sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391474227602153474/wSbqLqAl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">☆ᗪoubleᗰarshmallow☆</div> <div style="text-align: center; font-size: 14px;">@eromaximus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ☆ᗪoubleᗰarshmallow☆. | Data | ☆ᗪoubleᗰarshmallow☆ | | --- | --- | | Tweets downloaded | 674 | | Retweets | 388 | | Short tweets | 46 | | Tweets kept | 240 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25ro381p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eromaximus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c712ca0z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c712ca0z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eromaximus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/eromaximus/1621793572911/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/eromaximus
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ᗪoubleᗰarshmallow @eromaximus I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ᗪoubleᗰarshmallow. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @eromaximus's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1240625242072023044/Jruquom7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jhanez jhobbes, jhilosopher 🤖 AI Bot </div> <div style="font-size: 15px">@esjhanez bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@esjhanez's tweets](https://twitter.com/esjhanez). | Data | Quantity | | --- | --- | | Tweets downloaded | 2313 | | Retweets | 266 | | Short tweets | 197 | | Tweets kept | 1850 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cebik9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @esjhanez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ot7nfwp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ot7nfwp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/esjhanez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/esjhanez
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
jhanez jhobbes, jhilosopher AI Bot @esjhanez bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @esjhanez's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @esjhanez's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361550470737661955/haffXjaz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Rose for a Blue NC 🤖 AI Bot </div> <div style="font-size: 15px">@estradiolgirl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@estradiolgirl's tweets](https://twitter.com/estradiolgirl). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 120 | | Short tweets | 270 | | Tweets kept | 2855 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f2rm4w03/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @estradiolgirl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q3g7jg8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q3g7jg8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/estradiolgirl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/estradiolgirl/1616726101244/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/estradiolgirl
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Rose for a Blue NC AI Bot @estradiolgirl bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @estradiolgirl's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @estradiolgirl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372276029386014722/9ksa1ZxE_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">milj spiller 🤖 AI Bot </div> <div style="font-size: 15px">@estrowife bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@estrowife's tweets](https://twitter.com/estrowife). | Data | Quantity | | --- | --- | | Tweets downloaded | 532 | | Retweets | 77 | | Short tweets | 112 | | Tweets kept | 343 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uqh1mxf8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @estrowife's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gpbbbh7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gpbbbh7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/estrowife') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/estrowife/1617916527998/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/estrowife
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
milj spiller AI Bot @estrowife bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @estrowife's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @estrowife's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/706642709511966721/4cRlD__0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Eliezer Yudkowsky</div> <div style="text-align: center; font-size: 14px;">@esyudkowsky</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Eliezer Yudkowsky. | Data | Eliezer Yudkowsky | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 961 | | Short tweets | 139 | | Tweets kept | 2142 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kh7s29il/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @esyudkowsky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/h23uqz7c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/h23uqz7c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/esyudkowsky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/esyudkowsky/1677435225658/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/esyudkowsky
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Eliezer Yudkowsky @esyudkowsky I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Eliezer Yudkowsky. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @esyudkowsky's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1159160036125564930/33nAmouA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ET Canada 🤖 AI Bot </div> <div style="font-size: 15px">@etcanada bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@etcanada's tweets](https://twitter.com/etcanada). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 27 | | Short tweets | 13 | | Tweets kept | 3201 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mkfurkr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @etcanada's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37a3w2d0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37a3w2d0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/etcanada') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/etcanada/1613324841076/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/etcanada
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
ET Canada AI Bot @etcanada bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @etcanada's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @etcanada's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1305274903730421760/DhfkgCnC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jay-Z Ballard</div> <div style="text-align: center; font-size: 14px;">@evan_pincus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jay-Z Ballard. | Data | Jay-Z Ballard | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 608 | | Short tweets | 342 | | Tweets kept | 2265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yzmzh54y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evan_pincus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25ge5u94) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25ge5u94/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evan_pincus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evan_pincus/1627062659543/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evan_pincus
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Jay-Z Ballard @evan\_pincus I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Jay-Z Ballard. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evan\_pincus's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370268003426795522/-x4YzCdo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Malone 🤖 AI Bot </div> <div style="font-size: 15px">@evancmalone bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evancmalone's tweets](https://twitter.com/evancmalone). | Data | Quantity | | --- | --- | | Tweets downloaded | 774 | | Retweets | 468 | | Short tweets | 15 | | Tweets kept | 291 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2txxz8kc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evancmalone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qakxbgu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qakxbgu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evancmalone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evancmalone/1616776839848/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evancmalone
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Evan Malone AI Bot @evancmalone bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @evancmalone's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evancmalone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343999703776518144/ZWju8o9V_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Knox 🤖 AI Bot </div> <div style="font-size: 15px">@evandknox bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evandknox's tweets](https://twitter.com/evandknox). | Data | Quantity | | --- | --- | | Tweets downloaded | 848 | | Retweets | 98 | | Short tweets | 53 | | Tweets kept | 697 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oe57zgg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evandknox's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zossq8w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zossq8w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evandknox') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evandknox
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Evan Knox AI Bot @evandknox bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @evandknox's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evandknox's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/504088650364104705/OOCZwfkK_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Fields 🤖 AI Bot </div> <div style="font-size: 15px">@evanjfields bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evanjfields's tweets](https://twitter.com/evanjfields). | Data | Quantity | | --- | --- | | Tweets downloaded | 1323 | | Retweets | 36 | | Short tweets | 43 | | Tweets kept | 1244 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10tsj3yq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evanjfields's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vdeuk4w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vdeuk4w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evanjfields') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evanjfields/1617973644351/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evanjfields
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Evan Fields AI Bot @evanjfields bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @evanjfields's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evanjfields's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410130767104163841/WS8Nq8Ua_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">everythingsabong</div> <div style="text-align: center; font-size: 14px;">@everythingab0ng</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from everythingsabong. | Data | everythingsabong | | --- | --- | | Tweets downloaded | 1514 | | Retweets | 303 | | Short tweets | 547 | | Tweets kept | 664 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f4kcbzao/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @everythingab0ng's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1thy469j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1thy469j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/everythingab0ng') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/everythingab0ng/1628656161414/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/everythingab0ng
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT everythingsabong @everythingab0ng I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from everythingsabong. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @everythingab0ng's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378879915769032705/PJ7_-J0w_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dżrevelow🪤 (BANNED AGAIN) 🤖 AI Bot </div> <div style="font-size: 15px">@evetheism bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evetheism's tweets](https://twitter.com/evetheism). | Data | Quantity | | --- | --- | | Tweets downloaded | 1393 | | Retweets | 136 | | Short tweets | 386 | | Tweets kept | 871 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zgufrxx1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evetheism's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10yml7r1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10yml7r1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evetheism') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evetheism/1618025885286/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evetheism
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dżrevelow (BANNED AGAIN) AI Bot @evetheism bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @evetheism's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evetheism's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/691394350006177793/dV2zgoWt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Black Metal Cats 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@evilbmcats bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evilbmcats's tweets](https://twitter.com/evilbmcats). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2201</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>240</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1959</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2lubo9i1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evilbmcats's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/t9cbvdh0) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/t9cbvdh0/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/evilbmcats'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evilbmcats/1602273897909/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evilbmcats
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Black Metal Cats AI Bot </div> <div style="font-size: 15px; color: #657786">@evilbmcats bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @evilbmcats's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2201</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>240</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1959</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @evilbmcats's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/evilbmcats'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @evilbmcats's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2201</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>240</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1959</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @evilbmcats's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/evilbmcats'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @evilbmcats's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2201</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>240</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1959</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @evilbmcats's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/evilbmcats'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318411266835304449/5aNEJ4E__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">cheyenne 🤖 AI Bot </div> <div style="font-size: 15px">@evilvillain1231 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evilvillain1231's tweets](https://twitter.com/evilvillain1231). | Data | Quantity | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 439 | | Short tweets | 469 | | Tweets kept | 2326 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fxxttga6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evilvillain1231's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zyo772l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zyo772l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evilvillain1231') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evilvillain1231/1617765945431/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evilvillain1231
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cheyenne AI Bot @evilvillain1231 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @evilvillain1231's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @evilvillain1231's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1299331191154176000/a2ywEWUd_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Olson 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@evolso bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evolso's tweets](https://twitter.com/evolso). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>220</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>61</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>145</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3loepe62/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evolso's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19xho6xr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19xho6xr/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/evolso'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/evolso/1606929414291/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/evolso
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Olson AI Bot </div> <div style="font-size: 15px; color: #657786">@evolso bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @evolso's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>220</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>61</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>145</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @evolso's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/evolso'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @evolso's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>220</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>61</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>14</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>145</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @evolso's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/evolso'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @evolso's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>220</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>61</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>14</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>145</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @evolso's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/evolso'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 427, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/792916557403795456/d-iEnfPD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Existential Comics 🤖 AI Bot </div> <div style="font-size: 15px">@existentialcoms bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@existentialcoms's tweets](https://twitter.com/existentialcoms). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 14 | | Short tweets | 17 | | Tweets kept | 3219 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zwnq29b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @existentialcoms's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pb5l6b7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pb5l6b7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/existentialcoms') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/existentialcoms/1616688856296/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/existentialcoms
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Existential Comics AI Bot @existentialcoms bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @existentialcoms's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @existentialcoms's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442763644606029828/CeUlNL6L_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468633629274218502/LGrXJ5Fg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446914192825454592/cGOslAWZ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀</div> <div style="text-align: center; font-size: 14px;">@dcbuild3r-tetranode-thenftattorney-zeneca_33</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀. | Data | Zeneca_33 🍌 | Jacob Martin | TΞtranodΞ (💎, 💎) | dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀 | | --- | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3247 | 3250 | | Retweets | 7 | 58 | 736 | 318 | | Short tweets | 537 | 390 | 555 | 646 | | Tweets kept | 2706 | 2802 | 1956 | 2286 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1562a0v6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dcbuild3r-tetranode-thenftattorney-zeneca_33's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dcbuild3r-tetranode-thenftattorney-zeneca_33') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/exp-twt456
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Zeneca\_33 & Jacob Martin & TΞtranodΞ (, ) & URL (3,3)(,)┻┳ @dcbuild3r-tetranode-thenftattorney-zeneca\_33 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Zeneca\_33 & Jacob Martin & TΞtranodΞ (, ) & URL (3,3)(,)┻┳. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dcbuild3r-tetranode-thenftattorney-zeneca\_33's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1609579241695506433/-sKUorXb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Stinkbomb 🐀</div> <div style="text-align: center; font-size: 14px;">@extravermin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Stinkbomb 🐀. | Data | Stinkbomb 🐀 | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 546 | | Short tweets | 156 | | Tweets kept | 2502 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mfi36nht/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @extravermin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7zdnqee3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7zdnqee3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/extravermin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/extravermin/1677361603935/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/extravermin
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Stinkbomb @extravermin I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Stinkbomb . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @extravermin's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1178341008737800193/NsCUdPn1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eyebleach Inc. 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@eyebleachinc bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@eyebleachinc's tweets](https://twitter.com/eyebleachinc). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>13</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>201</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/59v96ke8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eyebleachinc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qm8dx8b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qm8dx8b/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/eyebleachinc'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/eyebleachinc/1607642541904/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/eyebleachinc
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eyebleach Inc. AI Bot </div> <div style="font-size: 15px; color: #657786">@eyebleachinc bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @eyebleachinc's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>13</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>201</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @eyebleachinc's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/eyebleachinc'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @eyebleachinc's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>13</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>201</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @eyebleachinc's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/eyebleachinc'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @eyebleachinc's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>218</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>13</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>201</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @eyebleachinc's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/eyebleachinc'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491399079779352581/L0_MeHf1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Easy</div> <div style="text-align: center; font-size: 14px;">@ezeojeda_97</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Easy. | Data | Easy | | --- | --- | | Tweets downloaded | 348 | | Retweets | 25 | | Short tweets | 58 | | Tweets kept | 265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mcrv516/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ezeojeda_97's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12ymakai) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12ymakai/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ezeojeda_97') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ezeojeda_97/1644604009323/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ezeojeda_97
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Easy @ezeojeda\_97 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Easy. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ezeojeda\_97's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1205000761521819648/JAI78T4j_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ezra Klein 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ezraklein bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ezraklein's tweets](https://twitter.com/ezraklein). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3198</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>727</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>87</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2384</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/34edyx8b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ezraklein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/iaon36wp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/iaon36wp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ezraklein'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ezraklein/1602197132592/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ezraklein
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ezra Klein AI Bot </div> <div style="font-size: 15px; color: #657786">@ezraklein bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ezraklein's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3198</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>727</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>87</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2384</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ezraklein's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ezraklein'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ezraklein's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3198</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>727</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>87</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2384</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ezraklein's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ezraklein'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ezraklein's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3198</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>727</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>87</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2384</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ezraklein's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ezraklein'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385670642327040001/Z5LaCXJI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Formula 1</div> <div style="text-align: center; font-size: 14px;">@f1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Formula 1. | Data | Formula 1 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 157 | | Short tweets | 35 | | Tweets kept | 3058 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tsp2kk9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @f1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vu2nlz5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vu2nlz5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/f1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/f1/1642215447713/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/f1
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Formula 1 @f1 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Formula 1. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @f1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1305899202703048705/bMHePt35_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Facebook 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@facebook bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@facebook's tweets](https://twitter.com/facebook). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3227</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>165</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>22</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3040</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11ylirf6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @facebook's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13i0hel1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13i0hel1/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/facebook'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/facebook/1609715229852/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/facebook
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Facebook AI Bot </div> <div style="font-size: 15px; color: #657786">@facebook bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @facebook's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3227</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>165</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>22</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3040</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @facebook's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/facebook'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @facebook's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3227</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>165</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>22</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3040</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @facebook's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/facebook'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @facebook's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3227</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>165</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>22</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3040</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @facebook's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/facebook'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 427, 73, 9, 165, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364780488351711234/IEnAKzOo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Factually Fictitious</div> <div style="text-align: center; font-size: 14px;">@factfictyoutube</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Factually Fictitious. | Data | Factually Fictitious | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 957 | | Short tweets | 134 | | Tweets kept | 2120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b5r6jmml/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @factfictyoutube's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31b4bo7z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31b4bo7z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/factfictyoutube') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/factfictyoutube/1627537153556/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/factfictyoutube
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Factually Fictitious @factfictyoutube I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Factually Fictitious. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @factfictyoutube's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271838750209867776/AIzGDVfw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272055508279664640/jgeplEoJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1290232914135982080/1CpBaNOH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SweetyMe ❤️ & My World Baby 💖 & Magnificent Life 🦋</div> <div style="text-align: center; font-size: 14px;">@factoport-lifedote-lifelywords</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SweetyMe ❤️ & My World Baby 💖 & Magnificent Life 🦋. | Data | SweetyMe ❤️ | My World Baby 💖 | Magnificent Life 🦋 | | --- | --- | --- | --- | | Tweets downloaded | 2607 | 1488 | 2419 | | Retweets | 0 | 1 | 1 | | Short tweets | 57 | 18 | 2 | | Tweets kept | 2550 | 1469 | 2416 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24g662kp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @factoport-lifedote-lifelywords's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qsyqlji) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qsyqlji/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/factoport-lifedote-lifelywords') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/factoport-lifedote-lifelywords/1629208035773/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/factoport-lifedote-lifelywords
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG SweetyMe ️ & My World Baby & Magnificent Life @factoport-lifedote-lifelywords I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from SweetyMe ️ & My World Baby & Magnificent Life . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @factoport-lifedote-lifelywords's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1326257325250932737/dc_DqeXe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel on Earth 🤖 AI Bot </div> <div style="font-size: 15px">@failboat103 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@failboat103's tweets](https://twitter.com/failboat103). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 273 | | Short tweets | 589 | | Tweets kept | 2383 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lwsze29/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @failboat103's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1y7f99jd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1y7f99jd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/failboat103') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/failboat103/1615175501983/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/failboat103
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Daniel on Earth AI Bot @failboat103 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @failboat103's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @failboat103's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359781238626787329/gplqQPUC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">゚+*:;;:nᏆFYgvgc๓Ꭿjjutdxryjvnlohcxseᕍᖴᖇ๓ioᎾKᏴ๏ᎯᏔtr 🤖 AI Bot </div> <div style="font-size: 15px">@fakegirl501 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fakegirl501's tweets](https://twitter.com/fakegirl501). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 0 | | Short tweets | 9 | | Tweets kept | 3230 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26mq2690/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fakegirl501's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25jro0gs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25jro0gs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fakegirl501') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fakegirl501
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
゚+\*:;;:nᏆFYgvgc๓Ꭿjjutdxryjvnlohcxseᕍᖴᖇ๓ioᎾKᏴ๏ᎯᏔtr AI Bot @fakegirl501 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fakegirl501's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fakegirl501's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466245458104303620/GBQskLmx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">becca ψ</div> <div style="text-align: center; font-size: 14px;">@fakeyououttt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from becca ψ. | Data | becca ψ | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 630 | | Short tweets | 326 | | Tweets kept | 2292 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gzvd35c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fakeyououttt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kv2qbo2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kv2qbo2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fakeyououttt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/fakeyououttt/1643494642669/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fakeyououttt
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT becca ψ @fakeyououttt I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from becca ψ. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fakeyououttt's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339271682679312391/_937loJu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">α(lєх)αndrα 🤖 AI Bot </div> <div style="font-size: 15px">@fallexcy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fallexcy's tweets](https://twitter.com/fallexcy). | Data | Quantity | | --- | --- | | Tweets downloaded | 408 | | Retweets | 48 | | Short tweets | 21 | | Tweets kept | 339 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wda9s2r7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fallexcy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10eje3u5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10eje3u5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fallexcy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fallexcy/1614134311978/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fallexcy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
α(lєх)αndrα AI Bot @fallexcy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fallexcy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fallexcy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1324348950145544192/_NgUzqaJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394641363740905478/eNKpHxUd_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1379154157098110977/lajO-om1_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jaypo & Fardeg & Nial</div> <div style="text-align: center; font-size: 14px;">@fardeg1-jaypomeister-shortdaggerdick</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jaypo & Fardeg & Nial. | Data | jaypo | Fardeg | Nial | | --- | --- | --- | --- | | Tweets downloaded | 399 | 3130 | 441 | | Retweets | 31 | 392 | 46 | | Short tweets | 168 | 785 | 202 | | Tweets kept | 200 | 1953 | 193 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f0npandx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fardeg1-jaypomeister-shortdaggerdick's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v3bv5lt7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v3bv5lt7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fardeg1-jaypomeister-shortdaggerdick') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fardeg1-jaypomeister-shortdaggerdick/1623707785167/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fardeg1-jaypomeister-shortdaggerdick
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG jaypo & Fardeg & Nial @fardeg1-jaypomeister-shortdaggerdick I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from jaypo & Fardeg & Nial. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fardeg1-jaypomeister-shortdaggerdick's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400488156345126914/R1JrzEHO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Farid</div> <div style="text-align: center; font-size: 14px;">@farid_0v</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Farid. | Data | Farid | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 565 | | Short tweets | 338 | | Tweets kept | 2319 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jw6z4gy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @farid_0v's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uplo21dc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uplo21dc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/farid_0v') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/farid_0v/1627279407665/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/farid_0v
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Farid @farid\_0v I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Farid. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @farid\_0v's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330826999548366848/LjVI40IO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cock & Ball Nurture 🤖 AI Bot </div> <div style="font-size: 15px">@fartydoodooman bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fartydoodooman's tweets](https://twitter.com/fartydoodooman). | Data | Quantity | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 41 | | Short tweets | 710 | | Tweets kept | 2486 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qujd2zx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fartydoodooman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17h7xprc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17h7xprc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fartydoodooman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fartydoodooman
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cock & Ball Nurture AI Bot @fartydoodooman bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fartydoodooman's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fartydoodooman's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/713653445262237696/mdyVSGoj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd</div> <div style="text-align: center; font-size: 14px;">@fastfwdco</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fastfwd. | Data | fastfwd | | --- | --- | | Tweets downloaded | 947 | | Retweets | 60 | | Short tweets | 5 | | Tweets kept | 882 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35uhk2zt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fastfwdco's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24nk44tw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24nk44tw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fastfwdco') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fastfwdco/1633019095463/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fastfwdco
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT fastfwd @fastfwdco I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from fastfwd. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fastfwdco's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375565484142247936/O4bEMEUL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coriander 🤖 AI Bot </div> <div style="font-size: 15px">@fatuisv bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fatuisv's tweets](https://twitter.com/fatuisv). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 145 | | Short tweets | 1007 | | Tweets kept | 2094 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gxoztns2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fatuisv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3imhaxow) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3imhaxow/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fatuisv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fatuisv/1617499521191/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fatuisv
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Coriander AI Bot @fatuisv bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fatuisv's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fatuisv's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1234692331263016960/7uR-nYW0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">François Chollet 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fchollet bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fchollet's tweets](https://twitter.com/fchollet). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>682</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>82</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2467</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2rv5any2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fchollet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3ajhtw99) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3ajhtw99/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fchollet'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fchollet
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">François Chollet AI Bot </div> <div style="font-size: 15px; color: #657786">@fchollet bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fchollet's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>682</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>82</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2467</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fchollet's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fchollet'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fchollet's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>682</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>82</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2467</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fchollet's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fchollet'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fchollet's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>682</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>82</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2467</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fchollet's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fchollet'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/3294236108/2af3b3e10bf3c1488d84e6c9190f5c05_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fred 🤖 AI Bot </div> <div style="font-size: 15px">@fdgwhite bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fdgwhite's tweets](https://twitter.com/fdgwhite). | Data | Quantity | | --- | --- | | Tweets downloaded | 241 | | Retweets | 40 | | Short tweets | 21 | | Tweets kept | 180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d5jxswv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fdgwhite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zmh9ui27) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zmh9ui27/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fdgwhite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fdgwhite/1613440735468/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fdgwhite
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fred AI Bot @fdgwhite bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fdgwhite's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fdgwhite's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1347701526286848000/suIjtTqI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">FebreezyXD 🤖 AI Bot </div> <div style="font-size: 15px">@febreezyxd bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@febreezyxd's tweets](https://twitter.com/febreezyxd). | Data | Quantity | | --- | --- | | Tweets downloaded | 2579 | | Retweets | 281 | | Short tweets | 633 | | Tweets kept | 1665 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1uhj4h75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @febreezyxd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37c0iqc2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37c0iqc2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/febreezyxd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/febreezyxd/1614137805621/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/febreezyxd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
FebreezyXD AI Bot @febreezyxd bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @febreezyxd's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @febreezyxd's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375086596374941701/W31MndHq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">fe 🤖 AI Bot </div> <div style="font-size: 15px">@felipe3867 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@felipe3867's tweets](https://twitter.com/felipe3867). | Data | Quantity | | --- | --- | | Tweets downloaded | 3158 | | Retweets | 537 | | Short tweets | 512 | | Tweets kept | 2109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31fmna12/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @felipe3867's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nhj5ov2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nhj5ov2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/felipe3867') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/felipe3867/1616687750762/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/felipe3867
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
fe AI Bot @felipe3867 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @felipe3867's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @felipe3867's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374932590105395204/VnIg8IKQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Felipe Pereira 🤖 AI Bot </div> <div style="font-size: 15px">@felipenpereira bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@felipenpereira's tweets](https://twitter.com/felipenpereira). | Data | Quantity | | --- | --- | | Tweets downloaded | 1725 | | Retweets | 782 | | Short tweets | 90 | | Tweets kept | 853 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/w73n9a8d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @felipenpereira's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1krn3d14) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1krn3d14/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/felipenpereira') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/felipenpereira/1616698040097/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/felipenpereira
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Felipe Pereira AI Bot @felipenpereira bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @felipenpereira's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @felipenpereira's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1301465003308982273/R8kAG77__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">liam 🎅🗡🔜 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@femawalmart bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@femawalmart's tweets](https://twitter.com/femawalmart). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3077</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>497</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>620</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1960</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q9q9o6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femawalmart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ogpvjlp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ogpvjlp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/femawalmart'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/femawalmart/1609143235673/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/femawalmart
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">liam AI Bot </div> <div style="font-size: 15px; color: #657786">@femawalmart bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @femawalmart's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3077</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>497</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>620</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1960</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @femawalmart's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/femawalmart'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @femawalmart's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3077</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>497</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>620</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1960</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @femawalmart's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/femawalmart'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @femawalmart's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3077</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>497</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>620</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1960</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @femawalmart's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/femawalmart'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355330349623111680/KUgdYM0o_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">femboj zizek 🤖 AI Bot </div> <div style="font-size: 15px">@fembojj bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fembojj's tweets](https://twitter.com/fembojj). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 86 | | Short tweets | 1064 | | Tweets kept | 2091 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hzix93pw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fembojj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xgawags) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xgawags/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fembojj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fembojj/1614095493647/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fembojj
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
femboj zizek AI Bot @fembojj bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fembojj's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fembojj's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370404573374976005/WyjvD-FA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Storm | 嵐 🤖 AI Bot </div> <div style="font-size: 15px">@femboympreg bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@femboympreg's tweets](https://twitter.com/femboympreg). | Data | Quantity | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 594 | | Short tweets | 969 | | Tweets kept | 1649 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30bwh0wo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femboympreg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8vc73356) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8vc73356/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/femboympreg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/femboympreg/1617809081812/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/femboympreg
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Storm | 嵐 AI Bot @femboympreg bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @femboympreg's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @femboympreg's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569453578493763590/MerXNdrF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">shitbrain dyke upside down era</div> <div style="text-align: center; font-size: 14px;">@femoidfurry</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from shitbrain dyke upside down era. | Data | shitbrain dyke upside down era | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 1977 | | Short tweets | 106 | | Tweets kept | 1128 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34ui7fp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femoidfurry's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/177yzikv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/177yzikv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/femoidfurry') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/femoidfurry/1666785376927/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/femoidfurry
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT shitbrain dyke upside down era @femoidfurry I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from shitbrain dyke upside down era. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @femoidfurry's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1299864951063019521/bjlvTUMN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fernando A. Iglesias 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@feriglesias bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@feriglesias's tweets](https://twitter.com/feriglesias). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>380</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>465</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2358</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/355taxah/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @feriglesias's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1unu5cwm) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1unu5cwm/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/feriglesias'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://res.cloudinary.com/huggingtweets/image/upload/v1600051758/feriglesias.jpg", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/feriglesias
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fernando A. Iglesias AI Bot </div> <div style="font-size: 15px; color: #657786">@feriglesias bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @feriglesias's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>380</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>465</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2358</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @feriglesias's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/feriglesias'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @feriglesias's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>380</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>465</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2358</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @feriglesias's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/feriglesias'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @feriglesias's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>380</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>465</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2358</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @feriglesias's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/feriglesias'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1172580448662372353/SwJNqDQl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fesshole 🧻</div> <div style="text-align: center; font-size: 14px;">@fesshole</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fesshole 🧻. | Data | Fesshole 🧻 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 14 | | Short tweets | 1 | | Tweets kept | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3473th10/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fesshole's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wz2ncbz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wz2ncbz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fesshole') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fesshole
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Fesshole @fesshole I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Fesshole . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fesshole's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370161206158360579/_G9rCdzT_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Rory Dean ☭ 🤖 AI Bot </div> <div style="font-size: 15px">@feyerabender bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@feyerabender's tweets](https://twitter.com/feyerabender). | Data | Quantity | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 722 | | Short tweets | 363 | | Tweets kept | 2110 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cjspfal/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @feyerabender's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17iujs5g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17iujs5g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/feyerabender') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/feyerabender/1616669524008/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/feyerabender
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Rory Dean AI Bot @feyerabender bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @feyerabender's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @feyerabender's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1278360830367674368/SfqcgSVD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fidelity Investments 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fidelity bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fidelity's tweets](https://twitter.com/fidelity). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>103</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3137</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ow5lds5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fidelity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30ibmpq1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30ibmpq1/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fidelity'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fidelity/1607118440881/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fidelity
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fidelity Investments AI Bot </div> <div style="font-size: 15px; color: #657786">@fidelity bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fidelity's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>103</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3137</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fidelity's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fidelity'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fidelity's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>103</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3137</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fidelity's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fidelity'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fidelity's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>103</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3137</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fidelity's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fidelity'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1300740232485068800/KpNhyts7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fiersa Besari 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fiersabesari bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fiersabesari's tweets](https://twitter.com/fiersabesari). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3238</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>636</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2570</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/11ffqe7z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fiersabesari's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3q5publ5) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3q5publ5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fiersabesari'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fiersabesari
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fiersa Besari AI Bot </div> <div style="font-size: 15px; color: #657786">@fiersabesari bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fiersabesari's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3238</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>636</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2570</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fiersabesari's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fiersabesari'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fiersabesari's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3238</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>636</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2570</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fiersabesari's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fiersabesari'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fiersabesari's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3238</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>636</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2570</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fiersabesari's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fiersabesari'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1270466520859267076/CwFFAx0q_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">FIFER Mods 🤖 AI Bot </div> <div style="font-size: 15px">@fifer_mods bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fifer_mods's tweets](https://twitter.com/fifer_mods). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 471 | | Short tweets | 660 | | Tweets kept | 2118 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p1w2iyo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fifer_mods's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d0niqoiy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d0niqoiy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fifer_mods') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fifer_mods/1617766950611/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fifer_mods
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
FIFER Mods AI Bot @fifer\_mods bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fifer\_mods's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fifer\_mods's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513191641921765388/rToX3RpX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">15</div> <div style="text-align: center; font-size: 14px;">@fifteenai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 15. | Data | 15 | | --- | --- | | Tweets downloaded | 111 | | Retweets | 9 | | Short tweets | 10 | | Tweets kept | 92 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/169wgrhk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fifteenai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/390dyi5s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/390dyi5s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fifteenai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/fifteenai/1658549683215/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fifteenai
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT 15 @fifteenai I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from 15. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fifteenai's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/771731027882422272/ysb3KvNr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Filip Podstavec ⛏ 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@filippodstavec bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@filippodstavec's tweets](https://twitter.com/filippodstavec). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3076</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1232</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>84</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1760</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/jyrecnux/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @filippodstavec's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/14l6h1ca) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/14l6h1ca/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/filippodstavec'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/filippodstavec
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Filip Podstavec AI Bot </div> <div style="font-size: 15px; color: #657786">@filippodstavec bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @filippodstavec's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3076</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1232</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>84</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1760</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @filippodstavec's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/filippodstavec'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @filippodstavec's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3076</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1232</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>84</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1760</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @filippodstavec's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/filippodstavec'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @filippodstavec's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3076</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1232</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>84</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1760</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @filippodstavec's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/filippodstavec'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356115738046717953/9nN4Gj3R_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Filler Username 🤖 AI Bot </div> <div style="font-size: 15px">@filler_username bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@filler_username's tweets](https://twitter.com/filler_username). | Data | Quantity | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 123 | | Short tweets | 827 | | Tweets kept | 2237 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n0vde62/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @filler_username's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vmqixu2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vmqixu2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/filler_username') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/filler_username/1617904327234/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/filler_username
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Filler Username AI Bot @filler\_username bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @filler\_username's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @filler\_username's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1222122622307241984/4rIV3vU6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alex Riviere 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fimion bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fimion's tweets](https://twitter.com/fimion). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3240</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>585</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>459</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2196</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2dtfbkrf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fimion's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/31skg71x) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/31skg71x/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fimion'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fimion/1602258159865/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fimion
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Alex Riviere AI Bot </div> <div style="font-size: 15px; color: #657786">@fimion bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fimion's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3240</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>585</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>459</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2196</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fimion's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fimion'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fimion's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3240</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>585</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>459</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2196</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fimion's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fimion'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fimion's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3240</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>585</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>459</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2196</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fimion's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fimion'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397676905403457536/TUd6TAFf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">☀️Fiona☀️</div> <div style="text-align: center; font-size: 14px;">@fiodeer</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ☀️Fiona☀️. | Data | ☀️Fiona☀️ | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 462 | | Short tweets | 565 | | Tweets kept | 2215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cgmdugf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fiodeer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z9bw9h6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z9bw9h6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fiodeer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fiodeer/1624477503382/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fiodeer
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ️Fiona️ @fiodeer I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ️Fiona️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fiodeer's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371972159418068993/YOAhNp9n_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">oskar is having a moment 🤖 AI Bot </div> <div style="font-size: 15px">@fishbeelamp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fishbeelamp's tweets](https://twitter.com/fishbeelamp). | Data | Quantity | | --- | --- | | Tweets downloaded | 1384 | | Retweets | 198 | | Short tweets | 333 | | Tweets kept | 853 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sbub9s2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fishbeelamp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v7uxmqu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v7uxmqu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fishbeelamp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fishbeelamp/1616689100015/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fishbeelamp
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
oskar is having a moment AI Bot @fishbeelamp bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fishbeelamp's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fishbeelamp's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1302368056266625024/DjCeJU-T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Florian Onur 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fkuhlmeier bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fkuhlmeier's tweets](https://twitter.com/fkuhlmeier). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>168</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>60</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/yb58yalp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fkuhlmeier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/9cqebx43) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/9cqebx43/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fkuhlmeier'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fkuhlmeier/1603890209601/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fkuhlmeier
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Florian Onur AI Bot </div> <div style="font-size: 15px; color: #657786">@fkuhlmeier bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fkuhlmeier's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>168</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>60</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fkuhlmeier's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fkuhlmeier'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fkuhlmeier's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>168</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>60</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fkuhlmeier's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fkuhlmeier'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fkuhlmeier's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>168</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>60</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fkuhlmeier's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fkuhlmeier'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1149796520402784256/VIu-RJTA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">FlairMax 🤖 AI Bot </div> <div style="font-size: 15px">@flairmaxuwp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@flairmaxuwp's tweets](https://twitter.com/flairmaxuwp). | Data | Quantity | | --- | --- | | Tweets downloaded | 230 | | Retweets | 33 | | Short tweets | 25 | | Tweets kept | 172 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v2sbjd88/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flairmaxuwp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tprbf8h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tprbf8h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flairmaxuwp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/flairmaxuwp/1617311982893/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/flairmaxuwp
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
FlairMax AI Bot @flairmaxuwp bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @flairmaxuwp's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @flairmaxuwp's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1278450406843125762/f5u_F2ng_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Flatiron School (at 🏡) 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@flatironschool bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@flatironschool's tweets](https://twitter.com/flatironschool). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3202</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1068</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>582</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1552</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/179qzrny/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flatironschool's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/174rjbb8) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/174rjbb8/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/flatironschool'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/flatironschool/1603341000640/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/flatironschool
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Flatiron School (at ) AI Bot </div> <div style="font-size: 15px; color: #657786">@flatironschool bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @flatironschool's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3202</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1068</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>582</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1552</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @flatironschool's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/flatironschool'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @flatironschool's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3202</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1068</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>582</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1552</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @flatironschool's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/flatironschool'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @flatironschool's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3202</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1068</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>582</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1552</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @flatironschool's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/flatironschool'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1324181168615432193/TW4ddzsh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">⚾️Method Ma'am⚾️ 🤖 AI Bot </div> <div style="font-size: 15px">@fletcherfidelis bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fletcherfidelis's tweets](https://twitter.com/fletcherfidelis). | Data | Quantity | | --- | --- | | Tweets downloaded | 2075 | | Retweets | 426 | | Short tweets | 306 | | Tweets kept | 1343 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dst3vk7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fletcherfidelis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eigb7j9r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eigb7j9r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fletcherfidelis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fletcherfidelis/1617901836091/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fletcherfidelis
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
️Method Ma'am️ AI Bot @fletcherfidelis bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fletcherfidelis's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fletcherfidelis's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471692544157405184/P3FUX4w9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ali ψ</div> <div style="text-align: center; font-size: 14px;">@flightlessmilfs</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ali ψ. | Data | Ali ψ | | --- | --- | | Tweets downloaded | 1815 | | Retweets | 642 | | Short tweets | 181 | | Tweets kept | 992 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yuw97j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flightlessmilfs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31esgsfh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31esgsfh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flightlessmilfs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/flightlessmilfs/1643422380331/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/flightlessmilfs
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Ali ψ @flightlessmilfs I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ali ψ. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @flightlessmilfs's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374903267277340679/T2ztG3zQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">lucas 🤖 AI Bot </div> <div style="font-size: 15px">@florestantan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@florestantan's tweets](https://twitter.com/florestantan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 137 | | Short tweets | 509 | | Tweets kept | 2589 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35n5ntba/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @florestantan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uo0luuy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uo0luuy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/florestantan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/florestantan/1617209255342/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/florestantan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lucas AI Bot @florestantan bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @florestantan's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @florestantan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1286445868166582273/lsl6r9tw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Greg Florez 🤖 AI Bot </div> <div style="font-size: 15px">@florezgregory bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@florezgregory's tweets](https://twitter.com/florezgregory). | Data | Quantity | | --- | --- | | Tweets downloaded | 3136 | | Retweets | 1644 | | Short tweets | 247 | | Tweets kept | 1245 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h16lorzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @florezgregory's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3asfrvve) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3asfrvve/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/florezgregory') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/florezgregory/1616684382614/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/florezgregory
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Greg Florez AI Bot @florezgregory bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @florezgregory's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @florezgregory's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427988024646717441/3WW-7dhn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tea and oranges</div> <div style="text-align: center; font-size: 14px;">@floristree92</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tea and oranges. | Data | tea and oranges | | --- | --- | | Tweets downloaded | 2510 | | Retweets | 1363 | | Short tweets | 109 | | Tweets kept | 1038 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fuokdip/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @floristree92's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e0xd79p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e0xd79p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/floristree92') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/floristree92/1639415459410/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/floristree92
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT tea and oranges @floristree92 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from tea and oranges. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @floristree92's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414421050415329283/SnA_5soV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">stable lacker</div> <div style="text-align: center; font-size: 14px;">@flower_dommy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from stable lacker. | Data | stable lacker | | --- | --- | | Tweets downloaded | 1549 | | Retweets | 270 | | Short tweets | 210 | | Tweets kept | 1069 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/301dw1ni/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flower_dommy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kf0leede) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kf0leede/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flower_dommy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/flower_dommy/1632937534684/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/flower_dommy
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT stable lacker @flower\_dommy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from stable lacker. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @flower\_dommy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414421050415329283/SnA_5soV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">label stacker</div> <div style="text-align: center; font-size: 14px;">@flower_zaddy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from label stacker. | Data | label stacker | | --- | --- | | Tweets downloaded | 992 | | Retweets | 209 | | Short tweets | 119 | | Tweets kept | 664 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qsem7akp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flower_zaddy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c2jwdb2x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c2jwdb2x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flower_zaddy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/flower_zaddy/1627601426529/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/flower_zaddy
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT label stacker @flower\_zaddy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from label stacker. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @flower\_zaddy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1346711262869086210/KPshm_gK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">G a b r i e l - I g l e s i a s</div> <div style="text-align: center; font-size: 14px;">@fluffyguy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from G a b r i e l - I g l e s i a s. | Data | G a b r i e l - I g l e s i a s | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 264 | | Short tweets | 132 | | Tweets kept | 2850 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24pz59rj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fluffyguy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36h0hs6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36h0hs6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fluffyguy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fluffyguy/1631662825404/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fluffyguy
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT G a b r i e l - I g l e s i a s @fluffyguy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from G a b r i e l - I g l e s i a s. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fluffyguy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1175884636624510976/KtBI_1GE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245550936807874560/j_zCtKSJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1175469370975367169/tn1O7RHW_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nomes foda de dj & nomes de gato & Foda-se Tudo</div> <div style="text-align: center; font-size: 14px;">@fodase_bot-nomesdegato-nomesdj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nomes foda de dj & nomes de gato & Foda-se Tudo. | Data | nomes foda de dj | nomes de gato | Foda-se Tudo | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3209 | 3250 | | Retweets | 7 | 69 | 0 | | Short tweets | 731 | 1710 | 3118 | | Tweets kept | 2512 | 1430 | 132 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z3mswab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fodase_bot-nomesdegato-nomesdj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25vut5iu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25vut5iu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fodase_bot-nomesdegato-nomesdj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/fodase_bot-nomesdegato-nomesdj/1639503647273/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fodase_bot-nomesdegato-nomesdj
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG nomes foda de dj & nomes de gato & Foda-se Tudo @fodase\_bot-nomesdegato-nomesdj I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from nomes foda de dj & nomes de gato & Foda-se Tudo. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fodase\_bot-nomesdegato-nomesdj's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1395089186538115072/oehHqb54_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Food Network</div> <div style="text-align: center; font-size: 14px;">@foodnetwork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Food Network. | Data | Food Network | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 938 | | Short tweets | 49 | | Tweets kept | 2250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x1lok4q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foodnetwork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yjxdjcm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yjxdjcm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foodnetwork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/foodnetwork/1631662887881/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/foodnetwork
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Food Network @foodnetwork I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Food Network. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @foodnetwork's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/913057066243231744/3pa5pBzl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Footy Headlines 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@footy_headlines bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@footy_headlines's tweets](https://twitter.com/footy_headlines). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>20</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>505</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2690</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35awxvyw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @footy_headlines's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tc1ld77) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tc1ld77/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/footy_headlines'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/footy_headlines/1606774412916/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/footy_headlines
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Footy Headlines AI Bot </div> <div style="font-size: 15px; color: #657786">@footy_headlines bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @footy_headlines's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>20</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>505</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2690</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @footy_headlines's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/footy_headlines'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @footy_headlines's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3215</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>20</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>505</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2690</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @footy_headlines's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/footy_headlines'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @footy_headlines's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3215</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>20</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>505</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2690</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @footy_headlines's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/footy_headlines'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340949437397385217/g_G-ZToS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew Burton 🤖 AI Bot </div> <div style="font-size: 15px">@foraburton bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@foraburton's tweets](https://twitter.com/foraburton). | Data | Quantity | | --- | --- | | Tweets downloaded | 1512 | | Retweets | 276 | | Short tweets | 72 | | Tweets kept | 1164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35eak77p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foraburton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zrto18xz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zrto18xz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foraburton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/foraburton/1617034949571/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/foraburton
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Andrew Burton AI Bot @foraburton bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @foraburton's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @foraburton's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426270160311099396/RCvfusRc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426556736610226179/6XDFWyJh_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416488512300503052/FgE6teHE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NaN & MaX 🎤 & ivy 🥩🎙️</div> <div style="text-align: center; font-size: 14px;">@formernumber-wmason_iv-wyattmaxon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NaN & MaX 🎤 & ivy 🥩🎙️. | Data | NaN | MaX 🎤 | ivy 🥩🎙️ | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3249 | | Retweets | 148 | 420 | 266 | | Short tweets | 507 | 232 | 372 | | Tweets kept | 2595 | 2598 | 2611 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s1v908g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @formernumber-wmason_iv-wyattmaxon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3j3kexu1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3j3kexu1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/formernumber-wmason_iv-wyattmaxon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/formernumber-wmason_iv-wyattmaxon/1629747957743/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/formernumber-wmason_iv-wyattmaxon
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG NaN & MaX & ivy ️ @formernumber-wmason\_iv-wyattmaxon I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from NaN & MaX & ivy ️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @formernumber-wmason\_iv-wyattmaxon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1430593525108903940/vrSks7ph_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NaN</div> <div style="text-align: center; font-size: 14px;">@formernumber</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NaN. | Data | NaN | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 146 | | Short tweets | 554 | | Tweets kept | 2550 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cmch3y4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @formernumber's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iurxhit) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iurxhit/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/formernumber') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/formernumber/1630962355855/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/formernumber
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT NaN @formernumber I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from NaN. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @formernumber's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323383004350218240/RGFOPBNJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ray Doraisamy 🤖 AI Bot </div> <div style="font-size: 15px">@forshaper bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@forshaper's tweets](https://twitter.com/forshaper). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 181 | | Short tweets | 413 | | Tweets kept | 2647 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/392kuq3o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @forshaper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3askelvq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3askelvq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/forshaper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/forshaper/1616646541286/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/forshaper
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ray Doraisamy AI Bot @forshaper bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @forshaper's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @forshaper's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445910806420344839/Rm_oWBH0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pakun/Foxe</div> <div style="text-align: center; font-size: 14px;">@foxehhyz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pakun/Foxe. | Data | Pakun/Foxe | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 413 | | Short tweets | 192 | | Tweets kept | 2638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/urqo8vqu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foxehhyz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38j8w9y5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38j8w9y5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foxehhyz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/foxehhyz/1638928181616/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/foxehhyz
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Pakun/Foxe @foxehhyz I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Pakun/Foxe. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @foxehhyz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397375635845222400/-N68I_0K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">legally required to</div> <div style="text-align: center; font-size: 14px;">@foxlius</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from legally required to. | Data | legally required to | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 1459 | | Short tweets | 631 | | Tweets kept | 1134 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h54z72kn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foxlius's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6fffkgwp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6fffkgwp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foxlius') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/foxlius/1623071923782/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/foxlius
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT legally required to @foxlius I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from legally required to. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @foxlius's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1459143267673677853/xtIvtfZp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fox News</div> <div style="text-align: center; font-size: 14px;">@foxnews</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fox News. | Data | Fox News | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 84 | | Short tweets | 0 | | Tweets kept | 3166 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gz4o7tf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foxnews's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10czim3i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10czim3i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foxnews') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/foxnews/1649192783021/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/foxnews
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Fox News @foxnews I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Fox News. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @foxnews's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402947843351056396/TICIsTPK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Francisco Foz</div> <div style="text-align: center; font-size: 14px;">@fozfrancisco</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Francisco Foz. | Data | Francisco Foz | | --- | --- | | Tweets downloaded | 118 | | Retweets | 17 | | Short tweets | 25 | | Tweets kept | 76 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1htqvjv1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fozfrancisco's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3283z3u2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3283z3u2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fozfrancisco') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/fozfrancisco/1638989498165/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fozfrancisco
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Francisco Foz @fozfrancisco I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Francisco Foz. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fozfrancisco's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379071861401780231/cG8XDfAy_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">fr3fou!! 🤖 AI Bot </div> <div style="font-size: 15px">@fr3fou bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fr3fou's tweets](https://twitter.com/fr3fou). | Data | Quantity | | --- | --- | | Tweets downloaded | 2760 | | Retweets | 1652 | | Short tweets | 377 | | Tweets kept | 731 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w16ltwm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fr3fou's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34cp6cbj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34cp6cbj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fr3fou') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fr3fou/1617962537530/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fr3fou
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
fr3fou!! AI Bot @fr3fou bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fr3fou's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fr3fou's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358283159759167489/6h6CFiXX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Frankie i'm going to die 🤖 AI Bot </div> <div style="font-size: 15px">@frankietime bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frankietime's tweets](https://twitter.com/frankietime). | Data | Quantity | | --- | --- | | Tweets downloaded | 1336 | | Retweets | 511 | | Short tweets | 167 | | Tweets kept | 658 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gnhwo1u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frankietime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mifzn5p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mifzn5p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frankietime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frankietime/1614097133105/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frankietime
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Frankie i'm going to die AI Bot @frankietime bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frankietime's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frankietime's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1326746410243428353/09C_PBPD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Frank Cabrera 🤖 AI Bot </div> <div style="font-size: 15px">@frankviii bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frankviii's tweets](https://twitter.com/frankviii). | Data | Quantity | | --- | --- | | Tweets downloaded | 97 | | Retweets | 17 | | Short tweets | 9 | | Tweets kept | 71 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zidaqanj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frankviii's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/z4esfnfx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/z4esfnfx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frankviii') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frankviii/1616724264151/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frankviii
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Frank Cabrera AI Bot @frankviii bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frankviii's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frankviii's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329501028593627140/StRKBYOo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Frantz 🤖 AI Bot </div> <div style="font-size: 15px">@frantzfries bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frantzfries's tweets](https://twitter.com/frantzfries). | Data | Quantity | | --- | --- | | Tweets downloaded | 2423 | | Retweets | 260 | | Short tweets | 150 | | Tweets kept | 2013 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1n1iicrq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frantzfries's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16qkb131) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16qkb131/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frantzfries') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frantzfries/1617932907170/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frantzfries
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chris Frantz AI Bot @frantzfries bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frantzfries's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frantzfries's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340735982727880704/rm7b1jWn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">OnlyFranxx 🤖 AI Bot </div> <div style="font-size: 15px">@franxxfurt bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@franxxfurt's tweets](https://twitter.com/franxxfurt). | Data | Quantity | | --- | --- | | Tweets downloaded | 3118 | | Retweets | 1317 | | Short tweets | 267 | | Tweets kept | 1534 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1n7v3881/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @franxxfurt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ax82159) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ax82159/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/franxxfurt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/franxxfurt/1617765541385/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/franxxfurt
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
OnlyFranxx AI Bot @franxxfurt bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @franxxfurt's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @franxxfurt's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361002916396564485/7QCaJO1o_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fusti 🤖 AI Bot </div> <div style="font-size: 15px">@fraskungfu bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fraskungfu's tweets](https://twitter.com/fraskungfu). | Data | Quantity | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 975 | | Short tweets | 736 | | Tweets kept | 1486 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yg8xrqo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fraskungfu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/252l408y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/252l408y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fraskungfu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fraskungfu/1617920632144/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fraskungfu
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fusti AI Bot @fraskungfu bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fraskungfu's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fraskungfu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1155938695662505984/H3RmD4Fq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/861903051669610496/dvuuio0A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362638938549018626/O2jBlckS_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Inspiring Quotes - Be Positive & Motivation & Motivation & Success</div> <div style="text-align: center; font-size: 14px;">@freakytheory-insprepositive-masterythink</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Inspiring Quotes - Be Positive & Motivation & Motivation & Success. | Data | Inspiring Quotes - Be Positive | Motivation | Motivation & Success | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3233 | 706 | | Retweets | 789 | 13 | 4 | | Short tweets | 2 | 10 | 14 | | Tweets kept | 2459 | 3210 | 688 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3aupxbxm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freakytheory-insprepositive-masterythink's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p03go3pp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p03go3pp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freakytheory-insprepositive-masterythink') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/freakytheory-insprepositive-masterythink/1631276702724/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/freakytheory-insprepositive-masterythink
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Inspiring Quotes - Be Positive & Motivation & Motivation & Success @freakytheory-insprepositive-masterythink I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Inspiring Quotes - Be Positive & Motivation & Motivation & Success. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @freakytheory-insprepositive-masterythink's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421105879408066565/hBHx-Rvl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rica af, she/her 🗽🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@fredricksonra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rica af, she/her 🗽🏳️‍🌈. | Data | Rica af, she/her 🗽🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3208 | | Retweets | 2893 | | Short tweets | 47 | | Tweets kept | 268 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k0pcnmp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fredricksonra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/123sil9f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/123sil9f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fredricksonra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fredricksonra/1632796041349/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fredricksonra
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Rica af, she/her ️‍ @fredricksonra I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Rica af, she/her ️‍. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fredricksonra's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1324181613547118592/3Hz_hHDx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Megan Fritts 🤖 AI Bot </div> <div style="font-size: 15px">@freganmitts bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@freganmitts's tweets](https://twitter.com/freganmitts). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 85 | | Short tweets | 374 | | Tweets kept | 2787 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ijtbgod/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freganmitts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28vco2qy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28vco2qy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freganmitts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/freganmitts/1616724707442/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/freganmitts
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Megan Fritts AI Bot @freganmitts bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @freganmitts's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @freganmitts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1107690887/2010-08-budapest_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Frans 🤖 AI Bot </div> <div style="font-size: 15px">@frenzie bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frenzie's tweets](https://twitter.com/frenzie). | Data | Quantity | | --- | --- | | Tweets downloaded | 1949 | | Retweets | 187 | | Short tweets | 167 | | Tweets kept | 1595 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pst9rn9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frenzie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1klwq88y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1klwq88y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frenzie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frenzie/1617876740719/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frenzie
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Frans AI Bot @frenzie bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frenzie's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frenzie's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410804877538869249/sFFdL9zJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">acousticConductor (quadrants filled edition!! ♥♦♠)</div> <div style="text-align: center; font-size: 14px;">@frepno_mytoff</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from acousticConductor (quadrants filled edition!! ♥♦♠). | Data | acousticConductor (quadrants filled edition!! ♥♦♠) | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1944 | | Short tweets | 487 | | Tweets kept | 787 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/aujqwhay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frepno_mytoff's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i5d4dgv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i5d4dgv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frepno_mytoff') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frepno_mytoff/1628013500631/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frepno_mytoff
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT acousticConductor (quadrants filled edition!! ) @frepno\_mytoff I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from acousticConductor (quadrants filled edition!! ). Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frepno\_mytoff's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412918415703019521/J2TQHTDo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Evelyn🪶🇰🇵</div> <div style="text-align: center; font-size: 14px;">@freudotheism</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Evelyn🪶🇰🇵. | Data | Evelyn🪶🇰🇵 | | --- | --- | | Tweets downloaded | 3231 | | Retweets | 333 | | Short tweets | 968 | | Tweets kept | 1930 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rbzyyts/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freudotheism's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/elt06ed5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/elt06ed5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freudotheism') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/freudotheism/1625867628365/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/freudotheism
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Evelyn🇰🇵 @freudotheism I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Evelyn🇰🇵. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @freudotheism's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366527087255949315/tKFBJBSW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">𝕱𝕽𝕰𝖄𝕵𝕬 ディア 🤖 AI Bot </div> <div style="font-size: 15px">@freyjihad bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@freyjihad's tweets](https://twitter.com/freyjihad). | Data | Quantity | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 670 | | Short tweets | 534 | | Tweets kept | 2031 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/373eguz3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freyjihad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lo1vdk7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lo1vdk7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freyjihad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/freyjihad/1617789162482/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/freyjihad
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
𝕱𝕽𝕰𝖄𝕵𝕬 ディア AI Bot @freyjihad bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @freyjihad's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @freyjihad's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1336810992857210880/3msMJdlg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/483133814596595713/KOvTKS5s_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389233037393727491/gIo9q6nS_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Karol Wiśniewski & SA Wardega & Sergiusz G.</div> <div style="text-align: center; font-size: 14px;">@friztoja-sawardega-thenitrozyniak</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Karol Wiśniewski & SA Wardega & Sergiusz G.. | Data | Karol Wiśniewski | SA Wardega | Sergiusz G. | | --- | --- | --- | --- | | Tweets downloaded | 271 | 141 | 3249 | | Retweets | 3 | 1 | 23 | | Short tweets | 33 | 32 | 671 | | Tweets kept | 235 | 108 | 2555 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zlovf5t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @friztoja-sawardega-thenitrozyniak's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sy723ri) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sy723ri/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/friztoja-sawardega-thenitrozyniak') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/friztoja-sawardega-thenitrozyniak/1630099755324/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/friztoja-sawardega-thenitrozyniak
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Karol Wiśniewski & SA Wardega & Sergiusz G. @friztoja-sawardega-thenitrozyniak I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Karol Wiśniewski & SA Wardega & Sergiusz G.. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @friztoja-sawardega-thenitrozyniak's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424095619061141504/0FhWxHzI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">frobenis</div> <div style="text-align: center; font-size: 14px;">@frobenis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from frobenis. | Data | frobenis | | --- | --- | | Tweets downloaded | 245 | | Retweets | 1 | | Short tweets | 62 | | Tweets kept | 182 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1c5hws47/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frobenis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ee5bpsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ee5bpsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frobenis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frobenis/1628616938616/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frobenis
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT frobenis @frobenis I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from frobenis. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frobenis's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355266232841351170/8qLOMOZv_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Floppa ethan 🤖 AI Bot </div> <div style="font-size: 15px">@frogethan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frogethan's tweets](https://twitter.com/frogethan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 203 | | Short tweets | 677 | | Tweets kept | 2327 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u0b7jjl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frogethan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jqete5m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jqete5m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frogethan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frogethan/1614101371132/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frogethan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Floppa ethan AI Bot @frogethan bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frogethan's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frogethan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345057374625738753/UORuzXiL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Froo 🤖 AI Bot </div> <div style="font-size: 15px">@frootcakee bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frootcakee's tweets](https://twitter.com/frootcakee). | Data | Quantity | | --- | --- | | Tweets downloaded | 3189 | | Retweets | 993 | | Short tweets | 723 | | Tweets kept | 1473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l5bwy96/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frootcakee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fx0tm4j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fx0tm4j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frootcakee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/frootcakee/1617907737980/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/frootcakee
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Froo AI Bot @frootcakee bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @frootcakee's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @frootcakee's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1200867464466317313/_Q24D6X9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">FM 🤖 AI Bot </div> <div style="font-size: 15px">@ftuuky bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ftuuky's tweets](https://twitter.com/ftuuky). | Data | Quantity | | --- | --- | | Tweets downloaded | 966 | | Retweets | 342 | | Short tweets | 74 | | Tweets kept | 550 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ogn4aj0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ftuuky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11u77t7x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11u77t7x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ftuuky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ftuuky/1616618051190/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ftuuky
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
FM AI Bot @ftuuky bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ftuuky's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ftuuky's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://abs.twimg.com/sticky/default_profile_images/default_profile_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bivek 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fucko_el bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fucko_el's tweets](https://twitter.com/fucko_el). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2841</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>761</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>104</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1976</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/249ga3z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fucko_el's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/ut8q3ybx) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/ut8q3ybx/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fucko_el'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fucko_el/1600841976446/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fucko_el
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bivek AI Bot </div> <div style="font-size: 15px; color: #657786">@fucko_el bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @fucko_el's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2841</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>761</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>104</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1976</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @fucko_el's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fucko_el'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fucko_el's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2841</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>761</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>104</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fucko_el's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fucko_el'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @fucko_el's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2841</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>761</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>104</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1976</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @fucko_el's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/fucko_el'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/909490250149281792/loptFKY0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Heretic</div> <div style="text-align: center; font-size: 14px;">@fuckthefocus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Heretic. | Data | Heretic | | --- | --- | | Tweets downloaded | 3113 | | Retweets | 475 | | Short tweets | 396 | | Tweets kept | 2242 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/274nvr6f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fuckthefocus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oevst9bx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oevst9bx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fuckthefocus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fuckthefocus/1621363208946/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fuckthefocus
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Heretic @fuckthefocus I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Heretic. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fuckthefocus's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1272946288389050368/OtPFPpC7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fullbitchscholar 🤖 AI Bot </div> <div style="font-size: 15px">@fullbitchschol1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fullbitchschol1's tweets](https://twitter.com/fullbitchschol1). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 20 | | Short tweets | 224 | | Tweets kept | 3004 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1em7u8my/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fullbitchschol1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u9ua2kl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u9ua2kl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fullbitchschol1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/fullbitchschol1/1616889911749/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/fullbitchschol1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fullbitchscholar AI Bot @fullbitchschol1 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @fullbitchschol1's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @fullbitchschol1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/894956741573525504/YFg6jiNP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Funny Or Die</div> <div style="text-align: center; font-size: 14px;">@funnyordie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Funny Or Die. | Data | Funny Or Die | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 237 | | Short tweets | 190 | | Tweets kept | 2823 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zjkuy05u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @funnyordie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jaeb619) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jaeb619/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/funnyordie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/funnyordie
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Funny Or Die @funnyordie I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Funny Or Die. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @funnyordie's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1880783603/avatar_mari-glasses_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Furinkan 🤖 AI Bot </div> <div style="font-size: 15px">@furinkan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@furinkan's tweets](https://twitter.com/furinkan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 1642 | | Short tweets | 114 | | Tweets kept | 1456 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y9ze4kqs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @furinkan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rdo1j34) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rdo1j34/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/furinkan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/furinkan/1618066660498/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/furinkan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Furinkan AI Bot @furinkan bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @furinkan's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @furinkan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]