638447285,
-0.01226892601698637,
-0.016145000234246254,
0.09077300876379013,
0.1322610080242157,
0.019383059814572334,
-0.0777522623538971,
-0.033632803708314896,
-0.05033404752612114,
-0.009742575697600842,
-0.05248402804136276,
0.06634210050106049,
0.028213821351528168,
-0.007662459276616573,
-0.035291485488414764,
0.05332810804247856,
-0.06009894236922264,
-0.08179499953985214,
0.04609871283173561,
-0.19328267872333527,
-0.16501113772392273,
-0.02209930494427681,
0.07923921942710876,
0.016203464940190315,
0.05255873501300812,
-0.029262075200676918,
-0.00948372296988964,
0.11809834092855453,
-0.02695351652801037,
-0.07343803346157074,
-0.09568783640861511,
0.09239841997623444,
-0.0993194729089737,
0.19958308339118958,
-0.030521050095558167,
0.043699074536561966,
0.12540893256664276,
0.07195283472537994,
-0.07111604511737823,
0.07823742926120758,
0.0479382760822773,
-0.062025584280490875,
0.02913692779839039,
0.09454529732465744,
-0.03973691910505295,
0.09327450394630432,
0.04477367177605629,
-0.1385088860988617,
0.013159668073058128,
-0.04578553885221481,
-0.08616868406534195,
-0.04138965532183647,
-0.03791823983192444,
-0.060524750500917435,
0.13209231197834015,
0.21980206668376923,
-0.04120396822690964,
-0.009024095721542835,
-0.06625695526599884,
0.0118035189807415,
0.05593261867761612,
0.04477059841156006,
-0.05250079929828644,
-0.21572719514369965,
0.021563656628131866,
0.07774187624454498,
-0.003449404379352927,
-0.2369524985551834,
-0.091834157705307,
0.013707448728382587,
-0.048682790249586105,
-0.10518992692232132,
0.09956102818250656,
0.06407001614570618,
0.04416797682642937,
-0.05205390602350235,
-0.09103240072727203,
-0.07576186209917068,
0.1619880050420761,
-0.14427681267261505,
-0.07993312180042267
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-6
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1275
- Accuracy: 0.3795
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.11 | 1.0 | 5 | 1.1184 | 0.0 |
| 1.0608 | 2.0 | 10 | 1.1227 | 0.0 |
| 1.0484 | 3.0 | 15 | 1.1009 | 0.2 |
| 0.9614 | 4.0 | 20 | 1.1009 | 0.2 |
| 0.8545 | 5.0 | 25 | 1.0772 | 0.2 |
| 0.8241 | 6.0 | 30 | 1.0457 | 0.2 |
| 0.708 | 7.0 | 35 | 1.0301 | 0.4 |
| 0.5045 | 8.0 | 40 | 1.0325 | 0.4 |
| 0.4175 | 9.0 | 45 | 1.0051 | 0.4 |
| 0.3446 | 10.0 | 50 | 0.9610 | 0.4 |
| 0.2851 | 11.0 | 55 | 0.9954 | 0.4 |
| 0.1808 | 12.0 | 60 | 1.0561 | 0.4 |
| 0.1435 | 13.0 | 65 | 1.0218 | 0.4 |
| 0.1019 | 14.0 | 70 | 1.0254 | 0.4 |
| 0.0908 | 15.0 | 75 | 0.9935 | 0.4 |
| 0.0591 | 16.0 | 80 | 1.0090 | 0.4 |
| 0.0512 | 17.0 | 85 | 1.0884 | 0.4 |
| 0.0397 | 18.0 | 90 | 1.2732 | 0.4 |
| 0.039 | 19.0 | 95 | 1.2979 | 0.6 |
| 0.0325 | 20.0 | 100 | 1.2705 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-6", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-6
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-6
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1275
* Accuracy: 0.3795
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-7
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1206
- Accuracy: 0.0555
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1186 | 1.0 | 5 | 1.1631 | 0.0 |
| 1.058 | 2.0 | 10 | 1.1986 | 0.0 |
| 1.081 | 3.0 | 15 | 1.2111 | 0.0 |
| 1.0118 | 4.0 | 20 | 1.2373 | 0.0 |
| 0.9404 | 5.0 | 25 | 1.2645 | 0.0 |
| 0.9146 | 6.0 | 30 | 1.3258 | 0.0 |
| 0.8285 | 7.0 | 35 | 1.3789 | 0.0 |
| 0.6422 | 8.0 | 40 | 1.3783 | 0.0 |
| 0.6156 | 9.0 | 45 | 1.3691 | 0.0 |
| 0.5321 | 10.0 | 50 | 1.3693 | 0.0 |
| 0.4504 | 11.0 | 55 | 1.4000 | 0.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-7", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-7
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-7
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1206
* Accuracy: 0.0555
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-8
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0005
- Accuracy: 0.518
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1029 | 1.0 | 5 | 1.1295 | 0.0 |
| 1.0472 | 2.0 | 10 | 1.1531 | 0.0 |
| 1.054 | 3.0 | 15 | 1.1475 | 0.0 |
| 0.9366 | 4.0 | 20 | 1.1515 | 0.0 |
| 0.8698 | 5.0 | 25 | 1.1236 | 0.4 |
| 0.8148 | 6.0 | 30 | 1.0716 | 0.6 |
| 0.6884 | 7.0 | 35 | 1.0662 | 0.6 |
| 0.5641 | 8.0 | 40 | 1.0671 | 0.6 |
| 0.5 | 9.0 | 45 | 1.0282 | 0.6 |
| 0.3882 | 10.0 | 50 | 1.0500 | 0.6 |
| 0.3522 | 11.0 | 55 | 1.1381 | 0.6 |
| 0.2492 | 12.0 | 60 | 1.1278 | 0.6 |
| 0.2063 | 13.0 | 65 | 1.0731 | 0.6 |
| 0.1608 | 14.0 | 70 | 1.1339 | 0.6 |
| 0.1448 | 15.0 | 75 | 1.1892 | 0.6 |
| 0.0925 | 16.0 | 80 | 1.1840 | 0.6 |
| 0.0768 | 17.0 | 85 | 1.0608 | 0.6 |
| 0.0585 | 18.0 | 90 | 1.1073 | 0.6 |
| 0.0592 | 19.0 | 95 | 1.3134 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-8", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-8
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0005
* Accuracy: 0.518
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-8-9
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0959
- Accuracy: 0.093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1068 | 1.0 | 5 | 1.1545 | 0.0 |
| 1.0494 | 2.0 | 10 | 1.1971 | 0.0 |
| 1.0612 | 3.0 | 15 | 1.2164 | 0.0 |
| 0.9517 | 4.0 | 20 | 1.2545 | 0.0 |
| 0.8874 | 5.0 | 25 | 1.2699 | 0.0 |
| 0.8598 | 6.0 | 30 | 1.2835 | 0.0 |
| 0.7006 | 7.0 | 35 | 1.3139 | 0.0 |
| 0.5969 | 8.0 | 40 | 1.3116 | 0.2 |
| 0.4769 | 9.0 | 45 | 1.3124 | 0.4 |
| 0.4352 | 10.0 | 50 | 1.3541 | 0.4 |
| 0.3231 | 11.0 | 55 | 1.3919 | 0.4 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-9", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-9
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-9
===============================================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0959
* Accuracy: 0.093
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__sst2__all-train
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2496
- Accuracy: 0.8962
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 |
| 0.196 | 2.0 | 866 | 0.2548 | 0.9110 |
| 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 |
| 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__sst2__all-train", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__sst2__all-train
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_sst2\_\_all-train
============================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2496
* Accuracy: 0.8962
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu102
* Datasets 1.17.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
67,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] |
[
-0.08980675041675568,
0.10192938148975372,
-0.003123784903436899,
0.10726916790008545,
0.15442097187042236,
0.02489050105214119,
0.12513132393360138,
0.13454259932041168,
-0.09121987968683243,
0.03216807544231415,
0.10664543509483337,
0.13487079739570618,
0.026005588471889496,
0.1217835322022438,
-0.06048882380127907,
-0.27850183844566345,
0.012989025563001633,
0.02847609855234623,
-0.04426828399300575,
0.13004177808761597,
0.09632603824138641,
-0.11184867471456528,
0.08094185590744019,
0.008698923513293266,
-0.15963712334632874,
0.013741027563810349,
-0.0005486165173351765,
-0.051002249121665955,
0.12652207911014557,
0.0347520150244236,
0.1158226728439331,
0.011146689765155315,
0.09296583384275436,
-0.21260397136211395,
0.0025616863276809454,
0.05663958936929703,
0.00629058200865984,
0.08606520295143127,
0.04771559685468674,
-0.0033404265996068716,
0.12697133421897888,
-0.07816736400127411,
0.059737175703048706,
0.0347597673535347,
-0.12346237152814865,
-0.23044057190418243,
-0.08887502551078796,
0.05878561735153198,
0.07934337854385376,
0.09652028232812881,
-0.009027843363583088,
0.0887477919459343,
-0.08183221518993378,
0.09003064036369324,
0.2251007854938507,
-0.2806902825832367,
-0.05992020294070244,
0.007610142696648836,
0.00795752927660942,
0.0622284896671772,
-0.09225651621818542,
-0.03843025490641594,
0.03944871202111244,
0.04519457742571831,
0.1239619180560112,
-0.014752415008842945,
-0.09721280634403229,
-0.00043701432878151536,
-0.14718887209892273,
-0.04044124484062195,
0.15407997369766235,
0.049883630126714706,
-0.040067240595817566,
-0.04097467660903931,
-0.06744470447301865,
-0.16743403673171997,
-0.04207642376422882,
0.0023160993587225676,
0.05232367292046547,
-0.010560094378888607,
-0.0368596650660038,
-0.014054953120648861,
-0.07789565622806549,
-0.06706555932760239,
-0.058355800807476044,
0.1418410688638687,
0.045643243938684464,
0.00425989693030715,
-0.0055174860171973705,
0.10193807631731033,
-0.035195592790842056,
-0.13825631141662598,
0.008072393015027046,
0.015518680214881897,
0.007388971280306578,
-0.03725201636552811,
-0.05965685471892357,
-0.020189877599477768,
0.006755586247891188,
0.17001938819885254,
-0.07080220431089401,
0.04874100163578987,
0.013532321900129318,
0.03841444104909897,
-0.09785187989473343,
0.17465654015541077,
-0.03846133127808571,
-0.01974138244986534,
0.010512740351259708,
0.07341843098402023,
0.031368013471364975,
-0.016148695722222328,
-0.11580498516559601,
0.0050393687561154366,
0.09778859466314316,
0.017390893772244453,
-0.06251807510852814,
0.06445179134607315,
-0.06040510907769203,
-0.03211168944835663,
0.027344880625605583,
-0.10133164376020432,
0.02932795137166977,
0.005702056922018528,
-0.07754236459732056,
-0.004274370148777962,
0.03726183623075485,
0.012731077149510384,
-0.024938778951764107,
0.1122562363743782,
-0.08313082158565521,
0.025567617267370224,
-0.09876567125320435,
-0.1222677156329155,
0.015109565109014511,
-0.06596703827381134,
0.007964723743498325,
-0.09053267538547516,
-0.18756185472011566,
-0.02009277604520321,
0.05732061341404915,
-0.03038918226957321,
-0.06374149024486542,
-0.06330078095197678,
-0.07380447536706924,
0.028505839407444,
-0.01604735292494297,
0.09186884760856628,
-0.06722908467054367,
0.09626304358243942,
0.031927384436130524,
0.05175498127937317,
-0.05490362271666527,
0.07149114459753036,
-0.10303207486867905,
0.02201402373611927,
-0.1844787746667862,
0.05723586305975914,
-0.06643480062484741,
0.058797191828489304,
-0.0910835713148117,
-0.10978134721517563,
0.007475196849554777,
-0.005360900890082121,
0.08313626050949097,
0.09486310184001923,
-0.15700627863407135,
-0.07970331609249115,
0.150809645652771,
-0.08008532971143723,
-0.09856738150119781,
0.11596399545669556,
-0.05559647083282471,
0.021212348714470863,
0.052899766713380814,
0.17081613838672638,
0.07981361448764801,
-0.06814870983362198,
0.006650929804891348,
-0.007580431178212166,
0.07381416857242584,
-0.02866440825164318,
0.07457397133111954,
-0.018567709252238274,
-0.006308302283287048,
0.024194197729229927,
-0.043965645134449005,
0.04976947233080864,
-0.0892389714717865,
-0.0908612534403801,
-0.0467049777507782,
-0.07739223539829254,
0.052736829966306686,
0.057851601392030716,
0.055476605892181396,
-0.09787080436944962,
-0.10211049020290375,
0.07983381301164627,
0.09604594111442566,
-0.06812547147274017,
0.034814558923244476,
-0.05707760900259018,
0.07733496278524399,
-0.010479509830474854,
-0.01334297750145197,
-0.1853611171245575,
-0.02025492675602436,
0.02760792151093483,
-0.014350350014865398,
0.03248528391122818,
-0.014487994834780693,
0.05195111408829689,
0.06488216668367386,
-0.057859569787979126,
-0.03764785826206207,
-0.06920530647039413,
0.0002585627662483603,
-0.11203113198280334,
-0.19896718859672546,
-0.03950014337897301,
-0.010889827273786068,
0.13197046518325806,
-0.1966644525527954,
0.04635612666606903,
-0.016628801822662354,
0.08344903588294983,
0.012239682488143444,
-0.005823398474603891,
-0.04251658543944359,
0.09307166934013367,
-0.04393209517002106,
-0.05443976819515228,
0.07536254823207855,
0.008278863504529,
-0.08792775124311447,
-0.05276322737336159,
-0.10641086101531982,
0.1335572749376297,
0.12245959788560867,
-0.10238178819417953,
-0.07625997066497803,
-0.008438117802143097,
-0.05342961102724075,
-0.03232051432132721,
-0.04179476201534271,
0.01846839301288128,
0.17981532216072083,
-0.003414710285142064,
0.15084624290466309,
-0.07574602961540222,
-0.03242625668644905,
0.010301507078111172,
-0.026676926761865616,
0.02523144893348217,
0.12111693620681763,
0.12274401634931564,
-0.08111748844385147,
0.14785127341747284,
0.16110734641551971,
-0.09047702699899673,
0.13334596157073975,
-0.0463399812579155,
-0.0747908353805542,
-0.01813974604010582,
-0.022425370290875435,
-0.007857809774577618,
0.07873163372278214,
-0.14255893230438232,
0.0024601242039352655,
0.02451619692146778,
0.02853112667798996,
0.019189124926924706,
-0.20715895295143127,
-0.012671069242060184,
0.03704775497317314,
-0.06369997560977936,
-0.026654114946722984,
-0.016940586268901825,
0.011428950354456902,
0.10066379606723785,
0.012342247180640697,
-0.0872776135802269,
0.031162617728114128,
-0.0011054017813876271,
-0.07413384318351746,
0.195162832736969,
-0.10669831931591034,
-0.14749272167682648,
-0.13890108466148376,
-0.062082331627607346,
-0.06631825864315033,
0.007862878032028675,
0.06715432554483414,
-0.07477279752492905,
-0.03635156899690628,
-0.07775573432445526,
0.021625941619277,
-0.013313008472323418,
0.016945313662290573,
0.009858758188784122,
0.0003654554020613432,
0.07488446682691574,
-0.10839933156967163,
-0.0208852831274271,
-0.03853483870625496,
-0.06039051339030266,
0.03702813759446144,
0.026012064889073372,
0.09948465973138809,
0.15143856406211853,
-0.020497936755418777,
0.007675973232835531,
-0.026903953403234482,
0.23023447394371033,
-0.051101718097925186,
-0.021897926926612854,
0.14861521124839783,
-0.0006123983766883612,
0.0640684962272644,
0.13788357377052307,
0.06882493197917938,
-0.08823981136083603,
0.012795760296285152,
0.04536299407482147,
-0.015468479134142399,
-0.2282743752002716,
-0.05262921750545502,
-0.05802948400378227,
-0.012134195305407047,
0.09936609119176865,
0.024750344455242157,
0.032790254801511765,
0.051114387810230255,
0.011501327157020569,
0.06626737117767334,
-0.02454136125743389,
0.08053611218929291,
0.16697165369987488,
0.04386604577302933,
0.13741658627986908,
-0.03339425101876259,
-0.04030465707182884,
0.048625677824020386,
-0.026668012142181396,
0.2211655229330063,
0.01952921226620674,
0.14044064283370972,
0.05495891720056534,
0.16542814671993256,
0.005130945239216089,
0.06266704201698303,
0.004614862613379955,
-0.013641232624650002,
-0.018804291263222694,
-0.0466923825442791,
-0.048221491277217865,
0.027795366942882538,
-0.06411714106798172,
0.0661044716835022,
-0.1348043978214264,
-0.009738739579916,
0.0504351407289505,
0.2896342873573303,
0.037685733288526535,
-0.3090795576572418,
-0.1031072661280632,
0.004707674030214548,
-0.0521378293633461,
-0.026942815631628036,
0.02605186402797699,
0.06235961988568306,
-0.08501672744750977,
0.047983016818761826,
-0.05859382450580597,
0.10758509486913681,
-0.04207263141870499,
0.04579884931445122,
0.07118517905473709,
0.1079176515340805,
0.00607261760160327,
0.07820268720388412,
-0.28981661796569824,
0.2635788023471832,
0.00871707871556282,
0.0614040307700634,
-0.0507780946791172,
0.016588056460022926,
0.04774605482816696,
0.08039263635873795,
0.05158764868974686,
-0.013817827217280865,
-0.05143297091126442,
-0.18452394008636475,
-0.06341074407100677,
0.019196944311261177,
0.09183657914400101,
-0.04433611407876015,
0.1049003005027771,
-0.044937435537576675,
0.00947623886168003,
0.07056140154600143,
-0.007617162074893713,
-0.09898416697978973,
-0.09785334020853043,
0.002915577730163932,
0.03140144422650337,
-0.0024645363446325064,
-0.07318811863660812,
-0.10693220049142838,
-0.08795475959777832,
0.1630808264017105,
-0.04238668084144592,
-0.04784804955124855,
-0.11135370284318924,
0.07519248872995377,
0.08566701412200928,
-0.08609991520643234,
0.04902349039912224,
-0.002912681084126234,
0.07996531575918198,
0.02886764332652092,
-0.07268191128969193,
0.11062216013669968,
-0.06271050870418549,
-0.18399883806705475,
-0.05542636290192604,
0.11309866607189178,
0.028850141912698746,
0.06399228423833847,
-0.024541592225432396,
0.016371140256524086,
-0.030615242198109627,
-0.09024599939584732,
0.003920302726328373,
0.030939918011426926,
0.06181349232792854,
0.050322189927101135,
-0.08825664967298508,
0.008770350366830826,
-0.06485413759946823,
-0.026316804811358452,
0.17194561660289764,
0.24990543723106384,
-0.09237785637378693,
0.028865674510598183,
0.04298921674489975,
-0.0735236406326294,
-0.18438419699668884,
0.019847948104143143,
0.06659537553787231,
0.002525441814213991,
0.022986073046922684,
-0.20859239995479584,
0.09038152545690536,
0.11432953178882599,
-0.0157871562987566,
0.09304217249155045,
-0.31603845953941345,
-0.12537620961666107,
0.12095930427312851,
0.11400599777698517,
0.09566417336463928,
-0.14497026801109314,
-0.029886195436120033,
-0.03173822537064552,
-0.11751122772693634,
0.12258008867502213,
-0.06484365463256836,
0.12625731527805328,
-0.03374684974551201,
0.08690056949853897,
0.005770997144281864,
-0.03533288836479187,
0.12791600823402405,
0.009894730523228645,
0.09577596187591553,
-0.052996937185525894,
-0.0011481852270662785,
0.03297444432973862,
-0.04920069873332977,
0.027159307152032852,
-0.08850464969873428,
0.037119582295417786,
-0.10813765227794647,
-0.02449922263622284,
-0.06713655591011047,
0.0377214290201664,
-0.03840302303433418,
-0.062426138669252396,
-0.038903333246707916,
0.02596488781273365,
0.055852629244327545,
-0.0070259179919958115,
0.14077240228652954,
0.001921975170262158,
0.14417764544487,
0.11118440330028534,
0.07735509425401688,
-0.057314563542604446,
-0.05164695903658867,
-0.010593261569738388,
-0.022330334410071373,
0.06737980246543884,
-0.14437493681907654,
0.029657596722245216,
0.14733296632766724,
0.01847846247255802,
0.15470100939273834,
0.07723566144704819,
-0.025319598615169525,
-0.004639142658561468,
0.053957682102918625,
-0.14982010424137115,
-0.08614348620176315,
-0.015691714361310005,
-0.01851591281592846,
-0.12067779153585434,
0.03462335839867592,
0.10957664251327515,
-0.07429832220077515,
-0.014552909880876541,
0.003922206815332174,
0.015552560798823833,
-0.049467116594314575,
0.17552156746387482,
0.05188428610563278,
0.04542069137096405,
-0.09694270044565201,
0.10090723633766174,
0.060221489518880844,
-0.0744803249835968,
0.013081556186079979,
0.08386468887329102,
-0.08041169494390488,
-0.0430896170437336,
0.039551131427288055,
0.17283394932746887,
-0.06722103804349899,
-0.05190861225128174,
-0.13167347013950348,
-0.12097546458244324,
0.0936659649014473,
0.14566726982593536,
0.09851529449224472,
0.006504043936729431,
-0.05480809137225151,
0.013961580581963062,
-0.10119687765836716,
0.09165460616350174,
0.03950481489300728,
0.06397207081317902,
-0.13311943411827087,
0.13149434328079224,
0.007994470186531544,
0.024025224149227142,
-0.013723090291023254,
0.024860858917236328,
-0.10016792267560959,
-0.002263562520965934,
-0.12961313128471375,
-0.019453123211860657,
-0.028873508796095848,
0.015602592378854752,
0.00040898052975535393,
-0.050402067601680756,
-0.06123900040984154,
0.015590050257742405,
-0.11302366107702255,
-0.040661249309778214,
0.014154055155813694,
0.0702999085187912,
-0.11715273559093475,
-0.0298109482973814,
0.029491746798157692,
-0.07429542392492294,
0.07497136294841766,
0.04599615931510925,
0.022908920422196388,
0.04529741406440735,
-0.13543756306171417,
0.012535602785646915,
0.04945467412471771,
0.022663772106170654,
0.04578918218612671,
-0.1086055114865303,
-0.004844754934310913,
-0.009619656950235367,
0.035820409655570984,
0.012286876328289509,
0.08044639229774475,
-0.14261135458946228,
-0.01146081741899252,
-0.015653977170586586,
-0.06990199536085129,
-0.05876273661851883,
0.03583543002605438,
0.09100805222988129,
0.030290234833955765,
0.19495917856693268,
-0.08581579476594925,
0.0382118821144104,
-0.21152682602405548,
0.008204673416912556,
-0.011032399721443653,
-0.09980306774377823,
-0.10841215401887894,
-0.07457492500543594,
0.05442808195948601,
-0.05069585517048836,
0.13102787733078003,
0.018902035430073738,
0.05127958953380585,
0.03486170992255211,
-0.035055868327617645,
0.008328568190336227,
0.015268188901245594,
0.21407771110534668,
0.04789188504219055,
-0.035375021398067474,
0.062024008482694626,
0.025458447635173798,
0.09648161381483078,
0.11820153892040253,
0.19127798080444336,
0.15858525037765503,
-0.0062987664714455605,
0.08482149243354797,
0.04181089624762535,
-0.06968194246292114,
-0.1492747664451599,
0.06748996675014496,
-0.00409921957179904,
0.1179579645395279,
-0.024126309901475906,
0.23150920867919922,
0.06574373692274094,
-0.16909602284431458,
0.061300817877054214,
-0.03928351402282715,
-0.07942432165145874,
-0.12214519828557968,
-0.045925628393888474,
-0.08283989876508713,
-0.16655008494853973,
-0.006191680207848549,
-0.12318854033946991,
0.03727400675415993,
0.08875976502895355,
-0.00012685936235357076,
-0.01784687116742134,
0.11314456909894943,
-0.003856051480397582,
0.007057190407067537,
0.0753173902630806,
-0.003656228305771947,
-0.032908178865909576,
-0.1071876659989357,
-0.09391652047634125,
0.015499621629714966,
-0.011221996508538723,
0.03742167353630066,
-0.03735511749982834,
-0.048835285007953644,
0.03120926208794117,
-0.019315607845783234,
-0.09789036959409714,
0.018841996788978577,
0.014917582273483276,
0.055478233844041824,
0.08334702253341675,
0.009564856998622417,
0.005017061252146959,
0.0015539993764832616,
0.22303573787212372,
-0.08217569440603256,
-0.07553673535585403,
-0.10748323798179626,
0.26079222559928894,
0.03889050707221031,
-0.008531216531991959,
0.03187352046370506,
-0.06841932237148285,
-0.00556298578158021,
0.20482730865478516,
0.17161352932453156,
-0.07352671027183533,
-0.009748967364430428,
0.0039315479807555676,
-0.013171307742595673,
-0.018893294036388397,
0.090211883187294,
0.13333550095558167,
0.01690881885588169,
-0.07764587551355362,
-0.03611302748322487,
-0.0522519014775753,
-0.009799904190003872,
-0.05097142234444618,
0.06282642483711243,
0.027794046327471733,
-0.008289889432489872,
-0.03440910577774048,
0.05294916406273842,
-0.05902127921581268,
-0.0837402418255806,
0.04676780849695206,
-0.19485266506671906,
-0.16471821069717407,
-0.023851871490478516,
0.07838887721300125,
0.017228903248906136,
0.051611434668302536,
-0.028332797810435295,
-0.0064672911539673805,
0.1138521060347557,
-0.02811088040471077,
-0.07320660352706909,
-0.09902507066726685,
0.090575210750103,
-0.09661565721035004,
0.20107446610927582,
-0.031001515686511993,
0.04323775693774223,
0.12520912289619446,
0.07133922725915909,
-0.07154981791973114,
0.07896579802036285,
0.04721316695213318,
-0.06208846718072891,
0.029608827084302902,
0.0947037935256958,
-0.03834092617034912,
0.09332016110420227,
0.043601199984550476,
-0.14117291569709778,
0.014340905472636223,
-0.047727689146995544,
-0.08599498122930527,
-0.0419851578772068,
-0.03544790670275688,
-0.06028977036476135,
0.13254208862781525,
0.22139465808868408,
-0.03972269967198372,
-0.010102489031851292,
-0.06733230501413345,
0.011032762005925179,
0.05594303458929062,
0.04357722029089928,
-0.05227166786789894,
-0.21645912528038025,
0.02152123488485813,
0.07727885246276855,
-0.00531793013215065,
-0.23697923123836517,
-0.08941484242677689,
0.01223843265324831,
-0.05103749781847,
-0.10356031358242035,
0.0976119190454483,
0.06393364816904068,
0.04443586245179176,
-0.0512327216565609,
-0.08976259082555771,
-0.0756763368844986,
0.16140243411064148,
-0.14312824606895447,
-0.07800495624542236
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__sst2__train-16-0
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6903
- Accuracy: 0.5091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 |
| 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 |
| 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 |
| 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 |
| 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 |
| 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 |
| 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 |
| 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 |
| 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 |
| 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 |
| 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-0", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__sst2__train-16-0
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_sst2\_\_train-16-0
=============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6903
* Accuracy: 0.5091
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__sst2__train-16-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6012
- Accuracy: 0.6766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6983 | 1.0 | 7 | 0.7036 | 0.2857 |
| 0.6836 | 2.0 | 14 | 0.7181 | 0.2857 |
| 0.645 | 3.0 | 21 | 0.7381 | 0.2857 |
| 0.5902 | 4.0 | 28 | 0.7746 | 0.2857 |
| 0.5799 | 5.0 | 35 | 0.7242 | 0.5714 |
| 0.3584 | 6.0 | 42 | 0.6935 | 0.5714 |
| 0.2596 | 7.0 | 49 | 0.7041 | 0.5714 |
| 0.1815 | 8.0 | 56 | 0.5930 | 0.7143 |
| 0.0827 | 9.0 | 63 | 0.6976 | 0.7143 |
| 0.0613 | 10.0 | 70 | 0.7346 | 0.7143 |
| 0.0356 | 11.0 | 77 | 0.6992 | 0.5714 |
| 0.0158 | 12.0 | 84 | 0.7328 | 0.5714 |
| 0.013 | 13.0 | 91 | 0.7819 | 0.5714 |
| 0.0103 | 14.0 | 98 | 0.8589 | 0.5714 |
| 0.0087 | 15.0 | 105 | 0.9177 | 0.5714 |
| 0.0076 | 16.0 | 112 | 0.9519 | 0.5714 |
| 0.0078 | 17.0 | 119 | 0.9556 | 0.5714 |
| 0.006 | 18.0 | 126 | 0.9542 | 0.5714 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-1", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__sst2__train-16-1
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_sst2\_\_train-16-1
=============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6012
* Accuracy: 0.6766
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__sst2__train-16-2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6748
- Accuracy: 0.6315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7043 | 1.0 | 7 | 0.7054 | 0.2857 |
| 0.6711 | 2.0 | 14 | 0.7208 | 0.2857 |
| 0.6311 | 3.0 | 21 | 0.7365 | 0.2857 |
| 0.551 | 4.0 | 28 | 0.7657 | 0.5714 |
| 0.5599 | 5.0 | 35 | 0.6915 | 0.5714 |
| 0.3167 | 6.0 | 42 | 0.7134 | 0.5714 |
| 0.2489 | 7.0 | 49 | 0.7892 | 0.5714 |
| 0.1985 | 8.0 | 56 | 0.6756 | 0.7143 |
| 0.0864 | 9.0 | 63 | 0.8059 | 0.5714 |
| 0.0903 | 10.0 | 70 | 0.8165 | 0.7143 |
| 0.0429 | 11.0 | 77 | 0.7947 | 0.7143 |
| 0.0186 | 12.0 | 84 | 0.8570 | 0.7143 |
| 0.0146 | 13.0 | 91 | 0.9346 | 0.7143 |
| 0.011 | 14.0 | 98 | 0.9804 | 0.7143 |
| 0.0098 | 15.0 | 105 | 1.0136 | 0.7143 |
| 0.0086 | 16.0 | 112 | 1.0424 | 0.7143 |
| 0.0089 | 17.0 | 119 | 1.0736 | 0.7143 |
| 0.0068 | 18.0 | 126 | 1.0808 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-2", "results": []}]}
|
text-classification
|
SetFit/distilbert-base-uncased__sst2__train-16-2
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:04+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased\_\_sst2\_\_train-16-2
=============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6748
* Accuracy: 0.6315
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 50
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
53,
113,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] |
[
-0.08879853785037994,
0.06824939697980881,
-0.0018982781330123544,
0.11740695685148239,
0.16918016970157623,
0.021560488268733025,
0.11941349506378174,
0.1153823509812355,
-0.11352009326219559,
0.01251962035894394,
0.11107262223958969,
0.1624639928340912,
0.016343198716640472,
0.12470649182796478,
-0.06444965302944183,
-0.27311134338378906,
0.0016575795598328114,
0.02337375469505787,
-0.04790300503373146,
0.13647407293319702,
0.09953483194112778,
-0.1275053769350052,
0.06962420046329498,
0.003411055076867342,
-0.2001553177833557,
0.014734248630702496,
0.012803077697753906,
-0.05525250360369682,
0.15398427844047546,
0.01886659860610962,
0.1212461069226265,
0.002667406341060996,
0.09402219951152802,
-0.21221274137496948,
0.009807162918150425,
0.049194835126399994,
0.010866531170904636,
0.07765574008226395,
0.05584926903247833,
-0.01423284225165844,
0.11132479459047318,
-0.0834629237651825,
0.06262039393186569,
0.017662059515714645,
-0.13499872386455536,
-0.22487430274486542,
-0.0942663922905922,
0.009095242246985435,
0.07828621566295624,
0.10097281634807587,
-0.008692924864590168,
0.14416903257369995,
-0.10419884324073792,
0.09063548594713211,
0.20043180882930756,
-0.28988638520240784,
-0.06411358714103699,
0.006009532138705254,
0.0012285357806831598,
0.08548123389482498,
-0.10776471346616745,
-0.028107570484280586,
0.043586574494838715,
0.05475098267197609,
0.13325761258602142,
-0.031181907281279564,
-0.1355409324169159,
0.013830591924488544,
-0.14110417664051056,
-0.03221498057246208,
0.12225932627916336,
0.047719407826662064,
-0.03833490610122681,
-0.03338630869984627,
-0.05320232734084129,
-0.15000596642494202,
-0.04151981696486473,
-0.0028476454317569733,
0.050989992916584015,
-0.019310498610138893,
-0.059212371706962585,
0.007680811453610659,
-0.09371344745159149,
-0.06164303421974182,
-0.0688520297408104,
0.1379411816596985,
0.03618612512946129,
0.0060910992324352264,
-0.018648486584424973,
0.1017504408955574,
-0.013722050935029984,
-0.1360502541065216,
0.024974476546049118,
0.02728448249399662,
-0.020089002326130867,
-0.054472461342811584,
-0.07279881089925766,
-0.04406308755278587,
0.008353124372661114,
0.13104668259620667,
-0.04528512433171272,
0.05505630373954773,
0.015406908467411995,
0.032760150730609894,
-0.09867964684963226,
0.18881593644618988,
-0.020854119211435318,
-0.02021191082894802,
0.008941730484366417,
0.05083847418427467,
0.013286950066685677,
-0.01682928204536438,
-0.11111454665660858,
0.011873399838805199,
0.10823773592710495,
0.017803333699703217,
-0.08325442671775818,
0.05811391770839691,
-0.06417856365442276,
-0.021836047992110252,
-0.004847658798098564,
-0.09668619930744171,
0.042442437261343,
-0.010270507074892521,
-0.07801755517721176,
-0.024106265977025032,
0.0057991319335997105,
0.04158962890505791,
-0.0190095454454422,
0.11758865416049957,
-0.07218973338603973,
0.05015885457396507,
-0.1034204363822937,
-0.11538513004779816,
0.008900942280888557,
-0.0473288930952549,
0.016405778005719185,
-0.0982334166765213,
-0.17015568912029266,
-0.02386550046503544,
0.058361224830150604,
-0.024198707193136215,
-0.06234221160411835,
-0.05781468749046326,
-0.056702014058828354,
0.016579387709498405,
-0.02052372507750988,
0.14895421266555786,
-0.07235860824584961,
0.09803824871778488,
0.02995316870510578,
0.05581704527139664,
-0.06580211967229843,
0.06169150769710541,
-0.10110481828451157,
0.0034354219678789377,
-0.19703803956508636,
0.057888273149728775,
-0.0506381057202816,
0.08531131595373154,
-0.09916753321886063,
-0.10819783061742783,
0.03228060528635979,
-0.014226741157472134,
0.08340690284967422,
0.08646809309720993,
-0.18446965515613556,
-0.06566482037305832,
0.14587529003620148,
-0.05839921534061432,
-0.09931118041276932,
0.12215954810380936,
-0.07414049655199051,
0.04301736131310463,
0.08470723032951355,
0.17955943942070007,
0.06308698654174805,
-0.060285940766334534,
0.041900791227817535,
-0.03234391659498215,
0.07138840109109879,
-0.04232911020517349,
0.06430314481258392,
0.0018461619038134813,
-0.02209712751209736,
0.028048302978277206,
-0.020263072103261948,
0.07314424216747284,
-0.08949124068021774,
-0.100226990878582,
-0.039128489792346954,
-0.09069368988275528,
0.03752140700817108,
0.057175006717443466,
0.07742631435394287,
-0.10686859488487244,
-0.06830006837844849,
0.05507804453372955,
0.08210017532110214,
-0.048782795667648315,
0.03595553711056709,
-0.05397363379597664,
0.0498330183327198,
-0.01652710884809494,
-0.019408000633120537,
-0.19486476480960846,
-0.0036823765840381384,
0.021650811657309532,
0.006103841122239828,
0.040443845093250275,
-0.008947786875069141,
0.05968957766890526,
0.060706742107868195,
-0.054581768810749054,
-0.025088917464017868,
-0.032895527780056,
0.002894648350775242,
-0.1340763121843338,
-0.2014351636171341,
-0.013681684620678425,
-0.016259759664535522,
0.14994043111801147,
-0.20370230078697205,
0.02469165064394474,
-0.015834297984838486,
0.07067041099071503,
0.009257424622774124,
0.00007775251287966967,
-0.043556295335292816,
0.10329848527908325,
-0.031503792852163315,
-0.05053647607564926,
0.073652483522892,
0.005791956093162298,
-0.096763014793396,
-0.044139597564935684,
-0.08962231874465942,
0.15810172259807587,
0.12425149977207184,
-0.11862403154373169,
-0.08037745952606201,
-0.022346507757902145,
-0.04790613427758217,
-0.028728719800710678,
-0.05809140205383301,
0.0532207265496254,
0.211919903755188,
-0.0026118287350982428,
0.14593560993671417,
-0.06378734856843948,
-0.03646077960729599,
0.0041842395439744,
-0.02440486289560795,
0.047256916761398315,
0.12099821865558624,
0.11007843166589737,
-0.09863151609897614,
0.1301368772983551,
0.16788919270038605,
-0.09623272716999054,
0.11162667721509933,
-0.047645680606365204,
-0.06441152840852737,
-0.015815841034054756,
-0.026667311787605286,
-0.004300947766751051,
0.07917912304401398,
-0.11314869672060013,
-0.005263357423245907,
0.016922535374760628,
0.03699881210923195,
0.010660686530172825,
-0.22644753754138947,
-0.034835223108530045,
0.029087431728839874,
-0.0439273975789547,
-0.026942864060401917,
-0.03187546506524086,
0.008935382589697838,
0.10651969909667969,
0.0011962017742916942,
-0.10039021819829941,
0.0331563800573349,
0.00214940682053566,
-0.07081369310617447,
0.20237509906291962,
-0.10285374522209167,
-0.1405484974384308,
-0.11258392035961151,
-0.08206819742918015,
-0.05206495150923729,
0.0054308571852743626,
0.061469655483961105,
-0.09552335739135742,
-0.030554883182048798,
-0.06366042792797089,
0.002633593510836363,
0.006502735428512096,
0.027749022468924522,
-0.01353500410914421,
-0.0049704285338521,
0.0703645572066307,
-0.1030954122543335,
-0.016720829531550407,
-0.0418427549302578,
-0.06307389587163925,
0.06224730238318443,
0.0375710129737854,
0.11112383753061295,
0.1586245894432068,
-0.01909048669040203,
0.003544314531609416,
-0.03092493861913681,
0.24453045427799225,
-0.06815312057733536,
-0.02803076058626175,
0.11917468160390854,
-0.002040961990132928,
0.06009339168667793,
0.12923118472099304,
0.06907165050506592,
-0.10390830039978027,
0.03060307912528515,
0.02870664745569229,
-0.0204490777105093,
-0.22006215155124664,
-0.0436251200735569,
-0.05846213921904564,
-0.06013401225209236,
0.09378380328416824,
0.023862088099122047,
0.04163482412695885,
0.055299852043390274,
0.04466385766863823,
0.07956777513027191,
-0.03267215937376022,
0.06156507879495621,
0.13691440224647522,
0.057057879865169525,
0.1322309672832489,
-0.03870105743408203,
-0.07678360491991043,
0.04075108841061592,
-0.018875472247600555,
0.23108352720737457,
0.026050599291920662,
0.12849640846252441,
0.05125042423605919,
0.17965461313724518,
0.00797259621322155,
0.07528360188007355,
0.015601111575961113,
-0.02972760796546936,
-0.025266485288739204,
-0.0405234694480896,
-0.044961221516132355,
0.027041953057050705,
-0.048012420535087585,
0.04193313047289848,
-0.11549857258796692,
-0.029558109119534492,
0.060533881187438965,
0.2880105972290039,
0.0299221221357584,
-0.3087579011917114,
-0.073336161673069,
0.013905145227909088,
-0.05689733847975731,
-0.015909064561128616,
0.019955066964030266,
0.07048878818750381,
-0.10324639827013016,
0.04308778792619705,
-0.05663108080625534,
0.11134409159421921,
-0.039482396095991135,
0.048626963049173355,
0.045566052198410034,
0.08572134375572205,
0.0028271577320992947,
0.07551340013742447,
-0.3287007510662079,
0.27666953206062317,
0.007866786792874336,
0.07280494272708893,
-0.07330599427223206,
-0.003361776936799288,
0.05671215429902077,
0.06603217869997025,
0.029453910887241364,
-0.010637766681611538,
-0.07080117613077164,
-0.20251622796058655,
-0.05337552726268768,
0.03842942789196968,
0.08914946764707565,
-0.02522399090230465,
0.0958140566945076,
-0.03251137584447861,
0.014838154427707195,
0.07216225564479828,
-0.01832878217101097,
-0.09070724993944168,
-0.08691596239805222,
-0.01774090714752674,
0.04287797957658768,
0.003745329100638628,
-0.06895536929368973,
-0.10674872994422913,
-0.09993602335453033,
0.1335764229297638,
0.012696989811956882,
-0.020156750455498695,
-0.1198987141251564,
0.07959344238042831,
0.07459709048271179,
-0.08107397705316544,
0.03358586132526398,
0.009939768351614475,
0.06351956725120544,
0.03391777724027634,
-0.056131936609745026,
0.11656256765127182,
-0.04773769900202751,
-0.15741969645023346,
-0.05773579329252243,
0.08876175433397293,
0.03448755666613579,
0.07133371382951736,
-0.0063048601150512695,
0.023362571373581886,
-0.03629660606384277,
-0.09756463021039963,
0.013483268208801746,
-0.030444325879216194,
0.06932821869850159,
0.04597333446145058,
-0.05724938586354256,
0.006919200997799635,
-0.07795652002096176,
-0.04872078448534012,
0.19798792898654938,
0.24288703501224518,
-0.08461830019950867,
0.025680815801024437,
0.036849621683359146,
-0.06880340725183487,
-0.17627567052841187,
0.04942561686038971,
0.06285573542118073,
0.006087097804993391,
0.04370187595486641,
-0.18942415714263916,
0.12074191123247147,
0.10778425633907318,
-0.014400498010218143,
0.09573140740394592,
-0.30702289938926697,
-0.12943610548973083,
0.11695511639118195,
0.14381277561187744,
0.1185116097331047,
-0.14205926656723022,
-0.01581275276839733,
-0.05165550485253334,
-0.10693635046482086,
0.10356418043375015,
-0.09405195713043213,
0.1230214536190033,
-0.019567500799894333,
0.1105961874127388,
-0.0017969877226278186,
-0.04209068417549133,
0.13069920241832733,
0.024714604020118713,
0.11576323211193085,
-0.05917458236217499,
-0.00731045613065362,
0.022233065217733383,
-0.0355524867773056,
0.0024256673641502857,
-0.09034609794616699,
0.025550439953804016,
-0.10606294125318527,
-0.0181641336530447,
-0.07063570618629456,
0.033086147159338,
-0.02958654798567295,
-0.06202327460050583,
-0.029307985678315163,
0.0326627716422081,
0.05835338309407234,
-0.009380047209560871,
0.12526622414588928,
0.0006498125731013715,
0.14680695533752441,
0.07192591577768326,
0.07746487110853195,
-0.07230201363563538,
-0.036573413759469986,
-0.012988771311938763,
-0.017962390556931496,
0.05176708847284317,
-0.1387372761964798,
0.03467346355319023,
0.14861124753952026,
0.008436484262347221,
0.15477986633777618,
0.07815152406692505,
-0.013718639500439167,
0.01491321437060833,
0.0646665096282959,
-0.1493844836950302,
-0.0738997608423233,
0.004291522316634655,
-0.011981621384620667,
-0.0850282683968544,
0.023311596363782883,
0.0982036292552948,
-0.06325724720954895,
-0.020160065963864326,
-0.00619904138147831,
0.003919702488929033,
-0.06788378953933716,
0.19534988701343536,
0.051966793835163116,
0.044583018869161606,
-0.10721898823976517,
0.07585064321756363,
0.07842082530260086,
-0.07434330135583878,
0.004447981249541044,
0.08161561191082001,
-0.08035266399383545,
-0.04075222834944725,
0.10590377449989319,
0.20140589773654938,
-0.05461081489920616,
-0.050496235489845276,
-0.12932029366493225,
-0.1294880211353302,
0.07931619882583618,
0.14822626113891602,
0.10990064591169357,
0.000979940639808774,
-0.062163710594177246,
-0.0003190015850123018,
-0.10116150975227356,
0.06715431064367294,
0.045161206275224686,
0.0645514726638794,
-0.12007854878902435,
0.15936316549777985,
0.007689042016863823,
0.03072378970682621,
-0.017485972493886948,
0.01719062402844429,
-0.1003546491265297,
0.021917901933193207,
-0.14632146060466766,
-0.022145789116621017,
-0.012002229690551758,
0.01973176747560501,
0.0006102386978454888,
-0.06596589088439941,
-0.05876443162560463,
0.009596505202353,
-0.12903571128845215,
-0.031282197684049606,
0.021865012124180794,
0.06389345973730087,
-0.11372585594654083,
-0.05363193526864052,
0.034249648451805115,
-0.06373153626918793,
0.06493531912565231,
0.04316302016377449,
0.010319904424250126,
0.061992377042770386,
-0.15306146442890167,
-0.005744550377130508,
0.06124930828809738,
0.015514769591391087,
0.0658252090215683,
-0.10514679551124573,
-0.009895043447613716,
0.006868226453661919,
0.07907652854919434,
0.024862414225935936,
0.08349675685167313,
-0.1351373791694641,
-0.02174384333193302,
-0.02385338582098484,
-0.10239596664905548,
-0.05748554691672325,
0.025099297985434532,
0.08183807879686356,
0.019295621663331985,
0.20714332163333893,
-0.08322733640670776,
0.036734580993652344,
-0.20735526084899902,
0.0016299767885357141,
-0.025159379467368126,
-0.11807508766651154,
-0.1360636055469513,
-0.08224517852067947,
0.06497524678707123,
-0.05361280217766762,
0.13326819241046906,
0.029367616400122643,
0.05823501944541931,
0.03215387463569641,
-0.019327443093061447,
0.0002916243684012443,
0.025592366233468056,
0.2036769986152649,
0.05714035406708717,
-0.03414313495159149,
0.07877953350543976,
0.04498850554227829,
0.0978027731180191,
0.13803631067276,
0.19798816740512848,
0.15518704056739807,
0.022654179483652115,
0.08196857571601868,
0.01881195791065693,
-0.054025162011384964,
-0.13409586250782013,
0.052523914724588394,
-0.031103111803531647,
0.10320305824279785,
-0.02948572114109993,
0.2257205992937088,
0.04496707022190094,
-0.1768120527267456,
0.05496814101934433,
-0.06614428013563156,
-0.09080404788255692,
-0.10749354213476181,
-0.02505425177514553,
-0.0902111679315567,
-0.15096044540405273,
-0.009645248763263226,
-0.1063593253493309,
0.03248123452067375,
0.10865290462970734,
0.004712684545665979,
-0.01764732599258423,
0.1272406429052353,
0.013217402622103691,
0.025788625702261925,
0.07594271004199982,
-0.014927607960999012,
-0.027224913239479065,
-0.09520821273326874,
-0.08316735923290253,
-0.012718106620013714,
-0.017646554857492447,
0.03948863595724106,
-0.0502096451818943,
-0.07491934299468994,
0.029904156923294067,
-0.03756102919578552,
-0.1025482639670372,
0.021685196086764336,
0.012731635011732578,
0.06003250181674957,
0.06785424053668976,
0.024743041023612022,
0.012629800476133823,
0.0006808802718296647,
0.22602741420269012,
-0.07554024457931519,
-0.1019967794418335,
-0.10713184624910355,
0.276019424200058,
0.035832688212394714,
-0.009743805974721909,
0.02944599650800228,
-0.06189579516649246,
0.007455654442310333,
0.21597574651241302,
0.1739378720521927,
-0.1181313768029213,
-0.013297849334776402,
-0.012078512459993362,
-0.014530202373862267,
-0.019345158711075783,
0.12100505083799362,
0.14087797701358795,
0.0006564384675584733,
-0.10642459988594055,
-0.026896508410573006,
-0.06009485200047493,
-0.02377982810139656,
-0.05196109414100647,
0.05683085694909096,
0.033526256680488586,
0.00331496330909431,
-0.04064619913697243,
0.07678063213825226,
-0.05955599993467331,
-0.07367413491010666,
0.037557318806648254,
-0.19047723710536957,
-0.17626935243606567,
-0.01215414796024561,
0.08872102946043015,
0.00970299169421196,
0.05333808809518814,
-0.02920464798808098,
0.004591642413288355,
0.060123104602098465,
-0.029645239934325218,
-0.059403713792562485,
-0.09631180018186569,
0.11733177304267883,
-0.11789233237504959,
0.1795726716518402,
-0.036558449268341064,
0.06525629758834839,
0.1295536756515503,
0.07386068254709244,
-0.05849546939134598,
0.0905308872461319,
0.0383295975625515,
-0.07316970825195312,
0.033812515437603,
0.09045080095529556,
-0.041759129613637924,
0.0570332370698452,
0.046124983578920364,
-0.11062696576118469,
0.036618053913116455,
-0.06846138834953308,
-0.0538756288588047,
-0.0364326611161232,
-0.046924762427806854,
-0.059439510107040405,
0.12497057020664215,
0.21467553079128265,
-0.02933594584465027,
0.02395179122686386,
-0.08130701631307602,
0.003311332780867815,
0.042429547756910324,
0.017754636704921722,
-0.09741375595331192,
-0.22691240906715393,
0.01181722804903984,
0.08853631466627121,
-0.01784222386777401,
-0.22917316854000092,
-0.09600913524627686,
-0.0014090491458773613,
-0.0623500682413578,
-0.09767063707113266,
0.10774504393339157,
0.06769252568483353,
0.04295577108860016,
-0.05155310779809952,
-0.12973769009113312,
-0.07922076433897018,
0.15856507420539856,
-0.13655982911586761,
-0.08332978188991547
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.