sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
20f04e881aacf450130d583c1b419a15ace819b0
Recag/Rp_CommonC_642_2
[ "region:us" ]
2024-02-15T12:34:06+00:00
{}
2024-02-15T12:41:12+00:00
6517c306f12aa79682c5160edcee533a425db182
Recag/Rp_CommonC_643_1
[ "region:us" ]
2024-02-15T12:34:23+00:00
{}
2024-02-15T12:44:05+00:00
2429241b027debaed01c3bfa820d0556ba02d7cb
Recag/Rp_CommonC_643_2
[ "region:us" ]
2024-02-15T12:34:28+00:00
{}
2024-02-15T12:42:20+00:00
628e80cfeb4515fc0260e165338ace46cde7a218
Recag/Rp_CommonC_644_1
[ "region:us" ]
2024-02-15T12:36:52+00:00
{}
2024-02-15T12:44:12+00:00
a667f98ee88117648bc947e070536159ad3af88a
Recag/Rp_CommonC_644_2
[ "region:us" ]
2024-02-15T12:36:58+00:00
{}
2024-02-15T12:43:19+00:00
ca5d9fbf7e05f84c04bd0342f402d21e1745dfb6
Recag/Rp_CommonC_730_2
[ "region:us" ]
2024-02-15T12:40:34+00:00
{}
2024-02-15T12:54:22+00:00
ff786f140106ac1360bd41505a4dbaf549269d54
Recag/Rp_CommonC_730_3
[ "region:us" ]
2024-02-15T12:46:44+00:00
{}
2024-02-15T12:57:48+00:00
9bdcb1172eaad5cc0ad5ab03f3be27cdf3ba9f1e
Recag/Rp_CommonC_645_1
[ "region:us" ]
2024-02-15T12:47:39+00:00
{}
2024-02-15T12:58:06+00:00
9b8b911ea0b91a382c43b225178a0664bfb02eef
Recag/Rp_CommonC_645_2
[ "region:us" ]
2024-02-15T12:47:45+00:00
{}
2024-02-15T12:54:51+00:00
1fa58a20e62c3f8b7b1a1e2f2a5b5cb8feba7f1e
Recag/Rp_CommonC_646_1
[ "region:us" ]
2024-02-15T12:47:55+00:00
{}
2024-02-15T12:58:13+00:00
9a60fd32cd2a7b8356e40c1f039526fab7cb5a6b
Recag/Rp_CommonC_646_2
[ "region:us" ]
2024-02-15T12:48:06+00:00
{}
2024-02-15T13:00:03+00:00
d56fc03aae388640e617698d1095c92dcdcc501b
Recag/Rp_CommonC_647_1
[ "region:us" ]
2024-02-15T12:48:22+00:00
{}
2024-02-15T13:00:10+00:00
2b7f6a8f3b94506195ea914ec5ef7b078683a3bc
Recag/Rp_CommonC_647_2
[ "region:us" ]
2024-02-15T12:48:32+00:00
{}
2024-02-15T12:59:00+00:00
47ebd35f35e7cb722f1a16f376b85983970dcab3
Recag/Rp_CommonC_648_1
[ "region:us" ]
2024-02-15T12:48:44+00:00
{}
2024-02-15T12:59:44+00:00
e0357b760e57f87d5d1bea4f736d01191f5b496d
Recag/Rp_CommonC_648_2
[ "region:us" ]
2024-02-15T12:48:52+00:00
{}
2024-02-15T12:59:53+00:00
afddddeb8af4b171abbd7ff201767f7101fb0dae
Recag/Rp_CommonC_731_1
[ "region:us" ]
2024-02-15T12:55:58+00:00
{}
2024-02-15T13:03:57+00:00
df514ff8f0d6676791657bb38de82fc704d2ed41
Recag/Rp_CommonC_731_2
[ "region:us" ]
2024-02-15T12:57:00+00:00
{}
2024-02-15T13:06:59+00:00
00baa3a534c7c125c8c7877c67781426b09573f7
Recag/Rp_CommonC_731_3
[ "region:us" ]
2024-02-15T12:57:34+00:00
{}
2024-02-15T13:10:05+00:00
dc4552fb66646087c68ff5095278e9f115c67f27
Recag/Rp_CommonC_732_1
[ "region:us" ]
2024-02-15T12:57:56+00:00
{}
2024-02-15T13:13:29+00:00
c9320cd7bd35b529bcada6f94461da3334da1df9
Recag/Rp_CommonC_732_2
[ "region:us" ]
2024-02-15T12:58:07+00:00
{}
2024-02-15T13:21:31+00:00
d90909d43d1f6d163cc73928358ba42bddbc4f4c
Recag/Rp_CommonC_732_3
[ "region:us" ]
2024-02-15T12:58:19+00:00
{}
2024-02-15T13:18:28+00:00
8c1aafc9eafc9e5262322eb419666db8f5d6b6cd
Recag/Rp_CommonC_733_1
[ "region:us" ]
2024-02-15T12:58:32+00:00
{}
2024-02-15T13:24:32+00:00
83289fb676081955814fde60e7ae009aaf8e14ab
wuchiyongshi/sentiment
[ "region:us" ]
2024-02-15T12:58:44+00:00
{}
2024-02-15T13:00:17+00:00
13a72c0340980e93c40feaadd6301e36bdd463fd
Recag/Rp_CommonC_733_2
[ "region:us" ]
2024-02-15T12:58:45+00:00
{}
2024-02-15T13:27:53+00:00
ee881d8474e7c97d2898be7cf1a62b19be16b6f0
Recag/Rp_CommonC_733_3
[ "region:us" ]
2024-02-15T12:58:56+00:00
{}
2024-02-15T13:31:17+00:00
79d6fd77b333cb7b9c20d32b47542507be26cfb6
Recag/Rp_CommonC_734_1
[ "region:us" ]
2024-02-15T12:59:13+00:00
{}
2024-02-15T13:36:05+00:00
72e539e63f9846b0f533f5bba739ef87ba0e1703
Recag/Rp_CommonC_734_2
[ "region:us" ]
2024-02-15T12:59:31+00:00
{}
2024-02-15T13:39:12+00:00
1de175acf09b6f0b4f147af4125eb09ef1dd430a
Recag/Rp_CommonC_734_3
[ "region:us" ]
2024-02-15T12:59:43+00:00
{}
2024-02-15T13:41:54+00:00
ef3dc0a4c66fafd866d0840bf05c1249d6ca9db2
Recag/Rp_CommonC_735_1
[ "region:us" ]
2024-02-15T12:59:56+00:00
{}
2024-02-15T13:44:26+00:00
5dd967266b52be7db53e39e9de0a0b229b4fa6e8
Recag/Rp_CommonC_735_2
[ "region:us" ]
2024-02-15T13:00:14+00:00
{}
2024-02-15T13:49:43+00:00
88a47d0e3f98cf9bd66545af02a815072aa195b0
Recag/Rp_CommonC_735_3
[ "region:us" ]
2024-02-15T13:00:25+00:00
{}
2024-02-15T13:49:13+00:00
a1662e98c19a9db2c03ffb2dce93749f6af63513
shkocs/uploads
[ "region:us" ]
2024-02-15T13:07:10+00:00
{}
2024-02-15T13:07:10+00:00
d0d9c31310f20e269bb2c4ac7d13e16a312144ce
Recag/Rp_CommonC_649_1
[ "region:us" ]
2024-02-15T13:18:17+00:00
{}
2024-02-15T13:31:39+00:00
eccb355b0c8c8ddd876f0dfe7c6690b863c5fa24
Recag/Rp_CommonC_649_2
[ "region:us" ]
2024-02-15T13:18:50+00:00
{}
2024-02-15T13:29:01+00:00
98b3c3a4520cda946cdb9108b352416f67a183f4
Recag/Rp_CommonC_650_1
[ "region:us" ]
2024-02-15T13:19:05+00:00
{}
2024-02-15T13:32:30+00:00
3682166e946975bec0c659afced6db375786cd12
Recag/Rp_CommonC_650_2
[ "region:us" ]
2024-02-15T13:19:13+00:00
{}
2024-02-15T13:30:20+00:00
30c61e9ecf855123c19d6661f35a85fc27e62775
Recag/Rp_CommonC_651_1
[ "region:us" ]
2024-02-15T13:19:31+00:00
{}
2024-02-15T13:32:46+00:00
9cd7efb8f3aa2218cc9f0e5708897ff93aa42ecd
Recag/Rp_CommonC_651_2
[ "region:us" ]
2024-02-15T13:19:41+00:00
{}
2024-02-15T13:32:06+00:00
1bab63119dc083f3791f3205368586c346190d61
rezaalifilmm/TEST
[ "region:us" ]
2024-02-15T13:39:48+00:00
{}
2024-02-15T13:39:48+00:00
f70b429e78acfb63da8e7830583e61c67e152190
Recag/Rp_CommonC_652_1
[ "region:us" ]
2024-02-15T13:40:41+00:00
{}
2024-02-15T13:52:04+00:00
b984a17b5ed88e83379e36419e59acb0244094ea
Recag/Rp_CommonC_652_2
[ "region:us" ]
2024-02-15T13:40:47+00:00
{}
2024-02-15T13:50:24+00:00
c99fb3f46be9e48e07220df84084c60c5117bb8f
Recag/Rp_CommonC_653_1
[ "region:us" ]
2024-02-15T13:41:00+00:00
{}
2024-02-15T13:52:50+00:00
ca44b6e0779d31d110e68e3312b636c1fa1c988d
Recag/Rp_CommonC_653_2
[ "region:us" ]
2024-02-15T13:41:06+00:00
{}
2024-02-15T13:52:21+00:00
afcf8ef00427e554c268914f3b6192301fb6d67b
Recag/Rp_CommonC_654_1
[ "region:us" ]
2024-02-15T13:41:21+00:00
{}
2024-02-15T13:52:57+00:00
60c31abc353ea3234a2c2b00e21a4861d1edb345
Recag/Rp_CommonC_654_2
[ "region:us" ]
2024-02-15T13:41:26+00:00
{}
2024-02-15T13:52:22+00:00
e8cb02a0c1f1dbda2dea816c396acb8b9da9c42d
Recag/Rp_CommonC_736_1
[ "region:us" ]
2024-02-15T13:49:53+00:00
{}
2024-02-15T13:52:50+00:00
aa7d685688653806dc58eae260c5f8220e870640
Recag/Rp_CommonC_736_2
[ "region:us" ]
2024-02-15T13:50:02+00:00
{}
2024-02-15T13:57:22+00:00
6f07b44bfc41de18ac855c1c7d3ea96d677e781c
Recag/Rp_CommonC_736_3
[ "region:us" ]
2024-02-15T13:50:49+00:00
{}
2024-02-15T13:57:35+00:00
d0d5930d76c2c938f890acc163d9ea4b7bc7a259
Recag/Rp_CommonC_737_1
[ "region:us" ]
2024-02-15T13:54:39+00:00
{}
2024-02-16T12:49:35+00:00
5fd36a774653bca7ceba86bb6546fb961e0a33bb
SaramNick/ruwhisper_test
[ "region:us" ]
2024-02-15T13:54:39+00:00
{}
2024-02-15T15:39:40+00:00
5699d075423f04a9f38b38daac18469707c6871d
Recag/Rp_CommonC_737_3
[ "region:us" ]
2024-02-15T13:55:31+00:00
{}
2024-02-16T12:52:39+00:00
c1bc0206ca1660676144f3fd94b5fc0980d466a0
moaminsharifi/Churn_Modelling
[ "region:us" ]
2024-02-15T13:56:29+00:00
{}
2024-02-15T13:57:04+00:00
0de27a30052a7466d4dd823ac4bdafce0e3d361c
Recag/Rp_CommonC_655_1
[ "region:us" ]
2024-02-15T13:58:45+00:00
{}
2024-02-15T14:03:39+00:00
57d402f3b210e83461f6d2a4b5823d242d9a7958
Recag/Rp_CommonC_655_2
[ "region:us" ]
2024-02-15T13:58:58+00:00
{}
2024-02-15T14:02:33+00:00
3d14f087ad2a3124a15886a2e63114db784ccfb1
Recag/Rp_CommonC_657_1
[ "region:us" ]
2024-02-15T14:00:10+00:00
{}
2024-02-15T14:04:28+00:00
1be8fa6fe2650198dc47c37379985feaf24323c9
Recag/Rp_CommonC_657_2
[ "region:us" ]
2024-02-15T14:00:20+00:00
{}
2024-02-15T14:03:56+00:00
8c8cb2a16e6374087aab2383a78721d42fe9c583
Damodaran/demoTestSetDonut
[ "region:us" ]
2024-02-15T14:23:11+00:00
{}
2024-02-15T14:23:11+00:00
d742c6dc08a9531c161bffb15f4425d4a054ddc0
huggingface/figma-Playground-Inference-for-PRO-s-Website
[ "region:us" ]
2024-02-15T14:40:52+00:00
{}
2024-02-15T14:40:52+00:00
74d48f36edafd0ca1dd60062c99386d3877bfb5f
Orenbac/amz-press-release_summarized
[ "region:us" ]
2024-02-15T14:59:38+00:00
{}
2024-02-17T14:06:31+00:00
adb49ea9bc6a37cda5be4b18f28b2ee8582045c8
AlisaMenekse/ErrorCategoriesBCP_10k_rows
[ "region:us" ]
2024-02-15T15:11:18+00:00
{}
2024-02-15T15:13:06+00:00
e6f6cc9f294d34072a1f674fe81c4afb16d5f192
enzostvs/figma-plugin-export-frame-to-url
[ "region:us" ]
2024-02-15T15:26:49+00:00
{}
2024-02-15T16:52:02+00:00
eb5a7ceb7b4a6a47d57e013a808e7bbf55c56168
Drewskidang/mix_genral
[ "region:us" ]
2024-02-15T15:32:06+00:00
{}
2024-02-16T14:51:20+00:00
da9c5a516eb71c8da438a53421797a09b95af31a
Drewskidang/ragcomparison
[ "region:us" ]
2024-02-15T15:46:26+00:00
{}
2024-02-15T15:46:38+00:00
728d5e4963056605837900741d2aed6755060fd1
Avinier/docker-llm-conversations-v2
[ "region:us" ]
2024-02-15T16:03:36+00:00
{}
2024-02-15T16:04:13+00:00
737e6dda9b5f5f056ad1340d4e33483cb2aaa9b2
mecxlan/brain_images
[ "region:us" ]
2024-02-15T16:48:30+00:00
{}
2024-02-15T16:49:22+00:00
9e7b96501ec9087337b6e9fa9cd935eb2dfc8283
Instincts003/p2t-dataset
[ "region:us" ]
2024-02-15T17:00:55+00:00
{}
2024-02-15T17:19:22+00:00
17c8e6800e238d4e671cff3c7a6cf5c018eda051
oliverbob/rev1
[ "region:us" ]
2024-02-15T17:25:26+00:00
{}
2024-02-16T10:11:58+00:00
c2d8b504a85e32db96bf1c893e4bef6c540020b6
Bazou/BoobAI
[ "region:us" ]
2024-02-15T17:50:39+00:00
{}
2024-02-15T17:51:06+00:00
e2f7874bf152a4932ce74a0e124391134bf7b520
AsemBadr/Al-Rahman
[ "region:us" ]
2024-02-15T18:03:34+00:00
{}
2024-02-15T21:06:22+00:00
af85f3cec7a812a827474f27a2fa6dfa9665841d
toninhodjj/niki
[ "region:us" ]
2024-02-15T18:03:52+00:00
{}
2024-02-15T18:08:28+00:00
f85503d964c24a6141b4681735961f52f2858b2e
rodrigotborges/superaudio
[ "region:us" ]
2024-02-15T18:11:52+00:00
{}
2024-02-15T18:15:11+00:00
e6961f00e5bbefbd4433026a2f17cc7cd4922135
crncskn/try123
[ "region:us" ]
2024-02-15T18:17:46+00:00
{}
2024-02-15T18:20:45+00:00
08326f3ca8807568aa57f76f655fd3ac6f100a75
rodrigotborges/superaudio2
[ "region:us" ]
2024-02-15T18:36:22+00:00
{}
2024-02-15T18:37:20+00:00
91f1104f569a4c06786acb1bae46000e75e13305
sasha/co2_models
[ "region:us" ]
2024-02-15T18:48:08+00:00
{}
2024-02-16T22:43:01+00:00
4b15137b7509b9a35dac808b11cc9ae8ce477ad1
siranli/state-extract
[ "region:us" ]
2024-02-15T18:53:58+00:00
{}
2024-02-15T18:54:33+00:00
31447d72d83e39a1f0fd3ac41c07da7ba1c9344e
grahvi4545/myVectorStore
[ "license:apache-2.0", "region:us" ]
2024-02-15T19:46:18+00:00
{"license": "apache-2.0"}
2024-02-15T19:46:18+00:00
f4e9c7d0423e55e23454f4fd2054efb0e5f0a3c9
argilla/OpenHermes-2.5-dpo-ckpt2-auto
[ "region:us" ]
2024-02-15T19:49:04+00:00
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}, {"name": "weight", "dtype": "float64"}]}, {"name": "input", "dtype": "string"}, {"name": "generation_model", "sequence": "string"}, {"name": "generation_prompt", "sequence": "string"}, {"name": "raw_generation_responses", "sequence": "string"}, {"name": "generations", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 1181907830, "num_examples": 207569}], "download_size": 576131972, "dataset_size": 1181907830}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-16T11:20:48+00:00
09dfd53b92a4990d45272db95f58ccf6b7f38c5a
davidyoungoc/mini-platypus
[ "region:us" ]
2024-02-15T19:50:59+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4186564, "num_examples": 1000}], "download_size": 2245921, "dataset_size": 4186564}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-15T19:52:33+00:00
365f1eec822457d5c032b7308bd47b6bce4313c7
Batraquio1234/Batraquio
[ "region:us" ]
2024-02-15T19:52:54+00:00
{}
2024-02-15T20:03:15+00:00
4def4661f8501e1da652cd9b5e185dbabb93d7fb
https://huggingface.co/datasets/mhenrichsen/context-aware-splits-english
PocketDoc/text-splitter-alpaca
[ "task_categories:text-generation", "language:en", "region:us" ]
2024-02-15T19:59:32+00:00
{"language": ["en"], "task_categories": ["text-generation"]}
2024-02-16T22:27:17+00:00
f789247e23bc4bc0fbd364185891bde193655194
alisson40889/domiro
[ "license:openrail", "region:us" ]
2024-02-15T20:05:13+00:00
{"license": "openrail"}
2024-02-15T20:06:27+00:00
4f3df1e4e44270f748866fc8fd7f5a6c60949008
loubnabnl/math_gradeschool
[ "region:us" ]
2024-02-15T20:18:16+00:00
{"dataset_info": {"features": [{"name": "completion", "dtype": "string"}, {"name": "prompt_grade_school", "dtype": "string"}, {"name": "token_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19283248, "num_examples": 5000}], "download_size": 9681102, "dataset_size": 19283248}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-15T20:18:17+00:00
3be6278fce61be65736c0adfe3d61ff990fb89e5
loubnabnl/math_college
[ "region:us" ]
2024-02-15T20:18:45+00:00
{"dataset_info": {"features": [{"name": "prompt_college", "dtype": "string"}, {"name": "token_length", "dtype": "int64"}, {"name": "completion", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25108775, "num_examples": 5000}], "download_size": 12716387, "dataset_size": 25108775}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-15T20:18:46+00:00
7877c7345408921a8984b64b773d11608cc2974d
Kiurachi/lggj
[ "license:openrail", "region:us" ]
2024-02-15T20:19:43+00:00
{"license": "openrail"}
2024-02-15T20:19:44+00:00
98aeabdbed04b8e48e1a43763805d5f561c8740d
marcones/elementar1
[ "license:openrail", "region:us" ]
2024-02-15T20:20:59+00:00
{"license": "openrail"}
2024-02-15T20:21:38+00:00
1d6ee463376553b7781730c8a95dfad5769e66ec
VatsaDev/oh2.5-text
[ "license:mit", "region:us" ]
2024-02-15T20:24:06+00:00
{"license": "mit"}
2024-02-16T16:32:49+00:00
01261b44a551a41a937f733d650a9c42594fe3fb
macadeliccc/distilabel-neurology-instructions
[ "region:us" ]
2024-02-15T20:24:57+00:00
{"dataset_info": {"features": [{"name": "instructions", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 372401, "num_examples": 4000}], "download_size": 96796, "dataset_size": 372401}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-15T20:24:59+00:00
33a1e962efc1668084958d77d16354acef1d7746
# Dataset Card for Evaluation run of louisbrulenaudet/Pearl-34B-ties <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [louisbrulenaudet/Pearl-34B-ties](https://huggingface.co/louisbrulenaudet/Pearl-34B-ties) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_louisbrulenaudet__Pearl-34B-ties", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-02-15T20:29:21.982361](https://huggingface.co/datasets/open-llm-leaderboard/details_louisbrulenaudet__Pearl-34B-ties/blob/main/results_2024-02-15T20-29-21.982361.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7624896367346236, "acc_stderr": 0.02823253317418589, "acc_norm": 0.7667330036075873, "acc_norm_stderr": 0.028764116967369732, "mc1": 0.5336597307221542, "mc1_stderr": 0.017463793867168106, "mc2": 0.7032022498819784, "mc2_stderr": 0.014189265275795037 }, "harness|arc:challenge|25": { "acc": 0.6791808873720137, "acc_stderr": 0.01364094309194653, "acc_norm": 0.7098976109215017, "acc_norm_stderr": 0.013261573677520767 }, "harness|hellaswag|10": { "acc": 0.6525592511451902, "acc_stderr": 0.004751840646730855, "acc_norm": 0.8483369846644094, "acc_norm_stderr": 0.0035796087435066093 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7481481481481481, "acc_stderr": 0.03749850709174021, "acc_norm": 0.7481481481481481, "acc_norm_stderr": 0.03749850709174021 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.875, "acc_stderr": 0.026913523521537846, "acc_norm": 0.875, "acc_norm_stderr": 0.026913523521537846 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.79, "acc_stderr": 0.040936018074033256, "acc_norm": 0.79, "acc_norm_stderr": 0.040936018074033256 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8, "acc_stderr": 0.024618298195866518, "acc_norm": 0.8, "acc_norm_stderr": 0.024618298195866518 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8958333333333334, "acc_stderr": 0.025545239210256917, "acc_norm": 0.8958333333333334, "acc_norm_stderr": 0.025545239210256917 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001974, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7514450867052023, "acc_stderr": 0.03295304696818318, "acc_norm": 0.7514450867052023, "acc_norm_stderr": 0.03295304696818318 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5686274509803921, "acc_stderr": 0.04928099597287534, "acc_norm": 0.5686274509803921, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.8, "acc_stderr": 0.04020151261036845, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7787234042553192, "acc_stderr": 0.027136349602424056, "acc_norm": 0.7787234042553192, "acc_norm_stderr": 0.027136349602424056 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5964912280701754, "acc_stderr": 0.04615186962583707, "acc_norm": 0.5964912280701754, "acc_norm_stderr": 0.04615186962583707 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7379310344827587, "acc_stderr": 0.036646663372252565, "acc_norm": 0.7379310344827587, "acc_norm_stderr": 0.036646663372252565 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.7248677248677249, "acc_stderr": 0.023000086859068642, "acc_norm": 0.7248677248677249, "acc_norm_stderr": 0.023000086859068642 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.6111111111111112, "acc_stderr": 0.04360314860077459, "acc_norm": 0.6111111111111112, "acc_norm_stderr": 0.04360314860077459 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.9032258064516129, "acc_stderr": 0.016818943416345197, "acc_norm": 0.9032258064516129, "acc_norm_stderr": 0.016818943416345197 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.6403940886699507, "acc_stderr": 0.03376458246509567, "acc_norm": 0.6403940886699507, "acc_norm_stderr": 0.03376458246509567 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8666666666666667, "acc_stderr": 0.026544435312706467, "acc_norm": 0.8666666666666667, "acc_norm_stderr": 0.026544435312706467 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9292929292929293, "acc_stderr": 0.018263105420199488, "acc_norm": 0.9292929292929293, "acc_norm_stderr": 0.018263105420199488 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9740932642487047, "acc_stderr": 0.011464523356953162, "acc_norm": 0.9740932642487047, "acc_norm_stderr": 0.011464523356953162 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8153846153846154, "acc_stderr": 0.01967163241310029, "acc_norm": 0.8153846153846154, "acc_norm_stderr": 0.01967163241310029 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.45555555555555555, "acc_stderr": 0.03036486250482443, "acc_norm": 0.45555555555555555, "acc_norm_stderr": 0.03036486250482443 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8361344537815126, "acc_stderr": 0.024044054940440488, "acc_norm": 0.8361344537815126, "acc_norm_stderr": 0.024044054940440488 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.5231788079470199, "acc_stderr": 0.04078093859163085, "acc_norm": 0.5231788079470199, "acc_norm_stderr": 0.04078093859163085 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9211009174311927, "acc_stderr": 0.011558198113769584, "acc_norm": 0.9211009174311927, "acc_norm_stderr": 0.011558198113769584 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6527777777777778, "acc_stderr": 0.032468872436376486, "acc_norm": 0.6527777777777778, "acc_norm_stderr": 0.032468872436376486 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9215686274509803, "acc_stderr": 0.018869514646658928, "acc_norm": 0.9215686274509803, "acc_norm_stderr": 0.018869514646658928 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.01888975055095671, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.01888975055095671 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7892376681614349, "acc_stderr": 0.02737309550054019, "acc_norm": 0.7892376681614349, "acc_norm_stderr": 0.02737309550054019 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8778625954198473, "acc_stderr": 0.028718776889342323, "acc_norm": 0.8778625954198473, "acc_norm_stderr": 0.028718776889342323 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8842975206611571, "acc_stderr": 0.02919980245562281, "acc_norm": 0.8842975206611571, "acc_norm_stderr": 0.02919980245562281 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8981481481481481, "acc_stderr": 0.02923927267563275, "acc_norm": 0.8981481481481481, "acc_norm_stderr": 0.02923927267563275 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8711656441717791, "acc_stderr": 0.02632138319878367, "acc_norm": 0.8711656441717791, "acc_norm_stderr": 0.02632138319878367 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5357142857142857, "acc_stderr": 0.04733667890053756, "acc_norm": 0.5357142857142857, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.883495145631068, "acc_stderr": 0.03176683948640406, "acc_norm": 0.883495145631068, "acc_norm_stderr": 0.03176683948640406 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9444444444444444, "acc_stderr": 0.015006312806446912, "acc_norm": 0.9444444444444444, "acc_norm_stderr": 0.015006312806446912 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.89, "acc_stderr": 0.03144660377352203, "acc_norm": 0.89, "acc_norm_stderr": 0.03144660377352203 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.909323116219668, "acc_stderr": 0.010268429662528548, "acc_norm": 0.909323116219668, "acc_norm_stderr": 0.010268429662528548 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8208092485549133, "acc_stderr": 0.020647590029679332, "acc_norm": 0.8208092485549133, "acc_norm_stderr": 0.020647590029679332 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.8055865921787709, "acc_stderr": 0.013235808096742286, "acc_norm": 0.8055865921787709, "acc_norm_stderr": 0.013235808096742286 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8398692810457516, "acc_stderr": 0.020998740930362303, "acc_norm": 0.8398692810457516, "acc_norm_stderr": 0.020998740930362303 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.797427652733119, "acc_stderr": 0.02282731749105969, "acc_norm": 0.797427652733119, "acc_norm_stderr": 0.02282731749105969 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8703703703703703, "acc_stderr": 0.018689725721062075, "acc_norm": 0.8703703703703703, "acc_norm_stderr": 0.018689725721062075 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6276595744680851, "acc_stderr": 0.02883892147125145, "acc_norm": 0.6276595744680851, "acc_norm_stderr": 0.02883892147125145 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5808344198174706, "acc_stderr": 0.012602244505788228, "acc_norm": 0.5808344198174706, "acc_norm_stderr": 0.012602244505788228 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8235294117647058, "acc_stderr": 0.023157468308559342, "acc_norm": 0.8235294117647058, "acc_norm_stderr": 0.023157468308559342 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.815359477124183, "acc_stderr": 0.01569702924075778, "acc_norm": 0.815359477124183, "acc_norm_stderr": 0.01569702924075778 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7272727272727273, "acc_stderr": 0.04265792110940589, "acc_norm": 0.7272727272727273, "acc_norm_stderr": 0.04265792110940589 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8489795918367347, "acc_stderr": 0.022923004094736854, "acc_norm": 0.8489795918367347, "acc_norm_stderr": 0.022923004094736854 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8955223880597015, "acc_stderr": 0.021628920516700643, "acc_norm": 0.8955223880597015, "acc_norm_stderr": 0.021628920516700643 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.9, "acc_stderr": 0.030151134457776334, "acc_norm": 0.9, "acc_norm_stderr": 0.030151134457776334 }, "harness|hendrycksTest-virology|5": { "acc": 0.5843373493975904, "acc_stderr": 0.03836722176598053, "acc_norm": 0.5843373493975904, "acc_norm_stderr": 0.03836722176598053 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8830409356725146, "acc_stderr": 0.024648068961366152, "acc_norm": 0.8830409356725146, "acc_norm_stderr": 0.024648068961366152 }, "harness|truthfulqa:mc|0": { "mc1": 0.5336597307221542, "mc1_stderr": 0.017463793867168106, "mc2": 0.7032022498819784, "mc2_stderr": 0.014189265275795037 }, "harness|winogrande|5": { "acc": 0.8263614838200474, "acc_stderr": 0.010646116480330996 }, "harness|gsm8k|5": { "acc": 0.6747536012130402, "acc_stderr": 0.012903904752543913 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_louisbrulenaudet__Pearl-34B-ties
[ "region:us" ]
2024-02-15T20:31:45+00:00
{"pretty_name": "Evaluation run of louisbrulenaudet/Pearl-34B-ties", "dataset_summary": "Dataset automatically created during the evaluation run of model [louisbrulenaudet/Pearl-34B-ties](https://huggingface.co/louisbrulenaudet/Pearl-34B-ties) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_louisbrulenaudet__Pearl-34B-ties\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-02-15T20:29:21.982361](https://huggingface.co/datasets/open-llm-leaderboard/details_louisbrulenaudet__Pearl-34B-ties/blob/main/results_2024-02-15T20-29-21.982361.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7624896367346236,\n \"acc_stderr\": 0.02823253317418589,\n \"acc_norm\": 0.7667330036075873,\n \"acc_norm_stderr\": 0.028764116967369732,\n \"mc1\": 0.5336597307221542,\n \"mc1_stderr\": 0.017463793867168106,\n \"mc2\": 0.7032022498819784,\n \"mc2_stderr\": 0.014189265275795037\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6791808873720137,\n \"acc_stderr\": 0.01364094309194653,\n \"acc_norm\": 0.7098976109215017,\n \"acc_norm_stderr\": 0.013261573677520767\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6525592511451902,\n \"acc_stderr\": 0.004751840646730855,\n \"acc_norm\": 0.8483369846644094,\n \"acc_norm_stderr\": 0.0035796087435066093\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7481481481481481,\n \"acc_stderr\": 0.03749850709174021,\n \"acc_norm\": 0.7481481481481481,\n \"acc_norm_stderr\": 0.03749850709174021\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.875,\n \"acc_stderr\": 0.026913523521537846,\n \"acc_norm\": 0.875,\n \"acc_norm_stderr\": 0.026913523521537846\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.040936018074033256,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.040936018074033256\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.024618298195866518,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.024618298195866518\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8958333333333334,\n \"acc_stderr\": 0.025545239210256917,\n \"acc_norm\": 0.8958333333333334,\n \"acc_norm_stderr\": 0.025545239210256917\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7514450867052023,\n \"acc_stderr\": 0.03295304696818318,\n \"acc_norm\": 0.7514450867052023,\n \"acc_norm_stderr\": 0.03295304696818318\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5686274509803921,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.5686274509803921,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7787234042553192,\n \"acc_stderr\": 0.027136349602424056,\n \"acc_norm\": 0.7787234042553192,\n \"acc_norm_stderr\": 0.027136349602424056\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5964912280701754,\n \"acc_stderr\": 0.04615186962583707,\n \"acc_norm\": 0.5964912280701754,\n \"acc_norm_stderr\": 0.04615186962583707\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7379310344827587,\n \"acc_stderr\": 0.036646663372252565,\n \"acc_norm\": 0.7379310344827587,\n \"acc_norm_stderr\": 0.036646663372252565\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7248677248677249,\n \"acc_stderr\": 0.023000086859068642,\n \"acc_norm\": 0.7248677248677249,\n \"acc_norm_stderr\": 0.023000086859068642\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.6111111111111112,\n \"acc_stderr\": 0.04360314860077459,\n \"acc_norm\": 0.6111111111111112,\n \"acc_norm_stderr\": 0.04360314860077459\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9032258064516129,\n \"acc_stderr\": 0.016818943416345197,\n \"acc_norm\": 0.9032258064516129,\n \"acc_norm_stderr\": 0.016818943416345197\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.6403940886699507,\n \"acc_stderr\": 0.03376458246509567,\n \"acc_norm\": 0.6403940886699507,\n \"acc_norm_stderr\": 0.03376458246509567\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8666666666666667,\n \"acc_stderr\": 0.026544435312706467,\n \"acc_norm\": 0.8666666666666667,\n \"acc_norm_stderr\": 0.026544435312706467\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9292929292929293,\n \"acc_stderr\": 0.018263105420199488,\n \"acc_norm\": 0.9292929292929293,\n \"acc_norm_stderr\": 0.018263105420199488\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9740932642487047,\n \"acc_stderr\": 0.011464523356953162,\n \"acc_norm\": 0.9740932642487047,\n \"acc_norm_stderr\": 0.011464523356953162\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8153846153846154,\n \"acc_stderr\": 0.01967163241310029,\n \"acc_norm\": 0.8153846153846154,\n \"acc_norm_stderr\": 0.01967163241310029\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.45555555555555555,\n \"acc_stderr\": 0.03036486250482443,\n \"acc_norm\": 0.45555555555555555,\n \"acc_norm_stderr\": 0.03036486250482443\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8361344537815126,\n \"acc_stderr\": 0.024044054940440488,\n \"acc_norm\": 0.8361344537815126,\n \"acc_norm_stderr\": 0.024044054940440488\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.5231788079470199,\n \"acc_stderr\": 0.04078093859163085,\n \"acc_norm\": 0.5231788079470199,\n \"acc_norm_stderr\": 0.04078093859163085\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9211009174311927,\n \"acc_stderr\": 0.011558198113769584,\n \"acc_norm\": 0.9211009174311927,\n \"acc_norm_stderr\": 0.011558198113769584\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6527777777777778,\n \"acc_stderr\": 0.032468872436376486,\n \"acc_norm\": 0.6527777777777778,\n \"acc_norm_stderr\": 0.032468872436376486\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9215686274509803,\n \"acc_stderr\": 0.018869514646658928,\n \"acc_norm\": 0.9215686274509803,\n \"acc_norm_stderr\": 0.018869514646658928\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.01888975055095671,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.01888975055095671\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7892376681614349,\n \"acc_stderr\": 0.02737309550054019,\n \"acc_norm\": 0.7892376681614349,\n \"acc_norm_stderr\": 0.02737309550054019\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8778625954198473,\n \"acc_stderr\": 0.028718776889342323,\n \"acc_norm\": 0.8778625954198473,\n \"acc_norm_stderr\": 0.028718776889342323\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8842975206611571,\n \"acc_stderr\": 0.02919980245562281,\n \"acc_norm\": 0.8842975206611571,\n \"acc_norm_stderr\": 0.02919980245562281\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8981481481481481,\n \"acc_stderr\": 0.02923927267563275,\n \"acc_norm\": 0.8981481481481481,\n \"acc_norm_stderr\": 0.02923927267563275\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8711656441717791,\n \"acc_stderr\": 0.02632138319878367,\n \"acc_norm\": 0.8711656441717791,\n \"acc_norm_stderr\": 0.02632138319878367\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.883495145631068,\n \"acc_stderr\": 0.03176683948640406,\n \"acc_norm\": 0.883495145631068,\n \"acc_norm_stderr\": 0.03176683948640406\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9444444444444444,\n \"acc_stderr\": 0.015006312806446912,\n \"acc_norm\": 0.9444444444444444,\n \"acc_norm_stderr\": 0.015006312806446912\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.909323116219668,\n \"acc_stderr\": 0.010268429662528548,\n \"acc_norm\": 0.909323116219668,\n \"acc_norm_stderr\": 0.010268429662528548\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8208092485549133,\n \"acc_stderr\": 0.020647590029679332,\n \"acc_norm\": 0.8208092485549133,\n \"acc_norm_stderr\": 0.020647590029679332\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.8055865921787709,\n \"acc_stderr\": 0.013235808096742286,\n \"acc_norm\": 0.8055865921787709,\n \"acc_norm_stderr\": 0.013235808096742286\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8398692810457516,\n \"acc_stderr\": 0.020998740930362303,\n \"acc_norm\": 0.8398692810457516,\n \"acc_norm_stderr\": 0.020998740930362303\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.797427652733119,\n \"acc_stderr\": 0.02282731749105969,\n \"acc_norm\": 0.797427652733119,\n \"acc_norm_stderr\": 0.02282731749105969\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8703703703703703,\n \"acc_stderr\": 0.018689725721062075,\n \"acc_norm\": 0.8703703703703703,\n \"acc_norm_stderr\": 0.018689725721062075\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6276595744680851,\n \"acc_stderr\": 0.02883892147125145,\n \"acc_norm\": 0.6276595744680851,\n \"acc_norm_stderr\": 0.02883892147125145\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5808344198174706,\n \"acc_stderr\": 0.012602244505788228,\n \"acc_norm\": 0.5808344198174706,\n \"acc_norm_stderr\": 0.012602244505788228\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8235294117647058,\n \"acc_stderr\": 0.023157468308559342,\n \"acc_norm\": 0.8235294117647058,\n \"acc_norm_stderr\": 0.023157468308559342\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.815359477124183,\n \"acc_stderr\": 0.01569702924075778,\n \"acc_norm\": 0.815359477124183,\n \"acc_norm_stderr\": 0.01569702924075778\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.04265792110940589,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.04265792110940589\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8489795918367347,\n \"acc_stderr\": 0.022923004094736854,\n \"acc_norm\": 0.8489795918367347,\n \"acc_norm_stderr\": 0.022923004094736854\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8955223880597015,\n \"acc_stderr\": 0.021628920516700643,\n \"acc_norm\": 0.8955223880597015,\n \"acc_norm_stderr\": 0.021628920516700643\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.030151134457776334,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.030151134457776334\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5843373493975904,\n \"acc_stderr\": 0.03836722176598053,\n \"acc_norm\": 0.5843373493975904,\n \"acc_norm_stderr\": 0.03836722176598053\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8830409356725146,\n \"acc_stderr\": 0.024648068961366152,\n \"acc_norm\": 0.8830409356725146,\n \"acc_norm_stderr\": 0.024648068961366152\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5336597307221542,\n \"mc1_stderr\": 0.017463793867168106,\n \"mc2\": 0.7032022498819784,\n \"mc2_stderr\": 0.014189265275795037\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8263614838200474,\n \"acc_stderr\": 0.010646116480330996\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6747536012130402,\n \"acc_stderr\": 0.012903904752543913\n }\n}\n```", "repo_url": "https://huggingface.co/louisbrulenaudet/Pearl-34B-ties", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|arc:challenge|25_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|gsm8k|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hellaswag|10_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-15T20-29-21.982361.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["**/details_harness|winogrande|5_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-02-15T20-29-21.982361.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_02_15T20_29_21.982361", "path": ["results_2024-02-15T20-29-21.982361.parquet"]}, {"split": "latest", "path": ["results_2024-02-15T20-29-21.982361.parquet"]}]}]}
2024-02-15T20:32:19+00:00
b019803e0a99af90e6f01dd6d8a4603b018c8541
mikeg2/vozclaude
[ "license:openrail", "region:us" ]
2024-02-15T20:33:39+00:00
{"license": "openrail"}
2024-02-15T20:34:04+00:00
aff8f19ac53f559b73b17b508cbccf0ce7dcca05
sxandie/arti_kushwaha_cat
[ "region:us" ]
2024-02-15T20:35:18+00:00
{}
2024-02-15T20:45:11+00:00
f2bdf6ac20a5f53a508bf14aa45662d10a74c65d
rookshanks/small-the_pile
[ "region:us" ]
2024-02-15T20:36:23+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "meta", "struct": [{"name": "perplexity_score", "dtype": "float64"}, {"name": "pile_set_name", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 484845334.4, "num_examples": 80000}, {"name": "validation", "num_bytes": 60605666.8, "num_examples": 10000}, {"name": "test", "num_bytes": 60605666.8, "num_examples": 10000}], "download_size": 329390472, "dataset_size": 606056667.9999999}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-02-15T20:36:47+00:00
5fb3b6308132804ce31daa3cc5629e43837c40a7
# Dataset Card for Evaluation run of BarraHome/Wistral-7B-Instruct-v0.4 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [BarraHome/Wistral-7B-Instruct-v0.4](https://huggingface.co/BarraHome/Wistral-7B-Instruct-v0.4) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_BarraHome__Wistral-7B-Instruct-v0.4", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-02-15T20:35:44.878136](https://huggingface.co/datasets/open-llm-leaderboard/details_BarraHome__Wistral-7B-Instruct-v0.4/blob/main/results_2024-02-15T20-35-44.878136.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6032184784518743, "acc_stderr": 0.03333730204729809, "acc_norm": 0.607891645213564, "acc_norm_stderr": 0.03401402537730786, "mc1": 0.5226438188494492, "mc1_stderr": 0.01748554225848964, "mc2": 0.6766513448639357, "mc2_stderr": 0.015264009667659464 }, "harness|arc:challenge|25": { "acc": 0.575938566552901, "acc_stderr": 0.014441889627464392, "acc_norm": 0.6220136518771331, "acc_norm_stderr": 0.0141696645203031 }, "harness|hellaswag|10": { "acc": 0.6612228639713205, "acc_stderr": 0.004723266971563391, "acc_norm": 0.8481378211511651, "acc_norm_stderr": 0.0035815378475817935 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5777777777777777, "acc_stderr": 0.04266763404099582, "acc_norm": 0.5777777777777777, "acc_norm_stderr": 0.04266763404099582 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.625, "acc_stderr": 0.039397364351956274, "acc_norm": 0.625, "acc_norm_stderr": 0.039397364351956274 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.58, "acc_stderr": 0.049604496374885836, "acc_norm": 0.58, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6754716981132075, "acc_stderr": 0.02881561571343211, "acc_norm": 0.6754716981132075, "acc_norm_stderr": 0.02881561571343211 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6597222222222222, "acc_stderr": 0.039621355734862175, "acc_norm": 0.6597222222222222, "acc_norm_stderr": 0.039621355734862175 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5838150289017341, "acc_stderr": 0.03758517775404947, "acc_norm": 0.5838150289017341, "acc_norm_stderr": 0.03758517775404947 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.43137254901960786, "acc_stderr": 0.04928099597287534, "acc_norm": 0.43137254901960786, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5148936170212766, "acc_stderr": 0.03267151848924777, "acc_norm": 0.5148936170212766, "acc_norm_stderr": 0.03267151848924777 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.43859649122807015, "acc_stderr": 0.04668000738510455, "acc_norm": 0.43859649122807015, "acc_norm_stderr": 0.04668000738510455 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5724137931034483, "acc_stderr": 0.041227371113703316, "acc_norm": 0.5724137931034483, "acc_norm_stderr": 0.041227371113703316 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.38095238095238093, "acc_stderr": 0.025010749116137602, "acc_norm": 0.38095238095238093, "acc_norm_stderr": 0.025010749116137602 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3888888888888889, "acc_stderr": 0.04360314860077459, "acc_norm": 0.3888888888888889, "acc_norm_stderr": 0.04360314860077459 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6774193548387096, "acc_stderr": 0.026593084516572277, "acc_norm": 0.6774193548387096, "acc_norm_stderr": 0.026593084516572277 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7212121212121212, "acc_stderr": 0.03501438706296781, "acc_norm": 0.7212121212121212, "acc_norm_stderr": 0.03501438706296781 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7474747474747475, "acc_stderr": 0.030954055470365897, "acc_norm": 0.7474747474747475, "acc_norm_stderr": 0.030954055470365897 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.844559585492228, "acc_stderr": 0.026148483469153314, "acc_norm": 0.844559585492228, "acc_norm_stderr": 0.026148483469153314 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5564102564102564, "acc_stderr": 0.0251891498947642, "acc_norm": 0.5564102564102564, "acc_norm_stderr": 0.0251891498947642 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.028820884666253255, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.028820884666253255 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.634453781512605, "acc_stderr": 0.031282177063684614, "acc_norm": 0.634453781512605, "acc_norm_stderr": 0.031282177063684614 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8018348623853211, "acc_stderr": 0.017090573804217905, "acc_norm": 0.8018348623853211, "acc_norm_stderr": 0.017090573804217905 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4398148148148148, "acc_stderr": 0.03385177976044812, "acc_norm": 0.4398148148148148, "acc_norm_stderr": 0.03385177976044812 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7549019607843137, "acc_stderr": 0.03019028245350195, "acc_norm": 0.7549019607843137, "acc_norm_stderr": 0.03019028245350195 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7510548523206751, "acc_stderr": 0.028146970599422644, "acc_norm": 0.7510548523206751, "acc_norm_stderr": 0.028146970599422644 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6322869955156951, "acc_stderr": 0.03236198350928275, "acc_norm": 0.6322869955156951, "acc_norm_stderr": 0.03236198350928275 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6946564885496184, "acc_stderr": 0.040393149787245605, "acc_norm": 0.6946564885496184, "acc_norm_stderr": 0.040393149787245605 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7037037037037037, "acc_stderr": 0.04414343666854933, "acc_norm": 0.7037037037037037, "acc_norm_stderr": 0.04414343666854933 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7300613496932515, "acc_stderr": 0.03487825168497892, "acc_norm": 0.7300613496932515, "acc_norm_stderr": 0.03487825168497892 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.04726835553719099, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.04726835553719099 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690878, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690878 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.022801382534597552, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.022801382534597552 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7739463601532567, "acc_stderr": 0.014957458504335842, "acc_norm": 0.7739463601532567, "acc_norm_stderr": 0.014957458504335842 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6676300578034682, "acc_stderr": 0.025361168749688225, "acc_norm": 0.6676300578034682, "acc_norm_stderr": 0.025361168749688225 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.34972067039106147, "acc_stderr": 0.01594930879023364, "acc_norm": 0.34972067039106147, "acc_norm_stderr": 0.01594930879023364 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6797385620915033, "acc_stderr": 0.02671611838015685, "acc_norm": 0.6797385620915033, "acc_norm_stderr": 0.02671611838015685 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6752411575562701, "acc_stderr": 0.026596782287697043, "acc_norm": 0.6752411575562701, "acc_norm_stderr": 0.026596782287697043 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6759259259259259, "acc_stderr": 0.02604176620271716, "acc_norm": 0.6759259259259259, "acc_norm_stderr": 0.02604176620271716 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.450354609929078, "acc_stderr": 0.029680105565029036, "acc_norm": 0.450354609929078, "acc_norm_stderr": 0.029680105565029036 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.42698826597131684, "acc_stderr": 0.012633353557534427, "acc_norm": 0.42698826597131684, "acc_norm_stderr": 0.012633353557534427 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5992647058823529, "acc_stderr": 0.029768263528933105, "acc_norm": 0.5992647058823529, "acc_norm_stderr": 0.029768263528933105 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6111111111111112, "acc_stderr": 0.019722058939618068, "acc_norm": 0.6111111111111112, "acc_norm_stderr": 0.019722058939618068 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7, "acc_stderr": 0.04389311454644287, "acc_norm": 0.7, "acc_norm_stderr": 0.04389311454644287 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7346938775510204, "acc_stderr": 0.0282638899437846, "acc_norm": 0.7346938775510204, "acc_norm_stderr": 0.0282638899437846 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7512437810945274, "acc_stderr": 0.030567675938916714, "acc_norm": 0.7512437810945274, "acc_norm_stderr": 0.030567675938916714 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.81, "acc_stderr": 0.039427724440366255, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366255 }, "harness|hendrycksTest-virology|5": { "acc": 0.5120481927710844, "acc_stderr": 0.03891364495835816, "acc_norm": 0.5120481927710844, "acc_norm_stderr": 0.03891364495835816 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.029170885500727665, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.029170885500727665 }, "harness|truthfulqa:mc|0": { "mc1": 0.5226438188494492, "mc1_stderr": 0.01748554225848964, "mc2": 0.6766513448639357, "mc2_stderr": 0.015264009667659464 }, "harness|winogrande|5": { "acc": 0.7679558011049724, "acc_stderr": 0.011864149691827936 }, "harness|gsm8k|5": { "acc": 0.3957543593631539, "acc_stderr": 0.013469823701048815 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_BarraHome__Wistral-7B-Instruct-v0.4
[ "region:us" ]
2024-02-15T20:38:05+00:00
{"pretty_name": "Evaluation run of BarraHome/Wistral-7B-Instruct-v0.4", "dataset_summary": "Dataset automatically created during the evaluation run of model [BarraHome/Wistral-7B-Instruct-v0.4](https://huggingface.co/BarraHome/Wistral-7B-Instruct-v0.4) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_BarraHome__Wistral-7B-Instruct-v0.4\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-02-15T20:35:44.878136](https://huggingface.co/datasets/open-llm-leaderboard/details_BarraHome__Wistral-7B-Instruct-v0.4/blob/main/results_2024-02-15T20-35-44.878136.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6032184784518743,\n \"acc_stderr\": 0.03333730204729809,\n \"acc_norm\": 0.607891645213564,\n \"acc_norm_stderr\": 0.03401402537730786,\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.01748554225848964,\n \"mc2\": 0.6766513448639357,\n \"mc2_stderr\": 0.015264009667659464\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.575938566552901,\n \"acc_stderr\": 0.014441889627464392,\n \"acc_norm\": 0.6220136518771331,\n \"acc_norm_stderr\": 0.0141696645203031\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6612228639713205,\n \"acc_stderr\": 0.004723266971563391,\n \"acc_norm\": 0.8481378211511651,\n \"acc_norm_stderr\": 0.0035815378475817935\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5777777777777777,\n \"acc_stderr\": 0.04266763404099582,\n \"acc_norm\": 0.5777777777777777,\n \"acc_norm_stderr\": 0.04266763404099582\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.625,\n \"acc_stderr\": 0.039397364351956274,\n \"acc_norm\": 0.625,\n \"acc_norm_stderr\": 0.039397364351956274\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6754716981132075,\n \"acc_stderr\": 0.02881561571343211,\n \"acc_norm\": 0.6754716981132075,\n \"acc_norm_stderr\": 0.02881561571343211\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6597222222222222,\n \"acc_stderr\": 0.039621355734862175,\n \"acc_norm\": 0.6597222222222222,\n \"acc_norm_stderr\": 0.039621355734862175\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5838150289017341,\n \"acc_stderr\": 0.03758517775404947,\n \"acc_norm\": 0.5838150289017341,\n \"acc_norm_stderr\": 0.03758517775404947\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.43137254901960786,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.43137254901960786,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5148936170212766,\n \"acc_stderr\": 0.03267151848924777,\n \"acc_norm\": 0.5148936170212766,\n \"acc_norm_stderr\": 0.03267151848924777\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.43859649122807015,\n \"acc_stderr\": 0.04668000738510455,\n \"acc_norm\": 0.43859649122807015,\n \"acc_norm_stderr\": 0.04668000738510455\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5724137931034483,\n \"acc_stderr\": 0.041227371113703316,\n \"acc_norm\": 0.5724137931034483,\n \"acc_norm_stderr\": 0.041227371113703316\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.38095238095238093,\n \"acc_stderr\": 0.025010749116137602,\n \"acc_norm\": 0.38095238095238093,\n \"acc_norm_stderr\": 0.025010749116137602\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3888888888888889,\n \"acc_stderr\": 0.04360314860077459,\n \"acc_norm\": 0.3888888888888889,\n \"acc_norm_stderr\": 0.04360314860077459\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6774193548387096,\n \"acc_stderr\": 0.026593084516572277,\n \"acc_norm\": 0.6774193548387096,\n \"acc_norm_stderr\": 0.026593084516572277\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7212121212121212,\n \"acc_stderr\": 0.03501438706296781,\n \"acc_norm\": 0.7212121212121212,\n \"acc_norm_stderr\": 0.03501438706296781\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7474747474747475,\n \"acc_stderr\": 0.030954055470365897,\n \"acc_norm\": 0.7474747474747475,\n \"acc_norm_stderr\": 0.030954055470365897\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.844559585492228,\n \"acc_stderr\": 0.026148483469153314,\n \"acc_norm\": 0.844559585492228,\n \"acc_norm_stderr\": 0.026148483469153314\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5564102564102564,\n \"acc_stderr\": 0.0251891498947642,\n \"acc_norm\": 0.5564102564102564,\n \"acc_norm_stderr\": 0.0251891498947642\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.028820884666253255,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.028820884666253255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.634453781512605,\n \"acc_stderr\": 0.031282177063684614,\n \"acc_norm\": 0.634453781512605,\n \"acc_norm_stderr\": 0.031282177063684614\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8018348623853211,\n \"acc_stderr\": 0.017090573804217905,\n \"acc_norm\": 0.8018348623853211,\n \"acc_norm_stderr\": 0.017090573804217905\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4398148148148148,\n \"acc_stderr\": 0.03385177976044812,\n \"acc_norm\": 0.4398148148148148,\n \"acc_norm_stderr\": 0.03385177976044812\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7549019607843137,\n \"acc_stderr\": 0.03019028245350195,\n \"acc_norm\": 0.7549019607843137,\n \"acc_norm_stderr\": 0.03019028245350195\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7510548523206751,\n \"acc_stderr\": 0.028146970599422644,\n \"acc_norm\": 0.7510548523206751,\n \"acc_norm_stderr\": 0.028146970599422644\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6322869955156951,\n \"acc_stderr\": 0.03236198350928275,\n \"acc_norm\": 0.6322869955156951,\n \"acc_norm_stderr\": 0.03236198350928275\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6946564885496184,\n \"acc_stderr\": 0.040393149787245605,\n \"acc_norm\": 0.6946564885496184,\n \"acc_norm_stderr\": 0.040393149787245605\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7037037037037037,\n \"acc_stderr\": 0.04414343666854933,\n \"acc_norm\": 0.7037037037037037,\n \"acc_norm_stderr\": 0.04414343666854933\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7300613496932515,\n \"acc_stderr\": 0.03487825168497892,\n \"acc_norm\": 0.7300613496932515,\n \"acc_norm_stderr\": 0.03487825168497892\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.04726835553719099,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.04726835553719099\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690878,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690878\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597552,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597552\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7739463601532567,\n \"acc_stderr\": 0.014957458504335842,\n \"acc_norm\": 0.7739463601532567,\n \"acc_norm_stderr\": 0.014957458504335842\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6676300578034682,\n \"acc_stderr\": 0.025361168749688225,\n \"acc_norm\": 0.6676300578034682,\n \"acc_norm_stderr\": 0.025361168749688225\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.34972067039106147,\n \"acc_stderr\": 0.01594930879023364,\n \"acc_norm\": 0.34972067039106147,\n \"acc_norm_stderr\": 0.01594930879023364\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6797385620915033,\n \"acc_stderr\": 0.02671611838015685,\n \"acc_norm\": 0.6797385620915033,\n \"acc_norm_stderr\": 0.02671611838015685\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6752411575562701,\n \"acc_stderr\": 0.026596782287697043,\n \"acc_norm\": 0.6752411575562701,\n \"acc_norm_stderr\": 0.026596782287697043\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6759259259259259,\n \"acc_stderr\": 0.02604176620271716,\n \"acc_norm\": 0.6759259259259259,\n \"acc_norm_stderr\": 0.02604176620271716\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.450354609929078,\n \"acc_stderr\": 0.029680105565029036,\n \"acc_norm\": 0.450354609929078,\n \"acc_norm_stderr\": 0.029680105565029036\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.42698826597131684,\n \"acc_stderr\": 0.012633353557534427,\n \"acc_norm\": 0.42698826597131684,\n \"acc_norm_stderr\": 0.012633353557534427\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5992647058823529,\n \"acc_stderr\": 0.029768263528933105,\n \"acc_norm\": 0.5992647058823529,\n \"acc_norm_stderr\": 0.029768263528933105\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6111111111111112,\n \"acc_stderr\": 0.019722058939618068,\n \"acc_norm\": 0.6111111111111112,\n \"acc_norm_stderr\": 0.019722058939618068\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.04389311454644287,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.04389311454644287\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7346938775510204,\n \"acc_stderr\": 0.0282638899437846,\n \"acc_norm\": 0.7346938775510204,\n \"acc_norm_stderr\": 0.0282638899437846\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7512437810945274,\n \"acc_stderr\": 0.030567675938916714,\n \"acc_norm\": 0.7512437810945274,\n \"acc_norm_stderr\": 0.030567675938916714\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366255,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366255\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5120481927710844,\n \"acc_stderr\": 0.03891364495835816,\n \"acc_norm\": 0.5120481927710844,\n \"acc_norm_stderr\": 0.03891364495835816\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.029170885500727665,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.029170885500727665\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.01748554225848964,\n \"mc2\": 0.6766513448639357,\n \"mc2_stderr\": 0.015264009667659464\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7679558011049724,\n \"acc_stderr\": 0.011864149691827936\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3957543593631539,\n \"acc_stderr\": 0.013469823701048815\n }\n}\n```", "repo_url": "https://huggingface.co/BarraHome/Wistral-7B-Instruct-v0.4", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|arc:challenge|25_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|gsm8k|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hellaswag|10_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-15T20-35-44.878136.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["**/details_harness|winogrande|5_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-02-15T20-35-44.878136.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_02_15T20_35_44.878136", "path": ["results_2024-02-15T20-35-44.878136.parquet"]}, {"split": "latest", "path": ["results_2024-02-15T20-35-44.878136.parquet"]}]}]}
2024-02-15T20:38:32+00:00
0cebb47837c041c119e279e1ced85778416ef515
thecaipirinhachannel/serran
[ "region:us" ]
2024-02-15T20:38:28+00:00
{}
2024-02-15T20:39:18+00:00
3111b14a735e48aaa9d5f39aaa33856b8aaba4d2
RadAlienware/test1ultrachat
[ "license:mit", "region:us" ]
2024-02-15T20:46:09+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "Content", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5722, "num_examples": 1}, {"name": "test", "num_bytes": 5324, "num_examples": 1}], "download_size": 5524, "dataset_size": 11046}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-02-15T21:00:00+00:00
2f65c90484ced4b4482a0403eaed26a18fb5765c
YingJie0202/test
[ "region:us" ]
2024-02-15T20:52:56+00:00
{}
2024-02-15T21:20:00+00:00
7bd1bd18f2807a42d04caddaf7f90ef309f25983
xPXXX/test_ragas
[ "license:mit", "region:us" ]
2024-02-15T21:07:10+00:00
{"license": "mit"}
2024-02-16T00:51:44+00:00
418dfbba1351ac18742a1bc8f7428d5fbc0150c8
Dataset for human eval infill for java, based on https://arxiv.org/pdf/2207.14255
njkumarr/humanevalinfilljava
[ "language:en", "arxiv:2207.14255", "region:us" ]
2024-02-15T21:25:22+00:00
{"language": ["en"], "pretty_name": "HumanEval-Infilling Java"}
2024-02-16T07:43:34+00:00
8ff91a7ff0389de4e31636e8305fddc3e3a2df35
unigram/fol-04
[ "region:us" ]
2024-02-15T21:29:12+00:00
{"dataset_info": {"features": [{"name": "premise", "dtype": "string"}, {"name": "hypothesis", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "premise_tptp", "dtype": "string"}, {"name": "hypothesis_tptp", "dtype": "string"}, {"name": "deberta_pred", "dtype": "string"}, {"name": "deberta_pred_r1", "dtype": "string"}, {"name": "deberta_pred_r2", "dtype": "string"}, {"name": "deberta_pred_r3", "dtype": "string"}, {"name": "deberta_pred_r4", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2197971, "num_examples": 1989}, {"name": "validation", "num_bytes": 387374, "num_examples": 375}, {"name": "test", "num_bytes": 370138, "num_examples": 339}], "download_size": 953363, "dataset_size": 2955483}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-02-15T21:29:15+00:00
b12fc65cb8d2fd75335ea8ce2fa64a4be9f8fa7c
## Dataset Description - **Repository:** [https://github.com/nlp-uoregon/CulturaX](https://github.com/nlp-uoregon/CulturaX) - **Papers:** [CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages](https://arxiv.org/abs/2309.09400) ## Dataset Summary We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for large language model (LLM) development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. We employ MinHash at document level to achieve fuzzy deduplication for the datasets in different languages. Our data cleaning framework includes diverse criteria and threshold selections, guided by extensive data samples, ensuring comprehensive noise filtering in various aspects. CulturaX is fully released to the public in HuggingFace to facilitate research and advancements in multilingual LLMs. Our dataset combines the most recent iteration of mC4 (version 3.1.0) [1] with all accessible OSCAR corpora up to the present year, including 20.19, 21.09, 22.01, and 23.01 [2]. After deep cleaning and deduplication, CulturaX involves 16TB data in the parquet format (expanding to 27TB when unpacked). More than a half of our dataset is dedicated to non-English languages to significantly boost the data size and enhance the feasibility of training models in multilingual scenarios. To obtain perplexity scores for data cleaning, we train a SentencePiece tokenizer and 5-gram Kneser-Ney language models as provided in the KenLM library [3] using the 20230501 dumps of Wikipedia. Our KenLM models are also released in HuggingFace: https://huggingface.co/uonlp/kenlm. Details for the dataset can be found in our technical paper: [https://arxiv.org/abs/2309.09400](https://arxiv.org/abs/2309.09400) You can download the dataset using Hugging Face datasets: *You may need to follow these instructions to setup authentication before downloading the dataset: [https://huggingface.co/docs/huggingface_hub/quick-start#login](https://huggingface.co/docs/huggingface_hub/quick-start#login)* ```python from datasets import load_dataset ds = load_dataset("uonlp/CulturaX", "en", use_auth_token=True) ``` ### Languages The supported languages and statistics for our dataset can be found below: *(Note that the language code `als` and `eml` refer to `gsw` and `x-eml` in the OSCAR-2301 dataset.)* | | Code | Language | # Documents | # Tokens | # Tokens (%) | |----:|:-------|:-------------------------|:----------------|:--------------------|:------| | 0 | en | English | 3,241,065,682 | 2,846,970,578,793 | 45.13 | | 1 | ru | Russian | 799,310,908 | 737,201,800,363 | 11.69 | | 2 | es | Spanish | 450,937,645 | 373,845,662,394 | 5.93 | | 3 | de | German | 420,017,484 | 357,030,348,021 | 5.66 | | 4 | fr | French | 363,754,348 | 319,332,674,695 | 5.06 | | 5 | zh | Chinese | 218,624,604 | 227,055,380,882 | 3.60 | | 6 | it | Italian | 211,309,922 | 165,446,410,843 | 2.62 | | 7 | pt | Portuguese | 190,289,658 | 136,941,763,923 | 2.17 | | 8 | pl | Polish | 142,167,217 | 117,269,087,143 | 1.86 | | 9 | ja | Japanese | 111,188,475 | 107,873,841,351 | 1.71 | | 10 | nl | Dutch | 117,392,666 | 80,032,209,900 | 1.27 | | 11 | ar | Arabic | 74,027,952 | 69,354,335,076 | 1.10 | | 12 | tr | Turkish | 94,207,460 | 64,292,787,164 | 1.02 | | 13 | cs | Czech | 65,350,564 | 56,910,486,745 | 0.90 | | 14 | vi | Vietnamese | 57,606,341 | 55,380,123,774 | 0.88 | | 15 | fa | Persian | 59,531,144 | 45,947,657,495 | 0.73 | | 16 | hu | Hungarian | 44,132,152 | 43,417,981,714 | 0.69 | | 17 | el | Greek | 51,430,226 | 43,147,590,757 | 0.68 | | 18 | ro | Romanian | 40,325,424 | 39,647,954,768 | 0.63 | | 19 | sv | Swedish | 49,709,189 | 38,486,181,494 | 0.61 | | 20 | uk | Ukrainian | 44,740,545 | 38,226,128,686 | 0.61 | | 21 | fi | Finnish | 30,467,667 | 28,925,009,180 | 0.46 | | 22 | ko | Korean | 20,557,310 | 24,765,448,392 | 0.39 | | 23 | da | Danish | 25,429,808 | 22,921,651,314 | 0.36 | | 24 | bg | Bulgarian | 24,131,819 | 22,917,954,776 | 0.36 | | 25 | no | Norwegian | 18,907,310 | 18,426,628,868 | 0.29 | | 26 | hi | Hindi | 19,665,355 | 16,791,362,871 | 0.27 | | 27 | sk | Slovak | 18,582,517 | 16,442,669,076 | 0.26 | | 28 | th | Thai | 20,960,550 | 15,717,374,014 | 0.25 | | 29 | lt | Lithuanian | 13,339,785 | 14,247,110,836 | 0.23 | | 30 | ca | Catalan | 15,531,777 | 12,530,288,006 | 0.20 | | 31 | id | Indonesian | 23,251,368 | 12,062,966,061 | 0.19 | | 32 | bn | Bangla | 12,436,596 | 9,572,929,804 | 0.15 | | 33 | et | Estonian | 8,004,753 | 8,805,656,165 | 0.14 | | 34 | sl | Slovenian | 7,335,378 | 8,007,587,522 | 0.13 | | 35 | lv | Latvian | 7,136,587 | 7,845,180,319 | 0.12 | | 36 | he | Hebrew | 4,653,979 | 4,937,152,096 | 0.08 | | 37 | sr | Serbian | 4,053,166 | 4,619,482,725 | 0.07 | | 38 | ta | Tamil | 4,728,460 | 4,378,078,610 | 0.07 | | 39 | sq | Albanian | 5,205,579 | 3,648,893,215 | 0.06 | | 40 | az | Azerbaijani | 5,084,505 | 3,513,351,967 | 0.06 | | 41 | kk | Kazakh | 2,733,982 | 2,802,485,195 | 0.04 | | 42 | ur | Urdu | 2,757,279 | 2,703,052,627 | 0.04 | | 43 | ka | Georgian | 3,120,321 | 2,617,625,564 | 0.04 | | 44 | hy | Armenian | 2,964,488 | 2,395,179,284 | 0.04 | | 45 | is | Icelandic | 2,373,560 | 2,350,592,857 | 0.04 | | 46 | ml | Malayalam | 2,693,052 | 2,100,556,809 | 0.03 | | 47 | ne | Nepali | 3,124,040 | 2,061,601,961 | 0.03 | | 48 | mk | Macedonian | 2,762,807 | 2,003,302,006 | 0.03 | | 49 | mr | Marathi | 2,266,588 | 1,955,227,796 | 0.03 | | 50 | mn | Mongolian | 1,928,828 | 1,850,667,656 | 0.03 | | 51 | be | Belarusian | 1,643,486 | 1,791,473,041 | 0.03 | | 52 | te | Telugu | 1,822,865 | 1,566,972,146 | 0.02 | | 53 | gl | Galician | 1,785,963 | 1,382,539,693 | 0.02 | | 54 | eu | Basque | 1,598,822 | 1,262,066,759 | 0.02 | | 55 | kn | Kannada | 1,352,142 | 1,242,285,201 | 0.02 | | 56 | gu | Gujarati | 1,162,878 | 1,131,730,537 | 0.02 | | 57 | af | Afrikaans | 826,519 | 1,119,009,767 | 0.02 | | 58 | my | Burmese | 865,575 | 882,606,546 | 0.01 | | 59 | si | Sinhala | 753,655 | 880,289,097 | 0.01 | | 60 | eo | Esperanto | 460,088 | 803,948,528 | 0.01 | | 61 | km | Khmer | 1,013,181 | 746,664,132 | 0.01 | | 62 | pa | Punjabi | 646,987 | 727,546,145 | 0.01 | | 63 | cy | Welsh | 549,955 | 576,743,162 | 0.01 | | 64 | ky | Kyrgyz | 570,922 | 501,442,620 | 0.01 | | 65 | ga | Irish | 304,251 | 376,947,935 | 0.01 | | 66 | ps | Pashto | 376,914 | 363,007,770 | 0.01 | | 67 | am | Amharic | 243,349 | 358,206,762 | 0.01 | | 68 | ku | Kurdish | 295,314 | 302,990,910 | 0.00 | | 69 | tl | Filipino | 348,453 | 242,086,456 | 0.00 | | 70 | yi | Yiddish | 141,156 | 217,584,643 | 0.00 | | 71 | lo | Lao | 217,842 | 168,256,876 | 0.00 | | 72 | fy | Western Frisian | 223,268 | 167,193,111 | 0.00 | | 73 | sd | Sindhi | 109,162 | 147,487,058 | 0.00 | | 74 | mg | Malagasy | 115,910 | 142,685,412 | 0.00 | | 75 | or | Odia | 153,461 | 100,323,213 | 0.00 | | 76 | as | Assamese | 52,627 | 83,787,896 | 0.00 | | 77 | ug | Uyghur | 47,035 | 77,677,306 | 0.00 | | 78 | uz | Uzbek | 87,219 | 75,250,787 | 0.00 | | 79 | la | Latin | 48,968 | 44,176,580 | 0.00 | | 80 | hr | Croatian | 460,690 | 40,796,811 | 0.00 | | 81 | sw | Swahili | 66,506 | 30,708,309 | 0.00 | | 82 | ms | Malay | 238,151 | 19,375,976 | 0.00 | | 83 | br | Breton | 43,765 | 13,987,037 | 0.00 | | 84 | sa | Sanskrit | 16,290 | 13,561,367 | 0.00 | | 85 | gd | Scottish Gaelic | 8,408 | 4,796,485 | 0.00 | | 86 | su | Sundanese | 1,554 | 1,308,460 | 0.00 | | 87 | jv | Javanese | 2,058 | 625,429 | 0.00 | | 88 | tg | Tajik | 483,835 | - | - | | 89 | ceb | Cebuano | 263,890 | - | - | | 90 | tt | Tatar | 218,102 | - | - | | 91 | ckb | Central Kurdish | 172,035 | - | - | | 92 | lb | Luxembourgish | 165,891 | - | - | | 93 | mt | Maltese | 151,320 | - | - | | 94 | nn | Norwegian Nynorsk | 126,083 | - | - | | 95 | qu | Quechua | 1,202 | 72,101 | 0.00 | | 96 | ba | Bashkir | 71,957 | - | - | | 97 | arz | Egyptian Arabic | 71,625 | - | - | | 98 | dv | Divehi | 66,702 | - | - | | 99 | bo | Tibetan | 54,185 | - | - | | 100 | sh | Serbian (Latin) | 45,619 | - | - | | 101 | yo | Yoruba | 192 | 42,943 | 0.00 | | 102 | bs | Bosnian | 1,237 | 39,768 | 0.00 | | 103 | azb | South Azerbaijani | 29,833 | - | - | | 104 | ht | Haitian Creole | 12 | 26,183 | 0.00 | | 105 | war | Waray | 23,687 | - | - | | 106 | cv | Chuvash | 22,570 | - | - | | 107 | sah | Sakha | 22,141 | - | - | | 108 | li | Limburgish | 206 | 18,532 | 0.00 | | 109 | ce | Chechen | 17,322 | - | - | | 110 | pnb | Western Panjabi | 15,625 | - | - | | 111 | nds | Low German | 15,139 | - | - | | 112 | tk | Turkmen | 14,393 | - | - | | 113 | gn | Guarani | 103 | 12,708 | 0.00 | | 114 | oc | Occitan | 10,556 | - | - | | 115 | xmf | Mingrelian | 9,706 | - | - | | 116 | ast | Asturian | 9,002 | - | - | | 117 | os | Ossetic | 8,596 | - | - | | 118 | mhr | Eastern Mari | 7,883 | - | - | | 119 | pms | Piedmontese | 7,566 | - | - | | 120 | als[*] | Swiss German | 6,936 | - | - | | 121 | vo | Volapük | 6,621 | - | - | | 122 | so | Somali | 39 | 6,053 | 0.00 | | 123 | bpy | Bishnupriya | 5,087 | - | - | | 124 | new | Newari | 4,344 | - | - | | 125 | hsb | Upper Sorbian | 4,244 | - | - | | 126 | lmo | Lombard | 3,530 | - | - | | 127 | an | Aragonese | 2,746 | - | - | | 128 | ilo | Iloko | 2,328 | - | - | | 129 | mzn | Mazanderani | 1,914 | - | - | | 130 | lez | Lezghian | 1,806 | - | - | | 131 | rm | Romansh | 30 | 1,769 | 0.00 | | 132 | krc | Karachay-Balkar | 1,745 | - | - | | 133 | min | Minangkabau | 1,429 | - | - | | 134 | kv | Komi | 1,396 | - | - | | 135 | wa | Walloon | 1,383 | - | - | | 136 | jbo | Lojban | 1,349 | - | - | | 137 | io | Ido | 1,144 | - | - | | 138 | mrj | Western Mari | 1,056 | - | - | | 139 | gom | Goan Konkani | 721 | - | - | | 140 | ia | Interlingua | 613 | - | - | | 141 | av | Avaric | 438 | - | - | | 142 | bh | Bihari languages | 265 | - | - | | 143 | wuu | Wu Chinese | 222 | - | - | | 144 | nah | Nahuatl languages | 131 | - | - | | 145 | vec | Venetian | 113 | - | - | | 146 | bxr | Russia Buriat | 100 | - | - | | 147 | kw | Cornish | 94 | - | - | | 148 | mai | Maithili | 93 | - | - | | 149 | eml[*] | Emiliano-Romagnol | 91 | - | - | | 150 | dsb | Lower Sorbian | 59 | - | - | | 151 | xal | Kalmyk | 51 | - | - | | 152 | lrc | Northern Luri | 43 | - | - | | 153 | nap | Neapolitan | 31 | - | - | | 154 | tyv | Tuvinian | 23 | - | - | | 155 | scn | Sicilian | 21 | - | - | | 156 | frr | Northern Frisian | 11 | - | - | | 157 | mwl | Mirandese | 9 | - | - | | 158 | myv | Erzya | 4 | - | - | | 159 | ie | Interlingue | 4 | - | - | | 160 | pam | Pampanga | 4 | - | - | | 161 | bar | Bavarian | 3 | - | - | | 162 | yue | Yue Chinese | 3 | - | - | | 163 | cbk | Chavacano | 2 | - | - | | 164 | bcl | Central Bikol | 1 | - | - | | 165 | vls | West Flemish | 1 | - | - | | 166 | rue | Rusyn | 1 | - | - | ### Dataset Structure ```json { "text": ..., "timestamp": ..., "url": ..., "source": "mc4" | "OSCAR-xxxx", } ``` ## Considerations for Using the Data As CulturaX is the cleaned version of the mC4 and OSCAR datasets, which were both extracted from CommonCrawl, personal and sensitive information might still contain personal and sensitive information. This must be considered prior to using this dataset for any purpose, such as training deep learning models, etc. ## License Information The licence terms for CulturaX strictly follows those of `mC4` and `OSCAR`. Please refer to both below licenses when using this dataset. - [mC4 license](https://huggingface.co/datasets/allenai/c4#license) - [OSCAR license](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information) ## Citation To cite CulturaX, please use: ``` @misc{nguyen2023culturax, title={CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages}, author={Thuat Nguyen and Chien Van Nguyen and Viet Dac Lai and Hieu Man and Nghia Trung Ngo and Franck Dernoncourt and Ryan A. Rossi and Thien Huu Nguyen}, year={2023}, eprint={2309.09400}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Reference [1] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In NAACL 2021. https://huggingface.co/datasets/mc4 [2] Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary. 2019. Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures. In Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC- 7) 2019. https://oscar-project.org/ [3] KenLM: Faster and smaller language model queries. In Proceedings of the Sixth Workshop on Statistical Machine Translation, 2011.
Madjakul/l-halversting
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:als", "language:am", "language:an", "language:ar", "language:arz", "language:as", "language:ast", "language:av", "language:az", "language:azb", "language:ba", "language:bar", "language:bcl", "language:be", "language:bg", "language:bh", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bxr", "language:ca", "language:cbk", "language:ce", "language:ceb", "language:ckb", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dsb", "language:dv", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:frr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gn", "language:gom", "language:gu", "language:he", "language:hi", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ie", "language:ilo", "language:io", "language:is", "language:it", "language:ja", "language:jbo", "language:jv", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:krc", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lb", "language:lez", "language:li", "language:lmo", "language:lo", "language:lrc", "language:lt", "language:lv", "language:mai", "language:mg", "language:mhr", "language:min", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nap", "language:nds", "language:ne", "language:new", "language:nl", "language:nn", "language:no", "language:oc", "language:or", "language:os", "language:pa", "language:pam", "language:pl", "language:pms", "language:pnb", "language:ps", "language:pt", "language:qu", "language:rm", "language:ro", "language:ru", "language:rue", "language:sa", "language:sah", "language:scn", "language:sd", "language:sh", "language:si", "language:sk", "language:sl", "language:so", "language:sq", "language:sr", "language:su", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tk", "language:tl", "language:tr", "language:tt", "language:tyv", "language:ug", "language:uk", "language:ur", "language:uz", "language:vec", "language:vi", "language:vls", "language:vo", "language:wa", "language:war", "language:wuu", "language:xal", "language:xmf", "language:yi", "language:yo", "language:yue", "language:zh", "arxiv:2309.09400", "region:us" ]
2024-02-15T21:36:53+00:00
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["af", "als", "am", "an", "ar", "arz", "as", "ast", "av", "az", "azb", "ba", "bar", "bcl", "be", "bg", "bh", "bn", "bo", "bpy", "br", "bs", "bxr", "ca", "cbk", "ce", "ceb", "ckb", "cs", "cv", "cy", "da", "de", "dsb", "dv", "el", "eml", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "frr", "fy", "ga", "gd", "gl", "gn", "gom", "gu", "he", "hi", "hr", "hsb", "ht", "hu", "hy", "ia", "id", "ie", "ilo", "io", "is", "it", "ja", "jbo", "jv", "ka", "kk", "km", "kn", "ko", "krc", "ku", "kv", "kw", "ky", "la", "lb", "lez", "li", "lmo", "lo", "lrc", "lt", "lv", "mai", "mg", "mhr", "min", "mk", "ml", "mn", "mr", "mrj", "ms", "mt", "mwl", "my", "myv", "mzn", "nah", "nap", "nds", "ne", "new", "nl", "nn", "no", "oc", "or", "os", "pa", "pam", "pl", "pms", "pnb", "ps", "pt", "qu", "rm", "ro", "ru", "rue", "sa", "sah", "scn", "sd", "sh", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "tg", "th", "tk", "tl", "tr", "tt", "tyv", "ug", "uk", "ur", "uz", "vec", "vi", "vls", "vo", "wa", "war", "wuu", "xal", "xmf", "yi", "yo", "yue", "zh"], "multilinguality": ["multilingual"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "pretty_name": "LHALversting", "configs": [{"config_name": "de", "data_files": "de/*.tar.gz"}, {"config_name": "en", "data_files": "en/*.tar.gz"}, {"config_name": "fr", "data_files": "fr/*.tar.gz"}], "extra_gated_prompt": "By completing the form below, you acknowledge that the provided data is offered as is. Although we anticipate no problems, you accept full responsibility for any repercussions resulting from the use of this data. Furthermore, you agree that the data must not be utilized for malicious or harmful purposes towards humanity.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Country": "text", "Usecase": "text", "I have explicitly check with my jurisdiction and I confirm that downloading CulturaX is legal in the country/region where I am located right now, and for the use case that I have described above": "checkbox", "You agree to not attempt to determine the identity of individuals in this dataset": "checkbox"}}
2024-02-16T19:53:17+00:00
88349b95507d871e30c9a5d2b862c34682315395
trevorweston/monet
[ "region:us" ]
2024-02-15T21:42:02+00:00
{}
2024-02-15T21:44:53+00:00