patch
stringlengths
17
31.2k
y
int64
1
1
oldf
stringlengths
0
2.21M
idx
int64
1
1
id
int64
4.29k
68.4k
msg
stringlengths
8
843
proj
stringclasses
212 values
lang
stringclasses
9 values
@@ -77,6 +77,8 @@ class Thelia extends Kernel ); $serviceContainer = Propel::getServiceContainer(); $serviceContainer->setAdapterClass('thelia', 'mysql'); + $serviceContainer->setDefaultDatasource('thelia'); + $manager = new ConnectionManagerSingle(); $manager->setConfiguration($definePropel->getConfig()); $serviceContainer->setConnectionManager('thelia', $manager);
1
<?php /*************************************************************************************/ /* This file is part of the Thelia package. */ /* */ /* Copyright (c) OpenStudio */ /* email : [email protected] */ /* web : http://www.thelia.net */ /* */ /* For the full copyright and license information, please view the LICENSE.txt */ /* file that was distributed with this source code. */ /*************************************************************************************/ namespace Thelia\Core; /** * Root class of Thelia * * It extends Symfony\Component\HttpKernel\Kernel for changing some features * * * @author Manuel Raynaud <[email protected]> */ use Propel\Runtime\Connection\ConnectionManagerSingle; use Propel\Runtime\Connection\ConnectionWrapper; use Propel\Runtime\Propel; use Symfony\Component\Config\FileLocator; use Symfony\Component\Config\Loader\LoaderInterface; use Symfony\Component\Debug\Debug; use Symfony\Component\DependencyInjection\ContainerBuilder; use Symfony\Component\DependencyInjection\Definition; use Symfony\Component\DependencyInjection\ParameterBag\ParameterBag; use Symfony\Component\DependencyInjection\Reference; use Symfony\Component\Finder\Finder; use Symfony\Component\HttpKernel\Kernel; use Symfony\Component\Yaml\Yaml; use Thelia\Config\DatabaseConfiguration; use Thelia\Config\DefinePropel; use Thelia\Core\DependencyInjection\Loader\XmlFileLoader; use Thelia\Core\Event\TheliaEvents; use Thelia\Core\Template\ParserInterface; use Thelia\Core\Template\TemplateDefinition; use Thelia\Core\Template\TemplateHelper; use Thelia\Log\Tlog; use Thelia\Model\Module; use Thelia\Model\ModuleQuery; class Thelia extends Kernel { const THELIA_VERSION = '2.1.0-alpha1'; public function __construct($environment, $debug) { parent::__construct($environment, $debug); if ($debug) { Debug::enable(); } $this->initPropel(); } public static function isInstalled() { return file_exists(THELIA_CONF_DIR . 'database.yml'); } protected function initPropel() { if (self::isInstalled() === false) { return ; } $definePropel = new DefinePropel( new DatabaseConfiguration(), Yaml::parse(THELIA_CONF_DIR . 'database.yml') ); $serviceContainer = Propel::getServiceContainer(); $serviceContainer->setAdapterClass('thelia', 'mysql'); $manager = new ConnectionManagerSingle(); $manager->setConfiguration($definePropel->getConfig()); $serviceContainer->setConnectionManager('thelia', $manager); $con = Propel::getConnection(\Thelia\Model\Map\ProductTableMap::DATABASE_NAME); $con->setAttribute(ConnectionWrapper::PROPEL_ATTR_CACHE_PREPARES, true); if ($this->isDebug()) { $serviceContainer->setLogger('defaultLogger', Tlog::getInstance()); $con->useDebug(true); } } /** * dispatch an event when application is boot */ public function boot() { parent::boot(); if (self::isInstalled()) { $this->getContainer()->get("event_dispatcher")->dispatch(TheliaEvents::BOOT); } } /** * Add all module's standard templates to the parser environment * * @param ParserInterface $parser the parser * @param Module $module the Module. */ protected function addStandardModuleTemplatesToParserEnvironment($parser, $module) { $stdTpls = TemplateDefinition::getStandardTemplatesSubdirsIterator(); foreach ($stdTpls as $templateType => $templateSubdirName) { $this->addModuleTemplateToParserEnvironment($parser, $module, $templateType, $templateSubdirName); } } /** * Add a module template directory to the parser environment * * @param ParserInterface $parser the parser * @param Module $module the Module. * @param string $templateType the template type (one of the TemplateDefinition type constants) * @param string $templateSubdirName the template subdirectory name (one of the TemplateDefinition::XXX_SUBDIR constants) */ protected function addModuleTemplateToParserEnvironment($parser, $module, $templateType, $templateSubdirName) { // Get template path $templateDirectory = $module->getAbsoluteTemplateDirectoryPath($templateSubdirName); try { $templateDirBrowser = new \DirectoryIterator($templateDirectory); $code = ucfirst($module->getCode()); /* browse the directory */ foreach ($templateDirBrowser as $templateDirContent) { /* is it a directory which is not . or .. ? */ if ($templateDirContent->isDir() && ! $templateDirContent->isDot()) { $parser->addMethodCall( 'addTemplateDirectory', array( $templateType, $templateDirContent->getFilename(), $templateDirContent->getPathName(), $code ) ); } } } catch (\UnexpectedValueException $ex) { // The directory does not exists, ignore it. } } /** * * Load some configuration * Initialize all plugins * */ protected function loadConfiguration(ContainerBuilder $container) { $loader = new XmlFileLoader($container, new FileLocator(THELIA_ROOT . "/core/lib/Thelia/Config/Resources")); $finder = Finder::create() ->name('*.xml') ->depth(0) ->in(THELIA_ROOT . "/core/lib/Thelia/Config/Resources"); /** @var \SplFileInfo $file */ foreach ($finder as $file) { $loader->load($file->getBaseName()); } if (defined("THELIA_INSTALL_MODE") === false) { $modules = ModuleQuery::getActivated(); $translationDirs = array(); /** @var Module $module */ foreach ($modules as $module) { try { $definition = new Definition(); $definition->setClass($module->getFullNamespace()); $definition->addMethodCall("setContainer", array(new Reference('service_container'))); $container->setDefinition( "module." . $module->getCode(), $definition ); $compilers = call_user_func(array($module->getFullNamespace(), 'getCompilers')); foreach ($compilers as $compiler) { if (is_array($compiler)) { $container->addCompilerPass($compiler[0], $compiler[1]); } else { $container->addCompilerPass($compiler); } } $loader = new XmlFileLoader($container, new FileLocator($module->getAbsoluteConfigPath())); $loader->load("config.xml", "module." . $module->getCode()); } catch (\Exception $e) { Tlog::getInstance()->addError( sprintf("Failed to load module %s: %s", $module->getCode(), $e->getMessage()), $e ); } } /** @var ParserInterface $parser */ $parser = $container->getDefinition('thelia.parser'); /** @var Module $module */ foreach ($modules as $module) { try { // Core module translation if (is_dir($dir = $module->getAbsoluteI18nPath())) { $translationDirs[$module->getTranslationDomain()] = $dir; } // Admin includes translation if (is_dir($dir = $module->getAbsoluteAdminIncludesI18nPath())) { $translationDirs[$module->getAdminIncludesTranslationDomain()] = $dir; } // Module back-office template, if any $templates = TemplateHelper::getInstance()->getList( TemplateDefinition::BACK_OFFICE, $module->getAbsoluteTemplateBasePath() ); foreach ($templates as $template) { $translationDirs[$module->getBackOfficeTemplateTranslationDomain($template->getName())] = $module->getAbsoluteBackOfficeI18nTemplatePath($template->getName()); } // Module front-office template, if any $templates = TemplateHelper::getInstance()->getList( TemplateDefinition::FRONT_OFFICE, $module->getAbsoluteTemplateBasePath() ); foreach ($templates as $template) { $translationDirs[$module->getFrontOfficeTemplateTranslationDomain($template->getName())] = $module->getAbsoluteFrontOfficeI18nTemplatePath($template->getName()); } $this->addStandardModuleTemplatesToParserEnvironment($parser, $module); } catch (\Exception $e) { Tlog::getInstance()->addError( sprintf("Failed to load module %s: %s", $module->getCode(), $e->getMessage()), $e ); } } // Load core translation $translationDirs['core'] = THELIA_ROOT . 'core'.DS.'lib'.DS.'Thelia'.DS.'Config'.DS.'I18n'; // Standard templates (front, back, pdf, mail) $th = TemplateHelper::getInstance(); /** @var TemplateDefinition $templateDefinition */ foreach ($th->getStandardTemplateDefinitions() as $templateDefinition) { if (is_dir($dir = $templateDefinition->getAbsoluteI18nPath())) { $translationDirs[$templateDefinition->getTranslationDomain()] = $dir; } } if ($translationDirs) { $this->loadTranslation($container, $translationDirs); } } } private function loadTranslation(ContainerBuilder $container, array $dirs) { $translator = $container->getDefinition('thelia.translator'); foreach ($dirs as $domain => $dir) { try { $finder = Finder::create() ->files() ->depth(0) ->in($dir); /** @var \DirectoryIterator $file */ foreach ($finder as $file) { list($locale, $format) = explode('.', $file->getBaseName(), 2); $translator->addMethodCall('addResource', array($format, (string) $file, $locale, $domain)); } } catch (\InvalidArgumentException $ex) { // Ignore missing I18n directories Tlog::getInstance()->addWarning("loadTranslation: missing $dir directory"); } } } /** * * initialize session in Request object * * All param must be change in Config table * * @param \Symfony\Component\HttpFoundation\Request $request */ /** * Gets a new ContainerBuilder instance used to build the service container. * * @return ContainerBuilder */ protected function getContainerBuilder() { return new TheliaContainerBuilder(new ParameterBag($this->getKernelParameters())); } /** * Builds the service container. * * @return ContainerBuilder The compiled service container * * @throws \RuntimeException */ protected function buildContainer() { $container = parent::buildContainer(); $this->loadConfiguration($container); $container->customCompile(); return $container; } /** * Gets the cache directory. * * @return string The cache directory * * @api */ public function getCacheDir() { if (defined('THELIA_ROOT')) { return THELIA_CACHE_DIR.DS.$this->environment; } else { return parent::getCacheDir(); } } /** * Gets the log directory. * * @return string The log directory * * @api */ public function getLogDir() { if (defined('THELIA_ROOT')) { return THELIA_LOG_DIR; } else { return parent::getLogDir(); } } /** * Returns the kernel parameters. * * @return array An array of kernel parameters */ protected function getKernelParameters() { $parameters = parent::getKernelParameters(); $parameters["thelia.root_dir"] = THELIA_ROOT; $parameters["thelia.core_dir"] = THELIA_ROOT . "core/lib/Thelia"; $parameters["thelia.module_dir"] = THELIA_MODULE_DIR; return $parameters; } /** * return available bundle * * Part of Symfony\Component\HttpKernel\KernelInterface * * @return array An array of bundle instances. * */ public function registerBundles() { $bundles = array( /* TheliaBundle contain all the dependency injection description */ new Bundle\TheliaBundle(), ); /** * OTHER CORE BUNDLE CAN BE DECLARE HERE AND INITIALIZE WITH SPECIFIC CONFIGURATION * * HOW TO DECLARE OTHER BUNDLE ? ETC */ return $bundles; } /** * Loads the container configuration * * part of Symfony\Component\HttpKernel\KernelInterface * * @param LoaderInterface $loader A LoaderInterface instance * * @api */ public function registerContainerConfiguration(LoaderInterface $loader) { //Nothing is load here but it's possible to load container configuration here. //exemple in sf2 : $loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml'); } }
1
10,126
@lunika Please see this. It allows us to do `Propel::getConnection()` easily, as we have only one database.
thelia-thelia
php
@@ -92,7 +92,9 @@ namespace Datadog.Trace.ClrProfiler.AutoInstrumentation.AspNet var controllerContext = (IHttpControllerContext)state.State; // some fields aren't set till after execution, so populate anything missing - AspNetWebApi2Integration.UpdateSpan(controllerContext, scope.Span, (AspNetTags)scope.Span.Tags, Enumerable.Empty<KeyValuePair<string, string>>()); + var span = scope.Span as IHasTags; + var aspNetTags = span.Tags as AspNetTags; + AspNetWebApi2Integration.UpdateSpan(controllerContext, scope.Span, aspNetTags, Enumerable.Empty<KeyValuePair<string, string>>()); if (exception != null) {
1
// <copyright file="ApiController_ExecuteAsync_Integration.cs" company="Datadog"> // Unless explicitly stated otherwise all files in this repository are licensed under the Apache 2 License. // This product includes software developed at Datadog (https://www.datadoghq.com/). Copyright 2017 Datadog, Inc. // </copyright> #if NETFRAMEWORK using System; using System.Collections.Generic; using System.ComponentModel; using System.Linq; using System.Threading; using System.Web; using Datadog.Trace.ClrProfiler.CallTarget; using Datadog.Trace.ClrProfiler.Emit; using Datadog.Trace.Configuration; using Datadog.Trace.DuckTyping; using Datadog.Trace.ExtensionMethods; using Datadog.Trace.Headers; using Datadog.Trace.Tagging; namespace Datadog.Trace.ClrProfiler.AutoInstrumentation.AspNet { /// <summary> /// System.Web.Http.ApiController.ExecuteAsync calltarget instrumentation /// </summary> [InstrumentMethod( AssemblyName = SystemWebHttpAssemblyName, TypeName = "System.Web.Http.ApiController", MethodName = "ExecuteAsync", ReturnTypeName = ClrNames.HttpResponseMessageTask, ParameterTypeNames = new[] { HttpControllerContextTypeName, ClrNames.CancellationToken }, MinimumVersion = Major5Minor1, MaximumVersion = Major5MinorX, IntegrationName = IntegrationName)] // ReSharper disable once InconsistentNaming [Browsable(false)] [EditorBrowsable(EditorBrowsableState.Never)] public class ApiController_ExecuteAsync_Integration { private const string SystemWebHttpAssemblyName = "System.Web.Http"; private const string HttpControllerContextTypeName = "System.Web.Http.Controllers.HttpControllerContext"; private const string Major5Minor1 = "5.1"; private const string Major5MinorX = "5"; private const string IntegrationName = nameof(IntegrationId.AspNetWebApi2); /// <summary> /// OnMethodBegin callback /// </summary> /// <typeparam name="TTarget">Type of the target</typeparam> /// <typeparam name="TController">Type of the controller context</typeparam> /// <param name="instance">Instance value, aka `this` of the instrumented method.</param> /// <param name="controllerContext">The context of the controller</param> /// <param name="cancellationToken">The cancellation token</param> /// <returns>Calltarget state value</returns> public static CallTargetState OnMethodBegin<TTarget, TController>(TTarget instance, TController controllerContext, CancellationToken cancellationToken) where TController : IHttpControllerContext { // Make sure to box the controllerContext proxy only once var boxedControllerContext = (IHttpControllerContext)controllerContext; var scope = AspNetWebApi2Integration.CreateScope(boxedControllerContext, out _); if (scope != null) { return new CallTargetState(scope, boxedControllerContext); } return CallTargetState.GetDefault(); } /// <summary> /// OnAsyncMethodEnd callback /// </summary> /// <typeparam name="TTarget">Type of the target</typeparam> /// <typeparam name="TResponse">Type of the response, in an async scenario will be T of Task of T</typeparam> /// <param name="instance">Instance value, aka `this` of the instrumented method.</param> /// <param name="responseMessage">HttpResponse message instance</param> /// <param name="exception">Exception instance in case the original code threw an exception.</param> /// <param name="state">Calltarget state value</param> /// <returns>A response value, in an async scenario will be T of Task of T</returns> [PreserveContext] public static TResponse OnAsyncMethodEnd<TTarget, TResponse>(TTarget instance, TResponse responseMessage, Exception exception, CallTargetState state) { var scope = state.Scope; if (scope is null) { return responseMessage; } var controllerContext = (IHttpControllerContext)state.State; // some fields aren't set till after execution, so populate anything missing AspNetWebApi2Integration.UpdateSpan(controllerContext, scope.Span, (AspNetTags)scope.Span.Tags, Enumerable.Empty<KeyValuePair<string, string>>()); if (exception != null) { scope.Span.SetException(exception); // We don't have access to the final status code at this point // Ask the HttpContext to call us back to that we can get it var httpContext = HttpContext.Current; if (httpContext != null) { // We don't know how long it'll take for ASP.NET to invoke the callback, // so we store the real finish time var now = scope.Span.Context.TraceContext.UtcNow; httpContext.AddOnRequestCompleted(h => OnRequestCompleted(h, scope, now)); } else { // Looks like we won't be able to get the final status code scope.Dispose(); } } else { HttpContextHelper.AddHeaderTagsFromHttpResponse(HttpContext.Current, scope); scope.Span.SetHttpStatusCode(responseMessage.DuckCast<HttpResponseMessageStruct>().StatusCode, isServer: true, Tracer.Instance.Settings); scope.Dispose(); } return responseMessage; } private static void OnRequestCompleted(HttpContext httpContext, Scope scope, DateTimeOffset finishTime) { HttpContextHelper.AddHeaderTagsFromHttpResponse(httpContext, scope); scope.Span.SetHttpStatusCode(httpContext.Response.StatusCode, isServer: true, Tracer.Instance.Settings); scope.Span.Finish(finishTime); scope.Dispose(); } } } #endif
1
24,082
Not related to this particular cast but I wonder if we shouldn't have a cast helper that would log if null to gain visibility.
DataDog-dd-trace-dotnet
.cs
@@ -2,7 +2,8 @@ const request = require('request') // @ts-ignore const purest = require('purest')({ request }) const logger = require('../logger') - +const DRIVE_FILE_FIELDS = 'kind,id,name,mimeType,ownedByMe,permissions(role,emailAddress),size,modifiedTime,iconLink,thumbnailLink' +const DRIVE_FILES_FIELDS = `kind,nextPageToken,incompleteSearch,files(${DRIVE_FILE_FIELDS})` /** * @class * @implements {Provider}
1
const request = require('request') // @ts-ignore const purest = require('purest')({ request }) const logger = require('../logger') /** * @class * @implements {Provider} */ class Drive { constructor (options) { this.authProvider = options.provider = Drive.authProvider options.alias = 'drive' this.client = purest(options) } static get authProvider () { return 'google' } list (options, done) { const directory = options.directory || 'root' const trashed = options.trashed || false return this.client .query() .get('files') .where({ q: `'${directory}' in parents and trashed=${trashed}` }) .auth(options.token) .request(done) } stats ({ id, token }, done) { return this.client.query().get(`files/${id}`).auth(token).request(done) } download ({ id, token }, onData) { return this.client .query() .get(`files/${id}`) .where({ alt: 'media' }) .auth(token) .request() .on('data', onData) .on('end', () => onData(null)) .on('error', (err) => { logger.error(err, 'provider.drive.download.error') }) } thumbnail ({id, token}, done) { return this.stats({id, token}, (err, resp, body) => { if (err) { logger.error(err, 'provider.drive.thumbnail.error') return done(null) } done(body.thumbnailLink ? request(body.thumbnailLink) : null) }) } size ({id, token}, done) { return this.stats({ id, token }, (err, resp, body) => { if (err) { logger.error(err, 'provider.drive.size.error') return done(null) } done(parseInt(body.fileSize)) }) } } module.exports = Drive
1
11,040
why do we need to explicitly declare these fields?
transloadit-uppy
js
@@ -99,12 +99,8 @@ class OaiController extends AbstractBase $this->getRequest()->getQuery()->toArray(), $this->getRequest()->getPost()->toArray() ); - $server = new $serverClass( - $this->serviceLocator->get('VuFind\Search\Results\PluginManager'), - $this->serviceLocator->get('VuFind\Record\Loader'), - $this->serviceLocator->get('VuFind\Db\Table\PluginManager'), - $config, $baseURL, $params - ); + $server = $this->serviceLocator->get('VuFind\OAI\Server'); + $server->init($config, $baseURL, $params); $server->setRecordLinkHelper( $this->getViewRenderer()->plugin('recordLink') );
1
<?php /** * OAI Module Controller * * PHP version 7 * * Copyright (C) Villanova University 2011. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category VuFind * @package Controller * @author Demian Katz <[email protected]> * @license http://opensource.org/licenses/gpl-2.0.php GNU General Public License * @link https://vufind.org/wiki/development:plugins:controllers Wiki */ namespace VuFind\Controller; /** * OAIController Class * * Controls the OAI server * * @category VuFind * @package Controller * @author Demian Katz <[email protected]> * @license http://opensource.org/licenses/gpl-2.0.php GNU General Public License * @link https://vufind.org/wiki/development:plugins:controllers Wiki */ class OaiController extends AbstractBase { /** * Display OAI server form. * * @return \Zend\View\Model\ViewModel */ public function homeAction() { // no action needed return $this->createViewModel(); } /** * Standard OAI server. * * @return \Zend\Http\Response */ public function authserverAction() { return $this->handleOAI('VuFind\OAI\Server\Auth'); } /** * Standard OAI server. * * @return \Zend\Http\Response */ public function serverAction() { return $this->handleOAI('VuFind\OAI\Server'); } /** * Shared OAI logic. * * @param string $serverClass Class to load for handling OAI requests. * * @return \Zend\Http\Response */ protected function handleOAI($serverClass) { // Check if the OAI Server is enabled before continuing $config = $this->getConfig(); $response = $this->getResponse(); if (!isset($config->OAI)) { $response->setStatusCode(404); $response->setContent('OAI Server Not Configured.'); return $response; } // Collect relevant parameters for OAI server: $url = explode('?', $this->getServerUrl()); $baseURL = $url[0]; // Build OAI response or die trying: try { $params = array_merge( $this->getRequest()->getQuery()->toArray(), $this->getRequest()->getPost()->toArray() ); $server = new $serverClass( $this->serviceLocator->get('VuFind\Search\Results\PluginManager'), $this->serviceLocator->get('VuFind\Record\Loader'), $this->serviceLocator->get('VuFind\Db\Table\PluginManager'), $config, $baseURL, $params ); $server->setRecordLinkHelper( $this->getViewRenderer()->plugin('recordLink') ); $xml = $server->getResponse(); } catch (\Exception $e) { $response->setStatusCode(500); $response->setContent($e->getMessage()); return $response; } // Return response: $headers = $response->getHeaders(); $headers->addHeaderLine('Content-type', 'text/xml; charset=UTF-8'); $response->setContent($xml); return $response; } }
1
26,937
Note that there are multiple OAI servers -- that's why `$serverClass` is a variable here. You'll want to fetch `$serverClass` from the service manager rather than a hard-coded value, and also set up a module.config.php for the authority record version, `VuFind\OAI\Server\Auth`. Should be easy enough since it can share the same factory.
vufind-org-vufind
php
@@ -265,6 +265,12 @@ describe Beaker do context "validate_host" do subject { dummy_class.new } + before(:each) do + # Must reset additional_pkgs between each test as it hangs around + #Beaker::HostPrebuiltSteps.class_variable_set(:@@additional_pkgs, []) + Beaker::HostPrebuiltSteps.module_eval(%q{@@additional_pkgs = []}) + end + it "can validate unix hosts" do hosts.each do |host|
1
require 'spec_helper' describe Beaker do let( :options ) { make_opts.merge({ 'logger' => double().as_null_object }) } let( :ntpserver ) { Beaker::HostPrebuiltSteps::NTPSERVER } let( :apt_cfg ) { Beaker::HostPrebuiltSteps::APT_CFG } let( :ips_pkg_repo ) { Beaker::HostPrebuiltSteps::IPS_PKG_REPO } let( :sync_cmd ) { Beaker::HostPrebuiltSteps::ROOT_KEYS_SYNC_CMD } let( :windows_pkgs ) { Beaker::HostPrebuiltSteps::WINDOWS_PACKAGES } let( :unix_only_pkgs ) { Beaker::HostPrebuiltSteps::UNIX_PACKAGES } let( :sles_only_pkgs ) { Beaker::HostPrebuiltSteps::SLES_PACKAGES } let( :platform ) { @platform || 'unix' } let( :ip ) { "ip.address.0.0" } let( :stdout) { @stdout || ip } let( :hosts ) { hosts = make_hosts( { :stdout => stdout, :platform => platform } ) hosts[0][:roles] = ['agent'] hosts[1][:roles] = ['master', 'dashboard', 'agent', 'database'] hosts[2][:roles] = ['agent'] hosts } let( :dummy_class ) { Class.new { include Beaker::HostPrebuiltSteps include Beaker::DSL::Patterns } } context 'timesync' do subject { dummy_class.new } it "can sync time on unix hosts" do hosts = make_hosts( { :platform => 'unix' } ) Beaker::Command.should_receive( :new ).with("ntpdate -t 20 #{ntpserver}").exactly( 3 ).times subject.timesync( hosts, options ) end it "can retry on failure on unix hosts" do hosts = make_hosts( { :platform => 'unix', :exit_code => [1, 0] } ) subject.stub( :sleep ).and_return(true) Beaker::Command.should_receive( :new ).with("ntpdate -t 20 #{ntpserver}").exactly( 6 ).times subject.timesync( hosts, options ) end it "eventually gives up and raises an error when unix hosts can't be synched" do hosts = make_hosts( { :platform => 'unix', :exit_code => 1 } ) subject.stub( :sleep ).and_return(true) Beaker::Command.should_receive( :new ).with("ntpdate -t 20 #{ntpserver}").exactly( 5 ).times expect{ subject.timesync( hosts, options ) }.to raise_error end it "can sync time on solaris-10 hosts" do hosts = make_hosts( { :platform => 'solaris-10' } ) Beaker::Command.should_receive( :new ).with("sleep 10 && ntpdate -w #{ntpserver}").exactly( 3 ).times subject.timesync( hosts, options ) end it "can sync time on windows hosts" do hosts = make_hosts( { :platform => 'windows' } ) Beaker::Command.should_receive( :new ).with("w32tm /register").exactly( 3 ).times Beaker::Command.should_receive( :new ).with("net start w32time").exactly( 3 ).times Beaker::Command.should_receive( :new ).with("w32tm /config /manualpeerlist:#{ntpserver} /syncfromflags:manual /update").exactly( 3 ).times Beaker::Command.should_receive( :new ).with("w32tm /resync").exactly( 3 ).times subject.timesync( hosts, options ) end it "can sync time on Sles hosts" do hosts = make_hosts( { :platform => 'sles-13.1-x64' } ) Beaker::Command.should_receive( :new ).with("sntp #{ntpserver}").exactly( 3 ).times subject.timesync( hosts, options ) end end context "epel_info_for!" do subject { dummy_class.new } it "can return the correct url for an el-6 host" do host = make_host( 'testhost', { :platform => 'el-6-platform' } ) expect( subject.epel_info_for!( host )).to be === "http://mirror.itc.virginia.edu/fedora-epel/6/i386/epel-release-6-8.noarch.rpm" end it "can return the correct url for an el-5 host" do host = make_host( 'testhost', { :platform => 'el-5-platform' } ) expect( subject.epel_info_for!( host )).to be === "http://archive.linux.duke.edu/pub/epel/5/i386/epel-release-5-4.noarch.rpm" end it "raises an error on non el-5/6 host" do host = make_host( 'testhost', { :platform => 'el-4-platform' } ) expect{ subject.epel_info_for!( host )}.to raise_error end end context "apt_get_update" do subject { dummy_class.new } it "can perform apt-get on ubuntu hosts" do host = make_host( 'testhost', { :platform => 'ubuntu' } ) Beaker::Command.should_receive( :new ).with("apt-get update").once subject.apt_get_update( host ) end it "can perform apt-get on debian hosts" do host = make_host( 'testhost', { :platform => 'debian' } ) Beaker::Command.should_receive( :new ).with("apt-get update").once subject.apt_get_update( host ) end it "does nothing on non debian/ubuntu hosts" do host = make_host( 'testhost', { :platform => 'windows' } ) Beaker::Command.should_receive( :new ).never subject.apt_get_update( host ) end end context "copy_file_to_remote" do subject { dummy_class.new } it "can copy a file to a remote host" do content = "this is the content" tempfilepath = "/path/to/tempfile" filepath = "/path/to/file" host = make_host( 'testhost', { :platform => 'windows' }) tempfile = double( 'tempfile' ) tempfile.stub( :path ).and_return( tempfilepath ) Tempfile.stub( :open ).and_yield( tempfile ) file = double( 'file' ) File.stub( :open ).and_yield( file ) file.should_receive( :puts ).with( content ).once host.should_receive( :do_scp_to ).with( tempfilepath, filepath, subject.instance_variable_get( :@options ) ).once subject.copy_file_to_remote(host, filepath, content) end end context "proxy_config" do subject { dummy_class.new } it "correctly configures ubuntu hosts" do hosts = make_hosts( { :platform => 'ubuntu', :exit_code => 1 } ) Beaker::Command.should_receive( :new ).with( "if test -f /etc/apt/apt.conf; then mv /etc/apt/apt.conf /etc/apt/apt.conf.bk; fi" ).exactly( 3 ) hosts.each do |host| subject.should_receive( :copy_file_to_remote ).with( host, '/etc/apt/apt.conf', apt_cfg ).once subject.should_receive( :apt_get_update ).with( host ).once end subject.proxy_config( hosts, options ) end it "correctly configures debian hosts" do hosts = make_hosts( { :platform => 'debian' } ) Beaker::Command.should_receive( :new ).with( "if test -f /etc/apt/apt.conf; then mv /etc/apt/apt.conf /etc/apt/apt.conf.bk; fi" ).exactly( 3 ).times hosts.each do |host| subject.should_receive( :copy_file_to_remote ).with( host, '/etc/apt/apt.conf', apt_cfg ).once subject.should_receive( :apt_get_update ).with( host ).once end subject.proxy_config( hosts, options ) end it "correctly configures solaris-11 hosts" do hosts = make_hosts( { :platform => 'solaris-11' } ) Beaker::Command.should_receive( :new ).with( "/usr/bin/pkg unset-publisher solaris || :" ).exactly( 3 ).times hosts.each do |host| Beaker::Command.should_receive( :new ).with( "/usr/bin/pkg set-publisher -g %s solaris" % ips_pkg_repo ).once end subject.proxy_config( hosts, options ) end it "does nothing for non ubuntu/debian/solaris-11 hosts" do hosts = make_hosts( { :platform => 'windows' } ) Beaker::Command.should_receive( :new ).never subject.proxy_config( hosts, options ) end end context "add_el_extras" do subject { dummy_class.new } it "add extras for el-5/6 hosts" do hosts = make_hosts( { :platform => 'el-5', :exit_code => 1 } ) hosts[0][:platform] = 'el-6' url = "http://el_extras_url" subject.stub( :epel_info_for! ).and_return( url ) Beaker::Command.should_receive( :new ).with("rpm -qa | grep epel-release").exactly( 3 ).times Beaker::Command.should_receive( :new ).with("rpm -i #{url}").exactly( 3 ).times Beaker::Command.should_receive( :new ).with("yum clean all && yum makecache").exactly( 3 ).times subject.add_el_extras( hosts, options ) end it "should do nothing for non el-5/6 hosts" do hosts = make_hosts( { :platform => 'windows' } ) Beaker::Command.should_receive( :new ).never subject.add_el_extras( hosts, options ) end end context "sync_root_keys" do subject { dummy_class.new } it "can sync keys on a solaris host" do @platform = 'solaris' Beaker::Command.should_receive( :new ).with( sync_cmd % "bash" ).exactly( 3 ).times subject.sync_root_keys( hosts, options ) end it "can sync keys on a non-solaris host" do Beaker::Command.should_receive( :new ).with( sync_cmd % "env PATH=/usr/gnu/bin:$PATH bash" ).exactly( 3 ).times subject.sync_root_keys( hosts, options ) end end context "validate_host" do subject { dummy_class.new } it "can validate unix hosts" do hosts.each do |host| unix_only_pkgs.each do |pkg| host.should_receive( :check_for_package ).with( pkg ).once.and_return( false ) host.should_receive( :install_package ).with( pkg ).once end end subject.validate_host(hosts, options) end it "can validate unix hosts that need sysstat installed" do total_pkgs = Array.new(unix_only_pkgs); total_pkgs << "sysstat" hosts.each do |host| total_pkgs.each do |pkg| host.should_receive( :check_for_package ).with( pkg ).once.and_return( false ) host.should_receive( :install_package ).with( pkg ).once end end opts = options.merge({:collect_perf_data => true}) subject.validate_host(hosts, opts) end it "can validate windows hosts" do @platform = 'windows' hosts.each do |host| windows_pkgs.each do |pkg| host.should_receive( :check_for_package ).with( pkg ).once.and_return( false ) host.should_receive( :install_package ).with( pkg ).once end end subject.validate_host(hosts, options) end it "can validate SLES hosts" do @platform = 'sles-13.1-x64' hosts.each do |host| sles_only_pkgs.each do |pkg| host.should_receive( :check_for_package).with( pkg ).once.and_return( false ) host.should_receive( :install_package ).with( pkg ).once end end subject.validate_host(hosts, options) end end context 'get_domain_name' do subject { dummy_class.new } it "can find the domain for a host" do host = make_host('name', { :stdout => "domain labs.lan d.labs.net dc1.labs.net labs.com\nnameserver 10.16.22.10\nnameserver 10.16.22.11" } ) Beaker::Command.should_receive( :new ).with( "cat /etc/resolv.conf" ).once expect( subject.get_domain_name( host ) ).to be === "labs.lan" end it "can find the search for a host" do host = make_host('name', { :stdout => "search labs.lan d.labs.net dc1.labs.net labs.com\nnameserver 10.16.22.10\nnameserver 10.16.22.11" } ) Beaker::Command.should_receive( :new ).with( "cat /etc/resolv.conf" ).once expect( subject.get_domain_name( host ) ).to be === "labs.lan" end end context "get_ip" do subject { dummy_class.new } it "can exec the get_ip command" do host = make_host('name', { :stdout => "192.168.2.130\n" } ) Beaker::Command.should_receive( :new ).with( "ip a|awk '/global/{print$2}' | cut -d/ -f1 | head -1" ).once expect( subject.get_ip( host ) ).to be === "192.168.2.130" end end context "set_etc_hosts" do subject { dummy_class.new } it "can set the /etc/hosts string on a host" do host = make_host('name', {}) etc_hosts = "127.0.0.1 localhost\n192.168.2.130 pe-ubuntu-lucid\n192.168.2.128 pe-centos6\n192.168.2.131 pe-debian6" Beaker::Command.should_receive( :new ).with( "echo '#{etc_hosts}' > /etc/hosts" ).once host.should_receive( :exec ).once subject.set_etc_hosts(host, etc_hosts) end end context "package_proxy" do subject { dummy_class.new } proxyurl = "http://192.168.2.100:3128" it "can set proxy config on a debian/ubuntu host" do host = make_host('name', { :platform => 'ubuntu' } ) Beaker::Command.should_receive( :new ).with( "echo 'Acquire::http::Proxy \"#{proxyurl}/\";' >> /etc/apt/apt.conf.d/10proxy" ).once host.should_receive( :exec ).once subject.package_proxy(host, options.merge( {'package_proxy' => proxyurl}) ) end it "can set proxy config on a redhat/centos host" do host = make_host('name', { :platform => 'centos' } ) Beaker::Command.should_receive( :new ).with( "echo 'proxy=#{proxyurl}/' >> /etc/yum.conf" ).once host.should_receive( :exec ).once subject.package_proxy(host, options.merge( {'package_proxy' => proxyurl}) ) end end end
1
7,213
This is no longer needed and should be removed.
voxpupuli-beaker
rb
@@ -57,8 +57,12 @@ func ParseFlags(ctx *cli.Context) service.Options { } // ParseJSONOptions function fills in Openvpn options from JSON request -func ParseJSONOptions(request json.RawMessage) (service.Options, error) { +func ParseJSONOptions(request *json.RawMessage) (service.Options, error) { + if request == nil { + return Options{}, nil + } + var opts Options - err := json.Unmarshal(request, &opts) + err := json.Unmarshal(*request, &opts) return opts, err }
1
/* * Copyright (C) 2018 The "MysteriumNetwork/node" Authors. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package service import ( "encoding/json" "github.com/mysteriumnetwork/node/core/service" "github.com/urfave/cli" ) // Options describes options which are required to start Openvpn service type Options struct { OpenvpnProtocol string `json:"protocol"` OpenvpnPort int `json:"port"` } var ( protocolFlag = cli.StringFlag{ Name: "openvpn.proto", Usage: "Openvpn protocol to use. Options: { udp, tcp }", Value: "udp", } portFlag = cli.IntFlag{ Name: "openvpn.port", Usage: "Openvpn port to use. Default 1194", Value: 1194, } ) // RegisterFlags function register Openvpn flags to flag list func RegisterFlags(flags *[]cli.Flag) { *flags = append(*flags, protocolFlag, portFlag) } // ParseFlags function fills in Openvpn options from CLI context func ParseFlags(ctx *cli.Context) service.Options { return Options{ OpenvpnProtocol: ctx.String(protocolFlag.Name), OpenvpnPort: ctx.Int(portFlag.Name), } } // ParseJSONOptions function fills in Openvpn options from JSON request func ParseJSONOptions(request json.RawMessage) (service.Options, error) { var opts Options err := json.Unmarshal(request, &opts) return opts, err }
1
13,727
could use named return params here to avoid declaring the opts, and using naked returns instead.
mysteriumnetwork-node
go
@@ -84,6 +84,11 @@ module.exports = class Instagram extends Plugin { } getItemIcon (item) { + if (!item.images) { + return <svg viewBox="0 0 58 58" opacity="0.6"> + <path d="M36.537 28.156l-11-7a1.005 1.005 0 0 0-1.02-.033C24.2 21.3 24 21.635 24 22v14a1 1 0 0 0 1.537.844l11-7a1.002 1.002 0 0 0 0-1.688zM26 34.18V23.82L34.137 29 26 34.18z" /><path d="M57 6H1a1 1 0 0 0-1 1v44a1 1 0 0 0 1 1h56a1 1 0 0 0 1-1V7a1 1 0 0 0-1-1zM10 28H2v-9h8v9zm-8 2h8v9H2v-9zm10 10V8h34v42H12V40zm44-12h-8v-9h8v9zm-8 2h8v9h-8v-9zm8-22v9h-8V8h8zM2 8h8v9H2V8zm0 42v-9h8v9H2zm54 0h-8v-9h8v9z" /> + </svg> + } return <img src={item.images.thumbnail.url} /> }
1
const Plugin = require('../../core/Plugin') const { Provider } = require('../../server') const { ProviderView } = require('../../views') const { h } = require('preact') module.exports = class Instagram extends Plugin { constructor (uppy, opts) { super(uppy, opts) this.type = 'acquirer' this.id = this.opts.id || 'Instagram' this.title = 'Instagram' this.icon = () => ( <svg aria-hidden="true" class="UppyIcon" width="28" height="28" viewBox="0 0 512 512"> <path d="M256,49.471c67.266,0,75.233.257,101.8,1.469,24.562,1.121,37.9,5.224,46.778,8.674a78.052,78.052,0,0,1,28.966,18.845,78.052,78.052,0,0,1,18.845,28.966c3.45,8.877,7.554,22.216,8.674,46.778,1.212,26.565,1.469,34.532,1.469,101.8s-0.257,75.233-1.469,101.8c-1.121,24.562-5.225,37.9-8.674,46.778a83.427,83.427,0,0,1-47.811,47.811c-8.877,3.45-22.216,7.554-46.778,8.674-26.56,1.212-34.527,1.469-101.8,1.469s-75.237-.257-101.8-1.469c-24.562-1.121-37.9-5.225-46.778-8.674a78.051,78.051,0,0,1-28.966-18.845,78.053,78.053,0,0,1-18.845-28.966c-3.45-8.877-7.554-22.216-8.674-46.778-1.212-26.564-1.469-34.532-1.469-101.8s0.257-75.233,1.469-101.8c1.121-24.562,5.224-37.9,8.674-46.778A78.052,78.052,0,0,1,78.458,78.458a78.053,78.053,0,0,1,28.966-18.845c8.877-3.45,22.216-7.554,46.778-8.674,26.565-1.212,34.532-1.469,101.8-1.469m0-45.391c-68.418,0-77,.29-103.866,1.516-26.815,1.224-45.127,5.482-61.151,11.71a123.488,123.488,0,0,0-44.62,29.057A123.488,123.488,0,0,0,17.3,90.982C11.077,107.007,6.819,125.319,5.6,152.134,4.369,179,4.079,187.582,4.079,256S4.369,333,5.6,359.866c1.224,26.815,5.482,45.127,11.71,61.151a123.489,123.489,0,0,0,29.057,44.62,123.486,123.486,0,0,0,44.62,29.057c16.025,6.228,34.337,10.486,61.151,11.71,26.87,1.226,35.449,1.516,103.866,1.516s77-.29,103.866-1.516c26.815-1.224,45.127-5.482,61.151-11.71a128.817,128.817,0,0,0,73.677-73.677c6.228-16.025,10.486-34.337,11.71-61.151,1.226-26.87,1.516-35.449,1.516-103.866s-0.29-77-1.516-103.866c-1.224-26.815-5.482-45.127-11.71-61.151a123.486,123.486,0,0,0-29.057-44.62A123.487,123.487,0,0,0,421.018,17.3C404.993,11.077,386.681,6.819,359.866,5.6,333,4.369,324.418,4.079,256,4.079h0Z" /> <path d="M256,126.635A129.365,129.365,0,1,0,385.365,256,129.365,129.365,0,0,0,256,126.635Zm0,213.338A83.973,83.973,0,1,1,339.974,256,83.974,83.974,0,0,1,256,339.973Z" /> <circle cx="390.476" cy="121.524" r="30.23" /> </svg> ) this[this.id] = new Provider(uppy, { host: this.opts.host, provider: 'instagram', authProvider: 'instagram' }) this.files = [] this.onAuth = this.onAuth.bind(this) this.render = this.render.bind(this) // set default options const defaultOptions = {} // merge default options with the ones set by user this.opts = Object.assign({}, defaultOptions, opts) } install () { this.view = new ProviderView(this, { viewType: 'grid', showTitles: false, showFilter: false, showBreadcrumbs: false }) // Set default state for Instagram this.setPluginState({ authenticated: false, files: [], folders: [], directories: [], activeRow: -1, filterInput: '', isSearchVisible: false }) const target = this.opts.target if (target) { this.mount(target, this) } } uninstall () { this.view.tearDown() this.unmount() } onAuth (authenticated) { this.setPluginState({ authenticated }) if (authenticated) { this.view.getFolder('recent') } } getUsername (data) { return data.data[0].user.username } isFolder (item) { return false } getItemData (item) { return item } getItemIcon (item) { return <img src={item.images.thumbnail.url} /> } getItemSubList (item) { const subItems = [] item.data.forEach((subItem) => { if (subItem.carousel_media) { subItem.carousel_media.forEach((i, index) => { const { id, created_time } = subItem const newSubItem = Object.assign({}, i, { id, created_time }) newSubItem.carousel_id = index subItems.push(newSubItem) }) } else { subItems.push(subItem) } }) return subItems } getItemName (item) { if (item && item['created_time']) { const ext = item.type === 'video' ? 'mp4' : 'jpeg' let date = new Date(item['created_time'] * 1000) date = date.toLocaleDateString([], { year: 'numeric', month: 'short', day: 'numeric', hour: 'numeric', minute: 'numeric' }) // adding both date and carousel_id, so the name is unique return `Instagram ${date} ${item.carousel_id || ''}.${ext}` } return '' } getMimeType (item) { return item.type === 'video' ? 'video/mp4' : 'image/jpeg' } getItemId (item) { return `${item.id}${item.carousel_id || ''}` } getItemRequestPath (item) { const suffix = isNaN(item.carousel_id) ? '' : `?carousel_id=${item.carousel_id}` return `${item.id}${suffix}` } getItemModifiedDate (item) { return item.created_time } getItemThumbnailUrl (item) { return item.images.thumbnail.url } getNextPagePath () { const { files } = this.getPluginState() return `recent?max_id=${this.getItemId(files[files.length - 1])}` } render (state) { return this.view.render(state) } }
1
10,773
this is an unrelated fix. I noticed when an instagram carousel post is mixed with images and videos, the videos don't come with thumbnails, so I am adding a fallback thumbnail for this case.
transloadit-uppy
js
@@ -58,12 +58,14 @@ type syncChainSelector interface { // IsHeaver returns true if tipset a is heavier than tipset b and false if // tipset b is heavier than tipset a. IsHeavier(ctx context.Context, a, b types.TipSet, aStateID, bStateID cid.Cid) (bool, error) + // NewWeight returns the weight of a tipset + NewWeight(ctx context.Context, ts types.TipSet, stRoot cid.Cid) (uint64, error) } type syncStateEvaluator interface { // RunStateTransition returns the state root CID resulting from applying the input ts to the // prior `stateRoot`. It returns an error if the transition is invalid. - RunStateTransition(ctx context.Context, ts types.TipSet, tsMessages [][]*types.SignedMessage, tsReceipts [][]*types.MessageReceipt, ancestors []types.TipSet, stateID cid.Cid) (cid.Cid, error) + RunStateTransition(ctx context.Context, ts types.TipSet, tsMessages [][]*types.SignedMessage, tsReceipts [][]*types.MessageReceipt, ancestors []types.TipSet, parentWeight uint64, stateID cid.Cid) (cid.Cid, error) } // Syncer updates its chain.Store according to the methods of its
1
package chain import ( "context" "sync" "github.com/ipfs/go-cid" logging "github.com/ipfs/go-log" "github.com/pkg/errors" "go.opencensus.io/trace" "github.com/filecoin-project/go-filecoin/clock" "github.com/filecoin-project/go-filecoin/consensus" "github.com/filecoin-project/go-filecoin/metrics" "github.com/filecoin-project/go-filecoin/metrics/tracing" "github.com/filecoin-project/go-filecoin/net" "github.com/filecoin-project/go-filecoin/types" ) var reorgCnt *metrics.Int64Counter func init() { reorgCnt = metrics.NewInt64Counter("chain/reorg_count", "The number of reorgs that have occurred.") } // UntrustedChainHeightLimit is the maximum number of blocks ahead of the current consensus // chain height to accept if syncing without trust. var UntrustedChainHeightLimit = 600 var ( // ErrChainHasBadTipSet is returned when the syncer traverses a chain with a cached bad tipset. ErrChainHasBadTipSet = errors.New("input chain contains a cached bad tipset") // ErrNewChainTooLong is returned when processing a fork that split off from the main chain too many blocks ago. ErrNewChainTooLong = errors.New("input chain forked from best chain too far in the past") // ErrUnexpectedStoreState indicates that the syncer's chain store is violating expected invariants. ErrUnexpectedStoreState = errors.New("the chain store is in an unexpected state") ) var syncOneTimer *metrics.Float64Timer func init() { syncOneTimer = metrics.NewTimerMs("syncer/sync_one", "Duration of single tipset validation in milliseconds") } var logSyncer = logging.Logger("chain.syncer") type syncerChainReaderWriter interface { GetHead() types.TipSetKey GetTipSet(tsKey types.TipSetKey) (types.TipSet, error) GetTipSetStateRoot(tsKey types.TipSetKey) (cid.Cid, error) HasTipSetAndState(ctx context.Context, tsKey types.TipSetKey) bool PutTipSetAndState(ctx context.Context, tsas *TipSetAndState) error SetHead(ctx context.Context, s types.TipSet) error HasTipSetAndStatesWithParentsAndHeight(pTsKey types.TipSetKey, h uint64) bool GetTipSetAndStatesByParentsAndHeight(pTsKey types.TipSetKey, h uint64) ([]*TipSetAndState, error) } type syncChainSelector interface { // IsHeaver returns true if tipset a is heavier than tipset b and false if // tipset b is heavier than tipset a. IsHeavier(ctx context.Context, a, b types.TipSet, aStateID, bStateID cid.Cid) (bool, error) } type syncStateEvaluator interface { // RunStateTransition returns the state root CID resulting from applying the input ts to the // prior `stateRoot`. It returns an error if the transition is invalid. RunStateTransition(ctx context.Context, ts types.TipSet, tsMessages [][]*types.SignedMessage, tsReceipts [][]*types.MessageReceipt, ancestors []types.TipSet, stateID cid.Cid) (cid.Cid, error) } // Syncer updates its chain.Store according to the methods of its // consensus.Protocol. It uses a bad tipset cache and a limit on new // blocks to traverse during chain collection. The Syncer can query the // network for blocks. The Syncer maintains the following invariant on // its store: all tipsets that pass the syncer's validity checks are added to the // chain store along with their state root CID. // // Ideally the code that syncs the chain according to consensus rules should // be independent of any particular implementation of consensus. Currently the // Syncer is coupled to details of Expected Consensus. This dependence // exists in the widen function, the fact that widen is called on only one // tipset in the incoming chain, and assumptions regarding the existence of // grandparent state in the store. type Syncer struct { // This mutex ensures at most one call to HandleNewTipSet executes at // any time. This is important because at least two sections of the // code otherwise have races: // 1. syncOne assumes that chainStore.Head() does not change when // comparing tipset weights and updating the store // 2. HandleNewTipSet assumes that calls to widen and then syncOne // are not run concurrently with other calls to widen to ensure // that the syncer always finds the heaviest existing tipset. mu sync.Mutex // fetcher is the networked block fetching service for fetching blocks // and messages. fetcher net.Fetcher // badTipSetCache is used to filter out collections of invalid blocks. badTipSets *badTipSetCache // Evaluates tipset messages and stores the resulting states. stateEvaluator syncStateEvaluator // Selects the heaviest of two chains chainSelector syncChainSelector // Provides and stores validated tipsets and their state roots. chainStore syncerChainReaderWriter // Provides message collections given cids messageProvider MessageProvider clock clock.Clock // Reporter is used by the syncer to update the current status of the chain. reporter Reporter } // NewSyncer constructs a Syncer ready for use. func NewSyncer(e syncStateEvaluator, cs syncChainSelector, s syncerChainReaderWriter, m MessageProvider, f net.Fetcher, sr Reporter, c clock.Clock) *Syncer { return &Syncer{ fetcher: f, badTipSets: &badTipSetCache{ bad: make(map[string]struct{}), }, stateEvaluator: e, chainSelector: cs, chainStore: s, messageProvider: m, clock: c, reporter: sr, } } // syncOne syncs a single tipset with the chain store. syncOne calculates the // parent state of the tipset and calls into consensus to run a state transition // in order to validate the tipset. In the case the input tipset is valid, // syncOne calls into consensus to check its weight, and then updates the head // of the store if this tipset is the heaviest. // // Precondition: the caller of syncOne must hold the syncer's lock (syncer.mu) to // ensure head is not modified by another goroutine during run. func (syncer *Syncer) syncOne(ctx context.Context, parent, next types.TipSet) error { priorHeadKey := syncer.chainStore.GetHead() // if tipset is already priorHeadKey, we've been here before. do nothing. if priorHeadKey.Equals(next.Key()) { return nil } stopwatch := syncOneTimer.Start(ctx) defer stopwatch.Stop(ctx) // Lookup parent state root. It is guaranteed by the syncer that it is in the chainStore. stateRoot, err := syncer.chainStore.GetTipSetStateRoot(parent.Key()) if err != nil { return err } // Gather ancestor chain needed to process state transition. h, err := next.Height() if err != nil { return err } ancestorHeight := types.NewBlockHeight(h).Sub(types.NewBlockHeight(consensus.AncestorRoundsNeeded)) ancestors, err := GetRecentAncestors(ctx, parent, syncer.chainStore, ancestorHeight) if err != nil { return err } var nextMessages [][]*types.SignedMessage var nextReceipts [][]*types.MessageReceipt for i := 0; i < next.Len(); i++ { blk := next.At(i) msgs, err := syncer.messageProvider.LoadMessages(ctx, blk.Messages) if err != nil { return errors.Wrapf(err, "syncing tip %s failed loading message list %s for block %s", next.Key(), blk.Messages, blk.Cid()) } rcpts, err := syncer.messageProvider.LoadReceipts(ctx, blk.MessageReceipts) if err != nil { return errors.Wrapf(err, "syncing tip %s failed loading receipts list %s for block %s", next.Key(), blk.MessageReceipts, blk.Cid()) } nextMessages = append(nextMessages, msgs) nextReceipts = append(nextReceipts, rcpts) } // Run a state transition to validate the tipset and compute // a new state to add to the store. root, err := syncer.stateEvaluator.RunStateTransition(ctx, next, nextMessages, nextReceipts, ancestors, stateRoot) if err != nil { return err } err = syncer.chainStore.PutTipSetAndState(ctx, &TipSetAndState{ TipSet: next, TipSetStateRoot: root, }) if err != nil { return err } logSyncer.Debugf("Successfully updated store with %s", next.String()) // TipSet is validated and added to store, now check if it is the heaviest. nextParentStateID, err := syncer.chainStore.GetTipSetStateRoot(parent.Key()) if err != nil { return err } headTipSet, err := syncer.chainStore.GetTipSet(priorHeadKey) if err != nil { return err } headParentKey, err := headTipSet.Parents() if err != nil { return err } var headParentStateID cid.Cid if !headParentKey.Empty() { // head is not genesis headParentStateID, err = syncer.chainStore.GetTipSetStateRoot(headParentKey) if err != nil { return err } } heavier, err := syncer.chainSelector.IsHeavier(ctx, next, headTipSet, nextParentStateID, headParentStateID) if err != nil { return err } // If it is the heaviest update the chainStore. if heavier { if err = syncer.chainStore.SetHead(ctx, next); err != nil { return err } // Gather the entire new chain for reorg comparison and logging. syncer.logReorg(ctx, headTipSet, next) } return nil } func (syncer *Syncer) logReorg(ctx context.Context, curHead, newHead types.TipSet) { curHeadIter := IterAncestors(ctx, syncer.chainStore, curHead) newHeadIter := IterAncestors(ctx, syncer.chainStore, newHead) commonAncestor, err := FindCommonAncestor(curHeadIter, newHeadIter) if err != nil { // Should never get here because reorgs should always have a // common ancestor.. logSyncer.Warningf("unexpected error when running FindCommonAncestor for reorg log: %s", err.Error()) return } reorg := IsReorg(curHead, newHead, commonAncestor) if reorg { reorgCnt.Inc(ctx, 1) dropped, added, err := ReorgDiff(curHead, newHead, commonAncestor) if err == nil { logSyncer.Infof("reorg dropping %d height and adding %d height from %s to %s", dropped, added, curHead.String(), newHead.String()) } else { logSyncer.Infof("reorg from %s to %s", curHead.String(), newHead.String()) logSyncer.Errorf("unexpected error from ReorgDiff during log: %s", err.Error()) } } } // widen computes a tipset implied by the input tipset and the store that // could potentially be the heaviest tipset. In the context of EC, widen // returns the union of the input tipset and the biggest tipset with the same // parents from the store. // TODO: this leaks EC abstractions into the syncer, we should think about this. func (syncer *Syncer) widen(ctx context.Context, ts types.TipSet) (types.TipSet, error) { // Lookup tipsets with the same parents from the store. parentSet, err := ts.Parents() if err != nil { return types.UndefTipSet, err } height, err := ts.Height() if err != nil { return types.UndefTipSet, err } if !syncer.chainStore.HasTipSetAndStatesWithParentsAndHeight(parentSet, height) { return types.UndefTipSet, nil } candidates, err := syncer.chainStore.GetTipSetAndStatesByParentsAndHeight(parentSet, height) if err != nil { return types.UndefTipSet, err } if len(candidates) == 0 { return types.UndefTipSet, nil } // Only take the tipset with the most blocks (this is EC specific logic) max := candidates[0].TipSet for _, candidate := range candidates[0:] { if candidate.TipSet.Len() > max.Len() { max = candidate.TipSet } } // Form a new tipset from the union of ts and the largest in the store, de-duped. var blockSlice []*types.Block blockCids := make(map[cid.Cid]struct{}) for i := 0; i < ts.Len(); i++ { blk := ts.At(i) blockCids[blk.Cid()] = struct{}{} blockSlice = append(blockSlice, blk) } for i := 0; i < max.Len(); i++ { blk := max.At(i) if _, found := blockCids[blk.Cid()]; !found { blockSlice = append(blockSlice, blk) blockCids[blk.Cid()] = struct{}{} } } wts, err := types.NewTipSet(blockSlice...) if err != nil { return types.UndefTipSet, err } // check that the tipset is distinct from the input and tipsets from the store. if wts.String() == ts.String() || wts.String() == max.String() { return types.UndefTipSet, nil } return wts, nil } // HandleNewTipSet extends the Syncer's chain store with the given tipset if they // represent a valid extension. It limits the length of new chains it will // attempt to validate and caches invalid blocks it has encountered to // help prevent DOS. func (syncer *Syncer) HandleNewTipSet(ctx context.Context, ci *types.ChainInfo, trusted bool) (err error) { logSyncer.Debugf("Begin fetch and sync of chain with head %v", ci.Head) ctx, span := trace.StartSpan(ctx, "Syncer.HandleNewTipSet") span.AddAttributes(trace.StringAttribute("tipset", ci.Head.String())) defer tracing.AddErrorEndSpan(ctx, span, &err) // This lock could last a long time as we fetch all the blocks needed to block the chain. // This is justified because the app is pretty useless until it is synced. // It's better for multiple calls to wait here than to try to fetch the chain independently. syncer.mu.Lock() defer syncer.mu.Unlock() // If the store already has this tipset then the syncer is finished. if syncer.chainStore.HasTipSetAndState(ctx, ci.Head) { return nil } curHead, err := syncer.chainStore.GetTipSet(syncer.chainStore.GetHead()) if err != nil { return err } curHeight, err := curHead.Height() if err != nil { return err } syncer.reporter.UpdateStatus(syncingStarted(syncer.clock.Now().Unix()), syncHead(ci.Head), syncHeight(ci.Height), syncTrusted(trusted), syncComplete(false)) defer syncer.reporter.UpdateStatus(syncComplete(true)) // If we do not trust the peer head check finality if !trusted && ExceedsUntrustedChainLength(curHeight, ci.Height) { return ErrNewChainTooLong } syncer.reporter.UpdateStatus(syncFetchComplete(false)) chain, err := syncer.fetcher.FetchTipSets(ctx, ci.Head, ci.Peer, func(t types.TipSet) (bool, error) { parents, err := t.Parents() if err != nil { return true, err } height, err := t.Height() if err != nil { return false, err } // update status with latest fetched head and height syncer.reporter.UpdateStatus(fetchHead(t.Key()), fetchHeight(height)) return syncer.chainStore.HasTipSetAndState(ctx, parents), nil }) syncer.reporter.UpdateStatus(syncFetchComplete(true)) if err != nil { return err } // Fetcher returns chain in Traversal order, reverse it to height order Reverse(chain) parentCids, err := chain[0].Parents() if err != nil { return err } parent, err := syncer.chainStore.GetTipSet(parentCids) if err != nil { return err } // Try adding the tipsets of the chain to the store, checking for new // heaviest tipsets. for i, ts := range chain { // TODO: this "i==0" leaks EC specifics into syncer abstraction // for the sake of efficiency, consider plugging up this leak. var wts types.TipSet if i == 0 { wts, err = syncer.widen(ctx, ts) if err != nil { return err } if wts.Defined() { logSyncer.Debug("attempt to sync after widen") err = syncer.syncOne(ctx, parent, wts) if err != nil { return err } } } // If the chain has length greater than 1, then we need to sync each tipset // in the chain in order to process the chain fully, including the non-widened // first tipset. // If the chan has length == 1, we can avoid processing the non-widened tipset // as a performance optimization, because this tipset cannot be heavier // than the widened first tipset. if !wts.Defined() || len(chain) > 1 { err = syncer.syncOne(ctx, parent, ts) if err != nil { // While `syncOne` can indeed fail for reasons other than consensus, // adding to the badTipSets at this point is the simplest, since we // have access to the chain. If syncOne fails for non-consensus reasons, // there is no assumption that the running node's data is valid at all, // so we don't really lose anything with this simplification. syncer.badTipSets.AddChain(chain[i:]) return err } } if i%500 == 0 { logSyncer.Infof("processing block %d of %v for chain with head at %v", i, len(chain), ci.Head.String()) } parent = ts } return nil } // Status returns the current chain status. func (syncer *Syncer) Status() Status { return syncer.reporter.Status() } // ExceedsUntrustedChainLength returns true if the delta between curHeight and newHeight // exceeds the maximum number of blocks to accept if syncing without trust, false otherwise. func ExceedsUntrustedChainLength(curHeight, newHeight uint64) bool { maxChainLength := curHeight + uint64(UntrustedChainHeightLimit) return newHeight > maxChainLength }
1
21,766
"... after protocol version 1"?
filecoin-project-venus
go
@@ -32,7 +32,7 @@ from scapy.compat import ( _mib_re_integer = re.compile(r"^[0-9]+$") _mib_re_both = re.compile(r"^([a-zA-Z_][a-zA-Z0-9_-]*)\(([0-9]+)\)$") _mib_re_oiddecl = re.compile( - r"$\s*([a-zA-Z0-9_-]+)\s+OBJECT([^:\{\}]|\{[^:]+\})+::=\s*\{([^\}]+)\}", re.M) + r"$\s*([a-zA-Z0-9_-]+)\s+OBJECT[^:\{\}]+::=\s*\{([^\}]+)\}", re.M) _mib_re_strings = re.compile(r'"[^"]*"') _mib_re_comments = re.compile(r'--.*(\r|\n)')
1
# This file is part of Scapy # See http://www.secdev.org/projects/scapy for more information # Copyright (C) Philippe Biondi <[email protected]> # Modified by Maxence Tury <[email protected]> # This program is published under a GPLv2 license """ Management Information Base (MIB) parsing """ from __future__ import absolute_import import re from glob import glob from scapy.dadict import DADict, fixname from scapy.config import conf from scapy.utils import do_graph import scapy.modules.six as six from scapy.compat import plain_str from scapy.compat import ( Any, Dict, List, Optional, Tuple, ) ################# # MIB parsing # ################# _mib_re_integer = re.compile(r"^[0-9]+$") _mib_re_both = re.compile(r"^([a-zA-Z_][a-zA-Z0-9_-]*)\(([0-9]+)\)$") _mib_re_oiddecl = re.compile( r"$\s*([a-zA-Z0-9_-]+)\s+OBJECT([^:\{\}]|\{[^:]+\})+::=\s*\{([^\}]+)\}", re.M) _mib_re_strings = re.compile(r'"[^"]*"') _mib_re_comments = re.compile(r'--.*(\r|\n)') class MIBDict(DADict[str, str]): def _findroot(self, x): # type: (str) -> Tuple[str, str, str] """Internal MIBDict function used to find a partial OID""" if x.startswith("."): x = x[1:] if not x.endswith("."): x += "." max = 0 root = "." root_key = "" for k in six.iterkeys(self): if x.startswith(k + "."): if max < len(k): max = len(k) root = self[k] root_key = k return root, root_key, x[max:-1] def _oidname(self, x): # type: (str) -> str """Deduce the OID name from its OID ID""" root, _, remainder = self._findroot(x) return root + remainder def _oid(self, x): # type: (str) -> str """Parse the OID id/OID generator, and return real OID""" xl = x.strip(".").split(".") p = len(xl) - 1 while p >= 0 and _mib_re_integer.match(xl[p]): p -= 1 if p != 0 or xl[p] not in six.itervalues(self.d): return x xl[p] = next(k for k, v in six.iteritems(self.d) if v == xl[p]) return ".".join(xl[p:]) def _make_graph(self, other_keys=None, **kargs): # type: (Optional[Any], **Any) -> None if other_keys is None: other_keys = [] nodes = [(self[key], key) for key in self.iterkeys()] oids = set(self.iterkeys()) for k in other_keys: if k not in oids: nodes.append((self._oidname(k), k)) s = 'digraph "mib" {\n\trankdir=LR;\n\n' for k, o in nodes: s += '\t"%s" [ label="%s" ];\n' % (o, k) s += "\n" for k, o in nodes: parent, parent_key, remainder = self._findroot(o[:-1]) remainder = remainder[1:] + o[-1] if parent != ".": parent = parent_key s += '\t"%s" -> "%s" [label="%s"];\n' % (parent, o, remainder) s += "}\n" do_graph(s, **kargs) def _mib_register(ident, # type: str value, # type: List[str] the_mib, # type: Dict[str, List[str]] unresolved, # type: Dict[str, List[str]] alias, # type: Dict[str, str] ): # type: (...) -> bool """ Internal function used to register an OID and its name in a MIBDict """ if ident in the_mib: # We have already resolved this one. Store the alias alias[".".join(value)] = ident return True if ident in unresolved: # We know we can't resolve this one return False resval = [] not_resolved = 0 # Resolve the OID # (e.g. 2.basicConstraints.3 -> 2.2.5.29.19.3) for v in value: if _mib_re_integer.match(v): resval.append(v) else: v = fixname(plain_str(v)) if v not in the_mib: not_resolved = 1 if v in the_mib: resval += the_mib[v] elif v in unresolved: resval += unresolved[v] else: resval.append(v) if not_resolved: # Unresolved unresolved[ident] = resval return False else: # Fully resolved the_mib[ident] = resval keys = list(unresolved) i = 0 # Go through the unresolved to update the ones that # depended on the one we just did while i < len(keys): k = keys[i] if _mib_register(k, unresolved[k], the_mib, {}, alias): # Now resolved: we can remove it from unresolved del(unresolved[k]) del(keys[i]) i = 0 else: i += 1 return True def load_mib(filenames): # type: (str) -> None """ Load the conf.mib dict from a list of filenames """ the_mib = {'iso': ['1']} unresolved = {} # type: Dict[str, List[str]] alias = {} # type: Dict[str, str] # Export the current MIB to a working dictionary for k in six.iterkeys(conf.mib): _mib_register(conf.mib[k], k.split("."), the_mib, unresolved, alias) # Read the files if isinstance(filenames, (str, bytes)): files_list = [filenames] else: files_list = filenames for fnames in files_list: for fname in glob(fnames): with open(fname) as f: text = f.read() cleantext = " ".join( _mib_re_strings.split(" ".join(_mib_re_comments.split(text))) ) for m in _mib_re_oiddecl.finditer(cleantext): gr = m.groups() ident, oid_s = gr[0], gr[-1] ident = fixname(ident) oid_l = oid_s.split() for i, elt in enumerate(oid_l): m2 = _mib_re_both.match(elt) if m2: oid_l[i] = m2.groups()[1] _mib_register(ident, oid_l, the_mib, unresolved, alias) # Create the new MIB newmib = MIBDict(_name="MIB") # Add resolved values for oid, key in six.iteritems(the_mib): newmib[".".join(key)] = oid # Add unresolved values for oid, key in six.iteritems(unresolved): newmib[".".join(key)] = oid # Add aliases for key, oid in six.iteritems(alias): newmib[key] = oid conf.mib = newmib #################### # OID references # #################### # pkcs1 # pkcs1_oids = { "1.2.840.113549.1.1.1": "rsaEncryption", "1.2.840.113549.1.1.2": "md2WithRSAEncryption", "1.2.840.113549.1.1.3": "md4WithRSAEncryption", "1.2.840.113549.1.1.4": "md5WithRSAEncryption", "1.2.840.113549.1.1.5": "sha1-with-rsa-signature", "1.2.840.113549.1.1.6": "rsaOAEPEncryptionSET", "1.2.840.113549.1.1.7": "id-RSAES-OAEP", "1.2.840.113549.1.1.8": "id-mgf1", "1.2.840.113549.1.1.9": "id-pSpecified", "1.2.840.113549.1.1.10": "rsassa-pss", "1.2.840.113549.1.1.11": "sha256WithRSAEncryption", "1.2.840.113549.1.1.12": "sha384WithRSAEncryption", "1.2.840.113549.1.1.13": "sha512WithRSAEncryption", "1.2.840.113549.1.1.14": "sha224WithRSAEncryption" } # secsig oiw # secsig_oids = { "1.3.14.3.2.26": "sha1" } # pkcs9 # pkcs9_oids = { "1.2.840.113549.1.9.0": "modules", "1.2.840.113549.1.9.1": "emailAddress", "1.2.840.113549.1.9.2": "unstructuredName", "1.2.840.113549.1.9.3": "contentType", "1.2.840.113549.1.9.4": "messageDigest", "1.2.840.113549.1.9.5": "signing-time", "1.2.840.113549.1.9.6": "countersignature", "1.2.840.113549.1.9.7": "challengePassword", "1.2.840.113549.1.9.8": "unstructuredAddress", "1.2.840.113549.1.9.9": "extendedCertificateAttributes", "1.2.840.113549.1.9.13": "signingDescription", "1.2.840.113549.1.9.14": "extensionRequest", "1.2.840.113549.1.9.15": "smimeCapabilities", "1.2.840.113549.1.9.16": "smime", "1.2.840.113549.1.9.17": "pgpKeyID", "1.2.840.113549.1.9.20": "friendlyName", "1.2.840.113549.1.9.21": "localKeyID", "1.2.840.113549.1.9.22": "certTypes", "1.2.840.113549.1.9.23": "crlTypes", "1.2.840.113549.1.9.24": "pkcs-9-oc", "1.2.840.113549.1.9.25": "pkcs-9-at", "1.2.840.113549.1.9.26": "pkcs-9-sx", "1.2.840.113549.1.9.27": "pkcs-9-mr", "1.2.840.113549.1.9.52": "id-aa-CMSAlgorithmProtection" } # x509 # attributeType_oids = { "2.5.4.0": "objectClass", "2.5.4.1": "aliasedEntryName", "2.5.4.2": "knowledgeInformation", "2.5.4.3": "commonName", "2.5.4.4": "surname", "2.5.4.5": "serialNumber", "2.5.4.6": "countryName", "2.5.4.7": "localityName", "2.5.4.8": "stateOrProvinceName", "2.5.4.9": "streetAddress", "2.5.4.10": "organizationName", "2.5.4.11": "organizationUnitName", "2.5.4.12": "title", "2.5.4.13": "description", "2.5.4.14": "searchGuide", "2.5.4.15": "businessCategory", "2.5.4.16": "postalAddress", "2.5.4.17": "postalCode", "2.5.4.18": "postOfficeBox", "2.5.4.19": "physicalDeliveryOfficeName", "2.5.4.20": "telephoneNumber", "2.5.4.21": "telexNumber", "2.5.4.22": "teletexTerminalIdentifier", "2.5.4.23": "facsimileTelephoneNumber", "2.5.4.24": "x121Address", "2.5.4.25": "internationalISDNNumber", "2.5.4.26": "registeredAddress", "2.5.4.27": "destinationIndicator", "2.5.4.28": "preferredDeliveryMethod", "2.5.4.29": "presentationAddress", "2.5.4.30": "supportedApplicationContext", "2.5.4.31": "member", "2.5.4.32": "owner", "2.5.4.33": "roleOccupant", "2.5.4.34": "seeAlso", "2.5.4.35": "userPassword", "2.5.4.36": "userCertificate", "2.5.4.37": "cACertificate", "2.5.4.38": "authorityRevocationList", "2.5.4.39": "certificateRevocationList", "2.5.4.40": "crossCertificatePair", "2.5.4.41": "name", "2.5.4.42": "givenName", "2.5.4.43": "initials", "2.5.4.44": "generationQualifier", "2.5.4.45": "uniqueIdentifier", "2.5.4.46": "dnQualifier", "2.5.4.47": "enhancedSearchGuide", "2.5.4.48": "protocolInformation", "2.5.4.49": "distinguishedName", "2.5.4.50": "uniqueMember", "2.5.4.51": "houseIdentifier", "2.5.4.52": "supportedAlgorithms", "2.5.4.53": "deltaRevocationList", "2.5.4.54": "dmdName", "2.5.4.55": "clearance", "2.5.4.56": "defaultDirQop", "2.5.4.57": "attributeIntegrityInfo", "2.5.4.58": "attributeCertificate", "2.5.4.59": "attributeCertificateRevocationList", "2.5.4.60": "confKeyInfo", "2.5.4.61": "aACertificate", "2.5.4.62": "attributeDescriptorCertificate", "2.5.4.63": "attributeAuthorityRevocationList", "2.5.4.64": "family-information", "2.5.4.65": "pseudonym", "2.5.4.66": "communicationsService", "2.5.4.67": "communicationsNetwork", "2.5.4.68": "certificationPracticeStmt", "2.5.4.69": "certificatePolicy", "2.5.4.70": "pkiPath", "2.5.4.71": "privPolicy", "2.5.4.72": "role", "2.5.4.73": "delegationPath", "2.5.4.74": "protPrivPolicy", "2.5.4.75": "xMLPrivilegeInfo", "2.5.4.76": "xmlPrivPolicy", "2.5.4.77": "uuidpair", "2.5.4.78": "tagOid", "2.5.4.79": "uiiFormat", "2.5.4.80": "uiiInUrh", "2.5.4.81": "contentUrl", "2.5.4.82": "permission", "2.5.4.83": "uri", "2.5.4.84": "pwdAttribute", "2.5.4.85": "userPwd", "2.5.4.86": "urn", "2.5.4.87": "url", "2.5.4.88": "utmCoordinates", "2.5.4.89": "urnC", "2.5.4.90": "uii", "2.5.4.91": "epc", "2.5.4.92": "tagAfi", "2.5.4.93": "epcFormat", "2.5.4.94": "epcInUrn", "2.5.4.95": "ldapUrl", "2.5.4.96": "ldapUrl", "2.5.4.97": "organizationIdentifier" } certificateExtension_oids = { "2.5.29.1": "authorityKeyIdentifier", "2.5.29.2": "keyAttributes", "2.5.29.3": "certificatePolicies", "2.5.29.4": "keyUsageRestriction", "2.5.29.5": "policyMapping", "2.5.29.6": "subtreesConstraint", "2.5.29.7": "subjectAltName", "2.5.29.8": "issuerAltName", "2.5.29.9": "subjectDirectoryAttributes", "2.5.29.10": "basicConstraints", "2.5.29.14": "subjectKeyIdentifier", "2.5.29.15": "keyUsage", "2.5.29.16": "privateKeyUsagePeriod", "2.5.29.17": "subjectAltName", "2.5.29.18": "issuerAltName", "2.5.29.19": "basicConstraints", "2.5.29.20": "cRLNumber", "2.5.29.21": "reasonCode", "2.5.29.22": "expirationDate", "2.5.29.23": "instructionCode", "2.5.29.24": "invalidityDate", "2.5.29.25": "cRLDistributionPoints", "2.5.29.26": "issuingDistributionPoint", "2.5.29.27": "deltaCRLIndicator", "2.5.29.28": "issuingDistributionPoint", "2.5.29.29": "certificateIssuer", "2.5.29.30": "nameConstraints", "2.5.29.31": "cRLDistributionPoints", "2.5.29.32": "certificatePolicies", "2.5.29.33": "policyMappings", "2.5.29.34": "policyConstraints", "2.5.29.35": "authorityKeyIdentifier", "2.5.29.36": "policyConstraints", "2.5.29.37": "extKeyUsage", "2.5.29.38": "authorityAttributeIdentifier", "2.5.29.39": "roleSpecCertIdentifier", "2.5.29.40": "cRLStreamIdentifier", "2.5.29.41": "basicAttConstraints", "2.5.29.42": "delegatedNameConstraints", "2.5.29.43": "timeSpecification", "2.5.29.44": "cRLScope", "2.5.29.45": "statusReferrals", "2.5.29.46": "freshestCRL", "2.5.29.47": "orderedList", "2.5.29.48": "attributeDescriptor", "2.5.29.49": "userNotice", "2.5.29.50": "sOAIdentifier", "2.5.29.51": "baseUpdateTime", "2.5.29.52": "acceptableCertPolicies", "2.5.29.53": "deltaInfo", "2.5.29.54": "inhibitAnyPolicy", "2.5.29.55": "targetInformation", "2.5.29.56": "noRevAvail", "2.5.29.57": "acceptablePrivilegePolicies", "2.5.29.58": "id-ce-toBeRevoked", "2.5.29.59": "id-ce-RevokedGroups", "2.5.29.60": "id-ce-expiredCertsOnCRL", "2.5.29.61": "indirectIssuer", "2.5.29.62": "id-ce-noAssertion", "2.5.29.63": "id-ce-aAissuingDistributionPoint", "2.5.29.64": "id-ce-issuedOnBehaIFOF", "2.5.29.65": "id-ce-singleUse", "2.5.29.66": "id-ce-groupAC", "2.5.29.67": "id-ce-allowedAttAss", "2.5.29.68": "id-ce-attributeMappings", "2.5.29.69": "id-ce-holderNameConstraints" } certExt_oids = { "2.16.840.1.113730.1.1": "cert-type", "2.16.840.1.113730.1.2": "base-url", "2.16.840.1.113730.1.3": "revocation-url", "2.16.840.1.113730.1.4": "ca-revocation-url", "2.16.840.1.113730.1.5": "ca-crl-url", "2.16.840.1.113730.1.6": "ca-cert-url", "2.16.840.1.113730.1.7": "renewal-url", "2.16.840.1.113730.1.8": "ca-policy-url", "2.16.840.1.113730.1.9": "homepage-url", "2.16.840.1.113730.1.10": "entity-logo", "2.16.840.1.113730.1.11": "user-picture", "2.16.840.1.113730.1.12": "ssl-server-name", "2.16.840.1.113730.1.13": "comment", "2.16.840.1.113730.1.14": "lost-password-url", "2.16.840.1.113730.1.15": "cert-renewal-time", "2.16.840.1.113730.1.16": "aia", "2.16.840.1.113730.1.17": "cert-scope-of-use", } certPkixPe_oids = { "1.3.6.1.5.5.7.1.1": "authorityInfoAccess", "1.3.6.1.5.5.7.1.2": "biometricInfo", "1.3.6.1.5.5.7.1.3": "qcStatements", "1.3.6.1.5.5.7.1.4": "auditIdentity", "1.3.6.1.5.5.7.1.6": "aaControls", "1.3.6.1.5.5.7.1.10": "proxying", "1.3.6.1.5.5.7.1.11": "subjectInfoAccess" } certPkixQt_oids = { "1.3.6.1.5.5.7.2.1": "cps", "1.3.6.1.5.5.7.2.2": "unotice" } certPkixKp_oids = { "1.3.6.1.5.5.7.3.1": "serverAuth", "1.3.6.1.5.5.7.3.2": "clientAuth", "1.3.6.1.5.5.7.3.3": "codeSigning", "1.3.6.1.5.5.7.3.4": "emailProtection", "1.3.6.1.5.5.7.3.5": "ipsecEndSystem", "1.3.6.1.5.5.7.3.6": "ipsecTunnel", "1.3.6.1.5.5.7.3.7": "ipsecUser", "1.3.6.1.5.5.7.3.8": "timeStamping", "1.3.6.1.5.5.7.3.9": "ocspSigning", "1.3.6.1.5.5.7.3.10": "dvcs", "1.3.6.1.5.5.7.3.21": "secureShellClient", "1.3.6.1.5.5.7.3.22": "secureShellServer" } certPkixAd_oids = { "1.3.6.1.5.5.7.48.1": "ocsp", "1.3.6.1.5.5.7.48.2": "caIssuers", "1.3.6.1.5.5.7.48.3": "timestamping", "1.3.6.1.5.5.7.48.4": "id-ad-dvcs", "1.3.6.1.5.5.7.48.5": "id-ad-caRepository", "1.3.6.1.5.5.7.48.6": "id-pkix-ocsp-archive-cutoff", "1.3.6.1.5.5.7.48.7": "id-pkix-ocsp-service-locator", "1.3.6.1.5.5.7.48.12": "id-ad-cmc", "1.3.6.1.5.5.7.48.1.1": "basic-response" } # ansi-x962 # x962KeyType_oids = { "1.2.840.10045.1.1": "prime-field", "1.2.840.10045.1.2": "characteristic-two-field", "1.2.840.10045.2.1": "ecPublicKey", } x962Signature_oids = { "1.2.840.10045.4.1": "ecdsa-with-SHA1", "1.2.840.10045.4.2": "ecdsa-with-Recommended", "1.2.840.10045.4.3.1": "ecdsa-with-SHA224", "1.2.840.10045.4.3.2": "ecdsa-with-SHA256", "1.2.840.10045.4.3.3": "ecdsa-with-SHA384", "1.2.840.10045.4.3.4": "ecdsa-with-SHA512" } # elliptic curves # ansiX962Curve_oids = { "1.2.840.10045.3.1.1": "prime192v1", "1.2.840.10045.3.1.2": "prime192v2", "1.2.840.10045.3.1.3": "prime192v3", "1.2.840.10045.3.1.4": "prime239v1", "1.2.840.10045.3.1.5": "prime239v2", "1.2.840.10045.3.1.6": "prime239v3", "1.2.840.10045.3.1.7": "prime256v1" } certicomCurve_oids = { "1.3.132.0.1": "ansit163k1", "1.3.132.0.2": "ansit163r1", "1.3.132.0.3": "ansit239k1", "1.3.132.0.4": "sect113r1", "1.3.132.0.5": "sect113r2", "1.3.132.0.6": "secp112r1", "1.3.132.0.7": "secp112r2", "1.3.132.0.8": "ansip160r1", "1.3.132.0.9": "ansip160k1", "1.3.132.0.10": "ansip256k1", "1.3.132.0.15": "ansit163r2", "1.3.132.0.16": "ansit283k1", "1.3.132.0.17": "ansit283r1", "1.3.132.0.22": "sect131r1", "1.3.132.0.24": "ansit193r1", "1.3.132.0.25": "ansit193r2", "1.3.132.0.26": "ansit233k1", "1.3.132.0.27": "ansit233r1", "1.3.132.0.28": "secp128r1", "1.3.132.0.29": "secp128r2", "1.3.132.0.30": "ansip160r2", "1.3.132.0.31": "ansip192k1", "1.3.132.0.32": "ansip224k1", "1.3.132.0.33": "ansip224r1", "1.3.132.0.34": "ansip384r1", "1.3.132.0.35": "ansip521r1", "1.3.132.0.36": "ansit409k1", "1.3.132.0.37": "ansit409r1", "1.3.132.0.38": "ansit571k1", "1.3.132.0.39": "ansit571r1" } # policies # certPolicy_oids = { "2.5.29.32.0": "anyPolicy" } # from Chromium source code (ev_root_ca_metadata.cc) evPolicy_oids = { '1.2.392.200091.100.721.1': 'EV Security Communication RootCA1', '1.2.616.1.113527.2.5.1.1': 'EV Certum Trusted Network CA', '1.3.159.1.17.1': 'EV Actualis Authentication Root CA', '1.3.6.1.4.1.13177.10.1.3.10': 'EV Autoridad de Certificacion Firmaprofesional CIF A62634068', '1.3.6.1.4.1.14370.1.6': 'EV GeoTrust Primary Certification Authority', '1.3.6.1.4.1.14777.6.1.1': 'EV Izenpe.com roots Business', '1.3.6.1.4.1.14777.6.1.2': 'EV Izenpe.com roots Government', '1.3.6.1.4.1.17326.10.14.2.1.2': 'EV AC Camerfirma S.A. Chambers of Commerce Root - 2008', '1.3.6.1.4.1.17326.10.14.2.2.2': 'EV AC Camerfirma S.A. Chambers of Commerce Root - 2008', '1.3.6.1.4.1.17326.10.8.12.1.2': 'EV AC Camerfirma S.A. Global Chambersign Root - 2008', '1.3.6.1.4.1.17326.10.8.12.2.2': 'EV AC Camerfirma S.A. Global Chambersign Root - 2008', '1.3.6.1.4.1.22234.2.5.2.3.1': 'EV CertPlus Class 2 Primary CA (KEYNECTIS)', '1.3.6.1.4.1.23223.1.1.1': 'EV StartCom Certification Authority', '1.3.6.1.4.1.29836.1.10': 'EV China Internet Network Information Center EV Certificates Root', '1.3.6.1.4.1.311.60.2.1.1': 'jurisdictionOfIncorporationLocalityName', '1.3.6.1.4.1.311.60.2.1.2': 'jurisdictionOfIncorporationStateOrProvinceName', '1.3.6.1.4.1.311.60.2.1.3': 'jurisdictionOfIncorporationCountryName', '1.3.6.1.4.1.34697.2.1': 'EV AffirmTrust Commercial', '1.3.6.1.4.1.34697.2.2': 'EV AffirmTrust Networking', '1.3.6.1.4.1.34697.2.3': 'EV AffirmTrust Premium', '1.3.6.1.4.1.34697.2.4': 'EV AffirmTrust Premium ECC', '1.3.6.1.4.1.36305.2': 'EV Certificate Authority of WoSign', '1.3.6.1.4.1.40869.1.1.22.3': 'EV TWCA Roots', '1.3.6.1.4.1.4146.1.1': 'EV GlobalSign Root CAs', '1.3.6.1.4.1.4788.2.202.1': 'EV D-TRUST Root Class 3 CA 2 EV 2009', '1.3.6.1.4.1.6334.1.100.1': 'EV Cybertrust Global Root', '1.3.6.1.4.1.6449.1.2.1.5.1': 'EV USERTrust Certification Authorities', '1.3.6.1.4.1.781.1.2.1.8.1': 'EV Network Solutions Certificate Authority', '1.3.6.1.4.1.782.1.2.1.8.1': 'EV AddTrust External CA Root', '1.3.6.1.4.1.7879.13.24.1': 'EV T-Telessec GlobalRoot Class 3', '1.3.6.1.4.1.8024.0.2.100.1.2': 'EV QuoVadis Roots', '2.16.528.1.1003.1.2.7': 'EV Staat der Nederlanden EV Root CA', '2.16.578.1.26.1.3.3': 'EV Buypass Class 3', '2.16.756.1.83.21.0': 'EV Swisscom Root EV CA 2', '2.16.756.1.89.1.2.1.1': 'EV SwissSign Gold CA - G2', '2.16.792.3.0.4.1.1.4': 'EV E-Tugra Certification Authority', '2.16.840.1.113733.1.7.23.6': 'EV VeriSign Certification Authorities', '2.16.840.1.113733.1.7.48.1': 'EV thawte CAs', '2.16.840.1.114028.10.1.2': 'EV Entrust Certification Authority', '2.16.840.1.114171.500.9': 'EV Wells Fargo WellsSecure Public Root Certification Authority', '2.16.840.1.114404.1.1.2.4.1': 'EV XRamp Global Certification Authority', '2.16.840.1.114412.2.1': 'EV DigiCert High Assurance EV Root CA', '2.16.840.1.114413.1.7.23.3': 'EV ValiCert Class 2 Policy Validation Authority', '2.16.840.1.114414.1.7.23.3': 'EV Starfield Certificate Authority', '2.16.840.1.114414.1.7.24.3': 'EV Starfield Service Certificate Authority' } # gssapi_oids = { '1.3.6.1.5.5.2': 'SPNEGO - Simple Protected Negotiation', '1.3.6.1.4.1.311.2.2.10': 'NTLMSSP - Microsoft NTLM Security Support Provider', '1.3.6.1.4.1.311.2.2.30': 'NEGOEX - SPNEGO Extended Negotiation Security Mechanism', } x509_oids_sets = [ pkcs1_oids, secsig_oids, pkcs9_oids, attributeType_oids, certificateExtension_oids, certExt_oids, certPkixPe_oids, certPkixQt_oids, certPkixKp_oids, certPkixAd_oids, certPolicy_oids, evPolicy_oids, x962KeyType_oids, x962Signature_oids, ansiX962Curve_oids, certicomCurve_oids, gssapi_oids, ] x509_oids = {} for oids_set in x509_oids_sets: x509_oids.update(oids_set) conf.mib = MIBDict(_name="MIB", **x509_oids) ######################### # Hash mapping helper # ######################### # This dict enables static access to string references to the hash functions # of some algorithms from pkcs1_oids and x962Signature_oids. hash_by_oid = { "1.2.840.113549.1.1.2": "md2", "1.2.840.113549.1.1.3": "md4", "1.2.840.113549.1.1.4": "md5", "1.2.840.113549.1.1.5": "sha1", "1.2.840.113549.1.1.11": "sha256", "1.2.840.113549.1.1.12": "sha384", "1.2.840.113549.1.1.13": "sha512", "1.2.840.113549.1.1.14": "sha224", "1.2.840.10045.4.1": "sha1", "1.2.840.10045.4.3.1": "sha224", "1.2.840.10045.4.3.2": "sha256", "1.2.840.10045.4.3.3": "sha384", "1.2.840.10045.4.3.4": "sha512" }
1
20,208
Is there a unit test that covers this regexp? I am afraid that changing it might break things =/
secdev-scapy
py
@@ -57,7 +57,7 @@ public class RubyNameFormatter implements NameFormatter { @Override public String varReference(Name name) { - return "@" + name.toLowerUnderscore(); + return name.toLowerUnderscore(); } @Override
1
/* Copyright 2016 Google Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.api.codegen.util.ruby; import com.google.api.codegen.util.Name; import com.google.api.codegen.util.NameFormatter; import com.google.api.codegen.util.NamePath; import com.google.common.collect.ImmutableSet; /** The NameFormatter for Ruby. */ public class RubyNameFormatter implements NameFormatter { private String wrapIfKeywordOrBuiltIn(String name) { if (RESERVED_IDENTIFIER_SET.contains(name)) { return name + "_"; } else { return name; } } @Override public String publicClassName(Name name) { return wrapIfKeywordOrBuiltIn(name.toUpperCamel()); } @Override public String privateClassName(Name name) { return publicClassName(name); } @Override public String localVarName(Name name) { return wrapIfKeywordOrBuiltIn(name.toLowerUnderscore()); } @Override public String privateFieldName(Name name) { return name.toLowerUnderscore(); } @Override public String publicFieldName(Name name) { return wrapIfKeywordOrBuiltIn(name.toLowerUnderscore()); } @Override public String varReference(Name name) { return "@" + name.toLowerUnderscore(); } @Override public String publicMethodName(Name name) { return wrapIfKeywordOrBuiltIn(name.toLowerUnderscore()); } @Override public String privateMethodName(Name name) { return wrapIfKeywordOrBuiltIn(name.toLowerUnderscore()); } @Override public String staticFunctionName(Name name) { return wrapIfKeywordOrBuiltIn(name.toLowerUnderscore()); } @Override public String inittedConstantName(Name name) { return wrapIfKeywordOrBuiltIn(name.toUpperUnderscore()); } @Override public String keyName(Name name) { return name.toLowerUnderscore(); } @Override public String qualifiedName(NamePath namePath) { return namePath.withUpperPieces().toDoubleColoned(); } @Override public String packageFilePathPiece(Name name) { return name.toLowerUnderscore(); } @Override public String classFileNameBase(Name name) { return name.toLowerUnderscore(); } /** * A set of Ruby keywords and built-ins. See: * http://docs.ruby-lang.org/en/2.3.0/keywords_rdoc.html */ public static final ImmutableSet<String> RESERVED_IDENTIFIER_SET = ImmutableSet.<String>builder() .add( "__ENCODING__", "__LINE__", "__FILE__", "BEGIN", "END", "alias", "and", "begin", "break", "case", "class", "def", "defined?", "do", "else", "elsif", "end", "ensure", "false", "for", "if", "in", "module", "next", "nil", "not", "or", "redo", "rescue", "retry", "return", "self", "super", "then", "true", "undef", "unless", "until", "when", "while", "yield", // "options" is here because it's a common keyword argument to // specify a CallOptions instance. "options") .build(); }
1
23,956
This change is okay IMO because an `@` variable in Ruby is not a reference -- `@` variables are instance variables. Also, it's never used by the Ruby transformers.
googleapis-gapic-generator
java
@@ -27,9 +27,9 @@ class PaymentImageUploadCest $me->amOnPage('/admin/payment/edit/1'); $entityEditPage->uploadTestImage(self::IMAGE_UPLOAD_FIELD_ID, self::TEST_IMAGE_NAME); $me->clickByName(self::SAVE_BUTTON_NAME); - $me->seeTranslationAdmin('Payment <strong><a href="{{ url }}">%name%</a></strong> modified', 'messages', [ + $me->seeTranslationAdmin('Payment <strong><a href="{{ url }}">{{ name }}</a></strong> modified', 'messages', [ '{{ url }}' => '', - '%name%' => t('Credit card', [], 'dataFixtures', $me->getAdminLocale()), + '{{ name }}' => t('Credit card', [], 'dataFixtures', $me->getAdminLocale()), ]); } }
1
<?php declare(strict_types=1); namespace Tests\ShopBundle\Acceptance\acceptance; use Tests\ShopBundle\Acceptance\acceptance\PageObject\Admin\EntityEditPage; use Tests\ShopBundle\Acceptance\acceptance\PageObject\Admin\LoginPage; use Tests\ShopBundle\Test\Codeception\AcceptanceTester; class PaymentImageUploadCest { protected const IMAGE_UPLOAD_FIELD_ID = 'payment_form_image_image_file'; protected const SAVE_BUTTON_NAME = 'payment_form[save]'; protected const TEST_IMAGE_NAME = 'paymentTestImage.png'; /** * @param \Tests\ShopBundle\Test\Codeception\AcceptanceTester $me * @param \Tests\ShopBundle\Acceptance\acceptance\PageObject\Admin\EntityEditPage $entityEditPage * @param \Tests\ShopBundle\Acceptance\acceptance\PageObject\Admin\LoginPage $loginPage */ public function testSuccessfulImageUpload(AcceptanceTester $me, EntityEditPage $entityEditPage, LoginPage $loginPage) { $me->wantTo('Upload an image in admin payment edit page'); $loginPage->loginAsAdmin(); $me->amOnPage('/admin/payment/edit/1'); $entityEditPage->uploadTestImage(self::IMAGE_UPLOAD_FIELD_ID, self::TEST_IMAGE_NAME); $me->clickByName(self::SAVE_BUTTON_NAME); $me->seeTranslationAdmin('Payment <strong><a href="{{ url }}">%name%</a></strong> modified', 'messages', [ '{{ url }}' => '', '%name%' => t('Credit card', [], 'dataFixtures', $me->getAdminLocale()), ]); } }
1
18,335
Why this change was needed? Because in `po` files it's with curly braces?
shopsys-shopsys
php
@@ -370,14 +370,14 @@ patch_branch(dr_isa_mode_t isa_mode, cache_pc branch_pc, cache_pc target_pc, ASSERT(ALIGNED(branch_pc, 4) && ALIGNED(target_pc, 4)); if ((enc & 0xfc000000) == 0x14000000) { /* B */ ASSERT(off + 0x8000000 < 0x10000000); - *pc_writable = (0x14000000 | (0x03ffffff & off >> 2)); + *pc_writable = (0x14000000 | (0x03ffffff & (off >> 2))); } else if ((enc & 0xff000010) == 0x54000000 || (enc & 0x7e000000) == 0x34000000) { /* B.cond, CBNZ, CBZ */ - ASSERT(off + 0x40000 < 0x80000); - *pc_writable = (enc & 0xff00001f) | (0x00ffffe0 & off >> 2 << 5); + ASSERT(off + 0x100000 < 0x200000); + *pc_writable = (enc & 0xff00001f) | (0x00ffffe0 & (off >> 2 << 5)); } else if ((enc & 0x7e000000) == 0x36000000) { /* TBNZ, TBZ */ - ASSERT(off + 0x2000 < 0x4000); - *pc_writable = (enc & 0xfff8001f) | (0x0007ffe0 & off >> 2 << 5); + ASSERT(off + 0x8000 < 0x10000); + *pc_writable = (enc & 0xfff8001f) | (0x0007ffe0 & (off >> 2 << 5)); } else ASSERT(false); if (hot_patch)
1
/* ********************************************************** * Copyright (c) 2014-2021 Google, Inc. All rights reserved. * Copyright (c) 2016 ARM Limited. All rights reserved. * **********************************************************/ /* * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of ARM Limited nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL ARM LIMITED OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include "../globals.h" #include "arch.h" #include "instr.h" #include "instr_create_shared.h" #include "instrlist.h" #include "instrument.h" /* shorten code generation lines */ #define APP instrlist_meta_append #define PRE instrlist_meta_preinsert #define OPREG opnd_create_reg #define BR_X1_INST (0xd61f0000 | 1 << 5) /* br x1 */ /***************************************************************************/ /* EXIT STUB */ /***************************************************************************/ /* We use multiple approaches to linking based on how far away the target * fragment is: * * Unlinked: * exit_cti stub * ... * stub: * stp x0, x1, [x28] * movz x0, #&linkstub[0, 16), lsl #0x00 * movk x0, #&linkstub[16, 32), lsl #0x10 * movk x0, #&linkstub[32, 48), lsl #0x20 * movk x0, #&linkstub[48, 64), lsl #0x30 * ldr x1, [#8/#12] * br x1 * <fcache-return> * * Linked, exit_cti_reaches_target (near fragment): * exit_cti target_fragment * ... * stub: * stp x0, x1, [x28] * movz x0, #&linkstub[0, 16), lsl #0x00 * movk x0, #&linkstub[16, 32), lsl #0x10 * movk x0, #&linkstub[32, 48), lsl #0x20 * movk x0, #&linkstub[48, 64), lsl #0x30 * ldr x1, [#8/#12] * br x1 * <fcache-return> * * Linked, unconditional branch reaches target (intermediate fragment): * exit_cti stub * ... * stub: * b target_fragment * movz x0, #&linkstub[0, 16), lsl #0x00 * movk x0, #&linkstub[16, 32), lsl #0x10 * movk x0, #&linkstub[32, 48), lsl #0x20 * movk x0, #&linkstub[48, 64), lsl #0x30 * ldr x1, [#8/#12] * br x1 * <fcache-return> * * Linked, !unconditional branch reaches target (far fragment): * exit_cti stub * ... * stub: * stp x0, x1, [x28] * movz x0, #&linkstub[0, 16), lsl #0x00 * movk x0, #&linkstub[16, 32), lsl #0x10 * movk x0, #&linkstub[32, 48), lsl #0x20 * movk x0, #&linkstub[48, 64), lsl #0x30 * ldr x1, [#8/#12] * br x1 * <target_fragment_prefix> * * To ensure atomicity of <target> patching, the data slot must be 8-byte * aligned. We do this by reserving 12 bytes for the data slot and using the * appropriate offset in ldr for the 8-byte aligned 8 byte region within it. * * For complete design details, see the following wiki * https://dynamorio.org/page_aarch64_far.html */ byte * insert_relative_target(byte *pc, cache_pc target, bool hot_patch) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return NULL; } byte * insert_relative_jump(byte *pc, cache_pc target, bool hot_patch) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return NULL; } uint nop_pad_ilist(dcontext_t *dcontext, fragment_t *f, instrlist_t *ilist, bool emitting) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return 0; } size_t get_fcache_return_tls_offs(dcontext_t *dcontext, uint flags) { /* AArch64 always uses shared gencode so we ignore FRAG_DB_SHARED(flags) */ if (TEST(FRAG_COARSE_GRAIN, flags)) { /* FIXME i#1575: coarse-grain NYI on AArch64 */ ASSERT_NOT_IMPLEMENTED(false); return 0; } return TLS_FCACHE_RETURN_SLOT; } /* Generate move (immediate) of a 64-bit value using at most 4 instructions. * pc must be a writable (vmcode) pc. */ uint * insert_mov_imm(uint *pc, reg_id_t dst, ptr_int_t val) { uint rt = dst - DR_REG_X0; ASSERT(rt < 31); *pc++ = 0xd2800000 | rt | (val & 0xffff) << 5; /* movz x(rt), #x */ if ((val >> 16 & 0xffff) != 0) *pc++ = 0xf2a00000 | rt | (val >> 16 & 0xffff) << 5; /* movk x(rt), #x, lsl #16 */ if ((val >> 32 & 0xffff) != 0) *pc++ = 0xf2c00000 | rt | (val >> 32 & 0xffff) << 5; /* movk x(rt), #x, lsl #32 */ if ((val >> 48 & 0xffff) != 0) *pc++ = 0xf2e00000 | rt | (val >> 48 & 0xffff) << 5; /* movk x(rt), #x, lsl #48 */ return pc; } /* Returns addr for the target_pc data slot of the given stub. The slot starts at the * 8-byte aligned region in the 12-byte slot reserved in the stub. */ static ptr_uint_t * get_target_pc_slot(fragment_t *f, cache_pc stub_pc) { return (ptr_uint_t *)ALIGN_FORWARD( vmcode_get_writable_addr(stub_pc + DIRECT_EXIT_STUB_SIZE(f->flags) - DIRECT_EXIT_STUB_DATA_SZ), 8); } /* Emit code for the exit stub at stub_pc. Return the size of the * emitted code in bytes. This routine assumes that the caller will * take care of any cache synchronization necessary. * The stub is unlinked initially, except coarse grain indirect exits, * which are always linked. */ int insert_exit_stub_other_flags(dcontext_t *dcontext, fragment_t *f, linkstub_t *l, cache_pc stub_pc, ushort l_flags) { uint *write_stub_pc = (uint *)vmcode_get_writable_addr(stub_pc); uint *pc = write_stub_pc; uint num_nops_needed = 0; /* FIXME i#1575: coarse-grain NYI on ARM */ ASSERT_NOT_IMPLEMENTED(!TEST(FRAG_COARSE_GRAIN, f->flags)); if (LINKSTUB_DIRECT(l_flags)) { /* stp x0, x1, [x(stolen), #(offs)] */ *pc++ = (0xa9000000 | 0 | 1 << 10 | (dr_reg_stolen - DR_REG_X0) << 5 | TLS_REG0_SLOT >> 3 << 15); /* mov x0, ... */ pc = insert_mov_imm(pc, DR_REG_X0, (ptr_int_t)l); num_nops_needed = 4 - (pc - write_stub_pc - 1); ptr_uint_t *target_pc_slot = get_target_pc_slot(f, stub_pc); ASSERT(pc < (uint *)target_pc_slot); uint target_pc_slot_offs = (uint *)target_pc_slot - pc; /* ldr x1, [pc, target_pc_slot_offs * AARCH64_INSTR_SIZE] */ *pc++ = (0x58000000 | (DR_REG_X1 - DR_REG_X0) | target_pc_slot_offs << 5); /* br x1 */ *pc++ = BR_X1_INST; /* Fill up with NOPs, depending on how many instructions we needed to move * the immediate into a register. Ideally we would skip adding NOPs, but * lots of places expect the stub size to be fixed. */ for (uint j = 0; j < num_nops_needed; j++) *pc++ = RAW_NOP_INST; /* The final slot is a data slot, which will hold the address of either * the fcache-return routine or the linked fragment. We reserve 12 bytes * and use the 8-byte aligned region of 8 bytes within it. */ ASSERT(pc == (uint *)target_pc_slot || pc + 1 == (uint *)target_pc_slot); ASSERT(sizeof(app_pc) == 8); pc += DIRECT_EXIT_STUB_DATA_SZ / sizeof(uint); /* We start off with the fcache-return routine address in the slot. */ /* AArch64 uses shared gencode. So, fcache_return routine address should be * same, no matter which thread creates/unpatches the stub. */ ASSERT(fcache_return_routine(dcontext) == fcache_return_routine(GLOBAL_DCONTEXT)); *target_pc_slot = (ptr_uint_t)fcache_return_routine(dcontext); ASSERT((ptr_int_t)((byte *)pc - (byte *)write_stub_pc) == DIRECT_EXIT_STUB_SIZE(l_flags)); } else { /* Stub starts out unlinked. */ cache_pc exit_target = get_unlinked_entry(dcontext, EXIT_TARGET_TAG(dcontext, f, l)); /* stp x0, x1, [x(stolen), #(offs)] */ *pc++ = (0xa9000000 | 0 | 1 << 10 | (dr_reg_stolen - DR_REG_X0) << 5 | TLS_REG0_SLOT >> 3 << 15); /* mov x0, ... */ pc = insert_mov_imm(pc, DR_REG_X0, (ptr_int_t)l); num_nops_needed = 4 - (pc - write_stub_pc - 1); /* ldr x1, [x(stolen), #(offs)] */ *pc++ = (0xf9400000 | 1 | (dr_reg_stolen - DR_REG_X0) << 5 | get_ibl_entry_tls_offs(dcontext, exit_target) >> 3 << 10); /* br x1 */ *pc++ = BR_X1_INST; /* Fill up with NOPs, depending on how many instructions we needed to move * the immediate into a register. Ideally we would skip adding NOPs, but * lots of places expect the stub size to be fixed. */ for (uint j = 0; j < num_nops_needed; j++) *pc++ = RAW_NOP_INST; } return (int)((byte *)pc - (byte *)write_stub_pc); } bool exit_cti_reaches_target(dcontext_t *dcontext, fragment_t *f, linkstub_t *l, cache_pc target_pc) { cache_pc branch_pc = EXIT_CTI_PC(f, l); /* Compute offset as unsigned, modulo arithmetic. */ ptr_uint_t off = (ptr_uint_t)target_pc - (ptr_uint_t)branch_pc; uint enc = *(uint *)branch_pc; ASSERT(ALIGNED(branch_pc, 4) && ALIGNED(target_pc, 4)); if ((enc & 0xfc000000) == 0x14000000) /* B (OP_b)*/ return (off + 0x8000000 < 0x10000000); else if ((enc & 0xff000010) == 0x54000000 || (enc & 0x7e000000) == 0x34000000) /* B.cond, CBNZ, CBZ */ return (off + 0x40000 < 0x80000); else if ((enc & 0x7e000000) == 0x36000000) /* TBNZ, TBZ */ return (off + 0x2000 < 0x4000); ASSERT(false); return false; } void patch_stub(fragment_t *f, cache_pc stub_pc, cache_pc target_pc, cache_pc target_prefix_pc, bool hot_patch) { /* Compute offset as unsigned, modulo arithmetic. */ ptr_uint_t off = (ptr_uint_t)target_pc - (ptr_uint_t)stub_pc; if (off + 0x8000000 < 0x10000000) { /* target_pc is a near fragment. We can get there with a B * (OP_b, 26-bit signed immediate offset). * i#1911: Patching arbitrary instructions to an unconditional branch * is theoretically not sound. Architectural specifications do not * guarantee safe behaviour or any bound on when the change will be * visible to other processor elements. */ *(uint *)vmcode_get_writable_addr(stub_pc) = (0x14000000 | (0x03ffffff & off >> 2)); if (hot_patch) machine_cache_sync(stub_pc, stub_pc + 4, true); return; } /* target_pc is a far fragment. We must use an indirect branch. Note that the indirect * branch needs to be to the fragment prefix, as we need to restore the clobbered * regs. */ /* We set hot_patch to false as we are not modifying code. */ ATOMIC_8BYTE_ALIGNED_WRITE(get_target_pc_slot(f, stub_pc), (ptr_uint_t)target_prefix_pc, /*hot_patch=*/false); return; } static bool stub_is_patched_for_intermediate_fragment_link(dcontext_t *dcontext, cache_pc stub_pc) { uint enc; ATOMIC_4BYTE_ALIGNED_READ(stub_pc, &enc); return (enc & 0xfc000000) == 0x14000000; /* B (OP_b)*/ } static bool stub_is_patched_for_far_fragment_link(dcontext_t *dcontext, fragment_t *f, cache_pc stub_pc) { ptr_uint_t target_pc; ATOMIC_8BYTE_ALIGNED_READ(get_target_pc_slot(f, stub_pc), &target_pc); return target_pc != (ptr_uint_t)fcache_return_routine(dcontext); } bool stub_is_patched(dcontext_t *dcontext, fragment_t *f, cache_pc stub_pc) { return stub_is_patched_for_intermediate_fragment_link(dcontext, stub_pc) || stub_is_patched_for_far_fragment_link(dcontext, f, stub_pc); } void unpatch_stub(dcontext_t *dcontext, fragment_t *f, cache_pc stub_pc, bool hot_patch) { /* At any time, at most one patching strategy will be in effect: the one for * intermediate fragments or the one for far fragments. */ if (stub_is_patched_for_intermediate_fragment_link(dcontext, stub_pc)) { /* Restore the stp x0, x1, [x(stolen), #(offs)] * i#1911: Patching unconditional branch to some arbitrary instruction * is theoretically not sound. Architectural specifications do not * guarantee safe behaviour or any bound on when the change will be * visible to other processor elements. */ *(uint *)vmcode_get_writable_addr(stub_pc) = (0xa9000000 | 0 | 1 << 10 | (dr_reg_stolen - DR_REG_X0) << 5 | TLS_REG0_SLOT >> 3 << 15); if (hot_patch) machine_cache_sync(stub_pc, stub_pc + AARCH64_INSTR_SIZE, true); } else if (stub_is_patched_for_far_fragment_link(dcontext, f, stub_pc)) { /* Restore the data slot to fcache return address. */ /* AArch64 uses shared gencode. So, fcache_return routine address should be * same, no matter which thread creates/unpatches the stub. */ ASSERT(fcache_return_routine(dcontext) == fcache_return_routine(GLOBAL_DCONTEXT)); /* We set hot_patch to false as we are not modifying code. */ ATOMIC_8BYTE_ALIGNED_WRITE(get_target_pc_slot(f, stub_pc), (ptr_uint_t)fcache_return_routine(dcontext), /*hot_patch=*/false); } } void patch_branch(dr_isa_mode_t isa_mode, cache_pc branch_pc, cache_pc target_pc, bool hot_patch) { /* Compute offset as unsigned, modulo arithmetic. */ ptr_uint_t off = (ptr_uint_t)target_pc - (ptr_uint_t)branch_pc; uint *pc_writable = (uint *)vmcode_get_writable_addr(branch_pc); uint enc = *pc_writable; ASSERT(ALIGNED(branch_pc, 4) && ALIGNED(target_pc, 4)); if ((enc & 0xfc000000) == 0x14000000) { /* B */ ASSERT(off + 0x8000000 < 0x10000000); *pc_writable = (0x14000000 | (0x03ffffff & off >> 2)); } else if ((enc & 0xff000010) == 0x54000000 || (enc & 0x7e000000) == 0x34000000) { /* B.cond, CBNZ, CBZ */ ASSERT(off + 0x40000 < 0x80000); *pc_writable = (enc & 0xff00001f) | (0x00ffffe0 & off >> 2 << 5); } else if ((enc & 0x7e000000) == 0x36000000) { /* TBNZ, TBZ */ ASSERT(off + 0x2000 < 0x4000); *pc_writable = (enc & 0xfff8001f) | (0x0007ffe0 & off >> 2 << 5); } else ASSERT(false); if (hot_patch) machine_cache_sync(branch_pc, branch_pc + 4, true); return; } uint patchable_exit_cti_align_offs(dcontext_t *dcontext, instr_t *inst, cache_pc pc) { return 0; /* always aligned */ } cache_pc exit_cti_disp_pc(cache_pc branch_pc) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return NULL; } /* Skips NOP instructions backwards until the first non-NOP instruction is found. */ static uint * get_stub_branch(uint *pc) { /* Skip NOP instructions backwards. */ while (*pc == RAW_NOP_INST) pc--; /* The First non-NOP instruction must be the branch. */ ASSERT(*pc == BR_X1_INST); return pc; } void link_indirect_exit_arch(dcontext_t *dcontext, fragment_t *f, linkstub_t *l, bool hot_patch, app_pc target_tag) { byte *stub_pc = (byte *)EXIT_STUB_PC(dcontext, f, l); uint *pc; cache_pc exit_target; ibl_type_t ibl_type = { 0 }; DEBUG_DECLARE(bool is_ibl =) get_ibl_routine_type_ex(dcontext, target_tag, &ibl_type); ASSERT(is_ibl); if (IS_IBL_LINKED(ibl_type.link_state)) exit_target = target_tag; else exit_target = get_linked_entry(dcontext, target_tag); /* Set pc to the last instruction in the stub. */ pc = (uint *)(stub_pc + exit_stub_size(dcontext, target_tag, f->flags) - AARCH64_INSTR_SIZE); pc = get_stub_branch(pc) - 1; /* ldr x1, [x(stolen), #(offs)] */ *(uint *)vmcode_get_writable_addr((byte *)pc) = (0xf9400000 | 1 | (dr_reg_stolen - DR_REG_X0) << 5 | get_ibl_entry_tls_offs(dcontext, exit_target) >> 3 << 10); if (hot_patch) machine_cache_sync(pc, pc + 1, true); } cache_pc indirect_linkstub_stub_pc(dcontext_t *dcontext, fragment_t *f, linkstub_t *l) { cache_pc cti = EXIT_CTI_PC(f, l); if (!EXIT_HAS_STUB(l->flags, f->flags)) return NULL; ASSERT(decode_raw_is_jmp(dcontext, cti)); return decode_raw_jmp_target(dcontext, cti); } cache_pc cbr_fallthrough_exit_cti(cache_pc prev_cti_pc) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return NULL; } void unlink_indirect_exit(dcontext_t *dcontext, fragment_t *f, linkstub_t *l) { byte *stub_pc = (byte *)EXIT_STUB_PC(dcontext, f, l); uint *pc; cache_pc exit_target; ibl_code_t *ibl_code = NULL; ASSERT(linkstub_owned_by_fragment(dcontext, f, l)); ASSERT(LINKSTUB_INDIRECT(l->flags)); /* Target is always the same, so if it's already unlinked, this is a nop. */ if (!TEST(LINK_LINKED, l->flags)) return; ibl_code = get_ibl_routine_code(dcontext, extract_branchtype(l->flags), f->flags); exit_target = ibl_code->unlinked_ibl_entry; /* Set pc to the last instruction in the stub. */ pc = (uint *)(stub_pc + exit_stub_size(dcontext, ibl_code->indirect_branch_lookup_routine, f->flags) - AARCH64_INSTR_SIZE); pc = get_stub_branch(pc) - 1; /* ldr x1, [x(stolen), #(offs)] */ *(uint *)vmcode_get_writable_addr((byte *)pc) = (0xf9400000 | 1 | (dr_reg_stolen - DR_REG_X0) << 5 | get_ibl_entry_tls_offs(dcontext, exit_target) >> 3 << 10); machine_cache_sync(pc, pc + 1, true); } /******************************************************************************* * COARSE-GRAIN FRAGMENT SUPPORT */ cache_pc entrance_stub_jmp(cache_pc stub) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return NULL; } bool coarse_is_entrance_stub(cache_pc stub) { /* FIXME i#1575: coarse-grain NYI on AArch64 */ return false; } /*########################################################################### * * fragment_t Prefixes */ int fragment_ibt_prefix_size(uint flags) { /* Nothing extra for ibt as we don't have flags to restore */ return FRAGMENT_BASE_PREFIX_SIZE(flags); } void insert_fragment_prefix(dcontext_t *dcontext, fragment_t *f) { /* Always use prefix on AArch64 as there is no load to PC. */ byte *write_start = vmcode_get_writable_addr(f->start_pc); byte *pc = write_start; ASSERT(f->prefix_size == 0); /* ldp x0, x1, [x(stolen), #(off)] */ *(uint *)pc = (0xa9400000 | (DR_REG_X0 - DR_REG_X0) | (DR_REG_X1 - DR_REG_X0) << 10 | (dr_reg_stolen - DR_REG_X0) << 5 | TLS_REG0_SLOT >> 3 << 10); pc += 4; f->prefix_size = (byte)(((cache_pc)pc) - write_start); ASSERT(f->prefix_size == fragment_prefix_size(f->flags)); } /***************************************************************************/ /* THREAD-PRIVATE/SHARED ROUTINE GENERATION */ /***************************************************************************/ void append_call_exit_dr_hook(dcontext_t *dcontext, instrlist_t *ilist, bool absolute, bool shared) { /* i#1569: DR_HOOK is not supported on AArch64 */ ASSERT_NOT_IMPLEMENTED(EXIT_DR_HOOK == NULL); } void append_restore_xflags(dcontext_t *dcontext, instrlist_t *ilist, bool absolute) { APP(ilist, RESTORE_FROM_DC(dcontext, DR_REG_W0, XFLAGS_OFFSET)); APP(ilist, RESTORE_FROM_DC(dcontext, DR_REG_W1, XFLAGS_OFFSET + 4)); APP(ilist, RESTORE_FROM_DC(dcontext, DR_REG_W2, XFLAGS_OFFSET + 8)); APP(ilist, INSTR_CREATE_msr(dcontext, opnd_create_reg(DR_REG_NZCV), opnd_create_reg(DR_REG_X0))); APP(ilist, INSTR_CREATE_msr(dcontext, opnd_create_reg(DR_REG_FPCR), opnd_create_reg(DR_REG_X1))); APP(ilist, INSTR_CREATE_msr(dcontext, opnd_create_reg(DR_REG_FPSR), opnd_create_reg(DR_REG_X2))); } /* dcontext is in REG_DCXT; other registers can be used as scratch. */ void append_restore_simd_reg(dcontext_t *dcontext, instrlist_t *ilist, bool absolute) { int i; /* add x1, x(dcxt), #(off) */ APP(ilist, XINST_CREATE_add_2src(dcontext, opnd_create_reg(DR_REG_X1), opnd_create_reg(REG_DCXT), OPND_CREATE_INTPTR(offsetof(priv_mcontext_t, simd)))); for (i = 0; i < 32; i += 2) { /* ldp q(i), q(i + 1), [x1, #(i * 16)] */ APP(ilist, INSTR_CREATE_ldp( dcontext, opnd_create_reg(DR_REG_Q0 + i), opnd_create_reg(DR_REG_Q0 + i + 1), opnd_create_base_disp(DR_REG_X1, DR_REG_NULL, 0, i * 16, OPSZ_32))); } } /* Append instructions to restore gpr on fcache enter, to be executed * right before jump to fcache target. * - dcontext is in REG_DCXT * - DR's tls base is in dr_reg_stolen * - all other registers can be used as scratch, and we are using X0. */ void append_restore_gpr(dcontext_t *dcontext, instrlist_t *ilist, bool absolute) { int i; /* FIXME i#1573: NYI on ARM with SELFPROT_DCONTEXT */ ASSERT_NOT_IMPLEMENTED(!TEST(SELFPROT_DCONTEXT, dynamo_options.protect_mask)); ASSERT(dr_reg_stolen != SCRATCH_REG0); /* Store stolen reg value into TLS slot. */ APP(ilist, RESTORE_FROM_DC(dcontext, SCRATCH_REG0, REG_OFFSET(dr_reg_stolen))); APP(ilist, SAVE_TO_TLS(dcontext, SCRATCH_REG0, TLS_REG_STOLEN_SLOT)); /* Save DR's tls base into mcontext so we can blindly include it in the * loop of OP_ldp instructions below. * This means that the mcontext stolen reg slot holds DR's base instead of * the app's value while we're in the cache, which can be confusing: but we have * to get the official value from TLS on signal and other transitions anyway, * and DR's base makes it easier to spot bugs than a prior app value. */ APP(ilist, SAVE_TO_DC(dcontext, dr_reg_stolen, REG_OFFSET(dr_reg_stolen))); i = (REG_DCXT == DR_REG_X0); /* ldp x30, x(i), [x(dcxt), #x30_offset] */ APP(ilist, INSTR_CREATE_ldp(dcontext, opnd_create_reg(DR_REG_X30), opnd_create_reg(DR_REG_X0 + i), opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, REG_OFFSET(DR_REG_X30), OPSZ_16))); /* mov sp, x(i) */ APP(ilist, XINST_CREATE_move(dcontext, opnd_create_reg(DR_REG_SP), opnd_create_reg(DR_REG_X0 + i))); for (i = 0; i < 30; i += 2) { if ((REG_DCXT - DR_REG_X0) >> 1 != i >> 1) { /* ldp x(i), x(i+1), [x(dcxt), #xi_offset] */ APP(ilist, INSTR_CREATE_ldp(dcontext, opnd_create_reg(DR_REG_X0 + i), opnd_create_reg(DR_REG_X0 + i + 1), opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, REG_OFFSET(DR_REG_X0 + i), OPSZ_16))); } } i = (REG_DCXT - DR_REG_X0) & ~1; /* ldp x(i), x(i+1), [x(dcxt), #xi_offset] */ APP(ilist, INSTR_CREATE_ldp(dcontext, opnd_create_reg(DR_REG_X0 + i), opnd_create_reg(DR_REG_X0 + i + 1), opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, REG_OFFSET(DR_REG_X0 + i), OPSZ_16))); } /* Append instructions to save gpr on fcache return, called after * append_fcache_return_prologue. * Assuming the execution comes from an exit stub via br DR_REG_X1, * dcontext base is held in REG_DCXT, and exit stub in X0. * App's x0 and x1 is stored in TLS_REG0_SLOT and TLS_REG1_SLOT * - store all registers into dcontext's mcontext * - restore REG_DCXT app value from TLS slot to mcontext * - restore dr_reg_stolen app value from TLS slot to mcontext */ void append_save_gpr(dcontext_t *dcontext, instrlist_t *ilist, bool ibl_end, bool absolute, generated_code_t *code, linkstub_t *linkstub, bool coarse_info) { int i; /* X0 and X1 will always have been saved in TLS slots before executing * the code generated here. See, for example: * emit_do_syscall_common, emit_indirect_branch_lookup, handle_sigreturn, * insert_exit_stub_other_flags, execute_handler_from_{cache,dispatch}, * transfer_from_sig_handler_to_fcache_return */ for (i = 2; i < 30; i += 2) { /* stp x(i), x(i+1), [x(dcxt), #xi_offset] */ APP(ilist, INSTR_CREATE_stp(dcontext, opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, REG_OFFSET(DR_REG_X0 + i), OPSZ_16), opnd_create_reg(DR_REG_X0 + i), opnd_create_reg(DR_REG_X0 + i + 1))); } /* mov x1, sp */ APP(ilist, XINST_CREATE_move(dcontext, opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_SP))); /* stp x30, x1, [x(dcxt), #x30_offset] */ APP(ilist, INSTR_CREATE_stp(dcontext, opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, REG_OFFSET(DR_REG_X30), OPSZ_16), opnd_create_reg(DR_REG_X30), opnd_create_reg(DR_REG_X1))); /* ldp x1, x2, [x(stolen)] * stp x1, x2, [x(dcxt)] */ APP(ilist, INSTR_CREATE_ldp( dcontext, opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_X2), opnd_create_base_disp(dr_reg_stolen, DR_REG_NULL, 0, 0, OPSZ_16))); APP(ilist, INSTR_CREATE_stp(dcontext, opnd_create_base_disp(REG_DCXT, DR_REG_NULL, 0, 0, OPSZ_16), opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_X2))); if (linkstub != NULL) { /* FIXME i#1575: NYI for coarse-grain stub */ ASSERT_NOT_IMPLEMENTED(false); } /* REG_DCXT's app value is stored in DCONTEXT_BASE_SPILL_SLOT by * append_prepare_fcache_return, so copy it to mcontext. */ APP(ilist, RESTORE_FROM_TLS(dcontext, SCRATCH_REG1, DCONTEXT_BASE_SPILL_SLOT)); APP(ilist, SAVE_TO_DC(dcontext, SCRATCH_REG1, REG_DCXT_OFFS)); /* dr_reg_stolen's app value is always stored in the TLS spill slot, * and we restore its value back to mcontext on fcache return. */ APP(ilist, RESTORE_FROM_TLS(dcontext, SCRATCH_REG1, TLS_REG_STOLEN_SLOT)); APP(ilist, SAVE_TO_DC(dcontext, SCRATCH_REG1, REG_OFFSET(dr_reg_stolen))); } /* dcontext base is held in REG_DCXT, and exit stub in X0. * GPR's are already saved. */ void append_save_simd_reg(dcontext_t *dcontext, instrlist_t *ilist, bool absolute) { int i; /* add x1, x(DCXT), #(off) */ APP(ilist, XINST_CREATE_add_2src(dcontext, opnd_create_reg(DR_REG_X1), opnd_create_reg(REG_DCXT), OPND_CREATE_INTPTR(offsetof(priv_mcontext_t, simd)))); for (i = 0; i < 32; i += 2) { /* stp q(i), q(i + 1), [x1, #(i * 16)] */ APP(ilist, INSTR_CREATE_stp( dcontext, opnd_create_base_disp(DR_REG_X1, DR_REG_NULL, 0, i * 16, OPSZ_32), opnd_create_reg(DR_REG_Q0 + i), opnd_create_reg(DR_REG_Q0 + i + 1))); } } /* Scratch reg0 is holding exit stub. */ void append_save_clear_xflags(dcontext_t *dcontext, instrlist_t *ilist, bool absolute) { APP(ilist, INSTR_CREATE_mrs(dcontext, opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_NZCV))); APP(ilist, INSTR_CREATE_mrs(dcontext, opnd_create_reg(DR_REG_X2), opnd_create_reg(DR_REG_FPCR))); APP(ilist, INSTR_CREATE_mrs(dcontext, opnd_create_reg(DR_REG_X3), opnd_create_reg(DR_REG_FPSR))); APP(ilist, SAVE_TO_DC(dcontext, DR_REG_W1, XFLAGS_OFFSET)); APP(ilist, SAVE_TO_DC(dcontext, DR_REG_W2, XFLAGS_OFFSET + 4)); APP(ilist, SAVE_TO_DC(dcontext, DR_REG_W3, XFLAGS_OFFSET + 8)); } bool append_call_enter_dr_hook(dcontext_t *dcontext, instrlist_t *ilist, bool ibl_end, bool absolute) { /* i#1569: DR_HOOK is not supported on AArch64 */ ASSERT_NOT_IMPLEMENTED(EXIT_DR_HOOK == NULL); return false; } void insert_save_eflags(dcontext_t *dcontext, instrlist_t *ilist, instr_t *where, uint flags, bool tls, bool absolute _IF_X86_64(bool x86_to_x64_ibl_opt)) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ } void insert_restore_eflags(dcontext_t *dcontext, instrlist_t *ilist, instr_t *where, uint flags, bool tls, bool absolute _IF_X86_64(bool x86_to_x64_ibl_opt)) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ } byte * emit_inline_ibl_stub(dcontext_t *dcontext, byte *pc, ibl_code_t *ibl_code, bool target_trace_table) { ASSERT_NOT_IMPLEMENTED(false); /* FIXME i#1569 */ return pc; } bool instr_is_ibl_hit_jump(instr_t *instr) { return instr_get_opcode(instr) == OP_br && opnd_get_reg(instr_get_target(instr)) == DR_REG_X0; } byte * emit_indirect_branch_lookup(dcontext_t *dc, generated_code_t *code, byte *pc, byte *fcache_return_pc, bool target_trace_table, bool inline_ibl_head, ibl_code_t *ibl_code /* IN/OUT */) { bool absolute = false; instrlist_t ilist; instrlist_init(&ilist); patch_list_t *patch = &ibl_code->ibl_patch; init_patch_list(patch, PATCH_TYPE_INDIRECT_TLS); instr_t *load_tag = INSTR_CREATE_label(dc); instr_t *compare_tag = INSTR_CREATE_label(dc); instr_t *try_next = INSTR_CREATE_label(dc); instr_t *miss = INSTR_CREATE_label(dc); instr_t *not_hit = INSTR_CREATE_label(dc); instr_t *target_delete_entry = INSTR_CREATE_label(dc); instr_t *unlinked = INSTR_CREATE_label(dc); /* FIXME i#1569: Use INSTR_CREATE macros when encoder is implemented. */ /* On entry we expect: * x0: link_stub entry * x1: scratch reg, arrived from br x1 * x2: indirect branch target * TLS_REG0_SLOT: app's x0 * TLS_REG1_SLOT: app's x1 * TLS_REG2_SLOT: app's x2 * TLS_REG3_SLOT: scratch space * There are following entries with the same context: * indirect_branch_lookup * unlink_stub_entry * target_delete_entry: * x0: scratch * x1: table entry pointer from ibl lookup hit path * x2: app's x2 * TLS_REG0_SLOT: app's x0 * TLS_REG1_SLOT: app's x1 * TLS_REG2_SLOT: app's x2 * On miss exit we output: * x0: the dcontext->last_exit * x1: br x1 * x2: app's x2 * TLS_REG0_SLOT: app's x0 (recovered by fcache_return) * TLS_REG1_SLOT: app's x1 (recovered by fcache_return) * On hit exit we output: * x0: fragment_start_pc (points to the fragment prefix) * x1: scratch reg * x2: app's x2 * TLS_REG0_SLOT: app's x0 (recovered by fragment_prefix) * TLS_REG1_SLOT: app's x1 (recovered by fragment_prefix) */ /* Spill x0. */ APP(&ilist, instr_create_save_to_tls(dc, DR_REG_R0, TLS_REG3_SLOT)); /* Load-acquire hash mask. We need a load-acquire to ensure we see updates * properly; the corresponding store-release is in update_lookuptable_tls(). */ /* add x1, x28 + hash_mask_offs; ldar x1, [x1] (ldar doesn't take an offs.) */ APP(&ilist, INSTR_CREATE_add(dc, opnd_create_reg(DR_REG_X1), opnd_create_reg(dr_reg_stolen), OPND_CREATE_INT32(TLS_MASK_SLOT(ibl_code->branch_type)))); APP(&ilist, INSTR_CREATE_ldar(dc, opnd_create_reg(DR_REG_X1), OPND_CREATE_MEMPTR(DR_REG_X1, 0))); /* ldr x0, [x28, hash_table] */ APP(&ilist, INSTR_CREATE_ldr(dc, opnd_create_reg(DR_REG_X0), opnd_create_base_disp(dr_reg_stolen, DR_REG_NULL, 0, TLS_TABLE_SLOT(ibl_code->branch_type), OPSZ_8))); /* and x1, x1, x2 */ APP(&ilist, INSTR_CREATE_and(dc, opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_X2))); /* Get table entry. */ /* add x1, x0, x1, LSL #4 */ APP(&ilist, INSTR_CREATE_add_shift( dc, opnd_create_reg(DR_REG_X1), opnd_create_reg(DR_REG_X0), opnd_create_reg(DR_REG_X1), OPND_CREATE_INT8(DR_SHIFT_LSL), OPND_CREATE_INT8(4 - HASHTABLE_IBL_OFFSET(ibl_code->branch_type)))); /* x1 now holds the fragment_entry_t* in the hashtable. */ APP(&ilist, load_tag); /* Load tag from fragment_entry_t* in the hashtable to x0. */ /* ldr x0, [x1, #tag_fragment_offset] */ APP(&ilist, INSTR_CREATE_ldr( dc, opnd_create_reg(DR_REG_X0), OPND_CREATE_MEMPTR(DR_REG_X1, offsetof(fragment_entry_t, tag_fragment)))); /* Did we hit? */ APP(&ilist, compare_tag); /* cbz x0, not_hit */ APP(&ilist, INSTR_CREATE_cbz(dc, opnd_create_instr(not_hit), opnd_create_reg(DR_REG_X0))); /* sub x0, x0, x2 */ APP(&ilist, XINST_CREATE_sub(dc, opnd_create_reg(DR_REG_X0), opnd_create_reg(DR_REG_X2))); /* cbnz x0, try_next */ APP(&ilist, INSTR_CREATE_cbnz(dc, opnd_create_instr(try_next), opnd_create_reg(DR_REG_X0))); /* Hit path. */ /* App's original values of x0 and x1 are already in respective TLS slots, and * will be restored by the fragment prefix. */ /* Recover app's original x2. */ APP(&ilist, instr_create_restore_from_tls(dc, DR_REG_R2, TLS_REG2_SLOT)); /* ldr x0, [x1, #start_pc_fragment_offset] */ APP(&ilist, INSTR_CREATE_ldr(dc, opnd_create_reg(DR_REG_X0), OPND_CREATE_MEMPTR( DR_REG_X1, offsetof(fragment_entry_t, start_pc_fragment)))); /* br x0 * (keep in sync with instr_is_ibl_hit_jump()) */ APP(&ilist, INSTR_CREATE_br(dc, opnd_create_reg(DR_REG_X0))); APP(&ilist, try_next); /* Try next entry, in case of collision. No wraparound check is needed * because of the sentinel at the end. * ldr x0, [x1, #tag_fragment_offset]! */ APP(&ilist, instr_create_2dst_3src( dc, OP_ldr, opnd_create_reg(DR_REG_X0), opnd_create_reg(DR_REG_X1), OPND_CREATE_MEMPTR(DR_REG_X1, sizeof(fragment_entry_t)), opnd_create_reg(DR_REG_X1), OPND_CREATE_INTPTR(sizeof(fragment_entry_t)))); /* b compare_tag */ APP(&ilist, INSTR_CREATE_b(dc, opnd_create_instr(compare_tag))); APP(&ilist, not_hit); if (INTERNAL_OPTION(ibl_sentinel_check)) { /* Load start_pc from fragment_entry_t* in the hashtable to x0. */ /* ldr x0, [x1, #start_pc_fragment] */ APP(&ilist, XINST_CREATE_load( dc, opnd_create_reg(DR_REG_X0), OPND_CREATE_MEMPTR(DR_REG_X1, offsetof(fragment_entry_t, start_pc_fragment)))); /* To compare with an arbitrary constant we'd need a 4th scratch reg. * Instead we rely on the sentinel start PC being 1. */ ASSERT(HASHLOOKUP_SENTINEL_START_PC == (cache_pc)PTR_UINT_1); /* sub x0, x0, #1 */ APP(&ilist, XINST_CREATE_sub(dc, opnd_create_reg(DR_REG_X0), OPND_CREATE_INT8(1))); /* cbnz x0, miss */ APP(&ilist, INSTR_CREATE_cbnz(dc, opnd_create_instr(miss), opnd_create_reg(DR_REG_R0))); /* Point at the first table slot and then go load and compare its tag */ /* ldr x1, [x28, #table_base] */ APP(&ilist, XINST_CREATE_load(dc, opnd_create_reg(DR_REG_X1), OPND_CREATE_MEMPTR(dr_reg_stolen, TLS_TABLE_SLOT(ibl_code->branch_type)))); /* branch to load_tag */ APP(&ilist, INSTR_CREATE_b(dc, opnd_create_instr(load_tag))); } /* Target delete entry */ APP(&ilist, target_delete_entry); add_patch_marker(patch, target_delete_entry, PATCH_ASSEMBLE_ABSOLUTE, 0 /* beginning of instruction */, (ptr_uint_t *)&ibl_code->target_delete_entry); /* Load next_tag from table entry. */ APP(&ilist, INSTR_CREATE_ldr( dc, opnd_create_reg(DR_REG_R2), OPND_CREATE_MEMPTR(DR_REG_R1, offsetof(fragment_entry_t, tag_fragment)))); /* Store &linkstub_ibl_deleted in r0, instead of last exit linkstub by skipped code * below. */ instrlist_insert_mov_immed_ptrsz(dc, (ptr_uint_t)get_ibl_deleted_linkstub(), opnd_create_reg(DR_REG_R0), &ilist, NULL, NULL, NULL); APP(&ilist, INSTR_CREATE_b(dc, opnd_create_instr(unlinked))); APP(&ilist, miss); /* Recover the dcontext->last_exit to x0 */ APP(&ilist, instr_create_restore_from_tls(dc, DR_REG_R0, TLS_REG3_SLOT)); /* Unlink path: entry from stub */ APP(&ilist, unlinked); add_patch_marker(patch, unlinked, PATCH_ASSEMBLE_ABSOLUTE, 0 /* beginning of instruction */, (ptr_uint_t *)&ibl_code->unlinked_ibl_entry); /* Put ib tgt into dcontext->next_tag */ insert_shared_get_dcontext(dc, &ilist, NULL, true); APP(&ilist, SAVE_TO_DC(dc, DR_REG_R2, NEXT_TAG_OFFSET)); APP(&ilist, instr_create_restore_from_tls(dc, DR_REG_R5, DCONTEXT_BASE_SPILL_SLOT)); APP(&ilist, instr_create_restore_from_tls(dc, DR_REG_R2, TLS_REG2_SLOT)); /* ldr x1, [x(stolen), #(offs)] */ APP(&ilist, INSTR_CREATE_ldr(dc, opnd_create_reg(DR_REG_X1), OPND_TLS_FIELD(TLS_FCACHE_RETURN_SLOT))); /* br x1 */ APP(&ilist, INSTR_CREATE_br(dc, opnd_create_reg(DR_REG_X1))); ibl_code->ibl_routine_length = encode_with_patch_list(dc, patch, &ilist, pc); instrlist_clear(dc, &ilist); return pc + ibl_code->ibl_routine_length; } void relink_special_ibl_xfer(dcontext_t *dcontext, int index, ibl_entry_point_type_t entry_type, ibl_branch_type_t ibl_type) { generated_code_t *code; byte *ibl_tgt; uint *pc; if (dcontext == GLOBAL_DCONTEXT) { ASSERT(!special_ibl_xfer_is_thread_private()); /* else shouldn't be called */ code = SHARED_GENCODE_MATCH_THREAD(get_thread_private_dcontext()); } else { ASSERT(special_ibl_xfer_is_thread_private()); /* else shouldn't be called */ code = THREAD_GENCODE(dcontext); } if (code == NULL) /* thread private that we don't need */ return; ibl_tgt = special_ibl_xfer_tgt(dcontext, code, entry_type, ibl_type); ASSERT(code->special_ibl_xfer[index] != NULL); pc = (uint *)(code->special_ibl_xfer[index] + code->special_ibl_unlink_offs[index]); uint *write_pc = (uint *)vmcode_get_writable_addr((byte *)pc); protect_generated_code(code, WRITABLE); /* ldr x1, [x(stolen), #(offs)] */ write_pc[0] = (0xf9400000 | 1 | (dr_reg_stolen - DR_REG_X0) << 5 | get_ibl_entry_tls_offs(dcontext, ibl_tgt) >> 3 << 10); /* br x1 */ write_pc[1] = 0xd61f0000 | 1 << 5; machine_cache_sync(pc, pc + 2, true); protect_generated_code(code, READONLY); } /* addr must be a writable (vmcode) address. */ bool fill_with_nops(dr_isa_mode_t isa_mode, byte *addr, size_t size) { byte *pc; if (!ALIGNED(addr, 4) || !ALIGNED(addr + size, 4)) { ASSERT_NOT_REACHED(); return false; } for (pc = addr; pc < addr + size; pc += 4) *(uint *)pc = RAW_NOP_INST; /* nop */ return true; }
1
24,495
Wait -- where did this change come from? This seems unrelated to trace building and seems like it could affect basic execution, unlike the rest of this PR which is all under the off-by-default trace option. Please separate this into its own PR and probably ask @AssadHashmi to review.
DynamoRIO-dynamorio
c
@@ -0,0 +1,3 @@ +module.exports = { + presets: [require.resolve('@docusaurus/core/lib/babel/preset')], +};
1
1
18,016
seems to be redundant (mention `docusaurus` )
handsontable-handsontable
js
@@ -206,6 +206,12 @@ public interface Table { */ Rollback rollback(); + /** + * + * @return + */ + CherryPick cherrypick(); + /** * Create a new {@link Transaction transaction API} to commit multiple table operations at once. *
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg; import java.util.List; import java.util.Map; import org.apache.iceberg.encryption.EncryptionManager; import org.apache.iceberg.io.FileIO; import org.apache.iceberg.io.LocationProvider; /** * Represents a table. */ public interface Table { /** * Refresh the current table metadata. */ void refresh(); /** * Create a new {@link TableScan scan} for this table. * <p> * Once a table scan is created, it can be refined to project columns and filter data. * * @return a table scan for this table */ TableScan newScan(); /** * Return the {@link Schema schema} for this table. * * @return this table's schema */ Schema schema(); /** * Return the {@link PartitionSpec partition spec} for this table. * * @return this table's partition spec */ PartitionSpec spec(); /** * Return a map of {@link PartitionSpec partition specs} for this table. * * @return this table's partition specs map */ Map<Integer, PartitionSpec> specs(); /** * Return a map of string properties for this table. * * @return this table's properties map */ Map<String, String> properties(); /** * Return the table's base location. * * @return this table's location */ String location(); /** * Get the current {@link Snapshot snapshot} for this table, or null if there are no snapshots. * * @return the current table Snapshot. */ Snapshot currentSnapshot(); /** * Get the {@link Snapshot snapshot} of this table with the given id, or null if there is no * matching snapshot. * * @return the {@link Snapshot} with the given id. */ Snapshot snapshot(long snapshotId); /** * Get the {@link Snapshot snapshots} of this table. * * @return an Iterable of snapshots of this table. */ Iterable<Snapshot> snapshots(); /** * Get the snapshot history of this table. * * @return a list of {@link HistoryEntry history entries} */ List<HistoryEntry> history(); /** * Create a new {@link UpdateSchema} to alter the columns of this table and commit the change. * * @return a new {@link UpdateSchema} */ UpdateSchema updateSchema(); /** * Create a new {@link UpdateProperties} to update table properties and commit the changes. * * @return a new {@link UpdateProperties} */ UpdateProperties updateProperties(); /** * Create a new {@link UpdateLocation} to update table location and commit the changes. * * @return a new {@link UpdateLocation} */ UpdateLocation updateLocation(); /** * Create a new {@link AppendFiles append API} to add files to this table and commit. * * @return a new {@link AppendFiles} */ AppendFiles newAppend(); /** * Create a new {@link AppendFiles append API} to add files to this table and commit. * <p> * Using this method signals to the underlying implementation that the append should not perform * extra work in order to commit quickly. Fast appends are not recommended for normal writes * because the fast commit may cause split planning to slow down over time. * <p> * Implementations may not support fast appends, in which case this will return the same appender * as {@link #newAppend()}. * * @return a new {@link AppendFiles} */ default AppendFiles newFastAppend() { return newAppend(); } /** * Create a new {@link RewriteFiles rewrite API} to replace files in this table and commit. * * @return a new {@link RewriteFiles} */ RewriteFiles newRewrite(); /** * Create a new {@link RewriteManifests rewrite manifests API} to replace manifests for this * table and commit. * * @return a new {@link RewriteManifests} */ RewriteManifests rewriteManifests(); /** * Create a new {@link OverwriteFiles overwrite API} to overwrite files by a filter expression. * * @return a new {@link OverwriteFiles} */ OverwriteFiles newOverwrite(); /** * Not recommended: Create a new {@link ReplacePartitions replace partitions API} to dynamically * overwrite partitions in the table with new data. * <p> * This is provided to implement SQL compatible with Hive table operations but is not recommended. * Instead, use the {@link OverwriteFiles overwrite API} to explicitly overwrite data. * * @return a new {@link ReplacePartitions} */ ReplacePartitions newReplacePartitions(); /** * Create a new {@link DeleteFiles delete API} to replace files in this table and commit. * * @return a new {@link DeleteFiles} */ DeleteFiles newDelete(); /** * Create a new {@link ExpireSnapshots expire API} to manage snapshots in this table and commit. * * @return a new {@link ExpireSnapshots} */ ExpireSnapshots expireSnapshots(); /** * Create a new {@link Rollback rollback API} to roll back to a previous snapshot and commit. * * @return a new {@link Rollback} */ Rollback rollback(); /** * Create a new {@link Transaction transaction API} to commit multiple table operations at once. * * @return a new {@link Transaction} */ Transaction newTransaction(); /** * @return a {@link FileIO} to read and write table data and metadata files */ FileIO io(); /** * @return an {@link org.apache.iceberg.encryption.EncryptionManager} to encrypt and decrypt * data files. */ EncryptionManager encryption(); /** * @return a {@link LocationProvider} to provide locations for new data files */ LocationProvider locationProvider(); }
1
17,106
Can we combine this with the Rollback API? We could still support the `rollback` method here, but combine `Rollback` and `CherryPick` into something like `ManageSnapshots`. Then we could reuse logic for enforcing checks of the current snapshot. What do you think?
apache-iceberg
java
@@ -52,7 +52,7 @@ static struct internal_amazon_batch_amazon_ids{ char* aws_secret_access_key; char* aws_region; char* aws_email; - char* master_env_prefix; + char* manager_env_prefix; }initialized_data; static unsigned int gen_guid(){
1
/* * Copyright (C) 2018- The University of Notre Dame This software is distributed under the GNU General Public License. See the file COPYING for details. */ #include "batch_job_internal.h" #include "process.h" #include "batch_job.h" #include "stringtools.h" #include "debug.h" #include "jx_parse.h" #include "jx.h" #include "jx_pretty_print.h" #include "itable.h" #include "hash_table.h" #include "fast_popen.h" #include "sh_popen.h" #include "list.h" #include <time.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include <sys/wait.h> #include <sys/types.h> #include <errno.h> static int initialized = 0; static char* queue_name = NULL; static char* compute_env_name = NULL; static char* vpc = NULL; static char* sec_group = NULL; static char* subnet = NULL; static struct itable* done_jobs; static struct itable* amazon_job_ids; static struct itable* done_files; static int instID; static char* bucket_name = NULL; static struct hash_table* submitted_files = NULL; static int HAS_SUBMITTED_VALUE = 1; union amazon_batch_ccl_guid{ char c[8]; unsigned int ul; }; static struct internal_amazon_batch_amazon_ids{ char* aws_access_key_id; char* aws_secret_access_key; char* aws_region; char* aws_email; char* master_env_prefix; }initialized_data; static unsigned int gen_guid(){ FILE* ran = fopen("/dev/urandom","r"); if(!ran) fatal("Cannot open /dev/urandom"); union amazon_batch_ccl_guid guid; size_t k = fread(guid.c,sizeof(char),8,ran); if(k<8) fatal("couldn't read 8 bytes from /dev/urandom/"); fclose(ran); return guid.ul; } static struct jx* run_command(char* cmd){ FILE* out = sh_popen(cmd); if(out == NULL){ fatal("fast_popen returned a null FILE* pointer"); } struct jx* jx = jx_parse_stream(out); if(jx == NULL){ fatal("JX parse stream out returned a null jx object"); } sh_pclose(out); return jx; } static struct list* extract_file_names_from_list(char* in){ struct list* output = list_create(); char* tmp = strdup(in); char* ta = strtok(tmp,","); while(ta != NULL){ int push_success = list_push_tail(output,strdup(ta)); if(!push_success){ fatal("Error appending file name to list due to being out of memory"); } ta = strtok(0,","); } return output; } static int upload_input_files_to_s3(char* files,char* jobname){ int success = 1; char* env_var = initialized_data.master_env_prefix; struct list* file_list = extract_file_names_from_list(files); debug(D_BATCH,"extra input files list: %s, len: %i",files, list_size(file_list)); list_first_item(file_list); char* cur_file = NULL; while((cur_file = list_next_item(file_list)) != NULL){ if(hash_table_lookup(submitted_files,cur_file) == &HAS_SUBMITTED_VALUE){ continue; } debug(D_BATCH,"Submitting file: %s",cur_file); char* put_file_command = string_format("tar -cvf %s.txz %s && %s aws s3 cp %s.txz s3://%s/%s.txz ",cur_file,cur_file,env_var,cur_file,bucket_name,cur_file); int ret = sh_system(put_file_command); if(ret != 0){ debug(D_BATCH,"File Submission: %s FAILURE return code: %i",cur_file,ret); success = 0; }else{ debug(D_BATCH,"File Submission: %s SUCCESS return code: %i",cur_file,ret); } free(put_file_command); put_file_command = string_format("rm %s.txz",cur_file); sh_system(put_file_command); free(put_file_command); //assume everything went well? hash_table_insert(submitted_files,cur_file,&HAS_SUBMITTED_VALUE); } list_free(file_list); list_delete(file_list); return success; } static struct internal_amazon_batch_amazon_ids initialize(struct batch_queue* q){ if(initialized){ return initialized_data; } char* config_file = hash_table_lookup(q->options,"amazon-batch-config"); if(!config_file) { fatal("No amazon config file passed!"); } struct jx* config = jx_parse_file(config_file); initialized = 1; instID = time(NULL); queue_name = string_format("%i_ccl_amazon_batch_queue",instID);//should be unique done_jobs = itable_create(0);//default size amazon_job_ids = itable_create(0); done_files = itable_create(0); submitted_files = hash_table_create(0,0); char* amazon_ami = hash_table_lookup(q->options,"amazon-batch-img"); if(amazon_ami == NULL) { fatal("No image id passed. Please pass file containing ami image id using --amazon-batch-img flag"); } char* aws_access_key_id = (char*)jx_lookup_string(config, "aws_id"); char* aws_secret_access_key = (char*)jx_lookup_string(config, "aws_key"); char* aws_region = (char*)jx_lookup_string(config,"aws_reg"); bucket_name = (char*)jx_lookup_string(config,"bucket"); vpc = (char*)jx_lookup_string(config,"vpc"); sec_group = (char*)jx_lookup_string(config,"sec_group"); queue_name = (char*)jx_lookup_string(config,"queue_name"); compute_env_name = (char*)jx_lookup_string(config,"env_name"); subnet = (char*)jx_lookup_string(config,"subnet"); if(!aws_access_key_id) fatal("credentials file %s does not contain aws_id",config_file); if(!aws_secret_access_key) fatal("credentials file %s does not contain aws_key",config_file); if(!aws_region) fatal("credentials file %s does not contain aws_reg",config_file); if(!bucket_name) fatal("credentials file %s does not contain bucket",config_file); if(!queue_name) fatal("credentials file %s does not contain queue_name",config_file); if(!compute_env_name) fatal("credentials file %s does not contain env_name",config_file); if(!vpc) fatal("credentials file %s does not contain vpc",config_file); if(!subnet) fatal("credentials file %s does not contain subnet",config_file); char* env_var = string_format("AWS_ACCESS_KEY_ID=%s AWS_SECRET_ACCESS_KEY=%s AWS_DEFAULT_REGION=%s ",aws_access_key_id,aws_secret_access_key,aws_region); initialized_data.aws_access_key_id = aws_access_key_id; initialized_data.aws_secret_access_key = aws_secret_access_key; initialized_data.aws_region=aws_region; initialized_data.master_env_prefix = env_var; return initialized_data; } static char* generate_s3_cp_cmds(char* files, char* src, char* dst){ char* env_var = initialized_data.master_env_prefix; struct list* file_list = extract_file_names_from_list(files); list_first_item(file_list); char* new_cmd=malloc(sizeof(char)*1); new_cmd[0]='\0'; if(list_size(file_list)> 0){ char* copy_cmd_prefix = string_format("%s aws s3 cp ", env_var); char* cur_file = NULL; while((cur_file=list_next_item(file_list)) != NULL){ char* tmp; if(strstr(dst,"s3")){ tmp = string_format("tar -cvf %s.txz %s && %s %s/%s.txz %s/%s.txz",cur_file,cur_file,copy_cmd_prefix, src, cur_file, dst, cur_file); }else{ tmp = string_format("%s %s/%s.txz %s/%s.txz && tar -xvf %s.txz",copy_cmd_prefix, src, cur_file, dst, cur_file, cur_file); } char* tmp2 = string_format("%s\n%s\n",new_cmd,tmp); free(new_cmd); free(tmp); new_cmd = tmp2; } } list_free(file_list); list_delete(file_list); return new_cmd; } static char* chmod_all(char* files){ struct list* file_list = extract_file_names_from_list(files); list_first_item(file_list); char* new_cmd=malloc(sizeof(char)*1); new_cmd[0]='\0'; char* cur_file = NULL; if(list_size(file_list) > 0){ while((cur_file=list_next_item(file_list)) != NULL){ char* tmp = string_format("chmod +x %s",cur_file); char* tmp2 = string_format("%s\n%s",new_cmd,tmp); free(new_cmd); free(tmp); new_cmd=tmp2; } } list_free(file_list); list_delete(file_list); return new_cmd; } static void upload_cmd_file(char* bucket_name, char* input_files, char* output_files, char* cmd, unsigned int jobid){ char* env_var = initialized_data.master_env_prefix; //Create command to pull files from s3 and into local space to work on char* bucket = string_format("s3://%s",bucket_name); char* cpy_in = generate_s3_cp_cmds(input_files,bucket,"./"); char* chmod = chmod_all(input_files); //run the actual command char* cmd_tmp = string_format("%s\n%s\n%s\n",cpy_in,chmod,cmd); free(cpy_in); //copy out any external files char* cpy_out = generate_s3_cp_cmds(output_files,"./",bucket); cmd_tmp = string_format("%s\n%s\n",cmd_tmp,cpy_out); //add headder char* final_cmd = string_format("#!/bin/sh\n%s",cmd_tmp); free(cmd_tmp); //write out to file unsigned int tempuid = gen_guid(); char* tmpfile_string = string_format("TEMPFILE-%u.sh",tempuid); FILE* tmpfile = fopen(tmpfile_string,"w+"); fwrite(final_cmd,sizeof(char),strlen(final_cmd),tmpfile); fclose(tmpfile); free(final_cmd); //make executable and put into s3 cmd_tmp = string_format("chmod +x %s",tmpfile_string); sh_system(cmd_tmp); free(cmd_tmp); cmd_tmp = string_format("%s aws s3 cp %s s3://%s/COMAND_FILE_%u.sh",env_var,tmpfile_string,bucket_name,jobid); sh_system(cmd_tmp); free(cmd_tmp); remove(tmpfile_string); free(tmpfile_string); } static char* aws_submit_job(char* job_name, char* properties_string){ char* queue = queue_name; char* env_var = initialized_data.master_env_prefix; //submit the job-def char* tmp = string_format("%s aws batch register-job-definition --job-definition-name %s_def --type container --container-properties \"%s\"",env_var,job_name, properties_string); debug(D_BATCH,"Creating the Job Definition: %s",tmp); struct jx* jx = run_command(tmp); free(tmp); char* arn = (char*)jx_lookup_string(jx,"jobDefinitionArn"); if(arn == NULL){ fatal("Fatal error when trying to create the job definition!"); } jx_delete(jx); //now that we have create a job-definition, we can submit the job. tmp = string_format("%s aws batch submit-job --job-name %s --job-queue %s --job-definition %s_def",env_var,job_name,queue,job_name); debug(D_BATCH,"Submitting the job: %s",tmp); jx = run_command(tmp); free(tmp); char* jaid = strdup((char*)jx_lookup_string(jx,"jobId")); if(!jaid) fatal("NO JOB ID FROM AMAZON GIVEN"); jx_delete(jx); return jaid; } enum{ DESCRIBE_AWS_JOB_SUCCESS = 1, //job exists, succeeded DESCRIBE_AWS_JOB_FAILED = 0, //job exists, failed DESCRIBE_AWS_JOB_NON_FINAL = -1, //exists, but in non-final state DESCRIBE_AWS_JOB_NON_EXIST = -2 //job doesn't exist, should treat as a failure }; static int finished_aws_job_exit_code(char* aws_jobid, char* env_var){ char* cmd = string_format("aws batch describe-jobs --jobs %s",aws_jobid); struct jx* jx = run_command(cmd); free(cmd); struct jx* jobs_array = jx_lookup(jx,"jobs"); if(!jobs_array){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return DESCRIBE_AWS_JOB_NON_EXIST; } struct jx* first_item = jx_array_index(jobs_array,0); if(!first_item){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return DESCRIBE_AWS_JOB_NON_EXIST; } int ret = (int)jx_lookup_integer(first_item,"exitCode"); jx_delete(jx); return ret; } static int describe_aws_job(char* aws_jobid, char* env_var){ char* cmd = string_format("aws batch describe-jobs --jobs %s",aws_jobid); struct jx* jx = run_command(cmd); free(cmd); int succeed = DESCRIBE_AWS_JOB_NON_FINAL; //default status struct jx* jobs_array = jx_lookup(jx,"jobs"); if(!jobs_array){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return DESCRIBE_AWS_JOB_NON_EXIST; } struct jx* first_item = jx_array_index(jobs_array,0); if(!first_item){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return DESCRIBE_AWS_JOB_NON_EXIST; } if(strstr((char*)jx_lookup_string(first_item,"status"),"SUCCEEDED")){ succeed = DESCRIBE_AWS_JOB_SUCCESS; } if(strstr((char*)jx_lookup_string(first_item,"status"),"FAILED")){ succeed = DESCRIBE_AWS_JOB_FAILED; } //start and stop if(succeed == DESCRIBE_AWS_JOB_SUCCESS || succeed == DESCRIBE_AWS_JOB_FAILED){ int64_t created_string = (int64_t) jx_lookup_integer(first_item,"createdAt"); int64_t start_string = (int64_t)jx_lookup_integer(first_item,"startedAt"); int64_t end_string = (int64_t)jx_lookup_integer(first_item,"stoppedAt"); if(created_string != 0 ){ debug(D_BATCH,"Job %s was created at: %"PRIi64"",aws_jobid,created_string); } if(start_string != 0 ){ debug(D_BATCH,"Job %s started at: %"PRIi64"",aws_jobid,start_string); } if(end_string != 0 ){ debug(D_BATCH,"Job %s ended at: %"PRIi64"",aws_jobid,end_string); } } jx_delete(jx); return succeed; } static char* aws_job_def(char* aws_jobid){ char* cmd = string_format("aws batch describe-jobs --jobs %s",aws_jobid); struct jx* jx = run_command(cmd); free(cmd); struct jx* jobs_array = jx_lookup(jx,"jobs"); if(!jobs_array){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return NULL; } struct jx* first_item = jx_array_index(jobs_array,0); if(!first_item){ debug(D_BATCH,"Problem with given aws_jobid: %s",aws_jobid); return NULL; } char* ret = string_format("%s",(char*)jx_lookup_string(first_item,"jobDefinition")); jx_delete(jx); return ret; } static int del_job_def(char* jobdef){ char* cmd = string_format("aws batch deregister-job-definition --job-definition %s",jobdef); int ret = sh_system(cmd); free(cmd); return ret; } static batch_job_id_t batch_job_amazon_batch_submit(struct batch_queue* q, const char* cmd, const char* extra_input_files, const char* extra_output_files, struct jx* envlist, const struct rmsummary* resources){ struct internal_amazon_batch_amazon_ids amazon_ids = initialize(q); char* env_var = amazon_ids.master_env_prefix; //so, we have the access keys, now we need to either set up the queues and exec environments, or add them. unsigned int jobid = gen_guid(); char* job_name = string_format("%s_%u",queue_name,jobid); //makeflow specifics struct batch_job_info *info = malloc(sizeof(*info)); memset(info, 0, sizeof(*info)); //specs int cpus=1; long int mem=1000; char* img = hash_table_lookup(q->options,"amazon-batch-img"); int disk = 1000; if(resources){ cpus = resources->cores; mem = resources->memory; disk = resources->disk; cpus = cpus > 1? cpus:1; mem = mem > 1000? mem:1000; disk = disk > 1000 ? disk : 1000; } //upload files to S3 upload_input_files_to_s3((char*)extra_input_files,job_name); upload_cmd_file(bucket_name,(char*)extra_input_files,(char*)extra_output_files,(char*)cmd,jobid); //create the fmd string to give to the command char* fmt_cmd = string_format("%s aws s3 cp s3://%s/COMAND_FILE_%u.sh ./ && sh ./COMAND_FILE_%u.sh",env_var,bucket_name,jobid,jobid); //combine all properties together char* properties_string = string_format("{ \\\"image\\\": \\\"%s\\\", \\\"vcpus\\\": %i, \\\"memory\\\": %li, \\\"privileged\\\":true ,\\\"command\\\": [\\\"sh\\\",\\\"-c\\\",\\\"%s\\\"], \\\"environment\\\":[{\\\"name\\\":\\\"AWS_ACCESS_KEY_ID\\\",\\\"value\\\":\\\"%s\\\"},{\\\"name\\\":\\\"AWS_SECRET_ACCESS_KEY\\\",\\\"value\\\":\\\"%s\\\"},{\\\"name\\\":\\\"REGION\\\",\\\"value\\\":\\\"%s\\\"}] }", img,cpus,mem,fmt_cmd,amazon_ids.aws_access_key_id,amazon_ids.aws_secret_access_key,amazon_ids.aws_region); char* jaid = aws_submit_job(job_name,properties_string); itable_insert(amazon_job_ids,jobid,jaid); debug(D_BATCH,"Job %u has amazon id: %s",jobid,jaid); itable_insert(done_files,jobid,string_format("%s",extra_output_files)); debug(D_BATCH,"Job %u successfully Submitted",jobid); //let makeflow know info->submitted = time(0); info->started = time(0); itable_insert(q->job_table, jobid, info); //cleanup free(job_name); free(fmt_cmd); return jobid; } static batch_job_id_t batch_job_amazon_batch_wait(struct batch_queue *q, struct batch_job_info *info_out, time_t stoptime){ struct internal_amazon_batch_amazon_ids amazon_ids = initialize(q); //succeeded check int done = 0; char* env_var = amazon_ids.master_env_prefix; itable_firstkey(amazon_job_ids); char* jaid; UINT64_T jobid; while(itable_nextkey(amazon_job_ids,&jobid,(void**)&jaid)){ done = describe_aws_job(jaid,env_var); char* jobname = string_format("%s_%u",queue_name,(unsigned int)jobid); unsigned int id = (unsigned int)jobid; if(done == DESCRIBE_AWS_JOB_SUCCESS){ if(itable_lookup(done_jobs,id+1) == NULL){ //id is done, returning here debug(D_BATCH,"Inserting id: %u into done_jobs",id); itable_insert(done_jobs,id+1,jobname); itable_remove(amazon_job_ids,jobid); //pull files from s3 char* output_files = itable_lookup(done_files,id); struct list* file_list = extract_file_names_from_list(output_files); if(list_size(file_list)> 0){ list_first_item(file_list); char* cur_file = NULL; while((cur_file=list_next_item(file_list)) != NULL){ debug(D_BATCH,"Copying over %s",cur_file); char* get_from_s3_cmd = string_format("%s aws s3 cp s3://%s/%s.txz ./%s.txz && tar -xvf %s.txz && rm %s.txz",env_var,bucket_name,cur_file,cur_file, cur_file, cur_file); int outputcode = sh_system(get_from_s3_cmd); debug(D_BATCH,"output code from calling S3 to pull file %s: %i",cur_file,outputcode); FILE* tmpOut = fopen(cur_file,"r"); if(tmpOut){ debug(D_BATCH,"File does indeed exist: %s",cur_file); fclose(tmpOut); }else{ debug(D_BATCH,"File doesn't exist: %s",cur_file); } free(get_from_s3_cmd); } } list_free(file_list); list_delete(file_list); //Let Makeflow know we're all done! debug(D_BATCH,"Removing the job from the job_table"); struct batch_job_info* info = itable_remove(q->job_table, id);//got from batch_job_amazon.c info->finished = time(0);//get now info->exited_normally=1; info->exit_code=finished_aws_job_exit_code(jaid,env_var); debug(D_BATCH,"copying over the data to info_out"); memcpy(info_out, info, sizeof(struct batch_job_info)); free(info); char* jobdef = aws_job_def(jaid); del_job_def(jobdef); free(jobdef); return id; } }else if(done == DESCRIBE_AWS_JOB_FAILED || done == DESCRIBE_AWS_JOB_NON_EXIST){ if(itable_lookup(done_jobs,id+1)==NULL){ //id is done, returning here itable_insert(done_jobs,id+1,jobname); itable_remove(amazon_job_ids,jobid); debug(D_BATCH,"Failed job: %i",id); struct batch_job_info* info = itable_remove(q->job_table, id);//got from batch_job_amazon.c info->finished = time(0); //get now info->exited_normally=0; int exc = finished_aws_job_exit_code(jaid,env_var); info->exit_code= exc == 0 ? -1 : exc; memcpy(info_out, info, sizeof(*info)); free(info); char* jobdef = aws_job_def(jaid); del_job_def(jobdef); free(jobdef); return id; } }else{ continue; } } return -1; } static int batch_job_amazon_batch_remove(struct batch_queue *q, batch_job_id_t jobid){ struct internal_amazon_batch_amazon_ids amazon_ids = initialize(q); char* env_var = amazon_ids.master_env_prefix; if(itable_lookup(done_jobs,jobid)==NULL){ char* name = string_format("%s_%i",queue_name,(int)jobid); itable_insert(done_jobs,jobid+1,name); } char* amazon_id; if((amazon_id=itable_lookup(amazon_job_ids,jobid))==NULL){ return -1; } char* cmd = string_format("%s aws batch terminate-job --job-id %s --reason \"Makeflow Killed\"",env_var,amazon_id); debug(D_BATCH,"Terminating the job: %s\n",cmd); sh_system(cmd); free(cmd); return 0; } batch_queue_stub_create(amazon_batch); batch_queue_stub_free(amazon_batch); batch_queue_stub_port(amazon_batch); batch_queue_stub_option_update(amazon_batch); batch_fs_stub_chdir(amazon_batch); batch_fs_stub_getcwd(amazon_batch); batch_fs_stub_mkdir(amazon_batch); batch_fs_stub_putfile(amazon_batch); batch_fs_stub_rename(amazon_batch); batch_fs_stub_stat(amazon_batch); batch_fs_stub_unlink(amazon_batch); const struct batch_queue_module batch_queue_amazon_batch = { BATCH_QUEUE_TYPE_AMAZON_BATCH, "amazon-batch", batch_queue_amazon_batch_create, batch_queue_amazon_batch_free, batch_queue_amazon_batch_port, batch_queue_amazon_batch_option_update, { batch_job_amazon_batch_submit, batch_job_amazon_batch_wait, batch_job_amazon_batch_remove, }, { batch_fs_amazon_batch_chdir, batch_fs_amazon_batch_getcwd, batch_fs_amazon_batch_mkdir, batch_fs_amazon_batch_putfile, batch_fs_amazon_batch_rename, batch_fs_amazon_batch_stat, batch_fs_amazon_batch_unlink, }, };
1
15,071
Maybe just `env_prefix`, I don't think this is referring to the WQ manager.
cooperative-computing-lab-cctools
c
@@ -11,7 +11,6 @@ import android.widget.FrameLayout; import com.bytehamster.lib.preferencesearch.SearchPreferenceResult; import com.bytehamster.lib.preferencesearch.SearchPreferenceResultListener; - import de.danoeh.antennapod.R; import de.danoeh.antennapod.core.preferences.UserPreferences; import de.danoeh.antennapod.fragment.preferences.AutoDownloadPreferencesFragment;
1
package de.danoeh.antennapod.activity; import android.os.Bundle; import androidx.appcompat.app.ActionBar; import androidx.appcompat.app.AppCompatActivity; import androidx.preference.PreferenceFragmentCompat; import android.view.Menu; import android.view.MenuItem; import android.view.ViewGroup; import android.widget.FrameLayout; import com.bytehamster.lib.preferencesearch.SearchPreferenceResult; import com.bytehamster.lib.preferencesearch.SearchPreferenceResultListener; import de.danoeh.antennapod.R; import de.danoeh.antennapod.core.preferences.UserPreferences; import de.danoeh.antennapod.fragment.preferences.AutoDownloadPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.GpodderPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.ImportExportPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.MainPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.NetworkPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.NotificationPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.PlaybackPreferencesFragment; import de.danoeh.antennapod.fragment.preferences.StoragePreferencesFragment; import de.danoeh.antennapod.fragment.preferences.UserInterfacePreferencesFragment; /** * PreferenceActivity for API 11+. In order to change the behavior of the preference UI, see * PreferenceController. */ public class PreferenceActivity extends AppCompatActivity implements SearchPreferenceResultListener { private static final String FRAGMENT_TAG = "tag_preferences"; @Override protected void onCreate(Bundle savedInstanceState) { setTheme(UserPreferences.getTheme()); super.onCreate(savedInstanceState); ActionBar ab = getSupportActionBar(); if (ab != null) { ab.setDisplayHomeAsUpEnabled(true); } FrameLayout root = new FrameLayout(this); root.setId(R.id.content); root.setLayoutParams(new FrameLayout.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT, ViewGroup.LayoutParams.MATCH_PARENT)); setContentView(root); if (getSupportFragmentManager().findFragmentByTag(FRAGMENT_TAG) == null) { getSupportFragmentManager().beginTransaction() .replace(R.id.content, new MainPreferencesFragment(), FRAGMENT_TAG) .commit(); } } private PreferenceFragmentCompat getPreferenceScreen(int screen) { PreferenceFragmentCompat prefFragment = null; if (screen == R.xml.preferences_user_interface) { prefFragment = new UserInterfacePreferencesFragment(); } else if (screen == R.xml.preferences_network) { prefFragment = new NetworkPreferencesFragment(); } else if (screen == R.xml.preferences_storage) { prefFragment = new StoragePreferencesFragment(); } else if (screen == R.xml.preferences_import_export) { prefFragment = new ImportExportPreferencesFragment(); } else if (screen == R.xml.preferences_autodownload) { prefFragment = new AutoDownloadPreferencesFragment(); } else if (screen == R.xml.preferences_gpodder) { prefFragment = new GpodderPreferencesFragment(); } else if (screen == R.xml.preferences_playback) { prefFragment = new PlaybackPreferencesFragment(); } else if (screen == R.xml.preferences_notifications) { prefFragment = new NotificationPreferencesFragment(); } return prefFragment; } public static int getTitleOfPage(int preferences) { switch (preferences) { case R.xml.preferences_network: return R.string.network_pref; case R.xml.preferences_autodownload: return R.string.pref_automatic_download_title; case R.xml.preferences_playback: return R.string.playback_pref; case R.xml.preferences_storage: return R.string.storage_pref; case R.xml.preferences_import_export: return R.string.import_export_pref; case R.xml.preferences_user_interface: return R.string.user_interface_label; case R.xml.preferences_gpodder: return R.string.gpodnet_main_label; case R.xml.preferences_notifications: return R.string.notification_pref_fragment; default: return R.string.settings_label; } } public PreferenceFragmentCompat openScreen(int screen) { PreferenceFragmentCompat fragment = getPreferenceScreen(screen); getSupportFragmentManager().beginTransaction().replace(R.id.content, fragment) .addToBackStack(getString(getTitleOfPage(screen))).commit(); return fragment; } @Override public boolean onCreateOptionsMenu(Menu menu) { super.onCreateOptionsMenu(menu); return true; } @Override public boolean onOptionsItemSelected(MenuItem item) { if (item.getItemId() == android.R.id.home) { if (getSupportFragmentManager().getBackStackEntryCount() == 0) { finish(); } else { getSupportFragmentManager().popBackStack(); } return true; } return false; } @Override public void onSearchResultClicked(SearchPreferenceResult result) { PreferenceFragmentCompat fragment = openScreen(result.getResourceFile()); result.highlight(fragment); } }
1
18,375
Unrelated line change :)
AntennaPod-AntennaPod
java
@@ -2,9 +2,13 @@ package net import ( "strings" + "syscall" + "time" "github.com/coreos/go-iptables/iptables" "github.com/pkg/errors" + "github.com/sirupsen/logrus" + utilwait "k8s.io/apimachinery/pkg/util/wait" ) // AddChainWithRules creates a chain and appends given rules to it.
1
package net import ( "strings" "github.com/coreos/go-iptables/iptables" "github.com/pkg/errors" ) // AddChainWithRules creates a chain and appends given rules to it. // // If the chain exists, but its rules are not the same as the given ones, the // function will flush the chain and then will append the rules. func AddChainWithRules(ipt *iptables.IPTables, table, chain string, rulespecs [][]string) error { if err := ensureChains(ipt, table, chain); err != nil { return err } currRuleSpecs, err := ipt.List(table, chain) if err != nil { return errors.Wrapf(err, "iptables -S. table: %q, chain: %q", table, chain) } // First returned rule is "-N $(chain)", so ignore it currRules := strings.Join(currRuleSpecs[1:], "\n") rules := make([]string, 0) for _, r := range rulespecs { rules = append(rules, strings.Join(r, " ")) } reqRules := strings.Join(rules, "\n") if currRules == reqRules { return nil } if err := ipt.ClearChain(table, chain); err != nil { return err } for _, r := range rulespecs { if err := ipt.Append(table, chain, r...); err != nil { return errors.Wrapf(err, "iptables -A. table: %q, chain: %q, rule: %s", table, chain, r) } } return nil } // ensureChains creates given chains if they do not exist. func ensureChains(ipt *iptables.IPTables, table string, chains ...string) error { existingChains, err := ipt.ListChains(table) if err != nil { return errors.Wrapf(err, "ipt.ListChains(%s)", table) } chainMap := make(map[string]struct{}) for _, c := range existingChains { chainMap[c] = struct{}{} } for _, c := range chains { if _, found := chainMap[c]; !found { if err := ipt.NewChain(table, c); err != nil { return errors.Wrapf(err, "ipt.NewChain(%s, %s)", table, c) } } } return nil } // ensureRulesAtTop ensures the presence of given iptables rules. // // If any rule from the list is missing, the function deletes all given // rules and re-inserts them at the top of the chain to ensure the order of the rules. func ensureRulesAtTop(table, chain string, rulespecs [][]string, ipt *iptables.IPTables) error { allFound := true for _, rs := range rulespecs { found, err := ipt.Exists(table, chain, rs...) if err != nil { return errors.Wrapf(err, "ipt.Exists(%s, %s, %s)", table, chain, rs) } if !found { allFound = false break } } // All rules exist, do nothing. if allFound { return nil } for pos, rs := range rulespecs { // If any is missing, then delete all, as we need to preserve the order of // given rules. Ignore errors, as rule might not exist. if !allFound { ipt.Delete(table, chain, rs...) } if err := ipt.Insert(table, chain, pos+1, rs...); err != nil { return errors.Wrapf(err, "ipt.Append(%s, %s, %s)", table, chain, rs) } } return nil }
1
16,029
I raised an eyebrow at making `net` depend on `k8s.io`, but it seems we're already doing that.
weaveworks-weave
go
@@ -228,6 +228,9 @@ * @returns {string} encode string */ countlyCommon.encodeSomeHtml = function(html, options) { + if (countlyGlobal.company) { + html.replace("Countly", countlyGlobal.company); + } if (options) { return filterXSS(html, options); }
1
/*global store, countlyGlobal, _, Gauge, d3, moment, countlyTotalUsers, jQuery, filterXSS*/ /** * Object with common functions to be used for multiple purposes * @name countlyCommon * @global * @namespace countlyCommon */ (function(window, $, undefined) { var CommonConstructor = function() { // Private Properties var countlyCommon = this; var _period = (store.get("countly_date")) ? store.get("countly_date") : "30days"; var _persistentSettings; var htmlEncodeOptions = { "whiteList": {"a": ["href", "class", "target"], "b": [], "br": [], "strong": [], "p": [], "span": ["class"], "div": ["class"]}, onTagAttr: function(tag, name, value/* isWhiteAttr*/) { if (tag === "a") { if (name === "target" && !(value === "_blank" || value === "_self" || value === "_top" || value === "_parent")) { return "target='_blank'"; //set _blank if incorrect value } if (name === "href" && !(value.substr(0, 1) === "#" || value.substr(0, 1) === "/" || value.substr(0, 4) === "http")) { return "href='#'"; //set # if incorrect value } } } }; /** * Get Browser language * @returns {string} browser locale in iso format en-US * @example * //outputs en-US * countlyCommon.browserLang() */ countlyCommon.browserLang = function() { var lang = navigator.language || navigator.userLanguage; if (lang) { lang = lang.toLowerCase(); lang.length > 3 && (lang = lang.substring(0, 3) + lang.substring(3).toUpperCase()); } return lang; }; // Public Properties /** * Set user persistent settings to store local storage * @param {object} data - Object param for set new data */ countlyCommon.setPersistentSettings = function(data) { if (!_persistentSettings) { _persistentSettings = localStorage.getItem("persistentSettings") ? JSON.parse(localStorage.getItem("persistentSettings")) : {}; } for (var i in data) { _persistentSettings[i] = data[i]; } localStorage.setItem("persistentSettings", JSON.stringify(_persistentSettings)); }; /** * Get user persistent settings * @returns {object} settings */ countlyCommon.getPersistentSettings = function() { if (!_persistentSettings) { _persistentSettings = localStorage.getItem("persistentSettings") ? JSON.parse(localStorage.getItem("persistentSettings")) : {}; } return _persistentSettings; }; /** * App Key of currently selected app or 0 when not initialized * @type {string|number} */ countlyCommon.ACTIVE_APP_KEY = 0; /** * App ID of currently selected app or 0 when not initialized * @type {string|number} */ countlyCommon.ACTIVE_APP_ID = 0; /** * Current user's selected language in form en-EN, by default will use browser's language * @type {string} */ countlyCommon.BROWSER_LANG = countlyCommon.browserLang() || "en-US"; /** * Current user's browser language in short form as "en", by default will use browser's language * @type {string} */ countlyCommon.BROWSER_LANG_SHORT = countlyCommon.BROWSER_LANG.split("-")[0]; if (store.get("countly_active_app")) { if (countlyGlobal.apps[store.get("countly_active_app")]) { countlyCommon.ACTIVE_APP_KEY = countlyGlobal.apps[store.get("countly_active_app")].key; countlyCommon.ACTIVE_APP_ID = store.get("countly_active_app"); } } if (countlyGlobal.member.lang) { var lang = countlyGlobal.member.lang; store.set("countly_lang", lang); countlyCommon.BROWSER_LANG_SHORT = lang; countlyCommon.BROWSER_LANG = lang; } else if (store.get("countly_lang")) { var lang1 = store.get("countly_lang"); countlyCommon.BROWSER_LANG_SHORT = lang1; countlyCommon.BROWSER_LANG = lang1; } // Public Methods /** * Change currently selected period * @param {string|array} period - new period, supported values are (month, 60days, 30days, 7days, yesterday, hour or [startMiliseconds, endMiliseconds] as [1417730400000,1420149600000]) * @param {int} timeStamp - timeStamp for the period based * @param {boolean} noSet - if set - updates countly_date */ countlyCommon.setPeriod = function(period, timeStamp, noSet) { _period = period; if (timeStamp) { countlyCommon.periodObj = countlyCommon.calcSpecificPeriodObj(period, timeStamp); } else { countlyCommon.periodObj = calculatePeriodObj(period); } window.app.recordEvent({ "key": "period-change", "count": 1, "segmentation": {is_custom: Array.isArray(period)} }); if (noSet) { return; } store.set("countly_date", period); }; /** * Get currently selected period * @returns {string|array} supported values are (month, 60days, 30days, 7days, yesterday, hour or [startMiliseconds, endMiliseconds] as [1417730400000,1420149600000]) */ countlyCommon.getPeriod = function() { return _period; }; /** * Get currently selected period that can be used in ajax requests * @returns {string} supported values are (month, 60days, 30days, 7days, yesterday, hour or [startMiliseconds, endMiliseconds] as [1417730400000,1420149600000]) */ countlyCommon.getPeriodForAjax = function() { if (Object.prototype.toString.call(_period) === '[object Array]') { return JSON.stringify(_period); } else { return _period; } }; /** * Change currently selected app by app ID * @param {string} appId - new app ID from @{countlyGlobal.apps} object */ countlyCommon.setActiveApp = function(appId) { countlyCommon.ACTIVE_APP_KEY = countlyGlobal.apps[appId].key; countlyCommon.ACTIVE_APP_ID = appId; store.set("countly_active_app", appId); $.ajax({ type: "POST", url: countlyGlobal.path + "/user/settings/active-app", data: { "username": countlyGlobal.member.username, "appId": appId, _csrf: countlyGlobal.csrf_token }, success: function() { } }); }; /** * Encode value to be passed to db as key, encoding $ symbol to &#36; if it is first and all . (dot) symbols to &#46; in the string * @param {string} str - value to encode * @returns {string} encoded string */ countlyCommon.encode = function(str) { return str.replace(/^\$/g, "&#36;").replace(/\./g, '&#46;'); }; /** * Decode value from db, decoding first &#36; to $ and all &#46; to . (dots). Decodes also url encoded values as &amp;#36;. * @param {string} str - value to decode * @returns {string} decoded string */ countlyCommon.decode = function(str) { return str.replace(/^&#36;/g, "$").replace(/&#46;/g, '.'); }; /** * Decode escaped HTML from db * @param {string} html - value to decode * @returns {string} decoded string */ countlyCommon.decodeHtml = function(html) { var txt = document.createElement("textarea"); txt.innerHTML = html; return txt.value; }; /** * Encode html * @param {string} html - value to encode * @returns {string} encode string */ countlyCommon.encodeHtml = function(html) { var div = document.createElement('div'); div.innerText = html; return div.innerHTML; }; /** * Encode some tags, leaving those set in whitelist as they are. * @param {string} html - value to encode * @param {object} options for encoding. Optional. If not passed, using default in common. * @returns {string} encode string */ countlyCommon.encodeSomeHtml = function(html, options) { if (options) { return filterXSS(html, options); } else { return filterXSS(html, htmlEncodeOptions); } }; /** * Calculates the percent change between previous and current values. * @param {number} previous - data for previous period * @param {number} current - data for current period * @returns {object} in the following format {"percent": "20%", "trend": "u"} * @example * //outputs {"percent":"100%","trend":"u"} * countlyCommon.getPercentChange(100, 200); */ countlyCommon.getPercentChange = function(previous, current) { var pChange = 0, trend = ""; previous = parseFloat(previous); current = parseFloat(current); if (previous === 0) { pChange = "NA"; trend = "u"; //upward } else if (current === 0) { pChange = "∞"; trend = "d"; //downward } else { var change = (((current - previous) / previous) * 100).toFixed(1); pChange = countlyCommon.getShortNumber(change) + "%"; if (change < 0) { trend = "d"; } else { trend = "u"; } } return { "percent": pChange, "trend": trend }; }; /** * Fetches nested property values from an obj. * @param {object} obj - standard countly metric object * @param {string} my_passed_path - dot separate path to fetch from object * @param {object} def - stub object to return if nothing is found on provided path * @returns {object} fetched object from provided path * @example <caption>Path found</caption> * //outputs {"u":20,"t":20,"n":5} * countlyCommon.getDescendantProp({"2017":{"1":{"2":{"u":20,"t":20,"n":5}}}}, "2017.1.2", {"u":0,"t":0,"n":0}); * @example <caption>Path not found</caption> * //outputs {"u":0,"t":0,"n":0} * countlyCommon.getDescendantProp({"2016":{"1":{"2":{"u":20,"t":20,"n":5}}}}, "2017.1.2", {"u":0,"t":0,"n":0}); */ countlyCommon.getDescendantProp = function(obj, my_passed_path, def) { for (var i = 0, my_path = (my_passed_path + "").split('.'), len = my_path.length; i < len; i++) { if (!obj || typeof obj !== 'object') { return def; } obj = obj[my_path[i]]; } if (obj === undefined) { return def; } return obj; }; /** * Draws a graph with the given dataPoints to container. Used for drawing bar and pie charts. * @param {object} dataPoints - data poitns to draw on graph * @param {string|object} container - selector for container or container object itself where to create graph * @param {string} graphType - type of the graph, accepted values are bar, line, pie, separate-bar * @param {object} inGraphProperties - object with properties to extend and use on graph library directly * @example <caption>Drawing Pie chart</caption> * countlyCommon.drawGraph({"dp":[ * {"data":[[0,20]],"label":"Test1","color":"#52A3EF"}, * {"data":[[0,30]],"label":"Test2","color":"#FF8700"}, * {"data":[[0,50]],"label":"Test3","color":"#0EC1B9"} * ]}, "#dashboard-graph", "pie"); * @example <caption>Drawing bar chart, to comapre values with different color bars</caption> * //[-1,null] and [3,null] are used for offsets from left and right * countlyCommon.drawGraph({"dp":[ * {"data":[[-1,null],[0,20],[1,30],[2,50],[3,null]],"color":"#52A3EF"}, //first bar set * {"data":[[-1,null],[0,50],[1,30],[2,20],[3,null]],"color":"#0EC1B9"} //second bar set *], * "ticks":[[-1,""],[0,"Test1"],[1,"Test2"],[2,"Test3"],[3,""]] *}, "#dashboard-graph", "separate-bar", {"series":{"stack":null}}); * @example <caption>Drawing Separate bars chart, to comapre values with different color bars</caption> * //[-1,null] and [3,null] are used for offsets from left and right * countlyCommon.drawGraph({"dp":[ * {"data":[[-1,null],[0,20],[1,null],[2,null],[3,null]],"label":"Test1","color":"#52A3EF"}, * {"data":[[-1,null],[0,null],[1,30],[2,null],[3,null]],"label":"Test2","color":"#FF8700"}, * {"data":[[-1,null],[0,null],[1,null],[2,50],[3,null]],"label":"Test3","color":"#0EC1B9"} *], * "ticks":[[-1,""],[0,"Test1"],[1,"Test2"],[2,"Test3"],[3,""] *]}, "#dashboard-graph", "separate-bar"); */ countlyCommon.drawGraph = function(dataPoints, container, graphType, inGraphProperties) { var p = 0; if (graphType === "pie") { var min_treshold = 0.05; //minimum treshold for graph var break_other = 0.3; //try breaking other in smaller if at least given % from all var sum = 0; var i = 0; for (i = 0; i < dataPoints.dp.length; i++) { sum = sum + dataPoints.dp[i].data[0][1]; dataPoints.dp[i].moreInfo = ""; } var dpLength = dataPoints.dp.length; var treshold_value = Math.round(min_treshold * sum); var max_other = Math.round(min_treshold * sum); var under_treshold = [];//array of values under treshold var left_for_other = sum; for (i = 0; i < dataPoints.dp.length; i++) { if (dataPoints.dp[i].data[0][1] >= treshold_value) { left_for_other = left_for_other - dataPoints.dp[i].data[0][1]; } else { under_treshold.push(dataPoints.dp[i].data[0][1]); } } var stop_breaking = Math.round(sum * break_other); if (left_for_other >= stop_breaking) { //fix values if other takes more than set % of data under_treshold = under_treshold.sort(function(a, b) { return a - b; }); var tresholdMap = []; treshold_value = treshold_value - 1; //to don't group exactly 5% values later in code tresholdMap.push({value: treshold_value, text: 5}); var in_this_one = 0; var count_in_this = 0; for (p = under_treshold.length - 1; p >= 0 && under_treshold[p] > 0 && left_for_other >= stop_breaking; p--) { if (under_treshold[p] <= treshold_value) { if (in_this_one + under_treshold[p] <= max_other || count_in_this < 5) { count_in_this++; in_this_one += under_treshold[p]; left_for_other -= under_treshold[p]; } else { if (tresholdMap[tresholdMap.length - 1].value === under_treshold[p]) { in_this_one = 0; count_in_this = 0; treshold_value = under_treshold[p] - 1; } else { in_this_one = under_treshold[p]; count_in_this = 1; treshold_value = under_treshold[p]; left_for_other -= under_treshold[p]; } tresholdMap.push({value: treshold_value, text: Math.max(0.009, Math.round(treshold_value * 10000 / sum) / 100)}); } } } treshold_value = Math.max(treshold_value - 1, 0); tresholdMap.push({value: treshold_value, text: Math.round(treshold_value * 10000 / sum) / 100}); var tresholdPointer = 0; while (tresholdPointer < tresholdMap.length - 1) { dataPoints.dp.push({"label": tresholdMap[tresholdPointer + 1].text + "-" + tresholdMap[tresholdPointer].text + "%", "data": [[0, 0]], "moreInfo": []}); var tresholdPlace = dataPoints.dp.length - 1; for (i = 0; i < dpLength; i++) { if (dataPoints.dp[i].data[0][1] <= tresholdMap[tresholdPointer].value && dataPoints.dp[i].data[0][1] > tresholdMap[tresholdPointer + 1].value) { dataPoints.dp[tresholdPlace].moreInfo.push({"label": dataPoints.dp[i].label, "value": Math.round(dataPoints.dp[i].data[0][1] * 10000 / sum) / 100}); dataPoints.dp[tresholdPlace].data[0][1] = dataPoints.dp[tresholdPlace].data[0][1] + dataPoints.dp[i].data[0][1]; dataPoints.dp.splice(i, 1); dpLength = dataPoints.dp.length; i--; tresholdPlace--; } } tresholdPointer = tresholdPointer + 1; } } } _.defer(function() { if ((!dataPoints.dp || !dataPoints.dp.length) || (graphType === "bar" && (!dataPoints.dp[0].data[0] || (typeof dataPoints.dp[0].data[0][1] === 'undefined' && typeof dataPoints.dp[0].data[1][1] === 'undefined') || (dataPoints.dp[0].data[0][1] === null && dataPoints.dp[0].data[1][1] === null)))) { $(container).hide(); $(container).siblings(".graph-no-data").show(); return true; } else { $(container).show(); $(container).siblings(".graph-no-data").hide(); } var graphProperties = { series: { lines: { show: true, fill: true }, points: { show: true } }, grid: { hoverable: true, borderColor: "null", color: "#999", borderWidth: 0, minBorderMargin: 10 }, xaxis: { minTickSize: 1, tickDecimals: "number", tickLength: 0 }, yaxis: { min: 0, minTickSize: 1, tickDecimals: "number", position: "right" }, legend: { backgroundOpacity: 0, margin: [20, -19] }, colors: countlyCommon.GRAPH_COLORS }; switch (graphType) { case "line": graphProperties.series = { lines: { show: true, fill: true }, points: { show: true } }; break; case "bar": if (dataPoints.ticks.length > 20) { graphProperties.xaxis.rotateTicks = 45; } var barWidth = 0.6; switch (dataPoints.dp.length) { case 2: barWidth = 0.3; break; case 3: barWidth = 0.2; break; } for (i = 0; i < dataPoints.dp.length; i++) { dataPoints.dp[i].bars = { order: i, barWidth: barWidth }; } graphProperties.series = { stack: true, bars: { show: true, barWidth: 0.6, tickLength: 0, fill: 1 } }; graphProperties.xaxis.ticks = dataPoints.ticks; break; case "separate-bar": if (dataPoints.ticks.length > 20) { graphProperties.xaxis.rotateTicks = 45; } graphProperties.series = { bars: { show: true, align: "center", barWidth: 0.6, tickLength: 0, fill: 1 } }; graphProperties.xaxis.ticks = dataPoints.ticks; break; case "pie": graphProperties.series = { pie: { show: true, lineWidth: 0, radius: 115, innerRadius: 0.45, combine: { color: '#CCC', threshold: 0.05 }, label: { show: true, radius: 160 } } }; graphProperties.legend.show = false; break; default: break; } if (inGraphProperties) { $.extend(true, graphProperties, inGraphProperties); } $.plot($(container), dataPoints.dp, graphProperties); if (graphType === "bar" || graphType === "separate-bar") { $(container).unbind("plothover"); $(container).bind("plothover", function(event, pos, item) { $("#graph-tooltip").remove(); if (item && item.datapoint && item.datapoint[1]) { // For stacked bar chart calculate the diff var yAxisValue = item.datapoint[1].toFixed(1).replace(".0", "") - item.datapoint[2].toFixed(1).replace(".0", ""); showTooltip({ x: pos.pageX, y: item.pageY, contents: yAxisValue || 0 }); } }); } else if (graphType === 'pie') { $(container).unbind("plothover"); $(container).bind("plothover", function(event, pos, item) { $("#graph-tooltip").remove(); if (item && item.series && item.series.moreInfo) { var tooltipcontent = "<table class='pie_tooltip_table'>"; if (item.series.moreInfo.length <= 5) { for (p = 0; p < item.series.moreInfo.length; p++) { tooltipcontent = tooltipcontent + "<tr><td>" + item.series.moreInfo[p].label + ":</td><td>" + item.series.moreInfo[p].value + "%</td>"; } } else { for (p = 0; p < 5; p = p + 1) { tooltipcontent += "<tr><td>" + item.series.moreInfo[p].label + " :</td><td>" + item.series.moreInfo[p].value + "%</td></tr>"; } tooltipcontent += "<tr><td colspan='2' style='text-align:center;'>...</td></tr><tr><td style='text-align:center;' colspan=2>(and " + (item.series.moreInfo.length - 5) + " other)</td></tr>"; } tooltipcontent += "</table>"; showTooltip({ x: pos.pageX, y: pos.pageY, contents: tooltipcontent }); } }); } else { $(container).unbind("plothover"); } }, dataPoints, container, graphType, inGraphProperties); }; /** * Draws a time line graph with the given dataPoints to container. * @param {object} dataPoints - data poitns to draw on graph * @param {string|object} container - selector for container or container object itself where to create graph * @param {string=} bucket - time bucket to display on graph. See {@link countlyCommon.getTickObj} * @param {string=} overrideBucket - time bucket to display on graph. See {@link countlyCommon.getTickObj} * @param {boolean=} small - if graph won't be full width graph * @example * countlyCommon.drawTimeGraph([{ * "data":[[1,0],[2,0],[3,0],[4,0],[5,0],[6,0],[7,12],[8,9],[9,10],[10,5],[11,8],[12,7],[13,9],[14,4],[15,6]], * "label":"Total Sessions", * "color":"#DDDDDD", * "mode":"ghost" *},{ * "data":[[1,74],[2,69],[3,60],[4,17],[5,6],[6,3],[7,13],[8,25],[9,62],[10,34],[11,34],[12,33],[13,34],[14,30],[15,1]], * "label":"Total Sessions", * "color":"#333933" *}], "#dashboard-graph"); */ countlyCommon.drawTimeGraph = function(dataPoints, container, bucket, overrideBucket, small) { _.defer(function() { if (!dataPoints.length) { $(container).hide(); $(container).siblings(".graph-no-data").show(); return true; } else { $(container).show(); $(container).siblings(".graph-no-data").hide(); } var i = 0; var j = 0; // Some data points start with [1, XXX] (should be [0, XXX]) and brakes the new tick logic // Below loops converts the old structures to the new one if (dataPoints[0].data[0][0] === 1) { for (i = 0; i < dataPoints.length; i++) { for (j = 0; j < dataPoints[i].data.length; j++) { dataPoints[i].data[j][0] -= 1; } } } var minValue = dataPoints[0].data[0][1]; var maxValue = dataPoints[0].data[0][1]; for (i = 0; i < dataPoints.length; i++) { for (j = 0; j < dataPoints[i].data.length; j++) { dataPoints[i].data[j][1] = Math.round(dataPoints[i].data[j][1] * 1000) / 1000; // 3 decimal places max if (dataPoints[i].data[j][1] < minValue) { minValue = dataPoints[i].data[j][1]; } if (dataPoints[i].data[j][1] > maxValue) { maxValue = dataPoints[i].data[j][1]; } } } var myTickDecimals = 0; var myMinTickSize = 1; if (maxValue < 1 && maxValue > 0) { myTickDecimals = maxValue.toString().length - 2; myMinTickSize = 0.001; } var graphProperties = { series: { lines: { stack: false, show: false, fill: true, lineWidth: 2.5, fillColor: { colors: [ { opacity: 0 }, { opacity: 0 } ] }, shadowSize: 0 }, splines: { show: true, lineWidth: 2.5 }, points: { show: true, radius: 0, shadowSize: 0, lineWidth: 2 }, shadowSize: 0 }, crosshair: { mode: "x", color: "rgba(78,78,78,0.4)" }, grid: { hoverable: true, borderColor: "null", color: "#666", borderWidth: 0, minBorderMargin: 10, labelMargin: 10 }, xaxis: { tickDecimals: "number", tickSize: 0, tickLength: 0 }, yaxis: { min: 0, minTickSize: 1, tickDecimals: "number", ticks: 3, position: "right"}, legend: { show: false, margin: [-25, -44], noColumns: 3, backgroundOpacity: 0 }, colors: countlyCommon.GRAPH_COLORS, }; //overriding values graphProperties.yaxis.minTickSize = myMinTickSize; graphProperties.yaxis.tickDecimals = myTickDecimals; if (myMinTickSize < 1) { graphProperties.yaxis.tickFormatter = function(number) { return "0." + (Math.round(number * 1000) / 1000).toString(); }; } graphProperties.series.points.show = (dataPoints[0].data.length <= 90); if (overrideBucket) { graphProperties.series.points.radius = 4; } var graphTicks = [], tickObj = {}; if (_period === "month" && !bucket) { tickObj = countlyCommon.getTickObj("monthly"); } else { tickObj = countlyCommon.getTickObj(bucket, overrideBucket); } if (small) { for (i = 0; i < tickObj.ticks.length; i = i + 2) { tickObj.ticks[i][1] = ""; } graphProperties.xaxis.font = { size: 11, color: "#a2a2a2" }; } graphProperties.xaxis.max = tickObj.max; graphProperties.xaxis.min = tickObj.min; graphProperties.xaxis.ticks = tickObj.ticks; graphTicks = tickObj.tickTexts; var graphObj = $(container).data("plot"), keyEventCounter = "A", keyEvents = []; //keyEventsIndex = 0; if (graphObj && graphObj.getOptions().series && graphObj.getOptions().series.splines && graphObj.getOptions().series.splines.show && graphObj.getOptions().yaxis.minTickSize === graphProperties.yaxis.minTickSize) { graphObj = $(container).data("plot"); if (overrideBucket) { graphObj.getOptions().series.points.radius = 4; } else { graphObj.getOptions().series.points.radius = 0; } graphObj.getOptions().xaxes[0].max = tickObj.max; graphObj.getOptions().xaxes[0].min = tickObj.min; graphObj.getOptions().xaxes[0].ticks = tickObj.ticks; graphObj.setData(dataPoints); graphObj.setupGrid(); graphObj.draw(); } else { graphObj = $.plot($(container), dataPoints, graphProperties); } /** function calculates min and max * @param {number} index - index * @param {object} el - element * @returns {boolean} true(if not set), else return nothing */ var findMinMax = function(index, el) { // data point is null, this workaround is used to start drawing graph with a certain padding if (!el[1] && parseInt(el[1]) !== 0) { return true; } el[1] = parseFloat(el[1]); if (el[1] >= tmpMax) { tmpMax = el[1]; tmpMaxIndex = el[0]; } if (el[1] <= tmpMin) { tmpMin = el[1]; tmpMinIndex = el[0]; } }; var k = 0; for (k = 0; k < graphObj.getData().length; k++) { var tmpMax = 0, tmpMaxIndex = 0, tmpMin = 999999999999, tmpMinIndex = 0, label = (graphObj.getData()[k].label + "").toLowerCase(); if (graphObj.getData()[k].mode === "ghost") { //keyEventsIndex += graphObj.getData()[k].data.length; continue; } $.each(graphObj.getData()[k].data, findMinMax); if (tmpMax === tmpMin) { continue; } keyEvents[k] = []; keyEvents[k][keyEvents[k].length] = { data: [tmpMinIndex, tmpMin], code: keyEventCounter, color: graphObj.getData()[k].color, event: "min", desc: jQuery.i18n.prop('common.graph-min', tmpMin, label, graphTicks[tmpMinIndex]) }; keyEventCounter = String.fromCharCode(keyEventCounter.charCodeAt() + 1); keyEvents[k][keyEvents[k].length] = { data: [tmpMaxIndex, tmpMax], code: keyEventCounter, color: graphObj.getData()[k].color, event: "max", desc: jQuery.i18n.prop('common.graph-max', tmpMax, label, graphTicks[tmpMaxIndex]) }; keyEventCounter = String.fromCharCode(keyEventCounter.charCodeAt() + 1); } var graphWidth = graphObj.width(); $(container).find(".graph-key-event-label").remove(); $(container).find(".graph-note-label").remove(); for (k = 0; k < keyEvents.length; k++) { var bgColor = graphObj.getData()[k].color; if (!keyEvents[k]) { continue; } for (var l = 0; l < keyEvents[k].length; l++) { var o = graphObj.pointOffset({ x: keyEvents[k][l].data[0], y: keyEvents[k][l].data[1] }); if (o.left <= 15) { o.left = 15; } if (o.left >= (graphWidth - 15)) { o.left = (graphWidth - 15); } var keyEventLabel = $('<div class="graph-key-event-label">').text(keyEvents[k][l].code); keyEventLabel.attr({ "title": keyEvents[k][l].desc, "data-points": "[" + keyEvents[k][l].data + "]" }).css({ "position": 'absolute', "left": o.left, "top": o.top - 33, "display": 'none', "background-color": bgColor }).appendTo(graphObj.getPlaceholder()).show(); $(".tipsy").remove(); keyEventLabel.tipsy({ gravity: $.fn.tipsy.autoWE, offset: 3, html: true }); } } // Add note labels to the graph if (!(bucket === "hourly" && dataPoints[0].data.length > 24) && bucket !== "weekly") { var noteDateIds = countlyCommon.getNoteDateIds(bucket), frontData = graphObj.getData()[graphObj.getData().length - 1], startIndex = (!frontData.data[1] && frontData.data[1] !== 0) ? 1 : 0; for (k = 0, l = startIndex; k < frontData.data.length; k++, l++) { if (frontData.data[l]) { var graphPoint = graphObj.pointOffset({ x: frontData.data[l][0], y: frontData.data[l][1] }); if (countlyCommon.getNotesForDateId(noteDateIds[k]).length) { var graphNoteLabel = $('<div class="graph-note-label"><div class="fa fa-pencil"></div></div>'); graphNoteLabel.attr({ "title": countlyCommon.getNotesForDateId(noteDateIds[k]), "data-points": "[" + frontData.data[l] + "]" }).css({ "position": 'absolute', "left": graphPoint.left, "top": graphPoint.top - 33, "display": 'none', "border-color": frontData.color }).appendTo(graphObj.getPlaceholder()).show(); $(".tipsy").remove(); graphNoteLabel.tipsy({ gravity: $.fn.tipsy.autoWE, offset: 3, html: true }); } } } } $(container).on("mouseout", function() { graphObj.unlockCrosshair(); graphObj.clearCrosshair(); graphObj.unhighlight(); $("#graph-tooltip").fadeOut(200, function() { $(this).remove(); }); }); /** dShows tooltip * @param {number} dataIndex - index * @param {object} position - position * @param {boolean} onPoint - if point found */ function showCrosshairTooltip(dataIndex, position, onPoint) { var tooltip = $("#graph-tooltip"); var crossHairPos = graphObj.p2c(position); var tooltipLeft = (crossHairPos.left < 200) ? crossHairPos.left + 20 : crossHairPos.left - tooltip.width() - 20; tooltip.css({ left: tooltipLeft }); if (onPoint) { var dataSet = graphObj.getData(), tooltipHTML = "<div class='title'>" + tickObj.tickTexts[dataIndex] + "</div>"; dataSet = _.sortBy(dataSet, function(obj) { return obj.data[dataIndex][1]; }); for (var m = dataSet.length - 1; m >= 0; --m) { var series = dataSet[m], formattedValue = series.data[dataIndex][1]; // Change label to previous period if there is a ghost graph if (series.mode === "ghost") { series.label = jQuery.i18n.map["common.previous-period"]; } if (formattedValue) { formattedValue = parseFloat(formattedValue).toFixed(2).replace(/[.,]00$/, ""); } if (series.data[dataIndex][2]) { formattedValue = series.data[dataIndex][2]; // to show customized string value tips } tooltipHTML += "<div class='inner'>"; tooltipHTML += "<div class='color' style='background-color: " + series.color + "'></div>"; tooltipHTML += "<div class='series'>" + series.label + "</div>"; tooltipHTML += "<div class='value'>" + formattedValue + "</div>"; tooltipHTML += "</div>"; } if (tooltip.length) { tooltip.html(tooltipHTML); } else { tooltip = $("<div id='graph-tooltip' class='white' style='top:-15px;'>" + tooltipHTML + "</div>"); $(container).prepend(tooltip); } if (tooltip.is(":visible")) { tooltip.css({ "transition": "left .15s" }); } else { tooltip.fadeIn(); } } } $(container).unbind("plothover"); $(container).bind("plothover", function(event, pos) { graphObj.unlockCrosshair(); graphObj.unhighlight(); var dataset = graphObj.getData(), pointFound = false; for (i = 0; i < dataset.length; ++i) { var series = dataset[i]; // Find the nearest points, x-wise for (j = 0; j < series.data.length; ++j) { var currX = series.data[j][0], currCrossX = pos.x.toFixed(2); if ((currX - 0.10) < currCrossX && (currX + 0.10) > currCrossX) { graphObj.lockCrosshair({ x: series.data[j][0], y: series.data[j][1] }); graphObj.highlight(series, j); pointFound = true; break; } } } showCrosshairTooltip(j, pos, pointFound); }); }, dataPoints, container, bucket); }; /** * Draws a gauge with provided value on procided container. * @param {string|object} targetEl - selector for container or container object itself where to create graph * @param {number} value - value to display on gauge * @param {number} maxValue - maximal value of the gauge * @param {string} gaugeColor - color of the gauge in hexadecimal string as #ffffff * @param {string|object} textField - selector for container or container object itself where to output textual value */ countlyCommon.drawGauge = function(targetEl, value, maxValue, gaugeColor, textField) { var opts = { lines: 12, angle: 0.15, lineWidth: 0.44, pointer: { length: 0.7, strokeWidth: 0.05, color: '#000000' }, colorStart: gaugeColor, colorStop: gaugeColor, strokeColor: '#E0E0E0', generateGradient: true }; var gauge = new Gauge($(targetEl)[0]).setOptions(opts); if (textField) { gauge.setTextField($(textField)[0]); } gauge.maxValue = maxValue; gauge.set(1); gauge.set(value); }; /** * Draws horizibtally stacked bars like in platforms and density analytic sections. * @param {array} data - data to draw in form of [{"data":[[0,85]],"label":"Test1"},{"data":[[0,79]],"label":"Test2"},{"data":[[0,78]],"label":"Test3"}] * @param {object|string} intoElement - selector for container or container object itself where to create graph * @param {number} colorIndex - index of color from {@link countlyCommon.GRAPH_COLORS} */ countlyCommon.drawHorizontalStackedBars = function(data, intoElement, colorIndex) { var processedData = [], tmpProcessedData = [], totalCount = 0, maxToDisplay = 10, barHeight = 30; var i = 0; for (i = 0; i < data.length; i++) { tmpProcessedData.push({ label: data[i].label, count: data[i].data[0][1], index: i }); totalCount += data[i].data[0][1]; } var totalPerc = 0, proCount = 0; for (i = 0; i < tmpProcessedData.length; i++) { if (i >= maxToDisplay) { processedData.push({ label: "Other", count: totalCount - proCount, perc: countlyCommon.round((100 - totalPerc), 2) + "%", index: i }); break; } var perc = countlyCommon.round((tmpProcessedData[i].count / totalCount) * 100, 2); tmpProcessedData[i].perc = perc + "%"; totalPerc += perc; proCount += tmpProcessedData[i].count; processedData.push(tmpProcessedData[i]); } if (processedData.length > 0) { var percentSoFar = 0; var chart = d3.select(intoElement) .attr("width", "100%") .attr("height", barHeight); var bar = chart.selectAll("g") .data(processedData) .enter().append("g"); bar.append("rect") .attr("width", function(d) { return ((d.count / totalCount) * 100) + "%"; }) .attr("x", function(d) { var myPercent = percentSoFar; percentSoFar = percentSoFar + (100 * (d.count / totalCount)); return myPercent + "%"; }) .attr("height", barHeight) .attr("fill", function(d) { if (colorIndex || colorIndex === 0) { return countlyCommon.GRAPH_COLORS[colorIndex]; } else { return countlyCommon.GRAPH_COLORS[d.index]; } }) .attr("stroke", "#FFF") .attr("stroke-width", 2); if (colorIndex || colorIndex === 0) { bar.attr("opacity", function(d) { return 1 - (0.05 * d.index); }); } percentSoFar = 0; bar.append("foreignObject") .attr("width", function(d) { return ((d.count / totalCount) * 100) + "%"; }) .attr("height", barHeight) .attr("x", function(d) { var myPercent = percentSoFar; percentSoFar = percentSoFar + (100 * (d.count / totalCount)); return myPercent + "%"; }) .append("xhtml:div") .attr("class", "hsb-tip") .html(function(d) { return "<div>" + d.perc + "</div>"; }); percentSoFar = 0; bar.append("text") .attr("x", function(d) { var myPercent = percentSoFar; percentSoFar = percentSoFar + (100 * (d.count / totalCount)); return myPercent + 0.5 + "%"; }) .attr("dy", "1.35em") .text(function(d) { return d.label; }); } else { var chart1 = d3.select(intoElement) .attr("width", "100%") .attr("height", barHeight); var bar1 = chart1.selectAll("g") .data([{ text: jQuery.i18n.map["common.bar.no-data"] }]) .enter().append("g"); bar1.append("rect") .attr("width", "100%") .attr("height", barHeight) .attr("fill", "#FBFBFB") .attr("stroke", "#FFF") .attr("stroke-width", 2); bar1.append("foreignObject") .attr("width", "100%") .attr("height", barHeight) .append("xhtml:div") .attr("class", "no-data") .html(function(d) { return d.text; }); } }; /** * Extract range data from standard countly metric data model * @param {object} db - countly standard metric data object * @param {string} propertyName - name of the property to extract * @param {object} rangeArray - array of all metrics/segments to extract (usually what is contained in meta) * @param {function} explainRange - function to convert range/bucket index to meaningful label * @param {array} myorder - arrays of preferred order for give keys. Optional. If not passed - sorted by values * @returns {array} array containing extracted ranged data as [{"f":"First session","t":352,"percent":"88.4"},{"f":"2 days","t":46,"percent":"11.6"}] * @example <caption>Extracting session frequency from users collection</caption> * //outputs [{"f":"First session","t":352,"percent":"88.4"},{"f":"2 days","t":46,"percent":"11.6"}] * countlyCommon.extractRangeData(_userDb, "f", _frequencies, countlySession.explainFrequencyRange); */ countlyCommon.extractRangeData = function(db, propertyName, rangeArray, explainRange, myorder) { countlyCommon.periodObj = getPeriodObj(); var dataArr = [], dataArrCounter = 0, rangeTotal, total = 0; var tmp_x = 0; if (!rangeArray) { return dataArr; } for (var j = 0; j < rangeArray.length; j++) { rangeTotal = 0; if (!countlyCommon.periodObj.isSpecialPeriod) { tmp_x = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.activePeriod + "." + propertyName); if (tmp_x && tmp_x[rangeArray[j]]) { rangeTotal += tmp_x[rangeArray[j]]; } if (rangeTotal !== 0) { dataArr[dataArrCounter] = {}; dataArr[dataArrCounter][propertyName] = (explainRange) ? explainRange(rangeArray[j]) : rangeArray[j]; dataArr[dataArrCounter].t = rangeTotal; total += rangeTotal; dataArrCounter++; } } else { var tmpRangeTotal = 0; var i = 0; for (i = 0; i < (countlyCommon.periodObj.uniquePeriodArr.length); i++) { tmp_x = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.uniquePeriodArr[i] + "." + propertyName); if (tmp_x && tmp_x[rangeArray[j]]) { rangeTotal += tmp_x[rangeArray[j]]; } } for (i = 0; i < (countlyCommon.periodObj.uniquePeriodCheckArr.length); i++) { tmp_x = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.uniquePeriodCheckArr[i] + "." + propertyName); if (tmp_x && tmp_x[rangeArray[j]]) { tmpRangeTotal += tmp_x[rangeArray[j]]; } } if (rangeTotal > tmpRangeTotal) { rangeTotal = tmpRangeTotal; } if (rangeTotal !== 0) { dataArr[dataArrCounter] = {}; dataArr[dataArrCounter][propertyName] = (explainRange) ? explainRange(rangeArray[j]) : rangeArray[j]; dataArr[dataArrCounter].t = rangeTotal; total += rangeTotal; dataArrCounter++; } } } for (var z = 0; z < dataArr.length; z++) { dataArr[z].percent = ((dataArr[z].t / total) * 100).toFixed(1); } if (myorder && Array.isArray(myorder)) { dataArr.sort(function(a, b) { return (myorder.indexOf(a[propertyName]) - myorder.indexOf(b[propertyName])); }); } else { dataArr.sort(function(a, b) { return -(a.t - b.t); }); } return dataArr; }; /** * Extract single level data without metrics/segments, like total user data from users collection * @param {object} db - countly standard metric data object * @param {function} clearFunction - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @param {object} chartData - prefill chart data with labels, colors, etc * @param {object} dataProperties - describing which properties and how to extract * @param {string} metric - metric to select * @returns {object} object to use in timeline graph with {"chartDP":chartData, "chartData":_.compact(tableData), "keyEvents":keyEvents} * @example <caption>Extracting total users data from users collection</caption> * countlyCommon.extractChartData(_sessionDb, countlySession.clearObject, [ * { data:[], label:"Total Users" } * ], [ * { * name:"t", * func:function (dataObj) { * return dataObj["u"] * } * } * ]); * @example <caption>Returned data</caption> * {"chartDP":[ * { * "data":[[0,0],[1,0],[2,0],[3,0],[4,0],[5,0],[6,0],[7,0],[8,0],[9,0],[10,0],[11,0],[12,0],[13,0],[14,0],[15,12]], * "label":"Total Sessions", * "color":"#DDDDDD", * "mode":"ghost" * }, * { * "data":[[0,6],[1,14],[2,11],[3,18],[4,10],[5,32],[6,53],[7,55],[8,71],[9,82],[10,74],[11,69],[12,60],[13,17],[14,6],[15,3]], * "label":"Total Sessions", * "color":"#333933" * } * ], * "chartData":[ * {"date":"22 Dec, 2016","pt":0,"t":6}, * {"date":"23 Dec, 2016","pt":0,"t":14}, * {"date":"24 Dec, 2016","pt":0,"t":11}, * {"date":"25 Dec, 2016","pt":0,"t":18}, * {"date":"26 Dec, 2016","pt":0,"t":10}, * {"date":"27 Dec, 2016","pt":0,"t":32}, * {"date":"28 Dec, 2016","pt":0,"t":53}, * {"date":"29 Dec, 2016","pt":0,"t":55}, * {"date":"30 Dec, 2016","pt":0,"t":71}, * {"date":"31 Dec, 2016","pt":0,"t":82}, * {"date":"1 Jan, 2017","pt":0,"t":74}, * {"date":"2 Jan, 2017","pt":0,"t":69}, * {"date":"3 Jan, 2017","pt":0,"t":60}, * {"date":"4 Jan, 2017","pt":0,"t":17}, * {"date":"5 Jan, 2017","pt":0,"t":6}, * {"date":"6 Jan, 2017","pt":12,"t":3} * ], * "keyEvents":[{"min":0,"max":12},{"min":0,"max":82}] * } */ countlyCommon.extractChartData = function(db, clearFunction, chartData, dataProperties, metric) { if (metric) { metric = "." + metric; } else { metric = ""; } countlyCommon.periodObj = getPeriodObj(); var periodMin = countlyCommon.periodObj.periodMin, periodMax = (countlyCommon.periodObj.periodMax + 1), dataObj = {}, formattedDate = "", tableData = [], propertyNames = _.pluck(dataProperties, "name"), propertyFunctions = _.pluck(dataProperties, "func"), currOrPrevious = _.pluck(dataProperties, "period"), activeDate, activeDateArr; for (var j = 0; j < propertyNames.length; j++) { if (currOrPrevious[j] === "previous") { if (countlyCommon.periodObj.isSpecialPeriod) { periodMin = 0; periodMax = countlyCommon.periodObj.previousPeriodArr.length; activeDateArr = countlyCommon.periodObj.previousPeriodArr; } else { activeDate = countlyCommon.periodObj.previousPeriod; } } else { if (countlyCommon.periodObj.isSpecialPeriod) { periodMin = 0; periodMax = countlyCommon.periodObj.currentPeriodArr.length; activeDateArr = countlyCommon.periodObj.currentPeriodArr; } else { activeDate = countlyCommon.periodObj.activePeriod; } } for (var i = periodMin; i < periodMax; i++) { if (!countlyCommon.periodObj.isSpecialPeriod) { if (countlyCommon.periodObj.periodMin === 0) { formattedDate = moment((activeDate + " " + i + ":00:00").replace(/\./g, "/"), "YYYY/MM/DD HH:mm:ss"); } else if (("" + activeDate).indexOf(".") === -1) { formattedDate = moment((activeDate + "/" + i + "/1").replace(/\./g, "/"), "YYYY/MM/DD"); } else { formattedDate = moment((activeDate + "/" + i).replace(/\./g, "/"), "YYYY/MM/DD"); } dataObj = countlyCommon.getDescendantProp(db, activeDate + "." + i + metric); } else { formattedDate = moment((activeDateArr[i]).replace(/\./g, "/"), "YYYY/MM/DD"); dataObj = countlyCommon.getDescendantProp(db, activeDateArr[i] + metric); } dataObj = clearFunction(dataObj); if (!tableData[i]) { tableData[i] = {}; } tableData[i].date = countlyCommon.formatDate(formattedDate, countlyCommon.periodObj.dateString); var propertyValue = ""; if (propertyFunctions[j]) { propertyValue = propertyFunctions[j](dataObj); } else { propertyValue = dataObj[propertyNames[j]]; } chartData[j].data[chartData[j].data.length] = [i, propertyValue]; tableData[i][propertyNames[j]] = propertyValue; } } var keyEvents = []; for (var k = 0; k < chartData.length; k++) { var flatChartData = _.flatten(chartData[k].data); var chartVals = _.reject(flatChartData, function(context, value) { return value % 2 === 0; }); keyEvents[k] = {}; keyEvents[k].min = _.min(chartVals); keyEvents[k].max = _.max(chartVals); } return { "chartDP": chartData, "chartData": _.compact(tableData), "keyEvents": keyEvents }; }; /** * Extract two level data with metrics/segments, like total user data from carriers collection * @param {object} db - countly standard metric data object * @param {object} rangeArray - array of all metrics/segments to extract (usually what is contained in meta) * @param {function} clearFunction - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @param {object} dataProperties - describing which properties and how to extract * @param {object=} estOverrideMetric - data from total users api request to correct unique user values * @returns {object} object to use in bar and pie charts with {"chartData":_.compact(tableData)} * @example <caption>Extracting carriers data from carriers collection</caption> * var chartData = countlyCommon.extractTwoLevelData(_carrierDb, ["At&t", "Verizon"], countlyCarrier.clearObject, [ * { * name:"carrier", * func:function (rangeArr, dataObj) { * return rangeArr; * } * }, * { "name":"t" }, * { "name":"u" }, * { "name":"n" } * ]); * @example <caption>Return data</caption> * {"chartData":[' * {"carrier":"At&t","t":71,"u":62,"n":36}, * {"carrier":"Verizon","t":66,"u":60,"n":30} * ]} */ countlyCommon.extractTwoLevelData = function(db, rangeArray, clearFunction, dataProperties, estOverrideMetric) { countlyCommon.periodObj = getPeriodObj(); if (!rangeArray) { return { "chartData": tableData }; } var periodMin = 0, periodMax = 0, dataObj = {}, tableData = [], propertyNames = _.pluck(dataProperties, "name"), propertyFunctions = _.pluck(dataProperties, "func"), propertyValue = 0; if (!countlyCommon.periodObj.isSpecialPeriod) { periodMin = countlyCommon.periodObj.periodMin; periodMax = (countlyCommon.periodObj.periodMax + 1); } else { periodMin = 0; periodMax = countlyCommon.periodObj.currentPeriodArr.length; } var tableCounter = 0; var j = 0; var k = 0; var i = 0; if (!countlyCommon.periodObj.isSpecialPeriod) { for (j = 0; j < rangeArray.length; j++) { dataObj = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.activePeriod + "." + rangeArray[j]); if (!dataObj) { continue; } var tmpPropertyObj1 = {}; dataObj = clearFunction(dataObj); var propertySum = 0; for (k = 0; k < propertyNames.length; k++) { if (propertyFunctions[k]) { propertyValue = propertyFunctions[k](rangeArray[j], dataObj); } else { propertyValue = dataObj[propertyNames[k]]; } if (typeof propertyValue !== 'string') { propertySum += propertyValue; } tmpPropertyObj1[propertyNames[k]] = propertyValue; } if (propertySum > 0) { tableData[tableCounter] = {}; tableData[tableCounter] = tmpPropertyObj1; tableCounter++; } } } else { var calculatedObj = (estOverrideMetric) ? countlyTotalUsers.get(estOverrideMetric) : {}; for (j = 0; j < rangeArray.length; j++) { var tmp_x = {}; var tmpPropertyObj = {}; for (i = periodMin; i < periodMax; i++) { dataObj = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.currentPeriodArr[i] + "." + rangeArray[j]); if (!dataObj) { continue; } dataObj = clearFunction(dataObj); for (k = 0; k < propertyNames.length; k++) { if (propertyNames[k] === "u") { propertyValue = 0; } else if (propertyFunctions[k]) { propertyValue = propertyFunctions[k](rangeArray[j], dataObj); } else { propertyValue = dataObj[propertyNames[k]]; } if (!tmpPropertyObj[propertyNames[k]]) { tmpPropertyObj[propertyNames[k]] = 0; } if (typeof propertyValue === 'string') { tmpPropertyObj[propertyNames[k]] = propertyValue; } else { tmpPropertyObj[propertyNames[k]] += propertyValue; } } } if (propertyNames.indexOf("u") !== -1 && Object.keys(tmpPropertyObj).length) { if (countlyTotalUsers.isUsable() && estOverrideMetric && calculatedObj[rangeArray[j]]) { tmpPropertyObj.u = calculatedObj[rangeArray[j]]; } else { var tmpUniqVal = 0, tmpUniqValCheck = 0, tmpCheckVal = 0, l = 0; for (l = 0; l < (countlyCommon.periodObj.uniquePeriodArr.length); l++) { tmp_x = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.uniquePeriodArr[l] + "." + rangeArray[j]); if (!tmp_x) { continue; } tmp_x = clearFunction(tmp_x); propertyValue = tmp_x.u; if (typeof propertyValue === 'string') { tmpPropertyObj.u = propertyValue; } else { tmpUniqVal += propertyValue; tmpPropertyObj.u += propertyValue; } } for (l = 0; l < (countlyCommon.periodObj.uniquePeriodCheckArr.length); l++) { tmp_x = countlyCommon.getDescendantProp(db, countlyCommon.periodObj.uniquePeriodCheckArr[l] + "." + rangeArray[j]); if (!tmp_x) { continue; } tmp_x = clearFunction(tmp_x); tmpCheckVal = tmp_x.u; if (typeof tmpCheckVal !== 'string') { tmpUniqValCheck += tmpCheckVal; } } if (tmpUniqVal > tmpUniqValCheck) { tmpPropertyObj.u = tmpUniqValCheck; } } // Total users can't be less than new users if (tmpPropertyObj.u < tmpPropertyObj.n) { tmpPropertyObj.u = tmpPropertyObj.n; } // Total users can't be more than total sessions if (tmpPropertyObj.u > tmpPropertyObj.t) { tmpPropertyObj.u = tmpPropertyObj.t; } } tableData[tableCounter] = {}; tableData[tableCounter] = tmpPropertyObj; tableCounter++; } } for (i = 0; i < tableData.length; i++) { if (_.isEmpty(tableData[i])) { tableData[i] = null; } } tableData = _.compact(tableData); if (propertyNames.indexOf("u") !== -1) { countlyCommon.sortByProperty(tableData, "u"); } else if (propertyNames.indexOf("t") !== -1) { countlyCommon.sortByProperty(tableData, "t"); } else if (propertyNames.indexOf("c") !== -1) { countlyCommon.sortByProperty(tableData, "c"); } return { "chartData": tableData }; }; countlyCommon.sortByProperty = function(tableData, prop) { tableData.sort(function(a, b) { a = (a && a[prop]) ? a[prop] : 0; b = (b && b[prop]) ? b[prop] : 0; return b - a; }); }; /** * Merge metric data in chartData returned by @{link countlyCommon.extractChartData} or @{link countlyCommon.extractTwoLevelData }, just in case if after data transformation of countly standard metric data model, resulting chartData contains duplicated values, as for example converting null, undefined and unknown values to unknown * @param {object} chartData - chartData returned by @{link countlyCommon.extractChartData} or @{link countlyCommon.extractTwoLevelData } * @param {string} metric - metric name to merge * @returns {object} chartData object with same metrics summed up * @example <caption>Sample input</caption> * {"chartData":[ * {"metric":"Test","t":71,"u":62,"n":36}, * {"metric":"Test1","t":66,"u":60,"n":30}, * {"metric":"Test","t":2,"u":3,"n":4} * ]} * @example <caption>Sample output</caption> * {"chartData":[ * {"metric":"Test","t":73,"u":65,"n":40}, * {"metric":"Test1","t":66,"u":60,"n":30} * ]} */ countlyCommon.mergeMetricsByName = function(chartData, metric) { var uniqueNames = {}, data; for (var i = 0; i < chartData.length; i++) { data = chartData[i]; if (data[metric] && !uniqueNames[data[metric]]) { uniqueNames[data[metric]] = data; } else { for (var key in data) { if (typeof data[key] === "string") { uniqueNames[data[metric]][key] = data[key]; } else if (typeof data[key] === "number") { if (!uniqueNames[data[metric]][key]) { uniqueNames[data[metric]][key] = 0; } uniqueNames[data[metric]][key] += data[key]; } } } } return _.values(uniqueNames); }; /** * Extracts top three items (from rangeArray) that have the biggest total session counts from the db object. * @param {object} db - countly standard metric data object * @param {object} rangeArray - array of all metrics/segments to extract (usually what is contained in meta) * @param {function} clearFunction - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @param {function} fetchFunction - function to fetch property, default used is function (rangeArr, dataObj) {return rangeArr;} * @returns {array} array with top 3 values * @example <caption>Return data</caption> * [ * {"name":"iOS","percent":35}, * {"name":"Android","percent":33}, * {"name":"Windows Phone","percent":32} * ] */ countlyCommon.extractBarDataWPercentageOfTotal = function(db, rangeArray, clearFunction, fetchFunction) { fetchFunction = fetchFunction || function(rangeArr) { return rangeArr; }; var rangeData = countlyCommon.extractTwoLevelData(db, rangeArray, clearFunction, [ { name: "range", func: fetchFunction }, { "name": "t" } ]); return countlyCommon.calculateBarDataWPercentageOfTotal(rangeData); }; /** * Extracts top three items (from rangeArray) that have the biggest total session counts from the db object. * @param {object} db - countly standard metric data object * @param {object} rangeArray - array of all metrics/segments to extract (usually what is contained in meta) * @param {function} clearFunction - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @param {function} fetchFunction - function to fetch property, default used is function (rangeArr, dataObj) {return rangeArr;} * @returns {array} array with top 3 values * @example <caption>Return data</caption> * [ * {"name":"iOS","percent":35}, * {"name":"Android","percent":33}, * {"name":"Windows Phone","percent":32} * ] */ countlyCommon.extractBarData = function(db, rangeArray, clearFunction, fetchFunction) { fetchFunction = fetchFunction || function(rangeArr) { return rangeArr; }; var rangeData = countlyCommon.extractTwoLevelData(db, rangeArray, clearFunction, [ { name: "range", func: fetchFunction }, { "name": "t" } ]); return countlyCommon.calculateBarData(rangeData); }; /** * Extracts top three items (from rangeArray) that have the biggest total session counts from the chartData with their percentage of total * @param {object} rangeData - chartData retrieved from {@link countlyCommon.extractTwoLevelData} as {"chartData":[{"carrier":"At&t","t":71,"u":62,"n":36},{"carrier":"Verizon","t":66,"u":60,"n":30}]} * @returns {array} array with top 3 values * @example <caption>Return data</caption> * [ * {"name":"iOS","percent":44}, * {"name":"Android","percent":22}, * {"name":"Windows Phone","percent":14} * ] */ countlyCommon.calculateBarDataWPercentageOfTotal = function(rangeData) { rangeData.chartData = countlyCommon.mergeMetricsByName(rangeData.chartData, "range"); rangeData.chartData = _.sortBy(rangeData.chartData, function(obj) { return -obj.t; }); var rangeNames = _.pluck(rangeData.chartData, 'range'), rangeTotal = _.pluck(rangeData.chartData, 't'), barData = [], maxItems = 3, totalSum = 0; rangeTotal.forEach(function(r) { totalSum += r; }); rangeTotal.sort(function(a, b) { if (a < b) { return 1; } if (b < a) { return -1; } return 0; }); if (rangeNames.length < maxItems) { maxItems = rangeNames.length; } for (var i = 0; i < maxItems; i++) { var percent = Math.floor((rangeTotal[i] / totalSum) * 100); barData[i] = { "name": rangeNames[i], "percent": percent }; } return barData; }; /** * Extracts top three items (from rangeArray) that have the biggest total session counts from the chartData. * @param {object} rangeData - chartData retrieved from {@link countlyCommon.extractTwoLevelData} as {"chartData":[{"carrier":"At&t","t":71,"u":62,"n":36},{"carrier":"Verizon","t":66,"u":60,"n":30}]} * @returns {array} array with top 3 values * @example <caption>Return data</caption> * [ * {"name":"iOS","percent":35}, * {"name":"Android","percent":33}, * {"name":"Windows Phone","percent":32} * ] */ countlyCommon.calculateBarData = function(rangeData) { rangeData.chartData = countlyCommon.mergeMetricsByName(rangeData.chartData, "range"); rangeData.chartData = _.sortBy(rangeData.chartData, function(obj) { return -obj.t; }); var rangeNames = _.pluck(rangeData.chartData, 'range'), rangeTotal = _.pluck(rangeData.chartData, 't'), barData = [], sum = 0, maxItems = 3, totalPercent = 0; rangeTotal.sort(function(a, b) { if (a < b) { return 1; } if (b < a) { return -1; } return 0; }); if (rangeNames.length < maxItems) { maxItems = rangeNames.length; } var i = 0; for (i = 0; i < maxItems; i++) { sum += rangeTotal[i]; } for (i = 0; i < maxItems; i++) { var percent = Math.floor((rangeTotal[i] / sum) * 100); totalPercent += percent; if (i === (maxItems - 1)) { percent += 100 - totalPercent; } barData[i] = { "name": rangeNames[i], "percent": percent }; } return barData; }; countlyCommon.extractUserChartData = function(db, label, sec) { var ret = { "data": [], "label": label }; countlyCommon.periodObj = getPeriodObj(); var periodMin, periodMax, dateob; if (countlyCommon.periodObj.isSpecialPeriod) { periodMin = 0; periodMax = (countlyCommon.periodObj.daysInPeriod); var dateob1 = countlyCommon.processPeriod(countlyCommon.periodObj.currentPeriodArr[0].toString()); var dateob2 = countlyCommon.processPeriod(countlyCommon.periodObj.currentPeriodArr[countlyCommon.periodObj.currentPeriodArr.length - 1].toString()); dateob = { timestart: dateob1.timestart, timeend: dateob2.timeend, range: "d" }; } else { periodMin = countlyCommon.periodObj.periodMin; periodMax = countlyCommon.periodObj.periodMax + 1; dateob = countlyCommon.processPeriod(countlyCommon.periodObj.activePeriod.toString()); } var res = [], ts; //get all timestamps in that period var i = 0; for (i = 0, l = db.length; i < l; i++) { ts = db[i]; if (sec) { ts.ts = ts.ts * 1000; } if (ts.ts > dateob.timestart && ts.ts <= dateob.timeend) { res.push(ts); } } var lastStart, lastEnd = dateob.timestart, total, data = ret.data; for (i = periodMin; i < periodMax; i++) { total = 0; lastStart = lastEnd; lastEnd = moment(lastStart).add(moment.duration(1, dateob.range)).valueOf(); for (var j = 0, l = res.length; j < l; j++) { ts = res[j]; if (ts.ts > lastStart && ts.ts <= lastEnd) { if (ts.c) { total += ts.c; } else { total++; } } } data.push([i, total]); } return ret; }; countlyCommon.processPeriod = function(period) { var date = period.split("."); var range, timestart, timeend; if (date.length === 1) { range = "M"; timestart = moment(period, "YYYY").valueOf(); timeend = moment(period, "YYYY").add(moment.duration(1, "y")).valueOf(); } else if (date.length === 2) { range = "d"; timestart = moment(period, "YYYY.MM").valueOf(); timeend = moment(period, "YYYY.MM").add(moment.duration(1, "M")).valueOf(); } else if (date.length === 3) { range = "h"; timestart = moment(period, "YYYY.MM.DD").valueOf(); timeend = moment(period, "YYYY.MM.DD").add(moment.duration(1, "d")).valueOf(); } return { timestart: timestart, timeend: timeend, range: range }; }; /** * Shortens the given number by adding K (thousand) or M (million) postfix. K is added only if the number is bigger than 10000, etc. * @param {number} number - number to shorten * @returns {string} shorter representation of number * @example * //outputs 10K * countlyCommon.getShortNumber(10000); */ countlyCommon.getShortNumber = function(number) { var tmpNumber = ""; if (number >= 1000000000 || number <= -1000000000) { tmpNumber = ((number / 1000000000).toFixed(1).replace(".0", "")) + "B"; } else if (number >= 1000000 || number <= -1000000) { tmpNumber = ((number / 1000000).toFixed(1).replace(".0", "")) + "M"; } else if (number >= 10000 || number <= -10000) { tmpNumber = ((number / 1000).toFixed(1).replace(".0", "")) + "K"; } else { number += ""; tmpNumber = number.replace(".0", ""); } return tmpNumber; }; /** * Getting the date range shown on the dashboard like 1 Aug - 30 Aug, using {@link countlyCommon.periodObj) dateString property which holds the date format. * @returns {string} string with formatted date range as 1 Aug - 30 Aug */ countlyCommon.getDateRange = function() { countlyCommon.periodObj = getPeriodObj(); var formattedDateStart = ""; var formattedDateEnd = ""; if (!countlyCommon.periodObj.isSpecialPeriod) { if (countlyCommon.periodObj.dateString === "HH:mm") { formattedDateStart = moment(countlyCommon.periodObj.activePeriod + " " + countlyCommon.periodObj.periodMin + ":00", "YYYY.M.D HH:mm"); formattedDateEnd = moment(countlyCommon.periodObj.activePeriod + " " + countlyCommon.periodObj.periodMax + ":00", "YYYY.M.D HH:mm"); var nowMin = moment().format("mm"); formattedDateEnd.add(nowMin, "minutes"); } else if (countlyCommon.periodObj.dateString === "D MMM, HH:mm") { formattedDateStart = moment(countlyCommon.periodObj.activePeriod, "YYYY.M.D"); formattedDateEnd = moment(countlyCommon.periodObj.activePeriod, "YYYY.M.D").add(23, "hours").add(59, "minutes"); } else { formattedDateStart = moment(countlyCommon.periodObj.activePeriod + "." + countlyCommon.periodObj.periodMin, "YYYY.M.D"); formattedDateEnd = moment(countlyCommon.periodObj.activePeriod + "." + countlyCommon.periodObj.periodMax, "YYYY.M.D"); } } else { formattedDateStart = moment(countlyCommon.periodObj.currentPeriodArr[0], "YYYY.M.D"); formattedDateEnd = moment(countlyCommon.periodObj.currentPeriodArr[(countlyCommon.periodObj.currentPeriodArr.length - 1)], "YYYY.M.D"); } var fromStr = countlyCommon.formatDate(formattedDateStart, countlyCommon.periodObj.dateString), toStr = countlyCommon.formatDate(formattedDateEnd, countlyCommon.periodObj.dateString); if (fromStr === toStr) { return fromStr; } else { return fromStr + " - " + toStr; } }; /** * Merge standard countly metric data object, by mergin updateObj retrieved from action=refresh api requests object into dbObj. * Used for merging the received data for today to the existing data while updating the dashboard. * @param {object} dbObj - standard metric data object * @param {object} updateObj - standard metric data object retrieved from action=refresh request to last time bucket data only */ countlyCommon.extendDbObj = function(dbObj, updateObj) { var now = moment(), year = now.year(), month = (now.month() + 1), day = now.date(), weekly = Math.ceil(now.format("DDD") / 7), intRegex = /^\d+$/, tmpUpdateObj = {}, tmpOldObj = {}; if (updateObj[year] && updateObj[year][month] && updateObj[year][month][day]) { if (!dbObj[year]) { dbObj[year] = {}; } if (!dbObj[year][month]) { dbObj[year][month] = {}; } if (!dbObj[year][month][day]) { dbObj[year][month][day] = {}; } if (!dbObj[year]["w" + weekly]) { dbObj[year]["w" + weekly] = {}; } tmpUpdateObj = updateObj[year][month][day]; tmpOldObj = dbObj[year][month][day]; dbObj[year][month][day] = updateObj[year][month][day]; } if (updateObj.meta) { if (!dbObj.meta) { dbObj.meta = {}; } dbObj.meta = updateObj.meta; } for (var level1 in tmpUpdateObj) { if (!tmpUpdateObj.hasOwnProperty(level1)) { continue; } if (intRegex.test(level1)) { continue; } if (_.isObject(tmpUpdateObj[level1])) { if (!dbObj[year][level1]) { dbObj[year][level1] = {}; } if (!dbObj[year][month][level1]) { dbObj[year][month][level1] = {}; } if (!dbObj[year]["w" + weekly][level1]) { dbObj[year]["w" + weekly][level1] = {}; } } else { if (dbObj[year][level1]) { if (tmpOldObj[level1]) { dbObj[year][level1] += (tmpUpdateObj[level1] - tmpOldObj[level1]); } else { dbObj[year][level1] += tmpUpdateObj[level1]; } } else { dbObj[year][level1] = tmpUpdateObj[level1]; } if (dbObj[year][month][level1]) { if (tmpOldObj[level1]) { dbObj[year][month][level1] += (tmpUpdateObj[level1] - tmpOldObj[level1]); } else { dbObj[year][month][level1] += tmpUpdateObj[level1]; } } else { dbObj[year][month][level1] = tmpUpdateObj[level1]; } if (dbObj[year]["w" + weekly][level1]) { if (tmpOldObj[level1]) { dbObj[year]["w" + weekly][level1] += (tmpUpdateObj[level1] - tmpOldObj[level1]); } else { dbObj[year]["w" + weekly][level1] += tmpUpdateObj[level1]; } } else { dbObj[year]["w" + weekly][level1] = tmpUpdateObj[level1]; } } if (tmpUpdateObj[level1]) { for (var level2 in tmpUpdateObj[level1]) { if (!tmpUpdateObj[level1].hasOwnProperty(level2)) { continue; } if (dbObj[year][level1][level2]) { if (tmpOldObj[level1] && tmpOldObj[level1][level2]) { dbObj[year][level1][level2] += (tmpUpdateObj[level1][level2] - tmpOldObj[level1][level2]); } else { dbObj[year][level1][level2] += tmpUpdateObj[level1][level2]; } } else { dbObj[year][level1][level2] = tmpUpdateObj[level1][level2]; } if (dbObj[year][month][level1][level2]) { if (tmpOldObj[level1] && tmpOldObj[level1][level2]) { dbObj[year][month][level1][level2] += (tmpUpdateObj[level1][level2] - tmpOldObj[level1][level2]); } else { dbObj[year][month][level1][level2] += tmpUpdateObj[level1][level2]; } } else { dbObj[year][month][level1][level2] = tmpUpdateObj[level1][level2]; } if (dbObj[year]["w" + weekly][level1][level2]) { if (tmpOldObj[level1] && tmpOldObj[level1][level2]) { dbObj[year]["w" + weekly][level1][level2] += (tmpUpdateObj[level1][level2] - tmpOldObj[level1][level2]); } else { dbObj[year]["w" + weekly][level1][level2] += tmpUpdateObj[level1][level2]; } } else { dbObj[year]["w" + weekly][level1][level2] = tmpUpdateObj[level1][level2]; } } } } // Fix update of total user count if (updateObj[year]) { if (updateObj[year].u) { if (!dbObj[year]) { dbObj[year] = {}; } dbObj[year].u = updateObj[year].u; } if (updateObj[year][month] && updateObj[year][month].u) { if (!dbObj[year]) { dbObj[year] = {}; } if (!dbObj[year][month]) { dbObj[year][month] = {}; } dbObj[year][month].u = updateObj[year][month].u; } if (updateObj[year]["w" + weekly] && updateObj[year]["w" + weekly].u) { if (!dbObj[year]) { dbObj[year] = {}; } if (!dbObj[year]["w" + weekly]) { dbObj[year]["w" + weekly] = {}; } dbObj[year]["w" + weekly].u = updateObj[year]["w" + weekly].u; } } }; /** * Convert string to first letter uppercase and all other letters - lowercase for each word * @param {string} str - string to convert * @returns {string} converted string * @example * //outputs Hello World * countlyCommon.toFirstUpper("hello world"); */ countlyCommon.toFirstUpper = function(str) { return str.replace(/\w\S*/g, function(txt) { return txt.charAt(0).toUpperCase() + txt.substr(1).toLowerCase(); }); }; /** * Safe division between numbers providing 0 as result in cases when dividing by 0 * @param {number} val1 - number which to divide * @param {number} val2 - number by which to divide * @returns {number} result of division * @example * //outputs 0 * countlyCommon.divide(100, 0); */ countlyCommon.divide = function(val1, val2) { var temp = val1 / val2; if (!temp || temp === Number.POSITIVE_INFINITY) { temp = 0; } return temp; }; /** * Get Date graph ticks * @param {string} bucket - time bucket, accepted values, hourly, weekly, monthly * @param {boolean} overrideBucket - override existing bucket logic and simply use current date for generating ticks * @returns {object} object containing tick texts and ticks to use on time graphs * @example <caption>Example output</caption> *{ * "min":0, * "max":29, * "tickTexts":["22 Dec, Thursday","23 Dec, Friday","24 Dec, Saturday","25 Dec, Sunday","26 Dec, Monday","27 Dec, Tuesday","28 Dec, Wednesday", * "29 Dec, Thursday","30 Dec, Friday","31 Dec, Saturday","1 Jan, Sunday","2 Jan, Monday","3 Jan, Tuesday","4 Jan, Wednesday","5 Jan, Thursday", * "6 Jan, Friday","7 Jan, Saturday","8 Jan, Sunday","9 Jan, Monday","10 Jan, Tuesday","11 Jan, Wednesday","12 Jan, Thursday","13 Jan, Friday", * "14 Jan, Saturday","15 Jan, Sunday","16 Jan, Monday","17 Jan, Tuesday","18 Jan, Wednesday","19 Jan, Thursday","20 Jan, Friday"], * "ticks":[[1,"23 Dec"],[4,"26 Dec"],[7,"29 Dec"],[10,"1 Jan"],[13,"4 Jan"],[16,"7 Jan"],[19,"10 Jan"],[22,"13 Jan"],[25,"16 Jan"],[28,"19 Jan"]] *} */ countlyCommon.getTickObj = function(bucket, overrideBucket) { var days = parseInt(countlyCommon.periodObj.numberOfDays, 10), ticks = [], tickTexts = [], skipReduction = false, limitAdjustment = 0; if (overrideBucket) { var thisDay = moment(countlyCommon.periodObj.activePeriod, "YYYY.M.D"); ticks.push([0, countlyCommon.formatDate(thisDay, "D MMM")]); tickTexts[0] = countlyCommon.formatDate(thisDay, "D MMM, dddd"); } else if ((days === 1 && _period !== "month" && _period !== "day") || (days === 1 && bucket === "hourly")) { for (var z = 0; z < 24; z++) { ticks.push([z, (z + ":00")]); tickTexts.push((z + ":00")); } skipReduction = true; } else { var start = moment().subtract(days, 'days'); if (Object.prototype.toString.call(countlyCommon.getPeriod()) === '[object Array]') { start = moment(countlyCommon.periodObj.currentPeriodArr[countlyCommon.periodObj.currentPeriodArr.length - 1], "YYYY.MM.DD").subtract(days, 'days'); } var i = 0; if (bucket === "monthly") { var allMonths = []; //so we would not start from previous year start.add(1, 'day'); for (i = 0; i < 12; i++) { allMonths.push(start.format("MMM YYYY")); start.add(1, 'months'); } allMonths = _.uniq(allMonths); for (i = 0; i < allMonths.length; i++) { ticks.push([i, allMonths[i]]); tickTexts[i] = allMonths[i]; } } else if (bucket === "weekly") { var allWeeks = []; for (i = 0; i < days; i++) { start.add(1, 'days'); allWeeks.push(start.isoWeek() + " " + start.isoWeekYear()); } allWeeks = _.uniq(allWeeks); for (i = 0; i < allWeeks.length; i++) { var parts = allWeeks[i].split(" "); //iso week falls in the year which has thursday of the week if (parseInt(parts[1]) === moment().isoWeekYear(parseInt(parts[1])).isoWeek(parseInt(parts[0])).isoWeekday(4).year()) { ticks.push([i, "W" + allWeeks[i]]); var weekText = countlyCommon.formatDate(moment().isoWeekYear(parseInt(parts[1])).isoWeek(parseInt(parts[0])).isoWeekday(1), ", D MMM YYYY"); tickTexts[i] = "W" + parts[0] + weekText; } } } else if (bucket === "hourly") { for (i = 0; i < days; i++) { start.add(1, 'days'); for (var j = 0; j < 24; j++) { if (j === 0) { ticks.push([((24 * i) + j), countlyCommon.formatDate(start, "D MMM") + " 0:00"]); } tickTexts.push(countlyCommon.formatDate(start, "D MMM, ") + j + ":00"); } } } else { if (_period === "day") { for (i = 0; i < new Date(start.year(), start.month(), 0).getDate(); i++) { start.add(1, 'days'); ticks.push([i, countlyCommon.formatDate(start, "D MMM")]); tickTexts[i] = countlyCommon.formatDate(start, "D MMM, dddd"); } } else { var startYear = start.year(); var endYear = moment().year(); for (i = 0; i < days; i++) { start.add(1, 'days'); if (startYear < endYear) { ticks.push([i, countlyCommon.formatDate(start, "D MMM YYYY")]); tickTexts[i] = countlyCommon.formatDate(start, "D MMM YYYY, dddd"); } else { ticks.push([i, countlyCommon.formatDate(start, "D MMM")]); tickTexts[i] = countlyCommon.formatDate(start, "D MMM, dddd"); } } } } ticks = _.compact(ticks); tickTexts = _.compact(tickTexts); } if (ticks.length <= 2) { limitAdjustment = 0.02; var tmpTicks = [], tmpTickTexts = []; tmpTickTexts[0] = ""; tmpTicks[0] = [-0.02, ""]; for (var m = 0; m < ticks.length; m++) { tmpTicks[m + 1] = [m, ticks[m][1]]; tmpTickTexts[m + 1] = tickTexts[m]; } tmpTickTexts.push(""); tmpTicks.push([tmpTicks.length - 1 - 0.98, ""]); ticks = tmpTicks; tickTexts = tmpTickTexts; } else if (!skipReduction && ticks.length > 10) { var reducedTicks = [], step = (Math.floor(ticks.length / 10) < 1) ? 1 : Math.floor(ticks.length / 10), pickStartIndex = (Math.floor(ticks.length / 30) < 1) ? 1 : Math.floor(ticks.length / 30); for (var l = pickStartIndex; l < (ticks.length - 1); l = l + step) { reducedTicks.push(ticks[l]); } ticks = reducedTicks; } else { ticks[0] = null; // Hourly ticks already contain 23 empty slots at the end if (!(bucket === "hourly" && days !== 1)) { ticks[ticks.length - 1] = null; } } return { min: 0 - limitAdjustment, max: (limitAdjustment) ? tickTexts.length - 3 + limitAdjustment : tickTexts.length - 1, tickTexts: tickTexts, ticks: _.compact(ticks) }; }; /** * Joined 2 arrays into one removing all duplicated values * @param {array} x - first array * @param {array} y - second array * @returns {array} new array with only unique values from x and y * @example * //outputs [1,2,3] * countlyCommon.union([1,2],[2,3]); */ countlyCommon.union = function(x, y) { if (!x) { return y; } else if (!y) { return x; } var obj = {}; var i = 0; for (i = x.length - 1; i >= 0; --i) { obj[x[i]] = true; } for (i = y.length - 1; i >= 0; --i) { obj[y[i]] = true; } var res = []; for (var k in obj) { res.push(k); } return res; }; /** * Formats the number by separating each 3 digits with , * @param {number} x - number to format * @returns {string} formatted number * @example * //outputs 1,234,567 * countlyCommon.formatNumber(1234567); */ countlyCommon.formatNumber = function(x) { x = parseFloat(parseFloat(x).toFixed(2)); var parts = x.toString().split("."); parts[0] = parts[0].replace(/\B(?=(\d{3})+(?!\d))/g, ","); return parts.join("."); }; /** * Pad number with specified character from left to specified length , * @param {number} n - number to pad * @param {number} width - pad to what length in symboles * @param {string} z - character to pad with, default 0 * @returns {string} padded number * @example * //outputs 0012 * countlyCommon.pad(12, 4, "0"); */ countlyCommon.pad = function(n, width, z) { z = z || '0'; n = n + ''; return n.length >= width ? n : new Array(width - n.length + 1).join(z) + n; }; countlyCommon.getNoteDateIds = function(bucket) { var _periodObj = countlyCommon.periodObj, dateIds = [], dotSplit = [], tmpDateStr = ""; var i = 0; var j = 0; if (!_periodObj.isSpecialPeriod && !bucket) { for (i = _periodObj.periodMin; i < (_periodObj.periodMax + 1); i++) { dotSplit = (_periodObj.activePeriod + "." + i).split("."); tmpDateStr = ""; for (j = 0; j < dotSplit.length; j++) { if (dotSplit[j].length === 1) { tmpDateStr += "0" + dotSplit[j]; } else { tmpDateStr += dotSplit[j]; } } dateIds.push(tmpDateStr); } } else { if (!_periodObj.currentPeriodArr && bucket === "daily") { var tmpDate = new Date(); _periodObj.currentPeriodArr = []; if (countlyCommon.getPeriod() === "month") { for (i = 0; i < (tmpDate.getMonth() + 1); i++) { var daysInMonth = moment().month(i).daysInMonth(); for (j = 0; j < daysInMonth; j++) { _periodObj.currentPeriodArr.push(_periodObj.activePeriod + "." + (i + 1) + "." + (j + 1)); // If current day of current month, just break if ((i === tmpDate.getMonth()) && (j === (tmpDate.getDate() - 1))) { break; } } } } else if (countlyCommon.getPeriod() === "day") { for (i = 0; i < tmpDate.getDate(); i++) { _periodObj.currentPeriodArr.push(_periodObj.activePeriod + "." + (i + 1)); } } else { _periodObj.currentPeriodArr.push(_periodObj.activePeriod); } } for (i = 0; i < (_periodObj.currentPeriodArr.length); i++) { dotSplit = _periodObj.currentPeriodArr[i].split("."); tmpDateStr = ""; for (j = 0; j < dotSplit.length; j++) { if (dotSplit[j].length === 1) { tmpDateStr += "0" + dotSplit[j]; } else { tmpDateStr += dotSplit[j]; } } dateIds.push(tmpDateStr); } } var tmpDateIds = []; switch (bucket) { case "hourly": for (i = 0; i < 25; i++) { tmpDateIds.push(dateIds[0] + ((i < 10) ? "0" + i : i)); } dateIds = tmpDateIds; break; case "monthly": for (i = 0; i < dateIds.length; i++) { countlyCommon.arrayAddUniq(tmpDateIds, moment(dateIds[i], "YYYYMMDD").format("YYYYMM")); } dateIds = tmpDateIds; break; } return dateIds; }; countlyCommon.getNotesForDateId = function(dateId) { var ret = []; if (countlyGlobal.apps[countlyCommon.ACTIVE_APP_ID] && countlyGlobal.apps[countlyCommon.ACTIVE_APP_ID].notes) { for (var date in countlyGlobal.apps[countlyCommon.ACTIVE_APP_ID].notes) { if (date.indexOf(dateId) === 0) { ret = ret.concat(countlyGlobal.apps[countlyCommon.ACTIVE_APP_ID].notes[date]); } } } return ret.join("<br/>"); }; /** * Add item or array to existing array only if values are not already in original array. given array is modified. * @param {array} arr - original array where to add unique elements * @param {string|number|array} item - item to add or array to merge */ countlyCommon.arrayAddUniq = function(arr, item) { if (!arr) { arr = []; } if (toString.call(item) === "[object Array]") { for (var i = 0; i < item.length; i++) { if (arr.indexOf(item[i]) === -1) { arr[arr.length] = item[i]; } } } else { if (arr.indexOf(item) === -1) { arr[arr.length] = item; } } }; /** * Format timestamp to twitter like time ago format with real date as tooltip and hidden data for exporting * @param {number} timestamp - timestamp in seconds or miliseconds * @returns {string} formated time ago * @example * //outputs <span title="Tue, 17 Jan 2017 13:54:26">3 days ago<a style="display: none;">|Tue, 17 Jan 2017 13:54:26</a></span> * countlyCommon.formatTimeAgo(1484654066); */ countlyCommon.formatTimeAgo = function(timestamp) { if (Math.round(timestamp).toString().length === 10) { timestamp *= 1000; } var target = new Date(timestamp); var tooltip = moment(target).format("ddd, D MMM YYYY HH:mm:ss"); var elem = $("<span>"); elem.prop("title", tooltip); var now = new Date(); var diff = Math.floor((now - target) / 1000); if (diff <= -2592000) { elem.text(tooltip); } else if (diff < -86400) { elem.text(jQuery.i18n.prop("common.in.days", Math.abs(Math.round(diff / 86400)))); } else if (diff < -3600) { elem.text(jQuery.i18n.prop("common.in.hours", Math.abs(Math.round(diff / 3600)))); } else if (diff < -60) { elem.text(jQuery.i18n.prop("common.in.minutes", Math.abs(Math.round(diff / 60)))); } else if (diff <= -1) { elem.css("color", "#50C354"); elem.text(jQuery.i18n.prop("common.in.seconds", Math.abs(diff))); } else if (diff <= 1) { elem.css("color", "#50C354"); elem.text(jQuery.i18n.map["common.ago.just-now"]); } else if (diff < 20) { elem.css("color", "#50C354"); elem.text(jQuery.i18n.prop("common.ago.seconds-ago", diff)); } else if (diff < 40) { elem.css("color", "#50C354"); elem.text(jQuery.i18n.map["common.ago.half-minute"]); } else if (diff < 60) { elem.css("color", "#50C354"); elem.text(jQuery.i18n.map["common.ago.less-minute"]); } else if (diff <= 90) { elem.text(jQuery.i18n.map["common.ago.one-minute"]); } else if (diff <= 3540) { elem.text(jQuery.i18n.prop("common.ago.minutes-ago", Math.round(diff / 60))); } else if (diff <= 5400) { elem.text(jQuery.i18n.map["common.ago.one-hour"]); } else if (diff <= 86400) { elem.text(jQuery.i18n.prop("common.ago.hours-ago", Math.round(diff / 3600))); } else if (diff <= 129600) { elem.text(jQuery.i18n.map["common.ago.one-day"]); } else if (diff < 604800) { elem.text(jQuery.i18n.prop("common.ago.days-ago", Math.round(diff / 86400))); } else if (diff <= 777600) { elem.text(jQuery.i18n.map["common.ago.one-week"]); } else if (diff <= 2592000) { elem.text(jQuery.i18n.prop("common.ago.days-ago", Math.round(diff / 86400))); } else { elem.text(tooltip); } elem.append("<a style='display: none;'>|" + tooltip + "</a>"); return elem.prop('outerHTML'); }; /** * Format duration to units of how much time have passed * @param {number} timestamp - amount in seconds passed since some reference point * @returns {string} formated time with how much units passed * @example * //outputs 47 year(s) 28 day(s) 11:54:26 * countlyCommon.formatTime(1484654066); */ countlyCommon.formatTime = function(timestamp) { var str = ""; var seconds = timestamp % 60; str = str + leadingZero(seconds); timestamp -= seconds; var minutes = timestamp % (60 * 60); str = leadingZero(minutes / 60) + ":" + str; timestamp -= minutes; var hours = timestamp % (60 * 60 * 24); str = leadingZero(hours / (60 * 60)) + ":" + str; timestamp -= hours; if (timestamp > 0) { var days = timestamp % (60 * 60 * 24 * 365); str = (days / (60 * 60 * 24)) + " day(s) " + str; timestamp -= days; if (timestamp > 0) { str = (timestamp / (60 * 60 * 24 * 365)) + " year(s) " + str; } } return str; }; /** * Format duration into highest unit of how much time have passed. Used in big numbers * @param {number} timespent - amount in seconds passed since some reference point * @returns {string} formated time with how much highest units passed * @example * //outputs 2824.7 yrs * countlyCommon.timeString(1484654066); */ countlyCommon.timeString = function(timespent) { var timeSpentString = (timespent.toFixed(1)) + " " + jQuery.i18n.map["common.minute.abrv"]; if (timespent >= 142560) { timeSpentString = (timespent / 525600).toFixed(1) + " " + jQuery.i18n.map["common.year.abrv"]; } else if (timespent >= 1440) { timeSpentString = (timespent / 1440).toFixed(1) + " " + jQuery.i18n.map["common.day.abrv"]; } else if (timespent >= 60) { timeSpentString = (timespent / 60).toFixed(1) + " " + jQuery.i18n.map["common.hour.abrv"]; } return timeSpentString; /*var timeSpentString = ""; if(timespent > 1){ timeSpentString = Math.floor(timespent) + " " + jQuery.i18n.map["common.minute.abrv"]+" "; var left = Math.floor((timespent - Math.floor(timespent))*60); if(left > 0) timeSpentString += left + " s"; } else timeSpentString += Math.floor((timespent - Math.floor(timespent))*60) + " s"; if (timespent >= 142560) { timeSpentString = Math.floor(timespent / 525600) + " " + jQuery.i18n.map["common.year.abrv"]; var left = Math.floor((timespent - Math.floor(timespent / 525600)*525600)/1440); if(left > 0) timeSpentString += " "+left + " " + jQuery.i18n.map["common.day.abrv"]; } else if (timespent >= 1440) { timeSpentString = Math.floor(timespent / 1440) + " " + jQuery.i18n.map["common.day.abrv"]; var left = Math.floor((timespent - Math.floor(timespent / 1440)*1440)/60); if(left > 0) timeSpentString += " "+left + " " + jQuery.i18n.map["common.hour.abrv"]; } else if (timespent >= 60) { timeSpentString = Math.floor(timespent / 60) + " " + jQuery.i18n.map["common.hour.abrv"]; var left = Math.floor(timespent - Math.floor(timespent / 60)*60) if(left > 0) timeSpentString += " "+left + " " + jQuery.i18n.map["common.minute.abrv"]; } return timeSpentString;*/ }; /** * Get date from seconds timestamp * @param {number} timestamp - timestamp in seconds or miliseconds * @returns {string} formated date * @example * //outputs 17.01.2017 * countlyCommon.getDate(1484654066); */ countlyCommon.getDate = function(timestamp) { if (Math.round(timestamp).toString().length === 10) { timestamp *= 1000; } var d = new Date(timestamp); return moment(d).format("ddd, D MMM YYYY"); //return leadingZero(d.getDate()) + "." + leadingZero(d.getMonth() + 1) + "." + d.getFullYear(); }; /** * Get time from seconds timestamp * @param {number} timestamp - timestamp in seconds or miliseconds * @returns {string} formated time * @example * //outputs 13:54 * countlyCommon.getTime(1484654066); */ countlyCommon.getTime = function(timestamp) { if (Math.round(timestamp).toString().length === 10) { timestamp *= 1000; } var d = new Date(timestamp); return leadingZero(d.getHours()) + ":" + leadingZero(d.getMinutes()); }; /** * Round to provided number of digits * @param {number} num - number to round * @param {number} digits - amount of digits to round to * @returns {number} rounded number * @example * //outputs 1.235 * countlyCommon.round(1.2345, 3); */ countlyCommon.round = function(num, digits) { digits = Math.pow(10, digits || 0); return Math.round(num * digits) / digits; }; /** * Get calculated totals for each property, usualy used as main dashboard data timeline data without metric segments * @param {object} data - countly metric model data * @param {array} properties - array of all properties to extract * @param {array} unique - array of all properties that are unique from properties array. We need to apply estimation to them * @param {object} estOverrideMetric - using unique property as key and total_users estimation property as value for all unique metrics that we want to have total user estimation overridden * @param {function} clearObject - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @param {string=} segment - segment value for which to fetch metric data * @returns {object} dashboard data object * @example * countlyCommon.getDashboardData(countlySession.getDb(), ["t", "n", "u", "d", "e", "p", "m"], ["u", "p", "m"], {u:"users"}, countlySession.clearObject); * //outputs * { * "t":{"total":980,"prev-total":332,"change":"195.2%","trend":"u"}, * "n":{"total":402,"prev-total":255,"change":"57.6%","trend":"u"}, * "u":{"total":423,"prev-total":255,"change":"75.7%","trend":"u","isEstimate":false}, * "d":{"total":0,"prev-total":0,"change":"NA","trend":"u"}, * "e":{"total":980,"prev-total":332,"change":"195.2%","trend":"u"}, * "p":{"total":103,"prev-total":29,"change":"255.2%","trend":"u","isEstimate":true}, * "m":{"total":86,"prev-total":0,"change":"NA","trend":"u","isEstimate":true} * } */ countlyCommon.getDashboardData = function(data, properties, unique, estOverrideMetric, clearObject, segment) { if (segment) { segment = "." + segment; } else { segment = ""; } var _periodObj = countlyCommon.periodObj, dataArr = {}, tmp_x, tmp_y, tmpUniqObj, tmpPrevUniqObj, current = {}, previous = {}, currentCheck = {}, previousCheck = {}, change = {}, isEstimate = false; var i = 0; var j = 0; for (i = 0; i < properties.length; i++) { current[properties[i]] = 0; previous[properties[i]] = 0; currentCheck[properties[i]] = 0; previousCheck[properties[i]] = 0; } if (_periodObj.isSpecialPeriod) { isEstimate = true; for (j = 0; j < (_periodObj.currentPeriodArr.length); j++) { tmp_x = countlyCommon.getDescendantProp(data, _periodObj.currentPeriodArr[j] + segment); tmp_x = clearObject(tmp_x); for (i = 0; i < properties.length; i++) { if (unique.indexOf(properties[i]) === -1) { current[properties[i]] += tmp_x[properties[i]]; } } } for (j = 0; j < (_periodObj.previousPeriodArr.length); j++) { tmp_y = countlyCommon.getDescendantProp(data, _periodObj.previousPeriodArr[j] + segment); tmp_y = clearObject(tmp_y); for (i = 0; i < properties.length; i++) { if (unique.indexOf(properties[i]) === -1) { previous[properties[i]] += tmp_y[properties[i]]; } } } //deal with unique values separately for (j = 0; j < (_periodObj.uniquePeriodArr.length); j++) { tmp_x = countlyCommon.getDescendantProp(data, _periodObj.uniquePeriodArr[j] + segment); tmp_x = clearObject(tmp_x); for (i = 0; i < unique.length; i++) { current[unique[i]] += tmp_x[unique[i]]; } } for (j = 0; j < (_periodObj.previousUniquePeriodArr.length); j++) { tmp_y = countlyCommon.getDescendantProp(data, _periodObj.previousUniquePeriodArr[j] + segment); tmp_y = clearObject(tmp_y); for (i = 0; i < unique.length; i++) { previous[unique[i]] += tmp_y[unique[i]]; } } //recheck unique values with larger buckets for (j = 0; j < (_periodObj.uniquePeriodCheckArr.length); j++) { tmpUniqObj = countlyCommon.getDescendantProp(data, _periodObj.uniquePeriodCheckArr[j] + segment); tmpUniqObj = clearObject(tmpUniqObj); for (i = 0; i < unique.length; i++) { currentCheck[unique[i]] += tmpUniqObj[unique[i]]; } } for (j = 0; j < (_periodObj.previousUniquePeriodArr.length); j++) { tmpPrevUniqObj = countlyCommon.getDescendantProp(data, _periodObj.previousUniquePeriodArr[j] + segment); tmpPrevUniqObj = clearObject(tmpPrevUniqObj); for (i = 0; i < unique.length; i++) { previousCheck[unique[i]] += tmpPrevUniqObj[unique[i]]; } } //check if we should overwrite uniques for (i = 0; i < unique.length; i++) { if (current[unique[i]] > currentCheck[unique[i]]) { current[unique[i]] = currentCheck[unique[i]]; } if (previous[unique[i]] > previousCheck[unique[i]]) { previous[unique[i]] = previousCheck[unique[i]]; } } } else { tmp_x = countlyCommon.getDescendantProp(data, _periodObj.activePeriod + segment); tmp_y = countlyCommon.getDescendantProp(data, _periodObj.previousPeriod + segment); tmp_x = clearObject(tmp_x); tmp_y = clearObject(tmp_y); for (i = 0; i < properties.length; i++) { current[properties[i]] = tmp_x[properties[i]]; previous[properties[i]] = tmp_y[properties[i]]; } } //check if we can correct data using total users correction if (estOverrideMetric && countlyTotalUsers.isUsable()) { for (i = 0; i < unique.length; i++) { if (estOverrideMetric[unique[i]] && countlyTotalUsers.get(estOverrideMetric[unique[i]]).users) { current[unique[i]] = countlyTotalUsers.get(estOverrideMetric[unique[i]]).users; } if (estOverrideMetric[unique[i]] && countlyTotalUsers.get(estOverrideMetric[unique[i]], true).users) { previous[unique[i]] = countlyTotalUsers.get(estOverrideMetric[unique[i]], true).users; } } } // Total users can't be less than new users if (typeof current.u !== "undefined" && typeof current.n !== "undefined" && current.u < current.n) { if (estOverrideMetric && countlyTotalUsers.isUsable() && estOverrideMetric.u && countlyTotalUsers.get(estOverrideMetric.u).users) { current.n = current.u; } else { current.u = current.n; } } // Total users can't be more than total sessions if (typeof current.u !== "undefined" && typeof current.t !== "undefined" && current.u > current.t) { current.u = current.t; } for (i = 0; i < properties.length; i++) { change[properties[i]] = countlyCommon.getPercentChange(previous[properties[i]], current[properties[i]]); dataArr[properties[i]] = { "total": current[properties[i]], "prev-total": previous[properties[i]], "change": change[properties[i]].percent, "trend": change[properties[i]].trend }; if (unique.indexOf(properties[i]) !== -1) { dataArr[properties[i]].isEstimate = isEstimate; } } //check if we can correct data using total users correction if (estOverrideMetric && countlyTotalUsers.isUsable()) { for (i = 0; i < unique.length; i++) { if (estOverrideMetric[unique[i]] && countlyTotalUsers.get(estOverrideMetric[unique[i]]).users) { dataArr[unique[i]].isEstimate = false; } } } return dataArr; }; /** * Get total data for period's each time bucket as comma separated string to generate sparkle/small bar lines * @param {object} data - countly metric model data * @param {object} props - object where key is output property name and value could be string as key from data object or function to create new value based on existing ones * @param {function} clearObject - function to prefill all expected properties as u, t, n, etc with 0, so you would not have null in the result which won't work when drawing graphs * @returns {object} object with sparkleline data for each property * @example * var sparkLines = countlyCommon.getSparklineData(countlySession.getDb(), { * "total-sessions": "t", * "new-users": "n", * "total-users": "u", * "total-duration": "d", * "events": "e", * "returning-users": function(tmp_x){return Math.max(tmp_x["u"] - tmp_x["n"], 0);}, * "avg-duration-per-session": function(tmp_x){return (tmp_x["t"] == 0) ? 0 : (tmp_x["d"] / tmp_x["t"]);}, * "avg-events": function(tmp_x){return (tmp_x["u"] == 0) ? 0 : (tmp_x["e"] / tmp_x["u"]);} * }, countlySession.clearObject); * //outputs * { * "total-sessions":"73,84,80,72,61,18,11,7,17,27,66,39,41,36,39,36,6,11,6,16,22,30,33,34,32,41,29,9,2,2", * "new-users":"24,30,25,20,16,18,11,7,17,18,20,18,17,11,15,15,6,11,6,16,13,14,12,10,7,4,8,9,2,2", * "total-users":"45,54,50,44,37,18,11,7,17,27,36,39,41,36,39,36,6,11,6,16,22,30,33,34,32,29,29,9,2,2", * "total-duration":"0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0", * "events":"73,84,80,72,61,18,11,7,17,27,66,39,41,36,39,36,6,11,6,16,22,30,33,34,32,41,29,9,2,2", * "returning-users":"21,24,25,24,21,0,0,0,0,9,16,21,24,25,24,21,0,0,0,0,9,16,21,24,25,25,21,0,0,0", * "avg-duration-per-session":"0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0", * "avg-events":"1.6222222222222222,1.5555555555555556,1.6,1.6363636363636365,1.6486486486486487,1,1,1,1,1,1.8333333333333333,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1.4137931034482758,1,1,1,1" * } */ countlyCommon.getSparklineData = function(data, props, clearObject) { var _periodObj = countlyCommon.periodObj; var sparkLines = {}; for (var pp in props) { sparkLines[pp] = []; } var tmp_x = ""; var i = 0; var p = 0; if (!_periodObj.isSpecialPeriod) { for (i = _periodObj.periodMin; i < (_periodObj.periodMax + 1); i++) { tmp_x = countlyCommon.getDescendantProp(data, _periodObj.activePeriod + "." + i); tmp_x = clearObject(tmp_x); for (p in props) { if (typeof props[p] === "string") { sparkLines[p].push(tmp_x[props[p]]); } else if (typeof props[p] === "function") { sparkLines[p].push(props[p](tmp_x)); } } } } else { for (i = 0; i < (_periodObj.currentPeriodArr.length); i++) { tmp_x = countlyCommon.getDescendantProp(data, _periodObj.currentPeriodArr[i]); tmp_x = clearObject(tmp_x); for (p in props) { if (typeof props[p] === "string") { sparkLines[p].push(tmp_x[props[p]]); } else if (typeof props[p] === "function") { sparkLines[p].push(props[p](tmp_x)); } } } } for (var key in sparkLines) { sparkLines[key] = sparkLines[key].join(","); } return sparkLines; }; /** * Format date based on some locale settings * @param {moment} date - moment js object * @param {string} format - format string to use * @returns {string} date in formatted string * @example * //outputs Jan 20 * countlyCommon.formatDate(moment(), "MMM D"); */ countlyCommon.formatDate = function(date, format) { format = countlyCommon.getDateFormat(format); return date.format(format); }; countlyCommon.getDateFormat = function(format) { if (countlyCommon.BROWSER_LANG_SHORT.toLowerCase() === "ko") { format = format.replace("MMM D", "MMM D[일]").replace("D MMM", "MMM D[일]"); } else if (countlyCommon.BROWSER_LANG_SHORT.toLowerCase() === "ja") { format = format.replace("MMM D", "MMM D[日]").replace("D MMM", "MMM D[日]"); } else if (countlyCommon.BROWSER_LANG_SHORT.toLowerCase() === "zh") { format = format.replace("MMMM", "M").replace("MMM", "M").replace("MM", "M").replace("DD", "D").replace("D M, YYYY", "YYYY M D").replace("D M", "M D").replace("D", "D[日]").replace("M", "M[月]").replace("YYYY", "YYYY[年]"); } return format; }; countlyCommon.showTooltip = function(args) { showTooltip(args); }; /** * gets days in current year * @returns {number} days */ function getDOY() { var onejan = new Date((new Date()).getFullYear(), 0, 1); return Math.ceil(((new Date()) - onejan) / 86400000); } /** * Getter for period object * @returns {object} returns {@link countlyCommon.periodObj} */ countlyCommon.getPeriodObj = function() { return countlyCommon.periodObj; }; /** * Getter for period object by providing period string value * @param {object} period - given period * @param {number} currentTimeStamp timestamp * @returns {object} returns {@link countlyCommon.periodObj} */ countlyCommon.calcSpecificPeriodObj = function(period, currentTimeStamp) { return calculatePeriodObj(period, currentTimeStamp); }; /** * Calculate period function * @param {object} period - given period * @param {number} currentTimeStamp timestamp * @returns {object} returns {@link countlyCommon.periodObj} */ function calculatePeriodObj(period, currentTimeStamp) { var now = currentTimeStamp ? moment(currentTimeStamp) : moment(currentTimeStamp || undefined); // var _period = _period ? _period : '30days'; // _period = period ? period : _period; period = period ? period : _period; var year = now.year(), month = (now.month() + 1), day = now.date(), activePeriod, previousPeriod, periodMax, periodMin, periodObj = {}, isSpecialPeriod = false, daysInPeriod = 0, numberOfDays = 0, rangeEndDay = null, dateString, periodContainsToday = true; var previousDate, previousYear, previousMonth, previousDay; switch (period) { case "month": activePeriod = year; previousPeriod = year - 1; periodMax = 12; periodMin = 1; dateString = "MMM"; numberOfDays = getDOY(); break; case "day": activePeriod = year + "." + month; previousDate = moment(currentTimeStamp || undefined).subtract(day, 'days'); previousYear = previousDate.year(); previousMonth = (previousDate.month() + 1); previousDay = previousDate.date(); previousPeriod = previousYear + "." + previousMonth; periodMax = new Date(year, month, 0).getDate(); periodMin = 1; dateString = "D MMM"; numberOfDays = moment(currentTimeStamp || undefined).format("D"); daysInPeriod = numberOfDays; break; case "yesterday": var yesterday = moment(currentTimeStamp || undefined).subtract(1, 'days'), year_y = yesterday.year(), month_y = (yesterday.month() + 1), day_y = yesterday.date(); activePeriod = year_y + "." + month_y + "." + day_y; previousDate = moment(currentTimeStamp || undefined).subtract(2, 'days'); previousYear = previousDate.year(); previousMonth = (previousDate.month() + 1); previousDay = previousDate.date(); previousPeriod = previousYear + "." + previousMonth + "." + previousDay; periodMax = 23; periodMin = 0; dateString = "D MMM, HH:mm"; numberOfDays = 1; periodContainsToday = false; break; case "hour": activePeriod = year + "." + month + "." + day; previousDate = moment(currentTimeStamp || undefined).subtract(1, 'days'); previousYear = previousDate.year(); previousMonth = (previousDate.month() + 1); previousDay = previousDate.date(); previousPeriod = previousYear + "." + previousMonth + "." + previousDay; periodMax = 23; periodMin = 0; dateString = "HH:mm"; numberOfDays = 1; break; default: if (/([0-9]+)days/.test(period)) { var match = /([0-9]+)days/.exec(period); if (match[1]) { numberOfDays = daysInPeriod = parseInt(match[1]); isSpecialPeriod = true; } } break; } // Check whether period object is array if (Object.prototype.toString.call(period) === '[object Array]' && period.length === 2) { // "Date to" selected date timezone changes based on how the // date picker is initialised so we take care of it here var tmpDate = new Date(period[1]); tmpDate.setHours(0, 0, 0, 0); period[1] = tmpDate.getTime(); period[1] -= countlyCommon.getOffsetCorrectionForTimestamp(period[1]); // One day is selected from the datepicker if (period[0] === period[1]) { var selectedDate = moment(period[0]), selectedYear = selectedDate.year(), selectedMonth = (selectedDate.month() + 1), selectedDay = selectedDate.date(); activePeriod = selectedYear + "." + selectedMonth + "." + selectedDay; previousDate = selectedDate.subtract(1, 'days'), previousYear = previousDate.year(), previousMonth = (previousDate.month() + 1), previousDay = previousDate.date(); previousPeriod = previousYear + "." + previousMonth + "." + previousDay; periodMax = 23; periodMin = 0; dateString = "D MMM, HH:mm"; numberOfDays = 1; periodContainsToday = (moment(period[0]).format("YYYYMMDD") === now.format("YYYYMMDD")); } else { var a = moment(period[0]), b = moment(period[1]); numberOfDays = daysInPeriod = b.diff(a, 'days') + 1; rangeEndDay = period[1]; periodContainsToday = (b.format("YYYYMMDD") === now.format("YYYYMMDD")); isSpecialPeriod = true; } } if (daysInPeriod !== 0) { var yearChanged = false, currentYear = 0, currWeeksArr = [], currWeekCounts = {}, currMonthsArr = [], currMonthCounts = {}, currPeriodArr = [], prevWeeksArr = [], prevWeekCounts = {}, prevMonthsArr = [], prevMonthCounts = {}, prevPeriodArr = []; for (var i = (daysInPeriod - 1); i > -1; i--) { var currIndex = (!rangeEndDay) ? moment(currentTimeStamp || undefined).subtract(i, 'days') : moment(rangeEndDay).subtract(i, 'days'), currIndexYear = currIndex.year(), prevIndex = (!rangeEndDay) ? moment(currentTimeStamp || undefined).subtract((daysInPeriod + i), 'days') : moment(rangeEndDay).subtract((daysInPeriod + i), 'days'), prevYear = prevIndex.year(); if (i !== (daysInPeriod - 1) && currentYear !== currIndexYear) { yearChanged = true; } currentYear = currIndexYear; // Current period variables var currWeek = currentYear + "." + "w" + Math.ceil(currIndex.format("DDD") / 7); currWeeksArr[currWeeksArr.length] = currWeek; currWeekCounts[currWeek] = (currWeekCounts[currWeek]) ? (currWeekCounts[currWeek] + 1) : 1; var currMonth = currIndex.format("YYYY.M"); currMonthsArr[currMonthsArr.length] = currMonth; currMonthCounts[currMonth] = (currMonthCounts[currMonth]) ? (currMonthCounts[currMonth] + 1) : 1; currPeriodArr[currPeriodArr.length] = currIndex.format("YYYY.M.D"); // Previous period variables var prevWeek = prevYear + "." + "w" + Math.ceil(prevIndex.format("DDD") / 7); prevWeeksArr[prevWeeksArr.length] = prevWeek; prevWeekCounts[prevWeek] = (prevWeekCounts[prevWeek]) ? (prevWeekCounts[prevWeek] + 1) : 1; var prevMonth = prevIndex.format("YYYY.M"); prevMonthsArr[prevMonthsArr.length] = prevMonth; prevMonthCounts[prevMonth] = (prevMonthCounts[prevMonth]) ? (prevMonthCounts[prevMonth] + 1) : 1; prevPeriodArr[prevPeriodArr.length] = prevIndex.format("YYYY.M.D"); } dateString = (yearChanged) ? "D MMM, YYYY" : "D MMM"; } periodObj = { "activePeriod": activePeriod, "periodMax": periodMax, "periodMin": periodMin, "previousPeriod": previousPeriod, "currentPeriodArr": currPeriodArr, "previousPeriodArr": prevPeriodArr, "isSpecialPeriod": isSpecialPeriod, "dateString": dateString, "daysInPeriod": daysInPeriod, "numberOfDays": numberOfDays, "uniquePeriodArr": getUniqArray(currWeeksArr, currWeekCounts, currMonthsArr, currMonthCounts, currPeriodArr), "uniquePeriodCheckArr": getUniqCheckArray(currWeeksArr, currWeekCounts, currMonthsArr, currMonthCounts), "previousUniquePeriodArr": getUniqArray(prevWeeksArr, prevWeekCounts, prevMonthsArr, prevMonthCounts, prevPeriodArr), "previousUniquePeriodCheckArr": getUniqCheckArray(prevWeeksArr, prevWeekCounts, prevMonthsArr, prevMonthCounts), "periodContainsToday": periodContainsToday }; return periodObj; } var getPeriodObj = countlyCommon.getPeriodObj; /** returns unique period check array * @param {array} weeksArray_pd - weeks array * @param {array} weekCounts_pd - week counts * @param {array} monthsArray_pd - months array * @param {array} monthCounts_pd - months counts * @param {array} periodArr_pd - period array * @returns {array} periods */ function getUniqArray(weeksArray_pd, weekCounts_pd, monthsArray_pd, monthCounts_pd, periodArr_pd) { if (_period === "month" || _period === "day" || _period === "yesterday" || _period === "hour") { return []; } if (Object.prototype.toString.call(_period) === '[object Array]' && _period.length === 2) { if (_period[0] === _period[1]) { return []; } } var weeksArray = clone(weeksArray_pd), weekCounts = clone(weekCounts_pd), monthsArray = clone(monthsArray_pd), monthCounts = clone(monthCounts_pd), periodArr = clone(periodArr_pd); var uniquePeriods = [], tmpDaysInMonth = -1, tmpPrevKey = -1, rejectedWeeks = [], rejectedWeekDayCounts = {}; var key = 0; var i = 0; for (key in weekCounts) { // If this is the current week we can use it if (key === moment().format("YYYY.\\w w").replace(" ", "")) { continue; } if (weekCounts[key] < 7) { for (i = 0; i < weeksArray.length; i++) { weeksArray[i] = weeksArray[i].replace(key, 0); } } } for (key in monthCounts) { if (tmpPrevKey !== key) { if (moment().format("YYYY.M") === key) { tmpDaysInMonth = moment().format("D"); } else { tmpDaysInMonth = moment(key, "YYYY.M").daysInMonth(); } tmpPrevKey = key; } if (monthCounts[key] < tmpDaysInMonth) { for (i = 0; i < monthsArray.length; i++) { monthsArray[i] = monthsArray[i].replace(key, 0); } } } for (i = 0; i < monthsArray.length; i++) { if (parseInt(monthsArray[i]) === 0) { if (parseInt(weeksArray[i]) === 0 || (rejectedWeeks.indexOf(weeksArray[i]) !== -1)) { uniquePeriods[i] = periodArr[i]; } else { uniquePeriods[i] = weeksArray[i]; } } else { rejectedWeeks[rejectedWeeks.length] = weeksArray[i]; uniquePeriods[i] = monthsArray[i]; if (rejectedWeekDayCounts[weeksArray[i]]) { rejectedWeekDayCounts[weeksArray[i]].count++; } else { rejectedWeekDayCounts[weeksArray[i]] = { count: 1, index: i }; } } } var totalWeekCounts = _.countBy(weeksArray, function(per) { return per; }); for (var weekDayCount in rejectedWeekDayCounts) { // If the whole week is rejected continue if (rejectedWeekDayCounts[weekDayCount].count === 7) { continue; } // If its the current week continue if (moment().format("YYYY.\\w w").replace(" ", "") === weekDayCount && totalWeekCounts[weekDayCount] === rejectedWeekDayCounts[weekDayCount].count) { continue; } // If only some part of the week is rejected we should add back daily buckets var startIndex = rejectedWeekDayCounts[weekDayCount].index - (totalWeekCounts[weekDayCount] - rejectedWeekDayCounts[weekDayCount].count), limit = startIndex + (totalWeekCounts[weekDayCount] - rejectedWeekDayCounts[weekDayCount].count); for (i = startIndex; i < limit; i++) { // If there isn't already a monthly bucket for that day if (parseInt(monthsArray[i]) === 0) { uniquePeriods[i] = periodArr[i]; } } } rejectedWeeks = _.uniq(rejectedWeeks); uniquePeriods = _.uniq(_.difference(uniquePeriods, rejectedWeeks)); return uniquePeriods; } /** returns unique period check array * @param {array} weeksArray_pd - weeks array * @param {array} weekCounts_pd - week counts * @param {array} monthsArray_pd - months array * @param {array} monthCounts_pd - months counts * @returns {array} periods */ function getUniqCheckArray(weeksArray_pd, weekCounts_pd, monthsArray_pd, monthCounts_pd) { if (_period === "month" || _period === "day" || _period === "yesterday" || _period === "hour") { return []; } if (Object.prototype.toString.call(_period) === '[object Array]' && _period.length === 2) { if (_period[0] === _period[1]) { return []; } } var weeksArray = clone(weeksArray_pd), weekCounts = clone(weekCounts_pd), monthsArray = clone(monthsArray_pd), monthCounts = clone(monthCounts_pd); var uniquePeriods = [], tmpDaysInMonth = -1, tmpPrevKey = -1; var key = 0; var i = 0; for (key in weekCounts) { if (key === moment().format("YYYY.\\w w").replace(" ", "")) { continue; } if (weekCounts[key] < 1) { for (i = 0; i < weeksArray.length; i++) { weeksArray[i] = weeksArray[i].replace(key, 0); } } } for (key in monthCounts) { if (tmpPrevKey !== key) { if (moment().format("YYYY.M") === key) { tmpDaysInMonth = moment().format("D"); } else { tmpDaysInMonth = moment(key, "YYYY.M").daysInMonth(); } tmpPrevKey = key; } if (monthCounts[key] < (tmpDaysInMonth * 0.5)) { for (i = 0; i < monthsArray.length; i++) { monthsArray[i] = monthsArray[i].replace(key, 0); } } } for (i = 0; i < monthsArray.length; i++) { if (parseInt(monthsArray[i]) === 0) { if (parseInt(weeksArray[i]) !== 0) { uniquePeriods[i] = weeksArray[i]; } } else { uniquePeriods[i] = monthsArray[i]; } } uniquePeriods = _.uniq(uniquePeriods); return uniquePeriods; } /** Function to clone object * @param {object} obj - object to clone * @returns {object} cloned object */ function clone(obj) { if (null === obj || "object" !== typeof obj) { return obj; } var copy = ""; if (obj instanceof Date) { copy = new Date(); copy.setTime(obj.getTime()); return copy; } if (obj instanceof Array) { copy = []; for (var i = 0, len = obj.length; i < len; ++i) { copy[i] = clone(obj[i]); } return copy; } if (obj instanceof Object) { copy = {}; for (var attr in obj) { if (obj.hasOwnProperty(attr)) { copy[attr] = clone(obj[attr]); } } return copy; } } /** Function to show the tooltip when any data point in the graph is hovered on. * @param {object} args - tooltip info * @param {number} args.x - x position * @param {number} args.y- y position * @param {string} args.contents - content for tooltip * @param {string} args.title - title * @param {string} args.notes - notes */ function showTooltip(args) { var x = args.x || 0, y = args.y || 0, contents = args.contents, title = args.title, notes = args.notes; var tooltip = $('<div id="graph-tooltip" class="v2"></div>').append('<span class="content">' + contents + '</span>'); if (title) { tooltip.prepend('<span id="graph-tooltip-title">' + title + '</span>'); } if (notes) { var noteLines = (notes + "").split("==="); for (var i = 0; i < noteLines.length; i++) { tooltip.append("<div class='note-line'>&#8211; " + noteLines[i] + "</div>"); } } $("#content").append("<div id='tooltip-calc'>" + $('<div>').append(tooltip.clone()).html() + "</div>"); var widthVal = $("#graph-tooltip").outerWidth(), heightVal = $("#graph-tooltip").outerHeight(); $("#tooltip-calc").remove(); var newLeft = (x - (widthVal / 2)), xReach = (x + (widthVal / 2)); if (notes) { newLeft += 10.5; xReach += 10.5; } if (xReach > $(window).width()) { newLeft = (x - widthVal); } else if (xReach < 340) { newLeft = x; } tooltip.css({ top: y - heightVal - 20, left: newLeft }).appendTo("body").show(); } /** function adds leading zero to value. * @param {number} value - given value * @returns {string|number} fixed value */ function leadingZero(value) { if (value > 9) { return value; } return "0" + value; } /** * Correct timezone offset on the timestamp for current browser's timezone * @param {number} inTS - second or milisecond timestamp * @returns {number} corrected timestamp applying user's timezone offset */ countlyCommon.getOffsetCorrectionForTimestamp = function(inTS) { var timeZoneOffset = new Date().getTimezoneOffset(), intLength = Math.round(inTS).toString().length, tzAdjustment = 0; if (timeZoneOffset < 0) { if (intLength === 13) { tzAdjustment = timeZoneOffset * 60000; } else if (intLength === 10) { tzAdjustment = timeZoneOffset * 60; } } return tzAdjustment; }; var __months = []; /** * Get array of localized short month names from moment js * @param {boolean} reset - used to reset months cache when changing locale * @returns {array} array of short localized month names used in moment js MMM formatting * @example * //outputs ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] * countlyCommon.getMonths(); */ countlyCommon.getMonths = function(reset) { if (reset) { __months = []; } if (!__months.length) { for (var i = 0; i < 12; i++) { __months.push(moment.localeData().monthsShort(moment([0, i]), "")); } } return __months; }; /** * Currently selected period * @property {array=} currentPeriodArr - array with ticks for current period (available only for special periods), example ["2016.12.22","2016.12.23","2016.12.24", ...] * @property {array=} previousPeriodArr - array with ticks for previous period (available only for special periods), example ["2016.12.22","2016.12.23","2016.12.24", ...] * @property {string} dateString - date format to use when outputting date in graphs, example D MMM, YYYY * @property {boolean} isSpecialPeriod - true if current period is special period, false if it is not * @property {number} daysInPeriod - amount of full days in selected period, example 30 * @property {number} numberOfDays - number of days selected period consists of, example hour period has 1 day * @property {boolean} periodContainsToday - true if period contains today, false if not * @property {array} uniquePeriodArr - array with ticks for current period which contains data for unique values, like unique users, example ["2016.12.22","2016.w52","2016.12.30", ...] * @property {array} uniquePeriodCheckArr - array with ticks for higher buckets to current period unique value estimation, example ["2016.w51","2016.w52","2016.w53","2017.1",...] * @property {array} previousUniquePeriodArr - array with ticks for previous period which contains data for unique values, like unique users, example ["2016.12.22","2016.w52","2016.12.30"] * @property {array} previousUniquePeriodCheckArr - array with ticks for higher buckets to previous period unique value estimation, example ["2016.w47","2016.w48","2016.12"] * @property {string} activePeriod - period name formatted in dateString * @property {string} previousPeriod - previous period name formatted in dateString * @property {number} periodMax - max value of current period tick * @property {number} periodMin - min value of current period tick * @example <caption>Special period object (7days)</caption> * { * "currentPeriodArr":["2017.1.14","2017.1.15","2017.1.16","2017.1.17","2017.1.18","2017.1.19","2017.1.20"], * "previousPeriodArr":["2017.1.7","2017.1.8","2017.1.9","2017.1.10","2017.1.11","2017.1.12","2017.1.13"], * "isSpecialPeriod":true, * "dateString":"D MMM", * "daysInPeriod":7, * "numberOfDays":7, * "uniquePeriodArr":["2017.1.14","2017.w3"], * "uniquePeriodCheckArr":["2017.w2","2017.w3"], * "previousUniquePeriodArr":["2017.1.7","2017.1.8","2017.1.9","2017.1.10","2017.1.11","2017.1.12","2017.1.13"], * "previousUniquePeriodCheckArr":["2017.w1","2017.w2"], * "periodContainsToday":true * } * @example <caption>Simple period object (today period - hour)</caption> * { * "activePeriod":"2017.1.20", * "periodMax":23, * "periodMin":0, * "previousPeriod":"2017.1.19", * "isSpecialPeriod":false, * "dateString":"HH:mm", * "daysInPeriod":0, * "numberOfDays":1, * "uniquePeriodArr":[], * "uniquePeriodCheckArr":[], * "previousUniquePeriodArr":[], * "previousUniquePeriodCheckArr":[], * "periodContainsToday":true * } */ countlyCommon.periodObj = calculatePeriodObj(); /** * Parse second to standard time format * @param {number} second number * @returns {string} return format "HH:MM:SS" */ countlyCommon.formatSecond = function(second) { var timeLeft = parseInt(second); var dict = [ {k: 'day', v: 86400}, {k: 'hour', v: 3600}, {k: 'minute', v: 60}, {k: 'second', v: 1} ]; var result = {day: 0, hour: 0, minute: 0, second: 0}; for (var i = 0; i < dict.length; i++) { result[dict[i].k] = Math.floor(timeLeft / dict[i].v); timeLeft = timeLeft % dict[i].v; } var dayTrans = result.day > 1 ? jQuery.i18n.map["common.day.abrv"] : jQuery.i18n.map["common.day.abrv2"]; return (result.day > 0 ? result.day + " " + dayTrans + ' ' : '') + (result.hour >= 10 ? result.hour + ':' : ('0' + result.hour) + ":") + (result.minute >= 10 ? result.minute + ':' : ('0' + result.minute) + ':') + (result.second >= 10 ? result.second : ('0' + result.second)); }; /** * add one more column in chartDP[index].data to show string in dp * for example: * chartDPs = [ * {color:"#88BBC8", label:"duration", data:[[0, 23], [1, 22]}], * {color:"#88BBC8", label:"count", data:[[0, 3], [1, 3]}], * } * lable = 'duration', * * will return * chartDPs = [ * {color:"#88BBC8", label:"duration", data:[[0, 23, "00:00:23"], [1, 22, "00:00:22"]}], * {color:"#88BBC8", label:"count", data:[[0, 3], [1, 3]}], * } * @param {array} chartDPs - chart data points * @param {string} labelName - label name * @return {array} chartDPs */ countlyCommon.formatSecondForDP = function(chartDPs, labelName) { for (var k = 0; k < chartDPs.length; k++) { if (chartDPs[k].label === labelName) { var dp = chartDPs[k]; for (var i = 0; i < dp.data.length; i++) { dp.data[i][2] = countlyCommon.formatSecond(dp.data[i][1]); } } } return chartDPs; }; /** * Getter/setter for dot notatons: * @param {object} obj - object to use * @param {string} is - path of properties to get * @param {varies} value - value to set * @returns {varies} value at provided path * @example * common.dot({a: {b: {c: 'string'}}}, 'a.b.c') === 'string' * common.dot({a: {b: {c: 'string'}}}, ['a', 'b', 'c']) === 'string' * common.dot({a: {b: {c: 'string'}}}, 'a.b.c', 5) === 5 * common.dot({a: {b: {c: 'string'}}}, 'a.b.c') === 5 */ countlyCommon.dot = function(obj, is, value) { if (typeof is === 'string') { return countlyCommon.dot(obj, is.split('.'), value); } else if (is.length === 1 && value !== undefined) { obj[is[0]] = value; return value; } else if (is.length === 0) { return obj; } else if (!obj) { return obj; } else { return countlyCommon.dot(obj[is[0]], is.slice(1), value); } }; /** * Save division, handling division by 0 and rounding up to 2 decimals * @param {number} dividend - object to use * @param {number} divisor - path of properties to get * @returns {number} division */ countlyCommon.safeDivision = function(dividend, divisor) { var tmpAvgVal; tmpAvgVal = dividend / divisor; if (!tmpAvgVal || tmpAvgVal === Number.POSITIVE_INFINITY) { tmpAvgVal = 0; } return tmpAvgVal.toFixed(2); }; /** * Get timestamp range in format as [startTime, endTime] with period and base time * @param {object} period - period has two format: array or string * @param {number} baseTimeStamp - base timestamp to calc the period range * @returns {array} period range */ countlyCommon.getPeriodRange = function(period, baseTimeStamp) { var periodRange; if (Object.prototype.toString.call(period) === '[object Array]' && period.length === 2) { //range periodRange = period; return periodRange; } var endTimeStamp = baseTimeStamp; var start; switch (period) { case 'hour': start = moment(baseTimeStamp).hour(0).minute(0).second(0); break; case 'yesterday': start = moment(baseTimeStamp).subtract(1, 'day').hour(0).minute(0).second(0); endTimeStamp = moment(baseTimeStamp).subtract(1, 'day').hour(23).minute(59).second(59).toDate().getTime(); break; case 'day': start = moment(baseTimeStamp).date(1).hour(0).minute(0).second(0); break; case 'month': start = moment(baseTimeStamp).month(0).date(1).hour(0).minute(0).second(0); break; default: if (/([0-9]+)days/.test(period)) { var match = /([0-9]+)days/.exec(period); if (match[1] && (parseInt(match[1]) > 1)) { start = moment(baseTimeStamp).subtract(parseInt(match[1]) - 1, 'day').hour(0).minute(0); } } } periodRange = [start.toDate().getTime(), endTimeStamp]; return periodRange; }; }; window.CommonConstructor = CommonConstructor; window.countlyCommon = new CommonConstructor(); }(window, jQuery));
1
13,301
I think ticket meant, not applying replacement in this method, but rather applying encodeSomeHtml to each and every localization string
Countly-countly-server
js
@@ -207,7 +207,9 @@ function isNodeShuttingDownError(err) { * @param {Server} server */ function isSDAMUnrecoverableError(error, server) { - if (error instanceof MongoParseError) { + // NOTE: null check is here for a strictly pre-CMAP world, a timeout or + // close event are considered unrecoverable + if (error instanceof MongoParseError || error == null) { return true; }
1
'use strict'; const mongoErrorContextSymbol = Symbol('mongoErrorContextSymbol'); const maxWireVersion = require('./utils').maxWireVersion; /** * Creates a new MongoError * * @augments Error * @param {Error|string|object} message The error message * @property {string} message The error message * @property {string} stack The error call stack */ class MongoError extends Error { constructor(message) { if (message instanceof Error) { super(message.message); this.stack = message.stack; } else { if (typeof message === 'string') { super(message); } else { super(message.message || message.errmsg || message.$err || 'n/a'); for (var name in message) { this[name] = message[name]; } } Error.captureStackTrace(this, this.constructor); } this.name = 'MongoError'; this[mongoErrorContextSymbol] = this[mongoErrorContextSymbol] || {}; } /** * Creates a new MongoError object * * @param {Error|string|object} options The options used to create the error. * @return {MongoError} A MongoError instance * @deprecated Use `new MongoError()` instead. */ static create(options) { return new MongoError(options); } hasErrorLabel(label) { return this.errorLabels && this.errorLabels.indexOf(label) !== -1; } } /** * Creates a new MongoNetworkError * * @param {Error|string|object} message The error message * @property {string} message The error message * @property {string} stack The error call stack */ class MongoNetworkError extends MongoError { constructor(message) { super(message); this.name = 'MongoNetworkError'; } } /** * An error used when attempting to parse a value (like a connection string) * * @param {Error|string|object} message The error message * @property {string} message The error message */ class MongoParseError extends MongoError { constructor(message) { super(message); this.name = 'MongoParseError'; } } /** * An error signifying a timeout event * * @param {Error|string|object} message The error message * @param {string|object} [reason] The reason the timeout occured * @property {string} message The error message * @property {string} [reason] An optional reason context for the timeout, generally an error saved during flow of monitoring and selecting servers */ class MongoTimeoutError extends MongoError { constructor(message, reason) { super(message); this.name = 'MongoTimeoutError'; if (reason != null) { this.reason = reason; } } } function makeWriteConcernResultObject(input) { const output = Object.assign({}, input); if (output.ok === 0) { output.ok = 1; delete output.errmsg; delete output.code; delete output.codeName; } return output; } /** * An error thrown when the server reports a writeConcernError * * @param {Error|string|object} message The error message * @param {object} result The result document (provided if ok: 1) * @property {string} message The error message * @property {object} [result] The result document (provided if ok: 1) */ class MongoWriteConcernError extends MongoError { constructor(message, result) { super(message); this.name = 'MongoWriteConcernError'; if (result != null) { this.result = makeWriteConcernResultObject(result); } } } // see: https://github.com/mongodb/specifications/blob/master/source/retryable-writes/retryable-writes.rst#terms const RETRYABLE_ERROR_CODES = new Set([ 6, // HostUnreachable 7, // HostNotFound 89, // NetworkTimeout 91, // ShutdownInProgress 189, // PrimarySteppedDown 9001, // SocketException 10107, // NotMaster 11600, // InterruptedAtShutdown 11602, // InterruptedDueToReplStateChange 13435, // NotMasterNoSlaveOk 13436 // NotMasterOrSecondary ]); /** * Determines whether an error is something the driver should attempt to retry * * @param {MongoError|Error} error */ function isRetryableError(error) { return ( RETRYABLE_ERROR_CODES.has(error.code) || error instanceof MongoNetworkError || error.message.match(/not master/) || error.message.match(/node is recovering/) ); } const SDAM_RECOVERING_CODES = new Set([ 91, // ShutdownInProgress 189, // PrimarySteppedDown 11600, // InterruptedAtShutdown 11602, // InterruptedDueToReplStateChange 13436 // NotMasterOrSecondary ]); const SDAM_NOTMASTER_CODES = new Set([ 10107, // NotMaster 13435 // NotMasterNoSlaveOk ]); const SDAM_NODE_SHUTTING_DOWN_ERROR_CODES = new Set([ 11600, // InterruptedAtShutdown 91 // ShutdownInProgress ]); function isRecoveringError(err) { if (err.code && SDAM_RECOVERING_CODES.has(err.code)) { return true; } return err.message.match(/not master or secondary/) || err.message.match(/node is recovering/); } function isNotMasterError(err) { if (err.code && SDAM_NOTMASTER_CODES.has(err.code)) { return true; } if (isRecoveringError(err)) { return false; } return err.message.match(/not master/); } function isNodeShuttingDownError(err) { return err.code && SDAM_NODE_SHUTTING_DOWN_ERROR_CODES.has(err.code); } /** * Determines whether SDAM can recover from a given error. If it cannot * then the pool will be cleared, and server state will completely reset * locally. * * @see https://github.com/mongodb/specifications/blob/master/source/server-discovery-and-monitoring/server-discovery-and-monitoring.rst#not-master-and-node-is-recovering * @param {MongoError|Error} error * @param {Server} server */ function isSDAMUnrecoverableError(error, server) { if (error instanceof MongoParseError) { return true; } if (isRecoveringError(error) || isNotMasterError(error)) { if (maxWireVersion(server) >= 8 && !isNodeShuttingDownError(error)) { return false; } return true; } return false; } module.exports = { MongoError, MongoNetworkError, MongoParseError, MongoTimeoutError, MongoWriteConcernError, mongoErrorContextSymbol, isRetryableError, isSDAMUnrecoverableError };
1
16,891
ticket for the 4.0 epic?
mongodb-node-mongodb-native
js
@@ -87,6 +87,10 @@ def main(): if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None + if cfg.model.get('neck', False): + if cfg.model.neck.get('rfp_backbone', False): + if cfg.model.neck.rfp_backbone.get('pretrained', False): + cfg.model.neck.rfp_backbone.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info.
1
import argparse import os import mmcv import torch from mmcv import Config, DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from tools.fuse_conv_bn import fuse_module from mmdet.apis import multi_gpu_test, single_gpu_test from mmdet.core import wrap_fp16_model from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu-collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help='arguments in dict') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_module(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.options is None else args.options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()
1
20,174
`cfg.model.get('neck')` will return None if neck does not exist, thus we can omit the default value.
open-mmlab-mmdetection
py
@@ -5,7 +5,7 @@ module Blacklight module Facet def facet_paginator field_config, display_facet - Blacklight::Solr::FacetPaginator.new(display_facet.items, + blacklight_config.facet_paginator_class.new(display_facet.items, sort: display_facet.sort, offset: display_facet.offset, limit: facet_limit_for(field_config.key))
1
# These are methods that are used at both the view helper and controller layers # They are only dependent on `blacklight_config` and `@response` # module Blacklight module Facet def facet_paginator field_config, display_facet Blacklight::Solr::FacetPaginator.new(display_facet.items, sort: display_facet.sort, offset: display_facet.offset, limit: facet_limit_for(field_config.key)) end def facets_from_request(fields = facet_field_names) fields.map { |field| facet_by_field_name(field) }.compact end def facet_field_names blacklight_config.facet_fields.keys end def facet_configuration_for_field(field) f = blacklight_config.facet_fields[field] f ||= begin _, value = blacklight_config.facet_fields.find { |k,v| v.field.to_s == field.to_s } value end f ||= Blacklight::Configuration::FacetField.new(:field => field).normalize! end # Get a FacetField object from the @response def facet_by_field_name field_or_field_name case field_or_field_name when String, Symbol, Blacklight::Configuration::FacetField facet_field = facet_configuration_for_field(field_or_field_name) @response.aggregations[facet_field.key] else # is this really a useful case? field_or_field_name end end end end
1
5,980
Trailing whitespace detected.
projectblacklight-blacklight
rb
@@ -38,6 +38,7 @@ type TargetSpec struct { AutoStackSize *bool `json:"automatic-stack-size"` // Determine stack size automatically at compile time. DefaultStackSize uint64 `json:"default-stack-size"` // Default stack size if the size couldn't be determined at compile time. CFlags []string `json:"cflags"` + CXXFlags []string `json:"cxxflags"` LDFlags []string `json:"ldflags"` LinkerScript string `json:"linkerscript"` ExtraFiles []string `json:"extra-files"`
1
package compileopts // This file loads a target specification from a JSON file. import ( "encoding/json" "errors" "io" "os" "os/exec" "path/filepath" "reflect" "runtime" "strings" "github.com/tinygo-org/tinygo/goenv" ) // Target specification for a given target. Used for bare metal targets. // // The target specification is mostly inspired by Rust: // https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/spec/struct.TargetOptions.html // https://github.com/shepmaster/rust-arduino-blink-led-no-core-with-cargo/blob/master/blink/arduino.json type TargetSpec struct { Inherits []string `json:"inherits"` Triple string `json:"llvm-target"` CPU string `json:"cpu"` Features []string `json:"features"` GOOS string `json:"goos"` GOARCH string `json:"goarch"` BuildTags []string `json:"build-tags"` GC string `json:"gc"` Scheduler string `json:"scheduler"` Serial string `json:"serial"` // which serial output to use (uart, usb, none) Linker string `json:"linker"` RTLib string `json:"rtlib"` // compiler runtime library (libgcc, compiler-rt) Libc string `json:"libc"` AutoStackSize *bool `json:"automatic-stack-size"` // Determine stack size automatically at compile time. DefaultStackSize uint64 `json:"default-stack-size"` // Default stack size if the size couldn't be determined at compile time. CFlags []string `json:"cflags"` LDFlags []string `json:"ldflags"` LinkerScript string `json:"linkerscript"` ExtraFiles []string `json:"extra-files"` RP2040BootPatch *bool `json:"rp2040-boot-patch"` // Patch RP2040 2nd stage bootloader checksum Emulator []string `json:"emulator" override:"copy"` // inherited Emulator must not be append FlashCommand string `json:"flash-command"` GDB []string `json:"gdb"` PortReset string `json:"flash-1200-bps-reset"` SerialPort []string `json:"serial-port"` // serial port IDs in the form "acm:vid:pid" or "usb:vid:pid" FlashMethod string `json:"flash-method"` FlashVolume string `json:"msd-volume-name"` FlashFilename string `json:"msd-firmware-name"` UF2FamilyID string `json:"uf2-family-id"` BinaryFormat string `json:"binary-format"` OpenOCDInterface string `json:"openocd-interface"` OpenOCDTarget string `json:"openocd-target"` OpenOCDTransport string `json:"openocd-transport"` OpenOCDCommands []string `json:"openocd-commands"` JLinkDevice string `json:"jlink-device"` CodeModel string `json:"code-model"` RelocationModel string `json:"relocation-model"` WasmAbi string `json:"wasm-abi"` } // overrideProperties overrides all properties that are set in child into itself using reflection. func (spec *TargetSpec) overrideProperties(child *TargetSpec) { specType := reflect.TypeOf(spec).Elem() specValue := reflect.ValueOf(spec).Elem() childValue := reflect.ValueOf(child).Elem() for i := 0; i < specType.NumField(); i++ { field := specType.Field(i) src := childValue.Field(i) dst := specValue.Field(i) switch kind := field.Type.Kind(); kind { case reflect.String: // for strings, just copy the field of child to spec if not empty if src.Len() > 0 { dst.Set(src) } case reflect.Uint, reflect.Uint32, reflect.Uint64: // for Uint, copy if not zero if src.Uint() != 0 { dst.Set(src) } case reflect.Ptr: // for pointers, copy if not nil if !src.IsNil() { dst.Set(src) } case reflect.Slice: // for slices... if src.Len() > 0 { // ... if not empty ... switch tag := field.Tag.Get("override"); tag { case "copy": // copy the field of child to spec dst.Set(src) case "append", "": // or append the field of child to spec dst.Set(reflect.AppendSlice(src, dst)) default: panic("override mode must be 'copy' or 'append' (default). I don't know how to '" + tag + "'.") } } default: panic("unknown field type : " + kind.String()) } } } // load reads a target specification from the JSON in the given io.Reader. It // may load more targets specified using the "inherits" property. func (spec *TargetSpec) load(r io.Reader) error { err := json.NewDecoder(r).Decode(spec) if err != nil { return err } return nil } // loadFromGivenStr loads the TargetSpec from the given string that could be: // - targets/ directory inside the compiler sources // - a relative or absolute path to custom (project specific) target specification .json file; // the Inherits[] could contain the files from target folder (ex. stm32f4disco) // as well as path to custom files (ex. myAwesomeProject.json) func (spec *TargetSpec) loadFromGivenStr(str string) error { path := "" if strings.HasSuffix(str, ".json") { path, _ = filepath.Abs(str) } else { path = filepath.Join(goenv.Get("TINYGOROOT"), "targets", strings.ToLower(str)+".json") } fp, err := os.Open(path) if err != nil { return err } defer fp.Close() return spec.load(fp) } // resolveInherits loads inherited targets, recursively. func (spec *TargetSpec) resolveInherits() error { // First create a new spec with all the inherited properties. newSpec := &TargetSpec{} for _, name := range spec.Inherits { subtarget := &TargetSpec{} err := subtarget.loadFromGivenStr(name) if err != nil { return err } err = subtarget.resolveInherits() if err != nil { return err } newSpec.overrideProperties(subtarget) } // When all properties are loaded, make sure they are properly inherited. newSpec.overrideProperties(spec) *spec = *newSpec return nil } // Load a target specification. func LoadTarget(options *Options) (*TargetSpec, error) { if options.Target == "" { // Configure based on GOOS/GOARCH environment variables (falling back to // runtime.GOOS/runtime.GOARCH), and generate a LLVM target based on it. llvmos := options.GOOS llvmarch := map[string]string{ "386": "i386", "amd64": "x86_64", "arm64": "aarch64", "arm": "armv7", }[options.GOARCH] if llvmarch == "" { llvmarch = options.GOARCH } // Target triples (which actually have four components, but are called // triples for historical reasons) have the form: // arch-vendor-os-environment target := llvmarch + "-unknown-" + llvmos if options.GOARCH == "arm" { target += "-gnueabihf" } return defaultTarget(options.GOOS, options.GOARCH, target) } // See whether there is a target specification for this target (e.g. // Arduino). spec := &TargetSpec{} err := spec.loadFromGivenStr(options.Target) if err != nil { return nil, err } // Successfully loaded this target from a built-in .json file. Make sure // it includes all parents as specified in the "inherits" key. err = spec.resolveInherits() if err != nil { return nil, err } return spec, nil } // WindowsBuildNotSupportedErr is being thrown, when goos is windows and no target has been specified. var WindowsBuildNotSupportedErr = errors.New("Building Windows binaries is currently not supported. Try specifying a different target") func defaultTarget(goos, goarch, triple string) (*TargetSpec, error) { if goos == "windows" { return nil, WindowsBuildNotSupportedErr } // No target spec available. Use the default one, useful on most systems // with a regular OS. spec := TargetSpec{ Triple: triple, GOOS: goos, GOARCH: goarch, BuildTags: []string{goos, goarch}, Scheduler: "tasks", Linker: "cc", DefaultStackSize: 1024 * 64, // 64kB GDB: []string{"gdb"}, PortReset: "false", } if goarch == "386" { spec.CPU = "pentium4" } if goos == "darwin" { spec.CFlags = append(spec.CFlags, "-isysroot", "/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk") spec.LDFlags = append(spec.LDFlags, "-Wl,-dead_strip") } else { spec.LDFlags = append(spec.LDFlags, "-no-pie", "-Wl,--gc-sections") // WARNING: clang < 5.0 requires -nopie } if goarch != "wasm" { spec.ExtraFiles = append(spec.ExtraFiles, "src/runtime/gc_"+goarch+".S") spec.ExtraFiles = append(spec.ExtraFiles, "src/internal/task/task_stack_"+goarch+".S") } if goarch != runtime.GOARCH { // Some educated guesses as to how to invoke helper programs. spec.GDB = []string{"gdb-multiarch"} if goarch == "arm" && goos == "linux" { spec.CFlags = append(spec.CFlags, "--sysroot=/usr/arm-linux-gnueabihf") spec.Linker = "arm-linux-gnueabihf-gcc" spec.Emulator = []string{"qemu-arm", "-L", "/usr/arm-linux-gnueabihf"} } if goarch == "arm64" && goos == "linux" { spec.CFlags = append(spec.CFlags, "--sysroot=/usr/aarch64-linux-gnu") spec.Linker = "aarch64-linux-gnu-gcc" spec.Emulator = []string{"qemu-aarch64", "-L", "/usr/aarch64-linux-gnu"} } if goarch == "386" && runtime.GOARCH == "amd64" { spec.CFlags = append(spec.CFlags, "-m32") spec.LDFlags = append(spec.LDFlags, "-m32") } } return &spec, nil } // LookupGDB looks up a gdb executable. func (spec *TargetSpec) LookupGDB() (string, error) { if len(spec.GDB) == 0 { return "", errors.New("gdb not configured in the target specification") } for _, d := range spec.GDB { _, err := exec.LookPath(d) if err == nil { return d, nil } } return "", errors.New("no gdb found configured in the target specification (" + strings.Join(spec.GDB, ", ") + ")") }
1
13,291
I don't see why a `cxxflags` key is necessary? C flags are important in the target file because they define things like the float ABI. But these flags are also used for C++. I can't think of a reason why you would want to configure C++ flags in a target file.
tinygo-org-tinygo
go
@@ -352,12 +352,13 @@ instrument_annotation(dcontext_t *dcontext, IN OUT app_pc *start_pc, # endif instr_init(dcontext, &scratch); - TRY_EXCEPT(my_dcontext, { identify_annotation(dcontext, &layout, &scratch); }, - { /* EXCEPT */ - LOG(THREAD, LOG_ANNOTATIONS, 2, - "Failed to instrument annotation at " PFX "\n", *start_pc); - /* layout.type is already ANNOTATION_TYPE_NONE */ - }); + TRY_EXCEPT( + my_dcontext, { identify_annotation(dcontext, &layout, &scratch); }, + { /* EXCEPT */ + LOG(THREAD, LOG_ANNOTATIONS, 2, "Failed to instrument annotation at " PFX "\n", + *start_pc); + /* layout.type is already ANNOTATION_TYPE_NONE */ + }); if (layout.type != ANNOTATION_TYPE_NONE) { LOG(GLOBAL, LOG_ANNOTATIONS, 2, "Decoded %s annotation %s. Next pc now " PFX ".\n",
1
/* ****************************************************** * Copyright (c) 2014-2021 Google, Inc. All rights reserved. * ******************************************************/ /* * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of VMware, Inc. nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL VMWARE, INC. OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include "globals.h" #include "hashtable.h" #include "instr.h" #include "instr_create_shared.h" #include "decode_fast.h" #include "utils.h" #include "annotations.h" #ifdef ANNOTATIONS /* around whole file */ # if !(defined(WINDOWS) && defined(X64)) # include "../third_party/valgrind/valgrind.h" # include "../third_party/valgrind/memcheck.h" # endif /* Macros for identifying an annotation head and extracting the pointer to its name. * * IS_ANNOTATION_LABEL_INSTR(instr): Evaluates to true for any `instr` * that could be the instruction which encodes the pointer to the annotation name. * IS_ANNOTATION_LABEL_REFERENCE(opnd): Evaluates to true for any `opnd` * that could be the operand which encodes the pointer to the annotation name. * GET_ANNOTATION_LABEL_REFERENCE(src, instr_pc): Extracts the annotation name * pointer. IS_ANNOTATION_LABEL_GOT_OFFSET_INSTR(instr): Evaluates to true for any * `instr` that could encode the offset of the label's GOT entry within the GOT table. * IS_ANNOTATION_LABEL_GOT_OFFSET_REFERENCE(opnd): Evaluates to true for any `opnd` * that could encode the offset of the label's GOT entry within the GOT table. */ # ifdef WINDOWS # ifdef X64 # define IS_ANNOTATION_LABEL_INSTR(instr) \ (instr_is_mov(instr) || (instr_get_opcode(instr) == OP_prefetchw)) # define IS_ANNOTATION_LABEL_REFERENCE(opnd) opnd_is_rel_addr(opnd) # define GET_ANNOTATION_LABEL_REFERENCE(src, instr_pc) opnd_get_addr(src) # else # define IS_ANNOTATION_LABEL_INSTR(instr) instr_is_mov(instr) # define IS_ANNOTATION_LABEL_REFERENCE(opnd) opnd_is_base_disp(opnd) # define GET_ANNOTATION_LABEL_REFERENCE(src, instr_pc) \ ((app_pc)opnd_get_disp(src)) # endif # else # define IS_ANNOTATION_LABEL_INSTR(instr) instr_is_mov(instr) # define IS_ANNOTATION_LABEL_REFERENCE(opnd) opnd_is_base_disp(opnd) # ifdef X64 # define ANNOTATION_LABEL_REFERENCE_OPERAND_OFFSET 4 # else # define ANNOTATION_LABEL_REFERENCE_OPERAND_OFFSET 0 # endif # define GET_ANNOTATION_LABEL_REFERENCE(src, instr_pc) \ ((app_pc)(opnd_get_disp(src) + (instr_pc) + \ ANNOTATION_LABEL_REFERENCE_OPERAND_OFFSET)) # define IS_ANNOTATION_LABEL_GOT_OFFSET_INSTR(instr) \ (instr_get_opcode(scratch) == OP_bsf || instr_get_opcode(scratch) == OP_bsr) # define IS_ANNOTATION_LABEL_GOT_OFFSET_REFERENCE(opnd) opnd_is_base_disp(opnd) # endif /* Annotation label components. */ # define DYNAMORIO_ANNOTATION_LABEL "dynamorio-annotation" # define DYNAMORIO_ANNOTATION_LABEL_LENGTH 20 # define ANNOTATION_STATEMENT_LABEL "statement" # define ANNOTATION_STATEMENT_LABEL_LENGTH 9 # define ANNOTATION_EXPRESSION_LABEL "expression" # define ANNOTATION_EXPRESSION_LABEL_LENGTH 10 # define ANNOTATION_VOID_LABEL "void" # define ANNOTATION_VOID_LABEL_LENGTH 4 # define IS_ANNOTATION_STATEMENT_LABEL(annotation_name) \ (strncmp((const char *)(annotation_name), ANNOTATION_STATEMENT_LABEL, \ ANNOTATION_STATEMENT_LABEL_LENGTH) == 0) # define IS_ANNOTATION_VOID(annotation_name) \ (strncmp((const char *)(annotation_name), ANNOTATION_VOID_LABEL ":", \ ANNOTATION_VOID_LABEL_LENGTH) == 0) /* Annotation detection factors exclusive to Windows x64. */ # if defined(WINDOWS) && defined(X64) /* Instruction `int 2c` hints that the preceding cbr is probably an annotation * head. */ # define WINDOWS_X64_ANNOTATION_HINT_BYTE 0xcd # define X64_WINDOWS_ENCODED_ANNOTATION_HINT 0x2ccd /* Instruction `int 3` acts as a boundary for compiler optimizations, to prevent * the the annotation from being transformed into something unrecognizable. */ # define WINDOWS_X64_OPTIMIZATION_FENCE 0xcc # define IS_ANNOTATION_HEADER(scratch, pc) \ (instr_is_cbr(scratch) && \ (*(ushort *)(pc) == X64_WINDOWS_ENCODED_ANNOTATION_HINT)) # endif /* OPND_RETURN_VALUE: create the return value operand for `mov $return_value,%xax`. */ # ifdef X64 # define OPND_RETURN_VALUE(return_value) OPND_CREATE_INT64(return_value) # else # define OPND_RETURN_VALUE(return_value) OPND_CREATE_INT32(return_value) # endif /* FASTCALL_REGISTER_ARG_COUNT: Specifies the number of arguments passed in registers. */ # ifdef X64 # ifdef UNIX # define FASTCALL_REGISTER_ARG_COUNT 6 # else /* WINDOWS x64 */ # define FASTCALL_REGISTER_ARG_COUNT 4 # endif # else /* x86 (all) */ # define FASTCALL_REGISTER_ARG_COUNT 2 # endif # define DYNAMORIO_ANNOTATE_RUNNING_ON_DYNAMORIO_NAME \ "dynamorio_annotate_running_on_dynamorio" # define DYNAMORIO_ANNOTATE_LOG_NAME "dynamorio_annotate_log" # define DYNAMORIO_ANNOTATE_LOG_ARG_COUNT 20 /* Facilitates timestamp substitution in `dynamorio_annotate_log()`. */ # define LOG_ANNOTATION_TIMESTAMP_TOKEN "${timestamp}" # define LOG_ANNOTATION_TIMESTAMP_TOKEN_LENGTH 12 /* Constant factors of the Valgrind annotation, as defined in valgrind.h. */ enum { VG_ROL_COUNT = 4, }; typedef enum _annotation_type_t { /* Indicates that the analyzed instruction turned out not to be an annotation head. */ ANNOTATION_TYPE_NONE, /* To invoke an annotation as an expression, the target app calls the annotation as if * it were a normal function. The annotation instruction sequence follows the preamble * of each annotation function, and instrumentation replaces it with (1) a clean call * to each registered handler for that annotation, or (2) a return value substitution, * depending on the type of registration. */ ANNOTATION_TYPE_EXPRESSION, /* To invoke an annotation as a statement, the target app calls a macro defined in * the annotation header (via dr_annotations_asm.h), which places the annotation * instruction sequence inline at the invocation site. The sequence includes a normal * call to the annotation function, so instrumentation simply involves removing the * surrounding components of the annotation to expose the call. The DR client's clean * calls will be invoked within the annotation function itself (see above). */ ANNOTATION_TYPE_STATEMENT, } annotation_type_t; /* Specifies the exact byte position of the essential components of an annotation. */ typedef struct _annotation_layout_t { app_pc start_pc; annotation_type_t type; /* Indicates whether the annotation function in the target app is of void type. */ bool is_void; /* Points to the annotation name in the target app's data section. */ const char *name; /* Specifies the translation of the annotation instrumentation (e.g., clean call). */ app_pc substitution_xl8; /* Specifies the byte at which app decoding should resume following the annotation. */ app_pc resume_pc; } annotation_layout_t; # if !(defined(WINDOWS) && defined(X64)) typedef struct _vg_handlers_t { dr_annotation_handler_t *handlers[DR_VG_ID__LAST]; } vg_handlers_t; # endif static strhash_table_t *handlers; # if !(defined(WINDOWS) && defined(X64)) /* locked under the `handlers` table lock */ static vg_handlers_t *vg_handlers; /* Dispatching function for Valgrind annotations (required because id of the Valgrind * client request object cannot be determined statically). */ static dr_annotation_handler_t vg_router; static dr_annotation_receiver_t vg_receiver; /* The sole receiver for `vg_router`. */ static opnd_t vg_router_arg; /* The sole argument for the clean call to `vg_router`. */ # endif /* Required for passing the va_list in `dynamorio_annotate_log()` to the log function. */ extern ssize_t do_file_write(file_t f, const char *fmt, va_list ap); /********************************************************* * INTERNAL ROUTINE DECLARATIONS */ # if !(defined(WINDOWS) && defined(X64)) /* Valgrind dispatcher, called by the instrumentation of the Valgrind annotations. */ static void handle_vg_annotation(app_pc request_args); /* Maps a Valgrind request id into a (sequential) `DR_VG_ID__*` constant. */ static dr_valgrind_request_id_t lookup_valgrind_request(ptr_uint_t request); static ptr_uint_t valgrind_running_on_valgrind(dr_vg_client_request_t *request); # endif static bool is_annotation_tag(dcontext_t *dcontext, IN OUT app_pc *start_pc, instr_t *scratch, OUT const char **name); static void identify_annotation(dcontext_t *dcontext, IN OUT annotation_layout_t *layout, instr_t *scratch); /* Create argument operands for the instrumented clean call */ static void create_arg_opnds(dr_annotation_handler_t *handler, uint num_args, dr_annotation_calling_convention_t call_type); # ifdef DEBUG /* Implements `dynamorio_annotate_log()`, including substitution of the string literal * token "${timestamp}" with the current system time. */ static ssize_t annotation_printf(const char *format, ...); # endif /* Invoked during hashtable entry removal */ static void free_annotation_handler(void *p); /********************************************************* * ANNOTATION INTEGRATION FUNCTIONS */ void annotation_init() { handlers = strhash_hash_create( GLOBAL_DCONTEXT, 8, 80, /* favor a small table */ HASHTABLE_ENTRY_SHARED | HASHTABLE_SHARED | HASHTABLE_RELAX_CLUSTER_CHECKS | HASHTABLE_PERSISTENT, free_annotation_handler _IF_DEBUG("annotation handler hashtable")); # if !(defined(WINDOWS) && defined(X64)) vg_handlers = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, vg_handlers_t, ACCT_OTHER, UNPROTECTED); memset(vg_handlers, 0, sizeof(vg_handlers_t)); vg_router.type = DR_ANNOTATION_HANDLER_CALL; /* The Valgrind client request object is passed in %xax. */ vg_router.num_args = 1; vg_router_arg = opnd_create_reg(DR_REG_XAX); vg_router.args = &vg_router_arg; vg_router.symbol_name = NULL; /* No symbols in Valgrind annotations. */ vg_router.receiver_list = &vg_receiver; vg_receiver.instrumentation.callback = (void *)(void (*)())handle_vg_annotation; vg_receiver.save_fpstate = false; vg_receiver.next = NULL; # endif dr_annotation_register_return(DYNAMORIO_ANNOTATE_RUNNING_ON_DYNAMORIO_NAME, (void *)(ptr_uint_t) true); # ifdef DEBUG /* The logging annotation requires a debug build of DR. Arbitrarily allows up to * 20 arguments, since the clean call must have a fixed number of them. */ dr_annotation_register_call(DYNAMORIO_ANNOTATE_LOG_NAME, (void *)annotation_printf, false, DYNAMORIO_ANNOTATE_LOG_ARG_COUNT, DR_ANNOTATION_CALL_TYPE_VARARG); # endif # if !(defined(WINDOWS) && defined(X64)) /* DR pretends to be Valgrind. */ dr_annotation_register_valgrind(DR_VG_ID__RUNNING_ON_VALGRIND, valgrind_running_on_valgrind); # endif } void annotation_exit() { # if !(defined(WINDOWS) && defined(X64)) uint i; for (i = 0; i < DR_VG_ID__LAST; i++) { if (vg_handlers->handlers[i] != NULL) free_annotation_handler(vg_handlers->handlers[i]); } HEAP_TYPE_FREE(GLOBAL_DCONTEXT, vg_handlers, vg_handlers_t, ACCT_OTHER, UNPROTECTED); # endif strhash_hash_destroy(GLOBAL_DCONTEXT, handlers); } bool instrument_annotation(dcontext_t *dcontext, IN OUT app_pc *start_pc, OUT instr_t **substitution _IF_WINDOWS_X64(IN bool hint_is_safe)) { annotation_layout_t layout = { 0 }; /* This instr_t is used for analytical decoding throughout the detection functions. * It is passed on the stack and its contents are considered void on function entry. */ instr_t scratch; # if defined(WINDOWS) && defined(X64) app_pc hint_pc = *start_pc; bool hint = true; byte hint_byte; # endif /* We need to use the passed-in cxt for IR but we need a real one for TRY_EXCEPT. */ dcontext_t *my_dcontext; if (dcontext == GLOBAL_DCONTEXT) my_dcontext = get_thread_private_dcontext(); else my_dcontext = dcontext; # if defined(WINDOWS) && defined(X64) if (hint_is_safe) { hint_byte = *hint_pc; } else { if (!d_r_safe_read(hint_pc, 1, &hint_byte)) return false; } if (hint_byte != WINDOWS_X64_ANNOTATION_HINT_BYTE) return false; /* The hint is the first byte of the 2-byte instruction `int 2c`. Skip both bytes. */ layout.start_pc = hint_pc + INT_LENGTH; layout.substitution_xl8 = layout.start_pc; # else layout.start_pc = *start_pc; # endif instr_init(dcontext, &scratch); TRY_EXCEPT(my_dcontext, { identify_annotation(dcontext, &layout, &scratch); }, { /* EXCEPT */ LOG(THREAD, LOG_ANNOTATIONS, 2, "Failed to instrument annotation at " PFX "\n", *start_pc); /* layout.type is already ANNOTATION_TYPE_NONE */ }); if (layout.type != ANNOTATION_TYPE_NONE) { LOG(GLOBAL, LOG_ANNOTATIONS, 2, "Decoded %s annotation %s. Next pc now " PFX ".\n", (layout.type == ANNOTATION_TYPE_EXPRESSION) ? "expression" : "statement", layout.name, layout.resume_pc); /* Notify the caller where to resume decoding app instructions. */ *start_pc = layout.resume_pc; if (layout.type == ANNOTATION_TYPE_EXPRESSION) { dr_annotation_handler_t *handler; TABLE_RWLOCK(handlers, write, lock); handler = strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, layout.name); if (handler != NULL && handler->type == DR_ANNOTATION_HANDLER_CALL) { /* Substitute the annotation with a label pointing to the handler. */ instr_t *call = INSTR_CREATE_label(dcontext); dr_instr_label_data_t *label_data = instr_get_label_data_area(call); SET_ANNOTATION_HANDLER(label_data, handler); SET_ANNOTATION_APP_PC(label_data, layout.resume_pc); instr_set_note(call, (void *)DR_NOTE_ANNOTATION); instr_set_meta(call); *substitution = call; handler->is_void = layout.is_void; if (!handler->is_void) { /* Append `mov $0x0,%eax` to the annotation substitution, so that * clients and tools recognize that %xax will be written here. * The placeholder is "ok to mangle" because it (partially) * implements the app's annotation. The placeholder will be * removed post-client during mangling. * We only support writing the return value and no other registers * (otherwise we'd need drrg to further special-case * DR_NOTE_ANNOTATION). */ instr_t *return_placeholder = INSTR_XL8(INSTR_CREATE_mov_st(dcontext, opnd_create_reg(REG_XAX), OPND_CREATE_INT32(0)), layout.substitution_xl8); instr_set_note(return_placeholder, (void *)DR_NOTE_ANNOTATION); /* Append the placeholder manually, because the caller can call * `instrlist_append()` with a "sublist" of instr_t. */ instr_set_next(*substitution, return_placeholder); instr_set_prev(return_placeholder, *substitution); } } else { /* Substitute the annotation with `mov $return_value,%eax` */ void *return_value; if (handler == NULL) return_value = NULL; /* Return nothing if no handler is registered */ else return_value = handler->receiver_list->instrumentation.return_value; *substitution = INSTR_XL8(INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XAX), OPND_RETURN_VALUE(return_value)), layout.substitution_xl8); } TABLE_RWLOCK(handlers, write, unlock); } /* else (layout.type == ANNOTATION_TYPE_STATEMENT), in which case the only * instrumentation is to remove the jump-over-annotation such that the annotation * function gets called like a normal function. Instrumentation of clean calls and * return values will then occur within the annotation function (the case above). */ } instr_free(dcontext, &scratch); return (layout.type != ANNOTATION_TYPE_NONE); } # if !(defined(WINDOWS) && defined(X64)) void instrument_valgrind_annotation(dcontext_t *dcontext, instrlist_t *bb, instr_t *xchg_instr, app_pc xchg_pc, app_pc next_pc, uint bb_instr_count) { int i; app_pc instrumentation_pc = NULL; instr_t *return_placeholder; instr_t *instr, *next_instr; dr_instr_label_data_t *label_data; LOG(THREAD, LOG_ANNOTATIONS, 2, "Matched valgrind client request pattern at " PFX "\n", instr_get_app_pc(xchg_instr)); /* We leave the argument gathering code as app instructions, because it writes to app * registers (xref i#1423). Now delete the `xchg` instruction, and the `rol` * instructions--unless a previous BB contains some of the `rol`, in which case they * must be executed to avoid messing up %xdi (the 4 `rol` compose to form a nop). * Note: in the case of a split `rol` sequence, we only instrument the second half. */ instr_destroy(dcontext, xchg_instr); if (bb_instr_count > VG_ROL_COUNT) { instr = instrlist_last(bb); for (i = 0; i < VG_ROL_COUNT; i++) { ASSERT(instr != NULL && instr_get_opcode(instr) == OP_rol); next_instr = instr_get_prev(instr); instrlist_remove(bb, instr); instr_destroy(dcontext, instr); instr = next_instr; } } /* i#1613: if the client removes the app instruction prior to the annotation, we will * skip the annotation instrumentation, so identify the pc of that instruction here. */ if (instrlist_last(bb) != NULL) instrumentation_pc = instrlist_last(bb)->translation; /* Substitute the annotation tail with a label pointing to the Valgrind handler. */ instr = INSTR_CREATE_label(dcontext); instr_set_note(instr, (void *)DR_NOTE_ANNOTATION); label_data = instr_get_label_data_area(instr); SET_ANNOTATION_HANDLER(label_data, &vg_router); SET_ANNOTATION_APP_PC(label_data, next_pc); SET_ANNOTATION_INSTRUMENTATION_PC(label_data, instrumentation_pc); instr_set_meta(instr); instrlist_append(bb, instr); /* Append `mov $0x0,%edx` so that clients and tools recognize that %xdx will be * written here. The placeholder is "ok to mangle" because it (partially) implements * the app's annotation. The placeholder will be removed post-client during mangling. * We only support writing the return value and no other registers (otherwise * we'd need drreg to further special-case DR_NOTE_ANNOTATION). */ return_placeholder = INSTR_XL8( INSTR_CREATE_mov_st(dcontext, opnd_create_reg(REG_XDX), OPND_CREATE_INT32(0)), xchg_pc); instr_set_note(return_placeholder, (void *)DR_NOTE_ANNOTATION); instrlist_append(bb, return_placeholder); } # endif /********************************************************* * ANNOTATION API FUNCTIONS */ bool dr_annotation_register_call(const char *annotation_name, void *callee, bool save_fpstate, uint num_args, dr_annotation_calling_convention_t call_type) { bool result = true; dr_annotation_handler_t *handler; dr_annotation_receiver_t *receiver; TABLE_RWLOCK(handlers, write, lock); handler = (dr_annotation_handler_t *)strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, annotation_name); if (handler == NULL) { /* make a new handler if never registered yet */ handler = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_handler_t, ACCT_OTHER, UNPROTECTED); memset(handler, 0, sizeof(dr_annotation_handler_t)); handler->type = DR_ANNOTATION_HANDLER_CALL; handler->symbol_name = dr_strdup(annotation_name HEAPACCT(ACCT_OTHER)); handler->num_args = num_args; if (num_args == 0) { handler->args = NULL; } else { handler->args = HEAP_ARRAY_ALLOC(GLOBAL_DCONTEXT, opnd_t, num_args, ACCT_OTHER, UNPROTECTED); create_arg_opnds(handler, num_args, call_type); } strhash_hash_add(GLOBAL_DCONTEXT, handlers, handler->symbol_name, handler); } if (handler->type == DR_ANNOTATION_HANDLER_CALL || handler->receiver_list == NULL) { /* If the annotation previously had a return value registration, it can be changed * to clean call instrumentation, provided the return value was unregistered. */ handler->type = DR_ANNOTATION_HANDLER_CALL; receiver = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); receiver->instrumentation.callback = callee; receiver->save_fpstate = save_fpstate; receiver->next = handler->receiver_list; /* push the new receiver onto the list */ handler->receiver_list = receiver; } else { result = false; /* A return value is registered, so no call can be added. */ } TABLE_RWLOCK(handlers, write, unlock); return result; } # if !(defined(WINDOWS) && defined(X64)) bool dr_annotation_register_valgrind( dr_valgrind_request_id_t request_id, ptr_uint_t (*annotation_callback)(dr_vg_client_request_t *request)) { dr_annotation_handler_t *handler; dr_annotation_receiver_t *receiver; if (request_id >= DR_VG_ID__LAST) return false; TABLE_RWLOCK(handlers, write, lock); handler = vg_handlers->handlers[request_id]; if (handler == NULL) { /* make a new handler if never registered yet */ handler = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_handler_t, ACCT_OTHER, UNPROTECTED); memset(handler, 0, sizeof(dr_annotation_handler_t)); handler->type = DR_ANNOTATION_HANDLER_VALGRIND; vg_handlers->handlers[request_id] = handler; } receiver = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); receiver->instrumentation.vg_callback = annotation_callback; receiver->save_fpstate = false; receiver->next = handler->receiver_list; /* push the new receiver onto the list */ handler->receiver_list = receiver; TABLE_RWLOCK(handlers, write, unlock); return true; } # endif bool dr_annotation_register_return(const char *annotation_name, void *return_value) { bool result = true; dr_annotation_handler_t *handler; dr_annotation_receiver_t *receiver; TABLE_RWLOCK(handlers, write, lock); ASSERT_TABLE_SYNCHRONIZED(handlers, WRITE); handler = (dr_annotation_handler_t *)strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, annotation_name); if (handler == NULL) { /* make a new handler if never registered yet */ handler = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_handler_t, ACCT_OTHER, UNPROTECTED); memset(handler, 0, sizeof(dr_annotation_handler_t)); handler->type = DR_ANNOTATION_HANDLER_RETURN_VALUE; handler->symbol_name = dr_strdup(annotation_name HEAPACCT(ACCT_OTHER)); strhash_hash_add(GLOBAL_DCONTEXT, handlers, handler->symbol_name, handler); } if (handler->receiver_list == NULL) { /* If the annotation previously had clean call registration, it can be changed to * return value instrumentation, provided the calls have been unregistered. */ handler->type = DR_ANNOTATION_HANDLER_RETURN_VALUE; receiver = HEAP_TYPE_ALLOC(GLOBAL_DCONTEXT, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); receiver->instrumentation.return_value = return_value; receiver->save_fpstate = false; receiver->next = NULL; /* Return value can only have one implementation. */ handler->receiver_list = receiver; } else { result = false; /* Existing handler prevents the new return value. */ } TABLE_RWLOCK(handlers, write, unlock); return result; } bool dr_annotation_pass_pc(const char *annotation_name) { bool result = true; dr_annotation_handler_t *handler; TABLE_RWLOCK(handlers, write, lock); ASSERT_TABLE_SYNCHRONIZED(handlers, WRITE); handler = (dr_annotation_handler_t *)strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, annotation_name); if (handler == NULL) { result = false; } else { handler->pass_pc_in_slot = true; } TABLE_RWLOCK(handlers, write, unlock); return result; } bool dr_annotation_unregister_call(const char *annotation_name, void *callee) { bool found = false; dr_annotation_handler_t *handler; TABLE_RWLOCK(handlers, write, lock); handler = (dr_annotation_handler_t *)strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, annotation_name); if (handler != NULL && handler->receiver_list != NULL) { dr_annotation_receiver_t *receiver = handler->receiver_list; if (receiver->instrumentation.callback == callee) { /* case 1: remove the head */ handler->receiver_list = receiver->next; HEAP_TYPE_FREE(GLOBAL_DCONTEXT, receiver, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); found = true; } else { /* case 2: remove from within the list */ while (receiver->next != NULL) { if (receiver->next->instrumentation.callback == callee) { dr_annotation_receiver_t *removal = receiver->next; receiver->next = removal->next; HEAP_TYPE_FREE(GLOBAL_DCONTEXT, removal, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); found = true; break; } receiver = receiver->next; } } /* Leave the handler for the next registration (free it on exit) */ } TABLE_RWLOCK(handlers, write, unlock); return found; } bool dr_annotation_unregister_return(const char *annotation_name) { bool found = false; dr_annotation_handler_t *handler; TABLE_RWLOCK(handlers, write, lock); handler = (dr_annotation_handler_t *)strhash_hash_lookup(GLOBAL_DCONTEXT, handlers, annotation_name); if ((handler != NULL) && (handler->receiver_list != NULL)) { ASSERT(handler->receiver_list->next == NULL); HEAP_TYPE_FREE(GLOBAL_DCONTEXT, handler->receiver_list, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); handler->receiver_list = NULL; found = true; } /* Leave the handler for the next registration (free it on exit) */ TABLE_RWLOCK(handlers, write, unlock); return found; } # if !(defined(WINDOWS) && defined(X64)) bool dr_annotation_unregister_valgrind( dr_valgrind_request_id_t request_id, ptr_uint_t (*annotation_callback)(dr_vg_client_request_t *request)) { bool found = false; dr_annotation_handler_t *handler; TABLE_RWLOCK(handlers, write, lock); handler = vg_handlers->handlers[request_id]; if ((handler != NULL) && (handler->receiver_list != NULL)) { dr_annotation_receiver_t *receiver = handler->receiver_list; if (receiver->instrumentation.vg_callback == annotation_callback) { handler->receiver_list = receiver->next; /* case 1: remove the head */ HEAP_TYPE_FREE(GLOBAL_DCONTEXT, receiver, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); found = true; } else { /* case 2: remove from within the list */ while (receiver->next != NULL) { if (receiver->next->instrumentation.vg_callback == annotation_callback) { dr_annotation_receiver_t *removal = receiver->next; receiver->next = removal->next; HEAP_TYPE_FREE(GLOBAL_DCONTEXT, removal, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); found = true; break; } receiver = receiver->next; } } /* Leave the handler for the next registration (free it on exit) */ } TABLE_RWLOCK(handlers, write, unlock); return found; } /********************************************************* * ANNOTATION IMPLEMENTATIONS */ static void handle_vg_annotation(app_pc request_args) { dcontext_t *dcontext = get_thread_private_dcontext(); dr_valgrind_request_id_t request_id; dr_annotation_receiver_t *receiver; dr_vg_client_request_t request; ptr_uint_t result; if (!d_r_safe_read(request_args, sizeof(dr_vg_client_request_t), &request)) { LOG(THREAD, LOG_ANNOTATIONS, 2, "Failed to read Valgrind client request args at " PFX ". Skipping the annotation.\n", request_args); return; } result = request.default_result; request_id = lookup_valgrind_request(request.request); if (request_id < DR_VG_ID__LAST) { TABLE_RWLOCK(handlers, read, lock); if (vg_handlers->handlers[request_id] != NULL) { receiver = vg_handlers->handlers[request_id]->receiver_list; while (receiver != NULL) { result = receiver->instrumentation.vg_callback(&request); receiver = receiver->next; } } TABLE_RWLOCK(handlers, read, unlock); } else { LOG(THREAD, LOG_ANNOTATIONS, 2, "Skipping unrecognized Valgrind client request id %d\n", request.request); return; } /* Put the result in %xdx where the target app expects to find it. */ if (dcontext->client_data->mcontext_in_dcontext) { get_mcontext(dcontext)->xdx = result; } else { priv_mcontext_t *state = get_priv_mcontext_from_dstack(dcontext); state->xdx = result; } } static dr_valgrind_request_id_t lookup_valgrind_request(ptr_uint_t request) { switch (request) { case VG_USERREQ__RUNNING_ON_VALGRIND: return DR_VG_ID__RUNNING_ON_VALGRIND; case VG_USERREQ__DO_LEAK_CHECK: return DR_VG_ID__DO_LEAK_CHECK; case VG_USERREQ__MAKE_MEM_DEFINED_IF_ADDRESSABLE: return DR_VG_ID__MAKE_MEM_DEFINED_IF_ADDRESSABLE; case VG_USERREQ__DISCARD_TRANSLATIONS: return DR_VG_ID__DISCARD_TRANSLATIONS; } return DR_VG_ID__LAST; } static ptr_uint_t valgrind_running_on_valgrind(dr_vg_client_request_t *request) { return 1; /* Pretend to be Valgrind. */ } # endif /********************************************************* * INTERNAL ROUTINES */ /* If the app code at `*cur_pc` can be read as an encoded annotation label, then: * (1) advance `*cur_pc` beyond the last label instruction, * (2) point `**name` to the start of the label within the app image data section, and * (3) return true. * If there is no annotation label at `*cur_pc`, or failure occurs while trying to read * it, then return false with undefined values for `*cur_pc` and `**name`. * * On Unix and Windows x86, the label has the form * "<annotation-label>:<return-type>:<annotation-name>, e.g. * * "dynamorio-annotation:void:dynamorio_annotate_log" * "dynamorio-annotation:const char *:some_custom_client_annotation" * * On Windows x64, the label has an additional token for the annotation type: * "<annotation-label>:<annotation-type>:<return-type>:<annotation-name>, e.g. * * "dynamorio-annotation:statement:void:dynamorio_annotate_log" * "dynamorio-annotation:expression:const char *:some_custom_client_annotation" * * The encoding of the pointer to the label varies by platform: * * Unix expression annotation label (two instructions form <GOT-base> + <GOT-offset>): * * mov $<GOT-base>,%xax * bsr $<GOT-offset>,%xax * * Windows x86 expression annotation label (direct pointer to the <label>): * * mov $<label>,%eax * * Windows x64 expression annotation label (same, in 2 variations): * * mov $<label>,%rax Or prefetch $<label> * prefetch %rax * * Decoding the label pointer proceeds as follows: * * (step 1) check `*cur_pc` for the opcode of the first label-encoding instruction * (step 2) check the operand of that instruction for a label-encoding operand type * Unix only--dereference the GOT entry: * (step 3) check the next instruction for the label offset opcode (bsr or bsf) * (step 4) check its operand for the offset-encoding operand type (base disp) * (step 5) add the two operands and dereference as the label's GOT entry * (step 6) attempt to read the decoded pointer and compare to "dynamorio-annotation" * (note there is a special case for Windows x64, which is not inline asm) * (step 7) if it matches, point `**name` to the character beyond the separator ':' * * See https://dynamorio.org/page_annotations.html for complete examples. */ static inline bool is_annotation_tag(dcontext_t *dcontext, IN OUT app_pc *cur_pc, instr_t *scratch, OUT const char **name) { app_pc start_pc = *cur_pc; instr_reset(dcontext, scratch); *cur_pc = decode(dcontext, *cur_pc, scratch); if (IS_ANNOTATION_LABEL_INSTR(scratch)) { /* step 1 */ opnd_t src = instr_get_src(scratch, 0); if (IS_ANNOTATION_LABEL_REFERENCE(src)) { /* step 2 */ char buf[DYNAMORIO_ANNOTATION_LABEL_LENGTH + 1 /*nul*/]; app_pc buf_ptr; app_pc opnd_ptr = GET_ANNOTATION_LABEL_REFERENCE(src, start_pc); # ifdef UNIX app_pc got_ptr; instr_reset(dcontext, scratch); *cur_pc = decode(dcontext, *cur_pc, scratch); if (!IS_ANNOTATION_LABEL_GOT_OFFSET_INSTR(scratch)) /* step 3 */ return false; src = instr_get_src(scratch, 0); if (!IS_ANNOTATION_LABEL_GOT_OFFSET_REFERENCE(src)) /* step 4 */ return false; opnd_ptr += opnd_get_disp(src); /* step 5 */ if (!d_r_safe_read(opnd_ptr, sizeof(app_pc), &got_ptr)) return false; opnd_ptr = got_ptr; # endif # if defined(WINDOWS) && defined(X64) /* In Windows x64, if the `prefetch` instruction was found at * `*cur_pc` with no intervening `mov` instruction, the label * pointer must be an immediate operand to that `prefetch`. */ if (instr_get_opcode(scratch) == OP_prefetchw) { /* step 6 */ if (!d_r_safe_read(opnd_ptr, DYNAMORIO_ANNOTATION_LABEL_LENGTH, buf)) return false; buf[DYNAMORIO_ANNOTATION_LABEL_LENGTH] = '\0'; if (strcmp(buf, DYNAMORIO_ANNOTATION_LABEL) == 0) { *name = (const char *)(opnd_ptr + /* step 7 */ DYNAMORIO_ANNOTATION_LABEL_LENGTH + 1); /* skip the separator ':' */ return true; } } /* else the label pointer is the usual `mov` operand: */ # endif if (!d_r_safe_read(opnd_ptr, sizeof(app_pc), &buf_ptr)) /* step 6 */ return false; if (!d_r_safe_read(buf_ptr, DYNAMORIO_ANNOTATION_LABEL_LENGTH, buf)) return false; buf[DYNAMORIO_ANNOTATION_LABEL_LENGTH] = '\0'; if (strcmp(buf, DYNAMORIO_ANNOTATION_LABEL) != 0) return false; *name = (const char *)(buf_ptr + /* step 7 */ DYNAMORIO_ANNOTATION_LABEL_LENGTH + 1); /* skip the separator ':' */ return true; } } return false; } # if defined(WINDOWS) && defined(X64) /* Identify the annotation at layout->start_pc, if any. On Windows x64, some flexibility * is required to recognize the annotation sequence because it is compiled instead of * explicitly inserted with inline asm (which is unavailable in MSVC for this platform). * (step 1) check if the instruction at layout->start_pc encodes an annotation label. * (step 2) decode arbitrary instructions up to a `prefetch`, * following any direct branches decoded along the way. * (step 3) skip the `int 3` following the `prefetch`. * (step 4) set the substitution_xl8 to precede the resume_pc, so we'll resume in the * right place if the client removes all instrs following the substitution. * (step 5) set the resume pc, so execution resumes within the annotation body. * (step 6) compare the next label token to determine the annotation type. * Expression annotations only: * (step 7) compare the return type to determine whether the annotation is void. * (step 8) advance the label pointer to the name token * (note that the Statement annotation concludes with a special case). */ static inline void identify_annotation(dcontext_t *dcontext, IN OUT annotation_layout_t *layout, instr_t *scratch) { app_pc cur_pc = layout->start_pc, last_call = NULL; if (!is_annotation_tag(dcontext, &cur_pc, scratch, &layout->name)) /* step 1 */ return; while (instr_get_opcode(scratch) != OP_prefetchw) { /* step 2 */ if (instr_is_ubr(scratch)) cur_pc = instr_get_branch_target_pc(scratch); instr_reset(dcontext, scratch); cur_pc = decode(dcontext, cur_pc, scratch); } ASSERT(*cur_pc == WINDOWS_X64_OPTIMIZATION_FENCE); /* step 3 */ layout->substitution_xl8 = cur_pc; /* step 4 */ cur_pc++; layout->resume_pc = cur_pc; /* step 5 */ if (IS_ANNOTATION_STATEMENT_LABEL(layout->name)) { /* step 6 */ layout->type = ANNOTATION_TYPE_STATEMENT; layout->name += (ANNOTATION_STATEMENT_LABEL_LENGTH + 1); layout->name = strchr(layout->name, ':') + 1; /* step 8 */ /* If the target app contains an annotation whose argument is a function call * that gets inlined, and that function contains the same annotation, the * compiler will fuse the headers. See * https://dynamorio.org/page_annotations.html for a sample of * fused headers. This loop identifies and skips any fused headers. */ while (true) { instr_reset(dcontext, scratch); cur_pc = decode(dcontext, cur_pc, scratch); if (IS_ANNOTATION_HEADER(scratch, cur_pc)) { cur_pc += INT_LENGTH; while (instr_get_opcode(scratch) != OP_prefetchw) { if (instr_is_ubr(scratch)) cur_pc = instr_get_branch_target_pc(scratch); instr_reset(dcontext, scratch); cur_pc = decode(dcontext, cur_pc, scratch); } ASSERT(*cur_pc == WINDOWS_X64_OPTIMIZATION_FENCE); cur_pc++; layout->resume_pc = cur_pc; } else if (instr_is_cti(scratch)) break; } } else { layout->type = ANNOTATION_TYPE_EXPRESSION; layout->name += (ANNOTATION_EXPRESSION_LABEL_LENGTH + 1); layout->is_void = IS_ANNOTATION_VOID(layout->name); /* step 7 */ layout->name = strchr(layout->name, ':') + 1; /* step 8 */ } } # else /* Windows x86 and all Unix */ /* Identify the annotation at layout->start_pc, if any. In summary: * (step 1) check if the instruction at layout->start_pc encodes an annotation label. * (step 2) determine the annotation type based on instruction opcodes * Expression annotations only: * (step 3) compare the return type to determine whether the annotation is void. * (step 4) adjust the substitution xl8 to the current pc. * (step 5) decode past the jump over the annotation body. * (step 6) set the resume pc to the current instruction, which is a jump over the * native version of the annotation body (specified by the target app). * (step 7) advance the label pointer to the name token. */ static inline void identify_annotation(dcontext_t *dcontext, IN OUT annotation_layout_t *layout, instr_t *scratch) { app_pc cur_pc = layout->start_pc; if (is_annotation_tag(dcontext, &cur_pc, scratch, &layout->name)) { /* step 1 */ # ifdef WINDOWS if (*(cur_pc++) == RAW_OPCODE_pop_eax) { /* step 2 */ # else if (instr_get_opcode(scratch) == OP_bsf) { /* step 2 */ # endif layout->type = ANNOTATION_TYPE_STATEMENT; } else { layout->type = ANNOTATION_TYPE_EXPRESSION; layout->is_void = IS_ANNOTATION_VOID(layout->name); /* step 3 */ } layout->substitution_xl8 = cur_pc; /* step 4 */ instr_reset(dcontext, scratch); cur_pc = decode_cti(dcontext, cur_pc, scratch); /* step 5 */ ASSERT(instr_is_ubr(scratch)); layout->resume_pc = cur_pc; /* step 6 */ layout->name = strchr(layout->name, ':') + 1; /* step 7 */ } } # endif # ifdef X64 # ifdef UNIX static inline void /* UNIX x64 */ create_arg_opnds(dr_annotation_handler_t *handler, uint num_args, dr_annotation_calling_convention_t call_type) { uint i, arg_stack_location; ASSERT(call_type == DR_ANNOTATION_CALL_TYPE_FASTCALL); /* architecture constraint */ switch (num_args) { /* Create up to six register args */ default: case 6: handler->args[5] = opnd_create_reg(DR_REG_R9); case 5: handler->args[4] = opnd_create_reg(DR_REG_R8); case 4: handler->args[3] = opnd_create_reg(DR_REG_XCX); case 3: handler->args[2] = opnd_create_reg(DR_REG_XDX); case 2: handler->args[1] = opnd_create_reg(DR_REG_XSI); case 1: handler->args[0] = opnd_create_reg(DR_REG_XDI); } /* Create the remaining args on the stack */ for (i = FASTCALL_REGISTER_ARG_COUNT; i < num_args; i++) { /* The clean call will appear at the top of the annotation function body, where * the stack arguments follow the return address and the caller's saved stack * pointer. Rewind `i` to 0 and add 2 to skip over these pointers. */ arg_stack_location = sizeof(ptr_uint_t) * (i - FASTCALL_REGISTER_ARG_COUNT + 2); /* Use the stack pointer because the base pointer is a general register in x64 */ handler->args[i] = OPND_CREATE_MEMPTR(DR_REG_XSP, arg_stack_location); } } # else /* WINDOWS x64 */ static inline void create_arg_opnds(dr_annotation_handler_t *handler, uint num_args, dr_annotation_calling_convention_t call_type) { uint i, arg_stack_location; ASSERT(call_type == DR_ANNOTATION_CALL_TYPE_FASTCALL); /* architecture constraint */ switch (num_args) { /* Create up to four register args */ default: case 4: handler->args[3] = opnd_create_reg(DR_REG_R9); case 3: handler->args[2] = opnd_create_reg(DR_REG_R8); case 2: handler->args[1] = opnd_create_reg(DR_REG_XDX); case 1: handler->args[0] = opnd_create_reg(DR_REG_XCX); } /* Create the remaining args on the stack */ for (i = FASTCALL_REGISTER_ARG_COUNT; i < num_args; i++) { /* The clean call will appear at the top of the annotation function body, where * the stack arguments follow the return address and 32 bytes of empty space. * Since `i` is already starting at 4, just add one more to reach the args. */ arg_stack_location = sizeof(ptr_uint_t) * (i + 1); /* Use the stack pointer because the base pointer is a general register in x64 */ handler->args[i] = OPND_CREATE_MEMPTR(DR_REG_XSP, arg_stack_location); } } # endif # else /* x86 (all) */ static inline void create_arg_opnds(dr_annotation_handler_t *handler, uint num_args, dr_annotation_calling_convention_t call_type) { uint i, arg_stack_location; if (call_type == DR_ANNOTATION_CALL_TYPE_FASTCALL) { switch (num_args) { /* Create 1 or 2 register args */ default: case 2: handler->args[1] = opnd_create_reg(DR_REG_XDX); case 1: handler->args[0] = opnd_create_reg(DR_REG_XCX); } /* Create the remaining args on the stack */ for (i = FASTCALL_REGISTER_ARG_COUNT; i < num_args; i++) { /* The clean call will appear at the top of the annotation function body, * where the stack args follow the return address and the caller's saved base * pointer. Since `i` already starts at 2, use it to skip those pointers. */ arg_stack_location = sizeof(ptr_uint_t) * i; handler->args[i] = OPND_CREATE_MEMPTR(DR_REG_XBP, arg_stack_location); } } else { /* DR_ANNOTATION_CALL_TYPE_STDCALL: Create all args on the stack */ for (i = 0; i < num_args; i++) { /* The clean call will appear at the top of the annotation function body, * where the stack args follow the return address and the caller's saved base * pointer. Since `i` starts at 0, add 2 to skip those pointers. */ arg_stack_location = sizeof(ptr_uint_t) * (i + 2); handler->args[i] = OPND_CREATE_MEMPTR(DR_REG_XBP, arg_stack_location); } } } # endif # ifdef DEBUG static ssize_t annotation_printf(const char *format, ...) { va_list ap; ssize_t count; const char *timestamp_token_start; char *timestamped_format = NULL; uint buffer_length = 0; if (d_r_stats == NULL || d_r_stats->loglevel == 0) return 0; /* No log is available for writing. */ if ((d_r_stats->logmask & LOG_VIA_ANNOTATIONS) == 0) return 0; /* Filtered out by the user. */ /* Substitute the first instance of the timestamp token with a timestamp string. * Additional timestamp tokens will be ignored, because it would be pointless. */ timestamp_token_start = strstr(format, LOG_ANNOTATION_TIMESTAMP_TOKEN); if (timestamp_token_start != NULL) { char timestamp_buffer[PRINT_TIMESTAMP_MAX_LENGTH]; buffer_length = (uint)(strlen(format) + PRINT_TIMESTAMP_MAX_LENGTH); if (print_timestamp_to_buffer(timestamp_buffer, PRINT_TIMESTAMP_MAX_LENGTH) > 0) { uint length_before_token = (uint)((ptr_uint_t)timestamp_token_start - (ptr_uint_t)format); /* print the timestamped format string into this heap buffer */ timestamped_format = HEAP_ARRAY_ALLOC(GLOBAL_DCONTEXT, char, buffer_length, ACCT_OTHER, UNPROTECTED); /* copy the original format string up to the timestamp token */ d_r_snprintf(timestamped_format, length_before_token, "%s", format); /* copy the timestamp and the remainder of the original format string */ d_r_snprintf(timestamped_format + length_before_token, (buffer_length - length_before_token), "%s%s", timestamp_buffer, timestamp_token_start + LOG_ANNOTATION_TIMESTAMP_TOKEN_LENGTH); /* use the timestamped format string */ format = (const char *)timestamped_format; } else { LOG(GLOBAL, LOG_ANNOTATIONS, 2, "Failed to obtain a system timestamp for " "substitution in annotation log statements '%s'\n", format); } } va_start(ap, format); count = do_file_write(GLOBAL, format, ap); va_end(ap); if (timestamped_format != NULL) { /* free the timestamp heap buffer, if any */ HEAP_ARRAY_FREE(GLOBAL_DCONTEXT, format, char, buffer_length, ACCT_OTHER, UNPROTECTED); } return count; } # endif static void free_annotation_handler(void *p) { dr_annotation_handler_t *handler = (dr_annotation_handler_t *)p; dr_annotation_receiver_t *next, *receiver = handler->receiver_list; while (receiver != NULL) { next = receiver->next; HEAP_TYPE_FREE(GLOBAL_DCONTEXT, receiver, dr_annotation_receiver_t, ACCT_OTHER, UNPROTECTED); receiver = next; } if (handler->num_args > 0) { HEAP_ARRAY_FREE(GLOBAL_DCONTEXT, handler->args, opnd_t, handler->num_args, ACCT_OTHER, UNPROTECTED); } if ((handler->type == DR_ANNOTATION_HANDLER_CALL) || (handler->type == DR_ANNOTATION_HANDLER_RETURN_VALUE)) dr_strfree(handler->symbol_name HEAPACCT(ACCT_OTHER)); HEAP_TYPE_FREE(GLOBAL_DCONTEXT, p, dr_annotation_handler_t, ACCT_OTHER, UNPROTECTED); } #endif /* ANNOTATIONS */
1
25,873
Update year range in Copyright notice, and elsewhere too.
DynamoRIO-dynamorio
c
@@ -179,10 +179,10 @@ type ACMEIssuerDNS01ProviderCloudflare struct { // ACMEIssuerDNS01ProviderRoute53 is a structure containing the Route 53 // configuration for AWS type ACMEIssuerDNS01ProviderRoute53 struct { - AccessKeyID string `json:"accessKeyID"` - SecretAccessKey SecretKeySelector `json:"secretAccessKeySecretRef"` - HostedZoneID string `json:"hostedZoneID"` - Region string `json:"region"` + AccessKeyIDRef SecretKeySelector `json:"accessKeyIDSecretRef"` + SecretAccessKeyRef SecretKeySelector `json:"secretAccessKeySecretRef"` + HostedZoneID string `json:"hostedZoneID"` + Region string `json:"region"` } // ACMEIssuerDNS01ProviderAzureDNS is a structure containing the
1
/* Copyright 2017 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package v1alpha1 import ( metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" ) const ( AltNamesAnnotationKey = "certmanager.k8s.io/alt-names" CommonNameAnnotationKey = "certmanager.k8s.io/common-name" IssuerNameAnnotationKey = "certmanager.k8s.io/issuer-name" IssuerKindAnnotationKey = "certmanager.k8s.io/issuer-kind" ) // +genclient // +genclient:nonNamespaced // +k8s:openapi-gen=true // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // +resource:path=clusterissuers type ClusterIssuer struct { metav1.TypeMeta `json:",inline"` metav1.ObjectMeta `json:"metadata,omitempty"` Spec IssuerSpec `json:"spec,omitempty"` Status IssuerStatus `json:"status,omitempty"` } // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // ClusterIssuerList is a list of Issuers type ClusterIssuerList struct { metav1.TypeMeta `json:",inline"` metav1.ListMeta `json:"metadata"` Items []ClusterIssuer `json:"items"` } // +genclient // +k8s:openapi-gen=true // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // +resource:path=issuers type Issuer struct { metav1.TypeMeta `json:",inline"` metav1.ObjectMeta `json:"metadata,omitempty"` Spec IssuerSpec `json:"spec,omitempty"` Status IssuerStatus `json:"status,omitempty"` } // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // IssuerList is a list of Issuers type IssuerList struct { metav1.TypeMeta `json:",inline"` metav1.ListMeta `json:"metadata"` Items []Issuer `json:"items"` } // IssuerSpec is the specification of an Issuer. This includes any // configuration required for the issuer. type IssuerSpec struct { IssuerConfig `json:",inline"` } type IssuerConfig struct { ACME *ACMEIssuer `json:"acme,omitempty"` CA *CAIssuer `json:"ca,omitempty"` Vault *VaultIssuer `json:"vault,omitempty"` } type VaultIssuer struct { // Vault authentication Auth VaultAuth `json:"auth"` // Server is the vault connection address Server string `json:"server"` // Vault URL path to the certificate role Path string `json:"path"` } // Vault authentication can be configured: // - With a secret containing a token. Cert-manager is using this token as-is. // - With a secret containing a AppRole. This AppRole is used to authenticate to // Vault and retrieve a token. type VaultAuth struct { // This Secret contains the Vault token key TokenSecretRef SecretKeySelector `json:"tokenSecretRef,omitempty"` // This Secret contains a AppRole and Secret AppRole VaultAppRole `json:"appRole,omitempty"` } type VaultAppRole struct { RoleId string `json:"roleId"` SecretRef SecretKeySelector `json:"secretRef"` } type CAIssuer struct { // SecretName is the name of the secret used to sign Certificates issued // by this Issuer. SecretName string `json:"secretName"` } // ACMEIssuer contains the specification for an ACME issuer type ACMEIssuer struct { // Email is the email for this account Email string `json:"email"` // Server is the ACME server URL Server string `json:"server"` // If true, skip verifying the ACME server TLS certificate SkipTLSVerify bool `json:"skipTLSVerify,omitempty"` // PrivateKey is the name of a secret containing the private key for this // user account. PrivateKey SecretKeySelector `json:"privateKeySecretRef"` // HTTP01 config HTTP01 *ACMEIssuerHTTP01Config `json:"http01,omitempty"` // DNS-01 config DNS01 *ACMEIssuerDNS01Config `json:"dns01,omitempty"` } type ACMEIssuerHTTP01Config struct { } // ACMEIssuerDNS01Config is a structure containing the ACME DNS configuration // options type ACMEIssuerDNS01Config struct { Providers []ACMEIssuerDNS01Provider `json:"providers"` } type ACMEIssuerDNS01Provider struct { Name string `json:"name"` Akamai *ACMEIssuerDNS01ProviderAkamai `json:"akamai,omitempty"` CloudDNS *ACMEIssuerDNS01ProviderCloudDNS `json:"clouddns,omitempty"` Cloudflare *ACMEIssuerDNS01ProviderCloudflare `json:"cloudflare,omitempty"` Route53 *ACMEIssuerDNS01ProviderRoute53 `json:"route53,omitempty"` AzureDNS *ACMEIssuerDNS01ProviderAzureDNS `json:"azuredns,omitempty"` } // ACMEIssuerDNS01ProviderAkamai is a structure containing the DNS // configuration for Akamai DNS—Zone Record Management API type ACMEIssuerDNS01ProviderAkamai struct { ServiceConsumerDomain string `json:"serviceConsumerDomain"` ClientToken SecretKeySelector `json:"clientTokenSecretRef"` ClientSecret SecretKeySelector `json:"clientSecretSecretRef"` AccessToken SecretKeySelector `json:"accessTokenSecretRef"` } // ACMEIssuerDNS01ProviderCloudDNS is a structure containing the DNS // configuration for Google Cloud DNS type ACMEIssuerDNS01ProviderCloudDNS struct { ServiceAccount SecretKeySelector `json:"serviceAccountSecretRef"` Project string `json:"project"` } // ACMEIssuerDNS01ProviderCloudflare is a structure containing the DNS // configuration for Cloudflare type ACMEIssuerDNS01ProviderCloudflare struct { Email string `json:"email"` APIKey SecretKeySelector `json:"apiKeySecretRef"` } // ACMEIssuerDNS01ProviderRoute53 is a structure containing the Route 53 // configuration for AWS type ACMEIssuerDNS01ProviderRoute53 struct { AccessKeyID string `json:"accessKeyID"` SecretAccessKey SecretKeySelector `json:"secretAccessKeySecretRef"` HostedZoneID string `json:"hostedZoneID"` Region string `json:"region"` } // ACMEIssuerDNS01ProviderAzureDNS is a structure containing the // configuration for Azure DNS type ACMEIssuerDNS01ProviderAzureDNS struct { ClientID string `json:"clientID"` ClientSecret SecretKeySelector `json:"clientSecretSecretRef"` SubscriptionID string `json:"subscriptionID"` TenantID string `json:"tenantID"` ResourceGroupName string `json:"resourceGroupName"` // + optional HostedZoneName string `json:"hostedZoneName"` } // IssuerStatus contains status information about an Issuer type IssuerStatus struct { Conditions []IssuerCondition `json:"conditions"` ACME *ACMEIssuerStatus `json:"acme,omitempty"` } // IssuerCondition contains condition information for an Issuer. type IssuerCondition struct { // Type of the condition, currently ('Ready'). Type IssuerConditionType `json:"type"` // Status of the condition, one of ('True', 'False', 'Unknown'). Status ConditionStatus `json:"status"` // LastTransitionTime is the timestamp corresponding to the last status // change of this condition. LastTransitionTime metav1.Time `json:"lastTransitionTime"` // Reason is a brief machine readable explanation for the condition's last // transition. Reason string `json:"reason"` // Message is a human readable description of the details of the last // transition, complementing reason. Message string `json:"message"` } // IssuerConditionType represents an Issuer condition value. type IssuerConditionType string const ( // IssuerConditionReady represents the fact that a given Issuer condition // is in ready state. IssuerConditionReady IssuerConditionType = "Ready" ) // ConditionStatus represents a condition's status. type ConditionStatus string // These are valid condition statuses. "ConditionTrue" means a resource is in // the condition; "ConditionFalse" means a resource is not in the condition; // "ConditionUnknown" means kubernetes can't decide if a resource is in the // condition or not. In the future, we could add other intermediate // conditions, e.g. ConditionDegraded. const ( // ConditionTrue represents the fact that a given condition is true ConditionTrue ConditionStatus = "True" // ConditionFalse represents the fact that a given condition is false ConditionFalse ConditionStatus = "False" // ConditionUnknown represents the fact that a given condition is unknown ConditionUnknown ConditionStatus = "Unknown" ) type ACMEIssuerStatus struct { // URI is the unique account identifier, which can also be used to retrieve // account details from the CA URI string `json:"uri"` } // +genclient // +k8s:openapi-gen=true // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // +resource:path=certificates // Certificate is a type to represent a Certificate from ACME type Certificate struct { metav1.TypeMeta `json:",inline"` metav1.ObjectMeta `json:"metadata,omitempty"` Spec CertificateSpec `json:"spec,omitempty"` Status CertificateStatus `json:"status,omitempty"` } // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // CertificateList is a list of Certificates type CertificateList struct { metav1.TypeMeta `json:",inline"` metav1.ListMeta `json:"metadata"` Items []Certificate `json:"items"` } // CertificateSpec defines the desired state of Certificate type CertificateSpec struct { // CommonName is a common name to be used on the Certificate CommonName string `json:"commonName"` // DNSNames is a list of subject alt names to be used on the Certificate DNSNames []string `json:"dnsNames"` // SecretName is the name of the secret resource to store this secret in SecretName string `json:"secretName"` // IssuerRef is a reference to the issuer for this certificate. If the // namespace field is not set, it is assumed to be in the same namespace // as the certificate. If the namespace field is set to the empty value "", // a ClusterIssuer of the given name will be used. Any other value is // invalid. IssuerRef ObjectReference `json:"issuerRef"` ACME *ACMECertificateConfig `json:"acme,omitempty"` } // ACMEConfig contains the configuration for the ACME certificate provider type ACMECertificateConfig struct { Config []ACMECertificateDomainConfig `json:"config"` } type ACMECertificateDomainConfig struct { Domains []string `json:"domains"` ACMESolverConfig `json:",inline"` } type ACMESolverConfig struct { HTTP01 *ACMECertificateHTTP01Config `json:"http01,omitempty"` DNS01 *ACMECertificateDNS01Config `json:"dns01,omitempty"` } type ACMECertificateHTTP01Config struct { Ingress string `json:"ingress"` IngressClass *string `json:"ingressClass,omitempty"` } type ACMECertificateDNS01Config struct { Provider string `json:"provider"` } // CertificateStatus defines the observed state of Certificate type CertificateStatus struct { Conditions []CertificateCondition `json:"conditions,omitempty"` ACME *CertificateACMEStatus `json:"acme,omitempty"` } // CertificateCondition contains condition information for an Certificate. type CertificateCondition struct { // Type of the condition, currently ('Ready'). Type CertificateConditionType `json:"type"` // Status of the condition, one of ('True', 'False', 'Unknown'). Status ConditionStatus `json:"status"` // LastTransitionTime is the timestamp corresponding to the last status // change of this condition. LastTransitionTime metav1.Time `json:"lastTransitionTime"` // Reason is a brief machine readable explanation for the condition's last // transition. Reason string `json:"reason"` // Message is a human readable description of the details of the last // transition, complementing reason. Message string `json:"message"` } // CertificateConditionType represents an Certificate condition value. type CertificateConditionType string const ( // CertificateConditionReady represents the fact that a given Certificate condition // is in ready state. CertificateConditionReady CertificateConditionType = "Ready" // CertificateConditionValidationFailed is used to indicate whether a // validation for a Certificate has failed. // This is currently used by the ACME issuer to track when the last // validation was attempted. CertificateConditionValidationFailed CertificateConditionType = "ValidateFailed" ) // CertificateACMEStatus holds the status for an ACME issuer type CertificateACMEStatus struct { // Order contains details about the current in-progress ACME Order. Order ACMEOrderStatus `json:"order,omitempty"` } type ACMEOrderStatus struct { // The URL that can be used to get information about the ACME order. URL string `json:"url"` Challenges []ACMEOrderChallenge `json:"challenges,omitempty"` } type ACMEOrderChallenge struct { // The URL that can be used to get information about the ACME challenge. URL string `json:"url"` // The URL that can be used to get information about the ACME authorization // associated with the challenge. AuthzURL string `json:"authzURL"` // Type of ACME challenge // Either http-01 or dns-01 Type string `json:"type"` // Domain this challenge corresponds to Domain string `json:"domain"` // Challenge token for this challenge Token string `json:"token"` // Challenge key for this challenge Key string `json:"key"` // Set to true if this challenge is for a wildcard domain Wildcard bool `json:"wildcard"` // Configuration used to present this challenge ACMESolverConfig `json:",inline"` } type LocalObjectReference struct { // Name of the referent. // More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names // TODO: Add other useful fields. apiVersion, kind, uid? Name string `json:"name,omitempty"` } // ObjectReference is a reference to an object. If the namespace field is set, // it is assumed to be in a namespace type ObjectReference struct { Name string `json:"name"` Kind string `json:"kind,omitempty"` } const ( ClusterIssuerKind = "ClusterIssuer" IssuerKind = "Issuer" ) type SecretKeySelector struct { // The name of the secret in the pod's namespace to select from. LocalObjectReference `json:",inline" protobuf:"bytes,1,opt,name=localObjectReference"` // The key of the secret to select from. Must be a valid secret key. Key string `json:"key" protobuf:"bytes,2,opt,name=key"` }
1
11,053
Can we update this PR to not be a breaking change? i.e. if a user specifies `accessKeyID`, it is still used. But if a user specifies `accessKeyIDSecretRef`, it takes precedence?
jetstack-cert-manager
go
@@ -36,7 +36,7 @@ class UsersController < ApplicationController def save @title = t "users.new.title" - if params[:decline] + if params[:decline] || !params[:read_tou] || params[:read_tou] == "0" if current_user current_user.terms_seen = true
1
class UsersController < ApplicationController layout "site" skip_before_action :verify_authenticity_token, :only => [:auth_success] before_action :disable_terms_redirect, :only => [:terms, :save, :logout] before_action :authorize_web before_action :set_locale before_action :check_database_readable authorize_resource before_action :require_self, :only => [:account] before_action :check_database_writable, :only => [:new, :account, :confirm, :confirm_email, :lost_password, :reset_password, :go_public, :make_friend, :remove_friend] before_action :require_cookies, :only => [:new, :login, :confirm] before_action :lookup_user_by_name, :only => [:set_status, :delete] before_action :allow_thirdparty_images, :only => [:show, :account] def terms @legale = params[:legale] || OSM.ip_to_country(request.remote_ip) || Settings.default_legale @text = OSM.legal_text_for_country(@legale) if request.xhr? render :partial => "terms" else @title = t "users.terms.title" if current_user&.terms_agreed? # Already agreed to terms, so just show settings redirect_to :action => :account, :display_name => current_user.display_name elsif current_user.nil? && session[:new_user].nil? redirect_to :action => :login, :referer => request.fullpath end end end def save @title = t "users.new.title" if params[:decline] if current_user current_user.terms_seen = true flash[:notice] = t("users.new.terms declined", :url => t("users.new.terms declined url")).html_safe if current_user.save if params[:referer] redirect_to params[:referer] else redirect_to :action => :account, :display_name => current_user.display_name end else redirect_to t("users.terms.declined") end elsif current_user unless current_user.terms_agreed? current_user.consider_pd = params[:user][:consider_pd] current_user.terms_agreed = Time.now.getutc current_user.terms_seen = true flash[:notice] = t "users.new.terms accepted" if current_user.save end if params[:referer] redirect_to params[:referer] else redirect_to :action => :account, :display_name => current_user.display_name end else self.current_user = session.delete(:new_user) if check_signup_allowed(current_user.email) current_user.data_public = true current_user.description = "" if current_user.description.nil? current_user.creation_ip = request.remote_ip current_user.languages = http_accept_language.user_preferred_languages current_user.terms_agreed = Time.now.getutc current_user.terms_seen = true if current_user.auth_uid.blank? current_user.auth_provider = nil current_user.auth_uid = nil end if current_user.save flash[:piwik_goal] = PIWIK["goals"]["signup"] if defined?(PIWIK) referer = welcome_path begin uri = URI(session[:referer]) %r{map=(.*)/(.*)/(.*)}.match(uri.fragment) do |m| editor = Rack::Utils.parse_query(uri.query).slice("editor") referer = welcome_path({ "zoom" => m[1], "lat" => m[2], "lon" => m[3] }.merge(editor)) end rescue StandardError # Use default end if current_user.status == "active" session[:referer] = referer successful_login(current_user) else session[:token] = current_user.tokens.create.token Notifier.signup_confirm(current_user, current_user.tokens.create(:referer => referer)).deliver_later redirect_to :action => "confirm", :display_name => current_user.display_name end else render :action => "new", :referer => params[:referer] end end end end def account @tokens = current_user.oauth_tokens.authorized if params[:user] && params[:user][:display_name] && params[:user][:description] if params[:user][:auth_provider].blank? || (params[:user][:auth_provider] == current_user.auth_provider && params[:user][:auth_uid] == current_user.auth_uid) update_user(current_user, params) else session[:new_user_settings] = params redirect_to auth_url(params[:user][:auth_provider], params[:user][:auth_uid]) end elsif errors = session.delete(:user_errors) errors.each do |attribute, error| current_user.errors.add(attribute, error) end end @title = t "users.account.title" end def go_public current_user.data_public = true current_user.save flash[:notice] = t "users.go_public.flash success" redirect_to :action => "account", :display_name => current_user.display_name end def lost_password @title = t "users.lost_password.title" if params[:user] && params[:user][:email] user = User.visible.find_by(:email => params[:user][:email]) if user.nil? users = User.visible.where("LOWER(email) = LOWER(?)", params[:user][:email]) user = users.first if users.count == 1 end if user token = user.tokens.create Notifier.lost_password(user, token).deliver_later flash[:notice] = t "users.lost_password.notice email on way" redirect_to :action => "login" else flash.now[:error] = t "users.lost_password.notice email cannot find" end end end def reset_password @title = t "users.reset_password.title" if params[:token] token = UserToken.find_by(:token => params[:token]) if token self.current_user = token.user if params[:user] current_user.pass_crypt = params[:user][:pass_crypt] current_user.pass_crypt_confirmation = params[:user][:pass_crypt_confirmation] current_user.status = "active" if current_user.status == "pending" current_user.email_valid = true if current_user.save token.destroy flash[:notice] = t "users.reset_password.flash changed" successful_login(current_user) end end else flash[:error] = t "users.reset_password.flash token bad" redirect_to :action => "lost_password" end else head :bad_request end end def new @title = t "users.new.title" @referer = params[:referer] || session[:referer] append_content_security_policy_directives( :form_action => %w[accounts.google.com *.facebook.com login.live.com github.com meta.wikimedia.org] ) if current_user # The user is logged in already, so don't show them the signup # page, instead send them to the home page if @referer redirect_to @referer else redirect_to :controller => "site", :action => "index" end elsif params.key?(:auth_provider) && params.key?(:auth_uid) self.current_user = User.new(:email => params[:email], :email_confirmation => params[:email], :display_name => params[:nickname], :auth_provider => params[:auth_provider], :auth_uid => params[:auth_uid]) flash.now[:notice] = render_to_string :partial => "auth_association" else check_signup_allowed self.current_user = User.new end end def create self.current_user = User.new(user_params) if check_signup_allowed(current_user.email) session[:referer] = params[:referer] current_user.status = "pending" if current_user.auth_provider.present? && current_user.pass_crypt.empty? # We are creating an account with external authentication and # no password was specified so create a random one current_user.pass_crypt = SecureRandom.base64(16) current_user.pass_crypt_confirmation = current_user.pass_crypt end if current_user.invalid? # Something is wrong with a new user, so rerender the form render :action => "new" elsif current_user.auth_provider.present? # Verify external authenticator before moving on session[:new_user] = current_user redirect_to auth_url(current_user.auth_provider, current_user.auth_uid) else # Save the user record session[:new_user] = current_user redirect_to :action => :terms end end end def login session[:referer] = params[:referer] if params[:referer] if params[:username].present? && params[:password].present? session[:remember_me] ||= params[:remember_me] password_authentication(params[:username], params[:password]) end end def logout @title = t "users.logout.title" if params[:session] == session.id if session[:token] token = UserToken.find_by(:token => session[:token]) token&.destroy session.delete(:token) end session.delete(:user) session_expires_automatically if params[:referer] redirect_to params[:referer] else redirect_to :controller => "site", :action => "index" end end end def confirm if request.post? token = UserToken.find_by(:token => params[:confirm_string]) if token&.user&.active? flash[:error] = t("users.confirm.already active") redirect_to :action => "login" elsif !token || token.expired? flash[:error] = t("users.confirm.unknown token") redirect_to :action => "confirm" else user = token.user user.status = "active" user.email_valid = true flash[:notice] = gravatar_status_message(user) if gravatar_enable(user) user.save! referer = token.referer token.destroy if session[:token] token = UserToken.find_by(:token => session[:token]) session.delete(:token) else token = nil end if token.nil? || token.user != user flash[:notice] = t("users.confirm.success") redirect_to :action => :login, :referer => referer else token.destroy session[:user] = user.id redirect_to referer || welcome_path end end else user = User.find_by(:display_name => params[:display_name]) redirect_to root_path if user.nil? || user.active? end end def confirm_resend user = User.find_by(:display_name => params[:display_name]) token = UserToken.find_by(:token => session[:token]) if user.nil? || token.nil? || token.user != user flash[:error] = t "users.confirm_resend.failure", :name => params[:display_name] else Notifier.signup_confirm(user, user.tokens.create).deliver_later flash[:notice] = t("users.confirm_resend.success", :email => user.email, :sender => Settings.support_email).html_safe end redirect_to :action => "login" end def confirm_email if request.post? token = UserToken.find_by(:token => params[:confirm_string]) if token&.user&.new_email? self.current_user = token.user current_user.email = current_user.new_email current_user.new_email = nil current_user.email_valid = true gravatar_enabled = gravatar_enable(current_user) if current_user.save flash[:notice] = if gravatar_enabled t("users.confirm_email.success") + " " + gravatar_status_message(current_user) else t("users.confirm_email.success") end else flash[:errors] = current_user.errors end token.destroy session[:user] = current_user.id redirect_to :action => "account", :display_name => current_user.display_name elsif token flash[:error] = t "users.confirm_email.failure" redirect_to :action => "account", :display_name => token.user.display_name else flash[:error] = t "users.confirm_email.unknown_token" end end end def show @user = User.find_by(:display_name => params[:display_name]) if @user && (@user.visible? || (current_user&.administrator?)) @title = @user.display_name else render_unknown_user params[:display_name] end end def make_friend @new_friend = User.find_by(:display_name => params[:display_name]) if @new_friend if request.post? friend = Friend.new friend.befriender = current_user friend.befriendee = @new_friend if current_user.is_friends_with?(@new_friend) flash[:warning] = t "users.make_friend.already_a_friend", :name => @new_friend.display_name elsif friend.save flash[:notice] = t "users.make_friend.success", :name => @new_friend.display_name Notifier.friend_notification(friend).deliver_later else friend.add_error(t("users.make_friend.failed", :name => @new_friend.display_name)) end if params[:referer] redirect_to params[:referer] else redirect_to :action => "show" end end else render_unknown_user params[:display_name] end end def remove_friend @friend = User.find_by(:display_name => params[:display_name]) if @friend if request.post? if current_user.is_friends_with?(@friend) Friend.where(:user_id => current_user.id, :friend_user_id => @friend.id).delete_all flash[:notice] = t "users.remove_friend.success", :name => @friend.display_name else flash[:error] = t "users.remove_friend.not_a_friend", :name => @friend.display_name end if params[:referer] redirect_to params[:referer] else redirect_to :action => "show" end end else render_unknown_user params[:display_name] end end ## # sets a user's status def set_status @user.status = params[:status] @user.save redirect_to user_path(:display_name => params[:display_name]) end ## # delete a user, marking them as deleted and removing personal data def delete @user.delete redirect_to user_path(:display_name => params[:display_name]) end ## # display a list of users matching specified criteria def index if request.post? ids = params[:user].keys.collect(&:to_i) User.where(:id => ids).update_all(:status => "confirmed") if params[:confirm] User.where(:id => ids).update_all(:status => "deleted") if params[:hide] redirect_to url_for(:status => params[:status], :ip => params[:ip], :page => params[:page]) else @params = params.permit(:status, :ip) conditions = {} conditions[:status] = @params[:status] if @params[:status] conditions[:creation_ip] = @params[:ip] if @params[:ip] @user_pages, @users = paginate(:users, :conditions => conditions, :order => :id, :per_page => 50) end end ## # omniauth success callback def auth_success auth_info = request.env["omniauth.auth"] provider = auth_info[:provider] uid = auth_info[:uid] name = auth_info[:info][:name] email = auth_info[:info][:email] case provider when "openid" email_verified = uid.match(%r{https://www.google.com/accounts/o8/id?(.*)}) || uid.match(%r{https://me.yahoo.com/(.*)}) when "google", "facebook" email_verified = true else email_verified = false end if settings = session.delete(:new_user_settings) current_user.auth_provider = provider current_user.auth_uid = uid update_user(current_user, settings) session[:user_errors] = current_user.errors.as_json redirect_to :action => "account", :display_name => current_user.display_name elsif session[:new_user] session[:new_user].auth_provider = provider session[:new_user].auth_uid = uid session[:new_user].status = "active" if email_verified && email == session[:new_user].email redirect_to :action => "terms" else user = User.find_by(:auth_provider => provider, :auth_uid => uid) if user.nil? && provider == "google" openid_url = auth_info[:extra][:id_info]["openid_id"] user = User.find_by(:auth_provider => "openid", :auth_uid => openid_url) if openid_url user&.update(:auth_provider => provider, :auth_uid => uid) end if user case user.status when "pending" then unconfirmed_login(user) when "active", "confirmed" then successful_login(user, request.env["omniauth.params"]["referer"]) when "suspended" then failed_login t("users.login.account is suspended", :webmaster => "mailto:#{Settings.support_email}").html_safe else failed_login t("users.login.auth failure") end else redirect_to :action => "new", :nickname => name, :email => email, :auth_provider => provider, :auth_uid => uid end end end ## # omniauth failure callback def auth_failure flash[:error] = t("users.auth_failure." + params[:message]) redirect_to params[:origin] || login_url end private ## # handle password authentication def password_authentication(username, password) if user = User.authenticate(:username => username, :password => password) successful_login(user) elsif user = User.authenticate(:username => username, :password => password, :pending => true) unconfirmed_login(user) elsif User.authenticate(:username => username, :password => password, :suspended => true) failed_login t("users.login.account is suspended", :webmaster => "mailto:#{Settings.support_email}").html_safe, username else failed_login t("users.login.auth failure"), username end end ## # return the URL to use for authentication def auth_url(provider, uid, referer = nil) params = { :provider => provider } params[:openid_url] = openid_expand_url(uid) if provider == "openid" if referer.nil? params[:origin] = request.path else params[:origin] = request.path + "?referer=" + CGI.escape(referer) params[:referer] = referer end auth_path(params) end ## # special case some common OpenID providers by applying heuristics to # try and come up with the correct URL based on what the user entered def openid_expand_url(openid_url) if openid_url.nil? nil elsif openid_url.match(%r{(.*)gmail.com(/?)$}) || openid_url.match(%r{(.*)googlemail.com(/?)$}) # Special case gmail.com as it is potentially a popular OpenID # provider and, unlike yahoo.com, where it works automatically, Google # have hidden their OpenID endpoint somewhere obscure this making it # somewhat less user friendly. "https://www.google.com/accounts/o8/id" else openid_url end end ## # process a successful login def successful_login(user, referer = nil) session[:user] = user.id session_expires_after 28.days if session[:remember_me] target = referer || session[:referer] || url_for(:controller => :site, :action => :index) # The user is logged in, so decide where to send them: # # - If they haven't seen the contributor terms, send them there. # - If they have a block on them, show them that. # - If they were referred to the login, send them back there. # - Otherwise, send them to the home page. if !user.terms_seen redirect_to :action => :terms, :referer => target elsif user.blocked_on_view redirect_to user.blocked_on_view, :referer => target else redirect_to target end session.delete(:remember_me) session.delete(:referer) end ## # process a failed login def failed_login(message, username = nil) flash[:error] = message redirect_to :action => "login", :referer => session[:referer], :username => username, :remember_me => session[:remember_me] session.delete(:remember_me) session.delete(:referer) end ## # def unconfirmed_login(user) session[:token] = user.tokens.create.token redirect_to :action => "confirm", :display_name => user.display_name session.delete(:remember_me) session.delete(:referer) end ## # update a user's details def update_user(user, params) user.display_name = params[:user][:display_name] user.new_email = params[:user][:new_email] unless params[:user][:pass_crypt].empty? && params[:user][:pass_crypt_confirmation].empty? user.pass_crypt = params[:user][:pass_crypt] user.pass_crypt_confirmation = params[:user][:pass_crypt_confirmation] end if params[:user][:description] != user.description user.description = params[:user][:description] user.description_format = "markdown" end user.languages = params[:user][:languages].split(",") case params[:image_action] when "new" then user.image = params[:user][:image] user.image_use_gravatar = false when "delete" then user.image = nil user.image_use_gravatar = false when "gravatar" then user.image = nil user.image_use_gravatar = true end user.home_lat = params[:user][:home_lat] user.home_lon = params[:user][:home_lon] user.preferred_editor = if params[:user][:preferred_editor] == "default" nil else params[:user][:preferred_editor] end if params[:user][:auth_provider].nil? || params[:user][:auth_provider].blank? user.auth_provider = nil user.auth_uid = nil end if user.save set_locale(true) if user.new_email.blank? || user.new_email == user.email flash.now[:notice] = t "users.account.flash update success" else user.email = user.new_email if user.valid? flash.now[:notice] = t "users.account.flash update success confirm needed" begin Notifier.email_confirm(user, user.tokens.create).deliver_later rescue StandardError # Ignore errors sending email end else current_user.errors.add(:new_email, current_user.errors[:email]) current_user.errors.add(:email, []) end user.restore_email! end end end ## # require that the user in the URL is the logged in user def require_self head :forbidden if params[:display_name] != current_user.display_name end ## # ensure that there is a "user" instance variable def lookup_user_by_name @user = User.find_by(:display_name => params[:display_name]) rescue ActiveRecord::RecordNotFound redirect_to :action => "view", :display_name => params[:display_name] unless @user end ## # def disable_terms_redirect # this is necessary otherwise going to the user terms page, when # having not agreed already would cause an infinite redirect loop. # it's .now so that this doesn't propagate to other pages. flash.now[:skip_terms] = true end ## # return permitted user parameters def user_params params.require(:user).permit(:email, :email_confirmation, :display_name, :auth_provider, :auth_uid, :pass_crypt, :pass_crypt_confirmation) end ## # check signup acls def check_signup_allowed(email = nil) domain = if email.nil? nil else email.split("@").last end if blocked = Acl.no_account_creation(request.remote_ip, domain) logger.info "Blocked signup from #{request.remote_ip} for #{email}" render :action => "blocked" end !blocked end ## # check if this user has a gravatar and set the user pref is true def gravatar_enable(user) # code from example https://en.gravatar.com/site/implement/images/ruby/ return false if user.image.present? hash = Digest::MD5.hexdigest(user.email.downcase) url = "https://www.gravatar.com/avatar/#{hash}?d=404" # without d=404 we will always get an image back response = OSM.http_client.get(URI.parse(url)) oldsetting = user.image_use_gravatar user.image_use_gravatar = response.success? oldsetting != user.image_use_gravatar end ## # display a message about th current status of the gravatar setting def gravatar_status_message(user) if user.image_use_gravatar t "users.account.gravatar.enabled" else t "users.account.gravatar.disabled" end end end
1
11,607
You don't actually need both tests here as "truthiness" means that `"0"` is false and hence the first test will be true...
openstreetmap-openstreetmap-website
rb
@@ -39,7 +39,15 @@ feature 'User downgrades subscription', js: true do click_button I18n.t('subscriptions.confirm_cancel') - expect(page).to have_content "Scheduled for cancellation on February 19, 2013" expect(page).to have_content I18n.t('subscriptions.flashes.cancel.success') + + click_link I18n.t('subscriptions.reject_refund') + + expect(page).to have_content( + I18n.t( + 'subscriptions.cancellation_scheduled_on', + date: 'February 19, 2013' + ) + ) end end
1
require 'spec_helper' feature 'User downgrades subscription', js: true do scenario 'successfully downgrades and then cancels' do create(:plan, sku: 'prime', name: 'Prime') basic_plan = create(:basic_plan) workshop = create(:workshop) sign_in_as_user_with_subscription @current_user.should have_active_subscription visit products_path expect(find('.header-container')).not_to have_content('Prime Membership') expect(page).not_to have_link('Subscribe to Prime') ActionMailer::Base.deliveries.clear visit my_account_path click_link I18n.t('subscriptions.cancel') click_link 'Change to' expect(page).to have_link I18n.t('subscriptions.cancel') expect(page).to have_no_content "Scheduled for cancellation" @current_user.reload expect(@current_user.subscription.plan).to eq basic_plan visit workshop_path(workshop) expect(page).not_to have_css('.free-with-prime') visit products_path expect(page).not_to have_css('section.mentor h3', text: 'Your Mentor') visit my_account_path click_link I18n.t('subscriptions.cancel') expect(page).not_to have_content 'deal' expect(page).not_to have_content 'Change to' click_button I18n.t('subscriptions.confirm_cancel') expect(page).to have_content "Scheduled for cancellation on February 19, 2013" expect(page).to have_content I18n.t('subscriptions.flashes.cancel.success') end end
1
9,295
Everything else in here is using `I18n`. Should we do that here to be consistent?
thoughtbot-upcase
rb
@@ -242,8 +242,8 @@ type Config struct { PrometheusGoMetricsEnabled bool `config:"bool;true"` PrometheusProcessMetricsEnabled bool `config:"bool;true"` - FailsafeInboundHostPorts []ProtoPort `config:"port-list;tcp:22,udp:68,tcp:179,tcp:2379,tcp:2380,tcp:5473,tcp:6443,tcp:6666,tcp:6667;die-on-fail"` - FailsafeOutboundHostPorts []ProtoPort `config:"port-list;udp:53,udp:67,tcp:179,tcp:2379,tcp:2380,tcp:5473,tcp:6443,tcp:6666,tcp:6667;die-on-fail"` + FailsafeInboundHostPorts []ProtoPort `config:"port-list;0.0.0.0/0:tcp:22,0.0.0.0/0:udp:68,0.0.0.0/0:tcp:179,0.0.0.0/0:tcp:2379,0.0.0.0/0:tcp:2380,0.0.0.0/0:tcp:5473,0.0.0.0/0:tcp:6443,0.0.0.0/0:tcp:6666,0.0.0.0/0:tcp:6667;die-on-fail"` + FailsafeOutboundHostPorts []ProtoPort `config:"port-list;0.0.0.0/0:udp:53,0.0.0.0/0:udp:67,0.0.0.0/0:tcp:179,0.0.0.0/0:tcp:2379,0.0.0.0/0:tcp:2380,0.0.0.0/0:tcp:5473,0.0.0.0/0:tcp:6443,0.0.0.0/0:tcp:6666,0.0.0.0/0:tcp:6667;die-on-fail"` KubeNodePortRanges []numorstring.Port `config:"portrange-list;30000:32767"` NATPortRange numorstring.Port `config:"portrange;"`
1
// Copyright (c) 2020 Tigera, Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package config import ( "errors" "fmt" "net" "os" "reflect" "regexp" "strconv" "strings" "time" log "github.com/sirupsen/logrus" "github.com/projectcalico/libcalico-go/lib/apiconfig" "github.com/projectcalico/libcalico-go/lib/names" "github.com/projectcalico/libcalico-go/lib/numorstring" "github.com/projectcalico/felix/idalloc" "github.com/projectcalico/typha/pkg/discovery" ) var ( // RegexpIfaceElemRegexp matches an individual element in the overall interface list; // assumes the value represents a regular expression and is marked by '/' at the start // and end and cannot have spaces RegexpIfaceElemRegexp = regexp.MustCompile(`^\/[^\s]+\/$`) // NonRegexpIfaceElemRegexp matches an individual element in the overall interface list; // assumes the value is between 1-15 chars long and only be alphanumeric or - or _ NonRegexpIfaceElemRegexp = regexp.MustCompile(`^[a-zA-Z0-9_-]{1,15}$`) IfaceListRegexp = regexp.MustCompile(`^[a-zA-Z0-9_-]{1,15}(,[a-zA-Z0-9_-]{1,15})*$`) AuthorityRegexp = regexp.MustCompile(`^[^:/]+:\d+$`) HostnameRegexp = regexp.MustCompile(`^[a-zA-Z0-9_.-]+$`) StringRegexp = regexp.MustCompile(`^.*$`) IfaceParamRegexp = regexp.MustCompile(`^[a-zA-Z0-9:._+-]{1,15}$`) // Hostname have to be valid ipv4, ipv6 or strings up to 64 characters. HostAddressRegexp = regexp.MustCompile(`^[a-zA-Z0-9:._+-]{1,64}$`) ) const ( maxUint = ^uint(0) maxInt = int(maxUint >> 1) minInt = -maxInt - 1 ) // Source of a config value. Values from higher-numbered sources override // those from lower-numbered sources. Note: some parameters (such as those // needed to connect to the datastore) can only be set from a local source. type Source uint8 const ( Default = iota DatastoreGlobal DatastorePerHost ConfigFile EnvironmentVariable InternalOverride ) var SourcesInDescendingOrder = []Source{InternalOverride, EnvironmentVariable, ConfigFile, DatastorePerHost, DatastoreGlobal} func (source Source) String() string { switch source { case Default: return "<default>" case DatastoreGlobal: return "datastore (global)" case DatastorePerHost: return "datastore (per-host)" case ConfigFile: return "config file" case EnvironmentVariable: return "environment variable" case InternalOverride: return "internal override" } return fmt.Sprintf("<unknown(%v)>", uint8(source)) } func (source Source) Local() bool { switch source { case Default, ConfigFile, EnvironmentVariable, InternalOverride: return true default: return false } } // Config contains the best, parsed config values loaded from the various sources. // We use tags to control the parsing and validation. type Config struct { // Configuration parameters. UseInternalDataplaneDriver bool `config:"bool;true"` DataplaneDriver string `config:"file(must-exist,executable);calico-iptables-plugin;non-zero,die-on-fail,skip-default-validation"` // Wireguard configuration WireguardEnabled bool `config:"bool;false"` WireguardListeningPort int `config:"int;51820"` WireguardRoutingRulePriority int `config:"int;99"` WireguardInterfaceName string `config:"iface-param;wireguard.cali;non-zero"` WireguardMTU int `config:"int;0"` BPFEnabled bool `config:"bool;false"` BPFDisableUnprivileged bool `config:"bool;true"` BPFLogLevel string `config:"oneof(off,info,debug);off;non-zero"` BPFDataIfacePattern *regexp.Regexp `config:"regexp;^((en|wl|ww|sl|ib)[opsx].*|(eth|wlan|wwan).*|tunl0$|wireguard.cali$)"` BPFConnectTimeLoadBalancingEnabled bool `config:"bool;true"` BPFExternalServiceMode string `config:"oneof(tunnel,dsr);tunnel;non-zero"` BPFKubeProxyIptablesCleanupEnabled bool `config:"bool;true"` BPFKubeProxyMinSyncPeriod time.Duration `config:"seconds;1"` BPFKubeProxyEndpointSlicesEnabled bool `config:"bool;false"` // DebugBPFCgroupV2 controls the cgroup v2 path that we apply the connect-time load balancer to. Most distros // are configured for cgroup v1, which prevents all but hte root cgroup v2 from working so this is only useful // for development right now. DebugBPFCgroupV2 string `config:"string;;local"` // DebugBPFMapRepinEnabled can be used to prevent Felix from repinning its BPF maps at startup. This is useful for // testing with multiple Felix instances running on one host. DebugBPFMapRepinEnabled bool `config:"bool;true;local"` DatastoreType string `config:"oneof(kubernetes,etcdv3);etcdv3;non-zero,die-on-fail,local"` FelixHostname string `config:"hostname;;local,non-zero"` EtcdAddr string `config:"authority;127.0.0.1:2379;local"` EtcdScheme string `config:"oneof(http,https);http;local"` EtcdKeyFile string `config:"file(must-exist);;local"` EtcdCertFile string `config:"file(must-exist);;local"` EtcdCaFile string `config:"file(must-exist);;local"` EtcdEndpoints []string `config:"endpoint-list;;local"` TyphaAddr string `config:"authority;;local"` TyphaK8sServiceName string `config:"string;;local"` TyphaK8sNamespace string `config:"string;kube-system;non-zero,local"` TyphaReadTimeout time.Duration `config:"seconds;30;local"` TyphaWriteTimeout time.Duration `config:"seconds;10;local"` // Client-side TLS config for Felix's communication with Typha. If any of these are // specified, they _all_ must be - except that either TyphaCN or TyphaURISAN may be left // unset. Felix will then initiate a secure (TLS) connection to Typha. Typha must present // a certificate signed by a CA in TyphaCAFile, and with CN matching TyphaCN or URI SAN // matching TyphaURISAN. TyphaKeyFile string `config:"file(must-exist);;local"` TyphaCertFile string `config:"file(must-exist);;local"` TyphaCAFile string `config:"file(must-exist);;local"` TyphaCN string `config:"string;;local"` TyphaURISAN string `config:"string;;local"` Ipv6Support bool `config:"bool;true"` IptablesBackend string `config:"oneof(legacy,nft,auto);auto"` RouteRefreshInterval time.Duration `config:"seconds;90"` InterfaceRefreshInterval time.Duration `config:"seconds;90"` DeviceRouteSourceAddress net.IP `config:"ipv4;"` DeviceRouteProtocol int `config:"int;3"` RemoveExternalRoutes bool `config:"bool;true"` IptablesRefreshInterval time.Duration `config:"seconds;90"` IptablesPostWriteCheckIntervalSecs time.Duration `config:"seconds;1"` IptablesLockFilePath string `config:"file;/run/xtables.lock"` IptablesLockTimeoutSecs time.Duration `config:"seconds;0"` IptablesLockProbeIntervalMillis time.Duration `config:"millis;50"` FeatureDetectOverride map[string]string `config:"keyvaluelist;;"` IpsetsRefreshInterval time.Duration `config:"seconds;10"` MaxIpsetSize int `config:"int;1048576;non-zero"` XDPRefreshInterval time.Duration `config:"seconds;90"` PolicySyncPathPrefix string `config:"file;;"` NetlinkTimeoutSecs time.Duration `config:"seconds;10"` MetadataAddr string `config:"hostname;127.0.0.1;die-on-fail"` MetadataPort int `config:"int(0,65535);8775;die-on-fail"` OpenstackRegion string `config:"region;;die-on-fail"` InterfacePrefix string `config:"iface-list;cali;non-zero,die-on-fail"` InterfaceExclude []*regexp.Regexp `config:"iface-list-regexp;kube-ipvs0"` ChainInsertMode string `config:"oneof(insert,append);insert;non-zero,die-on-fail"` DefaultEndpointToHostAction string `config:"oneof(DROP,RETURN,ACCEPT);DROP;non-zero,die-on-fail"` IptablesFilterAllowAction string `config:"oneof(ACCEPT,RETURN);ACCEPT;non-zero,die-on-fail"` IptablesMangleAllowAction string `config:"oneof(ACCEPT,RETURN);ACCEPT;non-zero,die-on-fail"` LogPrefix string `config:"string;calico-packet"` LogFilePath string `config:"file;/var/log/calico/felix.log;die-on-fail"` LogSeverityFile string `config:"oneof(DEBUG,INFO,WARNING,ERROR,FATAL);INFO"` LogSeverityScreen string `config:"oneof(DEBUG,INFO,WARNING,ERROR,FATAL);INFO"` LogSeveritySys string `config:"oneof(DEBUG,INFO,WARNING,ERROR,FATAL);INFO"` VXLANEnabled bool `config:"bool;false"` VXLANPort int `config:"int;4789"` VXLANVNI int `config:"int;4096"` VXLANMTU int `config:"int;0"` IPv4VXLANTunnelAddr net.IP `config:"ipv4;"` VXLANTunnelMACAddr string `config:"string;"` IpInIpEnabled bool `config:"bool;false"` IpInIpMtu int `config:"int;0"` IpInIpTunnelAddr net.IP `config:"ipv4;"` // Knobs provided to explicitly control whether we add rules to drop encap traffic // from workloads. We always add them unless explicitly requested not to add them. AllowVXLANPacketsFromWorkloads bool `config:"bool;false"` AllowIPIPPacketsFromWorkloads bool `config:"bool;false"` AWSSrcDstCheck string `config:"oneof(DoNothing,Enable,Disable);DoNothing;non-zero"` ServiceLoopPrevention string `config:"oneof(Drop,Reject,Disabled);Drop"` ReportingIntervalSecs time.Duration `config:"seconds;30"` ReportingTTLSecs time.Duration `config:"seconds;90"` EndpointReportingEnabled bool `config:"bool;false"` EndpointReportingDelaySecs time.Duration `config:"seconds;1"` IptablesMarkMask uint32 `config:"mark-bitmask;0xffff0000;non-zero,die-on-fail"` DisableConntrackInvalidCheck bool `config:"bool;false"` HealthEnabled bool `config:"bool;false"` HealthPort int `config:"int(0,65535);9099"` HealthHost string `config:"host-address;localhost"` PrometheusMetricsEnabled bool `config:"bool;false"` PrometheusMetricsHost string `config:"host-address;"` PrometheusMetricsPort int `config:"int(0,65535);9091"` PrometheusGoMetricsEnabled bool `config:"bool;true"` PrometheusProcessMetricsEnabled bool `config:"bool;true"` FailsafeInboundHostPorts []ProtoPort `config:"port-list;tcp:22,udp:68,tcp:179,tcp:2379,tcp:2380,tcp:5473,tcp:6443,tcp:6666,tcp:6667;die-on-fail"` FailsafeOutboundHostPorts []ProtoPort `config:"port-list;udp:53,udp:67,tcp:179,tcp:2379,tcp:2380,tcp:5473,tcp:6443,tcp:6666,tcp:6667;die-on-fail"` KubeNodePortRanges []numorstring.Port `config:"portrange-list;30000:32767"` NATPortRange numorstring.Port `config:"portrange;"` NATOutgoingAddress net.IP `config:"ipv4;"` UsageReportingEnabled bool `config:"bool;true"` UsageReportingInitialDelaySecs time.Duration `config:"seconds;300"` UsageReportingIntervalSecs time.Duration `config:"seconds;86400"` ClusterGUID string `config:"string;baddecaf"` ClusterType string `config:"string;"` CalicoVersion string `config:"string;"` ExternalNodesCIDRList []string `config:"cidr-list;;die-on-fail"` DebugMemoryProfilePath string `config:"file;;"` DebugCPUProfilePath string `config:"file;/tmp/felix-cpu-<timestamp>.pprof;"` DebugDisableLogDropping bool `config:"bool;false"` DebugSimulateCalcGraphHangAfter time.Duration `config:"seconds;0"` DebugSimulateDataplaneHangAfter time.Duration `config:"seconds;0"` DebugPanicAfter time.Duration `config:"seconds;0"` DebugSimulateDataRace bool `config:"bool;false"` // Configure where Felix gets its routing information. // - workloadIPs: use workload endpoints to construct routes. // - calicoIPAM: use IPAM data to contruct routes. RouteSource string `config:"oneof(WorkloadIPs,CalicoIPAM);CalicoIPAM"` RouteTableRange idalloc.IndexRange `config:"route-table-range;1-250;die-on-fail"` IptablesNATOutgoingInterfaceFilter string `config:"iface-param;"` SidecarAccelerationEnabled bool `config:"bool;false"` XDPEnabled bool `config:"bool;true"` GenericXDPEnabled bool `config:"bool;false"` Variant string `config:"string;Calico"` // Configures MTU auto-detection. MTUIfacePattern *regexp.Regexp `config:"regexp;^((en|wl|ww|sl|ib)[opsx].*|(eth|wlan|wwan).*)"` // State tracking. // internalOverrides contains our highest priority config source, generated from internal constraints // such as kernel version support. internalOverrides map[string]string // sourceToRawConfig maps each source to the set of config that was give to us via UpdateFrom. sourceToRawConfig map[Source]map[string]string // rawValues maps keys to the current highest-priority raw value. rawValues map[string]string // Err holds the most recent error from a config update. Err error loadClientConfigFromEnvironment func() (*apiconfig.CalicoAPIConfig, error) useNodeResourceUpdates bool } // Copy makes a copy of the object. Internal state is deep copied but config parameters are only shallow copied. // This saves work since updates to the copy will trigger the config params to be recalculated. func (config *Config) Copy() *Config { // Start by shallow-copying the object. cp := *config // Copy the internal state over as a deep copy. cp.internalOverrides = map[string]string{} for k, v := range config.internalOverrides { cp.internalOverrides[k] = v } cp.sourceToRawConfig = map[Source]map[string]string{} for k, v := range config.sourceToRawConfig { cp.sourceToRawConfig[k] = map[string]string{} for k2, v2 := range v { cp.sourceToRawConfig[k][k2] = v2 } } cp.rawValues = map[string]string{} for k, v := range config.rawValues { cp.rawValues[k] = v } return &cp } type ProtoPort struct { Protocol string Port uint16 } // Load parses and merges the rawData from one particular source into this config object. // If there is a config value already loaded from a higher-priority source, then // the new value will be ignored (after validation). func (config *Config) UpdateFrom(rawData map[string]string, source Source) (changed bool, err error) { log.Infof("Merging in config from %v: %v", source, rawData) // Defensively take a copy of the raw data, in case we've been handed // a mutable map by mistake. rawDataCopy := make(map[string]string) for k, v := range rawData { if v == "" { log.WithFields(log.Fields{ "name": k, "source": source, }).Info("Ignoring empty configuration parameter. Use value 'none' if " + "your intention is to explicitly disable the default value.") continue } rawDataCopy[k] = v } config.sourceToRawConfig[source] = rawDataCopy changed, err = config.resolve() return } func (config *Config) IsLeader() bool { return config.Variant == "Calico" } func (config *Config) InterfacePrefixes() []string { return strings.Split(config.InterfacePrefix, ",") } func (config *Config) OpenstackActive() bool { if strings.Contains(strings.ToLower(config.ClusterType), "openstack") { // OpenStack is explicitly known to be present. Newer versions of the OpenStack plugin // set this flag. log.Debug("Cluster type contains OpenStack") return true } // If we get here, either OpenStack isn't present or we're running against an old version // of the OpenStack plugin, which doesn't set the flag. Use heuristics based on the // presence of the OpenStack-related parameters. if config.MetadataAddr != "" && config.MetadataAddr != "127.0.0.1" { log.Debug("OpenStack metadata IP set to non-default, assuming OpenStack active") return true } if config.MetadataPort != 0 && config.MetadataPort != 8775 { log.Debug("OpenStack metadata port set to non-default, assuming OpenStack active") return true } for _, prefix := range config.InterfacePrefixes() { if prefix == "tap" { log.Debug("Interface prefix list contains 'tap', assuming OpenStack") return true } } log.Debug("No evidence this is an OpenStack deployment; disabling OpenStack special-cases") return false } func (config *Config) resolve() (changed bool, err error) { newRawValues := make(map[string]string) // Map from lower-case version of name to the highest-priority source found so far. // We use the lower-case version of the name since we can calculate it both for // expected and "raw" parameters, which may be used by plugins. nameToSource := make(map[string]Source) for _, source := range SourcesInDescendingOrder { valueLoop: for rawName, rawValue := range config.sourceToRawConfig[source] { lowerCaseName := strings.ToLower(rawName) currentSource := nameToSource[lowerCaseName] param, ok := knownParams[lowerCaseName] if !ok { if source >= currentSource { // Stash the raw value in case it's useful for an external // dataplane driver. Use the raw name since the driver may // want it. newRawValues[rawName] = rawValue nameToSource[lowerCaseName] = source } log.WithField("raw name", rawName).Info( "Ignoring unknown config param.") continue valueLoop } metadata := param.GetMetadata() name := metadata.Name if metadata.Local && !source.Local() { log.Warningf("Ignoring local-only configuration for %v from %v", name, source) continue valueLoop } log.Infof("Parsing value for %v: %v (from %v)", name, rawValue, source) var value interface{} if strings.ToLower(rawValue) == "none" { // Special case: we allow a value of "none" to force the value to // the zero value for a field. The zero value often differs from // the default value. Typically, the zero value means "turn off // the feature". if metadata.NonZero { err = errors.New("non-zero field cannot be set to none") log.Errorf( "Failed to parse value for %v: %v from source %v. %v", name, rawValue, source, err) config.Err = err return } value = metadata.ZeroValue log.Infof("Value set to 'none', replacing with zero-value: %#v.", value) } else { value, err = param.Parse(rawValue) if err != nil { logCxt := log.WithError(err).WithField("source", source) if metadata.DieOnParseFailure { logCxt.Error("Invalid (required) config value.") config.Err = err return } else { logCxt.WithField("default", metadata.Default).Warn( "Replacing invalid value with default") value = metadata.Default err = nil } } } log.Infof("Parsed value for %v: %v (from %v)", name, value, source) if source < currentSource { log.Infof("Skipping config value for %v from %v; "+ "already have a value from %v", name, source, currentSource) continue } field := reflect.ValueOf(config).Elem().FieldByName(name) field.Set(reflect.ValueOf(value)) newRawValues[name] = rawValue nameToSource[lowerCaseName] = source } } changed = !reflect.DeepEqual(newRawValues, config.rawValues) config.rawValues = newRawValues return } func (config *Config) setBy(name string, source Source) bool { _, set := config.sourceToRawConfig[source][name] return set } func (config *Config) setByConfigFileOrEnvironment(name string) bool { return config.setBy(name, ConfigFile) || config.setBy(name, EnvironmentVariable) } func (config *Config) DatastoreConfig() apiconfig.CalicoAPIConfig { // We want Felix's datastore connection to be fully configurable using the same // CALICO_XXX_YYY (or just XXX_YYY) environment variables that work for any libcalico-go // client - for both the etcdv3 and KDD cases. However, for the etcd case, Felix has for a // long time supported FELIX_XXXYYY environment variables, and we want those to keep working // too. // To achieve that, first build a CalicoAPIConfig using libcalico-go's // LoadClientConfigFromEnvironment - which means incorporating defaults and CALICO_XXX_YYY // and XXX_YYY variables. cfg, err := config.loadClientConfigFromEnvironment() if err != nil { log.WithError(err).Panic("Failed to create datastore config") } // Now allow FELIX_XXXYYY variables or XxxYyy config file settings to override that, in the // etcd case. Note that that etcd options are set even if the DatastoreType isn't etcdv3. // This allows the user to rely the default DatastoreType being etcdv3 and still being able // to configure the other etcdv3 options. As of the time of this code change, the etcd options // have no affect if the DatastoreType is not etcdv3. // Datastore type, either etcdv3 or kubernetes if config.setByConfigFileOrEnvironment("DatastoreType") { log.Infof("Overriding DatastoreType from felix config to %s", config.DatastoreType) if config.DatastoreType == string(apiconfig.EtcdV3) { cfg.Spec.DatastoreType = apiconfig.EtcdV3 } else if config.DatastoreType == string(apiconfig.Kubernetes) { cfg.Spec.DatastoreType = apiconfig.Kubernetes } } // Endpoints. if config.setByConfigFileOrEnvironment("EtcdEndpoints") && len(config.EtcdEndpoints) > 0 { log.Infof("Overriding EtcdEndpoints from felix config to %s", config.EtcdEndpoints) cfg.Spec.EtcdEndpoints = strings.Join(config.EtcdEndpoints, ",") cfg.Spec.DatastoreType = apiconfig.EtcdV3 } else if config.setByConfigFileOrEnvironment("EtcdAddr") { etcdEndpoints := config.EtcdScheme + "://" + config.EtcdAddr log.Infof("Overriding EtcdEndpoints from felix config to %s", etcdEndpoints) cfg.Spec.EtcdEndpoints = etcdEndpoints cfg.Spec.DatastoreType = apiconfig.EtcdV3 } // TLS. if config.setByConfigFileOrEnvironment("EtcdKeyFile") { log.Infof("Overriding EtcdKeyFile from felix config to %s", config.EtcdKeyFile) cfg.Spec.EtcdKeyFile = config.EtcdKeyFile } if config.setByConfigFileOrEnvironment("EtcdCertFile") { log.Infof("Overriding EtcdCertFile from felix config to %s", config.EtcdCertFile) cfg.Spec.EtcdCertFile = config.EtcdCertFile } if config.setByConfigFileOrEnvironment("EtcdCaFile") { log.Infof("Overriding EtcdCaFile from felix config to %s", config.EtcdCaFile) cfg.Spec.EtcdCACertFile = config.EtcdCaFile } if !(config.IpInIpEnabled || config.VXLANEnabled || config.BPFEnabled) { // Polling k8s for node updates is expensive (because we get many superfluous // updates) so disable if we don't need it. log.Info("Encap disabled, disabling node poll (if KDD is in use).") cfg.Spec.K8sDisableNodePoll = true } return *cfg } // Validate() performs cross-field validation. func (config *Config) Validate() (err error) { if config.FelixHostname == "" { err = errors.New("Failed to determine hostname") } if config.DatastoreType == "etcdv3" && len(config.EtcdEndpoints) == 0 { if config.EtcdScheme == "" { err = errors.New("EtcdEndpoints and EtcdScheme both missing") } if config.EtcdAddr == "" { err = errors.New("EtcdEndpoints and EtcdAddr both missing") } } // If any client-side TLS config parameters are specified, they _all_ must be - except that // either TyphaCN or TyphaURISAN may be left unset. if config.TyphaCAFile != "" || config.TyphaCertFile != "" || config.TyphaKeyFile != "" || config.TyphaCN != "" || config.TyphaURISAN != "" { // Some TLS config specified. if config.TyphaKeyFile == "" || config.TyphaCertFile == "" || config.TyphaCAFile == "" || (config.TyphaCN == "" && config.TyphaURISAN == "") { err = errors.New("If any Felix-Typha TLS config parameters are specified," + " they _all_ must be" + " - except that either TyphaCN or TyphaURISAN may be left unset.") } } if err != nil { config.Err = err } return } var knownParams map[string]param func loadParams() { knownParams = make(map[string]param) config := Config{} kind := reflect.TypeOf(config) metaRegexp := regexp.MustCompile(`^([^;(]+)(?:\(([^)]*)\))?;` + `([^;]*)(?:;` + `([^;]*))?$`) for ii := 0; ii < kind.NumField(); ii++ { field := kind.Field(ii) tag := field.Tag.Get("config") if tag == "" { continue } captures := metaRegexp.FindStringSubmatch(tag) if len(captures) == 0 { log.Panicf("Failed to parse metadata for config param %v", field.Name) } log.Debugf("%v: metadata captures: %#v", field.Name, captures) kind := captures[1] // Type: "int|oneof|bool|port-list|..." kindParams := captures[2] // Parameters for the type: e.g. for oneof "http,https" defaultStr := captures[3] // Default value e.g "1.0" flags := captures[4] var param param var err error switch kind { case "bool": param = &BoolParam{} case "int": min := minInt max := maxInt if kindParams != "" { minAndMax := strings.Split(kindParams, ",") min, err = strconv.Atoi(minAndMax[0]) if err != nil { log.Panicf("Failed to parse min value for %v", field.Name) } max, err = strconv.Atoi(minAndMax[1]) if err != nil { log.Panicf("Failed to parse max value for %v", field.Name) } } param = &IntParam{Min: min, Max: max} case "int32": param = &Int32Param{} case "mark-bitmask": param = &MarkBitmaskParam{} case "float": param = &FloatParam{} case "seconds": param = &SecondsParam{} case "millis": param = &MillisParam{} case "iface-list": param = &RegexpParam{Regexp: IfaceListRegexp, Msg: "invalid Linux interface name"} case "iface-list-regexp": param = &RegexpPatternListParam{ NonRegexpElemRegexp: NonRegexpIfaceElemRegexp, RegexpElemRegexp: RegexpIfaceElemRegexp, Delimiter: ",", Msg: "list contains invalid Linux interface name or regex pattern", } case "regexp": param = &RegexpPatternParam{} case "iface-param": param = &RegexpParam{Regexp: IfaceParamRegexp, Msg: "invalid Linux interface parameter"} case "file": param = &FileParam{ MustExist: strings.Contains(kindParams, "must-exist"), Executable: strings.Contains(kindParams, "executable"), } case "authority": param = &RegexpParam{Regexp: AuthorityRegexp, Msg: "invalid URL authority"} case "ipv4": param = &Ipv4Param{} case "endpoint-list": param = &EndpointListParam{} case "port-list": param = &PortListParam{} case "portrange": param = &PortRangeParam{} case "portrange-list": param = &PortRangeListParam{} case "hostname": param = &RegexpParam{Regexp: HostnameRegexp, Msg: "invalid hostname"} case "host-address": param = &RegexpParam{Regexp: HostAddressRegexp, Msg: "invalid host address"} case "region": param = &RegionParam{} case "oneof": options := strings.Split(kindParams, ",") lowerCaseToCanon := make(map[string]string) for _, option := range options { lowerCaseToCanon[strings.ToLower(option)] = option } param = &OneofListParam{ lowerCaseOptionsToCanonical: lowerCaseToCanon} case "string": param = &RegexpParam{Regexp: StringRegexp, Msg: "invalid string"} case "cidr-list": param = &CIDRListParam{} case "route-table-range": param = &RouteTableRangeParam{} case "keyvaluelist": param = &KeyValueListParam{} default: log.Panicf("Unknown type of parameter: %v", kind) } metadata := param.GetMetadata() metadata.Name = field.Name metadata.ZeroValue = reflect.ValueOf(config).FieldByName(field.Name).Interface() if strings.Contains(flags, "non-zero") { metadata.NonZero = true } if strings.Contains(flags, "die-on-fail") { metadata.DieOnParseFailure = true } if strings.Contains(flags, "local") { metadata.Local = true } if defaultStr != "" { if strings.Contains(flags, "skip-default-validation") { metadata.Default = defaultStr } else { // Parse the default value and save it in the metadata. Doing // that here ensures that we syntax-check the defaults now. defaultVal, err := param.Parse(defaultStr) if err != nil { log.Panicf("Invalid default value: %v", err) } metadata.Default = defaultVal } } else { metadata.Default = metadata.ZeroValue } knownParams[strings.ToLower(field.Name)] = param } } func (config *Config) SetUseNodeResourceUpdates(b bool) { config.useNodeResourceUpdates = b } func (config *Config) UseNodeResourceUpdates() bool { return config.useNodeResourceUpdates } func (config *Config) RawValues() map[string]string { return config.rawValues } func (config *Config) SetLoadClientConfigFromEnvironmentFunction(fnc func() (*apiconfig.CalicoAPIConfig, error)) { config.loadClientConfigFromEnvironment = fnc } // OverrideParam installs a maximum priority parameter override for the given parameter. This is useful for // disabling features that are found to be unsupported, for example. By using an extra priority class, the // override will persist even if the host/global config is updated. func (config *Config) OverrideParam(name, value string) (bool, error) { config.internalOverrides[name] = value return config.UpdateFrom(config.internalOverrides, InternalOverride) } func (config *Config) TyphaDiscoveryOpts() []discovery.Option { return []discovery.Option{ discovery.WithAddrOverride(config.TyphaAddr), discovery.WithKubeService(config.TyphaK8sNamespace, config.TyphaK8sServiceName), } } func New() *Config { if knownParams == nil { loadParams() } p := &Config{ rawValues: map[string]string{}, sourceToRawConfig: map[Source]map[string]string{}, internalOverrides: map[string]string{}, } for _, param := range knownParams { param.setDefault(p) } hostname, err := names.Hostname() if err != nil { log.Warningf("Failed to get hostname from kernel, "+ "trying HOSTNAME variable: %v", err) hostname = strings.ToLower(os.Getenv("HOSTNAME")) } p.FelixHostname = hostname p.loadClientConfigFromEnvironment = apiconfig.LoadClientConfigFromEnvironment return p } type param interface { GetMetadata() *Metadata Parse(raw string) (result interface{}, err error) setDefault(*Config) }
1
18,603
What do you think about changing the ordering to be `<protocol>:<cidr>:<port>`? I think it matches the most with what we previously had so that it doesn't change too much for our users.
projectcalico-felix
go
@@ -442,9 +442,9 @@ std::string MolToSmiles(const ROMol &mol, bool doIsomericSmiles, bool doKekule, if (rootedAtAtom == -1) { rootedAtAtom = std::rand() % mol.getNumAtoms(); // need to find an atom id between 0 and mol.getNumAtoms() exclusively - PRECONDITION(rootedAtAtom < 0 || static_cast<unsigned int>( - rootedAtAtom) < mol.getNumAtoms(), - "rootedAtomAtom must be less than the number of atoms"); + PRECONDITION( + static_cast<unsigned int>(rootedAtAtom) < mol.getNumAtoms(), + "rootedAtomAtom must be less than the number of atoms"); } }
1
// // Copyright (C) 2002-2019 Greg Landrum and Rational Discovery LLC // // @@ All Rights Reserved @@ // This file is part of the RDKit. // The contents are covered by the terms of the BSD license // which is included in the file license.txt, found at the root // of the RDKit source tree. // #include "SmilesWrite.h" #include <GraphMol/RDKitBase.h> #include <RDGeneral/types.h> #include <GraphMol/Canon.h> #include <GraphMol/new_canon.h> #include <RDGeneral/BoostStartInclude.h> #include <boost/lexical_cast.hpp> #include <boost/foreach.hpp> #include <boost/dynamic_bitset.hpp> #include <RDGeneral/BoostEndInclude.h> #include <sstream> #include <map> #include <list> //#define VERBOSE_CANON 1 namespace RDKit { namespace SmilesWrite { const int atomicSmiles[] = {0, 5, 6, 7, 8, 9, 15, 16, 17, 35, 53, -1}; bool inOrganicSubset(int atomicNumber) { unsigned int idx = 0; while (atomicSmiles[idx] < atomicNumber && atomicSmiles[idx] != -1) { ++idx; } if (atomicSmiles[idx] == atomicNumber) { return true; } return false; } std::string GetAtomSmiles(const Atom *atom, bool doKekule, const Bond *bondIn, bool allHsExplicit, bool isomericSmiles) { RDUNUSED_PARAM(bondIn); PRECONDITION(atom, "bad atom"); INT_VECT atomicSmilesVect( atomicSmiles, atomicSmiles + (sizeof(atomicSmiles) - 1) / sizeof(atomicSmiles[0])); std::string res; int fc = atom->getFormalCharge(); int num = atom->getAtomicNum(); int isotope = atom->getIsotope(); bool needsBracket = false; std::string symb; bool hasCustomSymbol = atom->getPropIfPresent(common_properties::smilesSymbol, symb); if (!hasCustomSymbol) { symb = PeriodicTable::getTable()->getElementSymbol(num); } // check for atomic stereochemistry std::string atString = ""; if (isomericSmiles || (atom->hasOwningMol() && atom->getOwningMol().hasProp(common_properties::_doIsoSmiles))) { if (atom->getChiralTag() != Atom::CHI_UNSPECIFIED && !atom->hasProp(common_properties::_brokenChirality)) { switch (atom->getChiralTag()) { case Atom::CHI_TETRAHEDRAL_CW: atString = "@@"; break; case Atom::CHI_TETRAHEDRAL_CCW: atString = "@"; break; default: break; } } } if (!allHsExplicit && inOrganicSubset(num)) { // it's a member of the organic subset // ----- // figure out if we need to put a bracket around the atom, // the conditions for this are: // - formal charge specified // - the atom has a nonstandard valence // - chirality present and writing isomeric smiles // - non-default isotope and writing isomeric smiles // - atom-map information present const INT_VECT &defaultVs = PeriodicTable::getTable()->getValenceList(num); int totalValence = atom->getTotalValence(); bool nonStandard = false; if (hasCustomSymbol || atom->getNumRadicalElectrons()) { nonStandard = true; } else if ((num == 7 || num == 15) && atom->getIsAromatic() && atom->getNumExplicitHs()) { // another type of "nonstandard" valence is an aromatic N or P with // explicit Hs indicated: nonStandard = true; } else { nonStandard = (totalValence != defaultVs.front() && atom->getTotalNumHs()); } if (fc || nonStandard || atom->hasProp(common_properties::molAtomMapNumber)) { needsBracket = true; } else if ((isomericSmiles || (atom->hasOwningMol() && atom->getOwningMol().hasProp( common_properties::_doIsoSmiles))) && (isotope || atString != "")) { needsBracket = true; } } else { needsBracket = true; } if (needsBracket) res += "["; if (isotope && (isomericSmiles || (atom->hasOwningMol() && atom->getOwningMol().hasProp( common_properties::_doIsoSmiles)))) { res += std::to_string(isotope); } // this was originally only done for the organic subset, // applying it to other atom-types is a fix for Issue 3152751: if (!doKekule && atom->getIsAromatic() && symb[0] >= 'A' && symb[0] <= 'Z') { symb[0] -= ('A' - 'a'); } res += symb; res += atString; if (needsBracket) { unsigned int totNumHs = atom->getTotalNumHs(); if (totNumHs > 0) { res += "H"; if (totNumHs > 1) res += std::to_string(totNumHs); } if (fc > 0) { res += "+"; if (fc > 1) res += std::to_string(fc); } else if (fc < 0) { if (fc < -1) res += std::to_string(fc); else res += "-"; } int mapNum; if (atom->getPropIfPresent(common_properties::molAtomMapNumber, mapNum)) { res += ":"; res += std::to_string(mapNum); } res += "]"; } // If the atom has this property, the contained string will // be inserted directly in the SMILES: std::string label; if (atom->getPropIfPresent(common_properties::_supplementalSmilesLabel, label)) { res += label; } return res; } std::string GetBondSmiles(const Bond *bond, int atomToLeftIdx, bool doKekule, bool allBondsExplicit) { PRECONDITION(bond, "bad bond"); if (atomToLeftIdx < 0) atomToLeftIdx = bond->getBeginAtomIdx(); std::string res = ""; bool aromatic = false; if (!doKekule && (bond->getBondType() == Bond::SINGLE || bond->getBondType() == Bond::DOUBLE || bond->getBondType() == Bond::AROMATIC)) { if (bond->hasOwningMol()) { auto a1 = bond->getOwningMol().getAtomWithIdx(atomToLeftIdx); auto a2 = bond->getOwningMol().getAtomWithIdx( bond->getOtherAtomIdx(atomToLeftIdx)); if ((a1->getIsAromatic() && a2->getIsAromatic()) && (a1->getAtomicNum() || a2->getAtomicNum())) aromatic = true; } else { aromatic = false; } } Bond::BondDir dir = bond->getBondDir(); if (bond->hasProp(common_properties::_TraversalRingClosureBond)) { // std::cerr<<"FLIP: "<<bond->getIdx()<<" // "<<bond->getBeginAtomIdx()<<"-"<<bond->getEndAtomIdx()<<std::endl; // if(dir==Bond::ENDDOWNRIGHT) dir=Bond::ENDUPRIGHT; // else if(dir==Bond::ENDUPRIGHT) dir=Bond::ENDDOWNRIGHT; bond->clearProp(common_properties::_TraversalRingClosureBond); } switch (bond->getBondType()) { case Bond::SINGLE: if (dir != Bond::NONE && dir != Bond::UNKNOWN) { switch (dir) { case Bond::ENDDOWNRIGHT: if (allBondsExplicit || (bond->hasOwningMol() && bond->getOwningMol().hasProp(common_properties::_doIsoSmiles))) res = "\\"; break; case Bond::ENDUPRIGHT: if (allBondsExplicit || (bond->hasOwningMol() && bond->getOwningMol().hasProp(common_properties::_doIsoSmiles))) res = "/"; break; default: if (allBondsExplicit) res = "-"; break; } } else { // if the bond is marked as aromatic and the two atoms // are aromatic, we need no marker (this arises in kekulized // molecules). // FIX: we should be able to dump kekulized smiles // currently this is possible by removing all // isAromatic flags, but there should maybe be another way if (allBondsExplicit) res = "-"; else if (aromatic && !bond->getIsAromatic()) res = "-"; } break; case Bond::DOUBLE: // see note above if (!aromatic || !bond->getIsAromatic() || allBondsExplicit) res = "="; break; case Bond::TRIPLE: res = "#"; break; case Bond::AROMATIC: if (dir != Bond::NONE && dir != Bond::UNKNOWN) { switch (dir) { case Bond::ENDDOWNRIGHT: if (allBondsExplicit || (bond->hasOwningMol() && bond->getOwningMol().hasProp(common_properties::_doIsoSmiles))) res = "\\"; break; case Bond::ENDUPRIGHT: if (allBondsExplicit || (bond->hasOwningMol() && bond->getOwningMol().hasProp(common_properties::_doIsoSmiles))) res = "/"; break; default: if (allBondsExplicit || !aromatic) res = ":"; break; } } else if (allBondsExplicit || !aromatic) { res = ":"; } break; case Bond::DATIVE: if (atomToLeftIdx >= 0 && bond->getBeginAtomIdx() == static_cast<unsigned int>(atomToLeftIdx)) res = "->"; else res = "<-"; break; default: res = "~"; } return res; } std::string FragmentSmilesConstruct( ROMol &mol, int atomIdx, std::vector<Canon::AtomColors> &colors, const UINT_VECT &ranks, bool doKekule, bool canonical, bool doIsomericSmiles, bool allBondsExplicit, bool allHsExplicit, bool doRandom, std::vector<unsigned int> &atomOrdering, const boost::dynamic_bitset<> *bondsInPlay = nullptr, const std::vector<std::string> *atomSymbols = nullptr, const std::vector<std::string> *bondSymbols = nullptr) { PRECONDITION(!bondsInPlay || bondsInPlay->size() >= mol.getNumBonds(), "bad bondsInPlay"); PRECONDITION(!atomSymbols || atomSymbols->size() >= mol.getNumAtoms(), "bad atomSymbols"); PRECONDITION(!bondSymbols || bondSymbols->size() >= mol.getNumBonds(), "bad bondSymbols"); Canon::MolStack molStack; // try to prevent excessive reallocation molStack.reserve(mol.getNumAtoms() + mol.getNumBonds()); std::stringstream res; std::map<int, int> ringClosureMap; int ringIdx, closureVal; if (!canonical) mol.setProp(common_properties::_StereochemDone, 1); std::list<unsigned int> ringClosuresToErase; Canon::canonicalizeFragment(mol, atomIdx, colors, ranks, molStack, bondsInPlay, bondSymbols, doIsomericSmiles, doRandom); Bond *bond = nullptr; BOOST_FOREACH (Canon::MolStackElem mSE, molStack) { switch (mSE.type) { case Canon::MOL_STACK_ATOM: if (!ringClosuresToErase.empty()) { BOOST_FOREACH (unsigned int rclosure, ringClosuresToErase) { ringClosureMap.erase(rclosure); } ringClosuresToErase.clear(); } // std::cout<<"\t\tAtom: "<<mSE.obj.atom->getIdx()<<std::endl; if (!atomSymbols) { res << GetAtomSmiles(mSE.obj.atom, doKekule, bond, allHsExplicit, doIsomericSmiles); } else { res << (*atomSymbols)[mSE.obj.atom->getIdx()]; } atomOrdering.push_back(mSE.obj.atom->getIdx()); break; case Canon::MOL_STACK_BOND: bond = mSE.obj.bond; // std::cout<<"\t\tBond: "<<bond->getIdx()<<std::endl; if (!bondSymbols) { res << GetBondSmiles(bond, mSE.number, doKekule, allBondsExplicit); } else { res << (*bondSymbols)[bond->getIdx()]; } break; case Canon::MOL_STACK_RING: ringIdx = mSE.number; // std::cout<<"\t\tRing: "<<ringIdx; if (ringClosureMap.count(ringIdx)) { // the index is already in the map -> // we're closing a ring, so grab // the index and then delete the value: closureVal = ringClosureMap[ringIdx]; // ringClosureMap.erase(ringIdx); ringClosuresToErase.push_back(ringIdx); } else { // we're opening a new ring, find the index for it: closureVal = 1; bool done = false; // EFF: there's got to be a more efficient way to do this while (!done) { std::map<int, int>::iterator mapIt; for (mapIt = ringClosureMap.begin(); mapIt != ringClosureMap.end(); mapIt++) { if (mapIt->second == closureVal) break; } if (mapIt == ringClosureMap.end()) { done = true; } else { closureVal += 1; } } ringClosureMap[ringIdx] = closureVal; } if (closureVal < 10) res << (char)(closureVal + '0'); else if (closureVal < 100) res << '%' << closureVal; else // use extension to OpenSMILES res << "%(" << closureVal << ')'; break; case Canon::MOL_STACK_BRANCH_OPEN: res << "("; break; case Canon::MOL_STACK_BRANCH_CLOSE: res << ")"; break; default: break; } } return res.str(); } } // end of namespace SmilesWrite static bool SortBasedOnFirstElement( const std::pair<std::string, std::vector<unsigned int>> &a, const std::pair<std::string, std::vector<unsigned int>> &b) { return a.first < b.first; } std::string MolToSmiles(const ROMol &mol, bool doIsomericSmiles, bool doKekule, int rootedAtAtom, bool canonical, bool allBondsExplicit, bool allHsExplicit, bool doRandom) { if (!mol.getNumAtoms()) return ""; PRECONDITION(rootedAtAtom < 0 || static_cast<unsigned int>(rootedAtAtom) < mol.getNumAtoms(), "rootedAtomAtom must be less than the number of atoms"); std::vector<std::vector<int>> fragsMolAtomMapping; std::vector<ROMOL_SPTR> mols = MolOps::getMolFrags(mol, false, nullptr, &fragsMolAtomMapping, false); std::vector<std::string> vfragsmi; // for(unsigned i=0; i<fragsMolAtomMapping.size(); i++){ // std::cout << i << ": "; // for(unsigned j=0; j<fragsMolAtomMapping[i].size(); j++){ // std::cout << j <<"("<<fragsMolAtomMapping[i][j]<<") "; // } // std::cout << std::endl; // } std::vector<std::vector<RDKit::UINT>> allAtomOrdering; for (unsigned i = 0; i < mols.size(); i++) { ROMol *tmol = mols[i].get(); // update property cache for (ROMol::AtomIterator atomIt = tmol->beginAtoms(); atomIt != tmol->endAtoms(); ++atomIt) { (*atomIt)->updatePropertyCache(false); } // clean up the chirality on any atom that is marked as chiral, // but that should not be: if (doIsomericSmiles) { tmol->setProp(common_properties::_doIsoSmiles, 1); if (!mol.hasProp(common_properties::_StereochemDone)) { MolOps::assignStereochemistry(*tmol, true); } } #if 0 std::cout << "----------------------------" << std::endl; std::cout << "MolToSmiles:"<< std::endl; tmol->debugMol(std::cout); std::cout << "----------------------------" << std::endl; #endif // adding randomness without setting the rootedAtAtom if (doRandom) { if (rootedAtAtom == -1) { rootedAtAtom = std::rand() % mol.getNumAtoms(); // need to find an atom id between 0 and mol.getNumAtoms() exclusively PRECONDITION(rootedAtAtom < 0 || static_cast<unsigned int>( rootedAtAtom) < mol.getNumAtoms(), "rootedAtomAtom must be less than the number of atoms"); } } std::string res; unsigned int nAtoms = tmol->getNumAtoms(); UINT_VECT ranks(nAtoms); std::vector<unsigned int> atomOrdering; if (canonical) { if (tmol->hasProp("_canonicalRankingNumbers")) { for (unsigned int i = 0; i < tmol->getNumAtoms(); ++i) { unsigned int rankNum = 0; tmol->getAtomWithIdx(i)->getPropIfPresent("_canonicalRankingNumber", rankNum); ranks[i] = rankNum; } } else { Canon::rankMolAtoms(*tmol, ranks, true, doIsomericSmiles, doIsomericSmiles); } } else { for (unsigned int i = 0; i < tmol->getNumAtoms(); ++i) ranks[i] = i; } #ifdef VERBOSE_CANON for (unsigned int tmpI = 0; tmpI < ranks.size(); tmpI++) { std::cout << tmpI << " " << ranks[tmpI] << " " << *(tmol->getAtomWithIdx(tmpI)) << std::endl; } #endif std::vector<Canon::AtomColors> colors(nAtoms, Canon::WHITE_NODE); std::vector<Canon::AtomColors>::iterator colorIt; colorIt = colors.begin(); // loop to deal with the possibility that there might be disconnected // fragments while (colorIt != colors.end()) { int nextAtomIdx = -1; std::string subSmi; // find the next atom for a traverse if (rootedAtAtom >= 0) { nextAtomIdx = rootedAtAtom; rootedAtAtom = -1; } else { unsigned int nextRank = nAtoms + 1; for (unsigned int i = 0; i < nAtoms; i++) { if (colors[i] == Canon::WHITE_NODE && ranks[i] < nextRank) { nextRank = ranks[i]; nextAtomIdx = i; } } } CHECK_INVARIANT(nextAtomIdx >= 0, "no start atom found"); subSmi = SmilesWrite::FragmentSmilesConstruct( *tmol, nextAtomIdx, colors, ranks, doKekule, canonical, doIsomericSmiles, allBondsExplicit, allHsExplicit, doRandom, atomOrdering); res += subSmi; colorIt = std::find(colors.begin(), colors.end(), Canon::WHITE_NODE); if (colorIt != colors.end()) { res += "."; } } vfragsmi.push_back(res); for (unsigned int &vit : atomOrdering) { vit = fragsMolAtomMapping[i][vit]; // Lookup the Id in the original // molecule } allAtomOrdering.push_back(atomOrdering); } std::string result; std::vector<unsigned int> flattenedAtomOrdering; if (canonical) { // Sort the vfragsmi, but also sort the atom order vectors into the same // order typedef std::pair<std::string, std::vector<unsigned int>> PairStrAndVec; std::vector<PairStrAndVec> tmp(vfragsmi.size()); for (unsigned int ti = 0; ti < vfragsmi.size(); ++ti) tmp[ti] = PairStrAndVec(vfragsmi[ti], allAtomOrdering[ti]); std::sort(tmp.begin(), tmp.end(), SortBasedOnFirstElement); for (unsigned int ti = 0; ti < vfragsmi.size(); ++ti) { result += tmp[ti].first; if (ti < vfragsmi.size() - 1) result += "."; flattenedAtomOrdering.insert(flattenedAtomOrdering.end(), tmp[ti].second.begin(), tmp[ti].second.end()); } } else { // Not canonical for (auto &i : allAtomOrdering) flattenedAtomOrdering.insert(flattenedAtomOrdering.end(), i.begin(), i.end()); for (unsigned i = 0; i < vfragsmi.size(); ++i) { result += vfragsmi[i]; if (i < vfragsmi.size() - 1) { result += "."; } } } mol.setProp(common_properties::_smilesAtomOutputOrder, flattenedAtomOrdering, true); return result; } // end of MolToSmiles() std::string MolToCXSmiles(const ROMol &mol, bool doIsomericSmiles, bool doKekule, int rootedAtAtom, bool canonical, bool allBondsExplicit, bool allHsExplicit, bool doRandom) { auto res = MolToSmiles(mol, doIsomericSmiles, doKekule, rootedAtAtom, canonical, allBondsExplicit, allHsExplicit, doRandom); if (!res.empty()) { auto cxext = SmilesWrite::getCXExtensions(mol); if (cxext.length()) { res += " " + cxext; } } return res; } std::string MolFragmentToSmiles(const ROMol &mol, const std::vector<int> &atomsToUse, const std::vector<int> *bondsToUse, const std::vector<std::string> *atomSymbols, const std::vector<std::string> *bondSymbols, bool doIsomericSmiles, bool doKekule, int rootedAtAtom, bool canonical, bool allBondsExplicit, bool allHsExplicit) { PRECONDITION(atomsToUse.size(), "no atoms provided"); PRECONDITION(rootedAtAtom < 0 || static_cast<unsigned int>(rootedAtAtom) < mol.getNumAtoms(), "rootedAtomAtom must be less than the number of atoms"); PRECONDITION( rootedAtAtom < 0 || std::find(atomsToUse.begin(), atomsToUse.end(), rootedAtAtom) != atomsToUse.end(), "rootedAtomAtom not found in atomsToUse"); PRECONDITION(!atomSymbols || atomSymbols->size() >= mol.getNumAtoms(), "bad atomSymbols vector"); PRECONDITION(!bondSymbols || bondSymbols->size() >= mol.getNumBonds(), "bad bondSymbols vector"); if (!mol.getNumAtoms()) return ""; ROMol tmol(mol, true); if (doIsomericSmiles) { tmol.setProp(common_properties::_doIsoSmiles, 1); } std::string res; boost::dynamic_bitset<> atomsInPlay(mol.getNumAtoms(), 0); BOOST_FOREACH (int aidx, atomsToUse) { atomsInPlay.set(aidx); } // figure out which bonds are actually in play: boost::dynamic_bitset<> bondsInPlay(mol.getNumBonds(), 0); if (bondsToUse) { BOOST_FOREACH (int bidx, *bondsToUse) { bondsInPlay.set(bidx); } } else { BOOST_FOREACH (int aidx, atomsToUse) { ROMol::OEDGE_ITER beg, end; boost::tie(beg, end) = mol.getAtomBonds(mol.getAtomWithIdx(aidx)); while (beg != end) { const Bond *bond = mol[*beg]; if (atomsInPlay[bond->getOtherAtomIdx(aidx)]) bondsInPlay.set(bond->getIdx()); ++beg; } } } // copy over the rings that only involve atoms/bonds in this fragment: if (mol.getRingInfo()->isInitialized()) { tmol.getRingInfo()->reset(); tmol.getRingInfo()->initialize(); for (unsigned int ridx = 0; ridx < mol.getRingInfo()->numRings(); ++ridx) { const INT_VECT &aring = mol.getRingInfo()->atomRings()[ridx]; const INT_VECT &bring = mol.getRingInfo()->bondRings()[ridx]; bool keepIt = true; BOOST_FOREACH (int aidx, aring) { if (!atomsInPlay[aidx]) { keepIt = false; break; } } if (keepIt) { BOOST_FOREACH (int bidx, bring) { if (!bondsInPlay[bidx]) { keepIt = false; break; } } } if (keepIt) { tmol.getRingInfo()->addRing(aring, bring); } } } if (tmol.needsUpdatePropertyCache()) { for (ROMol::AtomIterator atIt = tmol.beginAtoms(); atIt != tmol.endAtoms(); atIt++) { (*atIt)->updatePropertyCache(false); } } UINT_VECT ranks(tmol.getNumAtoms()); std::vector<unsigned int> atomOrdering; // clean up the chirality on any atom that is marked as chiral, // but that should not be: if (doIsomericSmiles) { if (!mol.hasProp(common_properties::_StereochemDone)) { MolOps::assignStereochemistry(tmol, true); } else { tmol.setProp(common_properties::_StereochemDone, 1); // we need the CIP codes: BOOST_FOREACH (int aidx, atomsToUse) { const Atom *oAt = mol.getAtomWithIdx(aidx); std::string cipCode; if (oAt->getPropIfPresent(common_properties::_CIPCode, cipCode)) { tmol.getAtomWithIdx(aidx)->setProp(common_properties::_CIPCode, cipCode); } } } } if (canonical) { Canon::rankFragmentAtoms(tmol, ranks, atomsInPlay, bondsInPlay, atomSymbols, true, doIsomericSmiles, doIsomericSmiles); // std::cerr << "RANKS: "; // std::copy(ranks.begin(), ranks.end(), // std::ostream_iterator<int>(std::cerr, " ")); // std::cerr << std::endl; // MolOps::rankAtomsInFragment(tmol,ranks,atomsInPlay,bondsInPlay,atomSymbols,bondSymbols); } else { for (unsigned int i = 0; i < tmol.getNumAtoms(); ++i) ranks[i] = i; } #ifdef VERBOSE_CANON for (unsigned int tmpI = 0; tmpI < ranks.size(); tmpI++) { std::cout << tmpI << " " << ranks[tmpI] << " " << *(tmol.getAtomWithIdx(tmpI)) << std::endl; } #endif std::vector<Canon::AtomColors> colors(tmol.getNumAtoms(), Canon::BLACK_NODE); BOOST_FOREACH (int aidx, atomsToUse) { colors[aidx] = Canon::WHITE_NODE; } std::vector<Canon::AtomColors>::iterator colorIt; colorIt = colors.begin(); // loop to deal with the possibility that there might be disconnected // fragments while (colorIt != colors.end()) { int nextAtomIdx = -1; std::string subSmi; // find the next atom for a traverse if (rootedAtAtom >= 0) { nextAtomIdx = rootedAtAtom; rootedAtAtom = -1; } else { unsigned int nextRank = rdcast<unsigned int>(tmol.getNumAtoms()) + 1; BOOST_FOREACH (int i, atomsToUse) { if (colors[i] == Canon::WHITE_NODE && ranks[i] < nextRank) { nextRank = ranks[i]; nextAtomIdx = i; } } } CHECK_INVARIANT(nextAtomIdx >= 0, "no start atom found"); subSmi = SmilesWrite::FragmentSmilesConstruct( tmol, nextAtomIdx, colors, ranks, doKekule, canonical, doIsomericSmiles, allBondsExplicit, allHsExplicit, false, atomOrdering, &bondsInPlay, atomSymbols, bondSymbols); res += subSmi; colorIt = std::find(colors.begin(), colors.end(), Canon::WHITE_NODE); if (colorIt != colors.end()) { res += "."; } } mol.setProp(common_properties::_smilesAtomOutputOrder, atomOrdering, true); return res; } // end of MolFragmentToSmiles() std::string MolFragmentToCXSmiles(const ROMol &mol, const std::vector<int> &atomsToUse, const std::vector<int> *bondsToUse, const std::vector<std::string> *atomSymbols, const std::vector<std::string> *bondSymbols, bool doIsomericSmiles, bool doKekule, int rootedAtAtom, bool canonical, bool allBondsExplicit, bool allHsExplicit) { auto res = MolFragmentToSmiles( mol, atomsToUse, bondsToUse, atomSymbols, bondSymbols, doIsomericSmiles, doKekule, rootedAtAtom, canonical, allBondsExplicit, allHsExplicit); auto cxext = SmilesWrite::getCXExtensions(mol); if (cxext.length()) { res += " " + cxext; } return res; } } // namespace RDKit
1
20,242
I'm fairly sure this precondition is always true due to the mod (%)
rdkit-rdkit
cpp
@@ -404,7 +404,7 @@ final class ReaderPool implements Closeable { private boolean noDups() { Set<String> seen = new HashSet<>(); for(SegmentCommitInfo info : readerMap.keySet()) { - assert !seen.contains(info.info.name); + assert !seen.contains(info.info.name) : "seen twice: " + info.info.name ; seen.add(info.info.name); } return true;
1
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.index; import java.io.Closeable; import java.io.IOException; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.atomic.AtomicBoolean; import java.util.function.LongSupplier; import java.util.stream.Collectors; import org.apache.lucene.store.AlreadyClosedException; import org.apache.lucene.store.Directory; import org.apache.lucene.util.CollectionUtil; import org.apache.lucene.util.IOUtils; import org.apache.lucene.util.InfoStream; /** Holds shared SegmentReader instances. IndexWriter uses * SegmentReaders for 1) applying deletes/DV updates, 2) doing * merges, 3) handing out a real-time reader. This pool * reuses instances of the SegmentReaders in all these * places if it is in "near real-time mode" (getReader() * has been called on this instance). */ final class ReaderPool implements Closeable { private final Map<SegmentCommitInfo,ReadersAndUpdates> readerMap = new HashMap<>(); private final Directory directory; private final Directory originalDirectory; private final FieldInfos.FieldNumbers fieldNumbers; private final LongSupplier completedDelGenSupplier; private final InfoStream infoStream; private final SegmentInfos segmentInfos; private final String softDeletesField; // This is a "write once" variable (like the organic dye // on a DVD-R that may or may not be heated by a laser and // then cooled to permanently record the event): it's // false, by default until {@link #enableReaderPooling()} // is called for the first time, // at which point it's switched to true and never changes // back to false. Once this is true, we hold open and // reuse SegmentReader instances internally for applying // deletes, doing merges, and reopening near real-time // readers. // in practice this should be called once the readers are likely // to be needed and reused ie if IndexWriter#getReader is called. private volatile boolean poolReaders; private final AtomicBoolean closed = new AtomicBoolean(false); ReaderPool(Directory directory, Directory originalDirectory, SegmentInfos segmentInfos, FieldInfos.FieldNumbers fieldNumbers, LongSupplier completedDelGenSupplier, InfoStream infoStream, String softDeletesField, StandardDirectoryReader reader) throws IOException { this.directory = directory; this.originalDirectory = originalDirectory; this.segmentInfos = segmentInfos; this.fieldNumbers = fieldNumbers; this.completedDelGenSupplier = completedDelGenSupplier; this.infoStream = infoStream; this.softDeletesField = softDeletesField; if (reader != null) { // Pre-enroll all segment readers into the reader pool; this is necessary so // any in-memory NRT live docs are correctly carried over, and so NRT readers // pulled from this IW share the same segment reader: List<LeafReaderContext> leaves = reader.leaves(); assert segmentInfos.size() == leaves.size(); for (int i=0;i<leaves.size();i++) { LeafReaderContext leaf = leaves.get(i); SegmentReader segReader = (SegmentReader) leaf.reader(); SegmentReader newReader = new SegmentReader(segmentInfos.info(i), segReader, segReader.getLiveDocs(), segReader.getHardLiveDocs(), segReader.numDocs(), true); readerMap.put(newReader.getOriginalSegmentInfo(), new ReadersAndUpdates(segmentInfos.getIndexCreatedVersionMajor(), newReader, newPendingDeletes(newReader, newReader.getOriginalSegmentInfo()))); } } } /** Asserts this info still exists in IW's segment infos */ synchronized boolean assertInfoIsLive(SegmentCommitInfo info) { int idx = segmentInfos.indexOf(info); assert idx != -1: "info=" + info + " isn't live"; assert segmentInfos.info(idx) == info: "info=" + info + " doesn't match live info in segmentInfos"; return true; } /** * Drops reader for the given {@link SegmentCommitInfo} if it's pooled * @return <code>true</code> if a reader is pooled */ synchronized boolean drop(SegmentCommitInfo info) throws IOException { final ReadersAndUpdates rld = readerMap.get(info); if (rld != null) { assert info == rld.info; readerMap.remove(info); rld.dropReaders(); return true; } return false; } /** * Returns the sum of the ram used by all the buffered readers and updates in MB */ synchronized long ramBytesUsed() { long bytes = 0; for (ReadersAndUpdates rld : readerMap.values()) { bytes += rld.ramBytesUsed.get(); } return bytes; } /** * Returns <code>true</code> iff any of the buffered readers and updates has at least one pending delete */ synchronized boolean anyDeletions() { for(ReadersAndUpdates rld : readerMap.values()) { if (rld.getDelCount() > 0) { return true; } } return false; } /** * Enables reader pooling for this pool. This should be called once the readers in this pool are shared with an * outside resource like an NRT reader. Once reader pooling is enabled a {@link ReadersAndUpdates} will be kept around * in the reader pool on calling {@link #release(ReadersAndUpdates, boolean)} until the segment get dropped via calls * to {@link #drop(SegmentCommitInfo)} or {@link #dropAll()} or {@link #close()}. * Reader pooling is disabled upon construction but can't be disabled again once it's enabled. */ void enableReaderPooling() { poolReaders = true; } boolean isReaderPoolingEnabled() { return poolReaders; } /** * Releases the {@link ReadersAndUpdates}. This should only be called if the {@link #get(SegmentCommitInfo, boolean)} * is called with the create paramter set to true. * @return <code>true</code> if any files were written by this release call. */ synchronized boolean release(ReadersAndUpdates rld, boolean assertInfoLive) throws IOException { boolean changed = false; // Matches incRef in get: rld.decRef(); if (rld.refCount() == 0) { // This happens if the segment was just merged away, // while a buffered deletes packet was still applying deletes/updates to it. assert readerMap.containsKey(rld.info) == false: "seg=" + rld.info + " has refCount 0 but still unexpectedly exists in the reader pool"; } else { // Pool still holds a ref: assert rld.refCount() > 0: "refCount=" + rld.refCount() + " reader=" + rld.info; if (poolReaders == false && rld.refCount() == 1 && readerMap.containsKey(rld.info)) { // This is the last ref to this RLD, and we're not // pooling, so remove it: if (rld.writeLiveDocs(directory)) { // Make sure we only write del docs for a live segment: assert assertInfoLive == false || assertInfoIsLive(rld.info); // Must checkpoint because we just // created new _X_N.del and field updates files; // don't call IW.checkpoint because that also // increments SIS.version, which we do not want to // do here: it was done previously (after we // invoked BDS.applyDeletes), whereas here all we // did was move the state to disk: changed = true; } if (rld.writeFieldUpdates(directory, fieldNumbers, completedDelGenSupplier.getAsLong(), infoStream)) { changed = true; } if (rld.getNumDVUpdates() == 0) { rld.dropReaders(); readerMap.remove(rld.info); } else { // We are forced to pool this segment until its deletes fully apply (no delGen gaps) } } } return changed; } @Override public synchronized void close() throws IOException { if (closed.compareAndSet(false, true)) { dropAll(); } } /** * Writes all doc values updates to disk if there are any. * @return <code>true</code> iff any files where written */ boolean writeAllDocValuesUpdates() throws IOException { Collection<ReadersAndUpdates> copy; synchronized (this) { // this needs to be protected by the reader pool lock otherwise we hit ConcurrentModificationException copy = new HashSet<>(readerMap.values()); } boolean any = false; for (ReadersAndUpdates rld : copy) { any |= rld.writeFieldUpdates(directory, fieldNumbers, completedDelGenSupplier.getAsLong(), infoStream); } return any; } /** * Writes all doc values updates to disk if there are any. * @return <code>true</code> iff any files where written */ boolean writeDocValuesUpdatesForMerge(List<SegmentCommitInfo> infos) throws IOException { boolean any = false; for (SegmentCommitInfo info : infos) { ReadersAndUpdates rld = get(info, false); if (rld != null) { any |= rld.writeFieldUpdates(directory, fieldNumbers, completedDelGenSupplier.getAsLong(), infoStream); rld.setIsMerging(); } } return any; } /** * Returns a list of all currently maintained ReadersAndUpdates sorted by it's ram consumption largest to smallest. * This list can also contain readers that don't consume any ram at this point ie. don't have any updates buffered. */ synchronized List<ReadersAndUpdates> getReadersByRam() { class RamRecordingHolder { final ReadersAndUpdates updates; final long ramBytesUsed; RamRecordingHolder(ReadersAndUpdates updates) { this.updates = updates; this.ramBytesUsed = updates.ramBytesUsed.get(); } } final ArrayList<RamRecordingHolder> readersByRam; synchronized (this) { if (readerMap.isEmpty()) { return Collections.emptyList(); } readersByRam = new ArrayList<>(readerMap.size()); for (ReadersAndUpdates rld : readerMap.values()) { // we have to record the ram usage once and then sort // since the ram usage can change concurrently and that will confuse the sort or hit an assertion // the we can acquire here is not enough we would need to lock all ReadersAndUpdates to make sure it doesn't // change readersByRam.add(new RamRecordingHolder(rld)); } } // Sort this outside of the lock by largest ramBytesUsed: CollectionUtil.introSort(readersByRam, (a, b) -> Long.compare(b.ramBytesUsed, a.ramBytesUsed)); return Collections.unmodifiableList(readersByRam.stream().map(h -> h.updates).collect(Collectors.toList())); } /** Remove all our references to readers, and commits * any pending changes. */ synchronized void dropAll() throws IOException { Throwable priorE = null; final Iterator<Map.Entry<SegmentCommitInfo,ReadersAndUpdates>> it = readerMap.entrySet().iterator(); while(it.hasNext()) { final ReadersAndUpdates rld = it.next().getValue(); // Important to remove as-we-go, not with .clear() // in the end, in case we hit an exception; // otherwise we could over-decref if close() is // called again: it.remove(); // NOTE: it is allowed that these decRefs do not // actually close the SRs; this happens when a // near real-time reader is kept open after the // IndexWriter instance is closed: try { rld.dropReaders(); } catch (Throwable t) { priorE = IOUtils.useOrSuppress(priorE, t); } } assert readerMap.size() == 0; if (priorE != null) { throw IOUtils.rethrowAlways(priorE); } } /** * Commit live docs changes for the segment readers for * the provided infos. * * @throws IOException If there is a low-level I/O error */ synchronized boolean commit(SegmentInfos infos) throws IOException { boolean atLeastOneChange = false; for (SegmentCommitInfo info : infos) { final ReadersAndUpdates rld = readerMap.get(info); if (rld != null) { assert rld.info == info; boolean changed = rld.writeLiveDocs(directory); changed |= rld.writeFieldUpdates(directory, fieldNumbers, completedDelGenSupplier.getAsLong(), infoStream); if (changed) { // Make sure we only write del docs for a live segment: assert assertInfoIsLive(info); // Must checkpoint because we just // created new _X_N.del and field updates files; // don't call IW.checkpoint because that also // increments SIS.version, which we do not want to // do here: it was done previously (after we // invoked BDS.applyDeletes), whereas here all we // did was move the state to disk: atLeastOneChange = true; } } } return atLeastOneChange; } /** * Returns <code>true</code> iff there are any buffered doc values updates. Otherwise <code>false</code>. */ synchronized boolean anyDocValuesChanges() { for (ReadersAndUpdates rld : readerMap.values()) { // NOTE: we don't check for pending deletes because deletes carry over in RAM to NRT readers if (rld.getNumDVUpdates() != 0) { return true; } } return false; } /** * Obtain a ReadersAndLiveDocs instance from the * readerPool. If create is true, you must later call * {@link #release(ReadersAndUpdates, boolean)}. */ synchronized ReadersAndUpdates get(SegmentCommitInfo info, boolean create) { assert info.info.dir == originalDirectory: "info.dir=" + info.info.dir + " vs " + originalDirectory; if (closed.get()) { assert readerMap.isEmpty() : "Reader map is not empty: " + readerMap; throw new AlreadyClosedException("ReaderPool is already closed"); } ReadersAndUpdates rld = readerMap.get(info); if (rld == null) { if (create == false) { return null; } rld = new ReadersAndUpdates(segmentInfos.getIndexCreatedVersionMajor(), info, newPendingDeletes(info)); // Steal initial reference: readerMap.put(info, rld); } else { assert rld.info == info: "rld.info=" + rld.info + " info=" + info + " isLive?=" + assertInfoIsLive(rld.info) + " vs " + assertInfoIsLive(info); } if (create) { // Return ref to caller: rld.incRef(); } assert noDups(); return rld; } private PendingDeletes newPendingDeletes(SegmentCommitInfo info) { return softDeletesField == null ? new PendingDeletes(info) : new PendingSoftDeletes(softDeletesField, info); } private PendingDeletes newPendingDeletes(SegmentReader reader, SegmentCommitInfo info) { return softDeletesField == null ? new PendingDeletes(reader, info) : new PendingSoftDeletes(softDeletesField, reader, info); } // Make sure that every segment appears only once in the // pool: private boolean noDups() { Set<String> seen = new HashSet<>(); for(SegmentCommitInfo info : readerMap.keySet()) { assert !seen.contains(info.info.name); seen.add(info.info.name); } return true; } }
1
35,175
I love seeing diffs like this one, adding a `String` message to an otherwise cryptic `assert`! It makes me realize you must have had a hellacious debugging session!
apache-lucene-solr
java
@@ -731,6 +731,8 @@ func loadConfigFromFile(configFile string) (c Local, err error) { } // Migrate in case defaults were changed + // If a config file does not have version, it is assumed to be zero. + // All fields listed in migrate() might be changed if an actual value matches to default value from a previous version. c, err = migrate(c) return }
1
// Copyright (C) 2019 Algorand, Inc. // This file is part of go-algorand // // go-algorand is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // go-algorand is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with go-algorand. If not, see <https://www.gnu.org/licenses/>. package config import ( "encoding/json" "errors" "io" "os" "os/user" "path/filepath" "strconv" "strings" "time" "github.com/algorand/go-algorand/protocol" "github.com/algorand/go-algorand/util/codecs" ) // Devnet identifies the 'development network' use for development and not generally accessible publicly const Devnet protocol.NetworkID = "devnet" // Devtestnet identifies the 'development network for tests' use for running tests against development and not generally accessible publicly const Devtestnet protocol.NetworkID = "devtestnet" // Testnet identifies the publicly-available test network const Testnet protocol.NetworkID = "testnet" // Mainnet identifies the publicly-available real-money network const Mainnet protocol.NetworkID = "mainnet" // GenesisJSONFile is the name of the genesis.json file const GenesisJSONFile = "genesis.json" // Global defines global Algorand protocol parameters which should not be overriden. type Global struct { SmallLambda time.Duration // min amount of time to wait for leader's credential (i.e., time to propagate one credential) BigLambda time.Duration // max amount of time to wait for leader's proposal (i.e., time to propagate one block) } // Protocol holds the global configuration settings for the agreement protocol, // initialized with our current defaults. This is used across all nodes we create. var Protocol = Global{ SmallLambda: 2000 * time.Millisecond, BigLambda: 15000 * time.Millisecond, } // ConsensusParams specifies settings that might vary based on the // particular version of the consensus protocol. type ConsensusParams struct { // Consensus protocol upgrades. Votes for upgrades are collected for // UpgradeVoteRounds. If the number of positive votes is over // UpgradeThreshold, the proposal is accepted. // // UpgradeVoteRounds needs to be long enough to collect an // accurate sample of participants, and UpgradeThreshold needs // to be high enough to ensure that there are sufficient participants // after the upgrade. // // There is a delay of UpgradeWaitRounds between approval of // an upgrade and its deployment, to give clients time to notify users. UpgradeVoteRounds uint64 UpgradeThreshold uint64 UpgradeWaitRounds uint64 MaxVersionStringLen int // MaxTxnBytesPerBlock determines the maximum number of bytes // that transactions can take up in a block. Specifically, // the sum of the lengths of encodings of each transaction // in a block must not exceed MaxTxnBytesPerBlock. MaxTxnBytesPerBlock int // MaxTxnBytesPerBlock is the maximum size of a transaction's Note field. MaxTxnNoteBytes int // MaxTxnLife is how long a transaction can be live for: // the maximum difference between LastValid and FirstValid. // // Note that in a protocol upgrade, the ledger must first be upgraded // to hold more past blocks for this value to be raised. MaxTxnLife uint64 // ApprovedUpgrades describes the upgrade proposals that this protocol // implementation will vote for. ApprovedUpgrades map[protocol.ConsensusVersion]bool // SupportGenesisHash indicates support for the GenesisHash // fields in transactions (and requires them in blocks). SupportGenesisHash bool // RequireGenesisHash indicates that GenesisHash must be present // in every transaction. RequireGenesisHash bool // DefaultKeyDilution specifies the granularity of top-level ephemeral // keys. KeyDilution is the number of second-level keys in each batch, // signed by a top-level "batch" key. The default value can be // overriden in the account state. DefaultKeyDilution uint64 // MinBalance specifies the minimum balance that can appear in // an account. To spend money below MinBalance requires issuing // an account-closing transaction, which transfers all of the // money from the account, and deletes the account state. MinBalance uint64 // MinTxnFee specifies the minimum fee allowed on a transaction. // A minimum fee is necessary to prevent DoS. In some sense this is // a way of making the spender subsidize the cost of storing this transaction. MinTxnFee uint64 // RewardUnit specifies the number of MicroAlgos corresponding to one reward // unit. // // Rewards are received by whole reward units. Fractions of // RewardUnits do not receive rewards. RewardUnit uint64 // RewardsRateRefreshInterval is the number of rounds after which the // rewards level is recomputed for the next RewardsRateRefreshInterval rounds. RewardsRateRefreshInterval uint64 // seed-related parameters SeedLookback uint64 // how many blocks back we use seeds from in sortition. delta_s in the spec SeedRefreshInterval uint64 // how often an old block hash is mixed into the seed. delta_r in the spec // ledger retention policy MaxBalLookback uint64 // (current round - MaxBalLookback) is the oldest round the ledger must answer balance queries for // sortition threshold factors NumProposers uint64 SoftCommitteeSize uint64 SoftCommitteeThreshold uint64 CertCommitteeSize uint64 CertCommitteeThreshold uint64 NextCommitteeSize uint64 // for any non-FPR votes >= deadline step, committee sizes and thresholds are constant NextCommitteeThreshold uint64 LateCommitteeSize uint64 LateCommitteeThreshold uint64 RedoCommitteeSize uint64 RedoCommitteeThreshold uint64 DownCommitteeSize uint64 DownCommitteeThreshold uint64 FastRecoveryLambda time.Duration // time between fast recovery attempts FastPartitionRecovery bool // set when fast partition recovery is enabled // commit to payset using a hash of entire payset, // instead of txid merkle tree PaysetCommitFlat bool MaxTimestampIncrement int64 // maximum time between timestamps on successive blocks // support for the efficient encoding in SignedTxnInBlock SupportSignedTxnInBlock bool // force the FeeSink address to be non-participating in the genesis balances. ForceNonParticipatingFeeSink bool // support for ApplyData in SignedTxnInBlock ApplyData bool // track reward distributions in ApplyData RewardsInApplyData bool // domain-separated credentials CredentialDomainSeparationEnabled bool // support for transactions that mark an account non-participating SupportBecomeNonParticipatingTransactions bool // fix the rewards calculation by avoiding subtracting too much from the rewards pool PendingResidueRewards bool // asset support Asset bool // max number of assets per account MaxAssetsPerAccount int // support sequential transaction counter TxnCounter TxnCounter bool // transaction groups SupportTxGroups bool // max group size MaxTxGroupSize int // support for transaction leases SupportTransactionLeases bool // 0 for no support, otherwise highest version supported LogicSigVersion uint64 // len(LogicSig.Logic) + len(LogicSig.Args[*]) must be less than this LogicSigMaxSize uint64 // sum of estimated op cost must be less than this LogicSigMaxCost uint64 } // Consensus tracks the protocol-level settings for different versions of the // consensus protocol. var Consensus map[protocol.ConsensusVersion]ConsensusParams func init() { Consensus = make(map[protocol.ConsensusVersion]ConsensusParams) initConsensusProtocols() initConsensusTestProtocols() // This must appear last, since it depends on all of the other // versions to already be registered (by the above calls). initConsensusTestFastUpgrade() // Allow tuning SmallLambda for faster consensus in single-machine e2e // tests. Useful for development. This might make sense to fold into // a protocol-version-specific setting, once we move SmallLambda into // ConsensusParams. algoSmallLambda, err := strconv.ParseInt(os.Getenv("ALGOSMALLLAMBDAMSEC"), 10, 64) if err == nil { Protocol.SmallLambda = time.Duration(algoSmallLambda) * time.Millisecond } } func initConsensusProtocols() { // WARNING: copying a ConsensusParams by value into a new variable // does not copy the ApprovedUpgrades map. Make sure that each new // ConsensusParams structure gets a fresh ApprovedUpgrades map. // Base consensus protocol version, v7. v7 := ConsensusParams{ UpgradeVoteRounds: 10000, UpgradeThreshold: 9000, UpgradeWaitRounds: 10000, MaxVersionStringLen: 64, MinBalance: 10000, MinTxnFee: 1000, MaxTxnLife: 1000, MaxTxnNoteBytes: 1024, MaxTxnBytesPerBlock: 1000000, DefaultKeyDilution: 10000, MaxTimestampIncrement: 25, RewardUnit: 1e6, RewardsRateRefreshInterval: 5e5, ApprovedUpgrades: map[protocol.ConsensusVersion]bool{}, NumProposers: 30, SoftCommitteeSize: 2500, SoftCommitteeThreshold: 1870, CertCommitteeSize: 1000, CertCommitteeThreshold: 720, NextCommitteeSize: 10000, NextCommitteeThreshold: 7750, LateCommitteeSize: 10000, LateCommitteeThreshold: 7750, RedoCommitteeSize: 10000, RedoCommitteeThreshold: 7750, DownCommitteeSize: 10000, DownCommitteeThreshold: 7750, FastRecoveryLambda: 5 * time.Minute, SeedLookback: 2, SeedRefreshInterval: 100, MaxBalLookback: 320, MaxTxGroupSize: 1, } v7.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV7] = v7 // v8 uses parameters and a seed derivation policy (the "twin seeds") from Georgios' new analysis v8 := v7 v8.SeedRefreshInterval = 80 v8.NumProposers = 9 v8.SoftCommitteeSize = 2990 v8.SoftCommitteeThreshold = 2267 v8.CertCommitteeSize = 1500 v8.CertCommitteeThreshold = 1112 v8.NextCommitteeSize = 5000 v8.NextCommitteeThreshold = 3838 v8.LateCommitteeSize = 5000 v8.LateCommitteeThreshold = 3838 v8.RedoCommitteeSize = 5000 v8.RedoCommitteeThreshold = 3838 v8.DownCommitteeSize = 5000 v8.DownCommitteeThreshold = 3838 v8.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV8] = v8 // v7 can be upgraded to v8. v7.ApprovedUpgrades[protocol.ConsensusV8] = true // v9 increases the minimum balance to 100,000 microAlgos. v9 := v8 v9.MinBalance = 100000 v9.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV9] = v9 // v8 can be upgraded to v9. v8.ApprovedUpgrades[protocol.ConsensusV9] = true // v10 introduces fast partition recovery (and also raises NumProposers). v10 := v9 v10.FastPartitionRecovery = true v10.NumProposers = 20 v10.LateCommitteeSize = 500 v10.LateCommitteeThreshold = 320 v10.RedoCommitteeSize = 2400 v10.RedoCommitteeThreshold = 1768 v10.DownCommitteeSize = 6000 v10.DownCommitteeThreshold = 4560 v10.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV10] = v10 // v9 can be upgraded to v10. v9.ApprovedUpgrades[protocol.ConsensusV10] = true // v11 introduces SignedTxnInBlock. v11 := v10 v11.SupportSignedTxnInBlock = true v11.PaysetCommitFlat = true v11.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV11] = v11 // v10 can be upgraded to v11. v10.ApprovedUpgrades[protocol.ConsensusV11] = true // v12 increases the maximum length of a version string. v12 := v11 v12.MaxVersionStringLen = 128 v12.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV12] = v12 // v11 can be upgraded to v12. v11.ApprovedUpgrades[protocol.ConsensusV12] = true // v13 makes the consensus version a meaningful string. v13 := v12 v13.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV13] = v13 // v12 can be upgraded to v13. v12.ApprovedUpgrades[protocol.ConsensusV13] = true // v14 introduces tracking of closing amounts in ApplyData, and enables // GenesisHash in transactions. v14 := v13 v14.ApplyData = true v14.SupportGenesisHash = true v14.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV14] = v14 // v13 can be upgraded to v14. v13.ApprovedUpgrades[protocol.ConsensusV14] = true // v15 introduces tracking of reward distributions in ApplyData. v15 := v14 v15.RewardsInApplyData = true v15.ForceNonParticipatingFeeSink = true v15.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV15] = v15 // v14 can be upgraded to v15. v14.ApprovedUpgrades[protocol.ConsensusV15] = true // v16 fixes domain separation in credentials. v16 := v15 v16.CredentialDomainSeparationEnabled = true v16.RequireGenesisHash = true v16.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV16] = v16 // v15 can be upgraded to v16. v15.ApprovedUpgrades[protocol.ConsensusV16] = true // ConsensusV17 points to 'final' spec commit v17 := v16 v17.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV17] = v17 // v16 can be upgraded to v17. v16.ApprovedUpgrades[protocol.ConsensusV17] = true // ConsensusV18 points to reward calculation spec commit v18 := v17 v18.PendingResidueRewards = true v18.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusV18] = v18 // v17 can be upgraded to v18. // for now, I will leave this gated out. // v17.ApprovedUpgrades[protocol.ConsensusV18] = true // ConsensusFuture is used to test features that are implemented // but not yet released in a production protocol version. vFuture := v18 vFuture.TxnCounter = true vFuture.Asset = true vFuture.LogicSigVersion = 1 vFuture.LogicSigMaxSize = 1000 vFuture.LogicSigMaxCost = 20000 vFuture.MaxAssetsPerAccount = 1000 vFuture.SupportTxGroups = true vFuture.MaxTxGroupSize = 16 vFuture.SupportTransactionLeases = true vFuture.SupportBecomeNonParticipatingTransactions = true vFuture.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusFuture] = vFuture } func initConsensusTestProtocols() { // Various test protocol versions Consensus[protocol.ConsensusTest0] = ConsensusParams{ UpgradeVoteRounds: 2, UpgradeThreshold: 1, UpgradeWaitRounds: 2, MaxVersionStringLen: 64, MaxTxnBytesPerBlock: 1000000, DefaultKeyDilution: 10000, ApprovedUpgrades: map[protocol.ConsensusVersion]bool{ protocol.ConsensusTest1: true, }, } Consensus[protocol.ConsensusTest1] = ConsensusParams{ UpgradeVoteRounds: 10, UpgradeThreshold: 8, UpgradeWaitRounds: 10, MaxVersionStringLen: 64, MaxTxnBytesPerBlock: 1000000, DefaultKeyDilution: 10000, ApprovedUpgrades: map[protocol.ConsensusVersion]bool{}, } testBigBlocks := Consensus[protocol.ConsensusCurrentVersion] testBigBlocks.MaxTxnBytesPerBlock = 100000000 testBigBlocks.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusTestBigBlocks] = testBigBlocks rapidRecalcParams := Consensus[protocol.ConsensusCurrentVersion] rapidRecalcParams.RewardsRateRefreshInterval = 25 //because rapidRecalcParams is based on ConsensusCurrentVersion, //it *shouldn't* have any ApprovedUpgrades //but explicitly mark "no approved upgrades" just in case rapidRecalcParams.ApprovedUpgrades = map[protocol.ConsensusVersion]bool{} Consensus[protocol.ConsensusTestRapidRewardRecalculation] = rapidRecalcParams } func initConsensusTestFastUpgrade() { fastUpgradeProtocols := make(map[protocol.ConsensusVersion]ConsensusParams) for proto, params := range Consensus { fastParams := params fastParams.UpgradeVoteRounds = 5 fastParams.UpgradeThreshold = 3 fastParams.UpgradeWaitRounds = 5 fastParams.MaxVersionStringLen += len(protocol.ConsensusTestFastUpgrade("")) fastParams.ApprovedUpgrades = make(map[protocol.ConsensusVersion]bool) for ver, flag := range params.ApprovedUpgrades { fastParams.ApprovedUpgrades[protocol.ConsensusTestFastUpgrade(ver)] = flag } fastUpgradeProtocols[protocol.ConsensusTestFastUpgrade(proto)] = fastParams } // Put the test protocols into the Consensus struct; this // is done as a separate step so we don't recurse forever. for proto, params := range fastUpgradeProtocols { Consensus[proto] = params } } // Local holds the per-node-instance configuration settings for the protocol. type Local struct { // Version tracks the current version of the defaults so we can migrate old -> new // This is specifically important whenever we decide to change the default value // for an existing parameter. Version uint32 // environmental (may be overridden) // if true, does not garbage collect; also, replies to catchup requests Archival bool // gossipNode.go // how many peers to propagate to? GossipFanout int NetAddress string ReconnectTime time.Duration // what we should tell people to connect to PublicAddress string MaxConnectionsPerIP int // 0 == disable PeerPingPeriodSeconds int // for https serving TLSCertFile string TLSKeyFile string // Logging BaseLoggerDebugLevel uint32 // if this is 0, do not produce agreement.cadaver CadaverSizeTarget uint64 // IncomingConnectionsLimit specifies the max number of long-lived incoming // connections. 0 means no connections allowed. -1 is unbounded. IncomingConnectionsLimit int // BroadcastConnectionsLimit specifies the number of connections that // will receive broadcast (gossip) messages from this node. If the // node has more connections than this number, it will send broadcasts // to the top connections by priority (outgoing connections first, then // by money held by peers based on their participation key). 0 means // no outgoing messages (not even transaction broadcasting to outgoing // peers). -1 means unbounded (default). BroadcastConnectionsLimit int // AnnounceParticipationKey specifies that this node should announce its // participation key (with the largest stake) to its gossip peers. This // allows peers to prioritize our connection, if necessary, in case of a // DoS attack. Disabling this means that the peers will not have any // additional information to allow them to prioritize our connection. AnnounceParticipationKey bool // PriorityPeers specifies peer IP addresses that should always get // outgoing broadcast messages from this node. PriorityPeers map[string]bool // To make sure the algod process does not run out of FDs, algod ensures // that RLIMIT_NOFILE exceeds the max number of incoming connections (i.e., // IncomingConnectionsLimit) by at least ReservedFDs. ReservedFDs are meant // to leave room for short-lived FDs like DNS queries, SQLite files, etc. ReservedFDs uint64 // local server // API endpoint address EndpointAddress string // timeouts passed to the rest http.Server implementation RestReadTimeoutSeconds int RestWriteTimeoutSeconds int // SRV-based phonebook DNSBootstrapID string // Log file size limit in bytes LogSizeLimit uint64 // text/template for creating log archive filename. // Available template vars: // Time at start of log: {{.Year}} {{.Month}} {{.Day}} {{.Hour}} {{.Minute}} {{.Second}} // Time at end of log: {{.EndYear}} {{.EndMonth}} {{.EndDay}} {{.EndHour}} {{.EndMinute}} {{.EndSecond}} // // If the filename ends with .gz or .bz2 it will be compressed. // // default: "node.archive.log" (no rotation, clobbers previous archive) LogArchiveName string // LogArchiveMaxAge will be parsed by time.ParseDuration(). // Valid units are 's' seconds, 'm' minutes, 'h' hours LogArchiveMaxAge string // number of consecutive attempts to catchup after which we replace the peers we're connected to CatchupFailurePeerRefreshRate int // where should the node exporter listen for metrics NodeExporterListenAddress string // enable metric reporting flag EnableMetricReporting bool // enable top accounts reporting flag EnableTopAccountsReporting bool // enable agreement reporting flag. Currently only prints additional period events. EnableAgreementReporting bool // enable agreement timing metrics flag EnableAgreementTimeMetrics bool // The path to the node exporter. NodeExporterPath string // The fallback DNS resolver address that would be used if the system resolver would fail to retrieve SRV records FallbackDNSResolverAddress string // exponential increase factor of transaction pool's fee threshold, should always be 2 in production TxPoolExponentialIncreaseFactor uint64 SuggestedFeeBlockHistory int // TxPoolSize is the number of transactions that fit in the transaction pool TxPoolSize int // number of seconds allowed for syncing transactions TxSyncTimeoutSeconds int64 // number of seconds between transaction synchronizations TxSyncIntervalSeconds int64 // the number of incoming message hashes buckets. IncomingMessageFilterBucketCount int // the size of each incoming message hash bucket. IncomingMessageFilterBucketSize int // the number of outgoing message hashes buckets. OutgoingMessageFilterBucketCount int // the size of each outgoing message hash bucket. OutgoingMessageFilterBucketSize int // enable the filtering of outgoing messages EnableOutgoingNetworkMessageFiltering bool // enable the filtering of incoming messages EnableIncomingMessageFilter bool // control enabling / disabling deadlock detection. // negative (-1) to disable, positive (1) to enable, 0 for default. DeadlockDetection int // Prefer to run algod Hosted (under algoh) // Observed by `goal` for now. RunHosted bool // The maximal number of blocks that catchup will fetch in parallel. // If less than Protocol.SeedLookback, then Protocol.SeedLookback will be used as to limit the catchup. CatchupParallelBlocks uint64 // Generate AssembleBlockMetrics telemetry event EnableAssembleStats bool // Generate ProcessBlockMetrics telemetry event EnableProcessBlockStats bool // SuggestedFeeSlidingWindowSize is number of past blocks that will be considered in computing the suggested fee SuggestedFeeSlidingWindowSize uint32 // the max size the sync server would return TxSyncServeResponseSize int // IsIndexerActive indicates whether to activate the indexer for fast retrieval of transactions // Note -- Indexer cannot operate on non Archival nodes IsIndexerActive bool // UseXForwardedForAddress indicates whether or not the node should use the X-Forwarded-For HTTP Header when // determining the source of a connection. If used, it should be set to the string "X-Forwarded-For", unless the // proxy vendor provides another header field. In the case of CloudFlare proxy, the "CF-Connecting-IP" header // field can be used. UseXForwardedForAddressField string // ForceRelayMessages indicates whether the network library relay messages even in the case that no NetAddress was specified. ForceRelayMessages bool // ConnectionsRateLimitingWindowSeconds is being used in conjunction with ConnectionsRateLimitingCount; // see ConnectionsRateLimitingCount description for further information. Providing a zero value // in this variable disables the connection rate limiting. ConnectionsRateLimitingWindowSeconds uint // ConnectionsRateLimitingCount is being used along with ConnectionsRateLimitingWindowSeconds to determine if // a connection request should be accepted or not. The gossip network examine all the incoming requests in the past // ConnectionsRateLimitingWindowSeconds seconds that share the same origin. If the total count exceed the ConnectionsRateLimitingCount // value, the connection is refused. ConnectionsRateLimitingCount uint // EnableRequestLogger enabled the logging of the incoming requests to the telemetry server. EnableRequestLogger bool } // Filenames of config files within the configdir (e.g. ~/.algorand) // ConfigFilename is the name of the config.json file where we store per-algod-instance settings const ConfigFilename = "config.json" // PhonebookFilename is the name of the phonebook configuration files - no longer used const PhonebookFilename = "phonebook.json" // No longer used in product - still in tests // LedgerFilenamePrefix is the prefix of the name of the ledger database files const LedgerFilenamePrefix = "ledger" // CrashFilename is the name of the agreement database file. // It is used to recover from node crashes. const CrashFilename = "crash.sqlite" // LoadConfigFromDisk returns a Local config structure based on merging the defaults // with settings loaded from the config file from the custom dir. If the custom file // cannot be loaded, the default config is returned (with the error from loading the // custom file). func LoadConfigFromDisk(custom string) (c Local, err error) { return loadConfigFromFile(filepath.Join(custom, ConfigFilename)) } func loadConfigFromFile(configFile string) (c Local, err error) { c = defaultLocal c.Version = 0 // Reset to 0 so we get the version from the loaded file. c, err = mergeConfigFromFile(configFile, c) if err != nil { return } // Migrate in case defaults were changed c, err = migrate(c) return } // GetDefaultLocal returns a copy of the current defaultLocal config func GetDefaultLocal() Local { return defaultLocal } func mergeConfigFromDir(root string, source Local) (Local, error) { return mergeConfigFromFile(filepath.Join(root, ConfigFilename), source) } func mergeConfigFromFile(configpath string, source Local) (Local, error) { f, err := os.Open(configpath) if err != nil { return source, err } defer f.Close() err = loadConfig(f, &source) // For now, all relays (listening for incoming connections) are also Archival // We can change this logic in the future, but it's currently the sanest default. if source.NetAddress != "" { source.Archival = true } return source, err } func loadConfig(reader io.Reader, config *Local) error { dec := json.NewDecoder(reader) return dec.Decode(config) } // DNSBootstrapArray returns an array of one or more DNS Bootstrap identifiers func (cfg Local) DNSBootstrapArray(networkID protocol.NetworkID) (bootstrapArray []string) { dnsBootstrapString := cfg.DNSBootstrap(networkID) bootstrapArray = strings.Split(dnsBootstrapString, ";") return } // DNSBootstrap returns the network-specific DNSBootstrap identifier func (cfg Local) DNSBootstrap(network protocol.NetworkID) string { // if user hasn't modified the default DNSBootstrapID in the configuration // file and we're targeting a devnet ( via genesis file ), we the // explicit devnet network bootstrap. if defaultLocal.DNSBootstrapID == cfg.DNSBootstrapID && network == Devnet { return "devnet.algodev.network" } return strings.Replace(cfg.DNSBootstrapID, "<network>", string(network), -1) } // SaveToDisk writes the Local settings into a root/ConfigFilename file func (cfg Local) SaveToDisk(root string) error { configpath := filepath.Join(root, ConfigFilename) filename := os.ExpandEnv(configpath) return cfg.SaveToFile(filename) } // SaveToFile saves the config to a specific filename, allowing overriding the default name func (cfg Local) SaveToFile(filename string) error { var alwaysInclude []string alwaysInclude = append(alwaysInclude, "Version") return codecs.SaveNonDefaultValuesToFile(filename, cfg, defaultLocal, alwaysInclude, true) } type phonebookBlackWhiteList struct { Include []string } // LoadPhonebook returns a phonebook loaded from the provided directory, if it exists. // NOTE: We no longer use phonebook for anything but tests, but users should be able to use it func LoadPhonebook(datadir string) ([]string, error) { var entries []string path := filepath.Join(datadir, PhonebookFilename) f, rootErr := os.Open(path) if rootErr != nil { if !os.IsNotExist(rootErr) { return nil, rootErr } } else { defer f.Close() phonebook := phonebookBlackWhiteList{} dec := json.NewDecoder(f) err := dec.Decode(&phonebook) if err != nil { return nil, errors.New("error decoding phonebook! got error: " + err.Error()) } entries = phonebook.Include } // get an initial list of peers return entries, rootErr } // SavePhonebookToDisk writes the phonebook into a root/PhonebookFilename file func SavePhonebookToDisk(entries []string, root string) error { configpath := filepath.Join(root, PhonebookFilename) f, err := os.OpenFile(os.ExpandEnv(configpath), os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600) if err == nil { defer f.Close() err = savePhonebook(entries, f) } return err } func savePhonebook(entries []string, w io.Writer) error { pb := phonebookBlackWhiteList{ Include: entries, } enc := codecs.NewFormattedJSONEncoder(w) return enc.Encode(pb) } var globalConfigFileRoot string // GetConfigFilePath retrieves the full path to a configuration file // These are global configurations - not specific to data-directory / network. func GetConfigFilePath(file string) (string, error) { rootPath, err := GetGlobalConfigFileRoot() if err != nil { return "", err } return filepath.Join(rootPath, file), nil } // GetGlobalConfigFileRoot returns the current root folder for global configuration files. // This will likely only change for tests. func GetGlobalConfigFileRoot() (string, error) { var err error if globalConfigFileRoot == "" { globalConfigFileRoot, err = GetDefaultConfigFilePath() if err == nil { dirErr := os.Mkdir(globalConfigFileRoot, os.ModePerm) if !os.IsExist(dirErr) { err = dirErr } } } return globalConfigFileRoot, err } // SetGlobalConfigFileRoot allows overriding the root folder for global configuration files. // It returns the current one so it can be restored, if desired. // This will likely only change for tests. func SetGlobalConfigFileRoot(rootPath string) string { currentRoot := globalConfigFileRoot globalConfigFileRoot = rootPath return currentRoot } // GetDefaultConfigFilePath retrieves the default directory for global (not per-instance) config files // By default we store in ~/.algorand/. // This will likely only change for tests. func GetDefaultConfigFilePath() (string, error) { currentUser, err := user.Current() if err != nil { return "", err } if currentUser.HomeDir == "" { return "", errors.New("GetDefaultConfigFilePath fail - current user has no home directory") } return filepath.Join(currentUser.HomeDir, ".algorand"), nil }
1
36,610
1. No logger exists to produce a message 2. Can't assume the latest version because missed version means 0.
algorand-go-algorand
go
@@ -633,6 +633,14 @@ class Config return $config; } + /** + * Computes the hash to use for a cache folder from CLI flags and from the config file's xml contents + */ + public function computeHash(): string + { + return sha1($this->hash . ':' . $this->level); + } + /** * Creates a new config object from an XML string * @param string|null $current_dir Current working directory, if different to $base_dir
1
<?php namespace Psalm; use Composer\Autoload\ClassLoader; use Composer\Semver\VersionParser; use DOMDocument; use LogicException; use OutOfBoundsException; use Psalm\Config\IssueHandler; use Psalm\Config\ProjectFileFilter; use Psalm\Config\TaintAnalysisFileFilter; use Psalm\Exception\ConfigException; use Psalm\Exception\ConfigNotFoundException; use Psalm\Internal\Analyzer\ClassLikeAnalyzer; use Psalm\Internal\Analyzer\FileAnalyzer; use Psalm\Internal\Analyzer\ProjectAnalyzer; use Psalm\Internal\Composer; use Psalm\Internal\EventDispatcher; use Psalm\Internal\IncludeCollector; use Psalm\Internal\Scanner\FileScanner; use Psalm\Issue\ArgumentIssue; use Psalm\Issue\ClassIssue; use Psalm\Issue\CodeIssue; use Psalm\Issue\ConfigIssue; use Psalm\Issue\FunctionIssue; use Psalm\Issue\MethodIssue; use Psalm\Issue\PropertyIssue; use Psalm\Issue\VariableIssue; use Psalm\Progress\Progress; use Psalm\Progress\VoidProgress; use SimpleXMLElement; use Webmozart\PathUtil\Path; use XdgBaseDir\Xdg; use function array_map; use function array_merge; use function array_pad; use function array_pop; use function array_shift; use function assert; use function basename; use function chdir; use function class_exists; use function count; use function dirname; use function explode; use function file_exists; use function file_get_contents; use function filetype; use function get_class; use function get_defined_constants; use function get_defined_functions; use function getcwd; use function glob; use function implode; use function in_array; use function intval; use function is_a; use function is_dir; use function is_file; use function json_decode; use function libxml_clear_errors; use function libxml_get_errors; use function libxml_use_internal_errors; use function mkdir; use function phpversion; use function preg_match; use function preg_quote; use function preg_replace; use function realpath; use function reset; use function rmdir; use function rtrim; use function scandir; use function sha1; use function simplexml_import_dom; use function str_replace; use function strlen; use function strpos; use function strrpos; use function strtolower; use function strtr; use function substr; use function substr_count; use function sys_get_temp_dir; use function trigger_error; use function unlink; use function version_compare; use const DIRECTORY_SEPARATOR; use const E_USER_ERROR; use const GLOB_NOSORT; use const LIBXML_ERR_ERROR; use const LIBXML_ERR_FATAL; use const LIBXML_NONET; use const PHP_EOL; use const SCANDIR_SORT_NONE; /** * @psalm-suppress PropertyNotSetInConstructor * @psalm-consistent-constructor */ class Config { private const DEFAULT_FILE_NAME = 'psalm.xml'; public const REPORT_INFO = 'info'; public const REPORT_ERROR = 'error'; public const REPORT_SUPPRESS = 'suppress'; /** * @var array<string> */ public static $ERROR_LEVELS = [ self::REPORT_INFO, self::REPORT_ERROR, self::REPORT_SUPPRESS, ]; /** * @var array */ private const MIXED_ISSUES = [ 'MixedArgument', 'MixedArrayAccess', 'MixedArrayAssignment', 'MixedArrayOffset', 'MixedArrayTypeCoercion', 'MixedAssignment', 'MixedFunctionCall', 'MixedInferredReturnType', 'MixedMethodCall', 'MixedOperand', 'MixedPropertyFetch', 'MixedPropertyAssignment', 'MixedReturnStatement', 'MixedStringOffsetAssignment', 'MixedArgumentTypeCoercion', 'MixedPropertyTypeCoercion', 'MixedReturnTypeCoercion', ]; /** * These are special object classes that allow any and all properties to be get/set on them * @var array<int, class-string> */ protected $universal_object_crates = [ \stdClass::class, SimpleXMLElement::class, ]; /** * @var static|null */ private static $instance; /** * Whether or not to use types as defined in docblocks * * @var bool */ public $use_docblock_types = true; /** * Whether or not to use types as defined in property docblocks. * This is distinct from the above because you may want to use * property docblocks, but not function docblocks. * * @var bool */ public $use_docblock_property_types = false; /** * Whether or not to throw an exception on first error * * @var bool */ public $throw_exception = false; /** * Whether or not to load Xdebug stub * * @var bool|null */ public $load_xdebug_stub = null; /** * The directory to store PHP Parser (and other) caches * * @var string|null */ public $cache_directory; /** * The directory to store all Psalm project caches * * @var string|null */ public $global_cache_directory; /** * Path to the autoader * * @var string|null */ public $autoloader; /** * @var ProjectFileFilter|null */ protected $project_files; /** * @var ProjectFileFilter|null */ protected $extra_files; /** * The base directory of this config file * * @var string */ public $base_dir; /** * The PHP version to assume as declared in the config file * * @var string|null */ private $configured_php_version; /** * @var array<int, string> */ private $file_extensions = ['php']; /** * @var array<string, class-string<FileScanner>> */ private $filetype_scanners = []; /** * @var array<string, class-string<FileAnalyzer>> */ private $filetype_analyzers = []; /** * @var array<string, string> */ private $filetype_scanner_paths = []; /** * @var array<string, string> */ private $filetype_analyzer_paths = []; /** * @var array<string, IssueHandler> */ private $issue_handlers = []; /** * @var array<int, string> */ private $mock_classes = []; /** * @var array<string, string> */ private $preloaded_stub_files = []; /** * @var array<string, string> */ private $stub_files = []; /** * @var bool */ public $hide_external_errors = false; /** @var bool */ public $allow_includes = true; /** @var 1|2|3|4|5|6|7|8 */ public $level = 1; /** * @var ?bool */ public $show_mixed_issues = null; /** @var bool */ public $strict_binary_operands = false; /** * @var bool */ public $remember_property_assignments_after_call = true; /** @var bool */ public $use_igbinary = false; /** * @var bool */ public $allow_phpstorm_generics = false; /** * @var bool */ public $allow_string_standin_for_class = false; /** * @var bool */ public $use_phpdoc_method_without_magic_or_parent = false; /** * @var bool */ public $use_phpdoc_property_without_magic_or_parent = false; /** * @var bool */ public $skip_checks_on_unresolvable_includes = false; /** * @var bool */ public $seal_all_methods = false; /** * @var bool */ public $memoize_method_calls = false; /** * @var bool */ public $hoist_constants = false; /** * @var bool */ public $add_param_default_to_docblock_type = false; /** * @var bool */ public $check_for_throws_docblock = false; /** * @var bool */ public $check_for_throws_in_global_scope = false; /** * @var bool */ public $ignore_internal_falsable_issues = true; /** * @var bool */ public $ignore_internal_nullable_issues = true; /** * @var array<string, bool> */ public $ignored_exceptions = []; /** * @var array<string, bool> */ public $ignored_exceptions_in_global_scope = []; /** * @var array<string, bool> */ public $ignored_exceptions_and_descendants = []; /** * @var array<string, bool> */ public $ignored_exceptions_and_descendants_in_global_scope = []; /** * @var bool */ public $infer_property_types_from_constructor = true; /** * @var bool */ public $ensure_array_string_offsets_exist = false; /** * @var bool */ public $ensure_array_int_offsets_exist = false; /** * @var array<lowercase-string, bool> */ public $forbidden_functions = []; /** * @var bool */ public $forbid_echo = false; /** * @var bool */ public $find_unused_code = false; /** * @var bool */ public $find_unused_variables = false; /** * @var bool */ public $find_unused_psalm_suppress = false; /** * @var bool */ public $run_taint_analysis = false; /** @var bool */ public $use_phpstorm_meta_path = true; /** * @var bool */ public $resolve_from_config_file = true; /** * @var bool */ public $restrict_return_types = false; /** * @var bool */ public $limit_method_complexity = false; /** * @var int */ public $max_graph_size = 200; /** * @var int */ public $max_avg_path_length = 70; /** * @var string[] */ public $plugin_paths = []; /** * @var array<array{class:string,config:?SimpleXMLElement}> */ private $plugin_classes = []; /** * @var bool */ public $allow_internal_named_arg_calls = true; /** * @var bool */ public $allow_named_arg_calls = true; /** @var array<string, mixed> */ private $predefined_constants = []; /** @var array<callable-string, bool> */ private $predefined_functions = []; /** @var ClassLoader|null */ private $composer_class_loader; /** * Custom functions that always exit * * @var array<lowercase-string, bool> */ public $exit_functions = []; /** * @var string */ public $hash = ''; /** @var string|null */ public $error_baseline = null; /** * @var bool */ public $include_php_versions_in_error_baseline = false; /** @var string */ public $shepherd_host = 'shepherd.dev'; /** * @var array<string, string> */ public $globals = []; /** * @var int */ public $max_string_length = 1000; /** @var ?IncludeCollector */ private $include_collector; /** * @var TaintAnalysisFileFilter|null */ protected $taint_analysis_ignored_files; /** * @var bool whether to emit a backtrace of emitted issues to stderr */ public $debug_emitted_issues = false; /** * @var bool */ private $report_info = true; /** * @var EventDispatcher */ public $eventDispatcher; /** @var list<ConfigIssue> */ public $config_issues = []; /** * @var 'default'|'never'|'always' */ public $trigger_error_exits = 'default'; protected function __construct() { self::$instance = $this; $this->eventDispatcher = new EventDispatcher(); } /** * Gets a Config object from an XML file. * * Searches up a folder hierarchy for the most immediate config. * * @throws ConfigException if a config path is not found * */ public static function getConfigForPath(string $path, string $current_dir): Config { $config_path = self::locateConfigFile($path); if (!$config_path) { throw new ConfigNotFoundException('Config not found for path ' . $path); } return self::loadFromXMLFile($config_path, $current_dir); } /** * Searches up a folder hierarchy for the most immediate config. * * @throws ConfigException * */ public static function locateConfigFile(string $path): ?string { $dir_path = realpath($path); if ($dir_path === false) { throw new ConfigNotFoundException('Config not found for path ' . $path); } if (!is_dir($dir_path)) { $dir_path = dirname($dir_path); } do { $maybe_path = $dir_path . DIRECTORY_SEPARATOR . Config::DEFAULT_FILE_NAME; if (file_exists($maybe_path) || file_exists($maybe_path .= '.dist')) { return $maybe_path; } $dir_path = dirname($dir_path); } while (dirname($dir_path) !== $dir_path); return null; } /** * Creates a new config object from the file */ public static function loadFromXMLFile(string $file_path, string $current_dir): Config { $file_contents = file_get_contents($file_path); $base_dir = dirname($file_path) . DIRECTORY_SEPARATOR; if ($file_contents === false) { throw new \InvalidArgumentException('Cannot open ' . $file_path); } try { $config = self::loadFromXML($base_dir, $file_contents, $current_dir, $file_path); $config->hash = sha1($file_contents . \PSALM_VERSION); } catch (ConfigException $e) { throw new ConfigException( 'Problem parsing ' . $file_path . ":\n" . ' ' . $e->getMessage() ); } return $config; } /** * Creates a new config object from an XML string * @param string|null $current_dir Current working directory, if different to $base_dir * * @throws ConfigException */ public static function loadFromXML( string $base_dir, string $file_contents, ?string $current_dir = null, ?string $file_path = null ): Config { if ($current_dir === null) { $current_dir = $base_dir; } self::validateXmlConfig($base_dir, $file_contents); return self::fromXmlAndPaths($base_dir, $file_contents, $current_dir, $file_path); } private static function loadDomDocument(string $base_dir, string $file_contents): DOMDocument { $dom_document = new DOMDocument(); // there's no obvious way to set xml:base for a document when loading it from string // so instead we're changing the current directory instead to be able to process XIncludes $oldpwd = getcwd(); chdir($base_dir); $dom_document->loadXML($file_contents, LIBXML_NONET); $dom_document->xinclude(LIBXML_NONET); chdir($oldpwd); return $dom_document; } /** * @throws ConfigException */ private static function validateXmlConfig(string $base_dir, string $file_contents): void { $schema_path = dirname(__DIR__, 2). '/config.xsd'; if (!file_exists($schema_path)) { throw new ConfigException('Cannot locate config schema'); } $dom_document = self::loadDomDocument($base_dir, $file_contents); $psalm_nodes = $dom_document->getElementsByTagName('psalm'); /** @var \DomElement|null */ $psalm_node = $psalm_nodes->item(0); if (!$psalm_node) { throw new ConfigException( 'Missing psalm node' ); } if (!$psalm_node->hasAttribute('xmlns')) { $psalm_node->setAttribute('xmlns', 'https://getpsalm.org/schema/config'); $old_dom_document = $dom_document; $dom_document = self::loadDomDocument($base_dir, $old_dom_document->saveXML()); } // Enable user error handling libxml_use_internal_errors(true); if (!$dom_document->schemaValidate($schema_path)) { $errors = libxml_get_errors(); foreach ($errors as $error) { if ($error->level === LIBXML_ERR_FATAL || $error->level === LIBXML_ERR_ERROR) { throw new ConfigException( 'Error on line ' . $error->line . ":\n" . ' ' . $error->message ); } } libxml_clear_errors(); } } /** * @param positive-int $line_number 1-based line number * @return int 0-based byte offset * @throws OutOfBoundsException */ private static function lineNumberToByteOffset(string $string, int $line_number): int { if ($line_number === 1) { return 0; } $offset = 0; for ($i = 0; $i < $line_number - 1; $i++) { $newline_offset = strpos($string, "\n", $offset); if (false === $newline_offset) { throw new OutOfBoundsException( 'Line ' . $line_number . ' is not found in a string with ' . ($i + 1) . ' lines' ); } $offset = $newline_offset + 1; } if ($offset > strlen($string)) { throw new OutOfBoundsException('Line ' . $line_number . ' is not found'); } return $offset; } private static function processConfigDeprecations( self $config, DOMDocument $dom_document, string $file_contents, string $config_path ): void { // Attributes to be removed in Psalm 5 $deprecated_attributes = [ 'allowCoercionFromStringToClassConst' ]; $config->config_issues = []; $attributes = $dom_document->getElementsByTagName('psalm')->item(0)->attributes; foreach ($attributes as $attribute) { if (in_array($attribute->name, $deprecated_attributes, true)) { $line = $attribute->getLineNo(); assert($line > 0); // getLineNo() always returns non-zero for nodes loaded from file $offset = self::lineNumberToByteOffset($file_contents, $line); $attribute_start = strrpos($file_contents, $attribute->name, $offset - strlen($file_contents)) ?: 0; $attribute_end = $attribute_start + strlen($attribute->name) - 1; $config->config_issues[] = new ConfigIssue( 'Attribute "' . $attribute->name . '" is deprecated ' . 'and is going to be removed in the next major version', new CodeLocation\Raw( $file_contents, $config_path, basename($config_path), $attribute_start, $attribute_end ) ); } } } /** * @psalm-suppress MixedMethodCall * @psalm-suppress MixedAssignment * @psalm-suppress MixedOperand * @psalm-suppress MixedArgument * @psalm-suppress MixedPropertyFetch * * @throws ConfigException */ private static function fromXmlAndPaths( string $base_dir, string $file_contents, string $current_dir, ?string $config_path ): self { $config = new static(); $dom_document = self::loadDomDocument($base_dir, $file_contents); if (null !== $config_path) { self::processConfigDeprecations( $config, $dom_document, $file_contents, $config_path ); } $config_xml = simplexml_import_dom($dom_document); $booleanAttributes = [ 'useDocblockTypes' => 'use_docblock_types', 'useDocblockPropertyTypes' => 'use_docblock_property_types', 'throwExceptionOnError' => 'throw_exception', 'hideExternalErrors' => 'hide_external_errors', 'resolveFromConfigFile' => 'resolve_from_config_file', 'allowFileIncludes' => 'allow_includes', 'strictBinaryOperands' => 'strict_binary_operands', 'rememberPropertyAssignmentsAfterCall' => 'remember_property_assignments_after_call', 'allowPhpStormGenerics' => 'allow_phpstorm_generics', 'allowStringToStandInForClass' => 'allow_string_standin_for_class', 'usePhpDocMethodsWithoutMagicCall' => 'use_phpdoc_method_without_magic_or_parent', 'usePhpDocPropertiesWithoutMagicCall' => 'use_phpdoc_property_without_magic_or_parent', 'memoizeMethodCallResults' => 'memoize_method_calls', 'hoistConstants' => 'hoist_constants', 'addParamDefaultToDocblockType' => 'add_param_default_to_docblock_type', 'checkForThrowsDocblock' => 'check_for_throws_docblock', 'checkForThrowsInGlobalScope' => 'check_for_throws_in_global_scope', 'forbidEcho' => 'forbid_echo', 'ignoreInternalFunctionFalseReturn' => 'ignore_internal_falsable_issues', 'ignoreInternalFunctionNullReturn' => 'ignore_internal_nullable_issues', 'includePhpVersionsInErrorBaseline' => 'include_php_versions_in_error_baseline', 'loadXdebugStub' => 'load_xdebug_stub', 'ensureArrayStringOffsetsExist' => 'ensure_array_string_offsets_exist', 'ensureArrayIntOffsetsExist' => 'ensure_array_int_offsets_exist', 'reportMixedIssues' => 'show_mixed_issues', 'skipChecksOnUnresolvableIncludes' => 'skip_checks_on_unresolvable_includes', 'sealAllMethods' => 'seal_all_methods', 'runTaintAnalysis' => 'run_taint_analysis', 'usePhpStormMetaPath' => 'use_phpstorm_meta_path', 'allowInternalNamedArgumentsCalls' => 'allow_internal_named_arg_calls', 'allowNamedArgumentCalls' => 'allow_named_arg_calls', 'findUnusedPsalmSuppress' => 'find_unused_psalm_suppress', 'reportInfo' => 'report_info', 'restrictReturnTypes' => 'restrict_return_types', 'limitMethodComplexity' => 'limit_method_complexity', 'triggerErrorExits' => 'trigger_error_exits', ]; foreach ($booleanAttributes as $xmlName => $internalName) { if (isset($config_xml[$xmlName])) { $attribute_text = (string) $config_xml[$xmlName]; $config->setBooleanAttribute( $internalName, $attribute_text === 'true' || $attribute_text === '1' ); } } if ($config->resolve_from_config_file) { $config->base_dir = $base_dir; } else { $config->base_dir = $current_dir; $base_dir = $current_dir; } if (isset($config_xml['phpVersion'])) { $config->configured_php_version = (string) $config_xml['phpVersion']; } if (isset($config_xml['autoloader'])) { $autoloader_path = $config->base_dir . DIRECTORY_SEPARATOR . $config_xml['autoloader']; if (!file_exists($autoloader_path)) { throw new ConfigException('Cannot locate autoloader'); } $config->autoloader = realpath($autoloader_path); } if (isset($config_xml['cacheDirectory'])) { $config->cache_directory = (string)$config_xml['cacheDirectory']; } elseif ($user_cache_dir = (new Xdg())->getHomeCacheDir()) { $config->cache_directory = $user_cache_dir . '/psalm'; } else { $config->cache_directory = sys_get_temp_dir() . '/psalm'; } $config->global_cache_directory = $config->cache_directory; $config->cache_directory .= DIRECTORY_SEPARATOR . sha1($base_dir); $cwd = null; if ($config->resolve_from_config_file) { $cwd = getcwd(); chdir($config->base_dir); } if (is_dir($config->cache_directory) === false && @mkdir($config->cache_directory, 0777, true) === false) { trigger_error('Could not create cache directory: ' . $config->cache_directory, E_USER_ERROR); } if ($cwd) { chdir($cwd); } if (isset($config_xml['serializer'])) { $attribute_text = (string) $config_xml['serializer']; $config->use_igbinary = $attribute_text === 'igbinary'; } elseif ($igbinary_version = phpversion('igbinary')) { $config->use_igbinary = version_compare($igbinary_version, '2.0.5') >= 0; } if (isset($config_xml['findUnusedCode'])) { $attribute_text = (string) $config_xml['findUnusedCode']; $config->find_unused_code = $attribute_text === 'true' || $attribute_text === '1'; $config->find_unused_variables = $config->find_unused_code; } if (isset($config_xml['findUnusedVariablesAndParams'])) { $attribute_text = (string) $config_xml['findUnusedVariablesAndParams']; $config->find_unused_variables = $attribute_text === 'true' || $attribute_text === '1'; } if (isset($config_xml['errorLevel'])) { $attribute_text = (int) $config_xml['errorLevel']; if (!in_array($attribute_text, [1, 2, 3, 4, 5, 6, 7, 8], true)) { throw new Exception\ConfigException( 'Invalid error level ' . $config_xml['errorLevel'] ); } $config->level = $attribute_text; } elseif (isset($config_xml['totallyTyped'])) { $totally_typed = (string) $config_xml['totallyTyped']; if ($totally_typed === 'true' || $totally_typed === '1') { $config->level = 1; } else { $config->level = 2; if ($config->show_mixed_issues === null) { $config->show_mixed_issues = false; } } } else { $config->level = 2; } // turn on unused variable detection in level 1 if (!isset($config_xml['findUnusedCode']) && !isset($config_xml['findUnusedVariablesAndParams']) && $config->level === 1 && $config->show_mixed_issues !== false ) { $config->find_unused_variables = true; } if (isset($config_xml['errorBaseline'])) { $attribute_text = (string) $config_xml['errorBaseline']; $config->error_baseline = $attribute_text; } if (isset($config_xml['maxStringLength'])) { $attribute_text = intval($config_xml['maxStringLength']); $config->max_string_length = $attribute_text; } if (isset($config_xml['inferPropertyTypesFromConstructor'])) { $attribute_text = (string) $config_xml['inferPropertyTypesFromConstructor']; $config->infer_property_types_from_constructor = $attribute_text === 'true' || $attribute_text === '1'; } if (isset($config_xml->projectFiles)) { $config->project_files = ProjectFileFilter::loadFromXMLElement($config_xml->projectFiles, $base_dir, true); } if (isset($config_xml->extraFiles)) { $config->extra_files = ProjectFileFilter::loadFromXMLElement($config_xml->extraFiles, $base_dir, true); } if (isset($config_xml->taintAnalysis->ignoreFiles)) { $config->taint_analysis_ignored_files = TaintAnalysisFileFilter::loadFromXMLElement( $config_xml->taintAnalysis->ignoreFiles, $base_dir, false ); } if (isset($config_xml->fileExtensions)) { $config->file_extensions = []; $config->loadFileExtensions($config_xml->fileExtensions->extension); } if (isset($config_xml->mockClasses) && isset($config_xml->mockClasses->class)) { /** @var \SimpleXMLElement $mock_class */ foreach ($config_xml->mockClasses->class as $mock_class) { $config->mock_classes[] = strtolower((string)$mock_class['name']); } } if (isset($config_xml->universalObjectCrates) && isset($config_xml->universalObjectCrates->class)) { /** @var \SimpleXMLElement $universal_object_crate */ foreach ($config_xml->universalObjectCrates->class as $universal_object_crate) { /** @var string $classString */ $classString = $universal_object_crate['name']; $config->addUniversalObjectCrate($classString); } } if (isset($config_xml->ignoreExceptions)) { if (isset($config_xml->ignoreExceptions->class)) { /** @var \SimpleXMLElement $exception_class */ foreach ($config_xml->ignoreExceptions->class as $exception_class) { $exception_name = (string) $exception_class['name']; $global_attribute_text = (string) $exception_class['onlyGlobalScope']; if ($global_attribute_text !== 'true' && $global_attribute_text !== '1') { $config->ignored_exceptions[$exception_name] = true; } $config->ignored_exceptions_in_global_scope[$exception_name] = true; } } if (isset($config_xml->ignoreExceptions->classAndDescendants)) { /** @var \SimpleXMLElement $exception_class */ foreach ($config_xml->ignoreExceptions->classAndDescendants as $exception_class) { $exception_name = (string) $exception_class['name']; $global_attribute_text = (string) $exception_class['onlyGlobalScope']; if ($global_attribute_text !== 'true' && $global_attribute_text !== '1') { $config->ignored_exceptions_and_descendants[$exception_name] = true; } $config->ignored_exceptions_and_descendants_in_global_scope[$exception_name] = true; } } } if (isset($config_xml->forbiddenFunctions) && isset($config_xml->forbiddenFunctions->function)) { /** @var \SimpleXMLElement $forbidden_function */ foreach ($config_xml->forbiddenFunctions->function as $forbidden_function) { $config->forbidden_functions[strtolower((string) $forbidden_function['name'])] = true; } } if (isset($config_xml->exitFunctions) && isset($config_xml->exitFunctions->function)) { /** @var \SimpleXMLElement $exit_function */ foreach ($config_xml->exitFunctions->function as $exit_function) { $config->exit_functions[strtolower((string) $exit_function['name'])] = true; } } if (isset($config_xml->stubs) && isset($config_xml->stubs->file)) { /** @var \SimpleXMLElement $stub_file */ foreach ($config_xml->stubs->file as $stub_file) { $stub_file_name = (string)$stub_file['name']; if (!Path::isAbsolute($stub_file_name)) { $stub_file_name = $config->base_dir . DIRECTORY_SEPARATOR . $stub_file_name; } $file_path = realpath($stub_file_name); if (!$file_path) { throw new Exception\ConfigException( 'Cannot resolve stubfile path ' . rtrim($config->base_dir, DIRECTORY_SEPARATOR) . DIRECTORY_SEPARATOR . $stub_file['name'] ); } if (isset($stub_file['preloadClasses'])) { $preload_classes = (string)$stub_file['preloadClasses']; if ($preload_classes === 'true' || $preload_classes === '1') { $config->addPreloadedStubFile($file_path); } else { $config->addStubFile($file_path); } } else { $config->addStubFile($file_path); } } } // this plugin loading system borrows heavily from etsy/phan if (isset($config_xml->plugins)) { if (isset($config_xml->plugins->plugin)) { /** @var \SimpleXMLElement $plugin */ foreach ($config_xml->plugins->plugin as $plugin) { $plugin_file_name = (string) $plugin['filename']; $path = Path::isAbsolute($plugin_file_name) ? $plugin_file_name : $config->base_dir . $plugin_file_name; $config->addPluginPath($path); } } if (isset($config_xml->plugins->pluginClass)) { /** @var \SimpleXMLElement $plugin */ foreach ($config_xml->plugins->pluginClass as $plugin) { $plugin_class_name = $plugin['class']; // any child elements are used as plugin configuration $plugin_config = null; if ($plugin->count()) { $plugin_config = $plugin->children(); } $config->addPluginClass((string) $plugin_class_name, $plugin_config); } } } if (isset($config_xml->issueHandlers)) { /** @var \SimpleXMLElement $issue_handler */ foreach ($config_xml->issueHandlers->children() as $key => $issue_handler) { if ($key === 'PluginIssue') { $custom_class_name = (string) $issue_handler['name']; /** @var string $key */ $config->issue_handlers[$custom_class_name] = IssueHandler::loadFromXMLElement( $issue_handler, $base_dir ); } else { /** @var string $key */ $config->issue_handlers[$key] = IssueHandler::loadFromXMLElement( $issue_handler, $base_dir ); } } } if (isset($config_xml->globals) && isset($config_xml->globals->var)) { /** @var \SimpleXMLElement $var */ foreach ($config_xml->globals->var as $var) { $config->globals['$' . (string) $var['name']] = (string) $var['type']; } } return $config; } public static function getInstance(): Config { if (self::$instance) { return self::$instance; } throw new \UnexpectedValueException('No config initialized'); } public function setComposerClassLoader(?ClassLoader $loader = null): void { $this->composer_class_loader = $loader; } public function setCustomErrorLevel(string $issue_key, string $error_level): void { $this->issue_handlers[$issue_key] = new IssueHandler(); $this->issue_handlers[$issue_key]->setErrorLevel($error_level); } /** * @throws ConfigException if a Config file could not be found * */ private function loadFileExtensions(SimpleXMLElement $extensions): void { foreach ($extensions as $extension) { $extension_name = preg_replace('/^\.?/', '', (string)$extension['name']); $this->file_extensions[] = $extension_name; if (isset($extension['scanner'])) { $path = $this->base_dir . (string)$extension['scanner']; if (!file_exists($path)) { throw new Exception\ConfigException('Error parsing config: cannot find file ' . $path); } $this->filetype_scanner_paths[$extension_name] = $path; } if (isset($extension['checker'])) { $path = $this->base_dir . (string)$extension['checker']; if (!file_exists($path)) { throw new Exception\ConfigException('Error parsing config: cannot find file ' . $path); } $this->filetype_analyzer_paths[$extension_name] = $path; } } } public function addPluginPath(string $path): void { if (!file_exists($path)) { throw new \InvalidArgumentException('Cannot find plugin file ' . $path); } $this->plugin_paths[] = $path; } public function addPluginClass(string $class_name, ?SimpleXMLElement $plugin_config = null): void { $this->plugin_classes[] = ['class' => $class_name, 'config' => $plugin_config]; } /** @return array<array{class:string, config:?SimpleXMLElement}> */ public function getPluginClasses(): array { return $this->plugin_classes; } /** * Initialises all the plugins (done once the config is fully loaded) * * @psalm-suppress MixedAssignment */ public function initializePlugins(ProjectAnalyzer $project_analyzer): void { $codebase = $project_analyzer->getCodebase(); $project_analyzer->progress->debug('Initializing plugins...' . PHP_EOL); $socket = new PluginRegistrationSocket($this, $codebase); // initialize plugin classes earlier to let them hook into subsequent load process foreach ($this->plugin_classes as $plugin_class_entry) { $plugin_class_name = $plugin_class_entry['class']; $plugin_config = $plugin_class_entry['config']; try { // Below will attempt to load plugins from the project directory first. // Failing that, it will use registered autoload chain, which will load // plugins from Psalm directory or phar file. If that fails as well, it // will fall back to project autoloader. It may seem that the last step // will always fail, but it's only true if project uses Composer autoloader if ($this->composer_class_loader && ($plugin_class_path = $this->composer_class_loader->findFile($plugin_class_name)) ) { $project_analyzer->progress->debug( 'Loading plugin ' . $plugin_class_name . ' via require' . PHP_EOL ); self::requirePath($plugin_class_path); } else { if (!class_exists($plugin_class_name, true)) { throw new \UnexpectedValueException($plugin_class_name . ' is not a known class'); } } /** * @psalm-suppress InvalidStringClass * * @var Plugin\PluginEntryPointInterface */ $plugin_object = new $plugin_class_name; $plugin_object($socket, $plugin_config); } catch (\Throwable $e) { throw new ConfigException('Failed to load plugin ' . $plugin_class_name, 0, $e); } $project_analyzer->progress->debug('Loaded plugin ' . $plugin_class_name . ' successfully' . PHP_EOL); } foreach ($this->filetype_scanner_paths as $extension => $path) { $fq_class_name = $this->getPluginClassForPath( $codebase, $path, FileScanner::class ); self::requirePath($path); $this->filetype_scanners[$extension] = $fq_class_name; } foreach ($this->filetype_analyzer_paths as $extension => $path) { $fq_class_name = $this->getPluginClassForPath( $codebase, $path, FileAnalyzer::class ); self::requirePath($path); $this->filetype_analyzers[$extension] = $fq_class_name; } foreach ($this->plugin_paths as $path) { try { $plugin_object = new FileBasedPluginAdapter($path, $this, $codebase); $plugin_object($socket); } catch (\Throwable $e) { throw new ConfigException('Failed to load plugin ' . $path, 0, $e); } } // populate additional aspects after plugins have been initialized foreach ($socket->getAdditionalFileExtensions() as $fileExtension) { $this->file_extensions[] = $fileExtension; } foreach ($socket->getAdditionalFileTypeScanners() as $extension => $className) { $this->filetype_scanners[$extension] = $className; } foreach ($socket->getAdditionalFileTypeAnalyzers() as $extension => $className) { $this->filetype_analyzers[$extension] = $className; } new \Psalm\Internal\Provider\AddRemoveTaints\HtmlFunctionTainter(); $socket->registerHooksFromClass(\Psalm\Internal\Provider\AddRemoveTaints\HtmlFunctionTainter::class); } private static function requirePath(string $path): void { /** @psalm-suppress UnresolvableInclude */ require_once($path); } /** * @template T * * @param T::class $must_extend * * @return class-string<T> */ private function getPluginClassForPath(Codebase $codebase, string $path, string $must_extend): string { $file_storage = $codebase->createFileStorageForPath($path); $file_to_scan = new FileScanner($path, $this->shortenFileName($path), true); $file_to_scan->scan( $codebase, $file_storage ); $declared_classes = ClassLikeAnalyzer::getClassesForFile($codebase, $path); if (!count($declared_classes)) { throw new \InvalidArgumentException( 'Plugins must have at least one class in the file - ' . $path . ' has ' . count($declared_classes) ); } $fq_class_name = reset($declared_classes); if (!$codebase->classlikes->classExtends( $fq_class_name, $must_extend ) ) { throw new \InvalidArgumentException( 'This plugin must extend ' . $must_extend . ' - ' . $path . ' does not' ); } /** * @var class-string<T> */ return $fq_class_name; } public function shortenFileName(string $to): string { if (!is_file($to)) { return preg_replace('/^' . preg_quote($this->base_dir, '/') . '/', '', $to); } $from = $this->base_dir; // some compatibility fixes for Windows paths $from = is_dir($from) ? rtrim($from, '\/') . '/' : $from; $to = is_dir($to) ? rtrim($to, '\/') . '/' : $to; $from = str_replace('\\', '/', $from); $to = str_replace('\\', '/', $to); $from = explode('/', $from); $to = explode('/', $to); $relPath = $to; foreach ($from as $depth => $dir) { // find first non-matching dir if ($dir === $to[$depth]) { // ignore this directory array_shift($relPath); } else { // get number of remaining dirs to $from $remaining = count($from) - $depth; if ($remaining > 1) { // add traversals up to first matching dir $padLength = (count($relPath) + $remaining - 1) * -1; $relPath = array_pad($relPath, $padLength, '..'); break; } } } return implode('/', $relPath); } public function reportIssueInFile(string $issue_type, string $file_path): bool { if (($this->show_mixed_issues === false || $this->level > 2) && in_array($issue_type, self::MIXED_ISSUES, true) ) { return false; } if ($this->mustBeIgnored($file_path)) { return false; } $dependent_files = [strtolower($file_path) => $file_path]; $project_analyzer = ProjectAnalyzer::getInstance(); $codebase = $project_analyzer->getCodebase(); if (!$this->hide_external_errors) { try { $file_storage = $codebase->file_storage_provider->get($file_path); $dependent_files += $file_storage->required_by_file_paths; } catch (\InvalidArgumentException $e) { // do nothing } } $any_file_path_matched = false; foreach ($dependent_files as $dependent_file_path) { if (((!$project_analyzer->full_run && $codebase->analyzer->canReportIssues($dependent_file_path)) || $project_analyzer->canReportIssues($dependent_file_path)) && ($file_path === $dependent_file_path || !$this->mustBeIgnored($dependent_file_path)) ) { $any_file_path_matched = true; break; } } if (!$any_file_path_matched) { return false; } if ($this->getReportingLevelForFile($issue_type, $file_path) === self::REPORT_SUPPRESS) { return false; } return true; } public function isInProjectDirs(string $file_path): bool { return $this->project_files && $this->project_files->allows($file_path); } public function isInExtraDirs(string $file_path): bool { return $this->extra_files && $this->extra_files->allows($file_path); } public function mustBeIgnored(string $file_path): bool { return $this->project_files && $this->project_files->forbids($file_path); } public function trackTaintsInPath(string $file_path): bool { return !$this->taint_analysis_ignored_files || $this->taint_analysis_ignored_files->allows($file_path); } public function getReportingLevelForIssue(CodeIssue $e): string { $fqcn_parts = explode('\\', get_class($e)); $issue_type = array_pop($fqcn_parts); $reporting_level = null; if ($e instanceof ClassIssue) { $reporting_level = $this->getReportingLevelForClass($issue_type, $e->fq_classlike_name); } elseif ($e instanceof MethodIssue) { $reporting_level = $this->getReportingLevelForMethod($issue_type, $e->method_id); } elseif ($e instanceof FunctionIssue) { $reporting_level = $this->getReportingLevelForFunction($issue_type, $e->function_id); } elseif ($e instanceof PropertyIssue) { $reporting_level = $this->getReportingLevelForProperty($issue_type, $e->property_id); } elseif ($e instanceof ArgumentIssue && $e->function_id) { $reporting_level = $this->getReportingLevelForArgument($issue_type, $e->function_id); } elseif ($e instanceof VariableIssue) { $reporting_level = $this->getReportingLevelForVariable($issue_type, $e->var_name); } if ($reporting_level === null) { $reporting_level = $this->getReportingLevelForFile($issue_type, $e->getFilePath()); } if (!$this->report_info && $reporting_level === self::REPORT_INFO) { $reporting_level = self::REPORT_SUPPRESS; } $parent_issue_type = self::getParentIssueType($issue_type); if ($parent_issue_type && $reporting_level === Config::REPORT_ERROR) { $parent_reporting_level = $this->getReportingLevelForFile($parent_issue_type, $e->getFilePath()); if ($parent_reporting_level !== $reporting_level) { return $parent_reporting_level; } } return $reporting_level; } /** * @psalm-pure */ public static function getParentIssueType(string $issue_type): ?string { if ($issue_type === 'PossiblyUndefinedIntArrayOffset' || $issue_type === 'PossiblyUndefinedStringArrayOffset' ) { return 'PossiblyUndefinedArrayOffset'; } if ($issue_type === 'PossiblyNullReference') { return 'NullReference'; } if ($issue_type === 'PossiblyFalseReference') { return null; } if ($issue_type === 'PossiblyUndefinedArrayOffset') { return null; } if (strpos($issue_type, 'Possibly') === 0) { $stripped_issue_type = preg_replace('/^Possibly(False|Null)?/', '', $issue_type); if (strpos($stripped_issue_type, 'Invalid') === false && strpos($stripped_issue_type, 'Un') !== 0) { $stripped_issue_type = 'Invalid' . $stripped_issue_type; } return $stripped_issue_type; } if (strpos($issue_type, 'Tainted') === 0) { return 'TaintedInput'; } if (preg_match('/^(False|Null)[A-Z]/', $issue_type) && !strpos($issue_type, 'Reference')) { return preg_replace('/^(False|Null)/', 'Invalid', $issue_type); } if ($issue_type === 'UndefinedInterfaceMethod') { return 'UndefinedMethod'; } if ($issue_type === 'UndefinedMagicPropertyFetch') { return 'UndefinedPropertyFetch'; } if ($issue_type === 'UndefinedMagicPropertyAssignment') { return 'UndefinedPropertyAssignment'; } if ($issue_type === 'UndefinedMagicMethod') { return 'UndefinedMethod'; } if ($issue_type === 'PossibleRawObjectIteration') { return 'RawObjectIteration'; } if ($issue_type === 'UninitializedProperty') { return 'PropertyNotSetInConstructor'; } if ($issue_type === 'InvalidDocblockParamName') { return 'InvalidDocblock'; } if ($issue_type === 'UnusedClosureParam') { return 'UnusedParam'; } if ($issue_type === 'UnusedConstructor') { return 'UnusedMethod'; } if ($issue_type === 'StringIncrement') { return 'InvalidOperand'; } if ($issue_type === 'InvalidLiteralArgument') { return 'InvalidArgument'; } if ($issue_type === 'RedundantConditionGivenDocblockType') { return 'RedundantCondition'; } if ($issue_type === 'RedundantCastGivenDocblockType') { return 'RedundantCast'; } if ($issue_type === 'TraitMethodSignatureMismatch') { return 'MethodSignatureMismatch'; } if ($issue_type === 'ImplementedParamTypeMismatch') { return 'MoreSpecificImplementedParamType'; } if ($issue_type === 'UndefinedDocblockClass') { return 'UndefinedClass'; } if ($issue_type === 'UnusedForeachValue') { return 'UnusedVariable'; } return null; } public function getReportingLevelForFile(string $issue_type, string $file_path): string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForFile($file_path); } // this string is replaced by scoper for Phars, so be careful $issue_class = 'Psalm\\Issue\\' . $issue_type; if (!class_exists($issue_class) || !is_a($issue_class, \Psalm\Issue\CodeIssue::class, true)) { return self::REPORT_ERROR; } /** @var int */ $issue_level = $issue_class::ERROR_LEVEL; if ($issue_level > 0 && $issue_level < $this->level) { return self::REPORT_INFO; } return self::REPORT_ERROR; } public function getReportingLevelForClass(string $issue_type, string $fq_classlike_name): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForClass($fq_classlike_name); } return null; } public function getReportingLevelForMethod(string $issue_type, string $method_id): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForMethod($method_id); } return null; } public function getReportingLevelForFunction(string $issue_type, string $function_id): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForFunction($function_id); } return null; } public function getReportingLevelForArgument(string $issue_type, string $function_id): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForArgument($function_id); } return null; } public function getReportingLevelForProperty(string $issue_type, string $property_id): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForProperty($property_id); } return null; } public function getReportingLevelForVariable(string $issue_type, string $var_name): ?string { if (isset($this->issue_handlers[$issue_type])) { return $this->issue_handlers[$issue_type]->getReportingLevelForVariable($var_name); } return null; } /** * @return array<string> */ public function getProjectDirectories(): array { if (!$this->project_files) { return []; } return $this->project_files->getDirectories(); } /** * @return array<string> */ public function getProjectFiles(): array { if (!$this->project_files) { return []; } return $this->project_files->getFiles(); } /** * @return array<string> */ public function getExtraDirectories(): array { if (!$this->extra_files) { return []; } return $this->extra_files->getDirectories(); } public function reportTypeStatsForFile(string $file_path): bool { return $this->project_files && $this->project_files->allows($file_path) && $this->project_files->reportTypeStats($file_path); } public function useStrictTypesForFile(string $file_path): bool { return $this->project_files && $this->project_files->useStrictTypes($file_path); } /** * @return array<int, string> */ public function getFileExtensions(): array { return $this->file_extensions; } /** * @return array<string, class-string<FileScanner>> */ public function getFiletypeScanners(): array { return $this->filetype_scanners; } /** * @return array<string, class-string<FileAnalyzer>> */ public function getFiletypeAnalyzers(): array { return $this->filetype_analyzers; } /** * @return array<int, string> */ public function getMockClasses(): array { return $this->mock_classes; } public function visitPreloadedStubFiles(Codebase $codebase, ?Progress $progress = null): void { if ($progress === null) { $progress = new VoidProgress(); } $core_generic_files = []; if (\PHP_VERSION_ID < 80000 && $codebase->php_major_version >= 8) { $stringable_path = dirname(__DIR__, 2) . '/stubs/Php80.phpstub'; if (!file_exists($stringable_path)) { throw new \UnexpectedValueException('Cannot locate PHP 8.0 classes'); } $core_generic_files[] = $stringable_path; } if (\PHP_VERSION_ID < 80100 && $codebase->php_major_version >= 8 && $codebase->php_minor_version >= 1) { $stringable_path = dirname(__DIR__, 2) . '/stubs/Php81.phpstub'; if (!file_exists($stringable_path)) { throw new \UnexpectedValueException('Cannot locate PHP 8.1 classes'); } $core_generic_files[] = $stringable_path; } $stub_files = array_merge($core_generic_files, $this->preloaded_stub_files); if (!$stub_files) { return; } foreach ($stub_files as $file_path) { $file_path = \str_replace(['/', '\\'], DIRECTORY_SEPARATOR, $file_path); $codebase->scanner->addFileToDeepScan($file_path); } $progress->debug('Registering preloaded stub files' . "\n"); $codebase->register_stub_files = true; $codebase->scanFiles(); $codebase->register_stub_files = false; $progress->debug('Finished registering preloaded stub files' . "\n"); } public function visitStubFiles(Codebase $codebase, ?Progress $progress = null): void { if ($progress === null) { $progress = new VoidProgress(); } $codebase->register_stub_files = true; $core_generic_files = [ dirname(__DIR__, 2) . '/stubs/CoreGenericFunctions.phpstub', dirname(__DIR__, 2) . '/stubs/CoreGenericClasses.phpstub', dirname(__DIR__, 2) . '/stubs/CoreGenericIterators.phpstub', dirname(__DIR__, 2) . '/stubs/CoreImmutableClasses.phpstub', dirname(__DIR__, 2) . '/stubs/DOM.phpstub', dirname(__DIR__, 2) . '/stubs/Reflection.phpstub', dirname(__DIR__, 2) . '/stubs/SPL.phpstub', ]; foreach ($core_generic_files as $stub_path) { if (!file_exists($stub_path)) { throw new \UnexpectedValueException('Cannot locate ' . $stub_path); } } if (\PHP_VERSION_ID >= 80000 && $codebase->php_major_version >= 8) { $stringable_path = dirname(__DIR__, 2) . '/stubs/Php80.phpstub'; if (!file_exists($stringable_path)) { throw new \UnexpectedValueException('Cannot locate PHP 8.0 classes'); } $core_generic_files[] = $stringable_path; } if (\PHP_VERSION_ID >= 80100 && $codebase->php_major_version >= 8 && $codebase->php_minor_version >= 1) { $stringable_path = dirname(__DIR__, 2) . '/stubs/Php81.phpstub'; if (!file_exists($stringable_path)) { throw new \UnexpectedValueException('Cannot locate PHP 8.1 classes'); } $core_generic_files[] = $stringable_path; } if (\extension_loaded('PDO')) { $ext_pdo_path = dirname(__DIR__, 2) . '/stubs/pdo.phpstub'; if (!file_exists($ext_pdo_path)) { throw new \UnexpectedValueException('Cannot locate pdo classes'); } $core_generic_files[] = $ext_pdo_path; } if (\extension_loaded('soap')) { $ext_soap_path = dirname(__DIR__, 2) . '/stubs/soap.phpstub'; if (!file_exists($ext_soap_path)) { throw new \UnexpectedValueException('Cannot locate soap classes'); } $core_generic_files[] = $ext_soap_path; } if (\extension_loaded('ds')) { $ext_ds_path = dirname(__DIR__, 2) . '/stubs/ext-ds.phpstub'; if (!file_exists($ext_ds_path)) { throw new \UnexpectedValueException('Cannot locate ext-ds classes'); } $core_generic_files[] = $ext_ds_path; } if (\extension_loaded('mongodb')) { $ext_mongodb_path = dirname(__DIR__, 2) . '/stubs/mongodb.phpstub'; if (!file_exists($ext_mongodb_path)) { throw new \UnexpectedValueException('Cannot locate mongodb classes'); } $core_generic_files[] = $ext_mongodb_path; } $stub_files = array_merge($core_generic_files, $this->stub_files); if ($this->load_xdebug_stub) { $xdebug_stub_path = dirname(__DIR__, 2) . '/stubs/Xdebug.phpstub'; if (!file_exists($xdebug_stub_path)) { throw new \UnexpectedValueException('Cannot locate Xdebug stub'); } $stub_files[] = $xdebug_stub_path; } $phpstorm_meta_path = $this->base_dir . DIRECTORY_SEPARATOR . '.phpstorm.meta.php'; if ($this->use_phpstorm_meta_path) { if (is_file($phpstorm_meta_path)) { $stub_files[] = $phpstorm_meta_path; } elseif (is_dir($phpstorm_meta_path)) { $phpstorm_meta_path = realpath($phpstorm_meta_path); foreach (glob($phpstorm_meta_path . '/*.meta.php', GLOB_NOSORT) as $glob) { if (is_file($glob) && realpath(dirname($glob)) === $phpstorm_meta_path) { $stub_files[] = $glob; } } } } foreach ($stub_files as $file_path) { $file_path = \str_replace(['/', '\\'], DIRECTORY_SEPARATOR, $file_path); $codebase->scanner->addFileToDeepScan($file_path); } $progress->debug('Registering stub files' . "\n"); $codebase->scanFiles(); $progress->debug('Finished registering stub files' . "\n"); $codebase->register_stub_files = false; } public function getCacheDirectory(): ?string { return $this->cache_directory; } public function getGlobalCacheDirectory(): ?string { return $this->global_cache_directory; } /** * @return array<string, mixed> */ public function getPredefinedConstants(): array { return $this->predefined_constants; } public function collectPredefinedConstants(): void { $this->predefined_constants = get_defined_constants(); } /** * @return array<callable-string, bool> */ public function getPredefinedFunctions(): array { return $this->predefined_functions; } public function collectPredefinedFunctions(): void { $defined_functions = get_defined_functions(); if (isset($defined_functions['user'])) { foreach ($defined_functions['user'] as $function_name) { $this->predefined_functions[$function_name] = true; } } if (isset($defined_functions['internal'])) { foreach ($defined_functions['internal'] as $function_name) { $this->predefined_functions[$function_name] = true; } } } public function setIncludeCollector(IncludeCollector $include_collector): void { $this->include_collector = $include_collector; } /** * @psalm-suppress MixedAssignment * @psalm-suppress MixedArrayAccess */ public function visitComposerAutoloadFiles(ProjectAnalyzer $project_analyzer, ?Progress $progress = null): void { if ($progress === null) { $progress = new VoidProgress(); } if (!$this->include_collector) { throw new LogicException("IncludeCollector should be set at this point"); } $vendor_autoload_files_path = $this->base_dir . DIRECTORY_SEPARATOR . 'vendor' . DIRECTORY_SEPARATOR . 'composer' . DIRECTORY_SEPARATOR . 'autoload_files.php'; if (file_exists($vendor_autoload_files_path)) { $this->include_collector->runAndCollect( function () use ($vendor_autoload_files_path) { /** * @psalm-suppress UnresolvableInclude * @var string[] */ return require $vendor_autoload_files_path; } ); } $codebase = $project_analyzer->getCodebase(); $this->collectPredefinedFunctions(); if ($this->autoloader) { // somee classes that we think are missing may not actually be missing // as they might be autoloadable once we require the autoloader below $codebase->classlikes->forgetMissingClassLikes(); $this->include_collector->runAndCollect( function () { // do this in a separate method so scope does not leak /** @psalm-suppress UnresolvableInclude */ require $this->autoloader; } ); } $this->collectPredefinedConstants(); $autoload_included_files = $this->include_collector->getFilteredIncludedFiles(); if ($autoload_included_files) { $codebase->register_autoload_files = true; $progress->debug('Registering autoloaded files' . "\n"); foreach ($autoload_included_files as $file_path) { $file_path = \str_replace(['/', '\\'], DIRECTORY_SEPARATOR, $file_path); $progress->debug(' ' . $file_path . "\n"); $codebase->scanner->addFileToDeepScan($file_path); } $codebase->scanner->scanFiles($codebase->classlikes); $progress->debug('Finished registering autoloaded files' . "\n"); $codebase->register_autoload_files = false; } } /** * @return string|false */ public function getComposerFilePathForClassLike(string $fq_classlike_name) { if (!$this->composer_class_loader) { return false; } return $this->composer_class_loader->findFile($fq_classlike_name); } public function getPotentialComposerFilePathForClassLike(string $class): ?string { if (!$this->composer_class_loader) { return null; } /** @var array<string, array<int, string>> */ $psr4_prefixes = $this->composer_class_loader->getPrefixesPsr4(); // PSR-4 lookup $logicalPathPsr4 = strtr($class, '\\', DIRECTORY_SEPARATOR) . '.php'; $candidate_path = null; $maxDepth = 0; $subPath = $class; while (false !== $lastPos = strrpos($subPath, '\\')) { $subPath = substr($subPath, 0, $lastPos); $search = $subPath . '\\'; if (isset($psr4_prefixes[$search])) { $depth = substr_count($search, '\\'); $pathEnd = DIRECTORY_SEPARATOR . substr($logicalPathPsr4, $lastPos + 1); foreach ($psr4_prefixes[$search] as $dir) { $dir = realpath($dir); if ($dir && $depth > $maxDepth && $this->isInProjectDirs($dir . DIRECTORY_SEPARATOR . 'testdummy.php') ) { $maxDepth = $depth; $candidate_path = realpath($dir) . $pathEnd; } } } } return $candidate_path; } public static function removeCacheDirectory(string $dir): void { if (is_dir($dir)) { $objects = scandir($dir, SCANDIR_SORT_NONE); if ($objects === false) { throw new \UnexpectedValueException('Not expecting false here'); } foreach ($objects as $object) { if ($object !== '.' && $object !== '..') { if (filetype($dir . '/' . $object) === 'dir') { self::removeCacheDirectory($dir . '/' . $object); } else { unlink($dir . '/' . $object); } } } reset($objects); rmdir($dir); } } public function setServerMode(): void { $this->cache_directory .= '-s'; } public function addStubFile(string $stub_file): void { $this->stub_files[$stub_file] = $stub_file; } public function hasStubFile(string $stub_file): bool { return isset($this->stub_files[$stub_file]); } /** * @return array<string, string> */ public function getStubFiles(): array { return $this->stub_files; } public function addPreloadedStubFile(string $stub_file): void { $this->preloaded_stub_files[$stub_file] = $stub_file; } public function getPhpVersion(): ?string { if (isset($this->configured_php_version)) { return $this->configured_php_version; } return $this->getPHPVersionFromComposerJson(); } private function setBooleanAttribute(string $name, bool $value): void { $this->$name = $value; } /** * @psalm-suppress MixedAssignment * @psalm-suppress MixedArrayAccess */ private function getPHPVersionFromComposerJson(): ?string { $composer_json_path = Composer::getJsonFilePath($this->base_dir); if (file_exists($composer_json_path)) { if (!$composer_json = json_decode(file_get_contents($composer_json_path), true)) { throw new \UnexpectedValueException('Invalid composer.json at ' . $composer_json_path); } $php_version = $composer_json['require']['php'] ?? null; if (\is_string($php_version)) { $version_parser = new VersionParser(); $constraint = $version_parser->parseConstraints($php_version); foreach (['5.4', '5.5', '5.6', '7.0', '7.1', '7.2', '7.3', '7.4', '8.0'] as $candidate) { if ($constraint->matches(new \Composer\Semver\Constraint\Constraint('<=', "$candidate.0.0-dev")) || $constraint->matches(new \Composer\Semver\Constraint\Constraint('<=', "$candidate.999")) ) { return $candidate; } } } } return null; } public function addUniversalObjectCrate(string $class): void { if (!class_exists($class, true)) { throw new \UnexpectedValueException($class . ' is not a known class'); } $this->universal_object_crates[] = $class; } /** * @return array<int, lowercase-string> */ public function getUniversalObjectCrates(): array { return array_map('strtolower', $this->universal_object_crates); } }
1
11,020
I saw a wrong reuse of the cache between a partial analysis of a single file and a full run where errors due to lack of context on the first partial run was reported on the full run. Shouldn't we use a hash that is composer.lock + psalm.xml + command line to be safe?
vimeo-psalm
php
@@ -3077,14 +3077,12 @@ defaultdict(<class 'list'>, {'col..., 'col...})] 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4 """ - from databricks.koalas.indexes import DatetimeIndex - axis = validate_axis(axis) if axis != 0: raise NotImplementedError("between_time currently only works for axis=0") - if not isinstance(self.index, DatetimeIndex): + if not isinstance(self.index, ks.DatetimeIndex): raise TypeError("Index must be DatetimeIndex") kdf = self.copy()
1
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A wrapper class for Spark DataFrame to behave similar to pandas DataFrame. """ from collections import OrderedDict, defaultdict, namedtuple from collections.abc import Mapping from distutils.version import LooseVersion import re import warnings import inspect import json import types from functools import partial, reduce import sys from itertools import zip_longest from typing import ( Any, Optional, List, Tuple, Union, Generic, TypeVar, Iterable, Iterator, Dict, Callable, cast, TYPE_CHECKING, ) import datetime import numpy as np import pandas as pd from pandas.api.types import is_list_like, is_dict_like, is_scalar from pandas.api.extensions import ExtensionDtype from pandas.tseries.frequencies import DateOffset, to_offset if TYPE_CHECKING: from pandas.io.formats.style import Styler if LooseVersion(pd.__version__) >= LooseVersion("0.24"): from pandas.core.dtypes.common import infer_dtype_from_object else: from pandas.core.dtypes.common import _get_dtype_from_object as infer_dtype_from_object from pandas.core.accessor import CachedAccessor from pandas.core.dtypes.inference import is_sequence import pyspark from pyspark import StorageLevel from pyspark import sql as spark from pyspark.sql import Column, DataFrame as SparkDataFrame, functions as F from pyspark.sql.functions import pandas_udf from pyspark.sql.types import ( BooleanType, DoubleType, FloatType, NumericType, StringType, StructType, StructField, ArrayType, ) from pyspark.sql.window import Window from databricks import koalas as ks # For running doctests and reference resolution in PyCharm. from databricks.koalas.accessors import KoalasFrameMethods from databricks.koalas.config import option_context, get_option from databricks.koalas.spark import functions as SF from databricks.koalas.spark.accessors import SparkFrameMethods, CachedSparkFrameMethods from databricks.koalas.utils import ( align_diff_frames, column_labels_level, combine_frames, default_session, is_name_like_tuple, is_name_like_value, is_testing, name_like_string, same_anchor, scol_for, validate_arguments_and_invoke_function, validate_axis, validate_bool_kwarg, validate_how, verify_temp_column_name, ) from databricks.koalas.spark.utils import as_nullable_spark_type, force_decimal_precision_scale from databricks.koalas.generic import Frame from databricks.koalas.internal import ( InternalFrame, HIDDEN_COLUMNS, NATURAL_ORDER_COLUMN_NAME, SPARK_INDEX_NAME_FORMAT, SPARK_DEFAULT_INDEX_NAME, SPARK_DEFAULT_SERIES_NAME, ) from databricks.koalas.missing.frame import _MissingPandasLikeDataFrame from databricks.koalas.ml import corr from databricks.koalas.typedef import ( as_spark_type, infer_return_type, spark_type_to_pandas_dtype, DataFrameType, SeriesType, Scalar, ScalarType, ) from databricks.koalas.plot import KoalasPlotAccessor if TYPE_CHECKING: from databricks.koalas.indexes import Index from databricks.koalas.series import Series # These regular expression patterns are complied and defined here to avoid to compile the same # pattern every time it is used in _repr_ and _repr_html_ in DataFrame. # Two patterns basically seek the footer string from Pandas' REPR_PATTERN = re.compile(r"\n\n\[(?P<rows>[0-9]+) rows x (?P<columns>[0-9]+) columns\]$") REPR_HTML_PATTERN = re.compile( r"\n\<p\>(?P<rows>[0-9]+) rows × (?P<columns>[0-9]+) columns\<\/p\>\n\<\/div\>$" ) _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`. Parameters ---------- other : scalar Any single data Returns ------- DataFrame Result of the arithmetic operation. Examples -------- >>> df = ks.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle'], ... columns=['angles', 'degrees']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. Also reverse version. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(df) angles degrees circle 0 720 triangle 6 360 rectangle 8 720 >>> df + df + df angles degrees circle 0 1080 triangle 9 540 rectangle 12 1080 >>> df.radd(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide and true divide by constant with reverse version. >>> df / 10 angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 >>> df.truediv(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rtruediv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract by constant with reverse version. >>> df - 1 angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.rsub(1) angles degrees circle 1 -359 triangle -2 -179 rectangle -3 -359 Multiply by constant with reverse version. >>> df * 1 angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.mul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.rmul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Floor Divide by constant with reverse version. >>> df // 10 angles degrees circle 0.0 36.0 triangle 0.0 18.0 rectangle 0.0 36.0 >>> df.floordiv(10) angles degrees circle 0.0 36.0 triangle 0.0 18.0 rectangle 0.0 36.0 >>> df.rfloordiv(10) # doctest: +SKIP angles degrees circle inf 0.0 triangle 3.0 0.0 rectangle 2.0 0.0 Mod by constant with reverse version. >>> df % 2 angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.mod(2) angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.rmod(2) angles degrees circle NaN 2 triangle 2.0 2 rectangle 2.0 2 Power by constant with reverse version. >>> df ** 2 angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.pow(2) angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.rpow(2) angles degrees circle 1.0 2.348543e+108 triangle 8.0 1.532496e+54 rectangle 16.0 2.348543e+108 """ T = TypeVar("T") def _create_tuple_for_frame_type(params): """ This is a workaround to support variadic generic in DataFrame. See https://github.com/python/typing/issues/193 we always wraps the given type hints by a tuple to mimic the variadic generic. """ from databricks.koalas.typedef import NameTypeHolder if isinstance(params, zip): params = [slice(name, tpe) for name, tpe in params] if isinstance(params, slice): params = (params,) if ( hasattr(params, "__len__") and isinstance(params, Iterable) and all(isinstance(param, slice) for param in params) ): for param in params: if isinstance(param.start, str) and param.step is not None: raise TypeError( "Type hints should be specified as " "DataFrame['name': type]; however, got %s" % param ) name_classes = [] for param in params: new_class = type("NameType", (NameTypeHolder,), {}) new_class.name = param.start # When the given argument is a numpy's dtype instance. new_class.tpe = param.stop.type if isinstance(param.stop, np.dtype) else param.stop name_classes.append(new_class) return Tuple[tuple(name_classes)] if not isinstance(params, Iterable): params = [params] new_params = [] for param in params: if isinstance(param, ExtensionDtype): new_class = type("NameType", (NameTypeHolder,), {}) new_class.tpe = param new_params.append(new_class) else: new_params.append(param.type if isinstance(param, np.dtype) else param) return Tuple[tuple(new_params)] if (3, 5) <= sys.version_info < (3, 7): from typing import GenericMeta # type: ignore # This is a workaround to support variadic generic in DataFrame in Python 3.5+. # See https://github.com/python/typing/issues/193 # We wrap the input params by a tuple to mimic variadic generic. old_getitem = GenericMeta.__getitem__ # type: ignore def new_getitem(self, params): if hasattr(self, "is_dataframe"): return old_getitem(self, _create_tuple_for_frame_type(params)) else: return old_getitem(self, params) GenericMeta.__getitem__ = new_getitem # type: ignore class DataFrame(Frame, Generic[T]): """ Koalas DataFrame that corresponds to pandas DataFrame logically. This holds Spark DataFrame internally. :ivar _internal: an internal immutable Frame to manage metadata. :type _internal: InternalFrame Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, pandas DataFrame, Spark DataFrame \ or Koalas Series Dict can contain Series, arrays, constants, or list-like objects If data is a dict, argument order is maintained for Python 3.6 and later. Note that if `data` is a pandas DataFrame, a Spark DataFrame, and a Koalas Series, other arguments should not be used. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = ks.DataFrame(data=d, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 Constructing DataFrame from pandas DataFrame >>> df = ks.DataFrame(pd.DataFrame(data=d, columns=['col1', 'col2'])) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = ks.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = ks.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 # doctest: +SKIP a b c d e 0 3 1 4 9 8 1 4 8 4 8 4 2 7 6 5 6 7 3 8 7 9 1 0 4 2 5 4 3 9 """ def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if isinstance(data, InternalFrame): assert index is None assert columns is None assert dtype is None assert not copy internal = data elif isinstance(data, spark.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy internal = InternalFrame(spark_frame=data, index_spark_columns=None) elif isinstance(data, ks.Series): assert index is None assert columns is None assert dtype is None assert not copy data = data.to_frame() internal = data._internal else: if isinstance(data, pd.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy pdf = data else: pdf = pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy) internal = InternalFrame.from_pandas(pdf) object.__setattr__(self, "_internal_frame", internal) @property def _ksers(self): """ Return a dict of column label -> Series which anchors `self`. """ from databricks.koalas.series import Series if not hasattr(self, "_kseries"): object.__setattr__( self, "_kseries", {label: Series(data=self, index=label) for label in self._internal.column_labels}, ) else: kseries = self._kseries assert len(self._internal.column_labels) == len(kseries), ( len(self._internal.column_labels), len(kseries), ) if any(self is not kser._kdf for kser in kseries.values()): # Refresh the dict to contain only Series anchoring `self`. self._kseries = { label: kseries[label] if self is kseries[label]._kdf else Series(data=self, index=label) for label in self._internal.column_labels } return self._kseries @property def _internal(self) -> InternalFrame: return self._internal_frame def _update_internal_frame(self, internal: InternalFrame, requires_same_anchor: bool = True): """ Update InternalFrame with the given one. If the column_label is changed or the new InternalFrame is not the same `anchor`, disconnect the link to the Series and create a new one. If `requires_same_anchor` is `False`, checking whether or not the same anchor is ignored and force to update the InternalFrame, e.g., replacing the internal with the resolved_copy, updating the underlying Spark DataFrame which need to combine a different Spark DataFrame. :param internal: the new InternalFrame :param requires_same_anchor: whether checking the same anchor """ from databricks.koalas.series import Series if hasattr(self, "_kseries"): kseries = {} for old_label, new_label in zip_longest( self._internal.column_labels, internal.column_labels ): if old_label is not None: kser = self._ksers[old_label] renamed = old_label != new_label not_same_anchor = requires_same_anchor and not same_anchor(internal, kser) if renamed or not_same_anchor: kdf = DataFrame(self._internal.select_column(old_label)) # type: DataFrame kser._update_anchor(kdf) kser = None else: kser = None if new_label is not None: if kser is None: kser = Series(data=self, index=new_label) kseries[new_label] = kser self._kseries = kseries self._internal_frame = internal if hasattr(self, "_repr_pandas_cache"): del self._repr_pandas_cache @property def ndim(self) -> int: """ Return an int representing the number of array dimensions. return 2 for DataFrame. Examples -------- >>> df = ks.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', None], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 NaN 7 8 >>> df.ndim 2 """ return 2 @property def axes(self) -> List: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [Int64Index([0, 1], dtype='int64'), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] def _reduce_for_stat_function(self, sfun, name, axis=None, numeric_only=True, **kwargs): """ Applies sfun to each column and returns a pd.Series where the number of rows equal the number of columns. Parameters ---------- sfun : either an 1-arg function that takes a Column and returns a Column, or a 2-arg function that takes a Column and its DataType and returns a Column. axis: used only for sanity check because series only support index axis. name : original pandas API name. axis : axis to apply. 0 or 1, or 'index' or 'columns. numeric_only : bool, default True Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Only 'DataFrame.count' uses this parameter currently. """ from inspect import signature from databricks.koalas.series import Series, first_series axis = validate_axis(axis) if axis == 0: min_count = kwargs.get("min_count", 0) exprs = [F.lit(None).cast(StringType()).alias(SPARK_DEFAULT_INDEX_NAME)] new_column_labels = [] num_args = len(signature(sfun).parameters) for label in self._internal.column_labels: spark_column = self._internal.spark_column_for(label) spark_type = self._internal.spark_type_for(label) is_numeric_or_boolean = isinstance(spark_type, (NumericType, BooleanType)) keep_column = not numeric_only or is_numeric_or_boolean if keep_column: if num_args == 1: # Only pass in the column if sfun accepts only one arg scol = sfun(spark_column) else: # must be 2 assert num_args == 2 # Pass in both the column and its data type if sfun accepts two args scol = sfun(spark_column, spark_type) if min_count > 0: scol = F.when( Frame._count_expr(spark_column, spark_type) >= min_count, scol ) exprs.append(scol.alias(name_like_string(label))) new_column_labels.append(label) if len(exprs) == 1: return Series([]) sdf = self._internal.spark_frame.select(*exprs) # The data is expected to be small so it's fine to transpose/use default index. with ks.option_context("compute.max_rows", 1): internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, SPARK_DEFAULT_INDEX_NAME)], column_labels=new_column_labels, column_label_names=self._internal.column_label_names, ) return first_series(DataFrame(internal).transpose()) else: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() pser = getattr(pdf, name)(axis=axis, numeric_only=numeric_only, **kwargs) if len(pdf) <= limit: return Series(pser) @pandas_udf(returnType=as_spark_type(pser.dtype.type)) def calculate_columns_axis(*cols): return getattr(pd.concat(cols, axis=1), name)( axis=axis, numeric_only=numeric_only, **kwargs ) column_name = verify_temp_column_name( self._internal.spark_frame.select(self._internal.index_spark_columns), "__calculate_columns_axis__", ) sdf = self._internal.spark_frame.select( self._internal.index_spark_columns + [calculate_columns_axis(*self._internal.data_spark_columns).alias(column_name)] ) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, ) return first_series(DataFrame(internal)).rename(pser.name) def _kser_for(self, label): """ Create Series with a proper column label. The given label must be verified to exist in `InternalFrame.column_labels`. For example, in some method, self is like: >>> self = ks.range(3) `self._kser_for(label)` can be used with `InternalFrame.column_labels`: >>> self._kser_for(self._internal.column_labels[0]) 0 0 1 1 2 2 Name: id, dtype: int64 `self._kser_for(label)` must not be used directly with user inputs. In that case, `self[label]` should be used instead, which checks the label exists or not: >>> self['id'] 0 0 1 1 2 2 Name: id, dtype: int64 """ return self._ksers[label] def _apply_series_op(self, op, should_resolve: bool = False): applied = [] for label in self._internal.column_labels: applied.append(op(self._kser_for(label))) internal = self._internal.with_new_columns(applied) if should_resolve: internal = internal.resolved_copy return DataFrame(internal) # Arithmetic Operators def _map_series_op(self, op, other): from databricks.koalas.base import IndexOpsMixin if not isinstance(other, DataFrame) and ( isinstance(other, IndexOpsMixin) or is_sequence(other) ): raise ValueError( "%s with a sequence is currently not supported; " "however, got %s." % (op, type(other).__name__) ) if isinstance(other, DataFrame): if self._internal.column_labels_level != other._internal.column_labels_level: raise ValueError("cannot join with no overlapping index names") if not same_anchor(self, other): # Different DataFrames def apply_op(kdf, this_column_labels, that_column_labels): for this_label, that_label in zip(this_column_labels, that_column_labels): yield ( getattr(kdf._kser_for(this_label), op)( kdf._kser_for(that_label) ).rename(this_label), this_label, ) return align_diff_frames(apply_op, self, other, fillna=True, how="full") else: applied = [] column_labels = [] for label in self._internal.column_labels: if label in other._internal.column_labels: applied.append(getattr(self._kser_for(label), op)(other._kser_for(label))) else: applied.append( F.lit(None) .cast(self._internal.spark_type_for(label)) .alias(name_like_string(label)) ) column_labels.append(label) for label in other._internal.column_labels: if label not in column_labels: applied.append( F.lit(None) .cast(other._internal.spark_type_for(label)) .alias(name_like_string(label)) ) column_labels.append(label) internal = self._internal.with_new_columns(applied, column_labels=column_labels) return DataFrame(internal) else: return self._apply_series_op(lambda kser: getattr(kser, op)(other)) def __add__(self, other) -> "DataFrame": return self._map_series_op("add", other) def __radd__(self, other) -> "DataFrame": return self._map_series_op("radd", other) def __div__(self, other) -> "DataFrame": return self._map_series_op("div", other) def __rdiv__(self, other) -> "DataFrame": return self._map_series_op("rdiv", other) def __truediv__(self, other) -> "DataFrame": return self._map_series_op("truediv", other) def __rtruediv__(self, other) -> "DataFrame": return self._map_series_op("rtruediv", other) def __mul__(self, other) -> "DataFrame": return self._map_series_op("mul", other) def __rmul__(self, other) -> "DataFrame": return self._map_series_op("rmul", other) def __sub__(self, other) -> "DataFrame": return self._map_series_op("sub", other) def __rsub__(self, other) -> "DataFrame": return self._map_series_op("rsub", other) def __pow__(self, other) -> "DataFrame": return self._map_series_op("pow", other) def __rpow__(self, other) -> "DataFrame": return self._map_series_op("rpow", other) def __mod__(self, other) -> "DataFrame": return self._map_series_op("mod", other) def __rmod__(self, other) -> "DataFrame": return self._map_series_op("rmod", other) def __floordiv__(self, other) -> "DataFrame": return self._map_series_op("floordiv", other) def __rfloordiv__(self, other) -> "DataFrame": return self._map_series_op("rfloordiv", other) def __abs__(self) -> "DataFrame": return self._apply_series_op(lambda kser: abs(kser)) def __neg__(self) -> "DataFrame": return self._apply_series_op(lambda kser: -kser) def add(self, other) -> "DataFrame": return self + other # create accessor for plot plot = CachedAccessor("plot", KoalasPlotAccessor) # create accessor for Spark related methods. spark = CachedAccessor("spark", SparkFrameMethods) # create accessor for Koalas specific methods. koalas = CachedAccessor("koalas", KoalasFrameMethods) def hist(self, bins=10, **kwds): return self.plot.hist(bins, **kwds) hist.__doc__ = KoalasPlotAccessor.hist.__doc__ def kde(self, bw_method=None, ind=None, **kwds): return self.plot.kde(bw_method, ind, **kwds) kde.__doc__ = KoalasPlotAccessor.kde.__doc__ add.__doc__ = _flex_doc_FRAME.format( desc="Addition", op_name="+", equiv="dataframe + other", reverse="radd" ) def radd(self, other) -> "DataFrame": return other + self radd.__doc__ = _flex_doc_FRAME.format( desc="Addition", op_name="+", equiv="other + dataframe", reverse="add" ) def div(self, other) -> "DataFrame": return self / other div.__doc__ = _flex_doc_FRAME.format( desc="Floating division", op_name="/", equiv="dataframe / other", reverse="rdiv" ) divide = div def rdiv(self, other) -> "DataFrame": return other / self rdiv.__doc__ = _flex_doc_FRAME.format( desc="Floating division", op_name="/", equiv="other / dataframe", reverse="div" ) def truediv(self, other) -> "DataFrame": return self / other truediv.__doc__ = _flex_doc_FRAME.format( desc="Floating division", op_name="/", equiv="dataframe / other", reverse="rtruediv" ) def rtruediv(self, other) -> "DataFrame": return other / self rtruediv.__doc__ = _flex_doc_FRAME.format( desc="Floating division", op_name="/", equiv="other / dataframe", reverse="truediv" ) def mul(self, other) -> "DataFrame": return self * other mul.__doc__ = _flex_doc_FRAME.format( desc="Multiplication", op_name="*", equiv="dataframe * other", reverse="rmul" ) multiply = mul def rmul(self, other) -> "DataFrame": return other * self rmul.__doc__ = _flex_doc_FRAME.format( desc="Multiplication", op_name="*", equiv="other * dataframe", reverse="mul" ) def sub(self, other) -> "DataFrame": return self - other sub.__doc__ = _flex_doc_FRAME.format( desc="Subtraction", op_name="-", equiv="dataframe - other", reverse="rsub" ) subtract = sub def rsub(self, other) -> "DataFrame": return other - self rsub.__doc__ = _flex_doc_FRAME.format( desc="Subtraction", op_name="-", equiv="other - dataframe", reverse="sub" ) def mod(self, other) -> "DataFrame": return self % other mod.__doc__ = _flex_doc_FRAME.format( desc="Modulo", op_name="%", equiv="dataframe % other", reverse="rmod" ) def rmod(self, other) -> "DataFrame": return other % self rmod.__doc__ = _flex_doc_FRAME.format( desc="Modulo", op_name="%", equiv="other % dataframe", reverse="mod" ) def pow(self, other) -> "DataFrame": return self ** other pow.__doc__ = _flex_doc_FRAME.format( desc="Exponential power of series", op_name="**", equiv="dataframe ** other", reverse="rpow" ) def rpow(self, other) -> "DataFrame": return other ** self rpow.__doc__ = _flex_doc_FRAME.format( desc="Exponential power", op_name="**", equiv="other ** dataframe", reverse="pow" ) def floordiv(self, other) -> "DataFrame": return self // other floordiv.__doc__ = _flex_doc_FRAME.format( desc="Integer division", op_name="//", equiv="dataframe // other", reverse="rfloordiv" ) def rfloordiv(self, other) -> "DataFrame": return other // self rfloordiv.__doc__ = _flex_doc_FRAME.format( desc="Integer division", op_name="//", equiv="other // dataframe", reverse="floordiv" ) # Comparison Operators def __eq__(self, other) -> "DataFrame": # type: ignore return self._map_series_op("eq", other) def __ne__(self, other) -> "DataFrame": # type: ignore return self._map_series_op("ne", other) def __lt__(self, other) -> "DataFrame": return self._map_series_op("lt", other) def __le__(self, other) -> "DataFrame": return self._map_series_op("le", other) def __ge__(self, other) -> "DataFrame": return self._map_series_op("ge", other) def __gt__(self, other) -> "DataFrame": return self._map_series_op("gt", other) def eq(self, other) -> "DataFrame": """ Compare if the current value is equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.eq(1) a b a True True b False False c False True d False False """ return self == other equals = eq def gt(self, other) -> "DataFrame": """ Compare if the current value is greater than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.gt(2) a b a False False b False False c True False d True False """ return self > other def ge(self, other) -> "DataFrame": """ Compare if the current value is greater than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ge(1) a b a True True b True False c True True d True False """ return self >= other def lt(self, other) -> "DataFrame": """ Compare if the current value is less than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.lt(1) a b a False False b False False c False False d False False """ return self < other def le(self, other) -> "DataFrame": """ Compare if the current value is less than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.le(2) a b a True True b True False c False True d False False """ return self <= other def ne(self, other) -> "DataFrame": """ Compare if the current value is not equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ne(1) a b a False False b True True c True False d True True """ return self != other def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def square(x) -> np.int32: ... return x ** 2 Koalas uses return type hint and does not try to infer the type. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. Examples -------- >>> df = ks.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> def str_len(x) -> int: ... return len(str(x)) >>> df.applymap(str_len) 0 1 0 3 4 1 5 5 >>> def power(x) -> float: ... return x ** 2 >>> df.applymap(power) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 You can omit the type hint and let Koalas infer its type. >>> df.applymap(lambda x: x ** 2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # TODO: We can implement shortcut theoretically since it creates new DataFrame # anyway and we don't have to worry about operations on different DataFrames. return self._apply_series_op(lambda kser: kser.apply(func)) # TODO: not all arguments are implemented comparing to pandas' for now. def aggregate( self, func: Union[List[str], Dict[Any, List[str]]] ) -> Union["Series", "DataFrame", "Index"]: """Aggregate using one or more operations over the specified axis. Parameters ---------- func : dict or a list a dict mapping from column name (string) to aggregate functions (list of strings). If a list is given, the aggregation is performed against all columns. Returns ------- DataFrame Notes ----- `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Invoke function on DataFrame. DataFrame.transform : Only perform transforming type operations. DataFrame.groupby : Perform operations over groups. Series.aggregate : The equivalent function for Series. Examples -------- >>> df = ks.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) >>> df A B C 0 1.0 2.0 3.0 1 4.0 5.0 6.0 2 7.0 8.0 9.0 3 NaN NaN NaN Aggregate these functions over the rows. >>> df.agg(['sum', 'min'])[['A', 'B', 'C']].sort_index() A B C min 1.0 2.0 3.0 sum 12.0 15.0 18.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})[['A', 'B']].sort_index() A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN For multi-index columns: >>> df.columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) >>> df.agg(['sum', 'min'])[[("X", "A"), ("X", "B"), ("Y", "C")]].sort_index() X Y A B C min 1.0 2.0 3.0 sum 12.0 15.0 18.0 >>> aggregated = df.agg({("X", "A") : ['sum', 'min'], ("X", "B") : ['min', 'max']}) >>> aggregated[[("X", "A"), ("X", "B")]].sort_index() # doctest: +NORMALIZE_WHITESPACE X A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN """ from databricks.koalas.groupby import GroupBy if isinstance(func, list): if all((isinstance(f, str) for f in func)): func = dict([(column, func) for column in self.columns]) else: raise ValueError( "If the given function is a list, it " "should only contains function names as strings." ) if not isinstance(func, dict) or not all( is_name_like_value(key) and ( isinstance(value, str) or (isinstance(value, list) and all(isinstance(v, str) for v in value)) ) for key, value in func.items() ): raise ValueError( "aggs must be a dict mapping from column name to aggregate " "functions (string or list of strings)." ) with option_context("compute.default_index_type", "distributed"): kdf = DataFrame(GroupBy._spark_groupby(self, func)) # type: DataFrame # The codes below basically converts: # # A B # sum min min max # 0 12.0 1.0 2.0 8.0 # # to: # A B # max NaN 8.0 # min 1.0 2.0 # sum 12.0 NaN # # Aggregated output is usually pretty much small. if LooseVersion(pyspark.__version__) >= LooseVersion("2.4"): return kdf.stack().droplevel(0)[list(func.keys())] else: pdf = kdf._to_internal_pandas().stack() pdf.index = pdf.index.droplevel() return ks.from_pandas(pdf[list(func.keys())]) agg = aggregate def corr(self, method="pearson") -> Union["Series", "DataFrame", "Index"]: """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'spearman'} * pearson : standard correlation coefficient * spearman : Spearman rank correlation Returns ------- y : DataFrame See Also -------- Series.corr Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr('pearson') dogs cats dogs 1.000000 -0.851064 cats -0.851064 1.000000 >>> df.corr('spearman') dogs cats dogs 1.000000 -0.948683 cats -0.948683 1.000000 Notes ----- There are behavior differences between Koalas and pandas. * the `method` argument only accepts 'pearson', 'spearman' * the data should not contain NaNs. Koalas will return an error. * Koalas doesn't support the following argument(s). * `min_periods` argument is not supported """ return ks.from_pandas(corr(self, method)) def iteritems(self) -> Iterator: """ Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Returns ------- label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. Examples -------- >>> df = ks.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala'], ... columns=['species', 'population']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.iteritems(): ... print('label:', label) ... print('content:', content.to_string()) ... label: species content: panda bear polar bear koala marsupial label: population content: panda 1864 polar 22000 koala 80000 """ return ( (label if len(label) > 1 else label[0], self._kser_for(label)) for label in self._internal.column_labels ) def iterrows(self) -> Iterator: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : pandas.Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = ks.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns internal_index_columns = self._internal.index_spark_column_names internal_data_columns = self._internal.data_spark_column_names def extract_kv_from_spark_row(row): k = ( row[internal_index_columns[0]] if len(internal_index_columns) == 1 else tuple(row[c] for c in internal_index_columns) ) v = [row[c] for c in internal_data_columns] return k, v for k, v in map( extract_kv_from_spark_row, self._internal.resolved_copy.spark_frame.toLocalIterator() ): s = pd.Series(v, index=columns, name=k) yield k, s def itertuples(self, index: bool = True, name: Optional[str] = "Koalas") -> Iterator: """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Koalas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = ks.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Koalas(Index='dog', num_legs=4, num_wings=0) Koalas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Koalas(num_legs=4, num_wings=0) Koalas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ fields = list(self.columns) if index: fields.insert(0, "Index") index_spark_column_names = self._internal.index_spark_column_names data_spark_column_names = self._internal.data_spark_column_names def extract_kv_from_spark_row(row): k = ( row[index_spark_column_names[0]] if len(index_spark_column_names) == 1 else tuple(row[c] for c in index_spark_column_names) ) v = [row[c] for c in data_spark_column_names] return k, v can_return_named_tuples = sys.version_info >= (3, 7) or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = namedtuple(name, fields, rename=True) # type: ignore for k, v in map( extract_kv_from_spark_row, self._internal.resolved_copy.spark_frame.toLocalIterator(), ): yield itertuple._make(([k] if index else []) + list(v)) else: for k, v in map( extract_kv_from_spark_row, self._internal.resolved_copy.spark_frame.toLocalIterator(), ): yield tuple(([k] if index else []) + list(v)) def items(self) -> Iterator: """This is an alias of ``iteritems``.""" return self.iteritems() def to_clipboard(self, excel=True, sep=None, **kwargs) -> None: """ Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none See Also -------- read_clipboard : Read text from clipboard. Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = ks.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 This function also works for Series: >>> df = ks.Series([1, 2, 3, 4, 5, 6, 7], name='x') # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # 0, 1 ... # 1, 2 ... # 2, 3 ... # 3, 4 ... # 4, 5 ... # 5, 6 ... # 6, 7 """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_clipboard, pd.DataFrame.to_clipboard, args ) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, ) -> Optional[str]: """ Render a DataFrame as an HTML table. .. note:: This method should only be used if the resulting pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links (only works with pandas 0.24+). Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_string : Convert DataFrame to a string. """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_html, pd.DataFrame.to_html, args ) def to_string( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", line_width=None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. .. note:: This method should only be used if the resulting pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. line_width : int, optional Width to wrap a line in characters. Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]}, columns=['col1', 'col2']) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 >>> print(df.to_string(max_rows=2)) col1 col2 0 1 4 1 2 5 """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_string, pd.DataFrame.to_string, args ) def to_dict(self, orient="dict", into=dict) -> Union[List, Mapping]: """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). .. note:: This method should only be used if the resulting pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2'], ... columns=['col1', 'col2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df_dict = df.to_dict() >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('col1', [('row1', 1), ('row2', 2)]), ('col2', [('row1', 0.5), ('row2', 0.75)])] You can specify the return orientation. >>> df_dict = df.to_dict('series') >>> sorted(df_dict.items()) [('col1', row1 1 row2 2 Name: col1, dtype: int64), ('col2', row1 0.50 row2 0.75 Name: col2, dtype: float64)] >>> df_dict = df.to_dict('split') >>> sorted(df_dict.items()) # doctest: +ELLIPSIS [('columns', ['col1', 'col2']), ('data', [[1..., 0.75]]), ('index', ['row1', 'row2'])] >>> df_dict = df.to_dict('records') >>> [sorted(values.items()) for values in df_dict] # doctest: +ELLIPSIS [[('col1', 1...), ('col2', 0.5)], [('col1', 2...), ('col2', 0.75)]] >>> df_dict = df.to_dict('index') >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('row1', [('col1', 1), ('col2', 0.5)]), ('row2', [('col1', 2), ('col2', 0.75)])] You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), \ ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) # doctest: +ELLIPSIS [defaultdict(<class 'list'>, {'col..., 'col...}), \ defaultdict(<class 'list'>, {'col..., 'col...})] """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_dict, pd.DataFrame.to_dict, args ) def to_latex( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal=".", multicolumn=None, multicolumn_format=None, multirow=None, ) -> Optional[str]: r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}. .. note:: This method should only be used if the resulting pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, consider alternative formats. Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default ‘NaN’ Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in LaTeX table format e.g. ‘rcl’ for 3 columns. By default, ‘l’ will be used for all columns except columns of numbers, which default to ‘r’. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3. decimal : str, default ‘.’ Character recognized as decimal separator, e.g. ‘,’ in Europe. multicolumn : bool, default True Use multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default ‘l’ The alignment for multicolumns, similar to column_format The default will be read from the config module. multirow : bool, default False Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = ks.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}, ... columns=['name', 'mask', 'weapon']) >>> print(df.to_latex(index=False)) # doctest: +NORMALIZE_WHITESPACE \begin{tabular}{lll} \toprule name & mask & weapon \\ \midrule Raphael & red & sai \\ Donatello & purple & bo staff \\ \bottomrule \end{tabular} <BLANKLINE> """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_latex, pd.DataFrame.to_latex, args ) # TODO: enable doctests once we drop Spark 2.3.x (due to type coercion logic # when creating arrays) def transpose(self) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. .. note:: This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misusage, this method has the 'compute.max_rows' default limit of input length, and raises a ValueError. >>> from databricks.koalas.config import option_context >>> with option_context('compute.max_rows', 1000): # doctest: +NORMALIZE_WHITESPACE ... ks.DataFrame({'a': range(1001)}).transpose() Traceback (most recent call last): ... ValueError: Current DataFrame has more then the given limit 1000 rows. Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' to retrieve to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. Returns ------- DataFrame The transposed DataFrame. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the coerced dtype. For instance, if int and float have to be placed in same column, it becomes float. If type coercion is not possible, it fails. Also, note that the values in index should be unique because they become unique column names. In addition, if Spark 2.3 is used, the types should always be exactly same. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = ks.DataFrame(data=d1, columns=['col1', 'col2']) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T.sort_index() # doctest: +SKIP >>> df1_transposed # doctest: +SKIP 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes # doctest: +SKIP 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'score': [9.5, 8], ... 'kids': [0, 0], ... 'age': [12, 22]} >>> df2 = ks.DataFrame(data=d2, columns=['score', 'kids', 'age']) >>> df2 score kids age 0 9.5 0 12 1 8.0 0 22 >>> df2_transposed = df2.T.sort_index() # doctest: +SKIP >>> df2_transposed # doctest: +SKIP 0 1 age 12.0 22.0 kids 0.0 0.0 score 9.5 8.0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the coerced dtype: >>> df2.dtypes score float64 kids int64 age int64 dtype: object >>> df2_transposed.dtypes # doctest: +SKIP 0 float64 1 float64 dtype: object """ max_compute_count = get_option("compute.max_rows") if max_compute_count is not None: pdf = self.head(max_compute_count + 1)._to_internal_pandas() if len(pdf) > max_compute_count: raise ValueError( "Current DataFrame has more then the given limit {0} rows. " "Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' " "to retrieve to retrieve more than {0} rows. Note that, before changing the " "'compute.max_rows', this operation is considerably expensive.".format( max_compute_count ) ) return DataFrame(pdf.transpose()) # Explode the data to be pairs. # # For instance, if the current input DataFrame is as below: # # +------+------+------+------+------+ # |index1|index2|(a,x1)|(a,x2)|(b,x3)| # +------+------+------+------+------+ # | y1| z1| 1| 0| 0| # | y2| z2| 0| 50| 0| # | y3| z3| 3| 2| 1| # +------+------+------+------+------+ # # Output of `exploded_df` becomes as below: # # +-----------------+-----------------+-----------------+-----+ # | index|__index_level_0__|__index_level_1__|value| # +-----------------+-----------------+-----------------+-----+ # |{"a":["y1","z1"]}| a| x1| 1| # |{"a":["y1","z1"]}| a| x2| 0| # |{"a":["y1","z1"]}| b| x3| 0| # |{"a":["y2","z2"]}| a| x1| 0| # |{"a":["y2","z2"]}| a| x2| 50| # |{"a":["y2","z2"]}| b| x3| 0| # |{"a":["y3","z3"]}| a| x1| 3| # |{"a":["y3","z3"]}| a| x2| 2| # |{"a":["y3","z3"]}| b| x3| 1| # +-----------------+-----------------+-----------------+-----+ pairs = F.explode( F.array( *[ F.struct( [ F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(label) ] + [self._internal.spark_column_for(label).alias("value")] ) for label in self._internal.column_labels ] ) ) exploded_df = self._internal.spark_frame.withColumn("pairs", pairs).select( [ F.to_json( F.struct( F.array([scol for scol in self._internal.index_spark_columns]).alias("a") ) ).alias("index"), F.col("pairs.*"), ] ) # After that, executes pivot with key and its index column. # Note that index column should contain unique values since column names # should be unique. internal_index_columns = [ SPARK_INDEX_NAME_FORMAT(i) for i in range(self._internal.column_labels_level) ] pivoted_df = exploded_df.groupBy(internal_index_columns).pivot("index") transposed_df = pivoted_df.agg(F.first(F.col("value"))) new_data_columns = list( filter(lambda x: x not in internal_index_columns, transposed_df.columns) ) column_labels = [ None if len(label) == 1 and label[0] is None else label for label in (tuple(json.loads(col)["a"]) for col in new_data_columns) ] internal = InternalFrame( spark_frame=transposed_df, index_spark_columns=[scol_for(transposed_df, col) for col in internal_index_columns], index_names=self._internal.column_label_names, column_labels=column_labels, data_spark_columns=[scol_for(transposed_df, col) for col in new_data_columns], column_label_names=self._internal.index_names, ) return DataFrame(internal) T = property(transpose) def apply_batch(self, func, args=(), **kwds) -> "DataFrame": warnings.warn( "DataFrame.apply_batch is deprecated as of DataFrame.koalas.apply_batch. " "Please use the API instead.", FutureWarning, ) return self.koalas.apply_batch(func, args=args, **kwds) apply_batch.__doc__ = KoalasFrameMethods.apply_batch.__doc__ # TODO: Remove this API when Koalas 2.0.0. def map_in_pandas(self, func) -> "DataFrame": warnings.warn( "DataFrame.map_in_pandas is deprecated as of DataFrame.koalas.apply_batch. " "Please use the API instead.", FutureWarning, ) return self.koalas.apply_batch(func) map_in_pandas.__doc__ = KoalasFrameMethods.apply_batch.__doc__ def apply(self, func, axis=0, args=(), **kwds) -> Union["Series", "DataFrame", "Index"]: """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: when `axis` is 0 or 'index', the `func` is unable to access to the whole input series. Koalas internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole series but of the batch internally ... # used. ... def length(s) -> int: ... return len(s) ... >>> df = ks.DataFrame({'A': range(1000)}) >>> df.apply(length, axis=0) # doctest: +SKIP 0 83 1 83 2 83 ... 10 83 11 83 dtype: int32 .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify the return type as `Series` or scalar value in ``func``, for instance, as below: >>> def square(s) -> ks.Series[np.int32]: ... return s ** 2 Koalas uses return type hint and does not try to infer the type. In case when axis is 1, it requires to specify `DataFrame` or scalar value with type hints as below: >>> def plus_one(x) -> ks.DataFrame[float, float]: ... return x + 1 If the return type is specified as `DataFrame`, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a pandas friendly style as below: >>> def plus_one(x) -> ks.DataFrame["a": float, "b": float]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ks.DataFrame[zip(pdf.dtypes, pdf.columns)]: ... return x + 1 However, this way switches the index type to default index type in the output because the type hint cannot express the index type at this moment. Use `reset_index()` to keep index as a workaround. When the given function has the return type annotated, the original index of the DataFrame will be lost and then a default index will be attached to the result. Please be careful about configuring the default index. See also `Default Index Type <https://koalas.readthedocs.io/en/latest/user_guide/options.html#default-index-type>`_. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap : For elementwise operations. DataFrame.aggregate : Only perform aggregating type operations. DataFrame.transform : Only perform transforming type operations. Series.apply : The equivalent function for Series. Examples -------- >>> df = ks.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> def sqrt(x) -> ks.Series[float]: ... return np.sqrt(x) ... >>> df.apply(sqrt, axis=0) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 You can omit the type hint and let Koalas infer its type. >>> df.apply(np.sqrt, axis=0) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 When `axis` is 1 or 'columns', it applies the function for each row. >>> def summation(x) -> np.int64: ... return np.sum(x) ... >>> df.apply(summation, axis=1) 0 13 1 13 2 13 dtype: int64 Likewise, you can omit the type hint and let Koalas infer its type. >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 >>> df.apply(max, axis=1) 0 9 1 9 2 9 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object In order to specify the types when `axis` is '1', it should use DataFrame[...] annotation. In this case, the column names are automatically generated. >>> def identify(x) -> ks.DataFrame['A': np.int64, 'B': np.int64]: ... return x ... >>> df.apply(identify, axis=1) A B 0 4 9 1 4 9 2 4 9 You can also specify extra arguments. >>> def plus_two(a, b, c) -> ks.DataFrame[np.int64, np.int64]: ... return a + b + c ... >>> df.apply(plus_two, axis=1, args=(1,), c=3) c0 c1 0 8 13 1 8 13 2 8 13 """ from databricks.koalas.groupby import GroupBy from databricks.koalas.series import first_series if not isinstance(func, types.FunctionType): assert callable(func), "the first argument should be a callable function." f = func func = lambda *args, **kwargs: f(*args, **kwargs) axis = validate_axis(axis) should_return_series = False spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None should_use_map_in_pandas = LooseVersion(pyspark.__version__) >= "3.0" def apply_func(pdf): pdf_or_pser = pdf.apply(func, axis=axis, args=args, **kwds) if isinstance(pdf_or_pser, pd.Series): return pdf_or_pser.to_frame() else: return pdf_or_pser self_applied = DataFrame(self._internal.resolved_copy) # type: "DataFrame" column_labels = None # type: Optional[List[Tuple]] if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self_applied.head(limit + 1)._to_internal_pandas() applied = pdf.apply(func, axis=axis, args=args, **kwds) kser_or_kdf = ks.from_pandas(applied) if len(pdf) <= limit: return kser_or_kdf kdf = kser_or_kdf if isinstance(kser_or_kdf, ks.Series): should_return_series = True kdf = kser_or_kdf._kdf return_schema = force_decimal_precision_scale( as_nullable_spark_type(kdf._internal.to_internal_spark_frame.schema) ) if should_use_map_in_pandas: output_func = GroupBy._make_pandas_df_builder_func( self_applied, apply_func, return_schema, retain_index=True ) sdf = self_applied._internal.to_internal_spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema ) else: sdf = GroupBy._spark_group_map_apply( self_applied, apply_func, (F.spark_partition_id(),), return_schema, retain_index=True, ) # If schema is inferred, we can restore indexes too. internal = kdf._internal.with_new_sdf(sdf) else: return_type = infer_return_type(func) require_index_axis = isinstance(return_type, SeriesType) require_column_axis = isinstance(return_type, DataFrameType) if require_index_axis: if axis != 0: raise TypeError( "The given function should specify a scalar or a series as its type " "hints when axis is 0 or 'index'; however, the return type " "was %s" % return_sig ) return_schema = cast(SeriesType, return_type).spark_type fields_types = zip( self_applied.columns, [return_schema] * len(self_applied.columns) ) return_schema = StructType([StructField(c, t) for c, t in fields_types]) data_dtypes = [cast(SeriesType, return_type).dtype] * len(self_applied.columns) elif require_column_axis: if axis != 1: raise TypeError( "The given function should specify a scalar or a frame as its type " "hints when axis is 1 or 'column'; however, the return type " "was %s" % return_sig ) return_schema = cast(DataFrameType, return_type).spark_type data_dtypes = cast(DataFrameType, return_type).dtypes else: # any axis is fine. should_return_series = True return_schema = cast(ScalarType, return_type).spark_type return_schema = StructType([StructField(SPARK_DEFAULT_SERIES_NAME, return_schema)]) data_dtypes = [cast(ScalarType, return_type).dtype] column_labels = [None] if should_use_map_in_pandas: output_func = GroupBy._make_pandas_df_builder_func( self_applied, apply_func, return_schema, retain_index=False ) sdf = self_applied._internal.to_internal_spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema ) else: sdf = GroupBy._spark_group_map_apply( self_applied, apply_func, (F.spark_partition_id(),), return_schema, retain_index=False, ) # Otherwise, it loses index. internal = InternalFrame( spark_frame=sdf, index_spark_columns=None, column_labels=column_labels, data_dtypes=data_dtypes, ) result = DataFrame(internal) # type: "DataFrame" if should_return_series: return first_series(result) else: return result def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": """ Call ``func`` on self producing a Series with transformed values and that has the same length as its input. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 Koalas uses return type hint and does not try to infer the type. .. note:: the series within ``func`` is actually multiple pandas series as the segments of the whole Koalas series; therefore, the length of each series is not guaranteed. As an example, an aggregation against each series does work as a global aggregation but an aggregation of each segment. See below: >>> def func(x) -> ks.Series[np.int32]: ... return x + sum(x) Parameters ---------- func : function Function to use for transforming the data. It must work when pandas Series is passed. axis : int, default 0 or 'index' Can only be set to 0 at the moment. *args Positional arguments to pass to func. **kwargs Keyword arguments to pass to func. Returns ------- DataFrame A DataFrame that must have the same length as self. Raises ------ Exception : If the returned DataFrame has a different length than self. See Also -------- DataFrame.aggregate : Only perform aggregating type operations. DataFrame.apply : Invoke function on DataFrame. Series.transform : The equivalent function for Series. Examples -------- >>> df = ks.DataFrame({'A': range(3), 'B': range(1, 4)}, columns=['A', 'B']) >>> df A B 0 0 1 1 1 2 2 2 3 >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 >>> df.transform(square) A B 0 0 1 1 1 4 2 4 9 You can omit the type hint and let Koalas infer its type. >>> df.transform(lambda x: x ** 2) A B 0 0 1 1 1 4 2 4 9 For multi-index columns: >>> df.columns = [('X', 'A'), ('X', 'B')] >>> df.transform(square) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 4 2 4 9 >>> (df * -1).transform(abs) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 2 2 2 3 You can also specify extra arguments. >>> def calculation(x, y, z) -> ks.Series[int]: ... return x ** y + z >>> df.transform(calculation, y=10, z=20) # doctest: +NORMALIZE_WHITESPACE X A B 0 20 21 1 21 1044 2 1044 59069 """ if not isinstance(func, types.FunctionType): assert callable(func), "the first argument should be a callable function." f = func func = lambda *args, **kwargs: f(*args, **kwargs) axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() transformed = pdf.transform(func, axis, *args, **kwargs) kdf = DataFrame(transformed) # type: "DataFrame" if len(pdf) <= limit: return kdf applied = [] for input_label, output_label in zip( self._internal.column_labels, kdf._internal.column_labels ): kser = self._kser_for(input_label) return_schema = force_decimal_precision_scale( as_nullable_spark_type(kdf._internal.spark_type_for(output_label)) ) applied.append( kser.koalas._transform_batch( func=lambda c: func(c, *args, **kwargs), return_schema=return_schema ) ) internal = self._internal.with_new_columns( applied, data_dtypes=kdf._internal.data_dtypes ) return DataFrame(internal) else: return self._apply_series_op( lambda kser: kser.koalas.transform_batch(func, *args, **kwargs) ) def transform_batch(self, func, *args, **kwargs) -> "DataFrame": warnings.warn( "DataFrame.transform_batch is deprecated as of DataFrame.koalas.transform_batch. " "Please use the API instead.", FutureWarning, ) return self.koalas.transform_batch(func, *args, **kwargs) transform_batch.__doc__ = KoalasFrameMethods.transform_batch.__doc__ def pop(self, item) -> "DataFrame": """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN Also support for MultiIndex >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> columns = [('a', 'name'), ('a', 'class'), ('b', 'max_speed')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df a b name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('a') name class 0 falcon bird 1 parrot bird 2 lion mammal 3 monkey mammal >>> df b max_speed 0 389.0 1 24.0 2 80.5 3 NaN """ result = self[item] self._update_internal_frame(self.drop(item)._internal) return result # TODO: add axis parameter can work when '1' or 'columns' def xs(self, key, axis=0, level=None) -> Union["DataFrame", "Series"]: """ Return cross-section from the DataFrame. This method takes a `key` argument to select data at a particular level of a MultiIndex. Parameters ---------- key : label or tuple of label Label contained in the index, or partially in a MultiIndex. axis : 0 or 'index', default 0 Axis to retrieve cross-section on. currently only support 0 or 'index' level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. Returns ------- DataFrame or Series Cross-section from the original DataFrame corresponding to the selected index levels. See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = ks.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df # doctest: +NORMALIZE_WHITESPACE num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') # doctest: +NORMALIZE_WHITESPACE num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) # doctest: +NORMALIZE_WHITESPACE num_legs num_wings locomotion walks 4 0 >>> df.xs(('mammal', 'dog', 'walks')) # doctest: +NORMALIZE_WHITESPACE num_legs 4 num_wings 0 Name: (mammal, dog, walks), dtype: int64 Get values at specified index and level >>> df.xs('cat', level=1) # doctest: +NORMALIZE_WHITESPACE num_legs num_wings class locomotion mammal walks 4 0 """ from databricks.koalas.series import first_series if not is_name_like_value(key): raise ValueError("'key' should be a scalar value or tuple that contains scalar values") if level is not None and is_name_like_tuple(key): raise KeyError(key) axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') if not is_name_like_tuple(key): key = (key,) if len(key) > self._internal.index_level: raise KeyError( "Key length ({}) exceeds index depth ({})".format( len(key), self._internal.index_level ) ) if level is None: level = 0 rows = [ self._internal.index_spark_columns[lvl] == index for lvl, index in enumerate(key, level) ] internal = self._internal.with_filter(reduce(lambda x, y: x & y, rows)) if len(key) == self._internal.index_level: kdf = DataFrame(internal) # type: DataFrame pdf = kdf.head(2)._to_internal_pandas() if len(pdf) == 0: raise KeyError(key) elif len(pdf) > 1: return kdf else: return first_series(DataFrame(pdf.transpose())) else: index_spark_columns = ( internal.index_spark_columns[:level] + internal.index_spark_columns[level + len(key) :] ) index_names = internal.index_names[:level] + internal.index_names[level + len(key) :] index_dtypes = internal.index_dtypes[:level] + internal.index_dtypes[level + len(key) :] internal = internal.copy( index_spark_columns=index_spark_columns, index_names=index_names, index_dtypes=index_dtypes, ).resolved_copy return DataFrame(internal) def between_time( self, start_time: Union[datetime.time, str], end_time: Union[datetime.time, str], include_start: bool = True, include_end: bool = True, axis: Union[int, str] = 0, ) -> Union["Series", "DataFrame"]: """ Select values between particular times of the day (e.g., 9:00-9:30 AM). By setting ``start_time`` to be later than ``end_time``, you can get the times that are *not* between the two times. Parameters ---------- start_time : datetime.time or str Initial time as a time filter limit. end_time : datetime.time or str End time as a time filter limit. include_start : bool, default True Whether the start time needs to be included in the result. include_end : bool, default True Whether the end time needs to be included in the result. axis : {0 or 'index', 1 or 'columns'}, default 0 Determine range time on index or columns value. Returns ------- Series or DataFrame Data from the original object filtered to the specified dates range. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- at_time : Select values at a particular time of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_between_time : Get just the index locations for values between particular times of the day. Examples -------- >>> idx = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> kdf = ks.DataFrame({'A': [1, 2, 3, 4]}, index=idx) >>> kdf A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 >>> kdf.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 You get the times that are *not* between two times by setting ``start_time`` later than ``end_time``: >>> kdf.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4 """ from databricks.koalas.indexes import DatetimeIndex axis = validate_axis(axis) if axis != 0: raise NotImplementedError("between_time currently only works for axis=0") if not isinstance(self.index, DatetimeIndex): raise TypeError("Index must be DatetimeIndex") kdf = self.copy() kdf.index.name = verify_temp_column_name(kdf, "__index_name__") return_types = [kdf.index.dtype] + list(kdf.dtypes) def pandas_between_time(pdf) -> ks.DataFrame[return_types]: # type: ignore return pdf.between_time(start_time, end_time, include_start, include_end).reset_index() # apply_batch will remove the index of the Koalas DataFrame and attach a default index, # which will never be used. So use "distributed" index as a dummy to avoid overhead. with option_context("compute.default_index_type", "distributed"): kdf = kdf.koalas.apply_batch(pandas_between_time) return DataFrame( self._internal.copy( spark_frame=kdf._internal.spark_frame, index_spark_columns=kdf._internal.data_spark_columns[:1], data_spark_columns=kdf._internal.data_spark_columns[1:], ) ) def where(self, cond, other=np.nan) -> "DataFrame": """ Replace values where the condition is False. Parameters ---------- cond : boolean DataFrame Where cond is True, keep the original value. Where False, replace with corresponding value from other. other : scalar, DataFrame Entries where cond is False are replaced with corresponding value from other. Returns ------- DataFrame Examples -------- >>> from databricks.koalas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) >>> df1 = ks.DataFrame({'A': [0, 1, 2, 3, 4], 'B':[100, 200, 300, 400, 500]}) >>> df2 = ks.DataFrame({'A': [0, -1, -2, -3, -4], 'B':[-100, -200, -300, -400, -500]}) >>> df1 A B 0 0 100 1 1 200 2 2 300 3 3 400 4 4 500 >>> df2 A B 0 0 -100 1 -1 -200 2 -2 -300 3 -3 -400 4 -4 -500 >>> df1.where(df1 > 0).sort_index() A B 0 NaN 100.0 1 1.0 200.0 2 2.0 300.0 3 3.0 400.0 4 4.0 500.0 >>> df1.where(df1 > 1, 10).sort_index() A B 0 10 100 1 10 200 2 2 300 3 3 400 4 4 500 >>> df1.where(df1 > 1, df1 + 100).sort_index() A B 0 100 100 1 101 200 2 2 300 3 3 400 4 4 500 >>> df1.where(df1 > 1, df2).sort_index() A B 0 0 100 1 -1 200 2 2 300 3 3 400 4 4 500 When the column name of cond is different from self, it treats all values are False >>> cond = ks.DataFrame({'C': [0, -1, -2, -3, -4], 'D':[4, 3, 2, 1, 0]}) % 3 == 0 >>> cond C D 0 True False 1 False True 2 False False 3 True False 4 False True >>> df1.where(cond).sort_index() A B 0 NaN NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 NaN NaN When the type of cond is Series, it just check boolean regardless of column name >>> cond = ks.Series([1, 2]) > 1 >>> cond 0 False 1 True dtype: bool >>> df1.where(cond).sort_index() A B 0 NaN NaN 1 1.0 200.0 2 NaN NaN 3 NaN NaN 4 NaN NaN >>> reset_option("compute.ops_on_diff_frames") """ from databricks.koalas.series import Series tmp_cond_col_name = "__tmp_cond_col_{}__".format tmp_other_col_name = "__tmp_other_col_{}__".format kdf = self.copy() tmp_cond_col_names = [ tmp_cond_col_name(name_like_string(label)) for label in self._internal.column_labels ] if isinstance(cond, DataFrame): cond = cond[ [ ( cond._internal.spark_column_for(label) if label in cond._internal.column_labels else F.lit(False) ).alias(name) for label, name in zip(self._internal.column_labels, tmp_cond_col_names) ] ] kdf[tmp_cond_col_names] = cond elif isinstance(cond, Series): cond = cond.to_frame() cond = cond[ [cond._internal.data_spark_columns[0].alias(name) for name in tmp_cond_col_names] ] kdf[tmp_cond_col_names] = cond else: raise ValueError("type of cond must be a DataFrame or Series") tmp_other_col_names = [ tmp_other_col_name(name_like_string(label)) for label in self._internal.column_labels ] if isinstance(other, DataFrame): other = other[ [ ( other._internal.spark_column_for(label) if label in other._internal.column_labels else F.lit(np.nan) ).alias(name) for label, name in zip(self._internal.column_labels, tmp_other_col_names) ] ] kdf[tmp_other_col_names] = other elif isinstance(other, Series): other = other.to_frame() other = other[ [other._internal.data_spark_columns[0].alias(name) for name in tmp_other_col_names] ] kdf[tmp_other_col_names] = other else: for label in self._internal.column_labels: kdf[tmp_other_col_name(name_like_string(label))] = other # above logic make spark dataframe looks like below: # +-----------------+---+---+------------------+-------------------+------------------+--... # |__index_level_0__| A| B|__tmp_cond_col_A__|__tmp_other_col_A__|__tmp_cond_col_B__|__... # +-----------------+---+---+------------------+-------------------+------------------+--... # | 0| 0|100| true| 0| false| ... # | 1| 1|200| false| -1| false| ... # | 3| 3|400| true| -3| false| ... # | 2| 2|300| false| -2| true| ... # | 4| 4|500| false| -4| false| ... # +-----------------+---+---+------------------+-------------------+------------------+--... data_spark_columns = [] for label in self._internal.column_labels: data_spark_columns.append( F.when( kdf[tmp_cond_col_name(name_like_string(label))].spark.column, kdf._internal.spark_column_for(label), ) .otherwise(kdf[tmp_other_col_name(name_like_string(label))].spark.column) .alias(kdf._internal.spark_column_name_for(label)) ) return DataFrame( kdf._internal.with_new_columns( data_spark_columns, column_labels=self._internal.column_labels # TODO: dtypes? ) ) def mask(self, cond, other=np.nan) -> "DataFrame": """ Replace values where the condition is True. Parameters ---------- cond : boolean DataFrame Where cond is False, keep the original value. Where True, replace with corresponding value from other. other : scalar, DataFrame Entries where cond is True are replaced with corresponding value from other. Returns ------- DataFrame Examples -------- >>> from databricks.koalas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) >>> df1 = ks.DataFrame({'A': [0, 1, 2, 3, 4], 'B':[100, 200, 300, 400, 500]}) >>> df2 = ks.DataFrame({'A': [0, -1, -2, -3, -4], 'B':[-100, -200, -300, -400, -500]}) >>> df1 A B 0 0 100 1 1 200 2 2 300 3 3 400 4 4 500 >>> df2 A B 0 0 -100 1 -1 -200 2 -2 -300 3 -3 -400 4 -4 -500 >>> df1.mask(df1 > 0).sort_index() A B 0 0.0 NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 NaN NaN >>> df1.mask(df1 > 1, 10).sort_index() A B 0 0 10 1 1 10 2 10 10 3 10 10 4 10 10 >>> df1.mask(df1 > 1, df1 + 100).sort_index() A B 0 0 200 1 1 300 2 102 400 3 103 500 4 104 600 >>> df1.mask(df1 > 1, df2).sort_index() A B 0 0 -100 1 1 -200 2 -2 -300 3 -3 -400 4 -4 -500 >>> reset_option("compute.ops_on_diff_frames") """ from databricks.koalas.series import Series if not isinstance(cond, (DataFrame, Series)): raise ValueError("type of cond must be a DataFrame or Series") cond_inversed = cond._apply_series_op(lambda kser: ~kser) return self.where(cond_inversed, other) @property def index(self) -> "Index": """The index (row labels) Column of the DataFrame. Currently not supported when the DataFrame has no index. See Also -------- Index """ from databricks.koalas.indexes.base import Index return Index._new_instance(self) @property def empty(self) -> bool: """ Returns true if the current DataFrame is empty. Otherwise, returns false. Examples -------- >>> ks.range(10).empty False >>> ks.range(0).empty True >>> ks.DataFrame({}, index=list('abc')).empty True """ return ( len(self._internal.column_labels) == 0 or self._internal.resolved_copy.spark_frame.rdd.isEmpty() ) @property def style(self) -> "Styler": """ Property returning a Styler object containing methods for building a styled HTML representation for the DataFrame. .. note:: currently it collects top 1000 rows and return its pandas `pandas.io.formats.style.Styler` instance. Examples -------- >>> ks.range(1001).style # doctest: +ELLIPSIS <pandas.io.formats.style.Styler object at ...> """ max_results = get_option("compute.max_rows") pdf = self.head(max_results + 1)._to_internal_pandas() if len(pdf) > max_results: warnings.warn("'style' property will only use top %s rows." % max_results, UserWarning) return pdf.head(max_results).style def set_index(self, keys, drop=True, append=False, inplace=False) -> Optional["DataFrame"]: """Set the DataFrame index (row labels) using one or more existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index` and ``np.ndarray``. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. Examples -------- >>> df = ks.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}, ... columns=['month', 'year', 'sale']) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') # doctest: +NORMALIZE_WHITESPACE year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) # doctest: +NORMALIZE_WHITESPACE sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if is_name_like_tuple(keys): keys = [keys] elif is_name_like_value(keys): keys = [(keys,)] else: keys = [key if is_name_like_tuple(key) else (key,) for key in keys] columns = set(self._internal.column_labels) for key in keys: if key not in columns: raise KeyError(name_like_string(key)) if drop: column_labels = [label for label in self._internal.column_labels if label not in keys] else: column_labels = self._internal.column_labels if append: index_spark_columns = self._internal.index_spark_columns + [ self._internal.spark_column_for(label) for label in keys ] index_names = self._internal.index_names + keys index_dtypes = self._internal.index_dtypes + [ self._internal.dtype_for(label) for label in keys ] else: index_spark_columns = [self._internal.spark_column_for(label) for label in keys] index_names = keys index_dtypes = [self._internal.dtype_for(label) for label in keys] internal = self._internal.copy( index_spark_columns=index_spark_columns, index_names=index_names, index_dtypes=index_dtypes, column_labels=column_labels, data_spark_columns=[self._internal.spark_column_for(label) for label in column_labels], data_dtypes=[self._internal.dtype_for(label) for label in column_labels], ) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) def reset_index( self, level=None, drop=False, inplace=False, col_level=0, col_fill="" ) -> Optional["DataFrame"]: """Reset the index, or a level of it. For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame DataFrame with the new index. See Also -------- DataFrame.set_index : Opposite of reset_index. Examples -------- >>> df = ks.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column. Unlike pandas, Koalas does not automatically add a sequential index. The following 0, 1, 2, 3 are only there when we display the DataFrame. >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = ks.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df # doctest: +NORMALIZE_WHITESPACE speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') # doctest: +NORMALIZE_WHITESPACE class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) # doctest: +NORMALIZE_WHITESPACE speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, ... col_fill='species') # doctest: +NORMALIZE_WHITESPACE species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, ... col_fill='genus') # doctest: +NORMALIZE_WHITESPACE genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") multi_index = self._internal.index_level > 1 def rename(index): if multi_index: return ("level_{}".format(index),) else: if ("index",) not in self._internal.column_labels: return ("index",) else: return ("level_{}".format(index),) if level is None: new_column_labels = [ name if name is not None else rename(i) for i, name in enumerate(self._internal.index_names) ] new_data_spark_columns = [ scol.alias(name_like_string(label)) for scol, label in zip(self._internal.index_spark_columns, new_column_labels) ] new_data_dtypes = self._internal.index_dtypes index_spark_columns = [] index_names = [] index_dtypes = [] else: if is_list_like(level): level = list(level) if isinstance(level, int) or is_name_like_tuple(level): level = [level] elif is_name_like_value(level): level = [(level,)] else: level = [ lvl if isinstance(lvl, int) or is_name_like_tuple(lvl) else (lvl,) for lvl in level ] if all(isinstance(l, int) for l in level): for lev in level: if lev >= self._internal.index_level: raise IndexError( "Too many levels: Index has only {} level, not {}".format( self._internal.index_level, lev + 1 ) ) idx = level elif all(is_name_like_tuple(lev) for lev in level): idx = [] for l in level: try: i = self._internal.index_names.index(l) idx.append(i) except ValueError: if multi_index: raise KeyError("Level unknown not found") else: raise KeyError( "Level unknown must be same as name ({})".format( name_like_string(self._internal.index_names[0]) ) ) else: raise ValueError("Level should be all int or all string.") idx.sort() new_column_labels = [] new_data_spark_columns = [] new_data_dtypes = [] index_spark_columns = self._internal.index_spark_columns.copy() index_names = self._internal.index_names.copy() index_dtypes = self._internal.index_dtypes.copy() for i in idx[::-1]: name = index_names.pop(i) new_column_labels.insert(0, name if name is not None else rename(i)) scol = index_spark_columns.pop(i) new_data_spark_columns.insert(0, scol.alias(name_like_string(name))) new_data_dtypes.insert(0, index_dtypes.pop(i)) if drop: new_data_spark_columns = [] new_column_labels = [] new_data_dtypes = [] for label in new_column_labels: if label in self._internal.column_labels: raise ValueError("cannot insert {}, already exists".format(name_like_string(label))) if self._internal.column_labels_level > 1: column_depth = len(self._internal.column_labels[0]) if col_level >= column_depth: raise IndexError( "Too many levels: Index has only {} levels, not {}".format( column_depth, col_level + 1 ) ) if any(col_level + len(label) > column_depth for label in new_column_labels): raise ValueError("Item must have length equal to number of levels.") new_column_labels = [ tuple( ([col_fill] * col_level) + list(label) + ([col_fill] * (column_depth - (len(label) + col_level))) ) for label in new_column_labels ] internal = self._internal.copy( index_spark_columns=index_spark_columns, index_names=index_names, index_dtypes=index_dtypes, column_labels=new_column_labels + self._internal.column_labels, data_spark_columns=new_data_spark_columns + self._internal.data_spark_columns, data_dtypes=new_data_dtypes + self._internal.data_dtypes, ) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) def isnull(self) -> "DataFrame": """ Detects missing values for items in the current Dataframe. Return a boolean same-sized Dataframe indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. See Also -------- DataFrame.notnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.isnull() 0 1 0 False False 1 False True 2 False True 3 False False >>> df = ks.DataFrame([[None, 'bee', None], ['dog', None, 'fly']]) >>> df.isnull() 0 1 2 0 True False True 1 False True False """ return self._apply_series_op(lambda kser: kser.isnull()) isna = isnull def notnull(self) -> "DataFrame": """ Detects non-missing values for items in the current Dataframe. This function takes a dataframe and indicates whether it's values are valid (not missing, which is ``NaN`` in numeric datatypes, ``None`` or ``NaN`` in objects and ``NaT`` in datetimelike). See Also -------- DataFrame.isnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True >>> df = ks.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True """ return self._apply_series_op(lambda kser: kser.notnull()) notna = notnull def insert( self, loc: int, column, value: Union[Scalar, "Series", Iterable], allow_duplicates: bool = False, ) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional Examples -------- >>> kdf = ks.DataFrame([1, 2, 3]) >>> kdf.sort_index() 0 0 1 1 2 2 3 >>> kdf.insert(0, 'x', 4) >>> kdf.sort_index() x 0 0 4 1 1 4 2 2 4 3 >>> from databricks.koalas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) >>> kdf.insert(1, 'y', [5, 6, 7]) >>> kdf.sort_index() x y 0 0 4 5 1 1 4 6 2 2 4 7 3 >>> kdf.insert(2, 'z', ks.Series([8, 9, 10])) >>> kdf.sort_index() x y z 0 0 4 5 8 1 1 4 6 9 2 2 4 7 10 3 >>> reset_option("compute.ops_on_diff_frames") """ if not isinstance(loc, int): raise TypeError("loc must be int") assert 0 <= loc <= len(self.columns) assert allow_duplicates is False if not is_name_like_value(column): raise ValueError( '"column" should be a scalar value or tuple that contains scalar values' ) if is_name_like_tuple(column): if len(column) != len(self.columns.levels): # To be consistent with pandas raise ValueError('"column" must have length equal to number of column levels.') if column in self.columns: raise ValueError("cannot insert %s, already exists" % column) kdf = self.copy() kdf[column] = value columns = kdf.columns[:-1].insert(loc, kdf.columns[-1]) kdf = kdf[columns] self._update_internal_frame(kdf._internal) # TODO: add frep and axis parameter def shift(self, periods=1, fill_value=None) -> "DataFrame": """ Shift DataFrame by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input DataFrame, shifted. Examples -------- >>> df = ks.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27 """ return self._apply_series_op( lambda kser: kser._shift(periods, fill_value), should_resolve=True ) # TODO: axis should support 1 or 'columns' either at this moment def diff(self, periods: int = 1, axis: Union[int, str] = 0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). .. note:: the current implementation of diff uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : int, default 0 or 'index' Can only be set to 0 at the moment. Returns ------- diffed : DataFrame Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}, columns=['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') return self._apply_series_op(lambda kser: kser._diff(periods), should_resolve=True) # TODO: axis should support 1 or 'columns' either at this moment def nunique( self, axis: Union[int, str] = 0, dropna: bool = True, approx: bool = False, rsd: float = 0.05, ) -> "Series": """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- axis : int, default 0 or 'index' Can only be set to 0 at the moment. dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to Koalas and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to Koalas. Returns ------- The number of unique values per column as a Koalas Series. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [np.nan, 3, np.nan]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(dropna=False) A 3 B 2 dtype: int64 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> df.nunique(approx=True) A 3 B 1 dtype: int64 """ from databricks.koalas.series import first_series axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select( [F.lit(None).cast(StringType()).alias(SPARK_DEFAULT_INDEX_NAME)] + [ self._kser_for(label)._nunique(dropna, approx, rsd) for label in self._internal.column_labels ] ) # The data is expected to be small so it's fine to transpose/use default index. with ks.option_context("compute.max_rows", 1): internal = self._internal.copy( spark_frame=sdf, index_spark_columns=[scol_for(sdf, SPARK_DEFAULT_INDEX_NAME)], index_names=[None], index_dtypes=[None], data_spark_columns=[ scol_for(sdf, col) for col in self._internal.data_spark_column_names ], data_dtypes=None, ) return first_series(DataFrame(internal).transpose()) def round(self, decimals=0) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. .. note:: If `decimals` is a Series, it is expected to be small, as all the data is loaded into the driver's memory. Returns ------- DataFrame See Also -------- Series.round Examples -------- >>> df = ks.DataFrame({'A':[0.028208, 0.038683, 0.877076], ... 'B':[0.992815, 0.645646, 0.149370], ... 'C':[0.173891, 0.577595, 0.491027]}, ... columns=['A', 'B', 'C'], ... index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = ks.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1.0 0.17 second 0.0 1.0 0.58 third 0.9 0.0 0.49 """ if isinstance(decimals, ks.Series): decimals = { k if isinstance(k, tuple) else (k,): v for k, v in decimals._to_internal_pandas().items() } elif isinstance(decimals, dict): decimals = {k if is_name_like_tuple(k) else (k,): v for k, v in decimals.items()} elif isinstance(decimals, int): decimals = {k: decimals for k in self._internal.column_labels} else: raise ValueError("decimals must be an integer, a dict-like or a Series") def op(kser): label = kser._column_label if label in decimals: return F.round(kser.spark.column, decimals[label]).alias( kser._internal.data_spark_column_names[0] ) else: return kser return self._apply_series_op(op) def _mark_duplicates(self, subset=None, keep="first"): if subset is None: subset = self._internal.column_labels else: if is_name_like_tuple(subset): subset = [subset] elif is_name_like_value(subset): subset = [(subset,)] else: subset = [sub if is_name_like_tuple(sub) else (sub,) for sub in subset] diff = set(subset).difference(set(self._internal.column_labels)) if len(diff) > 0: raise KeyError(", ".join([name_like_string(d) for d in diff])) group_cols = [self._internal.spark_column_name_for(label) for label in subset] sdf = self._internal.resolved_copy.spark_frame column = verify_temp_column_name(sdf, "__duplicated__") if keep == "first" or keep == "last": if keep == "first": ord_func = spark.functions.asc else: ord_func = spark.functions.desc window = ( Window.partitionBy(group_cols) .orderBy(ord_func(NATURAL_ORDER_COLUMN_NAME)) .rowsBetween(Window.unboundedPreceding, Window.currentRow) ) sdf = sdf.withColumn(column, F.row_number().over(window) > 1) elif not keep: window = Window.partitionBy(group_cols).rowsBetween( Window.unboundedPreceding, Window.unboundedFollowing ) sdf = sdf.withColumn(column, F.count("*").over(window) > 1) else: raise ValueError("'keep' only supports 'first', 'last' and False") return sdf, column def duplicated(self, subset=None, keep="first") -> "Series": """ Return boolean Series denoting duplicate rows, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series Examples -------- >>> df = ks.DataFrame({'a': [1, 1, 1, 3], 'b': [1, 1, 1, 4], 'c': [1, 1, 1, 5]}, ... columns = ['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 1 1 1 2 1 1 1 3 3 4 5 >>> df.duplicated().sort_index() 0 False 1 True 2 True 3 False dtype: bool Mark duplicates as ``True`` except for the last occurrence. >>> df.duplicated(keep='last').sort_index() 0 True 1 True 2 False 3 False dtype: bool Mark all duplicates as ``True``. >>> df.duplicated(keep=False).sort_index() 0 True 1 True 2 True 3 False dtype: bool """ from databricks.koalas.series import first_series sdf, column = self._mark_duplicates(subset, keep) sdf = sdf.select( self._internal.index_spark_columns + [scol_for(sdf, column).alias(SPARK_DEFAULT_SERIES_NAME)] ) return first_series( DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_dtypes=self._internal.index_dtypes, column_labels=[None], # type: ignore data_spark_columns=[scol_for(sdf, SPARK_DEFAULT_SERIES_NAME)], ) ) ) # TODO: support other as DataFrame or array-like def dot(self, other: "Series") -> "Series": """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series It can also be called using ``self @ other`` in Python >= 3.5. .. note:: This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misusage, this method has the 'compute.max_rows' default limit of input length, and raises a ValueError. >>> from databricks.koalas.config import option_context >>> with option_context( ... 'compute.max_rows', 1000, "compute.ops_on_diff_frames", True ... ): # doctest: +NORMALIZE_WHITESPACE ... kdf = ks.DataFrame({'a': range(1001)}) ... kser = ks.Series([2], index=['a']) ... kdf.dot(kser) Traceback (most recent call last): ... ValueError: Current DataFrame has more then the given limit 1000 rows. Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' to retrieve to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. Parameters ---------- other : Series The other object to compute the matrix product with. Returns ------- Series Return the matrix product between self and other as a Series. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- >>> from databricks.koalas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) >>> kdf = ks.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> kser = ks.Series([1, 1, 2, 1]) >>> kdf.dot(kser) 0 -4 1 5 dtype: int64 Note how shuffling of the objects does not change the result. >>> kser2 = kser.reindex([1, 0, 2, 3]) >>> kdf.dot(kser2) 0 -4 1 5 dtype: int64 >>> kdf @ kser2 0 -4 1 5 dtype: int64 >>> reset_option("compute.ops_on_diff_frames") """ if not isinstance(other, ks.Series): raise TypeError("Unsupported type {}".format(type(other).__name__)) else: return cast(ks.Series, other.dot(self.transpose())).rename(None) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def to_koalas(self, index_col: Optional[Union[str, List[str]]] = None) -> "DataFrame": """ Converts the existing DataFrame into a Koalas DataFrame. This method is monkey-patched into Spark's DataFrame and can be used to convert a Spark DataFrame into a Koalas DataFrame. If running on an existing Koalas DataFrame, the method returns itself. If a Koalas DataFrame is converted to a Spark DataFrame and then back to Koalas, it will lose the index information and the original index will be turned into a normal column. Parameters ---------- index_col: str or list of str, optional, default: None Index column of table in Spark. See Also -------- DataFrame.to_spark Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 >>> spark_df = df.to_spark() >>> spark_df DataFrame[col1: bigint, col2: bigint] >>> kdf = spark_df.to_koalas() >>> kdf col1 col2 0 1 3 1 2 4 We can specify the index columns. >>> kdf = spark_df.to_koalas(index_col='col1') >>> kdf # doctest: +NORMALIZE_WHITESPACE col2 col1 1 3 2 4 Calling to_koalas on a Koalas DataFrame simply returns itself. >>> df.to_koalas() col1 col2 0 1 3 1 2 4 """ if isinstance(self, DataFrame): return self else: assert isinstance(self, spark.DataFrame), type(self) from databricks.koalas.namespace import _get_index_map index_spark_columns, index_names = _get_index_map(self, index_col) internal = InternalFrame( spark_frame=self, index_spark_columns=index_spark_columns, index_names=index_names ) return DataFrame(internal) def cache(self) -> "CachedDataFrame": warnings.warn( "DataFrame.cache is deprecated as of DataFrame.spark.cache. " "Please use the API instead.", FutureWarning, ) return self.spark.cache() cache.__doc__ = SparkFrameMethods.cache.__doc__ def persist(self, storage_level=StorageLevel.MEMORY_AND_DISK) -> "CachedDataFrame": warnings.warn( "DataFrame.persist is deprecated as of DataFrame.spark.persist. " "Please use the API instead.", FutureWarning, ) return self.spark.persist(storage_level) persist.__doc__ = SparkFrameMethods.persist.__doc__ def hint(self, name: str, *parameters) -> "DataFrame": warnings.warn( "DataFrame.hint is deprecated as of DataFrame.spark.hint. " "Please use the API instead.", FutureWarning, ) return self.spark.hint(name, *parameters) hint.__doc__ = SparkFrameMethods.hint.__doc__ def to_table( self, name: str, format: Optional[str] = None, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> None: return self.spark.to_table(name, format, mode, partition_cols, index_col, **options) to_table.__doc__ = SparkFrameMethods.to_table.__doc__ def to_delta( self, path: str, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> None: """ Write the DataFrame out as a Delta Lake table. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent Koalas' index. The index name in Koalas is ignored. By default, the index is always lost. options : dict All other options passed directly into Delta Lake. See Also -------- read_delta DataFrame.to_parquet DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 Create a new Delta Lake table, partitioned by one column: >>> df.to_delta('%s/to_delta/foo' % path, partition_cols='date') Partitioned by two columns: >>> df.to_delta('%s/to_delta/bar' % path, partition_cols=['date', 'country']) Overwrite an existing table's partitions, using the 'replaceWhere' capability in Delta: >>> df.to_delta('%s/to_delta/bar' % path, ... mode='overwrite', replaceWhere='date >= "2012-01-01"') """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore self.spark.to_spark_io( path=path, mode=mode, format="delta", partition_cols=partition_cols, index_col=index_col, **options, ) def to_parquet( self, path: str, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, compression: Optional[str] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> None: """ Write the DataFrame out as a Parquet file or directory. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns compression : str {'none', 'uncompressed', 'snappy', 'gzip', 'lzo', 'brotli', 'lz4', 'zstd'} Compression codec to use when saving to file. If None is set, it uses the value specified in `spark.sql.parquet.compression.codec`. index_col: str or list of str, optional, default: None Column names to be used in Spark to represent Koalas' index. The index name in Koalas is ignored. By default, the index is always lost. options : dict All other options passed directly into Spark's data source. See Also -------- read_parquet DataFrame.to_delta DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_parquet('%s/to_parquet/foo.parquet' % path, partition_cols='date') >>> df.to_parquet( ... '%s/to_parquet/foo.parquet' % path, ... mode = 'overwrite', ... partition_cols=['date', 'country']) """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore builder = self.to_spark(index_col=index_col).write.mode(mode) if partition_cols is not None: builder.partitionBy(partition_cols) builder._set_opts(compression=compression) builder.options(**options).format("parquet").save(path) def to_orc( self, path: str, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> None: """ Write the DataFrame out as a ORC file or directory. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent Koalas' index. The index name in Koalas is ignored. By default, the index is always lost. options : dict All other options passed directly into Spark's data source. See Also -------- read_orc DataFrame.to_delta DataFrame.to_parquet DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_orc('%s/to_orc/foo.orc' % path, partition_cols='date') >>> df.to_orc( ... '%s/to_orc/foo.orc' % path, ... mode = 'overwrite', ... partition_cols=['date', 'country']) """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore self.spark.to_spark_io( path=path, mode=mode, format="orc", partition_cols=partition_cols, index_col=index_col, **options, ) def to_spark_io( self, path: Optional[str] = None, format: Optional[str] = None, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> None: return self.spark.to_spark_io(path, format, mode, partition_cols, index_col, **options) to_spark_io.__doc__ = SparkFrameMethods.to_spark_io.__doc__ def to_spark(self, index_col: Optional[Union[str, List[str]]] = None) -> SparkDataFrame: return self.spark.frame(index_col) to_spark.__doc__ = SparkFrameMethods.__doc__ def to_pandas(self) -> pd.DataFrame: """ Return a pandas DataFrame. .. note:: This method should only be used if the resulting pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.to_pandas() dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 """ return self._internal.to_pandas_frame.copy() # Alias to maintain backward compatibility with Spark def toPandas(self) -> pd.DataFrame: warnings.warn( "DataFrame.toPandas is deprecated as of DataFrame.to_pandas. " "Please use the API instead.", FutureWarning, ) return self.to_pandas() toPandas.__doc__ = to_pandas.__doc__ def assign(self, **kwargs) -> "DataFrame": """ Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable, Series or Index} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though Koalas doesn't check it). If the values are not callable, (e.g. a Series or a literal), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Examples -------- >>> df = ks.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence and you can also create multiple columns within the same assign. >>> assigned = df.assign(temp_f=df['temp_c'] * 9 / 5 + 32, ... temp_k=df['temp_c'] + 273.15, ... temp_idx=df.index) >>> assigned[['temp_c', 'temp_f', 'temp_k', 'temp_idx']] temp_c temp_f temp_k temp_idx Portland 17.0 62.6 290.15 Portland Berkeley 25.0 77.0 298.15 Berkeley Notes ----- Assigning multiple columns within the same ``assign`` is possible but you cannot refer to newly created or modified columns. This feature is supported in pandas for Python 3.6 and later but not in Koalas. In Koalas, all items are computed first, and then assigned. """ return self._assign(kwargs) def _assign(self, kwargs): assert isinstance(kwargs, dict) from databricks.koalas.indexes import MultiIndex from databricks.koalas.series import IndexOpsMixin for k, v in kwargs.items(): is_invalid_assignee = ( not (isinstance(v, (IndexOpsMixin, spark.Column)) or callable(v) or is_scalar(v)) ) or isinstance(v, MultiIndex) if is_invalid_assignee: raise TypeError( "Column assignment doesn't support type " "{0}".format(type(v).__name__) ) if callable(v): kwargs[k] = v(self) pairs = { (k if is_name_like_tuple(k) else (k,)): ( (v.spark.column, v.dtype) if isinstance(v, IndexOpsMixin) and not isinstance(v, MultiIndex) else (v, None) if isinstance(v, spark.Column) else (F.lit(v), None) ) for k, v in kwargs.items() } scols = [] data_dtypes = [] for label in self._internal.column_labels: for i in range(len(label)): if label[: len(label) - i] in pairs: scol, dtype = pairs[label[: len(label) - i]] scol = scol.alias(self._internal.spark_column_name_for(label)) break else: scol = self._internal.spark_column_for(label) dtype = self._internal.dtype_for(label) scols.append(scol) data_dtypes.append(dtype) column_labels = self._internal.column_labels.copy() for label, (scol, dtype) in pairs.items(): if label not in set(i[: len(label)] for i in self._internal.column_labels): scols.append(scol.alias(name_like_string(label))) column_labels.append(label) data_dtypes.append(dtype) level = self._internal.column_labels_level column_labels = [ tuple(list(label) + ([""] * (level - len(label)))) for label in column_labels ] internal = self._internal.with_new_columns( scols, column_labels=column_labels, data_dtypes=data_dtypes ) return DataFrame(internal) @staticmethod def from_records( data: Union[np.array, List[tuple], dict, pd.DataFrame], index: Union[str, list, np.array] = None, exclude: list = None, columns: list = None, coerce_float: bool = False, nrows: int = None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- df : DataFrame Examples -------- Use dict as input >>> ks.DataFrame.from_records({'A': [1, 2, 3]}) A 0 1 1 2 2 3 Use list of tuples as input >>> ks.DataFrame.from_records([(1, 2), (3, 4)]) 0 1 0 1 2 1 3 4 Use NumPy array as input >>> ks.DataFrame.from_records(np.eye(3)) 0 1 2 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ return DataFrame( pd.DataFrame.from_records(data, index, exclude, columns, coerce_float, nrows) ) def to_records(self, index=True, column_dtypes=None, index_dtypes=None) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = ks.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) # doctest: +SKIP rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Specification of dtype for columns is new in pandas 0.24.0. Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i4'), ('B', '<f8')]) Specification of dtype for index is new in pandas 0.24.0. Data types can also be specified for the index: >>> df.to_records(index_dtypes="<S2") # doctest: +SKIP rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('index', 'S2'), ('A', '<i8'), ('B', '<f8')]) """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_records, pd.DataFrame.to_records, args ) def copy(self, deep=None) -> "DataFrame": """ Make a copy of this object's indices and data. Parameters ---------- deep : None this parameter is not supported but just dummy parameter to match pandas. Returns ------- copy : DataFrame Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df_copy = df.copy() >>> df_copy x y z w 0 1 3 5 7 1 2 4 6 8 """ return DataFrame(self._internal) def dropna( self, axis=0, how="any", thresh=None, subset=None, inplace=False ) -> Optional["DataFrame"]: """ Remove missing values. Parameters ---------- axis : {0 or 'index'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.drop : Drop specified labels from columns. DataFrame.isnull: Indicate missing values. DataFrame.notnull : Indicate existing (non-missing) values. Examples -------- >>> df = ks.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [None, "1940-04-25", None]}, ... columns=['name', 'toy', 'born']) >>> df name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ axis = validate_axis(axis) inplace = validate_bool_kwarg(inplace, "inplace") if thresh is None: if how is None: raise TypeError("must specify how or thresh") elif how not in ("any", "all"): raise ValueError("invalid how option: {h}".format(h=how)) if subset is not None: if isinstance(subset, str): labels = [(subset,)] # type: Optional[List[Tuple]] elif isinstance(subset, tuple): labels = [subset] else: labels = [sub if isinstance(sub, tuple) else (sub,) for sub in subset] else: labels = None if axis == 0: if labels is not None: invalids = [label for label in labels if label not in self._internal.column_labels] if len(invalids) > 0: raise KeyError(invalids) else: labels = self._internal.column_labels cnt = reduce( lambda x, y: x + y, [ F.when(self._kser_for(label).notna().spark.column, 1).otherwise(0) for label in labels ], F.lit(0), ) if thresh is not None: pred = cnt >= F.lit(int(thresh)) elif how == "any": pred = cnt == F.lit(len(labels)) elif how == "all": pred = cnt > F.lit(0) internal = self._internal.with_filter(pred) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) else: assert axis == 1 internal = self._internal.resolved_copy if labels is not None: if any(len(lbl) != internal.index_level for lbl in labels): raise ValueError( "The length of each subset must be the same as the index size." ) cond = reduce( lambda x, y: x | y, [ reduce( lambda x, y: x & y, [ scol == F.lit(l) for l, scol in zip(lbl, internal.index_spark_columns) ], ) for lbl in labels ], ) internal = internal.with_filter(cond) null_counts = [] for label in internal.column_labels: scol = internal.spark_column_for(label) if isinstance(internal.spark_type_for(label), (FloatType, DoubleType)): cond = scol.isNull() | F.isnan(scol) else: cond = scol.isNull() null_counts.append( F.sum(F.when(~cond, 1).otherwise(0)).alias(name_like_string(label)) ) counts = internal.spark_frame.select(null_counts + [F.count("*")]).head() if thresh is not None: column_labels = [ label for label, cnt in zip(internal.column_labels, counts) if (cnt or 0) >= int(thresh) ] elif how == "any": column_labels = [ label for label, cnt in zip(internal.column_labels, counts) if (cnt or 0) == counts[-1] ] elif how == "all": column_labels = [ label for label, cnt in zip(internal.column_labels, counts) if (cnt or 0) > 0 ] kdf = self[column_labels] if inplace: self._update_internal_frame(kdf._internal) return None else: return kdf # TODO: add 'limit' when value parameter exists def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None ) -> Optional["DataFrame"]: """Fill NA/NaN values. .. note:: the current implementation of 'method' parameter in fillna uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- value : scalar, dict, Series Value to use to fill holes. alternately a dict/Series of values specifying which value to use for each column. DataFrame is not supported. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 1.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 1.0 4 """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError("fillna currently only works for axis=0 or axis='index'") if value is not None: if not isinstance(value, (float, int, str, bool, dict, pd.Series)): raise TypeError("Unsupported type %s" % type(value).__name__) if limit is not None: raise ValueError("limit parameter for value is not support now") if isinstance(value, pd.Series): value = value.to_dict() if isinstance(value, dict): for v in value.values(): if not isinstance(v, (float, int, str, bool)): raise TypeError("Unsupported type %s" % type(v).__name__) value = {k if is_name_like_tuple(k) else (k,): v for k, v in value.items()} def op(kser): label = kser._column_label for k, v in value.items(): if k == label[: len(k)]: return kser._fillna( value=value[k], method=method, axis=axis, limit=limit ) else: return kser else: op = lambda kser: kser._fillna(value=value, method=method, axis=axis, limit=limit) elif method is not None: op = lambda kser: kser._fillna(value=value, method=method, axis=axis, limit=limit) else: raise ValueError("Must specify a fillna 'value' or 'method' parameter.") kdf = self._apply_series_op(op, should_resolve=(method is not None)) inplace = validate_bool_kwarg(inplace, "inplace") if inplace: self._update_internal_frame(kdf._internal, requires_same_anchor=False) return None else: return kdf def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ) -> Optional["DataFrame"]: """ Returns a new DataFrame replacing a value with another value. Parameters ---------- to_replace : int, float, string, list, tuple or dict Value to be replaced. value : int, float, string, list or tuple Value to use to replace holes. The replacement value must be an int, float, or string. If value is a list or tuple, value should be of the same length with to_replace. inplace : boolean, default False Fill in place (do not create a new object) Returns ------- DataFrame Object after replacement. Examples -------- >>> df = ks.DataFrame({"name": ['Ironman', 'Captain America', 'Thor', 'Hulk'], ... "weapon": ['Mark-45', 'Shield', 'Mjolnir', 'Smash']}, ... columns=['name', 'weapon']) >>> df name weapon 0 Ironman Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash Scalar `to_replace` and `value` >>> df.replace('Ironman', 'War-Machine') name weapon 0 War-Machine Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash List like `to_replace` and `value` >>> df.replace(['Ironman', 'Captain America'], ['Rescue', 'Hawkeye'], inplace=True) >>> df name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Mjolnir 3 Hulk Smash Dicts can be used to specify different replacement values for different existing values To use a dict in this way the value parameter should be None >>> df.replace({'Mjolnir': 'Stormbuster'}) name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash Dict can specify that different values should be replaced in different columns The value parameter should not be None in this case >>> df.replace({'weapon': 'Mjolnir'}, 'Stormbuster') name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash Nested dictionaries The value parameter should be None to use a nested dict in this way >>> df.replace({'weapon': {'Mjolnir': 'Stormbuster'}}) name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash """ if method != "pad": raise NotImplementedError("replace currently works only for method='pad") if limit is not None: raise NotImplementedError("replace currently works only when limit=None") if regex is not False: raise NotImplementedError("replace currently doesn't supports regex") inplace = validate_bool_kwarg(inplace, "inplace") if value is not None and not isinstance(value, (int, float, str, list, tuple, dict)): raise TypeError("Unsupported type {}".format(type(value).__name__)) if to_replace is not None and not isinstance( to_replace, (int, float, str, list, tuple, dict) ): raise TypeError("Unsupported type {}".format(type(to_replace).__name__)) if isinstance(value, (list, tuple)) and isinstance(to_replace, (list, tuple)): if len(value) != len(to_replace): raise ValueError("Length of to_replace and value must be same") if isinstance(to_replace, dict) and ( value is not None or all(isinstance(i, dict) for i in to_replace.values()) ): def op(kser): if kser.name in to_replace: return kser.replace(to_replace=to_replace[kser.name], value=value, regex=regex) else: return kser else: op = lambda kser: kser.replace(to_replace=to_replace, value=value, regex=regex) kdf = self._apply_series_op(op) if inplace: self._update_internal_frame(kdf._internal) return None else: return kdf def clip(self, lower: Union[float, int] = None, upper: Union[float, int] = None) -> "DataFrame": """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Parameters ---------- lower : float or int, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or int, default None Maximum threshold value. All values above this threshold will be set to it. Returns ------- DataFrame DataFrame with the values outside the clip boundaries replaced. Examples -------- >>> ks.DataFrame({'A': [0, 2, 4]}).clip(1, 3) A 0 1 1 2 2 3 Notes ----- One difference between this implementation and pandas is that running pd.DataFrame({'A': ['a', 'b']}).clip(0, 1) will crash with "TypeError: '<=' not supported between instances of 'str' and 'int'" while ks.DataFrame({'A': ['a', 'b']}).clip(0, 1) will output the original DataFrame, simply ignoring the incompatible types. """ if is_list_like(lower) or is_list_like(upper): raise ValueError( "List-like value are not supported for 'lower' and 'upper' at the " + "moment" ) if lower is None and upper is None: return self return self._apply_series_op(lambda kser: kser.clip(lower=lower, upper=upper)) def head(self, n: int = 5) -> "DataFrame": """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- obj_head : same type as caller The first `n` rows of the caller object. Examples -------- >>> df = ks.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon """ if n < 0: n = len(self) + n if n <= 0: return DataFrame(self._internal.with_filter(F.lit(False))) else: sdf = self._internal.resolved_copy.spark_frame if get_option("compute.ordered_head"): sdf = sdf.orderBy(NATURAL_ORDER_COLUMN_NAME) return DataFrame(self._internal.with_new_sdf(sdf.limit(n))) def last(self, offset: Union[str, DateOffset]) -> "DataFrame": """ Select final periods of time series data based on a date offset. When having a DataFrame with dates as index, this function can select the last few rows based on a date offset. Parameters ---------- offset : str or DateOffset The offset length of the data that will be selected. For instance, '3D' will display all the rows having their index within the last 3 days. Returns ------- DataFrame A subset of the caller. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` Examples -------- >>> index = pd.date_range('2018-04-09', periods=4, freq='2D') >>> kdf = ks.DataFrame({'A': [1, 2, 3, 4]}, index=index) >>> kdf A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the last 3 days: >>> kdf.last('3D') A 2018-04-13 3 2018-04-15 4 Notice the data for 3 last calendar days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned. """ # Check index type should be format DateTime from databricks.koalas.indexes import DatetimeIndex if not isinstance(self.index, DatetimeIndex): raise TypeError("'last' only supports a DatetimeIndex") offset = to_offset(offset) from_date = self.index.max() - offset return cast(DataFrame, self.loc[from_date:]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None ) -> "DataFrame": """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ---------- values : column to aggregate. They should be either a list less than three or a string. index : column (string) or list of columns If an array is passed, it must be the same length as the data. The list should contain string. columns : column Columns used in the pivot operation. Only one column is supported and it should be a string. aggfunc : function (string), dict, default mean If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. Returns ------- table : DataFrame Examples -------- >>> df = ks.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}, ... columns=['A', 'B', 'C', 'D', 'E']) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum') >>> table.sort_index() # doctest: +NORMALIZE_WHITESPACE C large small A B bar one 4.0 5 two 7.0 6 foo one 4.0 1 two NaN 6 We can also fill missing values using the `fill_value` parameter. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum', fill_value=0) >>> table.sort_index() # doctest: +NORMALIZE_WHITESPACE C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 We can also calculate multiple types of aggregations for any given value column. >>> table = df.pivot_table(values=['D'], index =['C'], ... columns="A", aggfunc={'D': 'mean'}) >>> table.sort_index() # doctest: +NORMALIZE_WHITESPACE D A bar foo C large 5.5 2.000000 small 5.5 2.333333 The next example aggregates on multiple values. >>> table = df.pivot_table(index=['C'], columns="A", values=['D', 'E'], ... aggfunc={'D': 'mean', 'E': 'sum'}) >>> table.sort_index() # doctest: +NORMALIZE_WHITESPACE D E A bar foo bar foo C large 5.5 2.000000 15 9 small 5.5 2.333333 17 13 """ if not is_name_like_value(columns): raise ValueError("columns should be one column name.") if not is_name_like_value(values) and not ( isinstance(values, list) and all(is_name_like_value(v) for v in values) ): raise ValueError("values should be one column or list of columns.") if not isinstance(aggfunc, str) and ( not isinstance(aggfunc, dict) or not all( is_name_like_value(key) and isinstance(value, str) for key, value in aggfunc.items() ) ): raise ValueError( "aggfunc must be a dict mapping from column name " "to aggregate functions (string)." ) if isinstance(aggfunc, dict) and index is None: raise NotImplementedError( "pivot_table doesn't support aggfunc" " as dict and without index." ) if isinstance(values, list) and index is None: raise NotImplementedError("values can't be a list without index.") if columns not in self.columns: raise ValueError("Wrong columns {}.".format(name_like_string(columns))) if not is_name_like_tuple(columns): columns = (columns,) if isinstance(values, list): values = [col if is_name_like_tuple(col) else (col,) for col in values] if not all( isinstance(self._internal.spark_type_for(col), NumericType) for col in values ): raise TypeError("values should be a numeric type.") else: values = values if is_name_like_tuple(values) else (values,) if not isinstance(self._internal.spark_type_for(values), NumericType): raise TypeError("values should be a numeric type.") if isinstance(aggfunc, str): if isinstance(values, list): agg_cols = [ F.expr( "{1}(`{0}`) as `{0}`".format( self._internal.spark_column_name_for(value), aggfunc ) ) for value in values ] else: agg_cols = [ F.expr( "{1}(`{0}`) as `{0}`".format( self._internal.spark_column_name_for(values), aggfunc ) ) ] elif isinstance(aggfunc, dict): aggfunc = { key if is_name_like_tuple(key) else (key,): value for key, value in aggfunc.items() } agg_cols = [ F.expr( "{1}(`{0}`) as `{0}`".format(self._internal.spark_column_name_for(key), value) ) for key, value in aggfunc.items() ] agg_columns = [key for key, _ in aggfunc.items()] if set(agg_columns) != set(values): raise ValueError("Columns in aggfunc must be the same as values.") sdf = self._internal.resolved_copy.spark_frame if index is None: sdf = ( sdf.groupBy() .pivot(pivot_col=self._internal.spark_column_name_for(columns)) .agg(*agg_cols) ) elif isinstance(index, list): index = [label if is_name_like_tuple(label) else (label,) for label in index] sdf = ( sdf.groupBy([self._internal.spark_column_name_for(label) for label in index]) .pivot(pivot_col=self._internal.spark_column_name_for(columns)) .agg(*agg_cols) ) else: raise ValueError("index should be a None or a list of columns.") if fill_value is not None and isinstance(fill_value, (int, float)): sdf = sdf.fillna(fill_value) if index is not None: index_columns = [self._internal.spark_column_name_for(label) for label in index] index_dtypes = [self._internal.dtype_for(label) for label in index] if isinstance(values, list): data_columns = [column for column in sdf.columns if column not in index_columns] if len(values) > 1: # If we have two values, Spark will return column's name # in this format: column_values, where column contains # their values in the DataFrame and values is # the column list passed to the pivot_table(). # E.g. if column is b and values is ['b','e'], # then ['2_b', '2_e', '3_b', '3_e']. # We sort the columns of Spark DataFrame by values. data_columns.sort(key=lambda x: x.split("_", 1)[1]) sdf = sdf.select(index_columns + data_columns) column_name_to_index = dict( zip(self._internal.data_spark_column_names, self._internal.column_labels) ) column_labels = [ tuple(list(column_name_to_index[name.split("_")[1]]) + [name.split("_")[0]]) for name in data_columns ] column_label_names = ([None] * column_labels_level(values)) + [columns] internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_columns], index_names=index, index_dtypes=index_dtypes, column_labels=column_labels, data_spark_columns=[scol_for(sdf, col) for col in data_columns], column_label_names=column_label_names, # type: ignore ) kdf = DataFrame(internal) # type: "DataFrame" else: column_labels = [tuple(list(values[0]) + [column]) for column in data_columns] column_label_names = ([None] * len(values[0])) + [columns] internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_columns], index_names=index, index_dtypes=index_dtypes, column_labels=column_labels, data_spark_columns=[scol_for(sdf, col) for col in data_columns], column_label_names=column_label_names, # type: ignore ) kdf = DataFrame(internal) else: internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_columns], index_names=index, index_dtypes=index_dtypes, column_label_names=[columns], ) kdf = DataFrame(internal) else: if isinstance(values, list): index_values = values[-1] else: index_values = values index_map = OrderedDict() # type: Dict[str, Optional[Tuple]] for i, index_value in enumerate(index_values): colname = SPARK_INDEX_NAME_FORMAT(i) sdf = sdf.withColumn(colname, F.lit(index_value)) index_map[colname] = None internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_map.keys()], index_names=list(index_map.values()), column_label_names=[columns], ) kdf = DataFrame(internal) kdf_columns = kdf.columns if isinstance(kdf_columns, pd.MultiIndex): kdf.columns = kdf_columns.set_levels( kdf_columns.levels[-1].astype( spark_type_to_pandas_dtype(self._kser_for(columns).spark.data_type) ), level=-1, ) else: kdf.columns = kdf_columns.astype( spark_type_to_pandas_dtype(self._kser_for(columns).spark.data_type) ) return kdf def pivot(self, index=None, columns=None, values=None) -> "DataFrame": """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation. Parameters ---------- index : string, optional Column to use to make new frame's index. If None, uses existing index. columns : string Column to use to make new frame's columns. values : string, object or a list of the previous Column(s) to use for populating new frame's values. Returns ------- DataFrame Returns reshaped DataFrame. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. Examples -------- >>> df = ks.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}, ... columns=['foo', 'bar', 'baz', 'zoo']) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(columns='bar', values='baz').sort_index() # doctest: +NORMALIZE_WHITESPACE bar A B C 0 1.0 NaN NaN 1 NaN 2.0 NaN 2 NaN NaN 3.0 3 4.0 NaN NaN 4 NaN 5.0 NaN 5 NaN NaN 6.0 Notice that, unlike pandas raises an ValueError when duplicated values are found, Koalas' pivot still works with its first value it meets during operation because pivot is an expensive operation and it is preferred to permissively execute over failing fast when processing large data. >>> df = ks.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}, columns=['foo', 'bar', 'baz']) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1.0 NaN NaN two NaN 3.0 4.0 It also support multi-index and multi-index column. >>> df.columns = pd.MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'baz')]) >>> df = df.set_index(('a', 'bar'), append=True) >>> df # doctest: +NORMALIZE_WHITESPACE a b foo baz (a, bar) 0 A one 1 1 A one 2 2 B two 3 3 C two 4 >>> df.pivot(columns=('a', 'foo'), values=('b', 'baz')).sort_index() ... # doctest: +NORMALIZE_WHITESPACE ('a', 'foo') one two (a, bar) 0 A 1.0 NaN 1 A 2.0 NaN 2 B NaN 3.0 3 C NaN 4.0 """ if columns is None: raise ValueError("columns should be set.") if values is None: raise ValueError("values should be set.") should_use_existing_index = index is not None if should_use_existing_index: df = self index = [index] else: # The index after `reset_index()` will never be used, so use "distributed" index # as a dummy to avoid overhead. with option_context("compute.default_index_type", "distributed"): df = self.reset_index() index = df._internal.column_labels[: self._internal.index_level] df = df.pivot_table(index=index, columns=columns, values=values, aggfunc="first") if should_use_existing_index: return df else: internal = df._internal.copy(index_names=self._internal.index_names) return DataFrame(internal) @property def columns(self) -> pd.Index: """The column labels of the DataFrame.""" names = [ name if name is None or len(name) > 1 else name[0] for name in self._internal.column_label_names ] if self._internal.column_labels_level > 1: columns = pd.MultiIndex.from_tuples(self._internal.column_labels, names=names) else: columns = pd.Index([label[0] for label in self._internal.column_labels], name=names[0]) return columns @columns.setter def columns(self, columns) -> None: if isinstance(columns, pd.MultiIndex): column_labels = columns.tolist() else: column_labels = [ col if is_name_like_tuple(col, allow_none=False) else (col,) for col in columns ] if len(self._internal.column_labels) != len(column_labels): raise ValueError( "Length mismatch: Expected axis has {} elements, " "new values have {} elements".format( len(self._internal.column_labels), len(column_labels) ) ) if isinstance(columns, pd.Index): column_label_names = [ name if is_name_like_tuple(name) else (name,) for name in columns.names ] # type: Optional[List] else: column_label_names = None ksers = [ self._kser_for(label).rename(name) for label, name in zip(self._internal.column_labels, column_labels) ] self._update_internal_frame( self._internal.with_new_columns(ksers, column_label_names=column_label_names) ) @property def dtypes(self) -> pd.Series: """Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the object dtype. Returns ------- pd.Series The data type of each column. Examples -------- >>> df = ks.DataFrame({'a': list('abc'), ... 'b': list(range(1, 4)), ... 'c': np.arange(3, 6).astype('i1'), ... 'd': np.arange(4.0, 7.0, dtype='float64'), ... 'e': [True, False, True], ... 'f': pd.date_range('20130101', periods=3)}, ... columns=['a', 'b', 'c', 'd', 'e', 'f']) >>> df.dtypes a object b int64 c int8 d float64 e bool f datetime64[ns] dtype: object """ return pd.Series( [self._kser_for(label).dtype for label in self._internal.column_labels], index=pd.Index( [label if len(label) > 1 else label[0] for label in self._internal.column_labels] ), ) def spark_schema(self, index_col: Optional[Union[str, List[str]]] = None) -> StructType: warnings.warn( "DataFrame.spark_schema is deprecated as of DataFrame.spark.schema. " "Please use the API instead.", FutureWarning, ) return self.spark.schema(index_col) spark_schema.__doc__ = SparkFrameMethods.schema.__doc__ def print_schema(self, index_col: Optional[Union[str, List[str]]] = None) -> None: warnings.warn( "DataFrame.print_schema is deprecated as of DataFrame.spark.print_schema. " "Please use the API instead.", FutureWarning, ) return self.spark.print_schema(index_col) print_schema.__doc__ = SparkFrameMethods.print_schema.__doc__ def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. It also takes Spark SQL DDL type strings, for instance, 'string' and 'date'. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty >>> df = ks.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes() Traceback (most recent call last): ... ValueError: at least one of include or exclude must be nonempty * If ``include`` and ``exclude`` have overlapping elements >>> df = ks.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes(include='a', exclude='a') Traceback (most recent call last): ... ValueError: include and exclude overlap on {'a'} Notes ----- * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` Examples -------- >>> df = ks.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3, ... 'd': ['a', 'b'] * 3}, columns=['a', 'b', 'c', 'd']) >>> df a b c d 0 1 True 1.0 a 1 2 False 2.0 b 2 1 True 1.0 a 3 2 False 2.0 b 4 1 True 1.0 a 5 2 False 2.0 b >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64'], exclude=['int']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c d 0 True 1.0 a 1 False 2.0 b 2 True 1.0 a 3 False 2.0 b 4 True 1.0 a 5 False 2.0 b Spark SQL DDL type strings can be used as well. >>> df.select_dtypes(exclude=['string']) a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 """ from pyspark.sql.types import _parse_datatype_string if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () if not any((include, exclude)): raise ValueError("at least one of include or exclude must be " "nonempty") # can't both include AND exclude! if set(include).intersection(set(exclude)): raise ValueError( "include and exclude overlap on {inc_ex}".format( inc_ex=set(include).intersection(set(exclude)) ) ) # Handle Spark types include_spark_type = [] for inc in include: try: include_spark_type.append(_parse_datatype_string(inc)) except: pass exclude_spark_type = [] for exc in exclude: try: exclude_spark_type.append(_parse_datatype_string(exc)) except: pass # Handle pandas types include_numpy_type = [] for inc in include: try: include_numpy_type.append(infer_dtype_from_object(inc)) except: pass exclude_numpy_type = [] for exc in exclude: try: exclude_numpy_type.append(infer_dtype_from_object(exc)) except: pass column_labels = [] for label in self._internal.column_labels: if len(include) > 0: should_include = ( infer_dtype_from_object(self._kser_for(label).dtype.name) in include_numpy_type or self._internal.spark_type_for(label) in include_spark_type ) else: should_include = not ( infer_dtype_from_object(self._kser_for(label).dtype.name) in exclude_numpy_type or self._internal.spark_type_for(label) in exclude_spark_type ) if should_include: column_labels.append(label) return DataFrame( self._internal.with_new_columns([self._kser_for(label) for label in column_labels]) ) def droplevel(self, level, axis=0) -> "DataFrame": """ Return DataFrame with requested index / column level(s) removed. Parameters ---------- level: int, str, or list-like If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Returns ------- DataFrame with requested index / column level(s) removed. Examples -------- >>> df = ks.DataFrame( ... [[3, 4], [7, 8], [11, 12]], ... index=pd.MultiIndex.from_tuples([(1, 2), (5, 6), (9, 10)], names=["a", "b"]), ... ) >>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2']) >>> df # doctest: +NORMALIZE_WHITESPACE level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12 >>> df.droplevel('a') # doctest: +NORMALIZE_WHITESPACE level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12 >>> df.droplevel('level_2', axis=1) # doctest: +NORMALIZE_WHITESPACE level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12 """ axis = validate_axis(axis) if axis == 0: if not isinstance(level, (tuple, list)): # huh? level = [level] index_names = self.index.names nlevels = self._internal.index_level int_level = set() for n in level: if isinstance(n, int): if n < 0: n = n + nlevels if n < 0: raise IndexError( "Too many levels: Index has only {} levels, " "{} is not a valid level number".format(nlevels, (n - nlevels)) ) if n >= nlevels: raise IndexError( "Too many levels: Index has only {} levels, not {}".format( nlevels, (n + 1) ) ) else: if n not in index_names: raise KeyError("Level {} not found".format(n)) n = index_names.index(n) int_level.add(n) if len(level) >= nlevels: raise ValueError( "Cannot remove {} levels from an index with {} levels: " "at least one level must be left.".format(len(level), nlevels) ) index_spark_columns, index_names, index_dtypes = zip( *[ item for i, item in enumerate( zip( self._internal.index_spark_columns, self._internal.index_names, self._internal.index_dtypes, ) ) if i not in int_level ] ) internal = self._internal.copy( index_spark_columns=list(index_spark_columns), index_names=list(index_names), index_dtypes=list(index_dtypes), ) return DataFrame(internal) else: kdf = self.copy() kdf.columns = kdf.columns.droplevel(level) return kdf def drop( self, labels=None, axis=1, columns: Union[Any, Tuple, List[Any], List[Tuple]] = None ) -> "DataFrame": """ Drop specified labels from columns. Remove columns by specifying label names and axis=1 or columns. When specifying both labels and columns, only labels will be dropped. Removing rows is yet to be implemented. Parameters ---------- labels : single label or list-like Column labels to drop. axis : {1 or 'columns'}, default 1 .. dropna currently only works for axis=1 'columns' axis=0 is yet to be implemented. columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). Returns ------- dropped : DataFrame See Also -------- Series.dropna Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('x', axis=1) y z w 0 3 5 7 1 4 6 8 >>> df.drop(['y', 'z'], axis=1) x w 0 1 7 1 2 8 >>> df.drop(columns=['y', 'z']) x w 0 1 7 1 2 8 Also support for MultiIndex >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> columns = [('a', 'x'), ('a', 'y'), ('b', 'z'), ('b', 'w')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df # doctest: +NORMALIZE_WHITESPACE a b x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('a') # doctest: +NORMALIZE_WHITESPACE b z w 0 5 7 1 6 8 Notes ----- Currently only axis = 1 is supported in this function, axis = 0 is yet to be implemented. """ if labels is not None: axis = validate_axis(axis) if axis == 1: return self.drop(columns=labels) raise NotImplementedError("Drop currently only works for axis=1") elif columns is not None: if is_name_like_tuple(columns): columns = [columns] elif is_name_like_value(columns): columns = [(columns,)] else: columns = [col if is_name_like_tuple(col) else (col,) for col in columns] drop_column_labels = set( label for label in self._internal.column_labels for col in columns if label[: len(col)] == col ) if len(drop_column_labels) == 0: raise KeyError(columns) cols, labels = zip( *( (column, label) for column, label in zip( self._internal.data_spark_column_names, self._internal.column_labels ) if label not in drop_column_labels ) ) internal = self._internal.with_new_columns([self._kser_for(label) for label in labels]) return DataFrame(internal) else: raise ValueError("Need to specify at least one of 'labels' or 'columns'") def _sort( self, by: List[Column], ascending: Union[bool, List[bool]], inplace: bool, na_position: str ): if isinstance(ascending, bool): ascending = [ascending] * len(by) if len(ascending) != len(by): raise ValueError( "Length of ascending ({}) != length of by ({})".format(len(ascending), len(by)) ) if na_position not in ("first", "last"): raise ValueError("invalid na_position: '{}'".format(na_position)) # Mapper: Get a spark column function for (ascending, na_position) combination # Note that 'asc_nulls_first' and friends were added as of Spark 2.4, see SPARK-23847. mapper = { (True, "first"): lambda x: Column(getattr(x._jc, "asc_nulls_first")()), (True, "last"): lambda x: Column(getattr(x._jc, "asc_nulls_last")()), (False, "first"): lambda x: Column(getattr(x._jc, "desc_nulls_first")()), (False, "last"): lambda x: Column(getattr(x._jc, "desc_nulls_last")()), } by = [mapper[(asc, na_position)](scol) for scol, asc in zip(by, ascending)] sdf = self._internal.resolved_copy.spark_frame.sort(*(by + [NATURAL_ORDER_COLUMN_NAME])) kdf = DataFrame(self._internal.with_new_sdf(sdf)) # type: DataFrame if inplace: self._update_internal_frame(kdf._internal) return None else: return kdf def sort_values( self, by: Union[Any, List[Any], Tuple, List[Tuple]], ascending: Union[bool, List[bool]] = True, inplace: bool = False, na_position: str = "last", ) -> Optional["DataFrame"]: """ Sort by the values along either axis. Parameters ---------- by : str or list of str ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False if True, perform operation in-place na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({ ... 'col1': ['A', 'B', None, 'D', 'C'], ... 'col2': [2, 9, 8, 7, 4], ... 'col3': [0, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df col1 col2 col3 0 A 2 0 1 B 9 9 2 None 8 4 3 D 7 2 4 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 B 9 9 4 C 4 3 3 D 7 2 2 None 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 3 D 7 2 4 C 4 3 1 B 9 9 0 A 2 0 2 None 8 4 Sort by multiple columns >>> df = ks.DataFrame({ ... 'col1': ['A', 'A', 'B', None, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 None 8 4 """ inplace = validate_bool_kwarg(inplace, "inplace") if is_name_like_value(by): by = [by] else: assert is_list_like(by), type(by) new_by = [] for colname in by: ser = self[colname] if not isinstance(ser, ks.Series): raise ValueError( "The column %s is not unique. For a multi-index, the label must be a tuple " "with elements corresponding to each level." % name_like_string(colname) ) new_by.append(ser.spark.column) return self._sort(by=new_by, ascending=ascending, inplace=inplace, na_position=na_position) def sort_index( self, axis: int = 0, level: Optional[Union[int, List[int]]] = None, ascending: bool = True, inplace: bool = False, kind: str = None, na_position: str = "last", ) -> Optional["DataFrame"]: """ Sort object by labels (along an axis) Parameters ---------- axis : index, columns to direct sorting. Currently, only axis = 0 is supported. level : int or level name or list of ints or list of level names if not None, sort on values in specified index level(s) ascending : boolean, default True Sort ascending vs. descending inplace : bool, default False if True, perform operation in-place kind : str, default None Koalas does not allow specifying the sorting algorithm at the moment, default None na_position : {‘first’, ‘last’}, default ‘last’ first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for MultiIndex. Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({'A': [2, 1, np.nan]}, index=['b', 'a', np.nan]) >>> df.sort_index() A a 1.0 b 2.0 NaN NaN >>> df.sort_index(ascending=False) A b 2.0 a 1.0 NaN NaN >>> df.sort_index(na_position='first') A NaN NaN a 1.0 b 2.0 >>> df.sort_index(inplace=True) >>> df A a 1.0 b 2.0 NaN NaN >>> df = ks.DataFrame({'A': range(4), 'B': range(4)[::-1]}, ... index=[['b', 'b', 'a', 'a'], [1, 0, 1, 0]], ... columns=['A', 'B']) >>> df.sort_index() A B a 0 3 0 1 2 1 b 0 1 2 1 0 3 >>> df.sort_index(level=1) # doctest: +SKIP A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 >>> df.sort_index(level=[1, 0]) A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = validate_axis(axis) if axis != 0: raise NotImplementedError("No other axis than 0 are supported at the moment") if kind is not None: raise NotImplementedError( "Specifying the sorting algorithm is not supported at the moment." ) if level is None or (is_list_like(level) and len(level) == 0): # type: ignore by = self._internal.index_spark_columns elif is_list_like(level): by = [self._internal.index_spark_columns[l] for l in level] # type: ignore else: by = [self._internal.index_spark_columns[level]] # type: ignore return self._sort(by=by, ascending=ascending, inplace=inplace, na_position=na_position) def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. Returns ------- DataFrame DataFrame with levels swapped in MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_arrays( ... [['red', 'blue'], [1, 2], ['s', 'm']], names = ['color', 'number', 'size']) >>> midx # doctest: +SKIP MultiIndex([( 'red', 1, 's'), ('blue', 2, 'm')], names=['color', 'number', 'size']) Swap levels in a MultiIndex on index. >>> kdf = ks.DataFrame({'x': [5, 6], 'y':[5, 6]}, index=midx) >>> kdf # doctest: +NORMALIZE_WHITESPACE x y color number size red 1 s 5 5 blue 2 m 6 6 >>> kdf.swaplevel() # doctest: +NORMALIZE_WHITESPACE x y color size number red s 1 5 5 blue m 2 6 6 >>> kdf.swaplevel(0, 1) # doctest: +NORMALIZE_WHITESPACE x y number color size 1 red s 5 5 2 blue m 6 6 >>> kdf.swaplevel('number', 'size') # doctest: +NORMALIZE_WHITESPACE x y color size number red s 1 5 5 blue m 2 6 6 Swap levels in a MultiIndex on columns. >>> kdf = ks.DataFrame({'x': [5, 6], 'y':[5, 6]}) >>> kdf.columns = midx >>> kdf color red blue number 1 2 size s m 0 5 5 1 6 6 >>> kdf.swaplevel(axis=1) color red blue size s m number 1 2 0 5 5 1 6 6 >>> kdf.swaplevel(axis=1) color red blue size s m number 1 2 0 5 5 1 6 6 >>> kdf.swaplevel(0, 1, axis=1) number 1 2 color red blue size s m 0 5 5 1 6 6 >>> kdf.swaplevel('number', 'color', axis=1) number 1 2 color red blue size s m 0 5 5 1 6 6 """ axis = validate_axis(axis) if axis == 0: internal = self._swaplevel_index(i, j) else: assert axis == 1 internal = self._swaplevel_columns(i, j) return DataFrame(internal) def swapaxes(self, i: Union[str, int], j: Union[str, int], copy: bool = True) -> "DataFrame": """ Interchange axes and swap values axes appropriately. .. note:: This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misusage, this method has the 'compute.max_rows' default limit of input length, and raises a ValueError. >>> from databricks.koalas.config import option_context >>> with option_context('compute.max_rows', 1000): # doctest: +NORMALIZE_WHITESPACE ... ks.DataFrame({'a': range(1001)}).swapaxes(i=0, j=1) Traceback (most recent call last): ... ValueError: Current DataFrame has more then the given limit 1000 rows. Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' to retrieve to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. Parameters ---------- i: {0 or 'index', 1 or 'columns'}. The axis to swap. j: {0 or 'index', 1 or 'columns'}. The axis to swap. copy : bool, default True. Returns ------- DataFrame Examples -------- >>> kdf = ks.DataFrame( ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['x', 'y', 'z'], columns=['a', 'b', 'c'] ... ) >>> kdf a b c x 1 2 3 y 4 5 6 z 7 8 9 >>> kdf.swapaxes(i=1, j=0) x y z a 1 4 7 b 2 5 8 c 3 6 9 >>> kdf.swapaxes(i=1, j=1) a b c x 1 2 3 y 4 5 6 z 7 8 9 """ assert copy is True i = validate_axis(i) j = validate_axis(j) return self.copy() if i == j else self.transpose() def _swaplevel_columns(self, i, j) -> InternalFrame: assert isinstance(self.columns, pd.MultiIndex) for index in (i, j): if not isinstance(index, int) and index not in self.columns.names: raise KeyError("Level %s not found" % index) i = i if isinstance(i, int) else self.columns.names.index(i) j = j if isinstance(j, int) else self.columns.names.index(j) for index in (i, j): if index >= len(self.columns) or index < -len(self.columns): raise IndexError( "Too many levels: Columns have only %s levels, " "%s is not a valid level number" % (self._internal.index_level, index) ) column_label_names = self._internal.column_label_names.copy() column_label_names[i], column_label_names[j], = ( column_label_names[j], column_label_names[i], ) column_labels = self._internal._column_labels column_label_list = [list(label) for label in column_labels] for label_list in column_label_list: label_list[i], label_list[j] = label_list[j], label_list[i] column_labels = [tuple(x) for x in column_label_list] internal = self._internal.copy( column_label_names=list(column_label_names), column_labels=list(column_labels) ) return internal def _swaplevel_index(self, i, j) -> InternalFrame: assert isinstance(self.index, ks.MultiIndex) for index in (i, j): if not isinstance(index, int) and index not in self.index.names: raise KeyError("Level %s not found" % index) i = i if isinstance(i, int) else self.index.names.index(i) j = j if isinstance(j, int) else self.index.names.index(j) for index in (i, j): if index >= self._internal.index_level or index < -self._internal.index_level: raise IndexError( "Too many levels: Index has only %s levels, " "%s is not a valid level number" % (self._internal.index_level, index) ) index_map = list( zip( self._internal.index_spark_columns, self._internal.index_names, self._internal.index_dtypes, ) ) index_map[i], index_map[j], = index_map[j], index_map[i] index_spark_columns, index_names, index_dtypes = zip(*index_map) internal = self._internal.copy( index_spark_columns=list(index_spark_columns), index_names=list(index_names), index_dtypes=list(index_dtypes), ) return internal # TODO: add keep = First def nlargest(self, n: int, columns: "Any") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant in pandas. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(n=3, columns='X') X Y 5 7.0 11 4 6.0 10 3 5.0 9 >>> df.nlargest(n=3, columns=['Y', 'X']) X Y 6 NaN 12 5 7.0 11 4 6.0 10 """ return self.sort_values(by=columns, ascending=False).head(n=n) # TODO: add keep = First def nsmallest(self, n: int, columns: "Any") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(n=3, columns='X') # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(n=3, columns=['Y', 'X']) # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 """ return self.sort_values(by=columns, ascending=True).head(n=n) def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable or dict The sequence of values to test. If values is a dict, the keys must be the column names, which must match. Series and DataFrame are not supported. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog'], ... columns=['num_legs', 'num_wings']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True """ if isinstance(values, (pd.DataFrame, pd.Series)): raise NotImplementedError("DataFrame and Series are not supported") if isinstance(values, dict) and not set(values.keys()).issubset(self.columns): raise AttributeError( "'DataFrame' object has no attribute %s" % (set(values.keys()).difference(self.columns)) ) data_spark_columns = [] if isinstance(values, dict): for i, col in enumerate(self.columns): if col in values: item = values[col] item = item.tolist() if isinstance(item, np.ndarray) else list(item) data_spark_columns.append( self._internal.spark_column_for(self._internal.column_labels[i]) .isin(item) .alias(self._internal.data_spark_column_names[i]) ) else: data_spark_columns.append( F.lit(False).alias(self._internal.data_spark_column_names[i]) ) elif is_list_like(values): values = values.tolist() if isinstance(values, np.ndarray) else list(values) data_spark_columns += [ self._internal.spark_column_for(label) .isin(values) .alias(self._internal.spark_column_name_for(label)) for label in self._internal.column_labels ] else: raise TypeError("Values should be iterable, Series, DataFrame or dict.") return DataFrame(self._internal.with_new_columns(data_spark_columns)) @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self), len(self.columns) def merge( self, right: "DataFrame", how: str = "inner", on: Optional[Union[Any, List[Any], Tuple, List[Tuple]]] = None, left_on: Optional[Union[Any, List[Any], Tuple, List[Tuple]]] = None, right_on: Optional[Union[Any, List[Any], Tuple, List[Tuple]]] = None, left_index: bool = False, right_index: bool = False, suffixes: Tuple[str, str] = ("_x", "_y"), ) -> "DataFrame": """ Merge DataFrame objects with a database-style join. The index of the resulting DataFrame will be one of the following: - 0...n if no index is used for merging - Index of the left DataFrame if merged only on the index of the right DataFrame - Index of the right DataFrame if merged only on the index of the left DataFrame - All involved indices if merged using the indices of both DataFrames e.g. if `left` with indices (a, x) and `right` with indices (b, x), the result will be an index (x, a, b) Parameters ---------- right: Object to merge with. how: Type of merge to be performed. {'left', 'right', 'outer', 'inner'}, default 'inner' left: use only keys from left frame, similar to a SQL left outer join; not preserve key order unlike pandas. right: use only keys from right frame, similar to a SQL right outer join; not preserve key order unlike pandas. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; not preserve the order of the left keys unlike pandas. on: Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on: Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on: Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index: Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index: Use the index from the right DataFrame as the join key. Same caveats as left_index. suffixes: Suffix to apply to overlapping column names in the left and right side, respectively. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- DataFrame.join : Join columns of another DataFrame. DataFrame.update : Modify in place using non-NA values from another DataFrame. DataFrame.hint : Specifies some hint on the current DataFrame. broadcast : Marks a DataFrame as small enough for use in broadcast joins. Examples -------- >>> df1 = ks.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']) >>> df2 = ks.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> merged = df1.merge(df2, left_on='lkey', right_on='rkey') >>> merged.sort_values(by=['lkey', 'value_x', 'rkey', 'value_y']) # doctest: +ELLIPSIS lkey value_x rkey value_y ...bar 2 bar 6 ...baz 3 baz 7 ...foo 1 foo 5 ...foo 1 foo 8 ...foo 5 foo 5 ...foo 5 foo 8 >>> left_kdf = ks.DataFrame({'A': [1, 2]}) >>> right_kdf = ks.DataFrame({'B': ['x', 'y']}, index=[1, 2]) >>> left_kdf.merge(right_kdf, left_index=True, right_index=True).sort_index() A B 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='left').sort_index() A B 0 1 None 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='right').sort_index() A B 1 2.0 x 2 NaN y >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='outer').sort_index() A B 0 1.0 None 1 2.0 x 2 NaN y Notes ----- As described in #263, joining string columns currently returns None for missing values instead of NaN. """ def to_list(os: Optional[Union[Any, List[Any], Tuple, List[Tuple]]]) -> List[Tuple]: if os is None: return [] elif is_name_like_tuple(os): return [os] # type: ignore elif is_name_like_value(os): return [(os,)] else: return [o if is_name_like_tuple(o) else (o,) for o in os] if isinstance(right, ks.Series): right = right.to_frame() if on: if left_on or right_on: raise ValueError( 'Can only pass argument "on" OR "left_on" and "right_on", ' "not a combination of both." ) left_key_names = list(map(self._internal.spark_column_name_for, to_list(on))) right_key_names = list(map(right._internal.spark_column_name_for, to_list(on))) else: # TODO: need special handling for multi-index. if left_index: left_key_names = self._internal.index_spark_column_names else: left_key_names = list(map(self._internal.spark_column_name_for, to_list(left_on))) if right_index: right_key_names = right._internal.index_spark_column_names else: right_key_names = list( map(right._internal.spark_column_name_for, to_list(right_on)) ) if left_key_names and not right_key_names: raise ValueError("Must pass right_on or right_index=True") if right_key_names and not left_key_names: raise ValueError("Must pass left_on or left_index=True") if not left_key_names and not right_key_names: common = list(self.columns.intersection(right.columns)) if len(common) == 0: raise ValueError( "No common columns to perform merge on. Merge options: " "left_on=None, right_on=None, left_index=False, right_index=False" ) left_key_names = list(map(self._internal.spark_column_name_for, to_list(common))) right_key_names = list(map(right._internal.spark_column_name_for, to_list(common))) if len(left_key_names) != len(right_key_names): raise ValueError("len(left_keys) must equal len(right_keys)") # We should distinguish the name to avoid ambiguous column name after merging. right_prefix = "__right_" right_key_names = [right_prefix + right_key_name for right_key_name in right_key_names] how = validate_how(how) def resolve(internal, side): rename = lambda col: "__{}_{}".format(side, col) internal = internal.resolved_copy sdf = internal.spark_frame sdf = sdf.select( [ scol_for(sdf, col).alias(rename(col)) for col in sdf.columns if col not in HIDDEN_COLUMNS ] + list(HIDDEN_COLUMNS) ) return internal.copy( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.index_spark_column_names ], data_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.data_spark_column_names ], ) left_internal = self._internal.resolved_copy right_internal = resolve(right._internal, "right") left_table = left_internal.spark_frame.alias("left_table") right_table = right_internal.spark_frame.alias("right_table") left_key_columns = [scol_for(left_table, label) for label in left_key_names] right_key_columns = [scol_for(right_table, label) for label in right_key_names] join_condition = reduce( lambda x, y: x & y, [lkey == rkey for lkey, rkey in zip(left_key_columns, right_key_columns)], ) joined_table = left_table.join(right_table, join_condition, how=how) # Unpack suffixes tuple for convenience left_suffix = suffixes[0] right_suffix = suffixes[1] # Append suffixes to columns with the same name to avoid conflicts later duplicate_columns = set(left_internal.column_labels) & set(right_internal.column_labels) exprs = [] data_columns = [] column_labels = [] left_scol_for = lambda label: scol_for( left_table, left_internal.spark_column_name_for(label) ) right_scol_for = lambda label: scol_for( right_table, right_internal.spark_column_name_for(label) ) for label in left_internal.column_labels: col = left_internal.spark_column_name_for(label) scol = left_scol_for(label) if label in duplicate_columns: spark_column_name = left_internal.spark_column_name_for(label) if ( spark_column_name in left_key_names and (right_prefix + spark_column_name) in right_key_names ): right_scol = right_scol_for(label) if how == "right": scol = right_scol.alias(col) elif how == "full": scol = F.when(scol.isNotNull(), scol).otherwise(right_scol).alias(col) else: pass else: col = col + left_suffix scol = scol.alias(col) label = tuple([str(label[0]) + left_suffix] + list(label[1:])) exprs.append(scol) data_columns.append(col) column_labels.append(label) for label in right_internal.column_labels: # recover `right_prefix` here. col = right_internal.spark_column_name_for(label)[len(right_prefix) :] scol = right_scol_for(label).alias(col) if label in duplicate_columns: spark_column_name = left_internal.spark_column_name_for(label) if ( spark_column_name in left_key_names and (right_prefix + spark_column_name) in right_key_names ): continue else: col = col + right_suffix scol = scol.alias(col) label = tuple([str(label[0]) + right_suffix] + list(label[1:])) exprs.append(scol) data_columns.append(col) column_labels.append(label) left_index_scols = left_internal.index_spark_columns right_index_scols = right_internal.index_spark_columns # Retain indices if they are used for joining if left_index: if right_index: if how in ("inner", "left"): exprs.extend(left_index_scols) index_spark_column_names = left_internal.index_spark_column_names index_names = left_internal.index_names elif how == "right": exprs.extend(right_index_scols) index_spark_column_names = right_internal.index_spark_column_names index_names = right_internal.index_names else: index_spark_column_names = left_internal.index_spark_column_names index_names = left_internal.index_names for col, left_scol, right_scol in zip( index_spark_column_names, left_index_scols, right_index_scols ): scol = F.when(left_scol.isNotNull(), left_scol).otherwise(right_scol) exprs.append(scol.alias(col)) else: exprs.extend(right_index_scols) index_spark_column_names = right_internal.index_spark_column_names index_names = right_internal.index_names elif right_index: exprs.extend(left_index_scols) index_spark_column_names = left_internal.index_spark_column_names index_names = left_internal.index_names else: index_spark_column_names = [] index_names = [] selected_columns = joined_table.select(*exprs) internal = InternalFrame( spark_frame=selected_columns, index_spark_columns=[ scol_for(selected_columns, col) for col in index_spark_column_names ], index_names=index_names, column_labels=column_labels, data_spark_columns=[scol_for(selected_columns, col) for col in data_columns], ) return DataFrame(internal) def join( self, right: "DataFrame", on: Optional[Union[Any, List[Any], Tuple, List[Tuple]]] = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `right` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- right: DataFrame, Series on: str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `right`, otherwise joins index-on-index. If multiple values given, the `right` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how: {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use `left` frame’s index (or column if on is specified). * right: use `right`’s index. * outer: form union of `left` frame’s index (or column if on is specified) with right’s index, and sort it. lexicographically. * inner: form intersection of `left` frame’s index (or column if on is specified) with `right`’s index, preserving the order of the `left`’s one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from `right` frame's overlapping columns. Returns ------- DataFrame A dataframe containing columns from both the `left` and `right`. See Also -------- DataFrame.merge: For column(s)-on-columns(s) operations. DataFrame.update : Modify in place using non-NA values from another DataFrame. DataFrame.hint : Specifies some hint on the current DataFrame. broadcast : Marks a DataFrame as small enough for use in broadcast joins. Notes ----- Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects. Examples -------- >>> kdf1 = ks.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ... 'A': ['A0', 'A1', 'A2', 'A3']}, ... columns=['key', 'A']) >>> kdf2 = ks.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}, ... columns=['key', 'B']) >>> kdf1 key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 >>> kdf2 key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> join_kdf = kdf1.join(kdf2, lsuffix='_left', rsuffix='_right') >>> join_kdf.sort_values(by=join_kdf.columns) key_left A key_right B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 None None If we want to join using the key columns, we need to set key to be the index in both df and right. The joined DataFrame will have key as its index. >>> join_kdf = kdf1.set_index('key').join(kdf2.set_index('key')) >>> join_kdf.sort_values(by=join_kdf.columns) # doctest: +NORMALIZE_WHITESPACE A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 None Another option to join using the key columns is to use the on parameter. DataFrame.join always uses right’s index but we can use any column in df. This method not preserve the original DataFrame’s index in the result unlike pandas. >>> join_kdf = kdf1.join(kdf2.set_index('key'), on='key') >>> join_kdf.index Int64Index([0, 1, 2, 3], dtype='int64') """ if isinstance(right, ks.Series): common = list(self.columns.intersection([right.name])) else: common = list(self.columns.intersection(right.columns)) if len(common) > 0 and not lsuffix and not rsuffix: raise ValueError( "columns overlap but no suffix specified: " "{rename}".format(rename=common) ) need_set_index = False if on: if not is_list_like(on): on = [on] # type: ignore if len(on) != right._internal.index_level: raise ValueError( 'len(left_on) must equal the number of levels in the index of "right"' ) need_set_index = len(set(on) & set(self.index.names)) == 0 if need_set_index: self = self.set_index(on) join_kdf = self.merge( right, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix) ) return join_kdf.reset_index() if need_set_index else join_kdf def append( self, other: "DataFrame", ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False, ) -> "DataFrame": """ Append rows of other to the end of caller, returning a new object. Columns in other that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default False Currently not supported. Returns ------- appended : DataFrame Examples -------- >>> df = ks.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df.append(df) A B 0 1 2 1 3 4 0 1 2 1 3 4 >>> df.append(df, ignore_index=True) A B 0 1 2 1 3 4 2 1 2 3 3 4 """ if isinstance(other, ks.Series): raise ValueError("DataFrames.append() does not support appending Series to DataFrames") if sort: raise NotImplementedError("The 'sort' parameter is currently not supported") if not ignore_index: index_scols = self._internal.index_spark_columns if len(index_scols) != other._internal.index_level: raise ValueError("Both DataFrames have to have the same number of index levels") if verify_integrity and len(index_scols) > 0: if ( self._internal.spark_frame.select(index_scols) .intersect( other._internal.spark_frame.select(other._internal.index_spark_columns) ) .count() ) > 0: raise ValueError("Indices have overlapping values") # Lazy import to avoid circular dependency issues from databricks.koalas.namespace import concat return cast(DataFrame, concat([self, other], ignore_index=ignore_index)) # TODO: add 'filter_func' and 'errors' parameter def update(self, other: "DataFrame", join: str = "left", overwrite: bool = True) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or Series join : 'left', default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. Returns ------- None : method directly changes calling object See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. DataFrame.join : Join columns of another DataFrame. DataFrame.hint : Specifies some hint on the current DataFrame. broadcast : Marks a DataFrame as small enough for use in broadcast joins. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, 5, 6], 'C': [7, 8, 9]}, columns=['B', 'C']) >>> df.update(new_df) >>> df.sort_index() A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}, columns=['B']) >>> df.update(new_df) >>> df.sort_index() A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_column = ks.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df.sort_index() A B 0 a d 1 b y 2 c e If `other` contains None the corresponding values are not updated in the original dataframe. >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, None, 6]}, columns=['B']) >>> df.update(new_df) >>> df.sort_index() A B 0 1 4.0 1 2 500.0 2 3 6.0 """ if join != "left": raise NotImplementedError("Only left join is supported") if isinstance(other, ks.Series): other = other.to_frame() update_columns = list( set(self._internal.column_labels).intersection(set(other._internal.column_labels)) ) update_sdf = self.join( other[update_columns], rsuffix="_new" )._internal.resolved_copy.spark_frame data_dtypes = self._internal.data_dtypes.copy() for column_labels in update_columns: column_name = self._internal.spark_column_name_for(column_labels) old_col = scol_for(update_sdf, column_name) new_col = scol_for( update_sdf, other._internal.spark_column_name_for(column_labels) + "_new" ) if overwrite: update_sdf = update_sdf.withColumn( column_name, F.when(new_col.isNull(), old_col).otherwise(new_col) ) else: update_sdf = update_sdf.withColumn( column_name, F.when(old_col.isNull(), new_col).otherwise(old_col) ) data_dtypes[self._internal.column_labels.index(column_labels)] = None # TODO: dtype? sdf = update_sdf.select( [scol_for(update_sdf, col) for col in self._internal.spark_column_names] + list(HIDDEN_COLUMNS) ) internal = self._internal.with_new_sdf(sdf, data_dtypes=data_dtypes) self._update_internal_frame(internal, requires_same_anchor=False) def sample( self, n: Optional[int] = None, frac: Optional[float] = None, replace: bool = False, random_state: Optional[int] = None, ) -> "DataFrame": """ Return a random sample of items from an axis of object. Please call this function using named argument by specifying the ``frac`` argument. You can use `random_state` for reproducibility. However, note that different from pandas, specifying a seed in Koalas/Spark does not guarantee the sampled rows will be fixed. The result set depends on not only the seed, but also how the data is distributed across machines and to some extent network randomness when shuffle operations are involved. Even in the simplest case, the result set will depend on the system's CPU core count. Parameters ---------- n : int, optional Number of items to return. This is currently NOT supported. Use frac instead. frac : float, optional Fraction of axis items to return. replace : bool, default False Sample with or without replacement. random_state : int, optional Seed for the random number generator (if int). Returns ------- Series or DataFrame A new object of same type as caller containing the sampled items. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish'], ... columns=['num_legs', 'num_wings', 'num_specimen_seen']) >>> df # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 A random 25% sample of the ``DataFrame``. Note that we use `random_state` to ensure the reproducibility of the examples. >>> df.sample(frac=0.25, random_state=1) # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 Extract 25% random elements from the ``Series`` ``df['num_legs']``, with replacement, so the same items could appear more than once. >>> df['num_legs'].sample(frac=0.4, replace=True, random_state=1) # doctest: +SKIP falcon 2 spider 8 spider 8 Name: num_legs, dtype: int64 Specifying the exact number of items to return is not supported at the moment. >>> df.sample(n=5) # doctest: +ELLIPSIS Traceback (most recent call last): ... NotImplementedError: Function sample currently does not support specifying ... """ # Note: we don't run any of the doctests because the result can change depending on the # system's core count. if n is not None: raise NotImplementedError( "Function sample currently does not support specifying " "exact number of items to return. Use frac instead." ) if frac is None: raise ValueError("frac must be specified.") sdf = self._internal.resolved_copy.spark_frame.sample( withReplacement=replace, fraction=frac, seed=random_state ) return DataFrame(self._internal.with_new_sdf(sdf)) def astype(self, dtype) -> "DataFrame": """ Cast a Koalas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire Koalas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}, dtype='int64') >>> df a b 0 1 1 1 2 2 2 3 3 Convert to float type: >>> df.astype('float') a b 0 1.0 1.0 1 2.0 2.0 2 3.0 3.0 Convert to int64 type back: >>> df.astype('int64') a b 0 1 1 1 2 2 2 3 3 Convert column a to float type: >>> df.astype({'a': float}) a b 0 1.0 1 1 2.0 2 2 3.0 3 """ applied = [] if is_dict_like(dtype): for col_name in dtype.keys(): if col_name not in self.columns: raise KeyError( "Only a column name can be used for the " "key in a dtype mappings argument." ) for col_name, col in self.items(): if col_name in dtype: applied.append(col.astype(dtype=dtype[col_name])) else: applied.append(col) else: for col_name, col in self.items(): applied.append(col.astype(dtype=dtype)) return DataFrame(self._internal.with_new_columns(applied)) def add_prefix(self, prefix) -> "DataFrame": """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(prefix, str) return self._apply_series_op( lambda kser: kser.rename(tuple([prefix + i for i in kser._column_label])) ) def add_suffix(self, suffix) -> "DataFrame": """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(suffix, str) return self._apply_series_op( lambda kser: kser.rename(tuple([i + suffix for i in kser._column_label])) ) # TODO: include, and exclude should be implemented. def describe(self, percentiles: Optional[List[float]] = None) -> "DataFrame": """ Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list of ``float`` in range [0.0, 1.0], default [0.25, 0.5, 0.75] A list of percentiles to be computed. Returns ------- DataFrame Summary statistics of the Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``25%``, ``50%``, ``75%``, ``max``. Currently only numeric data is supported. Examples -------- Describing a numeric ``Series``. >>> s = ks.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 dtype: float64 Describing a ``DataFrame``. Only numeric fields are returned. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0], ... 'object': ['a', 'b', 'c'] ... }, ... columns=['numeric1', 'numeric2', 'object']) >>> df.describe() numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0 For multi-index columns: >>> df.columns = [('num', 'a'), ('num', 'b'), ('obj', 'c')] >>> df.describe() # doctest: +NORMALIZE_WHITESPACE num a b count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0 >>> df[('num', 'b')].describe() count 3.0 mean 5.0 std 1.0 min 4.0 25% 4.0 50% 5.0 75% 6.0 max 6.0 Name: (num, b), dtype: float64 Describing a ``DataFrame`` and selecting custom percentiles. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0] ... }, ... columns=['numeric1', 'numeric2']) >>> df.describe(percentiles = [0.85, 0.15]) numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 15% 1.0 4.0 50% 2.0 5.0 85% 3.0 6.0 max 3.0 6.0 Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric1.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: numeric1, dtype: float64 Describing a column from a ``DataFrame`` by accessing it as an attribute and selecting custom percentiles. >>> df.numeric1.describe(percentiles = [0.85, 0.15]) count 3.0 mean 2.0 std 1.0 min 1.0 15% 1.0 50% 2.0 85% 3.0 max 3.0 Name: numeric1, dtype: float64 """ exprs = [] column_labels = [] for label in self._internal.column_labels: scol = self._internal.spark_column_for(label) spark_type = self._internal.spark_type_for(label) if isinstance(spark_type, DoubleType) or isinstance(spark_type, FloatType): exprs.append( F.nanvl(scol, F.lit(None)).alias(self._internal.spark_column_name_for(label)) ) column_labels.append(label) elif isinstance(spark_type, NumericType): exprs.append(scol) column_labels.append(label) if len(exprs) == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: if any((p < 0.0) or (p > 1.0) for p in percentiles): raise ValueError("Percentiles should all be in the interval [0, 1]") # appending 50% if not in percentiles already percentiles = (percentiles + [0.5]) if 0.5 not in percentiles else percentiles else: percentiles = [0.25, 0.5, 0.75] formatted_perc = ["{:.0%}".format(p) for p in sorted(percentiles)] stats = ["count", "mean", "stddev", "min", *formatted_perc, "max"] sdf = self._internal.spark_frame.select(*exprs).summary(stats) sdf = sdf.replace("stddev", "std", subset="summary") internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, "summary")], column_labels=column_labels, data_spark_columns=[ scol_for(sdf, self._internal.spark_column_name_for(label)) for label in column_labels ], ) return DataFrame(internal).astype("float64") def drop_duplicates(self, subset=None, keep="first", inplace=False) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy. Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. >>> df = ks.DataFrame( ... {'a': [1, 2, 2, 2, 3], 'b': ['a', 'a', 'a', 'c', 'd']}, columns = ['a', 'b']) >>> df a b 0 1 a 1 2 a 2 2 a 3 2 c 4 3 d >>> df.drop_duplicates().sort_index() a b 0 1 a 1 2 a 3 2 c 4 3 d >>> df.drop_duplicates('a').sort_index() a b 0 1 a 1 2 a 4 3 d >>> df.drop_duplicates(['a', 'b']).sort_index() a b 0 1 a 1 2 a 3 2 c 4 3 d >>> df.drop_duplicates(keep='last').sort_index() a b 0 1 a 2 2 a 3 2 c 4 3 d >>> df.drop_duplicates(keep=False).sort_index() a b 0 1 a 3 2 c 4 3 d """ inplace = validate_bool_kwarg(inplace, "inplace") sdf, column = self._mark_duplicates(subset, keep) sdf = sdf.where(~scol_for(sdf, column)).drop(column) internal = self._internal.with_new_sdf(sdf) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) def reindex( self, labels: Optional[Any] = None, index: Optional[Any] = None, columns: Optional[Any] = None, axis: Optional[Union[int, str]] = None, copy: Optional[bool] = True, fill_value: Optional[Any] = None, ) -> "DataFrame": """ Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- labels: array-like, optional New labels / index to conform the axis specified by ‘axis’ to. index, columns: array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data axis: int or str, optional Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). copy : bool, default True Return a new object, even if the passed indexes are the same. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. Returns ------- DataFrame with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = ks.DataFrame({ ... 'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index, ... columns=['http_status', 'response_time']) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index).sort_index() http_status response_time Chrome 200.0 0.02 Comodo Dragon NaN NaN IE10 404.0 0.08 Iceweasel NaN NaN Safari 404.0 0.07 We can fill in the missing values by passing a value to the keyword ``fill_value``. >>> df.reindex(new_index, fill_value=0, copy=False).sort_index() http_status response_time Chrome 200 0.02 Comodo Dragon 0 0.00 IE10 404 0.08 Iceweasel 0 0.00 Safari 404 0.07 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']).sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns").sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = ks.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2.sort_index() prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2).sort_index() prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN """ if axis is not None and (index is not None or columns is not None): raise TypeError("Cannot specify both 'axis' and any of 'index' or 'columns'.") if labels is not None: axis = validate_axis(axis) if axis == 0: index = labels elif axis == 1: columns = labels else: raise ValueError( "No axis named %s for object type %s." % (axis, type(axis).__name__) ) if index is not None and not is_list_like(index): raise TypeError( "Index must be called with a collection of some kind, " "%s was passed" % type(index) ) if columns is not None and not is_list_like(columns): raise TypeError( "Columns must be called with a collection of some kind, " "%s was passed" % type(columns) ) df = self if index is not None: df = df._reindex_index(index, fill_value) if columns is not None: df = df._reindex_columns(columns, fill_value) # Copy if copy and df is self: return df.copy() else: return df def _reindex_index(self, index, fill_value): # When axis is index, we can mimic pandas' by a right outer join. nlevels = self._internal.index_level assert nlevels <= 1 or ( isinstance(index, ks.MultiIndex) and nlevels == index.nlevels ), "MultiIndex DataFrame can only be reindexed with a similar Koalas MultiIndex." index_columns = self._internal.index_spark_column_names frame = self._internal.resolved_copy.spark_frame.drop(NATURAL_ORDER_COLUMN_NAME) if isinstance(index, ks.Index): if nlevels != index.nlevels: return DataFrame(index._internal.with_new_columns([])).reindex( columns=self.columns, fill_value=fill_value ) index_names = index._internal.index_names scols = index._internal.index_spark_columns labels = index._internal.spark_frame.select( [scol.alias(index_column) for scol, index_column in zip(scols, index_columns)] ) else: kser = ks.Series(list(index)) labels = kser._internal.spark_frame.select(kser.spark.column.alias(index_columns[0])) index_names = self._internal.index_names if fill_value is not None: frame_index_columns = [ verify_temp_column_name(frame, "__frame_index_column_{}__".format(i)) for i in range(nlevels) ] index_scols = [ scol_for(frame, index_col).alias(frame_index_col) for index_col, frame_index_col in zip(index_columns, frame_index_columns) ] scols = self._internal.resolved_copy.data_spark_columns frame = frame.select(index_scols + scols) temp_fill_value = verify_temp_column_name(frame, "__fill_value__") labels = labels.withColumn(temp_fill_value, F.lit(fill_value)) frame_index_scols = [scol_for(frame, col) for col in frame_index_columns] labels_index_scols = [scol_for(labels, col) for col in index_columns] joined_df = frame.join( labels, on=[fcol == lcol for fcol, lcol in zip(frame_index_scols, labels_index_scols)], how="right", ) joined_df = joined_df.select( *labels_index_scols, *[ F.when( reduce( lambda c1, c2: c1 & c2, [ fcol.isNull() & lcol.isNotNull() for fcol, lcol in zip(frame_index_scols, labels_index_scols) ], ), scol_for(joined_df, temp_fill_value), ) .otherwise(scol_for(joined_df, col)) .alias(col) for col in self._internal.data_spark_column_names ], ) else: joined_df = frame.join(labels, on=index_columns, how="right") sdf = joined_df.drop(NATURAL_ORDER_COLUMN_NAME) internal = self._internal.copy( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=index_names, index_dtypes=None, # TODO: dtypes? data_spark_columns=[ scol_for(sdf, col) for col in self._internal.data_spark_column_names ], ) return DataFrame(internal) def _reindex_columns(self, columns, fill_value): level = self._internal.column_labels_level if level > 1: label_columns = list(columns) for col in label_columns: if not isinstance(col, tuple): raise TypeError("Expected tuple, got {}".format(type(col).__name__)) else: label_columns = [(col,) for col in columns] for col in label_columns: if len(col) != level: raise ValueError( "shape (1,{}) doesn't match the shape (1,{})".format(len(col), level) ) fill_value = np.nan if fill_value is None else fill_value scols_or_ksers, labels = [], [] for label in label_columns: if label in self._internal.column_labels: scols_or_ksers.append(self._kser_for(label)) else: scols_or_ksers.append(F.lit(fill_value).alias(name_like_string(label))) labels.append(label) if isinstance(columns, pd.Index): column_label_names = [ name if is_name_like_tuple(name) else (name,) for name in columns.names ] internal = self._internal.with_new_columns( scols_or_ksers, column_labels=labels, column_label_names=column_label_names ) else: internal = self._internal.with_new_columns(scols_or_ksers, column_labels=labels) return DataFrame(internal) def reindex_like(self, other: "DataFrame", copy: bool = True) -> "DataFrame": """ Return a DataFrame with matching indices as other object. Conform the object to the same index on all axes. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : DataFrame Its row and column indices are used to define the new indices of this object. copy : bool, default True Return a new object, even if the passed indexes are the same. Returns ------- DataFrame DataFrame with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = ks.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = ks.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1).sort_index() # doctest: +NORMALIZE_WHITESPACE temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN None 2014-02-15 35.1 NaN medium """ if isinstance(other, DataFrame): return self.reindex(index=other.index, columns=other.columns, copy=copy) else: raise TypeError("other must be a Koalas DataFrame") def melt(self, id_vars=None, value_vars=None, var_name=None, value_name="value") -> "DataFrame": """ Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar, default 'variable' Name to use for the 'variable' column. If None it uses `frame.columns.name` or ‘variable’. value_name : scalar, default 'value' Name to use for the 'value' column. Returns ------- DataFrame Unpivoted DataFrame. Examples -------- >>> df = ks.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}, ... columns=['A', 'B', 'C']) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> ks.melt(df) variable value 0 A a 1 B 1 2 C 2 3 A b 4 B 3 5 C 4 6 A c 7 B 5 8 C 6 >>> df.melt(id_vars='A') A variable value 0 a B 1 1 a C 2 2 b B 3 3 b C 4 4 c B 5 5 c C 6 >>> df.melt(value_vars='A') variable value 0 A a 1 A b 2 A c >>> ks.melt(df, id_vars=['A', 'B']) A B variable value 0 a 1 C 2 1 b 3 C 4 2 c 5 C 6 >>> df.melt(id_vars=['A'], value_vars=['C']) A variable value 0 a C 2 1 b C 4 2 c C 6 The names of 'variable' and 'value' columns can be customized: >>> ks.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 """ column_labels = self._internal.column_labels if id_vars is None: id_vars = [] else: if isinstance(id_vars, tuple): if self._internal.column_labels_level == 1: id_vars = [idv if is_name_like_tuple(idv) else (idv,) for idv in id_vars] else: raise ValueError( "id_vars must be a list of tuples" " when columns are a MultiIndex" ) elif is_name_like_value(id_vars): id_vars = [(id_vars,)] else: id_vars = [idv if is_name_like_tuple(idv) else (idv,) for idv in id_vars] non_existence_col = [idv for idv in id_vars if idv not in column_labels] if len(non_existence_col) != 0: raveled_column_labels = np.ravel(column_labels) missing = [ nec for nec in np.ravel(non_existence_col) if nec not in raveled_column_labels ] if len(missing) != 0: raise KeyError( "The following 'id_vars' are not present" " in the DataFrame: {}".format(missing) ) else: raise KeyError( "None of {} are in the {}".format(non_existence_col, column_labels) ) if value_vars is None: value_vars = [] else: if isinstance(value_vars, tuple): if self._internal.column_labels_level == 1: value_vars = [ valv if is_name_like_tuple(valv) else (valv,) for valv in value_vars ] else: raise ValueError( "value_vars must be a list of tuples" " when columns are a MultiIndex" ) elif is_name_like_value(value_vars): value_vars = [(value_vars,)] else: value_vars = [valv if is_name_like_tuple(valv) else (valv,) for valv in value_vars] non_existence_col = [valv for valv in value_vars if valv not in column_labels] if len(non_existence_col) != 0: raveled_column_labels = np.ravel(column_labels) missing = [ nec for nec in np.ravel(non_existence_col) if nec not in raveled_column_labels ] if len(missing) != 0: raise KeyError( "The following 'value_vars' are not present" " in the DataFrame: {}".format(missing) ) else: raise KeyError( "None of {} are in the {}".format(non_existence_col, column_labels) ) if len(value_vars) == 0: value_vars = column_labels column_labels = [label for label in column_labels if label not in id_vars] sdf = self._internal.spark_frame if var_name is None: if ( self._internal.column_labels_level == 1 and self._internal.column_label_names[0] is None ): var_name = ["variable"] else: var_name = [ name_like_string(name) if name is not None else "variable_{}".format(i) for i, name in enumerate(self._internal.column_label_names) ] elif isinstance(var_name, str): var_name = [var_name] pairs = F.explode( F.array( *[ F.struct( *( [F.lit(c).alias(name) for c, name in zip(label, var_name)] + [self._internal.spark_column_for(label).alias(value_name)] ) ) for label in column_labels if label in value_vars ] ) ) columns = ( [ self._internal.spark_column_for(label).alias(name_like_string(label)) for label in id_vars ] + [F.col("pairs.`%s`" % name) for name in var_name] + [F.col("pairs.`%s`" % value_name)] ) exploded_df = sdf.withColumn("pairs", pairs).select(columns) return DataFrame( InternalFrame( spark_frame=exploded_df, index_spark_columns=None, column_labels=( [label if len(label) == 1 else (name_like_string(label),) for label in id_vars] + [(name,) for name in var_name] + [(value_name,)] ), ) ) def stack(self) -> Union["DataFrame", "Series"]: """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = ks.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack().sort_index() cat height 1 weight 0 dog height 3 weight 2 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = ks.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 # doctest: +NORMALIZE_WHITESPACE weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack().sort_index() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = ks.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack().sort_index() # doctest: +SKIP height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN """ from databricks.koalas.series import first_series if len(self._internal.column_labels) == 0: return DataFrame( self._internal.copy( column_label_names=self._internal.column_label_names[:-1] ).with_filter(F.lit(False)) ) column_labels = defaultdict(dict) # type: Union[defaultdict, OrderedDict] index_values = set() should_returns_series = False for label in self._internal.column_labels: new_label = label[:-1] if len(new_label) == 0: new_label = None should_returns_series = True value = label[-1] scol = self._internal.spark_column_for(label) column_labels[new_label][value] = scol index_values.add(value) column_labels = OrderedDict(sorted(column_labels.items(), key=lambda x: x[0])) index_name = self._internal.column_label_names[-1] column_label_names = self._internal.column_label_names[:-1] if len(column_label_names) == 0: column_label_names = [None] index_column = SPARK_INDEX_NAME_FORMAT(self._internal.index_level) data_columns = [name_like_string(label) for label in column_labels] structs = [ F.struct( [F.lit(value).alias(index_column)] + [ ( column_labels[label][value] if value in column_labels[label] else F.lit(None) ).alias(name) for label, name in zip(column_labels, data_columns) ] ).alias(value) for value in index_values ] pairs = F.explode(F.array(structs)) sdf = self._internal.spark_frame.withColumn("pairs", pairs) sdf = sdf.select( self._internal.index_spark_columns + [sdf["pairs"][index_column].alias(index_column)] + [sdf["pairs"][name].alias(name) for name in data_columns] ) internal = InternalFrame( # TODO: dtypes? spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in (self._internal.index_spark_column_names + [index_column]) ], index_names=self._internal.index_names + [index_name], index_dtypes=self._internal.index_dtypes + [None], column_labels=list(column_labels), data_spark_columns=[scol_for(sdf, col) for col in data_columns], column_label_names=column_label_names, # type: ignore ) kdf = DataFrame(internal) # type: "DataFrame" if should_returns_series: return first_series(kdf) else: return kdf def unstack(self) -> Union["DataFrame", "Series"]: """ Pivot the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series. .. note:: If the index is a MultiIndex, the output DataFrame could be very wide, and it could cause a serious performance degradation since Spark partitions it row based. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from unstack). Examples -------- >>> df = ks.DataFrame({"A": {"0": "a", "1": "b", "2": "c"}, ... "B": {"0": "1", "1": "3", "2": "5"}, ... "C": {"0": "2", "1": "4", "2": "6"}}, ... columns=["A", "B", "C"]) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> df.unstack().sort_index() A 0 a 1 b 2 c B 0 1 1 3 2 5 C 0 2 1 4 2 6 dtype: object >>> df.columns = pd.MultiIndex.from_tuples([('X', 'A'), ('X', 'B'), ('Y', 'C')]) >>> df.unstack().sort_index() X A 0 a 1 b 2 c B 0 1 1 3 2 5 Y C 0 2 1 4 2 6 dtype: object For MultiIndex case: >>> df = ks.DataFrame({"A": ["a", "b", "c"], ... "B": [1, 3, 5], ... "C": [2, 4, 6]}, ... columns=["A", "B", "C"]) >>> df = df.set_index('A', append=True) >>> df # doctest: +NORMALIZE_WHITESPACE B C A 0 a 1 2 1 b 3 4 2 c 5 6 >>> df.unstack().sort_index() # doctest: +NORMALIZE_WHITESPACE B C A a b c a b c 0 1.0 NaN NaN 2.0 NaN NaN 1 NaN 3.0 NaN NaN 4.0 NaN 2 NaN NaN 5.0 NaN NaN 6.0 """ from databricks.koalas.series import first_series if self._internal.index_level > 1: # The index after `reset_index()` will never be used, so use "distributed" index # as a dummy to avoid overhead. with option_context("compute.default_index_type", "distributed"): df = self.reset_index() index = df._internal.column_labels[: self._internal.index_level - 1] columns = df.columns[self._internal.index_level - 1] df = df.pivot_table( index=index, columns=columns, values=self._internal.column_labels, aggfunc="first" ) internal = df._internal.copy( index_names=self._internal.index_names[:-1], index_dtypes=self._internal.index_dtypes[:-1], column_label_names=( df._internal.column_label_names[:-1] + [ None if self._internal.index_names[-1] is None else df._internal.column_label_names[-1] ] ), ) return DataFrame(internal) # TODO: Codes here are similar with melt. Should we deduplicate? column_labels = self._internal.column_labels ser_name = SPARK_DEFAULT_SERIES_NAME sdf = self._internal.spark_frame new_index_columns = [ SPARK_INDEX_NAME_FORMAT(i) for i in range(self._internal.column_labels_level) ] new_index_map = list(zip(new_index_columns, self._internal.column_label_names)) pairs = F.explode( F.array( *[ F.struct( *( [F.lit(c).alias(name) for c, name in zip(idx, new_index_columns)] + [self._internal.spark_column_for(idx).alias(ser_name)] ) ) for idx in column_labels ] ) ) columns = [ F.col("pairs.%s" % name) for name in new_index_columns[: self._internal.column_labels_level] ] + [F.col("pairs.%s" % ser_name)] new_index_len = len(new_index_columns) existing_index_columns = [] for i, index_name in enumerate(self._internal.index_names): new_index_map.append((SPARK_INDEX_NAME_FORMAT(i + new_index_len), index_name)) existing_index_columns.append( self._internal.index_spark_columns[i].alias( SPARK_INDEX_NAME_FORMAT(i + new_index_len) ) ) exploded_df = sdf.withColumn("pairs", pairs).select(existing_index_columns + columns) index_spark_column_names, index_names = zip(*new_index_map) return first_series( DataFrame( InternalFrame( # TODO: dtypes? exploded_df, index_spark_columns=[ scol_for(exploded_df, col) for col in index_spark_column_names ], index_names=list(index_names), column_labels=[None], ) ) ) # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Union[int, str] = 0) -> "Series": """ Return whether all elements are True. Returns True unless there is at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Returns ------- Series Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [True, True, True], ... 'col2': [True, False, False], ... 'col3': [0, 0, 0], ... 'col4': [1, 2, 3], ... 'col5': [True, True, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.all() col1 True col2 False col3 False col4 True col5 True col6 False dtype: bool """ from databricks.koalas.series import first_series axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') applied = [] column_labels = self._internal.column_labels for label in column_labels: scol = self._internal.spark_column_for(label) all_col = F.min(F.coalesce(scol.cast("boolean"), F.lit(True))) applied.append(F.when(all_col.isNull(), True).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.any, Series.quantile. Maybe we should deduplicate it. value_column = "value" cols = [] for label, applied_col in zip(column_labels, applied): cols.append( F.struct( [F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(label)] + [applied_col.alias(value_column)] ) ) sdf = self._internal.spark_frame.select(F.array(*cols).alias("arrays")).select( F.explode(F.col("arrays")) ) sdf = sdf.selectExpr("col.*") internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, SPARK_INDEX_NAME_FORMAT(i)) for i in range(self._internal.column_labels_level) ], index_names=self._internal.column_label_names, column_labels=[None], data_spark_columns=[scol_for(sdf, value_column)], ) return first_series(DataFrame(internal)) # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Union[int, str] = 0) -> "Series": """ Return whether any element is True. Returns False unless there is at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Returns ------- Series Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [False, False, False], ... 'col2': [True, False, False], ... 'col3': [0, 0, 1], ... 'col4': [0, 1, 2], ... 'col5': [False, False, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.any() col1 False col2 True col3 True col4 True col5 False col6 True dtype: bool """ from databricks.koalas.series import first_series axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') applied = [] column_labels = self._internal.column_labels for label in column_labels: scol = self._internal.spark_column_for(label) all_col = F.max(F.coalesce(scol.cast("boolean"), F.lit(False))) applied.append(F.when(all_col.isNull(), False).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.all, Series.quantile. Maybe we should deduplicate it. value_column = "value" cols = [] for label, applied_col in zip(column_labels, applied): cols.append( F.struct( [F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(label)] + [applied_col.alias(value_column)] ) ) sdf = self._internal.spark_frame.select(F.array(*cols).alias("arrays")).select( F.explode(F.col("arrays")) ) sdf = sdf.selectExpr("col.*") internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, SPARK_INDEX_NAME_FORMAT(i)) for i in range(self._internal.column_labels_level) ], index_names=self._internal.column_label_names, column_labels=[None], data_spark_columns=[scol_for(sdf, value_column)], ) return first_series(DataFrame(internal)) # TODO: add axis, numeric_only, pct, na_option parameter def rank(self, method="average", ascending=True) -> "DataFrame": """ Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values. .. note:: the current implementation of rank uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- method : {'average', 'min', 'max', 'first', 'dense'} * average: average rank of group * min: lowest rank in group * max: highest rank in group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups ascending : boolean, default True False for ranks by high (1) to low (N) Returns ------- ranks : same type as caller Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 2, 3], 'B': [4, 3, 2, 1]}, columns= ['A', 'B']) >>> df A B 0 1 4 1 2 3 2 2 2 3 3 1 >>> df.rank().sort_index() A B 0 1.0 4.0 1 2.5 3.0 2 2.5 2.0 3 4.0 1.0 If method is set to 'min', it use lowest rank in group. >>> df.rank(method='min').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 4.0 1.0 If method is set to 'max', it use highest rank in group. >>> df.rank(method='max').sort_index() A B 0 1.0 4.0 1 3.0 3.0 2 3.0 2.0 3 4.0 1.0 If method is set to 'dense', it leaves no gaps in group. >>> df.rank(method='dense').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 3.0 1.0 """ return self._apply_series_op( lambda kser: kser._rank(method=method, ascending=ascending), should_resolve=True ) def filter(self, items=None, like=None, regex=None, axis=None) -> "DataFrame": """ Subset rows or columns of dataframe according to labels in the specified index. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : string Keep labels from axis for which "like in label == True". regex : string (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : int or string axis name The axis to filter on. By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = ks.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 For a Series, >>> # select rows by name >>> df.one.filter(items=['rabbit']) rabbit 4 Name: one, dtype: int64 >>> # select rows by regular expression >>> df.one.filter(regex='e$') mouse 1 Name: one, dtype: int64 >>> # select rows containing 'bbi' >>> df.one.filter(like='bbi') rabbit 4 Name: one, dtype: int64 """ if sum(x is not None for x in (items, like, regex)) > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive" ) axis = validate_axis(axis, none_axis=1) index_scols = self._internal.index_spark_columns if items is not None: if is_list_like(items): items = list(items) else: raise ValueError("items should be a list-like object.") if axis == 0: if len(index_scols) == 1: col = None for item in items: if col is None: col = index_scols[0] == F.lit(item) else: col = col | (index_scols[0] == F.lit(item)) elif len(index_scols) > 1: # for multi-index col = None for item in items: if not isinstance(item, tuple): raise TypeError("Unsupported type {}".format(type(item).__name__)) if not item: raise ValueError("The item should not be empty.") midx_col = None for i, element in enumerate(item): if midx_col is None: midx_col = index_scols[i] == F.lit(element) else: midx_col = midx_col & (index_scols[i] == F.lit(element)) if col is None: col = midx_col else: col = col | midx_col else: raise ValueError("Single or multi index must be specified.") return DataFrame(self._internal.with_filter(col)) else: return self[items] elif like is not None: if axis == 0: col = None for index_scol in index_scols: if col is None: col = index_scol.contains(like) else: col = col | index_scol.contains(like) return DataFrame(self._internal.with_filter(col)) else: column_labels = self._internal.column_labels output_labels = [label for label in column_labels if any(like in i for i in label)] return self[output_labels] elif regex is not None: if axis == 0: col = None for index_scol in index_scols: if col is None: col = index_scol.rlike(regex) else: col = col | index_scol.rlike(regex) return DataFrame(self._internal.with_filter(col)) else: column_labels = self._internal.column_labels matcher = re.compile(regex) output_labels = [ label for label in column_labels if any(matcher.search(i) is not None for i in label) ] return self[output_labels] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def rename( self, mapper=None, index=None, columns=None, axis="index", inplace=False, level=None, errors="ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis’ values. Use either `mapper` and `axis` to specify the axis to target with `mapper`, or `index` and `columns`. index : dict-like or function Alternative to specifying axis ("mapper, axis=0" is equivalent to "index=mapper"). columns : dict-like or function Alternative to specifying axis ("mapper, axis=1" is equivalent to "columns=mapper"). axis : int or str, default 'index' Axis to target with mapper. Can be either the axis name ('index', 'columns') or number (0, 1). inplace : bool, default False Whether to return a new DataFrame. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame with the renamed axis labels. Raises ------ `KeyError` If any of the labels is not found in the selected axis and "errors='raise'". Examples -------- >>> kdf1 = ks.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> kdf1.rename(columns={"A": "a", "B": "c"}) # doctest: +NORMALIZE_WHITESPACE a c 0 1 4 1 2 5 2 3 6 >>> kdf1.rename(index={1: 10, 2: 20}) # doctest: +NORMALIZE_WHITESPACE A B 0 1 4 10 2 5 20 3 6 >>> def str_lower(s) -> str: ... return str.lower(s) >>> kdf1.rename(str_lower, axis='columns') # doctest: +NORMALIZE_WHITESPACE a b 0 1 4 1 2 5 2 3 6 >>> def mul10(x) -> int: ... return x * 10 >>> kdf1.rename(mul10, axis='index') # doctest: +NORMALIZE_WHITESPACE A B 0 1 4 10 2 5 20 3 6 >>> idx = pd.MultiIndex.from_tuples([('X', 'A'), ('X', 'B'), ('Y', 'C'), ('Y', 'D')]) >>> kdf2 = ks.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=idx) >>> kdf2.rename(columns=str_lower, level=0) # doctest: +NORMALIZE_WHITESPACE x y A B C D 0 1 2 3 4 1 5 6 7 8 >>> kdf3 = ks.DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=idx, columns=list('ab')) >>> kdf3.rename(index=str_lower) # doctest: +NORMALIZE_WHITESPACE a b x a 1 2 b 3 4 y c 5 6 d 7 8 """ def gen_mapper_fn(mapper): if isinstance(mapper, dict): if len(mapper) == 0: if errors == "raise": raise KeyError("Index include label which is not in the `mapper`.") else: return DataFrame(self._internal) type_set = set(map(lambda x: type(x), mapper.values())) if len(type_set) > 1: raise ValueError("Mapper dict should have the same value type.") spark_return_type = as_spark_type(list(type_set)[0]) def mapper_fn(x): if x in mapper: return mapper[x] else: if errors == "raise": raise KeyError("Index include value which is not in the `mapper`") return x elif callable(mapper): spark_return_type = cast(ScalarType, infer_return_type(mapper)).spark_type def mapper_fn(x): return mapper(x) else: raise ValueError( "`mapper` or `index` or `columns` should be " "either dict-like or function type." ) return mapper_fn, spark_return_type index_mapper_fn = None index_mapper_ret_stype = None columns_mapper_fn = None inplace = validate_bool_kwarg(inplace, "inplace") if mapper: axis = validate_axis(axis) if axis == 0: index_mapper_fn, index_mapper_ret_stype = gen_mapper_fn(mapper) elif axis == 1: columns_mapper_fn, columns_mapper_ret_stype = gen_mapper_fn(mapper) else: raise ValueError( "argument axis should be either the axis name " "(‘index’, ‘columns’) or number (0, 1)" ) else: if index: index_mapper_fn, index_mapper_ret_stype = gen_mapper_fn(index) if columns: columns_mapper_fn, _ = gen_mapper_fn(columns) if not index and not columns: raise ValueError("Either `index` or `columns` should be provided.") kdf = self.copy() if index_mapper_fn: # rename index labels, if `level` is None, rename all index columns, otherwise only # rename the corresponding level index. # implement this by transform the underlying spark dataframe, # Example: # suppose the kdf index column in underlying spark dataframe is "index_0", "index_1", # if rename level 0 index labels, will do: # ``kdf._sdf.withColumn("index_0", mapper_fn_udf(col("index_0"))`` # if rename all index labels (`level` is None), then will do: # ``` # kdf._sdf.withColumn("index_0", mapper_fn_udf(col("index_0")) # .withColumn("index_1", mapper_fn_udf(col("index_1")) # ``` index_columns = kdf._internal.index_spark_column_names num_indices = len(index_columns) if level: if level < 0 or level >= num_indices: raise ValueError("level should be an integer between [0, num_indices)") def gen_new_index_column(level): index_col_name = index_columns[level] index_mapper_udf = pandas_udf( lambda s: s.map(index_mapper_fn), returnType=index_mapper_ret_stype ) return index_mapper_udf(scol_for(kdf._internal.spark_frame, index_col_name)) sdf = kdf._internal.resolved_copy.spark_frame index_dtypes = self._internal.index_dtypes.copy() if level is None: for i in range(num_indices): sdf = sdf.withColumn(index_columns[i], gen_new_index_column(i)) index_dtypes[i] = None # TODO: dtype? else: sdf = sdf.withColumn(index_columns[level], gen_new_index_column(level)) index_dtypes[level] = None # TODO: dtype? kdf = DataFrame(kdf._internal.with_new_sdf(sdf, index_dtypes=index_dtypes)) if columns_mapper_fn: # rename column name. # Will modify the `_internal._column_labels` and transform underlying spark dataframe # to the same column name with `_internal._column_labels`. if level: if level < 0 or level >= kdf._internal.column_labels_level: raise ValueError("level should be an integer between [0, column_labels_level)") def gen_new_column_labels_entry(column_labels_entry): if isinstance(column_labels_entry, tuple): if level is None: # rename all level columns return tuple(map(columns_mapper_fn, column_labels_entry)) else: # only rename specified level column entry_list = list(column_labels_entry) entry_list[level] = columns_mapper_fn(entry_list[level]) return tuple(entry_list) else: return columns_mapper_fn(column_labels_entry) new_column_labels = list(map(gen_new_column_labels_entry, kdf._internal.column_labels)) new_data_scols = [ kdf._kser_for(old_label).rename(new_label) for old_label, new_label in zip(kdf._internal.column_labels, new_column_labels) ] kdf = DataFrame(kdf._internal.with_new_columns(new_data_scols)) if inplace: self._update_internal_frame(kdf._internal) return None else: return kdf def rename_axis( self, mapper: Optional[Any] = None, index: Optional[Any] = None, columns: Optional[Any] = None, axis: Optional[Union[int, str]] = 0, inplace: Optional[bool] = False, ) -> Optional["DataFrame"]: """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional A scalar, list-like, dict-like or functions transformations to apply to the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. inplace : bool, default False Modifies the object directly, instead of creating a new DataFrame. Returns ------- DataFrame, or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. The second calling convention will modify the names of the corresponding index specified by axis. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- >>> df = ks.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... index=["dog", "cat", "monkey"], ... columns=["num_legs", "num_arms"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal").sort_index() >>> df # doctest: +NORMALIZE_WHITESPACE num_legs num_arms animal cat 4 0 dog 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns").sort_index() >>> df # doctest: +NORMALIZE_WHITESPACE limbs num_legs num_arms animal cat 4 0 dog 4 0 monkey 2 2 **MultiIndex** >>> index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df = ks.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... index=index, ... columns=["num_legs", "num_arms"]) >>> df # doctest: +NORMALIZE_WHITESPACE num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}).sort_index() # doctest: +NORMALIZE_WHITESPACE num_legs num_arms class name mammal cat 4 0 dog 4 0 monkey 2 2 >>> df.rename_axis(index=str.upper).sort_index() # doctest: +NORMALIZE_WHITESPACE num_legs num_arms TYPE NAME mammal cat 4 0 dog 4 0 monkey 2 2 """ def gen_names(v, curnames): if is_scalar(v): newnames = [v] elif is_list_like(v) and not is_dict_like(v): newnames = list(v) elif is_dict_like(v): newnames = [v[name] if name in v else name for name in curnames] elif callable(v): newnames = [v(name) for name in curnames] else: raise ValueError( "`mapper` or `index` or `columns` should be " "either dict-like or function type." ) if len(newnames) != len(curnames): raise ValueError( "Length of new names must be {}, got {}".format(len(curnames), len(newnames)) ) return [name if is_name_like_tuple(name) else (name,) for name in newnames] if mapper is not None and (index is not None or columns is not None): raise TypeError("Cannot specify both 'mapper' and any of 'index' or 'columns'.") if mapper is not None: axis = validate_axis(axis) if axis == 0: index = mapper elif axis == 1: columns = mapper column_label_names = ( gen_names(columns, self.columns.names) if columns is not None else self._internal.column_label_names ) index_names = ( gen_names(index, self.index.names) if index is not None else self._internal.index_names ) internal = self._internal.copy( index_names=index_names, column_label_names=column_label_names ) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) def keys(self) -> pd.Index: """ Return alias for columns. Returns ------- Index Columns of the DataFrame. Examples -------- >>> df = ks.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 >>> df.keys() Index(['max_speed', 'shield'], dtype='object') """ return self.columns def pct_change(self, periods=1) -> "DataFrame": """ Percentage change between the current and a prior element. .. note:: the current implementation of this API uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. Returns ------- DataFrame Examples -------- Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01. >>> df = ks.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13 >>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876 You can set periods to shift for forming percent change >>> df.pct_change(2) FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 NaN NaN NaN 1980-03-01 0.067912 0.073814 0.06883 """ window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-periods, -periods) def op(kser): prev_row = F.lag(kser.spark.column, periods).over(window) return ((kser.spark.column - prev_row) / prev_row).alias( kser._internal.data_spark_column_names[0] ) return self._apply_series_op(op, should_resolve=True) # TODO: axis = 1 def idxmax(self, axis=0) -> "Series": """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. .. note:: This API collect all rows with maximum value using `to_pandas()` because we suppose the number of rows with max values are usually small in general. Parameters ---------- axis : 0 or 'index' Can only be set to 0 at the moment. Returns ------- Series See Also -------- Series.idxmax Examples -------- >>> kdf = ks.DataFrame({'a': [1, 2, 3, 2], ... 'b': [4.0, 2.0, 3.0, 1.0], ... 'c': [300, 200, 400, 200]}) >>> kdf a b c 0 1 4.0 300 1 2 2.0 200 2 3 3.0 400 3 2 1.0 200 >>> kdf.idxmax() a 2 b 0 c 2 dtype: int64 For Multi-column Index >>> kdf = ks.DataFrame({'a': [1, 2, 3, 2], ... 'b': [4.0, 2.0, 3.0, 1.0], ... 'c': [300, 200, 400, 200]}) >>> kdf.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> kdf a b c x y z 0 1 4.0 300 1 2 2.0 200 2 3 3.0 400 3 2 1.0 200 >>> kdf.idxmax() a x 2 b y 0 c z 2 dtype: int64 """ max_cols = map(lambda scol: F.max(scol), self._internal.data_spark_columns) sdf_max = self._internal.spark_frame.select(*max_cols).head() # `sdf_max` looks like below # +------+------+------+ # |(a, x)|(b, y)|(c, z)| # +------+------+------+ # | 3| 4.0| 400| # +------+------+------+ conds = ( scol == max_val for scol, max_val in zip(self._internal.data_spark_columns, sdf_max) ) cond = reduce(lambda x, y: x | y, conds) kdf = DataFrame(self._internal.with_filter(cond)) # type: "DataFrame" return cast(ks.Series, ks.from_pandas(kdf._to_internal_pandas().idxmax())) # TODO: axis = 1 def idxmin(self, axis=0) -> "Series": """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. .. note:: This API collect all rows with minimum value using `to_pandas()` because we suppose the number of rows with min values are usually small in general. Parameters ---------- axis : 0 or 'index' Can only be set to 0 at the moment. Returns ------- Series See Also -------- Series.idxmin Examples -------- >>> kdf = ks.DataFrame({'a': [1, 2, 3, 2], ... 'b': [4.0, 2.0, 3.0, 1.0], ... 'c': [300, 200, 400, 200]}) >>> kdf a b c 0 1 4.0 300 1 2 2.0 200 2 3 3.0 400 3 2 1.0 200 >>> kdf.idxmin() a 0 b 3 c 1 dtype: int64 For Multi-column Index >>> kdf = ks.DataFrame({'a': [1, 2, 3, 2], ... 'b': [4.0, 2.0, 3.0, 1.0], ... 'c': [300, 200, 400, 200]}) >>> kdf.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> kdf a b c x y z 0 1 4.0 300 1 2 2.0 200 2 3 3.0 400 3 2 1.0 200 >>> kdf.idxmin() a x 0 b y 3 c z 1 dtype: int64 """ min_cols = map(lambda scol: F.min(scol), self._internal.data_spark_columns) sdf_min = self._internal.spark_frame.select(*min_cols).head() conds = ( scol == min_val for scol, min_val in zip(self._internal.data_spark_columns, sdf_min) ) cond = reduce(lambda x, y: x | y, conds) kdf = DataFrame(self._internal.with_filter(cond)) # type: "DataFrame" return cast(ks.Series, ks.from_pandas(kdf._to_internal_pandas().idxmin())) def info(self, verbose=None, buf=None, max_cols=None, null_counts=None) -> None: """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. null_counts : bool, optional Whether to show the non-null counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = ks.DataFrame( ... {"int_col": int_values, "text_col": text_values, "float_col": float_values}, ... columns=['int_col', 'text_col', 'float_col']) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) # doctest: +SKIP <class 'databricks.koalas.frame.DataFrame'> Index: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) # doctest: +SKIP <class 'databricks.koalas.frame.DataFrame'> Index: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open('%s/info.txt' % path, "w", ... encoding="utf-8") as f: ... _ = f.write(s) >>> with open('%s/info.txt' % path) as f: ... f.readlines() # doctest: +SKIP ["<class 'databricks.koalas.frame.DataFrame'>\\n", 'Index: 5 entries, 0 to 4\\n', 'Data columns (total 3 columns):\\n', ' # Column Non-Null Count Dtype \\n', '--- ------ -------------- ----- \\n', ' 0 int_col 5 non-null int64 \\n', ' 1 text_col 5 non-null object \\n', ' 2 float_col 5 non-null float64\\n', 'dtypes: float64(1), int64(1), object(1)'] """ # To avoid pandas' existing config affects Koalas. # TODO: should we have corresponding Koalas configs? with pd.option_context( "display.max_info_columns", sys.maxsize, "display.max_info_rows", sys.maxsize ): try: # hack to use pandas' info as is. object.__setattr__(self, "_data", self) count_func = self.count self.count = lambda: count_func().to_pandas() # type: ignore return pd.DataFrame.info( self, verbose=verbose, buf=buf, max_cols=max_cols, memory_usage=False, null_counts=null_counts, ) finally: del self._data self.count = count_func # type: ignore # TODO: fix parameter 'axis' and 'numeric_only' to work same as pandas' def quantile( self, q: Union[float, Iterable[float]] = 0.5, axis: Union[int, str] = 0, numeric_only: bool = True, accuracy: int = 10000, ) -> Union["DataFrame", "Series"]: """ Return value at the given quantile. .. note:: Unlike pandas', the quantile in Koalas is an approximated quantile based upon approximate percentile computation because computing quantile across a large dataset is extremely expensive. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute. axis : int or str, default 0 or 'index' Can only be set to 0 at the moment. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. Can only be set to True at the moment. accuracy : int, optional Default accuracy of approximation. Larger value means better accuracy. The relative error can be deduced by 1.0 / accuracy. Returns ------- Series or DataFrame If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples -------- >>> kdf = ks.DataFrame({'a': [1, 2, 3, 4, 5], 'b': [6, 7, 8, 9, 0]}) >>> kdf a b 0 1 6 1 2 7 2 3 8 3 4 9 4 5 0 >>> kdf.quantile(.5) a 3.0 b 7.0 Name: 0.5, dtype: float64 >>> kdf.quantile([.25, .5, .75]) a b 0.25 2.0 6.0 0.50 3.0 7.0 0.75 4.0 8.0 """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') if not isinstance(accuracy, int): raise ValueError( "accuracy must be an integer; however, got [%s]" % type(accuracy).__name__ ) if isinstance(q, Iterable): q = list(q) for v in q if isinstance(q, list) else [q]: if not isinstance(v, float): raise ValueError( "q must be a float or an array of floats; however, [%s] found." % type(v) ) if v < 0.0 or v > 1.0: raise ValueError("percentiles should all be in the interval [0, 1].") def quantile(spark_column, spark_type): if isinstance(spark_type, (BooleanType, NumericType)): return SF.percentile_approx(spark_column.cast(DoubleType()), q, accuracy) else: raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) if isinstance(q, list): # First calculate the percentiles from all columns and map it to each `quantiles` # by creating each entry as a struct. So, it becomes an array of structs as below: # # +-----------------------------------------+ # | arrays| # +-----------------------------------------+ # |[[0.25, 2, 6], [0.5, 3, 7], [0.75, 4, 8]]| # +-----------------------------------------+ percentile_cols = [] percentile_col_names = [] column_labels = [] for label, column in zip( self._internal.column_labels, self._internal.data_spark_column_names ): spark_type = self._internal.spark_type_for(label) is_numeric_or_boolean = isinstance(spark_type, (NumericType, BooleanType)) keep_column = not numeric_only or is_numeric_or_boolean if keep_column: percentile_col = quantile(self._internal.spark_column_for(label), spark_type) percentile_cols.append(percentile_col.alias(column)) percentile_col_names.append(column) column_labels.append(label) if len(percentile_cols) == 0: return DataFrame(index=q) sdf = self._internal.spark_frame.select(percentile_cols) # Here, after select percentile cols, a spark_frame looks like below: # +---------+---------+ # | a| b| # +---------+---------+ # |[2, 3, 4]|[6, 7, 8]| # +---------+---------+ cols_dict = OrderedDict() # type: OrderedDict for column in percentile_col_names: cols_dict[column] = list() for i in range(len(q)): cols_dict[column].append(scol_for(sdf, column).getItem(i).alias(column)) internal_index_column = SPARK_DEFAULT_INDEX_NAME cols = [] for i, col in enumerate(zip(*cols_dict.values())): cols.append(F.struct(F.lit(q[i]).alias(internal_index_column), *col)) sdf = sdf.select(F.array(*cols).alias("arrays")) # And then, explode it and manually set the index. # +-----------------+---+---+ # |__index_level_0__| a| b| # +-----------------+---+---+ # | 0.25| 2| 6| # | 0.5| 3| 7| # | 0.75| 4| 8| # +-----------------+---+---+ sdf = sdf.select(F.explode(F.col("arrays"))).selectExpr("col.*") internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, internal_index_column)], column_labels=column_labels, data_spark_columns=[scol_for(sdf, col) for col in percentile_col_names], ) return DataFrame(internal) else: return self._reduce_for_stat_function( quantile, name="quantile", numeric_only=numeric_only ).rename(q) def query(self, expr, inplace=False) -> Optional["DataFrame"]: """ Query the columns of a DataFrame with a boolean expression. .. note:: Internal columns that starting with a '__' prefix are able to access, however, they are not supposed to be accessed. .. note:: This API delegates to Spark SQL so the syntax follows Spark SQL. Therefore, the pandas specific syntax such as `@` is not supported. If you want the pandas syntax, you can work around with :meth:`DataFrame.koalas.apply_batch`, but you should be aware that `query_func` will be executed at different nodes in a distributed manner. So, for example, to use `@` syntax, make sure the variable is serialized by, for example, putting it within the closure as below. >>> df = ks.DataFrame({'A': range(2000), 'B': range(2000)}) >>> def query_func(pdf): ... num = 1995 ... return pdf.query('A > @num') >>> df.koalas.apply_batch(query_func) A B 1996 1996 1996 1997 1997 1997 1998 1998 1998 1999 1999 1999 Parameters ---------- expr : str The query string to evaluate. You can refer to column names that contain spaces by surrounding them in backticks. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. inplace : bool Whether the query should modify the data in place or return a modified copy. Returns ------- DataFrame DataFrame resulting from the provided query expression. Examples -------- >>> df = ks.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ if isinstance(self.columns, pd.MultiIndex): raise ValueError("Doesn't support for MultiIndex columns") if not isinstance(expr, str): raise ValueError( "expr must be a string to be evaluated, {} given".format(type(expr).__name__) ) inplace = validate_bool_kwarg(inplace, "inplace") data_columns = [label[0] for label in self._internal.column_labels] sdf = self._internal.spark_frame.select( self._internal.index_spark_columns + [ scol.alias(col) for scol, col in zip(self._internal.data_spark_columns, data_columns) ] ).filter(expr) internal = self._internal.with_new_sdf(sdf, data_columns=data_columns) if inplace: self._update_internal_frame(internal) return None else: return DataFrame(internal) def explain(self, extended: Optional[bool] = None, mode: Optional[str] = None) -> None: warnings.warn( "DataFrame.explain is deprecated as of DataFrame.spark.explain. " "Please use the API instead.", FutureWarning, ) return self.spark.explain(extended, mode) explain.__doc__ = SparkFrameMethods.explain.__doc__ def take(self, indices, axis=0, **kwargs) -> "DataFrame": """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : {0 or 'index', 1 or 'columns', None}, default 0 The axis on which to select elements. ``0`` means that we are selecting rows, ``1`` means that we are selecting columns. **kwargs For compatibility with :meth:`numpy.take`. Has no effect on the output. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That's because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]).sort_index() name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]).sort_index() name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5 """ axis = validate_axis(axis) if not is_list_like(indices) or isinstance(indices, (dict, set)): raise ValueError("`indices` must be a list-like except dict or set") if axis == 0: return cast(DataFrame, self.iloc[indices, :]) else: return cast(DataFrame, self.iloc[:, indices]) def eval(self, expr, inplace=False) -> Optional[Union["DataFrame", "Series"]]: """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. Returns ------- The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Examples -------- >>> df = ks.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from databricks.koalas.series import first_series if isinstance(self.columns, pd.MultiIndex): raise ValueError("`eval` is not supported for multi-index columns") inplace = validate_bool_kwarg(inplace, "inplace") should_return_series = False series_name = None should_return_scalar = False # Since `eval_func` doesn't have a type hint, inferring the schema is always preformed # in the `apply_batch`. Hence, the variables `should_return_series`, `series_name`, # and `should_return_scalar` can be updated. def eval_func(pdf): nonlocal should_return_series nonlocal series_name nonlocal should_return_scalar result_inner = pdf.eval(expr, inplace=inplace) if inplace: result_inner = pdf if isinstance(result_inner, pd.Series): should_return_series = True series_name = result_inner.name result_inner = result_inner.to_frame() elif is_scalar(result_inner): should_return_scalar = True result_inner = pd.Series(result_inner).to_frame() return result_inner result = self.koalas.apply_batch(eval_func) if inplace: # Here, the result is always a frame because the error is thrown during schema inference # from pandas. self._update_internal_frame(result._internal, requires_same_anchor=False) return None elif should_return_series: return first_series(result).rename(series_name) elif should_return_scalar: return first_series(result)[0] else: # Returns a frame return result def explode(self, column) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Examples -------- >>> df = ks.DataFrame({'A': [[1, 2, 3], [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 [] 1 2 [3, 4] 1 >>> df.explode('A') A B 0 1.0 1 0 2.0 1 0 3.0 1 1 NaN 1 2 3.0 1 2 4.0 1 """ from databricks.koalas.series import Series if not is_name_like_value(column): raise ValueError("column must be a scalar") kdf = DataFrame(self._internal.resolved_copy) # type: "DataFrame" kser = kdf[column] if not isinstance(kser, Series): raise ValueError( "The column %s is not unique. For a multi-index, the label must be a tuple " "with elements corresponding to each level." % name_like_string(column) ) if not isinstance(kser.spark.data_type, ArrayType): return self.copy() sdf = kdf._internal.spark_frame.withColumn( kser._internal.data_spark_column_names[0], F.explode_outer(kser.spark.column) ) data_dtypes = kdf._internal.data_dtypes.copy() data_dtypes[kdf._internal.column_labels.index(kser._column_label)] = None # TODO: dtype? internal = kdf._internal.with_new_sdf(sdf, data_dtypes=data_dtypes) return DataFrame(internal) def mad(self, axis=0) -> "Series": """ Return the mean absolute deviation of values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) >>> df.mad() a 0.666667 b 0.066667 dtype: float64 >>> df.mad(axis=1) 0 0.45 1 0.90 2 1.35 3 NaN dtype: float64 """ from databricks.koalas.series import first_series axis = validate_axis(axis) if axis == 0: def get_spark_column(kdf, label): scol = kdf._internal.spark_column_for(label) col_type = kdf._internal.spark_type_for(label) if isinstance(col_type, BooleanType): scol = scol.cast("integer") return scol new_column_labels = [] for label in self._internal.column_labels: # Filtering out only columns of numeric and boolean type column. dtype = self._kser_for(label).spark.data_type if isinstance(dtype, (NumericType, BooleanType)): new_column_labels.append(label) new_columns = [ F.avg(get_spark_column(self, label)).alias(name_like_string(label)) for label in new_column_labels ] mean_data = self._internal.spark_frame.select(new_columns).first() new_columns = [ F.avg( F.abs(get_spark_column(self, label) - mean_data[name_like_string(label)]) ).alias(name_like_string(label)) for label in new_column_labels ] sdf = self._internal.spark_frame.select( [F.lit(None).cast(StringType()).alias(SPARK_DEFAULT_INDEX_NAME)] + new_columns ) # The data is expected to be small so it's fine to transpose/use default index. with ks.option_context("compute.max_rows", 1): internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, SPARK_DEFAULT_INDEX_NAME)], column_labels=new_column_labels, column_label_names=self._internal.column_label_names, ) return first_series(DataFrame(internal).transpose()) else: @pandas_udf(returnType=DoubleType()) def calculate_columns_axis(*cols): return pd.concat(cols, axis=1).mad(axis=1) internal = self._internal.copy( column_labels=[None], data_spark_columns=[ calculate_columns_axis(*self._internal.data_spark_columns).alias( SPARK_DEFAULT_SERIES_NAME ) ], data_dtypes=[None], column_label_names=None, ) return first_series(DataFrame(internal)) def tail(self, n=5) -> "DataFrame": """ Return the last `n` rows. This function returns last `n` rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows. For negative values of `n`, this function returns all rows except the first `n` rows, equivalent to ``df[n:]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- type of caller The last `n` rows of the caller object. See Also -------- DataFrame.head : The first `n` rows of the caller object. Examples -------- >>> df = ks.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last 5 lines >>> df.tail() # doctest: +SKIP animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last `n` lines (three in this case) >>> df.tail(3) # doctest: +SKIP animal 6 shark 7 whale 8 zebra For negative values of `n` >>> df.tail(-3) # doctest: +SKIP animal 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra """ if LooseVersion(pyspark.__version__) < LooseVersion("3.0"): raise RuntimeError("tail can be used in PySpark >= 3.0") if not isinstance(n, int): raise TypeError("bad operand type for unary -: '{}'".format(type(n).__name__)) if n < 0: n = len(self) + n if n <= 0: return ks.DataFrame(self._internal.with_filter(F.lit(False))) # Should use `resolved_copy` here for the case like `(kdf + 1).tail()` sdf = self._internal.resolved_copy.spark_frame rows = sdf.tail(n) new_sdf = default_session().createDataFrame(rows, sdf.schema) return DataFrame(self._internal.with_new_sdf(new_sdf)) def align( self, other: Union["DataFrame", "Series"], join: str = "outer", axis: Optional[Union[int, str]] = None, copy: bool = True, ) -> Tuple["DataFrame", Union["DataFrame", "Series"]]: """ Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters ---------- other : DataFrame or Series join : {{'outer', 'inner', 'left', 'right'}}, default 'outer' axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None). copy : bool, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. Returns ------- (left, right) : (DataFrame, type of other) Aligned objects. Examples -------- >>> ks.set_option("compute.ops_on_diff_frames", True) >>> df1 = ks.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}, index=[10, 20, 30]) >>> df2 = ks.DataFrame({"a": [4, 5, 6], "c": ["d", "e", "f"]}, index=[10, 11, 12]) Align both axis: >>> aligned_l, aligned_r = df1.align(df2) >>> aligned_l.sort_index() a b c 10 1.0 a NaN 11 NaN None NaN 12 NaN None NaN 20 2.0 b NaN 30 3.0 c NaN >>> aligned_r.sort_index() a b c 10 4.0 NaN d 11 5.0 NaN e 12 6.0 NaN f 20 NaN NaN None 30 NaN NaN None Align only axis=0 (index): >>> aligned_l, aligned_r = df1.align(df2, axis=0) >>> aligned_l.sort_index() a b 10 1.0 a 11 NaN None 12 NaN None 20 2.0 b 30 3.0 c >>> aligned_r.sort_index() a c 10 4.0 d 11 5.0 e 12 6.0 f 20 NaN None 30 NaN None Align only axis=1 (column): >>> aligned_l, aligned_r = df1.align(df2, axis=1) >>> aligned_l.sort_index() a b c 10 1 a NaN 20 2 b NaN 30 3 c NaN >>> aligned_r.sort_index() a b c 10 4 NaN d 11 5 NaN e 12 6 NaN f Align with the join type "inner": >>> aligned_l, aligned_r = df1.align(df2, join="inner") >>> aligned_l.sort_index() a 10 1 >>> aligned_r.sort_index() a 10 4 Align with a Series: >>> s = ks.Series([7, 8, 9], index=[10, 11, 12]) >>> aligned_l, aligned_r = df1.align(s, axis=0) >>> aligned_l.sort_index() a b 10 1.0 a 11 NaN None 12 NaN None 20 2.0 b 30 3.0 c >>> aligned_r.sort_index() 10 7.0 11 8.0 12 9.0 20 NaN 30 NaN dtype: float64 >>> ks.reset_option("compute.ops_on_diff_frames") """ from databricks.koalas.series import Series, first_series if not isinstance(other, (DataFrame, Series)): raise TypeError("unsupported type: {}".format(type(other).__name__)) how = validate_how(join) axis = validate_axis(axis, None) right_is_series = isinstance(other, Series) if right_is_series: if axis is None: raise ValueError("Must specify axis=0 or 1") elif axis != 0: raise NotImplementedError( "align currently only works for axis=0 when right is Series" ) left = self right = other if (axis is None or axis == 0) and not same_anchor(left, right): combined = combine_frames(left, right, how=how) left = combined["this"] right = combined["that"] if right_is_series: right = first_series(right).rename(other.name) if ( axis is None or axis == 1 ) and left._internal.column_labels != right._internal.column_labels: if left._internal.column_labels_level != right._internal.column_labels_level: raise ValueError("cannot join with no overlapping index names") left = left.copy() right = right.copy() if how == "full": column_labels = sorted( list(set(left._internal.column_labels) | set(right._internal.column_labels)) ) elif how == "inner": column_labels = sorted( list(set(left._internal.column_labels) & set(right._internal.column_labels)) ) elif how == "left": column_labels = left._internal.column_labels else: column_labels = right._internal.column_labels for label in column_labels: if label not in left._internal.column_labels: left[label] = F.lit(None).cast(DoubleType()) left = left[column_labels] for label in column_labels: if label not in right._internal.column_labels: right[label] = F.lit(None).cast(DoubleType()) right = right[column_labels] return (left.copy(), right.copy()) if copy else (left, right) @staticmethod def from_dict(data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': [10, 20, 30, 40]} >>> ks.DataFrame.from_dict(data) col_1 col_2 0 3 10 1 2 20 2 1 30 3 0 40 Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': [10, 20, 30, 40]} >>> ks.DataFrame.from_dict(data, orient='index').sort_index() 0 1 2 3 row_1 3 2 1 0 row_2 10 20 30 40 When using the 'index' orientation, the column names can be specified manually: >>> ks.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']).sort_index() A B C D row_1 3 2 1 0 row_2 10 20 30 40 """ return DataFrame(pd.DataFrame.from_dict(data, orient=orient, dtype=dtype, columns=columns)) def _to_internal_pandas(self): """ Return a pandas DataFrame directly from _internal to avoid overhead of copy. This method is for internal use only. """ return self._internal.to_pandas_frame def _get_or_create_repr_pandas_cache(self, n): if not hasattr(self, "_repr_pandas_cache") or n not in self._repr_pandas_cache: object.__setattr__( self, "_repr_pandas_cache", {n: self.head(n + 1)._to_internal_pandas()} ) return self._repr_pandas_cache[n] def __repr__(self): max_display_count = get_option("display.max_rows") if max_display_count is None: return self._to_internal_pandas().to_string() pdf = self._get_or_create_repr_pandas_cache(max_display_count) pdf_length = len(pdf) pdf = pdf.iloc[:max_display_count] if pdf_length > max_display_count: repr_string = pdf.to_string(show_dimensions=True) match = REPR_PATTERN.search(repr_string) if match is not None: nrows = match.group("rows") ncols = match.group("columns") footer = "\n\n[Showing only the first {nrows} rows x {ncols} columns]".format( nrows=nrows, ncols=ncols ) return REPR_PATTERN.sub(footer, repr_string) return pdf.to_string() def _repr_html_(self): max_display_count = get_option("display.max_rows") # pandas 0.25.1 has a regression about HTML representation so 'bold_rows' # has to be set as False explicitly. See https://github.com/pandas-dev/pandas/issues/28204 bold_rows = not (LooseVersion("0.25.1") == LooseVersion(pd.__version__)) if max_display_count is None: return self._to_internal_pandas().to_html(notebook=True, bold_rows=bold_rows) pdf = self._get_or_create_repr_pandas_cache(max_display_count) pdf_length = len(pdf) pdf = pdf.iloc[:max_display_count] if pdf_length > max_display_count: repr_html = pdf.to_html(show_dimensions=True, notebook=True, bold_rows=bold_rows) match = REPR_HTML_PATTERN.search(repr_html) if match is not None: nrows = match.group("rows") ncols = match.group("columns") by = chr(215) footer = ( "\n<p>Showing only the first {rows} rows " "{by} {cols} columns</p>\n</div>".format(rows=nrows, by=by, cols=ncols) ) return REPR_HTML_PATTERN.sub(footer, repr_html) return pdf.to_html(notebook=True, bold_rows=bold_rows) def __getitem__(self, key): from databricks.koalas.series import Series if key is None: raise KeyError("none key") elif isinstance(key, Series): return self.loc[key.astype(bool)] elif isinstance(key, slice): if any(type(n) == int or None for n in [key.start, key.stop]): # Seems like pandas Frame always uses int as positional search when slicing # with ints. return self.iloc[key] return self.loc[key] elif is_name_like_value(key): return self.loc[:, key] elif is_list_like(key): return self.loc[:, list(key)] raise NotImplementedError(key) def __setitem__(self, key, value): from databricks.koalas.series import Series if isinstance(value, (DataFrame, Series)) and not same_anchor(value, self): # Different Series or DataFrames level = self._internal.column_labels_level key = DataFrame._index_normalized_label(level, key) value = DataFrame._index_normalized_frame(level, value) def assign_columns(kdf, this_column_labels, that_column_labels): assert len(key) == len(that_column_labels) # Note that here intentionally uses `zip_longest` that combine # that_columns. for k, this_label, that_label in zip_longest( key, this_column_labels, that_column_labels ): yield (kdf._kser_for(that_label), tuple(["that", *k])) if this_label is not None and this_label[1:] != k: yield (kdf._kser_for(this_label), this_label) kdf = align_diff_frames(assign_columns, self, value, fillna=False, how="left") elif isinstance(value, list): if len(self) != len(value): raise ValueError("Length of values does not match length of index") # TODO: avoid using default index? with option_context( "compute.default_index_type", "distributed-sequence", "compute.ops_on_diff_frames", True, ): kdf = self.reset_index() kdf[key] = ks.DataFrame(value) kdf = kdf.set_index(kdf.columns[: self._internal.index_level]) kdf.index.names = self.index.names elif isinstance(key, list): assert isinstance(value, DataFrame) # Same DataFrames. field_names = value.columns kdf = self._assign({k: value[c] for k, c in zip(key, field_names)}) else: # Same Series. kdf = self._assign({key: value}) self._update_internal_frame(kdf._internal) @staticmethod def _index_normalized_label(level, labels): """ Returns a label that is normalized against the current column index level. For example, the key "abc" can be ("abc", "", "") if the current Frame has a multi-index for its column """ if is_name_like_tuple(labels): labels = [labels] elif is_name_like_value(labels): labels = [(labels,)] else: labels = [k if is_name_like_tuple(k) else (k,) for k in labels] if any(len(label) > level for label in labels): raise KeyError( "Key length ({}) exceeds index depth ({})".format( max(len(label) for label in labels), level ) ) return [tuple(list(label) + ([""] * (level - len(label)))) for label in labels] @staticmethod def _index_normalized_frame(level, kser_or_kdf): """ Returns a frame that is normalized against the current column index level. For example, the name in `pd.Series([...], name="abc")` can be can be ("abc", "", "") if the current DataFrame has a multi-index for its column """ from databricks.koalas.series import Series if isinstance(kser_or_kdf, Series): kdf = kser_or_kdf.to_frame() else: assert isinstance(kser_or_kdf, DataFrame), type(kser_or_kdf) kdf = kser_or_kdf.copy() kdf.columns = pd.MultiIndex.from_tuples( [ tuple([name_like_string(label)] + ([""] * (level - 1))) for label in kdf._internal.column_labels ], ) return kdf def __getattr__(self, key: str) -> Any: if key.startswith("__"): raise AttributeError(key) if hasattr(_MissingPandasLikeDataFrame, key): property_or_func = getattr(_MissingPandasLikeDataFrame, key) if isinstance(property_or_func, property): return property_or_func.fget(self) # type: ignore else: return partial(property_or_func, self) try: return self.loc[:, key] except KeyError: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, key) ) def __setattr__(self, key: str, value) -> None: try: object.__getattribute__(self, key) return object.__setattr__(self, key, value) except AttributeError: pass if (key,) in self._internal.column_labels: self[key] = value else: msg = "Koalas doesn't allow columns to be created via a new attribute name" if is_testing(): raise AssertionError(msg) else: warnings.warn(msg, UserWarning) def __len__(self): return self._internal.resolved_copy.spark_frame.count() def __dir__(self): fields = [ f for f in self._internal.resolved_copy.spark_frame.schema.fieldNames() if " " not in f ] return super().__dir__() + fields def __iter__(self): return iter(self.columns) # NDArray Compat def __array_ufunc__(self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any): # TODO: is it possible to deduplicate it with '_map_series_op'? if all(isinstance(inp, DataFrame) for inp in inputs) and any( not same_anchor(inp, inputs[0]) for inp in inputs ): # binary only assert len(inputs) == 2 this = inputs[0] that = inputs[1] if this._internal.column_labels_level != that._internal.column_labels_level: raise ValueError("cannot join with no overlapping index names") # Different DataFrames def apply_op(kdf, this_column_labels, that_column_labels): for this_label, that_label in zip(this_column_labels, that_column_labels): yield ( ufunc( kdf._kser_for(this_label), kdf._kser_for(that_label), **kwargs ).rename(this_label), this_label, ) return align_diff_frames(apply_op, this, that, fillna=True, how="full") else: # DataFrame and Series applied = [] this = inputs[0] assert all(inp is this for inp in inputs if isinstance(inp, DataFrame)) for label in this._internal.column_labels: arguments = [] for inp in inputs: arguments.append(inp[label] if isinstance(inp, DataFrame) else inp) # both binary and unary. applied.append(ufunc(*arguments, **kwargs).rename(label)) internal = this._internal.with_new_columns(applied) return DataFrame(internal) if sys.version_info >= (3, 7): def __class_getitem__(cls, params): # This is a workaround to support variadic generic in DataFrame in Python 3.7. # See https://github.com/python/typing/issues/193 # we always wraps the given type hints by a tuple to mimic the variadic generic. return _create_tuple_for_frame_type(params) elif (3, 5) <= sys.version_info < (3, 7): # This is a workaround to support variadic generic in DataFrame in Python 3.5+ # The implementation is in its metaclass so this flag is needed to distinguish # Koalas DataFrame. is_dataframe = None def _reduce_spark_multi(sdf, aggs): """ Performs a reduction on a spark DataFrame, the functions being known sql aggregate functions. """ assert isinstance(sdf, spark.DataFrame) sdf0 = sdf.agg(*aggs) l = sdf0.limit(2).toPandas() assert len(l) == 1, (sdf, l) row = l.iloc[0] l2 = list(row) assert len(l2) == len(aggs), (row, l2) return l2 class CachedDataFrame(DataFrame): """ Cached Koalas DataFrame, which corresponds to pandas DataFrame logically, but internally it caches the corresponding Spark DataFrame. """ def __init__(self, internal, storage_level=None): if storage_level is None: object.__setattr__(self, "_cached", internal.spark_frame.cache()) elif isinstance(storage_level, StorageLevel): object.__setattr__(self, "_cached", internal.spark_frame.persist(storage_level)) else: raise TypeError( "Only a valid pyspark.StorageLevel type is acceptable for the `storage_level`" ) super().__init__(internal) def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.spark.unpersist() # create accessor for Spark related methods. spark = CachedAccessor("spark", CachedSparkFrameMethods) @property def storage_level(self) -> StorageLevel: warnings.warn( "DataFrame.storage_level is deprecated as of DataFrame.spark.storage_level. " "Please use the API instead.", FutureWarning, ) return self.spark.storage_level storage_level.__doc__ = CachedSparkFrameMethods.storage_level.__doc__ def unpersist(self) -> None: warnings.warn( "DataFrame.unpersist is deprecated as of DataFrame.spark.unpersist. " "Please use the API instead.", FutureWarning, ) return self.spark.unpersist() unpersist.__doc__ = CachedSparkFrameMethods.unpersist.__doc__
1
18,119
Could you also update it in `at_time`?
databricks-koalas
py
@@ -143,8 +143,9 @@ class Reader implements DataSourceReader, SupportsScanColumnarBatch, SupportsPus } catch (IOException ioe) { LOG.warn("Failed to get Hadoop Filesystem", ioe); } + Boolean localityFallback = LOCALITY_WHITELIST_FS.contains(scheme); this.localityPreferred = options.get("locality").map(Boolean::parseBoolean) - .orElse(LOCALITY_WHITELIST_FS.contains(scheme)); + .orElse(localityFallback); } else { this.localityPreferred = false; }
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg.spark.source; import java.io.IOException; import java.io.Serializable; import java.util.List; import java.util.Locale; import java.util.Map; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.iceberg.CombinedScanTask; import org.apache.iceberg.FileFormat; import org.apache.iceberg.FileScanTask; import org.apache.iceberg.Schema; import org.apache.iceberg.SchemaParser; import org.apache.iceberg.SnapshotSummary; import org.apache.iceberg.Table; import org.apache.iceberg.TableProperties; import org.apache.iceberg.TableScan; import org.apache.iceberg.encryption.EncryptionManager; import org.apache.iceberg.exceptions.RuntimeIOException; import org.apache.iceberg.expressions.Expression; import org.apache.iceberg.expressions.Expressions; import org.apache.iceberg.hadoop.HadoopFileIO; import org.apache.iceberg.hadoop.Util; import org.apache.iceberg.io.CloseableIterable; import org.apache.iceberg.io.FileIO; import org.apache.iceberg.relocated.com.google.common.base.Preconditions; import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet; import org.apache.iceberg.relocated.com.google.common.collect.Lists; import org.apache.iceberg.spark.SparkFilters; import org.apache.iceberg.spark.SparkSchemaUtil; import org.apache.iceberg.util.PropertyUtil; import org.apache.spark.broadcast.Broadcast; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.catalyst.InternalRow; import org.apache.spark.sql.sources.Filter; import org.apache.spark.sql.sources.v2.DataSourceOptions; import org.apache.spark.sql.sources.v2.reader.DataSourceReader; import org.apache.spark.sql.sources.v2.reader.InputPartition; import org.apache.spark.sql.sources.v2.reader.InputPartitionReader; import org.apache.spark.sql.sources.v2.reader.Statistics; import org.apache.spark.sql.sources.v2.reader.SupportsPushDownFilters; import org.apache.spark.sql.sources.v2.reader.SupportsPushDownRequiredColumns; import org.apache.spark.sql.sources.v2.reader.SupportsReportStatistics; import org.apache.spark.sql.sources.v2.reader.SupportsScanColumnarBatch; import org.apache.spark.sql.types.StructType; import org.apache.spark.sql.vectorized.ColumnarBatch; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import static org.apache.iceberg.TableProperties.DEFAULT_NAME_MAPPING; class Reader implements DataSourceReader, SupportsScanColumnarBatch, SupportsPushDownFilters, SupportsPushDownRequiredColumns, SupportsReportStatistics { private static final Logger LOG = LoggerFactory.getLogger(Reader.class); private static final Filter[] NO_FILTERS = new Filter[0]; private static final ImmutableSet<String> LOCALITY_WHITELIST_FS = ImmutableSet.of("hdfs"); private final Table table; private final Long snapshotId; private final Long startSnapshotId; private final Long endSnapshotId; private final Long asOfTimestamp; private final Long splitSize; private final Integer splitLookback; private final Long splitOpenFileCost; private final Broadcast<FileIO> io; private final Broadcast<EncryptionManager> encryptionManager; private final boolean caseSensitive; private StructType requestedSchema = null; private List<Expression> filterExpressions = null; private Filter[] pushedFilters = NO_FILTERS; private final boolean localityPreferred; private final boolean batchReadsEnabled; private final int batchSize; // lazy variables private Schema schema = null; private StructType type = null; // cached because Spark accesses it multiple times private List<CombinedScanTask> tasks = null; // lazy cache of tasks private Boolean readUsingBatch = null; Reader(Table table, Broadcast<FileIO> io, Broadcast<EncryptionManager> encryptionManager, boolean caseSensitive, DataSourceOptions options) { this.table = table; this.snapshotId = options.get("snapshot-id").map(Long::parseLong).orElse(null); this.asOfTimestamp = options.get("as-of-timestamp").map(Long::parseLong).orElse(null); if (snapshotId != null && asOfTimestamp != null) { throw new IllegalArgumentException( "Cannot scan using both snapshot-id and as-of-timestamp to select the table snapshot"); } this.startSnapshotId = options.get("start-snapshot-id").map(Long::parseLong).orElse(null); this.endSnapshotId = options.get("end-snapshot-id").map(Long::parseLong).orElse(null); if (snapshotId != null || asOfTimestamp != null) { if (startSnapshotId != null || endSnapshotId != null) { throw new IllegalArgumentException( "Cannot specify start-snapshot-id and end-snapshot-id to do incremental scan when either snapshot-id or " + "as-of-timestamp is specified"); } } else { if (startSnapshotId == null && endSnapshotId != null) { throw new IllegalArgumentException("Cannot only specify option end-snapshot-id to do incremental scan"); } } // look for split behavior overrides in options this.splitSize = options.get("split-size").map(Long::parseLong).orElse(null); this.splitLookback = options.get("lookback").map(Integer::parseInt).orElse(null); this.splitOpenFileCost = options.get("file-open-cost").map(Long::parseLong).orElse(null); if (io.getValue() instanceof HadoopFileIO) { String scheme = "no_exist"; try { Configuration conf = SparkSession.active().sessionState().newHadoopConf(); // merge hadoop config set on table mergeIcebergHadoopConfs(conf, table.properties()); // merge hadoop config passed as options and overwrite the one on table mergeIcebergHadoopConfs(conf, options.asMap()); FileSystem fs = new Path(table.location()).getFileSystem(conf); scheme = fs.getScheme().toLowerCase(Locale.ENGLISH); } catch (IOException ioe) { LOG.warn("Failed to get Hadoop Filesystem", ioe); } this.localityPreferred = options.get("locality").map(Boolean::parseBoolean) .orElse(LOCALITY_WHITELIST_FS.contains(scheme)); } else { this.localityPreferred = false; } this.schema = table.schema(); this.io = io; this.encryptionManager = encryptionManager; this.caseSensitive = caseSensitive; this.batchReadsEnabled = options.get("vectorization-enabled").map(Boolean::parseBoolean).orElse( PropertyUtil.propertyAsBoolean(table.properties(), TableProperties.PARQUET_VECTORIZATION_ENABLED, TableProperties.PARQUET_VECTORIZATION_ENABLED_DEFAULT)); this.batchSize = options.get("batch-size").map(Integer::parseInt).orElse( PropertyUtil.propertyAsInt(table.properties(), TableProperties.PARQUET_BATCH_SIZE, TableProperties.PARQUET_BATCH_SIZE_DEFAULT)); } private Schema lazySchema() { if (schema == null) { if (requestedSchema != null) { // the projection should include all columns that will be returned, including those only used in filters this.schema = SparkSchemaUtil.prune(table.schema(), requestedSchema, filterExpression(), caseSensitive); } else { this.schema = table.schema(); } } return schema; } private Expression filterExpression() { if (filterExpressions != null) { return filterExpressions.stream().reduce(Expressions.alwaysTrue(), Expressions::and); } return Expressions.alwaysTrue(); } private StructType lazyType() { if (type == null) { this.type = SparkSchemaUtil.convert(lazySchema()); } return type; } @Override public StructType readSchema() { return lazyType(); } /** * This is called in the Spark Driver when data is to be materialized into {@link ColumnarBatch} */ @Override public List<InputPartition<ColumnarBatch>> planBatchInputPartitions() { Preconditions.checkState(enableBatchRead(), "Batched reads not enabled"); Preconditions.checkState(batchSize > 0, "Invalid batch size"); String tableSchemaString = SchemaParser.toJson(table.schema()); String expectedSchemaString = SchemaParser.toJson(lazySchema()); String nameMappingString = table.properties().get(DEFAULT_NAME_MAPPING); List<InputPartition<ColumnarBatch>> readTasks = Lists.newArrayList(); for (CombinedScanTask task : tasks()) { readTasks.add(new ReadTask<>( task, tableSchemaString, expectedSchemaString, nameMappingString, io, encryptionManager, caseSensitive, localityPreferred, new BatchReaderFactory(batchSize))); } LOG.info("Batching input partitions with {} tasks.", readTasks.size()); return readTasks; } /** * This is called in the Spark Driver when data is to be materialized into {@link InternalRow} */ @Override public List<InputPartition<InternalRow>> planInputPartitions() { String tableSchemaString = SchemaParser.toJson(table.schema()); String expectedSchemaString = SchemaParser.toJson(lazySchema()); String nameMappingString = table.properties().get(DEFAULT_NAME_MAPPING); List<InputPartition<InternalRow>> readTasks = Lists.newArrayList(); for (CombinedScanTask task : tasks()) { readTasks.add(new ReadTask<>( task, tableSchemaString, expectedSchemaString, nameMappingString, io, encryptionManager, caseSensitive, localityPreferred, InternalRowReaderFactory.INSTANCE)); } return readTasks; } @Override public Filter[] pushFilters(Filter[] filters) { this.tasks = null; // invalidate cached tasks, if present List<Expression> expressions = Lists.newArrayListWithExpectedSize(filters.length); List<Filter> pushed = Lists.newArrayListWithExpectedSize(filters.length); for (Filter filter : filters) { Expression expr = SparkFilters.convert(filter); if (expr != null) { expressions.add(expr); pushed.add(filter); } } this.filterExpressions = expressions; this.pushedFilters = pushed.toArray(new Filter[0]); // invalidate the schema that will be projected this.schema = null; this.type = null; // Spark doesn't support residuals per task, so return all filters // to get Spark to handle record-level filtering return filters; } @Override public Filter[] pushedFilters() { return pushedFilters; } @Override public void pruneColumns(StructType newRequestedSchema) { this.requestedSchema = newRequestedSchema; // invalidate the schema that will be projected this.schema = null; this.type = null; } @Override public Statistics estimateStatistics() { if (filterExpressions == null || filterExpressions == Expressions.alwaysTrue()) { long totalRecords = PropertyUtil.propertyAsLong(table.currentSnapshot().summary(), SnapshotSummary.TOTAL_RECORDS_PROP, Long.MAX_VALUE); return new Stats(SparkSchemaUtil.estimateSize(lazyType(), totalRecords), totalRecords); } long sizeInBytes = 0L; long numRows = 0L; for (CombinedScanTask task : tasks()) { for (FileScanTask file : task.files()) { sizeInBytes += file.length(); numRows += file.file().recordCount(); } } return new Stats(sizeInBytes, numRows); } @Override public boolean enableBatchRead() { if (readUsingBatch == null) { boolean allParquetFileScanTasks = tasks().stream() .allMatch(combinedScanTask -> !combinedScanTask.isDataTask() && combinedScanTask.files() .stream() .allMatch(fileScanTask -> fileScanTask.file().format().equals( FileFormat.PARQUET))); boolean allOrcFileScanTasks = tasks().stream() .allMatch(combinedScanTask -> !combinedScanTask.isDataTask() && combinedScanTask.files() .stream() .allMatch(fileScanTask -> fileScanTask.file().format().equals( FileFormat.ORC))); boolean atLeastOneColumn = lazySchema().columns().size() > 0; boolean onlyPrimitives = lazySchema().columns().stream().allMatch(c -> c.type().isPrimitiveType()); this.readUsingBatch = batchReadsEnabled && (allOrcFileScanTasks || (allParquetFileScanTasks && atLeastOneColumn && onlyPrimitives)); } return readUsingBatch; } private static void mergeIcebergHadoopConfs( Configuration baseConf, Map<String, String> options) { options.keySet().stream() .filter(key -> key.startsWith("hadoop.")) .forEach(key -> baseConf.set(key.replaceFirst("hadoop.", ""), options.get(key))); } private List<CombinedScanTask> tasks() { if (tasks == null) { TableScan scan = table .newScan() .caseSensitive(caseSensitive) .project(lazySchema()); if (snapshotId != null) { scan = scan.useSnapshot(snapshotId); } if (asOfTimestamp != null) { scan = scan.asOfTime(asOfTimestamp); } if (startSnapshotId != null) { if (endSnapshotId != null) { scan = scan.appendsBetween(startSnapshotId, endSnapshotId); } else { scan = scan.appendsAfter(startSnapshotId); } } if (splitSize != null) { scan = scan.option(TableProperties.SPLIT_SIZE, splitSize.toString()); } if (splitLookback != null) { scan = scan.option(TableProperties.SPLIT_LOOKBACK, splitLookback.toString()); } if (splitOpenFileCost != null) { scan = scan.option(TableProperties.SPLIT_OPEN_FILE_COST, splitOpenFileCost.toString()); } if (filterExpressions != null) { for (Expression filter : filterExpressions) { scan = scan.filter(filter); } } try (CloseableIterable<CombinedScanTask> tasksIterable = scan.planTasks()) { this.tasks = Lists.newArrayList(tasksIterable); } catch (IOException e) { throw new RuntimeIOException(e, "Failed to close table scan: %s", scan); } } return tasks; } @Override public String toString() { return String.format( "IcebergScan(table=%s, type=%s, filters=%s, caseSensitive=%s, batchedReads=%s)", table, lazySchema().asStruct(), filterExpressions, caseSensitive, enableBatchRead()); } private static class ReadTask<T> implements Serializable, InputPartition<T> { private final CombinedScanTask task; private final String tableSchemaString; private final String expectedSchemaString; private final String nameMappingString; private final Broadcast<FileIO> io; private final Broadcast<EncryptionManager> encryptionManager; private final boolean caseSensitive; private final boolean localityPreferred; private final ReaderFactory<T> readerFactory; private transient Schema tableSchema = null; private transient Schema expectedSchema = null; private transient String[] preferredLocations = null; private ReadTask(CombinedScanTask task, String tableSchemaString, String expectedSchemaString, String nameMappingString, Broadcast<FileIO> io, Broadcast<EncryptionManager> encryptionManager, boolean caseSensitive, boolean localityPreferred, ReaderFactory<T> readerFactory) { this.task = task; this.tableSchemaString = tableSchemaString; this.expectedSchemaString = expectedSchemaString; this.io = io; this.encryptionManager = encryptionManager; this.caseSensitive = caseSensitive; this.localityPreferred = localityPreferred; this.preferredLocations = getPreferredLocations(); this.readerFactory = readerFactory; this.nameMappingString = nameMappingString; } @Override public InputPartitionReader<T> createPartitionReader() { return readerFactory.create(task, lazyTableSchema(), lazyExpectedSchema(), nameMappingString, io.value(), encryptionManager.value(), caseSensitive); } @Override public String[] preferredLocations() { return preferredLocations; } private Schema lazyTableSchema() { if (tableSchema == null) { this.tableSchema = SchemaParser.fromJson(tableSchemaString); } return tableSchema; } private Schema lazyExpectedSchema() { if (expectedSchema == null) { this.expectedSchema = SchemaParser.fromJson(expectedSchemaString); } return expectedSchema; } @SuppressWarnings("checkstyle:RegexpSingleline") private String[] getPreferredLocations() { if (!localityPreferred) { return new String[0]; } Configuration conf = SparkSession.active().sparkContext().hadoopConfiguration(); return Util.blockLocations(task, conf); } } private interface ReaderFactory<T> extends Serializable { InputPartitionReader<T> create(CombinedScanTask task, Schema tableSchema, Schema expectedSchema, String nameMapping, FileIO io, EncryptionManager encryptionManager, boolean caseSensitive); } private static class InternalRowReaderFactory implements ReaderFactory<InternalRow> { private static final InternalRowReaderFactory INSTANCE = new InternalRowReaderFactory(); private InternalRowReaderFactory() { } @Override public InputPartitionReader<InternalRow> create(CombinedScanTask task, Schema tableSchema, Schema expectedSchema, String nameMapping, FileIO io, EncryptionManager encryptionManager, boolean caseSensitive) { return new RowReader(task, tableSchema, expectedSchema, nameMapping, io, encryptionManager, caseSensitive); } } private static class BatchReaderFactory implements ReaderFactory<ColumnarBatch> { private final int batchSize; BatchReaderFactory(int batchSize) { this.batchSize = batchSize; } @Override public InputPartitionReader<ColumnarBatch> create(CombinedScanTask task, Schema tableSchema, Schema expectedSchema, String nameMapping, FileIO io, EncryptionManager encryptionManager, boolean caseSensitive) { return new BatchReader(task, expectedSchema, nameMapping, io, encryptionManager, caseSensitive, batchSize); } } private static class RowReader extends RowDataReader implements InputPartitionReader<InternalRow> { RowReader(CombinedScanTask task, Schema tableSchema, Schema expectedSchema, String nameMapping, FileIO io, EncryptionManager encryptionManager, boolean caseSensitive) { super(task, tableSchema, expectedSchema, nameMapping, io, encryptionManager, caseSensitive); } } private static class BatchReader extends BatchDataReader implements InputPartitionReader<ColumnarBatch> { BatchReader(CombinedScanTask task, Schema expectedSchema, String nameMapping, FileIO io, EncryptionManager encryptionManager, boolean caseSensitive, int size) { super(task, expectedSchema, nameMapping, io, encryptionManager, caseSensitive, size); } } }
1
23,372
Because schema is non-final we can't just switch this to a lambda
apache-iceberg
java
@@ -136,7 +136,7 @@ namespace NLog.Conditions } catch (Exception exception) { - if (exception.MustBeRethrown()) + if (exception.MustBeRethrown("While resolving function '{0}' follwing exception occured: {1}", functionName, exception)) { throw; }
1
// // Copyright (c) 2004-2011 Jaroslaw Kowalski <[email protected]> // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the name of Jaroslaw Kowalski nor the names of its // contributors may be used to endorse or promote products derived from this // software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF // THE POSSIBILITY OF SUCH DAMAGE. // namespace NLog.Conditions { using System; using System.Collections.Generic; using System.Globalization; using NLog.Config; using NLog.Internal; using NLog.Layouts; /// <summary> /// Condition parser. Turns a string representation of condition expression /// into an expression tree. /// </summary> public class ConditionParser { private readonly ConditionTokenizer tokenizer; private readonly ConfigurationItemFactory configurationItemFactory; /// <summary> /// Initializes a new instance of the <see cref="ConditionParser"/> class. /// </summary> /// <param name="stringReader">The string reader.</param> /// <param name="configurationItemFactory">Instance of <see cref="ConfigurationItemFactory"/> used to resolve references to condition methods and layout renderers.</param> private ConditionParser(SimpleStringReader stringReader, ConfigurationItemFactory configurationItemFactory) { this.configurationItemFactory = configurationItemFactory; this.tokenizer = new ConditionTokenizer(stringReader); } /// <summary> /// Parses the specified condition string and turns it into /// <see cref="ConditionExpression"/> tree. /// </summary> /// <param name="expressionText">The expression to be parsed.</param> /// <returns>The root of the expression syntax tree which can be used to get the value of the condition in a specified context.</returns> public static ConditionExpression ParseExpression(string expressionText) { return ParseExpression(expressionText, ConfigurationItemFactory.Default); } /// <summary> /// Parses the specified condition string and turns it into /// <see cref="ConditionExpression"/> tree. /// </summary> /// <param name="expressionText">The expression to be parsed.</param> /// <param name="configurationItemFactories">Instance of <see cref="ConfigurationItemFactory"/> used to resolve references to condition methods and layout renderers.</param> /// <returns>The root of the expression syntax tree which can be used to get the value of the condition in a specified context.</returns> public static ConditionExpression ParseExpression(string expressionText, ConfigurationItemFactory configurationItemFactories) { if (expressionText == null) { return null; } var parser = new ConditionParser(new SimpleStringReader(expressionText), configurationItemFactories); ConditionExpression expression = parser.ParseExpression(); if (!parser.tokenizer.IsEOF()) { throw new ConditionParseException("Unexpected token: " + parser.tokenizer.TokenValue); } return expression; } /// <summary> /// Parses the specified condition string and turns it into /// <see cref="ConditionExpression"/> tree. /// </summary> /// <param name="stringReader">The string reader.</param> /// <param name="configurationItemFactories">Instance of <see cref="ConfigurationItemFactory"/> used to resolve references to condition methods and layout renderers.</param> /// <returns> /// The root of the expression syntax tree which can be used to get the value of the condition in a specified context. /// </returns> internal static ConditionExpression ParseExpression(SimpleStringReader stringReader, ConfigurationItemFactory configurationItemFactories) { var parser = new ConditionParser(stringReader, configurationItemFactories); ConditionExpression expression = parser.ParseExpression(); return expression; } private ConditionMethodExpression ParsePredicate(string functionName) { var par = new List<ConditionExpression>(); while (!this.tokenizer.IsEOF() && this.tokenizer.TokenType != ConditionTokenType.RightParen) { par.Add(ParseExpression()); if (this.tokenizer.TokenType != ConditionTokenType.Comma) { break; } this.tokenizer.GetNextToken(); } this.tokenizer.Expect(ConditionTokenType.RightParen); try { var methodInfo = this.configurationItemFactory.ConditionMethods.CreateInstance(functionName); return new ConditionMethodExpression(functionName, methodInfo, par); } catch (Exception exception) { if (exception.MustBeRethrown()) { throw; } throw new ConditionParseException("Cannot resolve function '" + functionName + "'", exception); } } private ConditionExpression ParseLiteralExpression() { if (this.tokenizer.IsToken(ConditionTokenType.LeftParen)) { this.tokenizer.GetNextToken(); ConditionExpression e = this.ParseExpression(); this.tokenizer.Expect(ConditionTokenType.RightParen); return e; } if (this.tokenizer.IsToken(ConditionTokenType.Minus)) { this.tokenizer.GetNextToken(); if (!this.tokenizer.IsNumber()) { throw new ConditionParseException("Number expected, got " + this.tokenizer.TokenType); } string numberString = this.tokenizer.TokenValue; this.tokenizer.GetNextToken(); if (numberString.IndexOf('.') >= 0) { return new ConditionLiteralExpression(-double.Parse(numberString, CultureInfo.InvariantCulture)); } return new ConditionLiteralExpression(-int.Parse(numberString, CultureInfo.InvariantCulture)); } if (this.tokenizer.IsNumber()) { string numberString = this.tokenizer.TokenValue; this.tokenizer.GetNextToken(); if (numberString.IndexOf('.') >= 0) { return new ConditionLiteralExpression(double.Parse(numberString, CultureInfo.InvariantCulture)); } return new ConditionLiteralExpression(int.Parse(numberString, CultureInfo.InvariantCulture)); } if (this.tokenizer.TokenType == ConditionTokenType.String) { ConditionExpression e = new ConditionLayoutExpression(Layout.FromString(this.tokenizer.StringTokenValue, this.configurationItemFactory)); this.tokenizer.GetNextToken(); return e; } if (this.tokenizer.TokenType == ConditionTokenType.Keyword) { string keyword = this.tokenizer.EatKeyword(); if (0 == string.Compare(keyword, "level", StringComparison.OrdinalIgnoreCase)) { return new ConditionLevelExpression(); } if (0 == string.Compare(keyword, "logger", StringComparison.OrdinalIgnoreCase)) { return new ConditionLoggerNameExpression(); } if (0 == string.Compare(keyword, "message", StringComparison.OrdinalIgnoreCase)) { return new ConditionMessageExpression(); } if (0 == string.Compare(keyword, "loglevel", StringComparison.OrdinalIgnoreCase)) { this.tokenizer.Expect(ConditionTokenType.Dot); return new ConditionLiteralExpression(LogLevel.FromString(this.tokenizer.EatKeyword())); } if (0 == string.Compare(keyword, "true", StringComparison.OrdinalIgnoreCase)) { return new ConditionLiteralExpression(true); } if (0 == string.Compare(keyword, "false", StringComparison.OrdinalIgnoreCase)) { return new ConditionLiteralExpression(false); } if (0 == string.Compare(keyword, "null", StringComparison.OrdinalIgnoreCase)) { return new ConditionLiteralExpression(null); } if (this.tokenizer.TokenType == ConditionTokenType.LeftParen) { this.tokenizer.GetNextToken(); ConditionMethodExpression predicateExpression = this.ParsePredicate(keyword); return predicateExpression; } } throw new ConditionParseException("Unexpected token: " + this.tokenizer.TokenValue); } private ConditionExpression ParseBooleanRelation() { ConditionExpression e = this.ParseLiteralExpression(); if (this.tokenizer.IsToken(ConditionTokenType.EqualTo)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.Equal); } if (this.tokenizer.IsToken(ConditionTokenType.NotEqual)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.NotEqual); } if (this.tokenizer.IsToken(ConditionTokenType.LessThan)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.Less); } if (this.tokenizer.IsToken(ConditionTokenType.GreaterThan)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.Greater); } if (this.tokenizer.IsToken(ConditionTokenType.LessThanOrEqualTo)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.LessOrEqual); } if (this.tokenizer.IsToken(ConditionTokenType.GreaterThanOrEqualTo)) { this.tokenizer.GetNextToken(); return new ConditionRelationalExpression(e, this.ParseLiteralExpression(), ConditionRelationalOperator.GreaterOrEqual); } return e; } private ConditionExpression ParseBooleanPredicate() { if (this.tokenizer.IsKeyword("not") || this.tokenizer.IsToken(ConditionTokenType.Not)) { this.tokenizer.GetNextToken(); return new ConditionNotExpression(this.ParseBooleanPredicate()); } return this.ParseBooleanRelation(); } private ConditionExpression ParseBooleanAnd() { ConditionExpression expression = this.ParseBooleanPredicate(); while (this.tokenizer.IsKeyword("and") || this.tokenizer.IsToken(ConditionTokenType.And)) { this.tokenizer.GetNextToken(); expression = new ConditionAndExpression(expression, this.ParseBooleanPredicate()); } return expression; } private ConditionExpression ParseBooleanOr() { ConditionExpression expression = this.ParseBooleanAnd(); while (this.tokenizer.IsKeyword("or") || this.tokenizer.IsToken(ConditionTokenType.Or)) { this.tokenizer.GetNextToken(); expression = new ConditionOrExpression(expression, this.ParseBooleanAnd()); } return expression; } private ConditionExpression ParseBooleanExpression() { return this.ParseBooleanOr(); } private ConditionExpression ParseExpression() { return this.ParseBooleanExpression(); } } }
1
11,658
proposal: **always** add the exception to the end of the message. So no need to to pass exception twice (implicit and explicit). Need a lot of changes.
NLog-NLog
.cs
@@ -41,9 +41,14 @@ public class InvocationStartProcessingEventListener implements EventListener { public void process(Event data) { InvocationStartProcessingEvent event = (InvocationStartProcessingEvent) data; InvocationMonitor monitor = registryMonitor.getInvocationMonitor(event.getOperationName()); + //TODO:current java chassis unable know invocation type before starting process,so all type WaitInQueue increment(-1) (decrement) monitor.getWaitInQueue().increment(-1); + monitor.setInvocationMonitorType(event.getInvocationType()); if (InvocationType.PRODUCER.equals(event.getInvocationType())) { monitor.getLifeTimeInQueue().update(event.getInQueueNanoTime()); + monitor.getProducerCall().increment(); + } else { + monitor.getConsumerCall().increment(); } } }
1
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.servicecomb.metrics.core.event; import io.servicecomb.core.metrics.InvocationStartProcessingEvent; import io.servicecomb.foundation.common.event.Event; import io.servicecomb.foundation.common.event.EventListener; import io.servicecomb.metrics.core.monitor.InvocationMonitor; import io.servicecomb.metrics.core.monitor.RegistryMonitor; import io.servicecomb.swagger.invocation.InvocationType; public class InvocationStartProcessingEventListener implements EventListener { private final RegistryMonitor registryMonitor; public InvocationStartProcessingEventListener(RegistryMonitor registryMonitor) { this.registryMonitor = registryMonitor; } @Override public Class<? extends Event> getConcernedEvent() { return InvocationStartProcessingEvent.class; } @Override public void process(Event data) { InvocationStartProcessingEvent event = (InvocationStartProcessingEvent) data; InvocationMonitor monitor = registryMonitor.getInvocationMonitor(event.getOperationName()); monitor.getWaitInQueue().increment(-1); if (InvocationType.PRODUCER.equals(event.getInvocationType())) { monitor.getLifeTimeInQueue().update(event.getInQueueNanoTime()); } } }
1
8,123
why? event.getInvocationType is not you want?
apache-servicecomb-java-chassis
java
@@ -29,6 +29,7 @@ import ( type Info struct { ID string `json:"server_id"` Version string `json:"version"` + GitHash string `json:"git_hash"` GoVersion string `json:"go"` Host string `json:"host"` Port int `json:"port"`
1
// Copyright 2012-2016 Apcera Inc. All rights reserved. package server import ( "bufio" "crypto/tls" "encoding/json" "flag" "fmt" "io/ioutil" "net" "net/http" "os" "runtime" "strconv" "strings" "sync" "time" // Allow dynamic profiling. _ "net/http/pprof" "github.com/nats-io/gnatsd/util" ) // Info is the information sent to clients to help them understand information // about this server. type Info struct { ID string `json:"server_id"` Version string `json:"version"` GoVersion string `json:"go"` Host string `json:"host"` Port int `json:"port"` AuthRequired bool `json:"auth_required"` SSLRequired bool `json:"ssl_required"` // DEPRECATED: ssl json used for older clients TLSRequired bool `json:"tls_required"` TLSVerify bool `json:"tls_verify"` MaxPayload int `json:"max_payload"` IP string `json:"ip,omitempty"` ClientConnectURLs []string `json:"connect_urls,omitempty"` // Contains URLs a client can connect to. // Used internally for quick look-ups. clientConnectURLs map[string]struct{} } // Server is our main struct. type Server struct { gcid uint64 stats mu sync.Mutex info Info infoJSON []byte sl *Sublist configFile string optsMu sync.RWMutex opts *Options running bool shutdown bool listener net.Listener clients map[uint64]*client routes map[uint64]*client remotes map[string]*client users map[string]*User totalClients uint64 done chan bool start time.Time http net.Listener httpHandler http.Handler profiler net.Listener httpReqStats map[string]uint64 routeListener net.Listener routeInfo Info routeInfoJSON []byte rcQuit chan bool grMu sync.Mutex grTmpClients map[uint64]*client grRunning bool grWG sync.WaitGroup // to wait on various go routines cproto int64 // number of clients supporting async INFO configTime time.Time // last time config was loaded logging struct { sync.RWMutex logger Logger trace int32 debug int32 } // Used by tests to check that http.Servers do // not set any timeout. monitoringServer *http.Server profilingServer *http.Server } // Make sure all are 64bits for atomic use type stats struct { inMsgs int64 outMsgs int64 inBytes int64 outBytes int64 slowConsumers int64 } // New will setup a new server struct after parsing the options. func New(opts *Options) *Server { processOptions(opts) // Process TLS options, including whether we require client certificates. tlsReq := opts.TLSConfig != nil verify := (tlsReq && opts.TLSConfig.ClientAuth == tls.RequireAndVerifyClientCert) info := Info{ ID: genID(), Version: VERSION, GoVersion: runtime.Version(), Host: opts.Host, Port: opts.Port, AuthRequired: false, TLSRequired: tlsReq, SSLRequired: tlsReq, TLSVerify: verify, MaxPayload: opts.MaxPayload, clientConnectURLs: make(map[string]struct{}), } now := time.Now() s := &Server{ configFile: opts.ConfigFile, info: info, sl: NewSublist(), opts: opts, done: make(chan bool, 1), start: now, configTime: now, } s.mu.Lock() defer s.mu.Unlock() // For tracking clients s.clients = make(map[uint64]*client) // For tracking connections that are not yet registered // in s.routes, but for which readLoop has started. s.grTmpClients = make(map[uint64]*client) // For tracking routes and their remote ids s.routes = make(map[uint64]*client) s.remotes = make(map[string]*client) // Used to kick out all of the route // connect Go routines. s.rcQuit = make(chan bool) // Used to setup Authorization. s.configureAuthorization() s.generateServerInfoJSON() s.handleSignals() return s } func (s *Server) getOpts() *Options { s.optsMu.RLock() opts := s.opts s.optsMu.RUnlock() return opts } func (s *Server) setOpts(opts *Options) { s.optsMu.Lock() s.opts = opts s.optsMu.Unlock() } func (s *Server) generateServerInfoJSON() { // Generate the info json b, err := json.Marshal(s.info) if err != nil { s.Fatalf("Error marshaling INFO JSON: %+v\n", err) return } s.infoJSON = []byte(fmt.Sprintf("INFO %s %s", b, CR_LF)) } func (s *Server) generateRouteInfoJSON() { b, err := json.Marshal(s.routeInfo) if err != nil { s.Fatalf("Error marshaling route INFO JSON: %+v\n", err) return } s.routeInfoJSON = []byte(fmt.Sprintf(InfoProto, b)) } // PrintAndDie is exported for access in other packages. func PrintAndDie(msg string) { fmt.Fprintf(os.Stderr, "%s\n", msg) os.Exit(1) } // PrintServerAndExit will print our version and exit. func PrintServerAndExit() { fmt.Printf("nats-server version %s\n", VERSION) os.Exit(0) } // ProcessCommandLineArgs takes the command line arguments // validating and setting flags for handling in case any // sub command was present. func ProcessCommandLineArgs(cmd *flag.FlagSet) (showVersion bool, showHelp bool, err error) { if len(cmd.Args()) > 0 { arg := cmd.Args()[0] switch strings.ToLower(arg) { case "version": return true, false, nil case "help": return false, true, nil default: return false, false, fmt.Errorf("unrecognized command: %q", arg) } } return false, false, nil } // Protected check on running state func (s *Server) isRunning() bool { s.mu.Lock() defer s.mu.Unlock() return s.running } func (s *Server) logPid() error { pidStr := strconv.Itoa(os.Getpid()) return ioutil.WriteFile(s.getOpts().PidFile, []byte(pidStr), 0660) } // Start up the server, this will block. // Start via a Go routine if needed. func (s *Server) Start() { s.Noticef("Starting nats-server version %s", VERSION) s.Debugf("Go build version %s", s.info.GoVersion) // Avoid RACE between Start() and Shutdown() s.mu.Lock() s.running = true s.mu.Unlock() s.grMu.Lock() s.grRunning = true s.grMu.Unlock() // Snapshot server options. opts := s.getOpts() // Log the pid to a file if opts.PidFile != _EMPTY_ { if err := s.logPid(); err != nil { PrintAndDie(fmt.Sprintf("Could not write pidfile: %v\n", err)) } } // Start monitoring if needed if err := s.StartMonitoring(); err != nil { s.Fatalf("Can't start monitoring: %v", err) return } // The Routing routine needs to wait for the client listen // port to be opened and potential ephemeral port selected. clientListenReady := make(chan struct{}) // Start up routing as well if needed. if opts.Cluster.Port != 0 { s.startGoRoutine(func() { s.StartRouting(clientListenReady) }) } // Pprof http endpoint for the profiler. if opts.ProfPort != 0 { s.StartProfiler() } // Wait for clients. s.AcceptLoop(clientListenReady) } // Shutdown will shutdown the server instance by kicking out the AcceptLoop // and closing all associated clients. func (s *Server) Shutdown() { s.mu.Lock() // Prevent issues with multiple calls. if s.shutdown { s.mu.Unlock() return } s.shutdown = true s.running = false s.grMu.Lock() s.grRunning = false s.grMu.Unlock() conns := make(map[uint64]*client) // Copy off the clients for i, c := range s.clients { conns[i] = c } // Copy off the connections that are not yet registered // in s.routes, but for which the readLoop has started s.grMu.Lock() for i, c := range s.grTmpClients { conns[i] = c } s.grMu.Unlock() // Copy off the routes for i, r := range s.routes { r.setRouteNoReconnectOnClose() conns[i] = r } // Number of done channel responses we expect. doneExpected := 0 // Kick client AcceptLoop() if s.listener != nil { doneExpected++ s.listener.Close() s.listener = nil } // Kick route AcceptLoop() if s.routeListener != nil { doneExpected++ s.routeListener.Close() s.routeListener = nil } // Kick HTTP monitoring if its running if s.http != nil { doneExpected++ s.http.Close() s.http = nil } // Kick Profiling if its running if s.profiler != nil { doneExpected++ s.profiler.Close() } // Release the solicited routes connect go routines. close(s.rcQuit) s.mu.Unlock() // Close client and route connections for _, c := range conns { c.closeConnection() } // Block until the accept loops exit for doneExpected > 0 { <-s.done doneExpected-- } // Wait for go routines to be done. s.grWG.Wait() } // AcceptLoop is exported for easier testing. func (s *Server) AcceptLoop(clr chan struct{}) { // If we were to exit before the listener is setup properly, // make sure we close the channel. defer func() { if clr != nil { close(clr) } }() // Snapshot server options. opts := s.getOpts() hp := net.JoinHostPort(opts.Host, strconv.Itoa(opts.Port)) l, e := net.Listen("tcp", hp) if e != nil { s.Fatalf("Error listening on port: %s, %q", hp, e) return } s.Noticef("Listening for client connections on %s", net.JoinHostPort(opts.Host, strconv.Itoa(l.Addr().(*net.TCPAddr).Port))) // Alert of TLS enabled. if opts.TLSConfig != nil { s.Noticef("TLS required for client connections") } s.Debugf("Server id is %s", s.info.ID) s.Noticef("Server is ready") // Setup state that can enable shutdown s.mu.Lock() s.listener = l // If server was started with RANDOM_PORT (-1), opts.Port would be equal // to 0 at the beginning this function. So we need to get the actual port if opts.Port == 0 { // Write resolved port back to options. _, port, err := net.SplitHostPort(l.Addr().String()) if err != nil { s.Fatalf("Error parsing server address (%s): %s", l.Addr().String(), e) s.mu.Unlock() return } portNum, err := strconv.Atoi(port) if err != nil { s.Fatalf("Error parsing server address (%s): %s", l.Addr().String(), e) s.mu.Unlock() return } opts.Port = portNum } s.mu.Unlock() // Let the caller know that we are ready close(clr) clr = nil tmpDelay := ACCEPT_MIN_SLEEP for s.isRunning() { conn, err := l.Accept() if err != nil { if ne, ok := err.(net.Error); ok && ne.Temporary() { s.Errorf("Temporary Client Accept Error (%v), sleeping %dms", ne, tmpDelay/time.Millisecond) time.Sleep(tmpDelay) tmpDelay *= 2 if tmpDelay > ACCEPT_MAX_SLEEP { tmpDelay = ACCEPT_MAX_SLEEP } } else if s.isRunning() { s.Errorf("Client Accept Error: %v", err) } continue } tmpDelay = ACCEPT_MIN_SLEEP s.startGoRoutine(func() { s.createClient(conn) s.grWG.Done() }) } s.Noticef("Server Exiting..") s.done <- true } // StartProfiler is called to enable dynamic profiling. func (s *Server) StartProfiler() { // Snapshot server options. opts := s.getOpts() port := opts.ProfPort // Check for Random Port if port == -1 { port = 0 } hp := net.JoinHostPort(opts.Host, strconv.Itoa(port)) l, err := net.Listen("tcp", hp) s.Noticef("profiling port: %d", l.Addr().(*net.TCPAddr).Port) if err != nil { s.Fatalf("error starting profiler: %s", err) } srv := &http.Server{ Addr: hp, Handler: http.DefaultServeMux, MaxHeaderBytes: 1 << 20, } s.mu.Lock() s.profiler = l s.profilingServer = srv s.mu.Unlock() go func() { // if this errors out, it's probably because the server is being shutdown err := srv.Serve(l) if err != nil { s.mu.Lock() shutdown := s.shutdown s.mu.Unlock() if !shutdown { s.Fatalf("error starting profiler: %s", err) } } s.done <- true }() } // StartHTTPMonitoring will enable the HTTP monitoring port. // DEPRECATED: Should use StartMonitoring. func (s *Server) StartHTTPMonitoring() { s.startMonitoring(false) } // StartHTTPSMonitoring will enable the HTTPS monitoring port. // DEPRECATED: Should use StartMonitoring. func (s *Server) StartHTTPSMonitoring() { s.startMonitoring(true) } // StartMonitoring starts the HTTP or HTTPs server if needed. func (s *Server) StartMonitoring() error { // Snapshot server options. opts := s.getOpts() // Specifying both HTTP and HTTPS ports is a misconfiguration if opts.HTTPPort != 0 && opts.HTTPSPort != 0 { return fmt.Errorf("can't specify both HTTP (%v) and HTTPs (%v) ports", opts.HTTPPort, opts.HTTPSPort) } var err error if opts.HTTPPort != 0 { err = s.startMonitoring(false) } else if opts.HTTPSPort != 0 { if opts.TLSConfig == nil { return fmt.Errorf("TLS cert and key required for HTTPS") } err = s.startMonitoring(true) } return err } // HTTP endpoints const ( RootPath = "/" VarzPath = "/varz" ConnzPath = "/connz" RoutezPath = "/routez" SubszPath = "/subsz" StackszPath = "/stacksz" ) // Start the monitoring server func (s *Server) startMonitoring(secure bool) error { // Snapshot server options. opts := s.getOpts() // Used to track HTTP requests s.httpReqStats = map[string]uint64{ RootPath: 0, VarzPath: 0, ConnzPath: 0, RoutezPath: 0, SubszPath: 0, } var ( hp string err error httpListener net.Listener port int ) monitorProtocol := "http" if secure { monitorProtocol += "s" port = opts.HTTPSPort if port == -1 { port = 0 } hp = net.JoinHostPort(opts.HTTPHost, strconv.Itoa(port)) config := util.CloneTLSConfig(opts.TLSConfig) config.ClientAuth = tls.NoClientCert httpListener, err = tls.Listen("tcp", hp, config) } else { port = opts.HTTPPort if port == -1 { port = 0 } hp = net.JoinHostPort(opts.HTTPHost, strconv.Itoa(port)) httpListener, err = net.Listen("tcp", hp) } if err != nil { return fmt.Errorf("can't listen to the monitor port: %v", err) } s.Noticef("Starting %s monitor on %s", monitorProtocol, net.JoinHostPort(opts.HTTPHost, strconv.Itoa(httpListener.Addr().(*net.TCPAddr).Port))) mux := http.NewServeMux() // Root mux.HandleFunc(RootPath, s.HandleRoot) // Varz mux.HandleFunc(VarzPath, s.HandleVarz) // Connz mux.HandleFunc(ConnzPath, s.HandleConnz) // Routez mux.HandleFunc(RoutezPath, s.HandleRoutez) // Subz mux.HandleFunc(SubszPath, s.HandleSubsz) // Subz alias for backwards compatibility mux.HandleFunc("/subscriptionsz", s.HandleSubsz) // Stacksz mux.HandleFunc(StackszPath, s.HandleStacksz) // Do not set a WriteTimeout because it could cause cURL/browser // to return empty response or unable to display page if the // server needs more time to build the response. srv := &http.Server{ Addr: hp, Handler: mux, MaxHeaderBytes: 1 << 20, } s.mu.Lock() s.http = httpListener s.httpHandler = mux s.monitoringServer = srv s.mu.Unlock() go func() { srv.Serve(httpListener) srv.Handler = nil s.mu.Lock() s.httpHandler = nil s.mu.Unlock() s.done <- true }() return nil } // HTTPHandler returns the http.Handler object used to handle monitoring // endpoints. It will return nil if the server is not configured for // monitoring, or if the server has not been started yet (Server.Start()). func (s *Server) HTTPHandler() http.Handler { s.mu.Lock() defer s.mu.Unlock() return s.httpHandler } func (s *Server) createClient(conn net.Conn) *client { // Snapshot server options. opts := s.getOpts() c := &client{srv: s, nc: conn, opts: defaultOpts, mpay: int64(opts.MaxPayload), start: time.Now()} // Grab JSON info string s.mu.Lock() info := s.infoJSON authRequired := s.info.AuthRequired tlsRequired := s.info.TLSRequired s.totalClients++ s.mu.Unlock() // Grab lock c.mu.Lock() // Initialize c.initClient() c.Debugf("Client connection created") // Send our information. c.sendInfo(info) // Unlock to register c.mu.Unlock() // Register with the server. s.mu.Lock() // If server is not running, Shutdown() may have already gathered the // list of connections to close. It won't contain this one, so we need // to bail out now otherwise the readLoop started down there would not // be interrupted. if !s.running { s.mu.Unlock() return c } // If there is a max connections specified, check that adding // this new client would not push us over the max if opts.MaxConn > 0 && len(s.clients) >= opts.MaxConn { s.mu.Unlock() c.maxConnExceeded() return nil } s.clients[c.cid] = c s.mu.Unlock() // Re-Grab lock c.mu.Lock() // Check for TLS if tlsRequired { c.Debugf("Starting TLS client connection handshake") c.nc = tls.Server(c.nc, opts.TLSConfig) conn := c.nc.(*tls.Conn) // Setup the timeout ttl := secondsToDuration(opts.TLSTimeout) time.AfterFunc(ttl, func() { tlsTimeout(c, conn) }) conn.SetReadDeadline(time.Now().Add(ttl)) // Force handshake c.mu.Unlock() if err := conn.Handshake(); err != nil { c.Debugf("TLS handshake error: %v", err) c.sendErr("Secure Connection - TLS Required") c.closeConnection() return nil } // Reset the read deadline conn.SetReadDeadline(time.Time{}) // Re-Grab lock c.mu.Lock() // Indicate that handshake is complete (used in monitoring) c.flags.set(handshakeComplete) } // The connection may have been closed if c.nc == nil { c.mu.Unlock() return c } // Check for Auth. We schedule this timer after the TLS handshake to avoid // the race where the timer fires during the handshake and causes the // server to write bad data to the socket. See issue #432. if authRequired { c.setAuthTimer(secondsToDuration(opts.AuthTimeout)) } if tlsRequired { // Rewrap bw c.bw = bufio.NewWriterSize(c.nc, startBufSize) } // Do final client initialization // Set the Ping timer c.setPingTimer() // Spin up the read loop. s.startGoRoutine(func() { c.readLoop() }) if tlsRequired { c.Debugf("TLS handshake complete") cs := c.nc.(*tls.Conn).ConnectionState() c.Debugf("TLS version %s, cipher suite %s", tlsVersion(cs.Version), tlsCipher(cs.CipherSuite)) } c.mu.Unlock() return c } // updateServerINFO updates the server's Info object with the given // array of URLs and re-generate the infoJSON byte array, only if the // given URLs were not already recorded. func (s *Server) updateServerINFO(urls []string) { s.mu.Lock() defer s.mu.Unlock() // Will be set to true if we alter the server's Info object. wasUpdated := false for _, url := range urls { if _, present := s.info.clientConnectURLs[url]; !present { s.info.clientConnectURLs[url] = struct{}{} s.info.ClientConnectURLs = append(s.info.ClientConnectURLs, url) wasUpdated = true } } if wasUpdated { s.generateServerInfoJSON() } } // Handle closing down a connection when the handshake has timedout. func tlsTimeout(c *client, conn *tls.Conn) { c.mu.Lock() nc := c.nc c.mu.Unlock() // Check if already closed if nc == nil { return } cs := conn.ConnectionState() if !cs.HandshakeComplete { c.Debugf("TLS handshake timeout") c.sendErr("Secure Connection - TLS Required") c.closeConnection() } } // Seems silly we have to write these func tlsVersion(ver uint16) string { switch ver { case tls.VersionTLS10: return "1.0" case tls.VersionTLS11: return "1.1" case tls.VersionTLS12: return "1.2" } return fmt.Sprintf("Unknown [%x]", ver) } // We use hex here so we don't need multiple versions func tlsCipher(cs uint16) string { name, present := cipherMapByID[cs] if present { return name } return fmt.Sprintf("Unknown [%x]", cs) } // Remove a client or route from our internal accounting. func (s *Server) removeClient(c *client) { var rID string c.mu.Lock() cid := c.cid typ := c.typ r := c.route if r != nil { rID = r.remoteID } updateProtoInfoCount := false if typ == CLIENT && c.opts.Protocol >= ClientProtoInfo { updateProtoInfoCount = true } c.mu.Unlock() s.mu.Lock() switch typ { case CLIENT: delete(s.clients, cid) if updateProtoInfoCount { s.cproto-- } case ROUTER: delete(s.routes, cid) if r != nil { rc, ok := s.remotes[rID] // Only delete it if it is us.. if ok && c == rc { delete(s.remotes, rID) } } } s.mu.Unlock() } ///////////////////////////////////////////////////////////////// // These are some helpers for accounting in functional tests. ///////////////////////////////////////////////////////////////// // NumRoutes will report the number of registered routes. func (s *Server) NumRoutes() int { s.mu.Lock() defer s.mu.Unlock() return len(s.routes) } // NumRemotes will report number of registered remotes. func (s *Server) NumRemotes() int { s.mu.Lock() defer s.mu.Unlock() return len(s.remotes) } // NumClients will report the number of registered clients. func (s *Server) NumClients() int { s.mu.Lock() defer s.mu.Unlock() return len(s.clients) } // NumSubscriptions will report how many subscriptions are active. func (s *Server) NumSubscriptions() uint32 { s.mu.Lock() subs := s.sl.Count() s.mu.Unlock() return subs } // ConfigTime will report the last time the server configuration was loaded. func (s *Server) ConfigTime() time.Time { s.mu.Lock() defer s.mu.Unlock() return s.configTime } // Addr will return the net.Addr object for the current listener. func (s *Server) Addr() net.Addr { s.mu.Lock() defer s.mu.Unlock() if s.listener == nil { return nil } return s.listener.Addr() } // MonitorAddr will return the net.Addr object for the monitoring listener. func (s *Server) MonitorAddr() *net.TCPAddr { s.mu.Lock() defer s.mu.Unlock() if s.http == nil { return nil } return s.http.Addr().(*net.TCPAddr) } // ClusterAddr returns the net.Addr object for the route listener. func (s *Server) ClusterAddr() *net.TCPAddr { s.mu.Lock() defer s.mu.Unlock() if s.routeListener == nil { return nil } return s.routeListener.Addr().(*net.TCPAddr) } // ProfilerAddr returns the net.Addr object for the route listener. func (s *Server) ProfilerAddr() *net.TCPAddr { s.mu.Lock() defer s.mu.Unlock() if s.profiler == nil { return nil } return s.profiler.Addr().(*net.TCPAddr) } // ReadyForConnections returns `true` if the server is ready to accept client // and, if routing is enabled, route connections. If after the duration // `dur` the server is still not ready, returns `false`. func (s *Server) ReadyForConnections(dur time.Duration) bool { // Snapshot server options. opts := s.getOpts() end := time.Now().Add(dur) for time.Now().Before(end) { s.mu.Lock() ok := s.listener != nil && (opts.Cluster.Port == 0 || s.routeListener != nil) s.mu.Unlock() if ok { return true } time.Sleep(25 * time.Millisecond) } return false } // ID returns the server's ID func (s *Server) ID() string { s.mu.Lock() defer s.mu.Unlock() return s.info.ID } func (s *Server) startGoRoutine(f func()) { s.grMu.Lock() if s.grRunning { s.grWG.Add(1) go f() } s.grMu.Unlock() } // getClientConnectURLs returns suitable URLs for clients to connect to the listen // port based on the server options' Host and Port. If the Host corresponds to // "any" interfaces, this call returns the list of resolved IP addresses. func (s *Server) getClientConnectURLs() []string { // Snapshot server options. opts := s.getOpts() s.mu.Lock() defer s.mu.Unlock() sPort := strconv.Itoa(opts.Port) urls := make([]string, 0, 1) ipAddr, err := net.ResolveIPAddr("ip", opts.Host) // If the host is "any" (0.0.0.0 or ::), get specific IPs from available // interfaces. if err == nil && ipAddr.IP.IsUnspecified() { var ip net.IP ifaces, _ := net.Interfaces() for _, i := range ifaces { addrs, _ := i.Addrs() for _, addr := range addrs { switch v := addr.(type) { case *net.IPNet: ip = v.IP case *net.IPAddr: ip = v.IP } // Skip non global unicast addresses if !ip.IsGlobalUnicast() || ip.IsUnspecified() { ip = nil continue } urls = append(urls, net.JoinHostPort(ip.String(), sPort)) } } } if err != nil || len(urls) == 0 { // We are here if s.opts.Host is not "0.0.0.0" nor "::", or if for some // reason we could not add any URL in the loop above. // We had a case where a Windows VM was hosed and would have err == nil // and not add any address in the array in the loop above, and we // ended-up returning 0.0.0.0, which is problematic for Windows clients. // Check for 0.0.0.0 or :: specifically, and ignore if that's the case. if opts.Host == "0.0.0.0" || opts.Host == "::" { s.Errorf("Address %q can not be resolved properly", opts.Host) } else { urls = append(urls, net.JoinHostPort(opts.Host, sPort)) } } return urls }
1
7,444
nit: how about `GitSHA`?
nats-io-nats-server
go
@@ -93,6 +93,7 @@ an example. */ #define MAX_REMOTE_JOBS_DEFAULT 100 +#define FAIL_DIR "makeflow.failed.%d" static sig_atomic_t makeflow_abort_flag = 0; static int makeflow_failed_flag = 0;
1
/* Copyright (C) 2008- The University of Notre Dame This software is distributed under the GNU General Public License. See the file COPYING for details. */ #include "auth_all.h" #include "auth_ticket.h" #include "batch_job.h" #include "cctools.h" #include "copy_stream.h" #include "create_dir.h" #include "debug.h" #include "getopt_aux.h" #include "hash_table.h" #include "int_sizes.h" #include "itable.h" #include "link.h" #include "list.h" #include "load_average.h" #include "macros.h" #include "path.h" #include "random.h" #include "rmonitor.h" #include "stringtools.h" #include "work_queue.h" #include "work_queue_catalog.h" #include "xxmalloc.h" #include "jx.h" #include "jx_print.h" #include "jx_parse.h" #include "jx_eval.h" #include "create_dir.h" #include "sha1.h" #include "dag.h" #include "dag_visitors.h" #include "parser.h" #include "parser_jx.h" #include "makeflow_summary.h" #include "makeflow_gc.h" #include "makeflow_log.h" #include "makeflow_wrapper.h" #include "makeflow_wrapper_docker.h" #include "makeflow_wrapper_monitor.h" #include "makeflow_wrapper_umbrella.h" #include "makeflow_mounts.h" #include "makeflow_wrapper_enforcement.h" #include "makeflow_wrapper_singularity.h" #include "makeflow_archive.h" #include "makeflow_catalog_reporter.h" #include <fcntl.h> #include <sys/stat.h> #include <sys/types.h> #include <libgen.h> #include <assert.h> #include <unistd.h> #include <errno.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> /* Code organization notes: - The modules dag/dag_node/dag_file etc contain the data structures that represent the dag structure by itself. Functions named dag_*() create and manipulate those data structures, but do not execute the dag itself. These are shared between makeflow and other tools that read and manipulate the dag, like makeflow_viz, makeflow_linker, and so forth. - The modules makeflow/makeflow_log/makeflow_gc etc contain the functions that execute the dag by invoking batch operations, processing the log, etc. These are all functions named makeflow_*() to distinguish them from dag_*(). - The separation between dag structure and execution state is imperfect, because some of the execution state (note states, node counts, etc) is stored in struct dag and struct dag_node. Perhaps this can be improved. - All operations on files should use the batch_fs_*() functions, rather than invoking Unix I/O directly. This is because some batch systems (Hadoop, Confuga, etc) also include the storage where the files to be accessed are located. - APIs like work_queue_* should be indirectly accessed by setting options in Batch Job using batch_queue_set_option. See batch_job_work_queue.c for an example. */ #define MAX_REMOTE_JOBS_DEFAULT 100 static sig_atomic_t makeflow_abort_flag = 0; static int makeflow_failed_flag = 0; static int makeflow_submit_timeout = 3600; static int makeflow_retry_flag = 0; static int makeflow_retry_max = 5; /* makeflow_gc_method indicates the type of garbage collection * indicated by the user. Refer to makeflow_gc.h for specifics */ static makeflow_gc_method_t makeflow_gc_method = MAKEFLOW_GC_NONE; /* Disk size at which point GC is run */ static uint64_t makeflow_gc_size = 0; /* # of files after which GC is run */ static int makeflow_gc_count = -1; /* Iterations of wait loop prior ot GC check */ static int makeflow_gc_barrier = 1; /* Determines next gc_barrier to make checks less frequent with large number of tasks */ static double makeflow_gc_task_ratio = 0.05; static batch_queue_type_t batch_queue_type = BATCH_QUEUE_TYPE_LOCAL; static struct batch_queue *local_queue = 0; static struct batch_queue *remote_queue = 0; static int local_jobs_max = 1; static int remote_jobs_max = MAX_REMOTE_JOBS_DEFAULT; static char *project = NULL; static int port = 0; static int output_len_check = 0; static int skip_file_check = 0; static int cache_mode = 1; static container_mode_t container_mode = CONTAINER_MODE_NONE; static char *container_image = NULL; static char *container_image_tar = NULL; static char *parrot_path = "./parrot_run"; /* Wait upto this many seconds for an output file of a succesfull task to appear on the local filesystem (e.g, to deal with NFS semantics. */ static int file_creation_patience_wait_time = 0; /* Write a verbose transaction log with SYMBOL tags. SYMBOLs are category labels (SYMBOLs should be deprecated once weaver/pbui tools are updated.) */ static int log_verbose_mode = 0; static struct makeflow_wrapper *wrapper = 0; static struct makeflow_monitor *monitor = 0; static struct makeflow_wrapper *enforcer = 0; static struct makeflow_wrapper_umbrella *umbrella = 0; static int catalog_reporting_on = 0; static char *mountfile = NULL; static char *mount_cache = NULL; static int use_mountfile = 0; static struct list *shared_fs_list = NULL; static int did_find_archived_job = 0; /* Generates file list for node based on node files, wrapper input files, and monitor input files. Relies on %% nodeid replacement for monitor file names. */ static struct list *makeflow_generate_input_files( struct dag_node *n ) { struct list *result = list_duplicate(n->source_files); if(wrapper) result = makeflow_wrapper_generate_files(result, wrapper->input_files, n, wrapper); if(enforcer) result = makeflow_wrapper_generate_files(result, enforcer->input_files, n, enforcer); if(umbrella) result = makeflow_wrapper_generate_files(result, umbrella->wrapper->input_files, n, umbrella->wrapper); if(monitor) result = makeflow_wrapper_generate_files(result, monitor->wrapper->input_files, n, monitor->wrapper); return result; } static struct list *makeflow_generate_output_files( struct dag_node *n ) { struct list *result = list_duplicate(n->target_files); if(wrapper) result = makeflow_wrapper_generate_files(result, wrapper->output_files, n, wrapper); if(enforcer) result = makeflow_wrapper_generate_files(result, enforcer->output_files, n, enforcer); if(umbrella) result = makeflow_wrapper_generate_files(result, umbrella->wrapper->output_files, n, umbrella->wrapper); if(monitor) result = makeflow_wrapper_generate_files(result, monitor->wrapper->output_files, n, monitor->wrapper); return result; } /* Abort one job in a given batch queue. */ static void makeflow_abort_job( struct dag *d, struct dag_node *n, struct batch_queue *q, UINT64_T jobid, const char *name ) { printf("aborting %s job %" PRIu64 "\n", name, jobid); batch_job_remove(q, jobid); makeflow_log_state_change(d, n, DAG_NODE_STATE_ABORTED); struct list *outputs = makeflow_generate_output_files(n); struct dag_file *f; list_first_item(outputs); while((f = list_next_item(outputs))) makeflow_clean_file(d, q, f, 0); makeflow_clean_node(d, q, n, 1); } /* Abort the dag by removing all batch jobs from all queues. */ static void makeflow_abort_all(struct dag *d) { UINT64_T jobid; struct dag_node *n; printf("got abort signal...\n"); itable_firstkey(d->local_job_table); while(itable_nextkey(d->local_job_table, &jobid, (void **) &n)) { makeflow_abort_job(d,n,local_queue,jobid,"local"); } itable_firstkey(d->remote_job_table); while(itable_nextkey(d->remote_job_table, &jobid, (void **) &n)) { makeflow_abort_job(d,n,remote_queue,jobid,"remote"); } } static void makeflow_node_force_rerun(struct itable *rerun_table, struct dag *d, struct dag_node *n); /* Decide whether to rerun a node based on batch and file system status. The silent option was added for to prevent confusing debug output when in clean mode. When clean_mode is not NONE we silence the node reseting output. */ void makeflow_node_decide_rerun(struct itable *rerun_table, struct dag *d, struct dag_node *n, int silent) { struct dag_file *f; if(itable_lookup(rerun_table, n->nodeid)) return; // Below are a bunch of situations when a node has to be rerun. // If a job was submitted to Condor, then just reconnect to it. if(n->state == DAG_NODE_STATE_RUNNING && !(n->local_job && local_queue) && batch_queue_type == BATCH_QUEUE_TYPE_CONDOR) { // Reconnect the Condor jobs if(!silent) fprintf(stderr, "rule still running: %s\n", n->command); itable_insert(d->remote_job_table, n->jobid, n); // Otherwise, we cannot reconnect to the job, so rerun it } else if(n->state == DAG_NODE_STATE_RUNNING || n->state == DAG_NODE_STATE_FAILED || n->state == DAG_NODE_STATE_ABORTED) { if(!silent) fprintf(stderr, "will retry failed rule: %s\n", n->command); goto rerun; } // Rerun if an input file has been updated since the last execution. list_first_item(n->source_files); while((f = list_next_item(n->source_files))) { if(dag_file_should_exist(f)) { continue; } else { if(!f->created_by) { if(!silent) fprintf(stderr, "makeflow: input file %s does not exist and is not created by any rule.\n", f->filename); exit(1); } else { /* If input file is missing, but node completed and file was garbage, then avoid rerunning. */ if(n->state == DAG_NODE_STATE_COMPLETE && f->state == DAG_FILE_STATE_DELETE) { continue; } goto rerun; } } } // Rerun if an output file is missing. list_first_item(n->target_files); while((f = list_next_item(n->target_files))) { if(dag_file_should_exist(f)) continue; /* If output file is missing, but node completed and file was gc'ed, then avoid rerunning. */ if(n->state == DAG_NODE_STATE_COMPLETE && f->state == DAG_FILE_STATE_DELETE) continue; goto rerun; } // Do not rerun this node return; rerun: makeflow_node_force_rerun(rerun_table, d, n); } /* Reset all state to cause a node to be re-run. */ void makeflow_node_force_rerun(struct itable *rerun_table, struct dag *d, struct dag_node *n) { struct dag_node *p; struct dag_file *f1; struct dag_file *f2; int child_node_found; if(itable_lookup(rerun_table, n->nodeid)) return; // Mark this node as having been rerun already itable_insert(rerun_table, n->nodeid, n); // Remove running batch jobs if(n->state == DAG_NODE_STATE_RUNNING) { if(n->local_job && local_queue) { batch_job_remove(local_queue, n->jobid); itable_remove(d->local_job_table, n->jobid); } else { batch_job_remove(remote_queue, n->jobid); itable_remove(d->remote_job_table, n->jobid); } } // Clean up things associated with this node struct list *outputs = makeflow_generate_output_files(n); list_first_item(outputs); while((f1 = list_next_item(outputs))) makeflow_clean_file(d, remote_queue, f1, 0); makeflow_clean_node(d, remote_queue, n, 0); makeflow_log_state_change(d, n, DAG_NODE_STATE_WAITING); // For each parent node, rerun it if input file was garbage collected list_first_item(n->source_files); while((f1 = list_next_item(n->source_files))) { if(dag_file_should_exist(f1)) continue; p = f1->created_by; if(p) { makeflow_node_force_rerun(rerun_table, d, p); f1->reference_count += 1; } } // For each child node, rerun it list_first_item(n->target_files); while((f1 = list_next_item(n->target_files))) { for(p = d->nodes; p; p = p->next) { child_node_found = 0; list_first_item(p->source_files); while((f2 = list_next_item(n->source_files))) { if(!strcmp(f1->filename, f2->filename)) { child_node_found = 1; break; } } if(child_node_found) { makeflow_node_force_rerun(rerun_table, d, p); } } } } /* Update nested jobs with appropriate number of local jobs (total local jobs max / maximum number of concurrent nests). */ static void makeflow_prepare_nested_jobs(struct dag *d) { int dag_nested_width = dag_width(d, 1); int update_dag_nests = 1; char *s = getenv("MAKEFLOW_UPDATE_NESTED_JOBS"); if(s) update_dag_nests = atoi(s); if(dag_nested_width > 0 && update_dag_nests) { dag_nested_width = MIN(dag_nested_width, local_jobs_max); struct dag_node *n; for(n = d->nodes; n; n = n->next) { if(n->nested_job && ((n->local_job && local_queue) || batch_queue_type == BATCH_QUEUE_TYPE_LOCAL)) { char *command = xxmalloc(strlen(n->command) + 20); sprintf(command, "%s -j %d", n->command, local_jobs_max / dag_nested_width); free((char *) n->command); n->command = command; } } } } /* Match a filename (/home/fred) to a path stem (/home). Returns 0 on match, non-zero otherwise. */ static int prefix_match(void *stem, const void *filename) { assert(stem); assert(filename); return strncmp(stem, filename, strlen(stem)); } /* Returns true if the given filename is located in a shared filesystem, as given by the shared_fs_list. */ static int makeflow_file_on_sharedfs( const char *filename ) { return !list_iterate(shared_fs_list,prefix_match,filename); } /* Given a file, return the string that identifies it appropriately for the given batch system, combining the local and remote name and making substitutions according to the node. */ static char * makeflow_file_format( struct dag_node *n, struct dag_file *f, struct batch_queue *queue ) { const char *remotename = dag_node_get_remote_name(n, f->filename); if(!remotename && wrapper) remotename = makeflow_wrapper_get_remote_name(wrapper, n->d, f->filename); if(!remotename && enforcer) remotename = makeflow_wrapper_get_remote_name(enforcer, n->d, f->filename); if(!remotename && monitor) remotename = makeflow_wrapper_get_remote_name(monitor->wrapper, n->d, f->filename); if(!remotename && umbrella) remotename = makeflow_wrapper_get_remote_name(umbrella->wrapper, n->d, f->filename); if(!remotename) remotename = f->filename; switch (batch_queue_get_type(queue)) { case BATCH_QUEUE_TYPE_WORK_QUEUE: return string_format("%s=%s,", f->filename, remotename); default: return string_format("%s,", f->filename); } } /* Given a list of files, add the files to the given string. Returns the original string, realloced if necessary */ static char * makeflow_file_list_format( struct dag_node *node, char *file_str, struct list *file_list, struct batch_queue *queue ) { struct dag_file *file; if(!file_str) file_str = strdup(""); if(!file_list) return file_str; list_first_item(file_list); while((file=list_next_item(file_list))) { if (makeflow_file_on_sharedfs(file->filename)) { debug(D_MAKEFLOW_RUN, "Skipping file %s on shared fs\n", file->filename); continue; } char *f = makeflow_file_format(node,file,queue); file_str = string_combine(file_str,f); free(f); } return file_str; } /* Submit one fully formed job, retrying failures up to the makeflow_submit_timeout. This is necessary because busy batch systems occasionally do not accept a job submission. */ static batch_job_id_t makeflow_node_submit_retry( struct batch_queue *queue, const char *command, const char *input_files, const char *output_files, struct jx *envlist, const struct rmsummary *resources) { time_t stoptime = time(0) + makeflow_submit_timeout; int waittime = 1; batch_job_id_t jobid = 0; /* Display the fully elaborated command, just like Make does. */ printf("submitting job: %s\n", command); while(1) { jobid = batch_job_submit(queue, command, input_files, output_files, envlist, resources); if(jobid >= 0) { printf("submitted job %"PRIbjid"\n", jobid); return jobid; } fprintf(stderr, "couldn't submit batch job, still trying...\n"); if(makeflow_abort_flag) break; if(time(0) > stoptime) { fprintf(stderr, "unable to submit job after %d seconds!\n", makeflow_submit_timeout); break; } sleep(waittime); waittime *= 2; if(waittime > 60) waittime = 60; } return 0; } /* Expand a dag_node into a text list of input files, output files, and a command, by applying all wrappers and settings. Used at both job submission and completion to obtain identical strings. */ static void makeflow_node_expand( struct dag_node *n, struct batch_queue *queue, struct list **input_list, struct list **output_list, char **input_files, char **output_files, char **command ) { makeflow_wrapper_umbrella_set_input_files(umbrella, queue, n); if (*input_list == NULL) { *input_list = makeflow_generate_input_files(n); } if (*output_list == NULL) { *output_list = makeflow_generate_output_files(n); } /* Create strings for all the files mentioned by this node. */ *input_files = makeflow_file_list_format(n, 0, *input_list, queue); *output_files = makeflow_file_list_format(n, 0, *output_list, queue); /* Expand the command according to each of the wrappers */ *command = strdup(n->command); *command = makeflow_wrap_wrapper(*command, n, wrapper); *command = makeflow_wrap_enforcer(*command, n, enforcer, *input_list, *output_list); *command = makeflow_wrap_umbrella(*command, n, umbrella, queue, *input_files, *output_files); *command = makeflow_wrap_monitor(*command, n, queue, monitor); } /* Submit a node to the appropriate batch system, after materializing the necessary list of input and output files, and applying all wrappers and options. */ static void makeflow_node_submit(struct dag *d, struct dag_node *n) { struct batch_queue *queue; struct dag_file *f; struct list *input_list = NULL, *output_list = NULL; char *input_files = NULL, *output_files = NULL, *command = NULL; if(n->local_job && local_queue) { queue = local_queue; } else { queue = remote_queue; } makeflow_node_expand(n, queue, &input_list, &output_list, &input_files, &output_files, &command); /* Before setting the batch job options (stored in the "BATCH_OPTIONS" * variable), we must save the previous global queue value, and then * restore it after we submit. */ struct dag_variable_lookup_set s = { d, n->category, n, NULL }; char *batch_options = dag_variable_lookup_string("BATCH_OPTIONS", &s); char *previous_batch_options = NULL; if(batch_queue_get_option(queue, "batch-options")) previous_batch_options = xxstrdup(batch_queue_get_option(queue, "batch-options")); if(batch_options) { debug(D_MAKEFLOW_RUN, "Batch options: %s\n", batch_options); batch_queue_set_option(queue, "batch-options", batch_options); free(batch_options); } batch_queue_set_int_option(queue, "task-id", n->nodeid); /* Generate the environment vars specific to this node. */ struct jx *envlist = dag_node_env_create(d,n); /* Logs the creation of output files. */ makeflow_log_file_list_state_change(d,output_list,DAG_FILE_STATE_EXPECT); /* check archiving directory to see if node has already been preserved */ if (d->should_read_archive && makeflow_archive_is_preserved(d, n, command, input_list, output_list)) { printf("node %d already exists in archive, replicating output files\n", n->nodeid); /* copy archived files to working directory and update state for node and dag_files */ makeflow_archive_copy_preserved_files(d, n, output_list); n->state = DAG_NODE_STATE_RUNNING; list_first_item(n->target_files); while((f = list_next_item(n->target_files))) { makeflow_log_file_state_change(d, f, DAG_FILE_STATE_EXISTS); } makeflow_log_state_change(d, n, DAG_NODE_STATE_COMPLETE); did_find_archived_job = 1; } else { /* Now submit the actual job, retrying failures as needed. */ n->jobid = makeflow_node_submit_retry(queue,command,input_files,output_files,envlist, dag_node_dynamic_label(n)); /* Update all of the necessary data structures. */ if(n->jobid >= 0) { makeflow_log_state_change(d, n, DAG_NODE_STATE_RUNNING); if(n->local_job && local_queue) { itable_insert(d->local_job_table, n->jobid, n); } else { itable_insert(d->remote_job_table, n->jobid, n); } } else { makeflow_log_state_change(d, n, DAG_NODE_STATE_FAILED); makeflow_failed_flag = 1; } } /* Restore old batch job options. */ if(previous_batch_options) { batch_queue_set_option(queue, "batch-options", previous_batch_options); free(previous_batch_options); } free(command); list_delete(input_list); list_delete(output_list); free(input_files); free(output_files); jx_delete(envlist); } static int makeflow_node_ready(struct dag *d, struct dag_node *n) { struct dag_file *f; if(n->state != DAG_NODE_STATE_WAITING) return 0; if(n->local_job && local_queue) { if(dag_local_jobs_running(d) >= local_jobs_max) return 0; } else { if(dag_remote_jobs_running(d) >= remote_jobs_max) return 0; } list_first_item(n->source_files); while((f = list_next_item(n->source_files))) { if(dag_file_should_exist(f)) { continue; } else { return 0; } } return 1; } /* Find all jobs ready to be run, then submit them. */ static void makeflow_dispatch_ready_jobs(struct dag *d) { struct dag_node *n; for(n = d->nodes; n; n = n->next) { if(dag_remote_jobs_running(d) >= remote_jobs_max && dag_local_jobs_running(d) >= local_jobs_max) { break; } if(makeflow_node_ready(d, n)) { makeflow_node_submit(d, n); } } } /* Check the the indicated file was created and log, error, or retry as appropriate. */ int makeflow_node_check_file_was_created(struct dag_node *n, struct dag_file *f) { struct stat buf; int file_created = 0; int64_t start_check = time(0); while(!file_created) { if(batch_fs_stat(remote_queue, f->filename, &buf) < 0) { fprintf(stderr, "%s did not create file %s\n", n->command, f->filename); } else if(output_len_check && buf.st_size <= 0) { debug(D_MAKEFLOW_RUN, "%s created a file of length %ld\n", n->command, (long) buf.st_size); } else { /* File was created and has length larger than zero. */ debug(D_MAKEFLOW_RUN, "File %s created by rule %d.\n", f->filename, n->nodeid); f->actual_size = buf.st_size; makeflow_log_file_state_change(n->d, f, DAG_FILE_STATE_EXISTS); file_created = 1; break; } if(file_creation_patience_wait_time > 0 && time(0) - start_check < file_creation_patience_wait_time) { /* Failed to see the file. Sleep and try again. */ debug(D_MAKEFLOW_RUN, "Checking again for file %s.\n", f->filename); sleep(1); } else { /* Failed was not seen by makeflow in the aloted tries. */ debug(D_MAKEFLOW_RUN, "File %s was not created by rule %d.\n", f->filename, n->nodeid); file_created = 0; break; } } return file_created; } /* Mark the given task as completing, using the batch_job_info completion structure provided by batch_job. */ static void makeflow_node_complete(struct dag *d, struct dag_node *n, struct batch_queue *queue, struct batch_job_info *info) { struct dag_file *f; int job_failed = 0; int monitor_retried = 0; if(n->state != DAG_NODE_STATE_RUNNING) return; if(monitor) { char *nodeid = string_format("%d",n->nodeid); char *output_prefix = NULL; if(batch_queue_supports_feature(queue, "output_directories") || n->local_job) { output_prefix = xxstrdup(monitor->log_prefix); } else { output_prefix = xxstrdup(path_basename(monitor->log_prefix)); } char *log_name_prefix = string_replace_percents(output_prefix, nodeid); char *summary_name = string_format("%s.summary", log_name_prefix); if(n->resources_measured) rmsummary_delete(n->resources_measured); n->resources_measured = rmsummary_parse_file_single(summary_name); category_accumulate_summary(n->category, n->resources_measured, NULL); makeflow_monitor_move_output_if_needed(n, queue, monitor); free(nodeid); free(log_name_prefix); free(summary_name); } struct list *outputs = makeflow_generate_output_files(n); if(info->disk_allocation_exhausted) { job_failed = 1; } else if(info->exited_normally && info->exit_code == 0) { list_first_item(outputs); while((f = list_next_item(outputs))) { if(!makeflow_node_check_file_was_created(n, f)) { job_failed = 1; } } } else { if(info->exited_normally) { fprintf(stderr, "%s failed with exit code %d\n", n->command, info->exit_code); } else { fprintf(stderr, "%s crashed with signal %d (%s)\n", n->command, info->exit_signal, strsignal(info->exit_signal)); } job_failed = 1; } if(job_failed) { makeflow_log_state_change(d, n, DAG_NODE_STATE_FAILED); /* Clean files created in node. Clean existing and expected and record deletion. */ list_first_item(outputs); while((f = list_next_item(outputs))) { if(f->state == DAG_FILE_STATE_EXPECT) { makeflow_clean_file(d, remote_queue, f, 1); } else { makeflow_clean_file(d, remote_queue, f, 0); } } if(info->disk_allocation_exhausted) { fprintf(stderr, "\nrule %d failed because it exceeded its loop device allocation capacity.\n", n->nodeid); if(n->resources_measured) { rmsummary_print(stderr, n->resources_measured, /* pprint */ 0, /* extra fields */ NULL); fprintf(stderr, "\n"); } category_allocation_t next = category_next_label(n->category, n->resource_request, /* resource overflow */ 1, n->resources_requested, n->resources_measured); if(next != CATEGORY_ALLOCATION_ERROR) { debug(D_MAKEFLOW_RUN, "Rule %d resubmitted using new resource allocation.\n", n->nodeid); n->resource_request = next; fprintf(stderr, "\nrule %d resubmitting with maximum resources.\n", n->nodeid); makeflow_log_state_change(d, n, DAG_NODE_STATE_WAITING); if(monitor) { monitor_retried = 1; } } } if(monitor && info->exit_code == RM_OVERFLOW) { debug(D_MAKEFLOW_RUN, "rule %d failed because it exceeded the resources limits.\n", n->nodeid); if(n->resources_measured && n->resources_measured->limits_exceeded) { char *str = rmsummary_print_string(n->resources_measured->limits_exceeded, 1); debug(D_MAKEFLOW_RUN, "%s", str); free(str); } category_allocation_t next = category_next_label(n->category, n->resource_request, /* resource overflow */ 1, n->resources_requested, n->resources_measured); if(next != CATEGORY_ALLOCATION_ERROR) { debug(D_MAKEFLOW_RUN, "Rule %d resubmitted using new resource allocation.\n", n->nodeid); n->resource_request = next; makeflow_log_state_change(d, n, DAG_NODE_STATE_WAITING); monitor_retried = 1; } } if(!monitor_retried) { if(makeflow_retry_flag || info->exit_code == 101) { n->failure_count++; if(n->failure_count > makeflow_retry_max) { notice(D_MAKEFLOW_RUN, "job %s failed too many times.", n->command); makeflow_failed_flag = 1; } else { notice(D_MAKEFLOW_RUN, "will retry failed job %s", n->command); makeflow_log_state_change(d, n, DAG_NODE_STATE_WAITING); } } else { makeflow_failed_flag = 1; } } else { makeflow_failed_flag = 1; } } else { /* Mark source files that have been used by this node */ list_first_item(n->source_files); while((f = list_next_item(n->source_files))) { f->reference_count+= -1; if(f->reference_count == 0 && f->state == DAG_FILE_STATE_EXISTS) makeflow_log_file_state_change(d, f, DAG_FILE_STATE_COMPLETE); } /* store node into archiving directory */ if (d->should_write_to_archive) { printf("archiving node within archiving directory\n"); struct list *input_list = NULL; char *input_files = NULL, *output_files = NULL, *command = NULL; makeflow_node_expand(n, queue, &input_list, &outputs, &input_files, &output_files, &command); makeflow_archive_populate(d, n, command, input_list, outputs, info); free(command); free(input_files); free(output_files); list_delete(input_list); } makeflow_log_state_change(d, n, DAG_NODE_STATE_COMPLETE); } list_delete(outputs); } /* Check the dag for consistency, and emit errors if input dependencies, etc are missing. */ static int makeflow_check(struct dag *d) { struct stat buf; struct dag_node *n; struct dag_file *f; int error = 0; debug(D_MAKEFLOW_RUN, "checking rules for consistency...\n"); for(n = d->nodes; n; n = n->next) { list_first_item(n->source_files); while((f = list_next_item(n->source_files))) { if(f->created_by) { continue; } if(skip_file_check || batch_fs_stat(remote_queue, f->filename, &buf) >= 0) { continue; } if(f->source) { continue; } fprintf(stderr, "makeflow: %s does not exist, and is not created by any rule.\n", f->filename); error++; } } if(error) { fprintf(stderr, "makeflow: found %d errors during consistency check.\n", error); return 0; } else { return 1; } } /* Used to check that features used are supported by the batch system. This would be where we added checking of selected options to verify they are supported by the batch system, such as work_queue specific options. */ static int makeflow_check_batch_consistency(struct dag *d) { struct dag_node *n; struct dag_file *f; int error = 0; debug(D_MAKEFLOW_RUN, "checking for consistency of batch system support...\n"); for(n = d->nodes; n; n = n->next) { if(itable_size(n->remote_names) > 0 || (wrapper && wrapper->uses_remote_rename)){ if(n->local_job) { debug(D_ERROR, "Remote renaming is not supported with -Tlocal or LOCAL execution. Rule %d (line %d).\n", n->nodeid, n->linenum); error = 1; break; } else if (!batch_queue_supports_feature(remote_queue, "remote_rename")) { debug(D_ERROR, "Remote renaming is not supported on selected batch system. Rule %d (line %d).\n", n->nodeid, n->linenum); error = 1; break; } } if(!batch_queue_supports_feature(remote_queue, "absolute_path") && !n->local_job){ list_first_item(n->source_files); while((f = list_next_item(n->source_files)) && !error) { const char *remotename = dag_node_get_remote_name(n, f->filename); if (makeflow_file_on_sharedfs(f->filename)) { if (remotename) fatal("Remote renaming for %s is not supported on a shared filesystem", f->filename); continue; } if((remotename && *remotename == '/') || (*f->filename == '/' && !remotename)) { debug(D_ERROR, "Absolute paths are not supported on selected batch system. Rule %d (line %d).\n", n->nodeid, n->linenum); error = 1; break; } } list_first_item(n->target_files); while((f = list_next_item(n->target_files)) && !error) { const char *remotename = dag_node_get_remote_name(n, f->filename); if (makeflow_file_on_sharedfs(f->filename)) { if (remotename) fatal("Remote renaming for %s is not supported on a shared filesystem", f->filename); continue; } if((remotename && *remotename == '/') || (*f->filename == '/' && !remotename)) { debug(D_ERROR, "Absolute paths are not supported on selected batch system. Rule %d (line %d).\n", n->nodeid, n->linenum); error = 1; break; } } } } if(error) { return 0; } else { return 1; } } /* Main loop for running a makeflow: submit jobs, wait for completion, keep going until everything done. */ static void makeflow_run( struct dag *d ) { struct dag_node *n; batch_job_id_t jobid; struct batch_job_info info; timestamp_t last_time = timestamp_get(); timestamp_t start = timestamp_get(); int first_report = 1; //reporting to catalog if(catalog_reporting_on){ makeflow_catalog_summary(d, project, batch_queue_type, start); } while(!makeflow_abort_flag) { did_find_archived_job = 0; makeflow_dispatch_ready_jobs(d); /* Due to the fact that archived jobs are never "run", no local or remote jobs are added to the remote or local job table if all ready jobs were found within the archive. Thus makeflow_dispatch_ready_jobs must run at least once more if an archived job was found. */ if(dag_local_jobs_running(d)==0 && dag_remote_jobs_running(d)==0 && did_find_archived_job == 0 ) break; if(dag_remote_jobs_running(d)) { int tmp_timeout = 5; jobid = batch_job_wait_timeout(remote_queue, &info, time(0) + tmp_timeout); if(jobid > 0) { printf("job %"PRIbjid" completed\n",jobid); debug(D_MAKEFLOW_RUN, "Job %" PRIbjid " has returned.\n", jobid); n = itable_remove(d->remote_job_table, jobid); if(n) makeflow_node_complete(d, n, remote_queue, &info); } } if(dag_local_jobs_running(d)) { time_t stoptime; int tmp_timeout = 5; if(dag_remote_jobs_running(d)) { stoptime = time(0); } else { stoptime = time(0) + tmp_timeout; } jobid = batch_job_wait_timeout(local_queue, &info, stoptime); if(jobid > 0) { debug(D_MAKEFLOW_RUN, "Job %" PRIbjid " has returned.\n", jobid); n = itable_remove(d->local_job_table, jobid); if(n) makeflow_node_complete(d, n, local_queue, &info); } } /* Make periodic report to catalog. */ timestamp_t now = timestamp_get(); if(catalog_reporting_on && (((now-last_time) > (60 * 1000 * 1000)) || first_report==1)){ //if we are in reporting mode, and if either it's our first report, or 1 min has transpired makeflow_catalog_summary(d, project,batch_queue_type,start); last_time = now; first_report = 0; } /* Rather than try to garbage collect after each time in this * wait loop, perform garbage collection after a proportional * amount of tasks have passed. */ makeflow_gc_barrier--; if(makeflow_gc_method != MAKEFLOW_GC_NONE && makeflow_gc_barrier == 0) { makeflow_gc(d, remote_queue, makeflow_gc_method, makeflow_gc_size, makeflow_gc_count); makeflow_gc_barrier = MAX(d->nodeid_counter * makeflow_gc_task_ratio, 1); } } /* Always make final report to catalog when workflow ends. */ if(catalog_reporting_on){ makeflow_catalog_summary(d, project,batch_queue_type,start); } if(makeflow_abort_flag) { makeflow_abort_all(d); } else { if(!makeflow_failed_flag && makeflow_gc_method != MAKEFLOW_GC_NONE) { makeflow_gc(d,remote_queue,MAKEFLOW_GC_ALL,0,0); } } } /* Signal handler to catch abort signals. Note that permissible actions in signal handlers are very limited, so we emit a message to the terminal and update a global variable noticed by makeflow_run. */ static void handle_abort(int sig) { static int abort_count_to_exit = 5; abort_count_to_exit -= 1; int fd = open("/dev/tty", O_WRONLY); if (fd >= 0) { char buf[256]; snprintf(buf, sizeof(buf), "Received signal %d, will try to clean up remote resources. Send signal %d more times to force exit.\n", sig, abort_count_to_exit); write(fd, buf, strlen(buf)); close(fd); } if (abort_count_to_exit == 1) signal(sig, SIG_DFL); makeflow_abort_flag = 1; } static void set_archive_directory_string(char **archive_directory, char *option_arg) { if (*archive_directory != NULL) { // need to free archive directory to avoid memory leak since it has already been set once free(*archive_directory); } if (option_arg) { *archive_directory = xxstrdup(option_arg); } else { char *uid = xxmalloc(10); sprintf(uid, "%d", getuid()); *archive_directory = xxmalloc(sizeof(MAKEFLOW_ARCHIVE_DEFAULT_DIRECTORY) + 20 * sizeof(char)); sprintf(*archive_directory, "%s%s", MAKEFLOW_ARCHIVE_DEFAULT_DIRECTORY, uid); free(uid); } } static void show_help_run(const char *cmd) { printf("Use: %s [options] <dagfile>\n", cmd); printf("Frequently used options:\n\n"); printf(" %-30s Clean up: remove logfile and all targets. Optional specification [intermediates, outputs, cache] removes only the indicated files.\n", "-c,--clean=<type>"); printf(" %-30s Batch system type: (default is local)\n", "-T,--batch-type=<type>"); printf(" %-30s %s\n\n", "", batch_queue_type_string()); printf("Other options are:\n"); printf(" %-30s Advertise the master information to a catalog server.\n", "-a,--advertise"); printf(" %-30s Specify path to Amazon credentials (for use with -T amazon)\n", "--amazon-credentials"); printf(" %-30s Specify amazon-ami (for use with -T amazon)\n", "--amazon-ami"); printf(" %-30s Disable the check for AFS. (experts only.)\n", "-A,--disable-afs-check"); printf(" %-30s Add these options to all batch submit files.\n", "-B,--batch-options=<options>"); printf(" %-30s Set catalog server to <catalog>. Format: HOSTNAME:PORT \n", "-C,--catalog-server=<catalog>"); printf(" %-30s Enable debugging for this subsystem\n", "-d,--debug=<subsystem>"); printf(" %-30s Write summary of workflow to this file upon success or failure.\n", "-f,--summary-log=<file>"); printf(" %-30s Work Queue fast abort multiplier. (default is deactivated)\n", "-F,--wq-fast-abort=<#>"); printf(" %-30s Show this help screen.\n", "-h,--help"); printf(" %-30s Max number of local jobs to run at once. (default is # of cores)\n", "-j,--max-local=<#>"); printf(" %-30s Max number of remote jobs to run at once.\n", "-J,--max-remote=<#>"); printf(" (default %d for -Twq, %d otherwise.)\n", 10*MAX_REMOTE_JOBS_DEFAULT, MAX_REMOTE_JOBS_DEFAULT ); printf(" %-30s Use this file for the makeflow log. (default is X.makeflowlog)\n", "-l,--makeflow-log=<logfile>"); printf(" %-30s Use this file for the batch system log. (default is X.<type>log)\n", "-L,--batch-log=<logfile>"); printf(" %-30s Send summary of workflow to this email address upon success or failure.\n", "-m,--email=<email>"); printf(" %-30s Use this file as a mountlist.\n", " --mounts=<mountfile>"); printf(" %-30s Use this dir as the cache for file dependencies.\n", " --cache=<cache_dir>"); printf(" %-30s Set the project name to <project>\n", "-N,--project-name=<project>"); printf(" %-30s Send debugging to this file. (can also be :stderr, :stdout, :syslog, or :journal)\n", "-o,--debug-file=<file>"); printf(" %-30s Rotate debug file once it reaches this size.\n", " --debug-rotate-max=<bytes>"); printf(" %-30s Password file for authenticating workers.\n", " --password"); printf(" %-30s Port number to use with Work Queue. (default is %d, 0=arbitrary)\n", "-p,--port=<port>", WORK_QUEUE_DEFAULT_PORT); printf(" %-30s Priority. Higher the value, higher the priority.\n", "-P,--priority=<integer>"); printf(" %-30s Automatically retry failed batch jobs up to %d times.\n", "-R,--retry", makeflow_retry_max); printf(" %-30s Automatically retry failed batch jobs up to n times.\n", "-r,--retry-count=<n>"); printf(" %-30s Wait for output files to be created upto n seconds (e.g., to deal with NFS semantics).\n", " --wait-for-files-upto=<n>"); printf(" %-30s Time to retry failed batch job submission. (default is %ds)\n", "-S,--submission-timeout=<#>", makeflow_submit_timeout); printf(" %-30s Work Queue keepalive timeout. (default is %ds)\n", "-t,--wq-keepalive-timeout=<#>", WORK_QUEUE_DEFAULT_KEEPALIVE_TIMEOUT); printf(" %-30s Work Queue keepalive interval. (default is %ds)\n", "-u,--wq-keepalive-interval=<#>", WORK_QUEUE_DEFAULT_KEEPALIVE_INTERVAL); printf(" %-30s Umbrella binary for running every rule in a makeflow.\n", " --umbrella-binary=<file>"); printf(" %-30s Umbrella log file prefix for running every rule in a makeflow. (default is <makefilename>.umbrella.log)\n", " --umbrella-log-prefix=<string>"); printf(" %-30s Umbrella execution mode for running every rule in a makeflow. (default is local)\n", " --umbrella-mode=<mode>"); printf(" %-30s Umbrella spec for running every rule in a makeflow.\n", " --umbrella-spec=<file>"); printf(" %-30s Show version string\n", "-v,--version"); printf(" %-30s Work Queue scheduling algorithm. (time|files|fcfs)\n", "-W,--wq-schedule=<mode>"); printf(" %-30s Working directory for the batch system.\n", " --working-dir=<dir|url>"); printf(" %-30s Wrap all commands with this prefix.\n", " --wrapper=<cmd>"); printf(" %-30s Wrapper command requires this input file.\n", " --wrapper-input=<cmd>"); printf(" %-30s Wrapper command produces this output file.\n", " --wrapper-output=<cmd>"); printf(" %-30s Change directory: chdir to enable executing the Makefile in other directory.\n", "-X,--change-directory"); printf(" %-30s Force failure on zero-length output files \n", "-z,--zero-length-error"); printf(" %-30s Select port at random and write it to this file.\n", "-Z,--port-file=<file>"); printf(" %-30s Disable batch system caching. (default is false)\n", " --disable-cache"); printf(" %-30s Add node id symbol tags in the makeflow log. (default is false)\n", " --log-verbose"); printf(" %-30s Run each task with a container based on this docker image.\n", "--docker=<image>"); printf(" %-30s Load docker image from the tar file.\n", "--docker-tar=<tar file>"); printf(" %-30s Indicate user trusts inputs exist.\n", "--skip-file-check"); printf(" %-30s Use Parrot to restrict access to the given inputs/outputs.\n", "--enforcement"); printf(" %-30s Path to parrot_run (defaults to current directory).\n", "--parrot-path=<path>"); printf(" %-30s Indicate preferred master connection. Choose one of by_ip or by_hostname. (default is by_ip)\n", "--work-queue-preferred-connection"); printf(" %-30s Use JSON format rather than Make-style format for the input file.\n", "--json"); printf(" %-30s Evaluate JX input. Implies --json\n", "--jx"); printf(" %-30s Evaluate the JX input in the given context.\n", "--jx-context"); printf(" %-30s Wrap execution of all rules in a singularity container.\n","--singularity=<image>"); printf(" %-30s Assume the given directory is a shared filesystem accessible to all workers.\n", "--shared-fs"); printf(" %-30s Archive results of makeflow in specified directory (default directory is %s)\n", "--archive=<dir>", MAKEFLOW_ARCHIVE_DEFAULT_DIRECTORY); printf(" %-30s Read/Use archived results of makeflow in specified directory, will not write to archive (default directory is %s)\n", "--archive-read=<dir>", MAKEFLOW_ARCHIVE_DEFAULT_DIRECTORY); printf(" %-30s Write archived results of makeflow in specified directory, will not read/use archived data (default directory is %s)\n", "--archive-write=<dir>", MAKEFLOW_ARCHIVE_DEFAULT_DIRECTORY); printf(" %-30s Indicate the host name of preferred mesos master.\n", "--mesos-master=<hostname:port>"); printf(" %-30s Indicate the path to mesos python2 site-packages.\n", "--mesos-path=<path>"); printf(" %-30s Indicate the linking libraries for running mesos.\n", "--mesos-preload=<path>"); printf("\n*Monitor Options:\n\n"); printf(" %-30s Enable the resource monitor, and write the monitor logs to <dir>.\n", "--monitor=<dir>"); printf(" %-30s Set monitor interval to <#> seconds. (default is 1 second)\n", " --monitor-interval=<#>"); printf(" %-30s Enable monitor time series. (default is disabled)\n", " --monitor-with-time-series"); printf(" %-30s Enable monitoring of openened files. (default is disabled)\n", " --monitor-with-opened-files"); printf(" %-30s Format for monitor logs. (default %s)\n", " --monitor-log-fmt=<fmt>", DEFAULT_MONITOR_LOG_FORMAT); } int main(int argc, char *argv[]) { int c; const char *dagfile; char *change_dir = NULL; char *batchlogfilename = NULL; const char *batch_submit_options = getenv("BATCH_OPTIONS"); makeflow_clean_depth clean_mode = MAKEFLOW_CLEAN_NONE; char *email_summary_to = NULL; int explicit_remote_jobs_max = 0; int explicit_local_jobs_max = 0; char *logfilename = NULL; int port_set = 0; timestamp_t runtime = 0; int skip_afs_check = 0; int should_read_archive = 0; int should_write_to_archive = 0; timestamp_t time_completed = 0; const char *work_queue_keepalive_interval = NULL; const char *work_queue_keepalive_timeout = NULL; const char *work_queue_master_mode = "standalone"; const char *work_queue_port_file = NULL; double wq_option_fast_abort_multiplier = -1.0; const char *amazon_credentials = NULL; const char *amazon_ami = NULL; const char *priority = NULL; char *work_queue_password = NULL; char *wq_wait_queue_size = 0; int did_explicit_auth = 0; char *chirp_tickets = NULL; char *working_dir = NULL; char *work_queue_preferred_connection = NULL; char *write_summary_to = NULL; char *s; char *log_dir = NULL; char *log_format = NULL; char *archive_directory = NULL; category_mode_t allocation_mode = CATEGORY_ALLOCATION_MODE_FIXED; shared_fs_list = list_create(); char *mesos_master = "127.0.0.1:5050/"; char *mesos_path = NULL; char *mesos_preload = NULL; int json_input = 0; int jx_input = 0; char *jx_context = NULL; random_init(); debug_config(argv[0]); s = getenv("MAKEFLOW_BATCH_QUEUE_TYPE"); if(s) { batch_queue_type = batch_queue_type_from_string(s); if(batch_queue_type == BATCH_QUEUE_TYPE_UNKNOWN) { fprintf(stderr, "makeflow: unknown batch queue type: %s (from $MAKEFLOW_BATCH_QUEUE_TYPE)\n", s); return 1; } } s = getenv("WORK_QUEUE_MASTER_MODE"); if(s) { work_queue_master_mode = s; } s = getenv("WORK_QUEUE_NAME"); if(s) { project = xxstrdup(s); } s = getenv("WORK_QUEUE_FAST_ABORT_MULTIPLIER"); if(s) { wq_option_fast_abort_multiplier = atof(s); } enum { LONG_OPT_AUTH = UCHAR_MAX+1, LONG_OPT_CACHE, LONG_OPT_DEBUG_ROTATE_MAX, LONG_OPT_DISABLE_BATCH_CACHE, LONG_OPT_DOT_CONDENSE, LONG_OPT_FILE_CREATION_PATIENCE_WAIT_TIME, LONG_OPT_GC_SIZE, LONG_OPT_MONITOR, LONG_OPT_MONITOR_INTERVAL, LONG_OPT_MONITOR_LOG_NAME, LONG_OPT_MONITOR_OPENED_FILES, LONG_OPT_MONITOR_TIME_SERIES, LONG_OPT_MOUNTS, LONG_OPT_PASSWORD, LONG_OPT_TICKETS, LONG_OPT_VERBOSE_PARSING, LONG_OPT_LOG_VERBOSE_MODE, LONG_OPT_WORKING_DIR, LONG_OPT_PREFERRED_CONNECTION, LONG_OPT_WQ_WAIT_FOR_WORKERS, LONG_OPT_WRAPPER, LONG_OPT_WRAPPER_INPUT, LONG_OPT_WRAPPER_OUTPUT, LONG_OPT_DOCKER, LONG_OPT_DOCKER_TAR, LONG_OPT_AMAZON_CREDENTIALS, LONG_OPT_AMAZON_AMI, LONG_OPT_JSON, LONG_OPT_JX, LONG_OPT_JX_CONTEXT, LONG_OPT_SKIP_FILE_CHECK, LONG_OPT_UMBRELLA_BINARY, LONG_OPT_UMBRELLA_LOG_PREFIX, LONG_OPT_UMBRELLA_MODE, LONG_OPT_UMBRELLA_SPEC, LONG_OPT_ALLOCATION_MODE, LONG_OPT_ENFORCEMENT, LONG_OPT_PARROT_PATH, LONG_OPT_SINGULARITY, LONG_OPT_SHARED_FS, LONG_OPT_ARCHIVE, LONG_OPT_ARCHIVE_READ_ONLY, LONG_OPT_ARCHIVE_WRITE_ONLY, LONG_OPT_MESOS_MASTER, LONG_OPT_MESOS_PATH, LONG_OPT_MESOS_PRELOAD }; static const struct option long_options_run[] = { {"advertise", no_argument, 0, 'a'}, {"allocation", required_argument, 0, LONG_OPT_ALLOCATION_MODE}, {"auth", required_argument, 0, LONG_OPT_AUTH}, {"batch-log", required_argument, 0, 'L'}, {"batch-options", required_argument, 0, 'B'}, {"batch-type", required_argument, 0, 'T'}, {"cache", required_argument, 0, LONG_OPT_CACHE}, {"catalog-server", required_argument, 0, 'C'}, {"clean", optional_argument, 0, 'c'}, {"debug", required_argument, 0, 'd'}, {"debug-file", required_argument, 0, 'o'}, {"debug-rotate-max", required_argument, 0, LONG_OPT_DEBUG_ROTATE_MAX}, {"disable-afs-check", no_argument, 0, 'A'}, {"disable-cache", no_argument, 0, LONG_OPT_DISABLE_BATCH_CACHE}, {"email", required_argument, 0, 'm'}, {"wait-for-files-upto", required_argument, 0, LONG_OPT_FILE_CREATION_PATIENCE_WAIT_TIME}, {"gc", required_argument, 0, 'g'}, {"gc-size", required_argument, 0, LONG_OPT_GC_SIZE}, {"gc-count", required_argument, 0, 'G'}, {"wait-for-files-upto", required_argument, 0, LONG_OPT_FILE_CREATION_PATIENCE_WAIT_TIME}, {"help", no_argument, 0, 'h'}, {"makeflow-log", required_argument, 0, 'l'}, {"max-local", required_argument, 0, 'j'}, {"max-remote", required_argument, 0, 'J'}, {"monitor", required_argument, 0, LONG_OPT_MONITOR}, {"monitor-interval", required_argument, 0, LONG_OPT_MONITOR_INTERVAL}, {"monitor-log-name", required_argument, 0, LONG_OPT_MONITOR_LOG_NAME}, {"monitor-with-opened-files", no_argument, 0, LONG_OPT_MONITOR_OPENED_FILES}, {"monitor-with-time-series", no_argument, 0, LONG_OPT_MONITOR_TIME_SERIES}, {"mounts", required_argument, 0, LONG_OPT_MOUNTS}, {"password", required_argument, 0, LONG_OPT_PASSWORD}, {"port", required_argument, 0, 'p'}, {"port-file", required_argument, 0, 'Z'}, {"priority", required_argument, 0, 'P'}, {"project-name", required_argument, 0, 'N'}, {"retry", no_argument, 0, 'R'}, {"retry-count", required_argument, 0, 'r'}, {"shared-fs", required_argument, 0, LONG_OPT_SHARED_FS}, {"show-output", no_argument, 0, 'O'}, {"submission-timeout", required_argument, 0, 'S'}, {"summary-log", required_argument, 0, 'f'}, {"tickets", required_argument, 0, LONG_OPT_TICKETS}, {"version", no_argument, 0, 'v'}, {"log-verbose", no_argument, 0, LONG_OPT_LOG_VERBOSE_MODE}, {"working-dir", required_argument, 0, LONG_OPT_WORKING_DIR}, {"skip-file-check", no_argument, 0, LONG_OPT_SKIP_FILE_CHECK}, {"umbrella-binary", required_argument, 0, LONG_OPT_UMBRELLA_BINARY}, {"umbrella-log-prefix", required_argument, 0, LONG_OPT_UMBRELLA_LOG_PREFIX}, {"umbrella-mode", required_argument, 0, LONG_OPT_UMBRELLA_MODE}, {"umbrella-spec", required_argument, 0, LONG_OPT_UMBRELLA_SPEC}, {"work-queue-preferred-connection", required_argument, 0, LONG_OPT_PREFERRED_CONNECTION}, {"wq-estimate-capacity", no_argument, 0, 'E'}, {"wq-fast-abort", required_argument, 0, 'F'}, {"wq-keepalive-interval", required_argument, 0, 'u'}, {"wq-keepalive-timeout", required_argument, 0, 't'}, {"wq-schedule", required_argument, 0, 'W'}, {"wq-wait-queue-size", required_argument, 0, LONG_OPT_WQ_WAIT_FOR_WORKERS}, {"wrapper", required_argument, 0, LONG_OPT_WRAPPER}, {"wrapper-input", required_argument, 0, LONG_OPT_WRAPPER_INPUT}, {"wrapper-output", required_argument, 0, LONG_OPT_WRAPPER_OUTPUT}, {"zero-length-error", no_argument, 0, 'z'}, {"change-directory", required_argument, 0, 'X'}, {"docker", required_argument, 0, LONG_OPT_DOCKER}, {"docker-tar", required_argument, 0, LONG_OPT_DOCKER_TAR}, {"amazon-credentials", required_argument, 0, LONG_OPT_AMAZON_CREDENTIALS}, {"amazon-ami", required_argument, 0, LONG_OPT_AMAZON_AMI}, {"json", no_argument, 0, LONG_OPT_JSON}, {"jx", no_argument, 0, LONG_OPT_JX}, {"jx-context", required_argument, 0, LONG_OPT_JX_CONTEXT}, {"enforcement", no_argument, 0, LONG_OPT_ENFORCEMENT}, {"parrot-path", required_argument, 0, LONG_OPT_PARROT_PATH}, {"singularity", required_argument, 0, LONG_OPT_SINGULARITY}, {"archive", optional_argument, 0, LONG_OPT_ARCHIVE}, {"archive-read", optional_argument, 0, LONG_OPT_ARCHIVE_READ_ONLY}, {"archive-write", optional_argument, 0, LONG_OPT_ARCHIVE_WRITE_ONLY}, {"mesos-master", required_argument, 0, LONG_OPT_MESOS_MASTER}, {"mesos-path", required_argument, 0, LONG_OPT_MESOS_PATH}, {"mesos-preload", required_argument, 0, LONG_OPT_MESOS_PRELOAD}, {0, 0, 0, 0} }; static const char option_string_run[] = "aAB:c::C:d:Ef:F:g:G:hj:J:l:L:m:M:N:o:Op:P:r:RS:t:T:u:vW:X:zZ:"; while((c = getopt_long(argc, argv, option_string_run, long_options_run, NULL)) >= 0) { switch (c) { case 'a': work_queue_master_mode = "catalog"; break; case 'A': skip_afs_check = 1; break; case 'B': batch_submit_options = optarg; break; case 'c': clean_mode = MAKEFLOW_CLEAN_ALL; if(optarg){ if(strcasecmp(optarg, "intermediates") == 0){ clean_mode = MAKEFLOW_CLEAN_INTERMEDIATES; } else if(strcasecmp(optarg, "outputs") == 0){ clean_mode = MAKEFLOW_CLEAN_OUTPUTS; } else if(strcasecmp(optarg, "cache") == 0){ clean_mode = MAKEFLOW_CLEAN_CACHE; } else if(strcasecmp(optarg, "all") != 0){ fprintf(stderr, "makeflow: unknown clean option %s", optarg); exit(1); } } break; case 'C': setenv("CATALOG_HOST", optarg, 1); break; case 'd': debug_flags_set(optarg); break; case 'E': // This option is deprecated. Capacity estimation is now on by default. break; case LONG_OPT_AUTH: if (!auth_register_byname(optarg)) fatal("could not register authentication method `%s': %s", optarg, strerror(errno)); did_explicit_auth = 1; break; case LONG_OPT_TICKETS: chirp_tickets = strdup(optarg); break; case 'f': write_summary_to = xxstrdup(optarg); break; case 'F': wq_option_fast_abort_multiplier = atof(optarg); break; case 'g': if(strcasecmp(optarg, "none") == 0) { makeflow_gc_method = MAKEFLOW_GC_NONE; } else if(strcasecmp(optarg, "ref_count") == 0) { makeflow_gc_method = MAKEFLOW_GC_COUNT; if(makeflow_gc_count < 0) makeflow_gc_count = 16; /* Try to collect at most 16 files. */ } else if(strcasecmp(optarg, "on_demand") == 0) { makeflow_gc_method = MAKEFLOW_GC_ON_DEMAND; if(makeflow_gc_count < 0) makeflow_gc_count = 16; /* Try to collect at most 16 files. */ } else if(strcasecmp(optarg, "all") == 0) { makeflow_gc_method = MAKEFLOW_GC_ALL; if(makeflow_gc_count < 0) makeflow_gc_count = 1 << 14; /* Inode threshold of 2^14. */ } else { fprintf(stderr, "makeflow: invalid garbage collection method: %s\n", optarg); exit(1); } break; case LONG_OPT_GC_SIZE: makeflow_gc_size = string_metric_parse(optarg); break; case 'G': makeflow_gc_count = atoi(optarg); break; case LONG_OPT_FILE_CREATION_PATIENCE_WAIT_TIME: file_creation_patience_wait_time = MAX(0,atoi(optarg)); break; case 'h': show_help_run(argv[0]); return 0; case 'j': explicit_local_jobs_max = atoi(optarg); break; case 'J': explicit_remote_jobs_max = atoi(optarg); break; case 'l': logfilename = xxstrdup(optarg); break; case 'L': batchlogfilename = xxstrdup(optarg); break; case 'm': email_summary_to = xxstrdup(optarg); break; case LONG_OPT_MONITOR: if (!monitor) monitor = makeflow_monitor_create(); if(log_dir) free(log_dir); log_dir = xxstrdup(optarg); break; case LONG_OPT_MONITOR_INTERVAL: if (!monitor) monitor = makeflow_monitor_create(); monitor->interval = atoi(optarg); break; case LONG_OPT_MONITOR_TIME_SERIES: if (!monitor) monitor = makeflow_monitor_create(); monitor->enable_time_series = 1; break; case LONG_OPT_MONITOR_OPENED_FILES: if (!monitor) monitor = makeflow_monitor_create(); monitor->enable_list_files = 1; break; case LONG_OPT_MONITOR_LOG_NAME: if (!monitor) monitor = makeflow_monitor_create(); if(log_format) free(log_format); log_format = xxstrdup(optarg); break; case LONG_OPT_CACHE: mount_cache = xxstrdup(optarg); break; case LONG_OPT_MOUNTS: mountfile = xxstrdup(optarg); break; case LONG_OPT_AMAZON_CREDENTIALS: amazon_credentials = xxstrdup(optarg); break; case LONG_OPT_AMAZON_AMI: amazon_ami = xxstrdup(optarg); break; case 'M': case 'N': free(project); project = xxstrdup(optarg); work_queue_master_mode = "catalog"; catalog_reporting_on = 1; //set to true break; case 'o': debug_config_file(optarg); break; case 'p': port_set = 1; port = atoi(optarg); break; case 'P': priority = optarg; break; case 'r': makeflow_retry_flag = 1; makeflow_retry_max = atoi(optarg); break; case 'R': makeflow_retry_flag = 1; break; case 'S': makeflow_submit_timeout = atoi(optarg); break; case 't': work_queue_keepalive_timeout = optarg; break; case 'T': batch_queue_type = batch_queue_type_from_string(optarg); if(batch_queue_type == BATCH_QUEUE_TYPE_UNKNOWN) { fprintf(stderr, "makeflow: unknown batch queue type: %s\n", optarg); return 1; } break; case 'u': work_queue_keepalive_interval = optarg; break; case 'v': cctools_version_print(stdout, argv[0]); return 0; case 'W': if(!strcmp(optarg, "files")) { wq_option_scheduler = WORK_QUEUE_SCHEDULE_FILES; } else if(!strcmp(optarg, "time")) { wq_option_scheduler = WORK_QUEUE_SCHEDULE_TIME; } else if(!strcmp(optarg, "fcfs")) { wq_option_scheduler = WORK_QUEUE_SCHEDULE_FCFS; } else { fprintf(stderr, "makeflow: unknown scheduling mode %s\n", optarg); return 1; } break; case 'z': output_len_check = 1; break; case 'Z': work_queue_port_file = optarg; port = 0; port_set = 1; //WQ is going to set the port, so we continue as if already set. break; case LONG_OPT_PASSWORD: if(copy_file_to_buffer(optarg, &work_queue_password, NULL) < 0) { fprintf(stderr, "makeflow: couldn't open %s: %s\n", optarg, strerror(errno)); return 1; } break; case LONG_OPT_DISABLE_BATCH_CACHE: cache_mode = 0; break; case LONG_OPT_WQ_WAIT_FOR_WORKERS: wq_wait_queue_size = optarg; break; case LONG_OPT_WORKING_DIR: free(working_dir); working_dir = xxstrdup(optarg); break; case LONG_OPT_PREFERRED_CONNECTION: free(work_queue_preferred_connection); work_queue_preferred_connection = xxstrdup(optarg); break; case LONG_OPT_DEBUG_ROTATE_MAX: debug_config_file_size(string_metric_parse(optarg)); break; case LONG_OPT_LOG_VERBOSE_MODE: log_verbose_mode = 1; break; case LONG_OPT_WRAPPER: if(!wrapper) wrapper = makeflow_wrapper_create(); makeflow_wrapper_add_command(wrapper, optarg); break; case LONG_OPT_WRAPPER_INPUT: if(!wrapper) wrapper = makeflow_wrapper_create(); makeflow_wrapper_add_input_file(wrapper, optarg); break; case LONG_OPT_WRAPPER_OUTPUT: if(!wrapper) wrapper = makeflow_wrapper_create(); makeflow_wrapper_add_output_file(wrapper, optarg); break; case LONG_OPT_SHARED_FS: assert(shared_fs_list); if (optarg[0] != '/') fatal("Shared fs must be specified as an absolute path"); list_push_head(shared_fs_list, xxstrdup(optarg)); break; case LONG_OPT_DOCKER: if(!wrapper) wrapper = makeflow_wrapper_create(); container_mode = CONTAINER_MODE_DOCKER; container_image = xxstrdup(optarg); break; case LONG_OPT_SKIP_FILE_CHECK: skip_file_check = 1; break; case LONG_OPT_DOCKER_TAR: container_image_tar = xxstrdup(optarg); break; case LONG_OPT_SINGULARITY: if(!wrapper) wrapper = makeflow_wrapper_create(); container_mode = CONTAINER_MODE_SINGULARITY; container_image = xxstrdup(optarg); break; case LONG_OPT_ALLOCATION_MODE: if(!strcmp(optarg, "throughput")) { allocation_mode = CATEGORY_ALLOCATION_MODE_MAX_THROUGHPUT; } else if(!strcmp(optarg, "waste")) { allocation_mode = CATEGORY_ALLOCATION_MODE_MIN_WASTE; } else if(!strcmp(optarg, "fixed")) { allocation_mode = CATEGORY_ALLOCATION_MODE_FIXED; } else { fatal("Allocation mode '%s' is not valid. Use one of: throughput waste fixed"); } case LONG_OPT_JX: jx_input = 1; case LONG_OPT_JSON: json_input = 1; break; case LONG_OPT_JX_CONTEXT: jx_context = xxstrdup(optarg); break; case LONG_OPT_UMBRELLA_BINARY: if(!umbrella) umbrella = makeflow_wrapper_umbrella_create(); makeflow_wrapper_umbrella_set_binary(umbrella, (const char *)xxstrdup(optarg)); break; case LONG_OPT_UMBRELLA_LOG_PREFIX: if(!umbrella) umbrella = makeflow_wrapper_umbrella_create(); makeflow_wrapper_umbrella_set_log_prefix(umbrella, (const char *)xxstrdup(optarg)); break; case LONG_OPT_UMBRELLA_MODE: if(!umbrella) umbrella = makeflow_wrapper_umbrella_create(); makeflow_wrapper_umbrella_set_mode(umbrella, (const char *)xxstrdup(optarg)); break; case LONG_OPT_UMBRELLA_SPEC: if(!umbrella) umbrella = makeflow_wrapper_umbrella_create(); makeflow_wrapper_umbrella_set_spec(umbrella, (const char *)xxstrdup(optarg)); case LONG_OPT_MESOS_MASTER: mesos_master = xxstrdup(optarg); break; case LONG_OPT_MESOS_PATH: mesos_path = xxstrdup(optarg); break; case LONG_OPT_MESOS_PRELOAD: mesos_preload = xxstrdup(optarg); break; case LONG_OPT_ARCHIVE: should_read_archive = 1; should_write_to_archive = 1; set_archive_directory_string(&archive_directory, optarg); break; case LONG_OPT_ARCHIVE_READ_ONLY: should_read_archive = 1; set_archive_directory_string(&archive_directory, optarg); break; case LONG_OPT_ARCHIVE_WRITE_ONLY: should_write_to_archive = 1; set_archive_directory_string(&archive_directory, optarg); break; default: show_help_run(argv[0]); return 1; case 'X': change_dir = optarg; break; case LONG_OPT_ENFORCEMENT: if(!enforcer) enforcer = makeflow_wrapper_create(); break; case LONG_OPT_PARROT_PATH: parrot_path = xxstrdup(optarg); break; } } cctools_version_debug(D_MAKEFLOW_RUN, argv[0]); if(!did_explicit_auth) auth_register_all(); if(chirp_tickets) { auth_ticket_load(chirp_tickets); free(chirp_tickets); } else { auth_ticket_load(NULL); } if (enforcer && umbrella) { fatal("enforcement and Umbrella are mutually exclusive\n"); } if((argc - optind) != 1) { int rv = access("./Makeflow", R_OK); if(rv < 0) { fprintf(stderr, "makeflow: No makeflow specified and file \"./Makeflow\" could not be found.\n"); fprintf(stderr, "makeflow: Run \"%s -h\" for help with options.\n", argv[0]); return 1; } dagfile = "./Makeflow"; } else { dagfile = argv[optind]; } if(batch_queue_type == BATCH_QUEUE_TYPE_WORK_QUEUE) { if(strcmp(work_queue_master_mode, "catalog") == 0 && project == NULL) { fprintf(stderr, "makeflow: Makeflow running in catalog mode. Please use '-N' option to specify the name of this project.\n"); fprintf(stderr, "makeflow: Run \"makeflow -h\" for help with options.\n"); return 1; } // Use Work Queue default port in standalone mode when port is not // specified with -p option. In Work Queue catalog mode, Work Queue // would choose an arbitrary port when port is not explicitly specified. if(!port_set && strcmp(work_queue_master_mode, "standalone") == 0) { port_set = 1; port = WORK_QUEUE_DEFAULT_PORT; } if(port_set) { char *value; value = string_format("%d", port); setenv("WORK_QUEUE_PORT", value, 1); free(value); } } if(!logfilename) logfilename = string_format("%s.makeflowlog", dagfile); printf("parsing %s...\n",dagfile); struct dag *d; if (json_input) { struct jx *dag = NULL; struct jx *ctx = NULL; dag = jx_parse_file(dagfile); if (!dag) fatal("failed to parse dagfile"); if (jx_input && jx_context) { printf("using JX context %s\n", jx_context); struct jx *t = jx_parse_file(jx_context); if (!t) fatal("failed to parse context"); ctx = jx_eval(t, NULL); jx_delete(t); } if (jx_input) { struct jx *t = dag; dag = jx_eval(t, ctx); jx_delete(t); jx_delete(ctx); } d = dag_from_jx(dag); jx_delete(dag); // JX doesn't really use errno, so give something generic errno = EINVAL; } else { d = dag_from_file(dagfile); } if(!d) { fatal("makeflow: couldn't load %s: %s\n", dagfile, strerror(errno)); } d->allocation_mode = allocation_mode; // Makeflows running LOCAL batch type have only one queue that behaves as if remote // This forces -J vs -j to behave correctly if(batch_queue_type == BATCH_QUEUE_TYPE_LOCAL) { explicit_remote_jobs_max = explicit_local_jobs_max; } if(explicit_local_jobs_max) { local_jobs_max = explicit_local_jobs_max; } else { local_jobs_max = load_average_get_cpus(); } if(explicit_remote_jobs_max) { remote_jobs_max = explicit_remote_jobs_max; } else { if(batch_queue_type == BATCH_QUEUE_TYPE_LOCAL) { remote_jobs_max = load_average_get_cpus(); } else if(batch_queue_type == BATCH_QUEUE_TYPE_WORK_QUEUE) { remote_jobs_max = 10 * MAX_REMOTE_JOBS_DEFAULT; } else { remote_jobs_max = MAX_REMOTE_JOBS_DEFAULT; } } s = getenv("MAKEFLOW_MAX_REMOTE_JOBS"); if(s) { remote_jobs_max = MIN(remote_jobs_max, atoi(s)); } s = getenv("MAKEFLOW_MAX_LOCAL_JOBS"); if(s) { int n = atoi(s); local_jobs_max = MIN(local_jobs_max, n); if(batch_queue_type == BATCH_QUEUE_TYPE_LOCAL) { remote_jobs_max = MIN(local_jobs_max, n); } } remote_queue = batch_queue_create(batch_queue_type); if(!remote_queue) { fprintf(stderr, "makeflow: couldn't create batch queue.\n"); if(port != 0) fprintf(stderr, "makeflow: perhaps port %d is already in use?\n", port); exit(EXIT_FAILURE); } if(!batchlogfilename) { if(batch_queue_supports_feature(remote_queue, "batch_log_name")){ batchlogfilename = string_format(batch_queue_supports_feature(remote_queue, "batch_log_name"), dagfile); } else { batchlogfilename = string_format("%s.batchlog", dagfile); } } if(batch_queue_type == BATCH_QUEUE_TYPE_MESOS) { batch_queue_set_option(remote_queue, "mesos-path", mesos_path); batch_queue_set_option(remote_queue, "mesos-master", mesos_master); batch_queue_set_option(remote_queue, "mesos-preload", mesos_preload); } if(batch_queue_type == BATCH_QUEUE_TYPE_DRYRUN) { FILE *file = fopen(batchlogfilename,"w"); if(!file) fatal("unable to open log file %s: %s\n", batchlogfilename, strerror(errno)); fprintf(file, "#!/bin/sh\n"); fprintf(file, "set -x\n"); fprintf(file, "set -e\n"); fprintf(file, "\n# %s version %s (released %s)\n\n", argv[0], CCTOOLS_VERSION, CCTOOLS_RELEASE_DATE); fclose(file); } batch_queue_set_logfile(remote_queue, batchlogfilename); batch_queue_set_option(remote_queue, "batch-options", batch_submit_options); batch_queue_set_option(remote_queue, "skip-afs-check", skip_afs_check ? "yes" : "no"); batch_queue_set_option(remote_queue, "password", work_queue_password); batch_queue_set_option(remote_queue, "master-mode", work_queue_master_mode); batch_queue_set_option(remote_queue, "name", project); batch_queue_set_option(remote_queue, "priority", priority); batch_queue_set_option(remote_queue, "keepalive-interval", work_queue_keepalive_interval); batch_queue_set_option(remote_queue, "keepalive-timeout", work_queue_keepalive_timeout); batch_queue_set_option(remote_queue, "caching", cache_mode ? "yes" : "no"); batch_queue_set_option(remote_queue, "wait-queue-size", wq_wait_queue_size); batch_queue_set_option(remote_queue, "amazon-credentials", amazon_credentials); batch_queue_set_option(remote_queue, "amazon-ami", amazon_ami); batch_queue_set_option(remote_queue, "working-dir", working_dir); batch_queue_set_option(remote_queue, "master-preferred-connection", work_queue_preferred_connection); char *fa_multiplier = string_format("%f", wq_option_fast_abort_multiplier); batch_queue_set_option(remote_queue, "fast-abort", fa_multiplier); free(fa_multiplier); /* Do not create a local queue for systems where local and remote are the same. */ if(!batch_queue_supports_feature(remote_queue, "local_job_queue")) { local_queue = 0; } else { local_queue = batch_queue_create(BATCH_QUEUE_TYPE_LOCAL); if(!local_queue) { fatal("couldn't create local job queue."); } } /* Remote storage modes do not (yet) support measuring storage for garbage collection. */ if(makeflow_gc_method == MAKEFLOW_GC_SIZE && !batch_queue_supports_feature(remote_queue, "gc_size")) { makeflow_gc_method = MAKEFLOW_GC_ALL; } /* Set dag_node->umbrella_spec */ if(!clean_mode) { struct dag_node *cur; cur = d->nodes; while(cur) { struct dag_variable_lookup_set s = {d, cur->category, cur, NULL}; char *spec = NULL; spec = dag_variable_lookup_string("SPEC", &s); if(spec) { debug(D_MAKEFLOW_RUN, "setting dag_node->umbrella_spec (rule %d) from the makefile ...\n", cur->nodeid); dag_node_set_umbrella_spec(cur, xxstrdup(spec)); } else if(umbrella && umbrella->spec) { debug(D_MAKEFLOW_RUN, "setting dag_node->umbrella_spec (rule %d) from the --umbrella_spec option ...\n", cur->nodeid); dag_node_set_umbrella_spec(cur, umbrella->spec); } free(spec); cur = cur->next; } debug(D_MAKEFLOW_RUN, "makeflow_wrapper_umbrella_preparation...\n"); // When the user specifies umbrella specs in a makefile, but does not use any `--umbrella...` option, // an umbrella wrapper was created to hold the default values for umbrella-related setttings such as // log_prefix and default umbrella execution engine. if(!umbrella) umbrella = makeflow_wrapper_umbrella_create(); makeflow_wrapper_umbrella_preparation(umbrella, d); } if(enforcer) { makeflow_wrapper_enforcer_init(enforcer, parrot_path); } makeflow_parse_input_outputs(d); makeflow_prepare_nested_jobs(d); if (change_dir) chdir(change_dir); /* Prepare the input files specified in the mountfile. */ if(mountfile && !clean_mode) { /* check the validity of the mountfile and load the info from the mountfile into the dag */ printf("checking the consistency of the mountfile ...\n"); if(makeflow_mounts_parse_mountfile(mountfile, d)) { fprintf(stderr, "Failed to parse the mountfile: %s.\n", mountfile); free(mountfile); return -1; } free(mountfile); use_mountfile = 1; } printf("checking %s for consistency...\n",dagfile); if(!makeflow_check(d)) { exit(EXIT_FAILURE); } if(!makeflow_check_batch_consistency(d) && clean_mode == MAKEFLOW_CLEAN_NONE) { exit(EXIT_FAILURE); } printf("%s has %d rules.\n",dagfile,d->nodeid_counter); setlinebuf(stdout); setlinebuf(stderr); if(mount_cache) d->cache_dir = mount_cache; /* In case when the user uses --cache option to specify the mount cache dir and the log file also has * a cache dir logged, these two dirs must be the same. Otherwise exit. */ if(makeflow_log_recover(d, logfilename, log_verbose_mode, remote_queue, clean_mode, skip_file_check )) { dag_mount_clean(d); exit(EXIT_FAILURE); } /* This check must happen after makeflow_log_recover which may load the cache_dir info into d->cache_dir. * This check must happen before makeflow_mount_install to guarantee that the program ends before any mount is copied if any target is invliad. */ if(use_mountfile) { if(makeflow_mount_check_target(d)) { dag_mount_clean(d); exit(EXIT_FAILURE); } } if(use_mountfile && !clean_mode) { if(makeflow_mounts_install(d)) { fprintf(stderr, "Failed to install the dependencies specified in the mountfile!\n"); dag_mount_clean(d); exit(EXIT_FAILURE); } } if(monitor) { if(!log_dir) fatal("Monitor mode was enabled, but a log output directory was not specified (use --monitor=<dir>)"); if(!log_format) log_format = xxstrdup(DEFAULT_MONITOR_LOG_FORMAT); if(monitor->interval < 1) fatal("Monitoring interval should be positive."); makeflow_prepare_for_monitoring(d, monitor, remote_queue, log_dir, log_format); free(log_dir); free(log_format); } struct dag_file *f = dag_file_lookup_or_create(d, batchlogfilename); makeflow_log_file_state_change(d, f, DAG_FILE_STATE_EXPECT); if(batch_queue_supports_feature(remote_queue, "batch_log_transactions")) { const char *transactions = batch_queue_get_option(remote_queue, "batch_log_transactions_name"); f = dag_file_lookup_or_create(d, transactions); makeflow_log_file_state_change(d, f, DAG_FILE_STATE_EXPECT); } if(clean_mode != MAKEFLOW_CLEAN_NONE) { printf("cleaning filesystem...\n"); if(makeflow_clean(d, remote_queue, clean_mode)) { fprintf(stderr, "Failed to clean up makeflow!\n"); exit(EXIT_FAILURE); } if(clean_mode == MAKEFLOW_CLEAN_ALL) { unlink(logfilename); } exit(0); } /* this func call guarantees the mount fields set up from the info of the makeflow log file are cleaned up * even if the user does not use --mounts or -c option. */ dag_mount_clean(d); printf("starting workflow....\n"); port = batch_queue_port(remote_queue); if(work_queue_port_file) opts_write_port_file(work_queue_port_file, port); if(port > 0) printf("listening for workers on port %d.\n", port); signal(SIGINT, handle_abort); signal(SIGQUIT, handle_abort); signal(SIGTERM, handle_abort); makeflow_log_started_event(d); runtime = timestamp_get(); if (container_mode == CONTAINER_MODE_DOCKER) { makeflow_wrapper_docker_init(wrapper, container_image, container_image_tar); }else if(container_mode == CONTAINER_MODE_SINGULARITY){ makeflow_wrapper_singularity_init(wrapper, container_image); } d->archive_directory = archive_directory; d->should_read_archive = should_read_archive; d->should_write_to_archive = should_write_to_archive; makeflow_run(d); time_completed = timestamp_get(); runtime = time_completed - runtime; if(local_queue) batch_queue_delete(local_queue); /* * Set the abort and failed flag for batch_job_mesos mode. * Since batch_queue_delete(struct batch_queue *q) will call * batch_queue_mesos_free(struct batch_queue *q), which is defined * in batch_job/src/batch_job_mesos.c. Then this function will check * the abort and failed status of the batch_queue and inform * the makeflow mesos scheduler. */ if (batch_queue_type == BATCH_QUEUE_TYPE_MESOS) { batch_queue_set_int_option(remote_queue, "batch-queue-abort-flag", (int)makeflow_abort_flag); batch_queue_set_int_option(remote_queue, "batch-queue-failed-flag", (int)makeflow_failed_flag); } batch_queue_delete(remote_queue); if(write_summary_to || email_summary_to) makeflow_summary_create(d, write_summary_to, email_summary_to, runtime, time_completed, argc, argv, dagfile, remote_queue, makeflow_abort_flag, makeflow_failed_flag ); /* XXX better to write created files to log, then delete those listed in log. */ if (container_mode == CONTAINER_MODE_DOCKER) { unlink(CONTAINER_DOCKER_SH); }else if(container_mode == CONTAINER_MODE_SINGULARITY){ unlink(CONTAINER_SINGULARITY_SH); } if(makeflow_abort_flag) { makeflow_log_aborted_event(d); fprintf(stderr, "workflow was aborted.\n"); exit(EXIT_FAILURE); } else if(makeflow_failed_flag) { makeflow_log_failed_event(d); fprintf(stderr, "workflow failed.\n"); exit(EXIT_FAILURE); } else { makeflow_log_completed_event(d); printf("nothing left to do.\n"); exit(EXIT_SUCCESS); } free(archive_directory); return 0; } /* vim: set noexpandtab tabstop=4: */
1
13,932
If you move the other functions, this should also be moved to `makeflow_gc.h`.
cooperative-computing-lab-cctools
c
@@ -55,8 +55,12 @@ def _send_listens_to_queue(listen_type, listens): for listen in listens: if listen_type == LISTEN_TYPE_PLAYING_NOW: try: - expire_time = listen["track_metadata"]["additional_info"].get("duration", - current_app.config['PLAYING_NOW_MAX_DURATION']) + if 'duration' in listen['track_metadata']['additional_info']: + expire_time = listen['track_metadata']['additional_info']['duration'] + elif 'duration_ms' in listen['track_metadata']['additional_info']: + expire_time = listen['track_metadata']['additional_info']['duration_ms'] // 1000 + else: + expire_time = current_app.config['PLAYING_NOW_MAX_DURATION'] redis_connection._redis.put_playing_now(listen['user_id'], listen, expire_time) except Exception as e: current_app.logger.error("Redis rpush playing_now write error: " + str(e))
1
import listenbrainz.webserver.rabbitmq_connection as rabbitmq_connection import listenbrainz.webserver.redis_connection as redis_connection import pika import pika.exceptions import sys import time import ujson import uuid from flask import current_app from listenbrainz.listen import Listen from listenbrainz.webserver import API_LISTENED_AT_ALLOWED_SKEW from listenbrainz.webserver.external import messybrainz from werkzeug.exceptions import InternalServerError, ServiceUnavailable, BadRequest #: Maximum overall listen size in bytes, to prevent egregious spamming. MAX_LISTEN_SIZE = 10240 #: The maximum number of tags per listen. MAX_TAGS_PER_LISTEN = 50 #: The maximum length of a tag MAX_TAG_SIZE = 64 #: The maximum number of listens returned in a single GET request. MAX_ITEMS_PER_GET = 100 #: The default number of listens returned in a single GET request. DEFAULT_ITEMS_PER_GET = 25 MAX_ITEMS_PER_MESSYBRAINZ_LOOKUP = 10 # Define the values for types of listens LISTEN_TYPE_SINGLE = 1 LISTEN_TYPE_IMPORT = 2 LISTEN_TYPE_PLAYING_NOW = 3 def insert_payload(payload, user, listen_type=LISTEN_TYPE_IMPORT): """ Convert the payload into augmented listens then submit them. Returns: augmented_listens """ try: augmented_listens = _get_augmented_listens(payload, user, listen_type) _send_listens_to_queue(listen_type, augmented_listens) except (InternalServerError, ServiceUnavailable) as e: raise except Exception as e: print(e) return augmented_listens def _send_listens_to_queue(listen_type, listens): submit = [] for listen in listens: if listen_type == LISTEN_TYPE_PLAYING_NOW: try: expire_time = listen["track_metadata"]["additional_info"].get("duration", current_app.config['PLAYING_NOW_MAX_DURATION']) redis_connection._redis.put_playing_now(listen['user_id'], listen, expire_time) except Exception as e: current_app.logger.error("Redis rpush playing_now write error: " + str(e)) raise ServiceUnavailable("Cannot record playing_now at this time.") else: submit.append(listen) if submit: # check if rabbitmq connection exists or not # and if not then try to connect try: rabbitmq_connection.init_rabbitmq_connection(current_app) except ConnectionError as e: current_app.logger.error('Cannot connect to RabbitMQ: %s' % str(e)) raise ServiceUnavailable('Cannot submit listens to queue, please try again later.') publish_data_to_queue( data=submit, exchange=current_app.config['INCOMING_EXCHANGE'], queue=current_app.config['INCOMING_QUEUE'], error_msg='Cannot submit listens to queue, please try again later.', ) def validate_listen(listen, listen_type): """Make sure that required keys are present, filled out and not too large.""" if listen_type in (LISTEN_TYPE_SINGLE, LISTEN_TYPE_IMPORT): if 'listened_at' not in listen: log_raise_400("JSON document must contain the key listened_at at the top level.", listen) try: listen['listened_at'] = int(listen['listened_at']) except ValueError: log_raise_400("JSON document must contain an int value for listened_at.", listen) if 'listened_at' in listen and 'track_metadata' in listen and len(listen) > 2: log_raise_400("JSON document may only contain listened_at and " "track_metadata top level keys", listen) # if timestamp is too high, raise BadRequest # in order to make up for possible clock skew, we allow # timestamps to be one hour ahead of server time if not is_valid_timestamp(listen['listened_at']): log_raise_400("Value for key listened_at is too high.", listen) elif listen_type == LISTEN_TYPE_PLAYING_NOW: if 'listened_at' in listen: log_raise_400("JSON document must not contain listened_at while submitting " "playing_now.", listen) if 'track_metadata' in listen and len(listen) > 1: log_raise_400("JSON document may only contain track_metadata as top level " "key when submitting now_playing.", listen) # Basic metadata try: if not listen['track_metadata']['track_name']: log_raise_400("JSON document does not contain required " "track_metadata.track_name.", listen) if not listen['track_metadata']['artist_name']: log_raise_400("JSON document does not contain required " "track_metadata.artist_name.", listen) if not isinstance(listen['track_metadata']['artist_name'], str): log_raise_400("artist_name must be a single string.", listen) except KeyError: log_raise_400("JSON document does not contain a valid metadata.track_name " "and/or track_metadata.artist_name.", listen) if 'additional_info' in listen['track_metadata']: # Tags if 'tags' in listen['track_metadata']['additional_info']: tags = listen['track_metadata']['additional_info']['tags'] if len(tags) > MAX_TAGS_PER_LISTEN: log_raise_400("JSON document may not contain more than %d items in " "track_metadata.additional_info.tags." % MAX_TAGS_PER_LISTEN, listen) for tag in tags: if len(tag) > MAX_TAG_SIZE: log_raise_400("JSON document may not contain track_metadata.additional_info.tags " "longer than %d characters." % MAX_TAG_SIZE, listen) # MBIDs single_mbid_keys = ['release_mbid', 'recording_mbid', 'release_group_mbid', 'track_mbid'] for key in single_mbid_keys: verify_mbid_validity(listen, key, multi = False) multiple_mbid_keys = ['artist_mbids', 'work_mbids'] for key in multiple_mbid_keys: verify_mbid_validity(listen, key, multi = True) # lifted from AcousticBrainz def is_valid_uuid(u): try: u = uuid.UUID(u) return True except (AttributeError, ValueError): return False def _get_augmented_listens(payload, user, listen_type): """ Converts the payload to augmented list after lookup in the MessyBrainz database """ augmented_listens = [] msb_listens = [] for l in payload: listen = l.copy() # Create a local object to prevent the mutation of the passed object listen['user_id'] = user['id'] listen['user_name'] = user['musicbrainz_id'] msb_listens.append(listen) if len(msb_listens) >= MAX_ITEMS_PER_MESSYBRAINZ_LOOKUP: augmented_listens.extend(_messybrainz_lookup(msb_listens)) msb_listens = [] if msb_listens: augmented_listens.extend(_messybrainz_lookup(msb_listens)) return augmented_listens def _messybrainz_lookup(listens): msb_listens = [] for listen in listens: messy_dict = { 'artist': listen['track_metadata']['artist_name'], 'title': listen['track_metadata']['track_name'], } if 'release_name' in listen['track_metadata']: messy_dict['release'] = listen['track_metadata']['release_name'] if 'additional_info' in listen['track_metadata']: ai = listen['track_metadata']['additional_info'] if 'artist_mbids' in ai and isinstance(ai['artist_mbids'], list): messy_dict['artist_mbids'] = ai['artist_mbids'] if 'release_mbid' in ai: messy_dict['release_mbid'] = ai['release_mbid'] if 'recording_mbid' in ai: messy_dict['recording_mbid'] = ai['recording_mbid'] if 'track_number' in ai: messy_dict['track_number'] = ai['track_number'] if 'spotify_id' in ai: messy_dict['spotify_id'] = ai['spotify_id'] msb_listens.append(messy_dict) try: msb_responses = messybrainz.submit_listens(msb_listens) except messybrainz.exceptions.BadDataException as e: log_raise_400(str(e)) except messybrainz.exceptions.NoDataFoundException: return [] except messybrainz.exceptions.ErrorAddingException as e: raise ServiceUnavailable(str(e)) augmented_listens = [] for listen, messybrainz_resp in zip(listens, msb_responses['payload']): messybrainz_resp = messybrainz_resp['ids'] if 'additional_info' not in listen['track_metadata']: listen['track_metadata']['additional_info'] = {} try: listen['recording_msid'] = messybrainz_resp['recording_msid'] listen['track_metadata']['additional_info']['artist_msid'] = messybrainz_resp['artist_msid'] except KeyError: current_app.logger.error("MessyBrainz did not return a proper set of ids") raise InternalServerError try: listen['track_metadata']['additional_info']['release_msid'] = messybrainz_resp['release_msid'] except KeyError: pass artist_mbids = messybrainz_resp.get('artist_mbids', []) release_mbid = messybrainz_resp.get('release_mbid', None) recording_mbid = messybrainz_resp.get('recording_mbid', None) if 'artist_mbids' not in listen['track_metadata']['additional_info'] and \ 'release_mbid' not in listen['track_metadata']['additional_info'] and \ 'recording_mbid' not in listen['track_metadata']['additional_info']: if len(artist_mbids) > 0 and release_mbid and recording_mbid: listen['track_metadata']['additional_info']['artist_mbids'] = artist_mbids listen['track_metadata']['additional_info']['release_mbid'] = release_mbid listen['track_metadata']['additional_info']['recording_mbid'] = recording_mbid augmented_listens.append(listen) return augmented_listens def log_raise_400(msg, data=""): """ Helper function for logging issues with request data and showing error page. Logs the message and data, raises BadRequest exception which shows 400 Bad Request to the user. """ if isinstance(data, dict): data = ujson.dumps(data) current_app.logger.debug("BadRequest: %s\nJSON: %s" % (msg, data)) raise BadRequest(msg) def verify_mbid_validity(listen, key, multi): """ Verify that mbid(s) present in listen with key `key` is valid. Args: listen: listen data key: the key whose mbids is to be validated multi: boolean value signifying if the key contains multiple mbids """ if not multi: items = listen['track_metadata']['additional_info'].get(key) items = [items] if items else [] else: items = listen['track_metadata']['additional_info'].get(key, []) for item in items: if not is_valid_uuid(item): log_raise_400("%s MBID format invalid." % (key, ), listen) def is_valid_timestamp(ts): """ Returns True if the timestamp passed is in the API's allowed range of timestamps, False otherwise Args: ts (int): the timestamp to be checked for validity Returns: bool: True if timestamp is valid, False otherwise """ return ts <= int(time.time()) + API_LISTENED_AT_ALLOWED_SKEW def publish_data_to_queue(data, exchange, queue, error_msg): """ Publish specified data to the specified queue. Args: data: the data to be published exchange (str): the name of the exchange queue (str): the name of the queue error_msg (str): the error message to be returned in case of an error """ try: with rabbitmq_connection._rabbitmq.get() as connection: channel = connection.channel channel.exchange_declare(exchange=exchange, exchange_type='fanout') channel.queue_declare(queue, durable=True) channel.basic_publish( exchange=exchange, routing_key='', body=ujson.dumps(data), properties=pika.BasicProperties(delivery_mode=2, ), ) except pika.exceptions.ConnectionClosed as e: current_app.logger.error("Connection to rabbitmq closed while trying to publish: %s" % str(e), exc_info=True) raise ServiceUnavailable(error_msg) except Exception as e: current_app.logger.error("Cannot publish to rabbitmq channel: %s / %s" % (type(e).__name__, str(e)), exc_info=True) raise ServiceUnavailable(error_msg)
1
15,150
This whole block bugs me. Expire_time to me suggest that an absolute time of when something happens and duration is an interval of time. While the code looks correct, it feels awkward to read.
metabrainz-listenbrainz-server
py
@@ -93,7 +93,9 @@ export function coerceToVNode(possibleVNode) { // Clone vnode if it has already been used. ceviche/#57 if (possibleVNode._dom!=null) { - return createVNode(possibleVNode.type, possibleVNode.props, possibleVNode.text, possibleVNode.key, null); + let vnode = createVNode(possibleVNode.type, possibleVNode.props, possibleVNode.text, possibleVNode.key, null); + vnode._dom = possibleVNode._dom; + return vnode; } return possibleVNode;
1
import options from './options'; /** * Create an virtual node (used for JSX) * @param {import('./internal').VNode["type"]} type The node name or Component * constructor for this virtual node * @param {object | null | undefined} [props] The properties of the virtual node * @param {Array<import('.').ComponentChildren>} [children] The children of the virtual node * @returns {import('./internal').VNode} */ export function createElement(type, props, children) { if (props==null) props = {}; if (arguments.length>3) { children = [children]; for (let i=3; i<arguments.length; i++) { children.push(arguments[i]); } } if (children!=null) { props.children = children; } // "type" may be undefined during development. The check is needed so that // we can display a nice error message with our debug helpers if (type!=null && type.defaultProps!=null) { for (let i in type.defaultProps) { if (props[i]===undefined) props[i] = type.defaultProps[i]; } } let ref = props.ref; if (ref) delete props.ref; let key = props.key; if (key) delete props.key; return createVNode(type, props, null, key, ref); } /** * Create a VNode (used internally by Preact) * @param {import('./internal').VNode["type"]} type The node name or Component * Constructor for this virtual node * @param {object | null} props The properites of this virtual node * @param {string | number} text If this virtual node represents a text node, * this is the text of the node * @param {string |number | null} key The key for this virtual node, used when * diffing it against its children * @param {import('./internal').VNode["ref"]} ref The ref property that will * receive a reference to its created child * @returns {import('./internal').VNode} */ export function createVNode(type, props, text, key, ref) { // V8 seems to be better at detecting type shapes if the object is allocated from the same call site // Do not inline into createElement and coerceToVNode! const vnode = { type, props, text, key, ref, _children: null, _dom: null, _lastDomChild: null, _component: null }; if (options.vnode) options.vnode(vnode); return vnode; } export function createRef() { return {}; } export /* istanbul ignore next */ function Fragment() { } /** * Coerce an untrusted value into a VNode * Specifically, this should be used anywhere a user could provide a boolean, string, or number where * a VNode or Component is desired instead * @param {boolean | string | number | import('./internal').VNode} possibleVNode A possible VNode * @returns {import('./internal').VNode} */ export function coerceToVNode(possibleVNode) { if (possibleVNode == null || typeof possibleVNode === 'boolean') return null; if (typeof possibleVNode === 'string' || typeof possibleVNode === 'number') { return createVNode(null, null, possibleVNode, null, null); } if (Array.isArray(possibleVNode)) { return createElement(Fragment, null, possibleVNode); } // Clone vnode if it has already been used. ceviche/#57 if (possibleVNode._dom!=null) { return createVNode(possibleVNode.type, possibleVNode.props, possibleVNode.text, possibleVNode.key, null); } return possibleVNode; }
1
12,941
Can we add `_dom` as an argument to createVNode here? I think it might be shorter (could totally be wrong!)
preactjs-preact
js
@@ -1964,6 +1964,8 @@ mangle_return(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_set_src(popf, 1, memop); PRE(ilist, instr, popf); } + /* Mangles single step exception after a popf. */ + mangle_single_step(dcontext, ilist, popf); #ifdef X64 /* In x64 mode, iret additionally does pop->RSP and pop->ss. */
1
/* ****************************************************************************** * Copyright (c) 2010-2016 Google, Inc. All rights reserved. * Copyright (c) 2010 Massachusetts Institute of Technology All rights reserved. * Copyright (c) 2000-2010 VMware, Inc. All rights reserved. * ******************************************************************************/ /* * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of VMware, Inc. nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL VMWARE, INC. OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ /* Copyright (c) 2003-2007 Determina Corp. */ /* Copyright (c) 2001-2003 Massachusetts Institute of Technology */ /* Copyright (c) 2000-2001 Hewlett-Packard Company */ /* file "mangle.c" */ #include "../globals.h" #include "../link.h" #include "../fragment.h" #include "arch.h" #include "instr.h" #include "instr_create.h" #include "instrlist.h" #include "decode.h" #include "decode_fast.h" #include "disassemble.h" #include "../hashtable.h" #include "../fcache.h" /* for in_fcache */ #ifdef STEAL_REGISTER #include "steal_reg.h" #endif #include "instrument.h" /* for dr_insert_call */ #include "../translate.h" #ifdef RCT_IND_BRANCH # include "../rct.h" /* rct_add_rip_rel_addr */ #endif #ifdef UNIX #include <sys/syscall.h> #endif #include <string.h> /* for memset */ #ifdef ANNOTATIONS # include "../annotations.h" #endif /* Make code more readable by shortening long lines. * We mark everything we add as non-app instr. */ #define POST instrlist_meta_postinsert #define PRE instrlist_meta_preinsert /***************************************************************************/ void mangle_arch_init(void) { /* Nothing yet. */ } /* Convert a short-format CTI into an equivalent one using * near-rel-format. * Remember, the target is kept in the 0th src array position, * and has already been converted from an 8-bit offset to an * absolute PC, so we can just pretend instructions are longer * than they really are. */ instr_t * convert_to_near_rel_arch(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr) { int opcode = instr_get_opcode(instr); app_pc target = NULL; if (opcode == OP_jmp_short) { instr_set_opcode(instr, OP_jmp); return instr; } if (OP_jo_short <= opcode && opcode <= OP_jnle_short) { /* WARNING! following is OP_ enum order specific */ instr_set_opcode(instr, opcode - OP_jo_short + OP_jo); return instr; } if (OP_loopne <= opcode && opcode <= OP_jecxz) { uint mangled_sz; uint offs; /* * from "info as" on GNU/linux system: Note that the `jcxz', `jecxz', `loop', `loopz', `loope', `loopnz' and `loopne' instructions only come in byte displacements, so that if you use these instructions (`gcc' does not use them) you may get an error message (and incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding `jcxz foo' to jcxz cx_zero jmp cx_nonzero cx_zero: jmp foo cx_nonzero: * * We use that same expansion, but we want to treat the entire * three-instruction sequence as a single conditional branch. * Thus we use a special instruction that stores the entire * instruction sequence as mangled bytes, yet w/ a valid target operand * (xref PR 251646). * patch_branch and instr_invert_cbr * know how to find the target pc (final 4 of 9 bytes). * When decoding anything we've written we know the only jcxz or * loop* instructions are part of these rewritten packages, and * we use remangle_short_rewrite to read back in the instr. * (have to do this everywhere call decode() except original * interp, plus in input_trace()) * * An alternative is to change 'jcxz foo' to: <save eflags> cmpb %cx,$0 je foo_restore <restore eflags> ... foo_restore: <restore eflags> foo: * However the added complications of restoring the eflags on * the taken-branch path made me choose the former solution. */ /* SUMMARY: * expand 'shortjump foo' to: shortjump taken jmp-short nottaken taken: jmp foo nottaken: */ if (ilist != NULL) { /* PR 266292: for meta instrs, insert separate instrs */ /* reverse order */ opnd_t tgt = instr_get_target(instr); instr_t *nottaken = INSTR_CREATE_label(dcontext); instr_t *taken = INSTR_CREATE_jmp(dcontext, tgt); ASSERT(instr_is_meta(instr)); instrlist_meta_postinsert(ilist, instr, nottaken); instrlist_meta_postinsert(ilist, instr, taken); instrlist_meta_postinsert(ilist, instr, INSTR_CREATE_jmp_short (dcontext, opnd_create_instr(nottaken))); instr_set_target(instr, opnd_create_instr(taken)); return taken; } if (opnd_is_near_pc(instr_get_target(instr))) target = opnd_get_pc(instr_get_target(instr)); else if (opnd_is_near_instr(instr_get_target(instr))) { instr_t *tgt = opnd_get_instr(instr_get_target(instr)); /* XXX: not using get_app_instr_xl8() b/c drdecodelib doesn't link * mangle_shared.c. */ target = instr_get_translation(tgt); if (target == NULL && instr_raw_bits_valid(tgt)) target = instr_get_raw_bits(tgt); ASSERT(target != NULL); } else ASSERT_NOT_REACHED(); /* PR 251646: cti_short_rewrite: target is in src0, so operands are * valid, but raw bits must also be valid, since they hide the multiple * instrs. For x64, it is marked for re-relativization, but it's * special since the target must be obtained from src0 and not * from the raw bits (since that might not reach). */ /* need 9 bytes + possible addr prefix */ mangled_sz = CTI_SHORT_REWRITE_LENGTH; if (!reg_is_pointer_sized(opnd_get_reg(instr_get_src(instr, 1)))) mangled_sz++; /* need addr prefix */ instr_allocate_raw_bits(dcontext, instr, mangled_sz); offs = 0; if (mangled_sz > CTI_SHORT_REWRITE_LENGTH) { instr_set_raw_byte(instr, offs, ADDR_PREFIX_OPCODE); offs++; } /* first 2 bytes: jecxz 8-bit-offset */ instr_set_raw_byte(instr, offs, decode_first_opcode_byte(opcode)); offs++; /* remember pc-relative offsets are from start of next instr */ instr_set_raw_byte(instr, offs, (byte)2); offs++; /* next 2 bytes: jmp-short 8-bit-offset */ instr_set_raw_byte(instr, offs, decode_first_opcode_byte(OP_jmp_short)); offs++; instr_set_raw_byte(instr, offs, (byte)5); offs++; /* next 5 bytes: jmp 32-bit-offset */ instr_set_raw_byte(instr, offs, decode_first_opcode_byte(OP_jmp)); offs++; /* for x64 we may not reach, but we go ahead and try */ instr_set_raw_word(instr, offs, (int) (target - (instr->bytes + mangled_sz))); offs += sizeof(int); ASSERT(offs == mangled_sz); LOG(THREAD, LOG_INTERP, 2, "convert_to_near_rel: jecxz/loop* opcode\n"); /* original target operand is still valid */ instr_set_operands_valid(instr, true); return instr; } LOG(THREAD, LOG_INTERP, 1, "convert_to_near_rel: unknown opcode: %d %s\n", opcode, decode_opcode_name(opcode)); ASSERT_NOT_REACHED(); /* conversion not possible OR not a short-form cti */ return instr; } /* For jecxz and loop*, we create 3 instructions in a single * instr that we treat like a single conditional branch. * On re-decoding our own output we need to recreate that instr. * This routine assumes that the instructions encoded at pc * are indeed a mangled cti short. * Assumes that the first instr has already been decoded into instr, * that pc points to the start of that instr. * Converts instr into a new 3-raw-byte-instr with a private copy of the * original raw bits. * Optionally modifies the target to "target" if "target" is non-null. * Returns the pc of the instruction after the remangled sequence. */ byte * remangle_short_rewrite(dcontext_t *dcontext, instr_t *instr, byte *pc, app_pc target) { uint mangled_sz = CTI_SHORT_REWRITE_LENGTH; ASSERT(instr_is_cti_short_rewrite(instr, pc)); if (*pc == ADDR_PREFIX_OPCODE) mangled_sz++; /* first set the target in the actual operand src0 */ if (target == NULL) { /* acquire existing absolute target */ int rel_target = *((int *)(pc + mangled_sz - 4)); target = pc + mangled_sz + rel_target; } instr_set_target(instr, opnd_create_pc(target)); /* now set up the bundle of raw instructions * we've already read the first 2-byte instruction, jecxz/loop* * they all take up mangled_sz bytes */ instr_allocate_raw_bits(dcontext, instr, mangled_sz); instr_set_raw_bytes(instr, pc, mangled_sz); /* for x64 we may not reach, but we go ahead and try */ instr_set_raw_word(instr, mangled_sz - 4, (int)(target - (pc + mangled_sz))); /* now make operands valid */ instr_set_operands_valid(instr, true); return (pc+mangled_sz); } /***************************************************************************/ #if !defined(STANDALONE_DECODER) int insert_out_of_line_context_switch(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, bool save) { if (save) { /* We adjust the stack so the return address will not be clobbered, * so we can have call/return pair to take advantage of hardware * call return stack for better performance. * xref emit_clean_call_save @ x86/emit_utils.c */ PRE(ilist, instr, INSTR_CREATE_lea (dcontext, opnd_create_reg(DR_REG_XSP), opnd_create_base_disp(DR_REG_XSP, DR_REG_NULL, 0, -(int)(get_clean_call_switch_stack_size() + get_clean_call_temp_stack_size()), OPSZ_lea))); } PRE(ilist, instr, INSTR_CREATE_call (dcontext, save ? opnd_create_pc(get_clean_call_save(dcontext _IF_X64(GENCODE_X64))) : opnd_create_pc(get_clean_call_restore(dcontext _IF_X64(GENCODE_X64))))); return get_clean_call_switch_stack_size(); } void insert_clear_eflags(dcontext_t *dcontext, clean_call_info_t *cci, instrlist_t *ilist, instr_t *instr) { /* clear eflags for callee's usage */ if (cci == NULL || !cci->skip_clear_flags) { if (dynamo_options.cleancall_ignore_eflags) { /* we still clear DF since some compiler assumes * DF is cleared at each function. */ PRE(ilist, instr, INSTR_CREATE_cld(dcontext)); } else { /* on x64 a push immed is sign-extended to 64-bit */ PRE(ilist, instr, INSTR_CREATE_push_imm(dcontext, OPND_CREATE_INT32(0))); PRE(ilist, instr, INSTR_CREATE_popf(dcontext)); } } } /* Pushes not only the GPRs but also xmm/ymm, xip, and xflags, in * priv_mcontext_t order. * The current stack pointer alignment should be passed. Use 1 if * unknown (NOT 0). * Returns the amount of data pushed. Does NOT fix up the xsp value pushed * to be the value prior to any pushes for x64 as no caller needs that * currently (they all build a priv_mcontext_t and have to do further xsp * fixups anyway). * Includes xmm0-5 for PR 264138. */ uint insert_push_all_registers(dcontext_t *dcontext, clean_call_info_t *cci, instrlist_t *ilist, instr_t *instr, uint alignment, opnd_t push_pc, reg_id_t scratch/*optional*/) { uint dstack_offs = 0; int offs_beyond_xmm = 0; if (cci == NULL) cci = &default_clean_call_info; if (cci->preserve_mcontext || cci->num_simd_skip != NUM_SIMD_REGS) { int offs = XMM_SLOTS_SIZE + PRE_XMM_PADDING; if (cci->preserve_mcontext && cci->skip_save_flags) { offs_beyond_xmm = 2*XSP_SZ; /* pc and flags */ offs += offs_beyond_xmm; } PRE(ilist, instr, INSTR_CREATE_lea (dcontext, opnd_create_reg(REG_XSP), OPND_CREATE_MEM_lea(REG_XSP, REG_NULL, 0, -offs))); dstack_offs += offs; } if (preserve_xmm_caller_saved()) { /* PR 264138: we must preserve xmm0-5 if on a 64-bit kernel */ int i; /* PR 266305: see discussion in emit_fcache_enter_shared on * which opcode is better. Note that the AMD optimization * guide says to use movlps+movhps for unaligned stores, but * for simplicity and smaller code I'm using movups anyway. */ /* XXX i#438: once have SandyBridge processor need to measure * cost of vmovdqu and whether worth arranging 32-byte alignment * for all callers. B/c we put ymm at end of priv_mcontext_t, we do * currently have 32-byte alignment for clean calls. */ uint opcode = move_mm_reg_opcode(ALIGNED(alignment, 16), ALIGNED(alignment, 32)); ASSERT(proc_has_feature(FEATURE_SSE)); for (i=0; i<NUM_SIMD_SAVED; i++) { if (!cci->simd_skip[i]) { PRE(ilist, instr, instr_create_1dst_1src (dcontext, opcode, opnd_create_base_disp(REG_XSP, REG_NULL, 0, PRE_XMM_PADDING + i*XMM_SAVED_REG_SIZE + offs_beyond_xmm, OPSZ_SAVED_XMM), opnd_create_reg(REG_SAVED_XMM0 + (reg_id_t)i))); } } ASSERT(i*XMM_SAVED_REG_SIZE == XMM_SAVED_SIZE); ASSERT(XMM_SAVED_SIZE <= XMM_SLOTS_SIZE); } /* pc and aflags */ if (!cci->skip_save_flags) { ASSERT(offs_beyond_xmm == 0); if (opnd_is_immed_int(push_pc)) PRE(ilist, instr, INSTR_CREATE_push_imm(dcontext, push_pc)); else PRE(ilist, instr, INSTR_CREATE_push(dcontext, push_pc)); dstack_offs += XSP_SZ; PRE(ilist, instr, INSTR_CREATE_pushf(dcontext)); dstack_offs += XSP_SZ; } else { ASSERT(offs_beyond_xmm == 2*XSP_SZ || !cci->preserve_mcontext); /* for cci->preserve_mcontext we added to the lea above so we ignore push_pc */ } #ifdef X64 /* keep priv_mcontext_t order */ if (!cci->reg_skip[REG_R15 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R15))); if (!cci->reg_skip[REG_R14 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R14))); if (!cci->reg_skip[REG_R13 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R13))); if (!cci->reg_skip[REG_R12 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R12))); if (!cci->reg_skip[REG_R11 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R11))); if (!cci->reg_skip[REG_R10 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R10))); if (!cci->reg_skip[REG_R9 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R9))); if (!cci->reg_skip[REG_R8 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_R8))); if (!cci->reg_skip[REG_RAX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RAX))); if (!cci->reg_skip[REG_RCX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RCX))); if (!cci->reg_skip[REG_RDX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RDX))); if (!cci->reg_skip[REG_RBX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RBX))); /* we do NOT match pusha xsp value */ if (!cci->reg_skip[REG_RSP - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RSP))); if (!cci->reg_skip[REG_RBP - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RBP))); if (!cci->reg_skip[REG_RSI - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RSI))); if (!cci->reg_skip[REG_RDI - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_RDI))); dstack_offs += (NUM_GP_REGS - cci->num_regs_skip) * XSP_SZ; #else PRE(ilist, instr, INSTR_CREATE_pusha(dcontext)); dstack_offs += 8 * XSP_SZ; #endif ASSERT(cci->skip_save_flags || cci->num_simd_skip != 0 || cci->num_regs_skip != 0 || dstack_offs == (uint)get_clean_call_switch_stack_size()); return dstack_offs; } /* User should pass the alignment from insert_push_all_registers: i.e., the * alignment at the end of all the popping, not the alignment prior to * the popping. */ void insert_pop_all_registers(dcontext_t *dcontext, clean_call_info_t *cci, instrlist_t *ilist, instr_t *instr, uint alignment) { int offs_beyond_xmm = 0; if (cci == NULL) cci = &default_clean_call_info; #ifdef X64 /* in priv_mcontext_t order */ if (!cci->reg_skip[REG_RDI - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RDI))); if (!cci->reg_skip[REG_RSI - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RSI))); if (!cci->reg_skip[REG_RBP - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RBP))); /* skip xsp by popping into dead rbx */ if (!cci->reg_skip[REG_RSP - REG_XAX]) { ASSERT(!cci->reg_skip[REG_RBX - REG_XAX]); PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RBX))); } if (!cci->reg_skip[REG_RBX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RBX))); if (!cci->reg_skip[REG_RDX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RDX))); if (!cci->reg_skip[REG_RCX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RCX))); if (!cci->reg_skip[REG_RAX - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RAX))); if (!cci->reg_skip[REG_R8 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R8))); if (!cci->reg_skip[REG_R9 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R9))); if (!cci->reg_skip[REG_R10 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R10))); if (!cci->reg_skip[REG_R11 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R11))); if (!cci->reg_skip[REG_R12 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R12))); if (!cci->reg_skip[REG_R13 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R13))); if (!cci->reg_skip[REG_R14 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R14))); if (!cci->reg_skip[REG_R15 - REG_XAX]) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_R15))); #else PRE(ilist, instr, INSTR_CREATE_popa(dcontext)); #endif if (!cci->skip_save_flags) { PRE(ilist, instr, INSTR_CREATE_popf(dcontext)); offs_beyond_xmm = XSP_SZ; /* pc */; } else if (cci->preserve_mcontext) { offs_beyond_xmm = 2*XSP_SZ; /* aflags + pc */ } if (preserve_xmm_caller_saved()) { /* PR 264138: we must preserve xmm0-5 if on a 64-bit kernel */ int i; /* See discussion in emit_fcache_enter_shared on which opcode * is better. */ uint opcode = move_mm_reg_opcode(ALIGNED(alignment, 32), ALIGNED(alignment, 16)); ASSERT(proc_has_feature(FEATURE_SSE)); for (i=0; i<NUM_SIMD_SAVED; i++) { if (!cci->simd_skip[i]) { PRE(ilist, instr, instr_create_1dst_1src (dcontext, opcode, opnd_create_reg(REG_SAVED_XMM0 + (reg_id_t)i), opnd_create_base_disp(REG_XSP, REG_NULL, 0, PRE_XMM_PADDING + i*XMM_SAVED_REG_SIZE + offs_beyond_xmm, OPSZ_SAVED_XMM))); } } ASSERT(i*XMM_SAVED_REG_SIZE == XMM_SAVED_SIZE); ASSERT(XMM_SAVED_SIZE <= XMM_SLOTS_SIZE); } PRE(ilist, instr, INSTR_CREATE_lea (dcontext, opnd_create_reg(REG_XSP), OPND_CREATE_MEM_lea(REG_XSP, REG_NULL, 0, PRE_XMM_PADDING + XMM_SLOTS_SIZE + offs_beyond_xmm))); } reg_id_t shrink_reg_for_param(reg_id_t regular, opnd_t arg) { #ifdef X64 if (opnd_get_size(arg) == OPSZ_4) { /* we ignore var-sized */ /* PR 250976 #2: leave 64-bit only if an immed w/ top bit set (we * assume user wants sign-extension; that is after all what happens * on a push of a 32-bit immed) */ if (!opnd_is_immed_int(arg) || (opnd_get_immed_int(arg) & 0x80000000) == 0) return reg_64_to_32(regular); } #endif return regular; } /* Returns the change in the stack pointer. * N.B.: due to stack alignment and minimum stack reservation, do * not use parameters involving esp/rsp, as its value can change! * * This routine only supports passing arguments that are integers or * pointers of a size equal or smaller than the register size: i.e., no * floating-point, multimedia, or aggregate data types. * * For 64-bit mode, if a 32-bit immediate integer is specified as an * argument and it has its top bit set, we assume it is intended to be * sign-extended to 64-bits; otherwise we zero-extend it. * * For 64-bit mode, variable-sized argument operands may not work * properly. * * Arguments that reference REG_XSP will work for clean calls, but are not guaranteed * to work for non-clean, especially for 64-bit where we align, etc. Arguments that * reference sub-register portions of REG_XSP are not supported. * * XXX PR 307874: w/ a post optimization pass, or perhaps more clever use of * existing passes, we could do much better on calling convention and xsp conflicting * args. We should also really consider inlining client callees (PR 218907), since * clean calls for 64-bit are enormous (71 instrs/264 bytes for 2-arg x64; 26 * instrs/99 bytes for x86) and we could avoid all the xmm saves and replace pushf w/ * lahf. */ uint insert_parameter_preparation(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, bool clean_call, uint num_args, opnd_t *args) { uint i; int r; uint preparm_padding = 0; uint param_stack = 0, total_stack = 0; bool push = true; bool restore_xax = false; bool restore_xsp = false; /* we need two passes for PR 250976 optimization */ /* Push/mov in reverse order. We need a label so we can also add * instrs prior to the regular param prep. So params are POST-mark, while * pre-param-prep is POST-prev or PRE-mark. */ #ifdef X64 uint arg_pre_push = 0, total_pre_push = 0; #endif instr_t *prev = (instr == NULL) ? instrlist_last(ilist) : instr_get_prev(instr); instr_t *mark = INSTR_CREATE_label(dcontext); PRE(ilist, instr, mark); /* For a clean call, xax is dead (clobbered by prepare_for_clean_call()). * Rather than use as scratch and restore prior to each param that uses it, * we restore once up front if any use it, and use regparms[0] as scratch, * which is symmetric with non-clean-calls: regparms[0] is dead since we're * doing args in reverse order. However, we then can't use regparms[0] * directly if referenced in earlier params, but similarly for xax, so * there's no clear better way. (prepare_for_clean_call also clobbers xsp, * but we just disallow args that use it). */ ASSERT(num_args == 0 || args != NULL); /* We can get away w/ one pass, except for PR 250976 we want calling conv * regs to be able to refer to priv_mcontext_t as well as potentially being * pushed: but we need to know the total # pushes ahead of time (since hard * to mark for post-patching) */ for (i = 0; i < num_args; i++) { IF_X64(bool is_pre_push = false;) for (r = 0; r < opnd_num_regs_used(args[i]); r++) { reg_id_t used = opnd_get_reg_used(args[i], r); IF_X64(int parm;) LOG(THREAD, LOG_INTERP, 4, "ipp: considering arg %d reg %d == %s\n", i, r, reg_names[used]); if (clean_call && !restore_xax && reg_overlap(used, REG_XAX)) restore_xax = true; if (reg_overlap(used, REG_XSP)) { IF_X64(CLIENT_ASSERT(clean_call, "Non-clean-call argument: REG_XSP not supported")); CLIENT_ASSERT(used == REG_XSP, "Call argument: sub-reg-xsp not supported"); if (clean_call && /*x64*/parameters_stack_padded() && !restore_xsp) restore_xsp = true; } #ifdef X64 /* PR 250976 #A: count the number of pre-pushes we need */ parm = reg_parameter_num(used); /* We can read a register used in an earlier arg since we store that * arg later (we do reverse order), except arg0, which we use as * scratch (we don't always need it, but not worth another pre-pass * through all args to find out), and xsp. Otherwise, if a plain reg, * we point at mcontext (we restore xsp slot in mcontext if nec.). * If a mem ref, we need to pre-push onto stack. * N.B.: this conditional is duplicated in 2nd loop. */ if (!is_pre_push && ((parm == 0 && num_args > 1) || parm > (int)i || reg_overlap(used, REG_XSP)) && (!clean_call || !opnd_is_reg(args[i]))) { total_pre_push++; is_pre_push = true; /* ignore further regs in same arg */ } #endif } } if (parameters_stack_padded()) { /* For x64, supposed to reserve rsp space in function prologue; we * do next best thing and reserve it prior to setting up the args. */ push = false; /* store args to xsp offsets instead of pushing them */ total_stack = REGPARM_MINSTACK; if (num_args > NUM_REGPARM) total_stack += XSP_SZ * (num_args - NUM_REGPARM); param_stack = total_stack; IF_X64(total_stack += XSP_SZ * total_pre_push); /* We assume rsp is currently 16-byte aligned. End of arguments is supposed * to be 16-byte aligned for x64 SysV (note that retaddr will then make * rsp 8-byte-aligned, which is ok: callee has to rectify that). * For clean calls, prepare_for_clean_call leaves rsp aligned for x64. * XXX PR 218790: we require users of dr_insert_call to ensure * alignment; should we put in support to dynamically align? */ preparm_padding = ALIGN_FORWARD_UINT(total_stack, REGPARM_END_ALIGN) - total_stack; total_stack += preparm_padding; /* we have to wait to insert the xsp adjust */ } else { ASSERT(NUM_REGPARM == 0); ASSERT(push); IF_X64(ASSERT(total_pre_push == 0)); total_stack = XSP_SZ * num_args; } LOG(THREAD, LOG_INTERP, 3, "insert_parameter_preparation: %d args, %d in-reg, %d pre-push, %d/%d stack\n", num_args, NUM_REGPARM, IF_X64_ELSE(total_pre_push, 0), param_stack, total_stack); for (i = 0; i < num_args; i++) { /* FIXME PR 302951: we need to handle state restoration if any * of these args references app memory. We should pull the state from * the priv_mcontext_t on the stack if in a clean call. FIXME: what if not? */ opnd_t arg = args[i]; CLIENT_ASSERT(opnd_get_size(arg) == OPSZ_PTR || opnd_is_immed_int(arg) IF_X64(|| opnd_get_size(arg) == OPSZ_4), "Clean call arg has unsupported size"); #ifdef X64 /* PR 250976 #A: support args that reference param regs */ for (r = 0; r < opnd_num_regs_used(arg); r++) { reg_id_t used = opnd_get_reg_used(arg, r); int parm = reg_parameter_num(used); /* See comments in loop above */ if ((parm == 0 && num_args > 1) || parm > (int)i || reg_overlap(used, REG_XSP)) { int disp = 0; if (clean_call && opnd_is_reg(arg)) { /* We can point at the priv_mcontext_t slot. * priv_mcontext_t is at the base of dstack: compute offset * from xsp to the field we want and replace arg. */ disp += opnd_get_reg_dcontext_offs(opnd_get_reg(arg)); /* skip rest of what prepare_for_clean_call adds */ disp += clean_call_beyond_mcontext(); /* skip what this routine added */ disp += total_stack; } else { /* Push a temp on the stack and point at it. We * could try to optimize by juggling registers, but * not worth it. */ /* xsp was adjusted up above; we simply store to xsp offsets */ disp = param_stack + XSP_SZ * arg_pre_push; if (opnd_is_reg(arg) && opnd_get_size(arg) == OPSZ_PTR) { POST(ilist, prev, INSTR_CREATE_mov_st (dcontext, OPND_CREATE_MEMPTR(REG_XSP, disp), arg)); } else { reg_id_t xsp_scratch = regparms[0]; /* don't want to just change size since will read extra bytes. * can't do mem-to-mem so go through scratch reg */ if (reg_overlap(used, REG_XSP)) { /* Get original xsp into scratch[0] and replace in arg */ if (opnd_uses_reg(arg, regparms[0])) { xsp_scratch = REG_XAX; ASSERT(!opnd_uses_reg(arg, REG_XAX)); /* can't use 3 */ /* FIXME: rather than putting xsp into mcontext * slot, better to just do local get from dcontext * like we do for 32-bit below? */ POST(ilist, prev, instr_create_restore_from_tls (dcontext, REG_XAX, TLS_XAX_SLOT)); } opnd_replace_reg(&arg, REG_XSP, xsp_scratch); } POST(ilist, prev, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEMPTR(REG_XSP, disp), opnd_create_reg(regparms[0]))); /* If sub-ptr-size, zero-extend is what we want so no movsxd */ POST(ilist, prev, INSTR_CREATE_mov_ld (dcontext, opnd_create_reg (shrink_reg_for_param(regparms[0], arg)), arg)); if (reg_overlap(used, REG_XSP)) { int xsp_disp = opnd_get_reg_dcontext_offs(REG_XSP) + clean_call_beyond_mcontext() + total_stack; POST(ilist, prev, INSTR_CREATE_mov_ld (dcontext, opnd_create_reg(xsp_scratch), OPND_CREATE_MEMPTR(REG_XSP, xsp_disp))); if (xsp_scratch == REG_XAX) { POST(ilist, prev, instr_create_save_to_tls (dcontext, REG_XAX, TLS_XAX_SLOT)); } } if (opnd_uses_reg(arg, regparms[0])) { /* must restore since earlier arg might have clobbered */ int mc_disp = opnd_get_reg_dcontext_offs(regparms[0]) + clean_call_beyond_mcontext() + total_stack; POST(ilist, prev, INSTR_CREATE_mov_ld (dcontext, opnd_create_reg(regparms[0]), OPND_CREATE_MEMPTR(REG_XSP, mc_disp))); } } arg_pre_push++; /* running counter */ } arg = opnd_create_base_disp(REG_XSP, REG_NULL, 0, disp, opnd_get_size(arg)); break; /* once we've handled arg ignore futher reg refs */ } } #endif if (i < NUM_REGPARM) { reg_id_t regparm = shrink_reg_for_param(regparms[i], arg); if (opnd_is_immed_int(arg) || opnd_is_instr(arg)) { POST(ilist, mark, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(regparm), arg)); } else { POST(ilist, mark, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(regparm), arg)); } } else { if (push) { IF_X64(ASSERT_NOT_REACHED()); /* no 64-bit push_imm! */ if (opnd_is_immed_int(arg) || opnd_is_instr(arg)) POST(ilist, mark, INSTR_CREATE_push_imm(dcontext, arg)); else { if (clean_call && opnd_uses_reg(arg, REG_XSP)) { /* We do a purely local expansion: * spill eax, mc->eax, esp->eax, arg->eax, push eax, restore eax */ reg_id_t scratch = REG_XAX; if (opnd_uses_reg(arg, scratch)) { scratch = REG_XCX; ASSERT(!opnd_uses_reg(arg, scratch)); /* can't use 3 regs */ } opnd_replace_reg(&arg, REG_XSP, scratch); POST(ilist, mark, instr_create_restore_from_tls (dcontext, scratch, TLS_XAX_SLOT)); POST(ilist, mark, INSTR_CREATE_push(dcontext, arg)); POST(ilist, mark, instr_create_restore_from_dc_via_reg (dcontext, scratch, scratch, XSP_OFFSET)); insert_get_mcontext_base (dcontext, ilist, instr_get_next(mark), scratch); POST(ilist, mark, instr_create_save_to_tls (dcontext, scratch, TLS_XAX_SLOT)); } else POST(ilist, mark, INSTR_CREATE_push(dcontext, arg)); } } else { /* xsp was adjusted up above; we simply store to xsp offsets */ uint offs = REGPARM_MINSTACK + XSP_SZ * (i - NUM_REGPARM); #ifdef X64 if (opnd_is_immed_int(arg) || opnd_is_instr(arg)) { /* PR 250976 #3: there is no memory store of 64-bit-immediate, * so go through scratch reg */ ASSERT(NUM_REGPARM > 0); POST(ilist, mark, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEMPTR(REG_XSP, offs), opnd_create_reg(regparms[0]))); POST(ilist, mark, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(regparms[0]), arg)); } else { #endif if (opnd_is_memory_reference(arg)) { /* can't do mem-to-mem so go through scratch */ reg_id_t scratch; if (NUM_REGPARM > 0) scratch = regparms[0]; else { /* This happens on Mac. * FIXME i#1370: not safe if later arg uses xax: * local spill? Review how regparms[0] is preserved. */ scratch = REG_XAX; } POST(ilist, mark, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEMPTR(REG_XSP, offs), opnd_create_reg(scratch))); POST(ilist, mark, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg (shrink_reg_for_param(scratch, arg)), arg)); } else { POST(ilist, mark, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEMPTR(REG_XSP, offs), arg)); } #ifdef X64 } #endif } } } if (!push && total_stack > 0) { POST(ilist, prev, /* before everything else: pre-push and args */ /* can we use sub? may as well preserve eflags */ INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), OPND_CREATE_MEM_lea(REG_XSP, REG_NULL, 0, -(int)total_stack))); } if (restore_xsp) { /* before restore_xax, since we're going to clobber xax */ int disp = opnd_get_reg_dcontext_offs(REG_XSP); instr_t *where = instr_get_next(prev); /* skip rest of what prepare_for_clean_call adds */ disp += clean_call_beyond_mcontext(); insert_get_mcontext_base(dcontext, ilist, where, REG_XAX); PRE(ilist, where, instr_create_restore_from_dc_via_reg (dcontext, REG_XAX, REG_XAX, XSP_OFFSET)); PRE(ilist, where, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEMPTR(REG_XSP, disp), opnd_create_reg(REG_XAX))); /* now we need restore_xax to be AFTER this */ prev = instr_get_prev(where); } if (restore_xax) { int disp = opnd_get_reg_dcontext_offs(REG_XAX); /* skip rest of what prepare_for_clean_call adds */ disp += clean_call_beyond_mcontext(); POST(ilist, prev, /* before everything else: pre-push, args, and stack adjust */ INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(REG_XAX), OPND_CREATE_MEMPTR(REG_XSP, disp))); } return total_stack; } /* If jmp_instr == NULL, uses jmp_tag, otherwise uses jmp_instr */ void insert_clean_call_with_arg_jmp_if_ret_true(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, void *callee, int arg, app_pc jmp_tag, instr_t *jmp_instr) { instr_t *false_popa, *jcc; prepare_for_clean_call(dcontext, NULL, ilist, instr); dr_insert_call(dcontext, ilist, instr, callee, 1, OPND_CREATE_INT32(arg)); /* if the return value (xax) is 0, then jmp to internal false path */ PRE(ilist,instr, /* can't cmp w/ 64-bit immed so use test (shorter anyway) */ INSTR_CREATE_test(dcontext, opnd_create_reg(REG_XAX), opnd_create_reg(REG_XAX))); /* fill in jcc target once have false path */ jcc = INSTR_CREATE_jcc(dcontext, OP_jz, opnd_create_pc(NULL)); PRE(ilist, instr, jcc); /* if it falls through, then it's true, so restore and jmp to true tag * passed in by caller */ cleanup_after_clean_call(dcontext, NULL, ilist, instr); if (jmp_instr == NULL) { /* an exit cti, not a meta instr */ instrlist_preinsert (ilist, instr, INSTR_CREATE_jmp(dcontext, opnd_create_pc(jmp_tag))); } else { PRE(ilist, instr, INSTR_CREATE_jmp(dcontext, opnd_create_instr(jmp_instr))); } /* otherwise (if returned false), just do standard popf and continue */ /* get 1st instr of cleanup path */ false_popa = instr_get_prev(instr); cleanup_after_clean_call(dcontext, NULL, ilist, instr); false_popa = instr_get_next(false_popa); instr_set_target(jcc, opnd_create_instr(false_popa)); } /* If !precise, encode_pc is treated as +- a page (meant for clients * writing an instrlist to gencode so not sure of exact placement but * within a page). * If encode_pc == vmcode_get_start(), checks reachability of whole * vmcode region (meant for code going somewhere not precisely known * in the code cache). * Returns whether ended up using a direct cti. If inlined_tgt_instr != NULL, * and an inlined target was used, returns a pointer to that instruction * in *inlined_tgt_instr. */ bool insert_reachable_cti(dcontext_t *dcontext, instrlist_t *ilist, instr_t *where, byte *encode_pc, byte *target, bool jmp, bool returns, bool precise, reg_id_t scratch, instr_t **inlined_tgt_instr) { byte *encode_start; byte *encode_end; if (precise) { encode_start = target + JMP_LONG_LENGTH; encode_end = encode_start; } else if (encode_pc == vmcode_get_start()) { /* consider whole vmcode region */ encode_start = encode_pc; encode_end = vmcode_get_end(); } else { encode_start = (byte *) PAGE_START(encode_pc - PAGE_SIZE); encode_end = (byte *) ALIGN_FORWARD(encode_pc + PAGE_SIZE, PAGE_SIZE); } if (REL32_REACHABLE(encode_start, target) && REL32_REACHABLE(encode_end, target)) { /* For precise, we could consider a short cti, but so far no * users are precise so we'll leave that for i#56. */ if (jmp) PRE(ilist, where, INSTR_CREATE_jmp(dcontext, opnd_create_pc(target))); else PRE(ilist, where, INSTR_CREATE_call(dcontext, opnd_create_pc(target))); return true; } else { opnd_t ind_tgt; instr_t *inlined_tgt = NULL; if (scratch == DR_REG_NULL) { /* indirect through an inlined target */ inlined_tgt = instr_build_bits(dcontext, OP_UNDECODED, sizeof(target)); /* XXX: could use mov imm->xax and have target skip rex+opcode * for clean disassembly */ instr_set_raw_bytes(inlined_tgt, (byte *) &target, sizeof(target)); /* this will copy the bytes for us, so we don't have to worry about * the lifetime of the target param */ instr_allocate_raw_bits(dcontext, inlined_tgt, sizeof(target)); ind_tgt = opnd_create_mem_instr(inlined_tgt, 0, OPSZ_PTR); if (inlined_tgt_instr != NULL) *inlined_tgt_instr = inlined_tgt; } else { PRE(ilist, where, INSTR_CREATE_mov_imm (dcontext, opnd_create_reg(scratch), OPND_CREATE_INTPTR(target))); ind_tgt = opnd_create_reg(scratch); if (inlined_tgt_instr != NULL) *inlined_tgt_instr = NULL; } if (jmp) PRE(ilist, where, INSTR_CREATE_jmp_ind(dcontext, ind_tgt)); else PRE(ilist, where, INSTR_CREATE_call_ind(dcontext, ind_tgt)); if (inlined_tgt != NULL) PRE(ilist, where, inlined_tgt); return false; } } /*########################################################################### *########################################################################### * * M A N G L I N G R O U T I N E S */ /* If src_inst != NULL, uses it (and assumes it will be encoded at * encode_estimate to determine whether > 32 bits or not: so if unsure where * it will be encoded, pass a high address) as the immediate; else * uses val. */ void insert_mov_immed_arch(dcontext_t *dcontext, instr_t *src_inst, byte *encode_estimate, ptr_int_t val, opnd_t dst, instrlist_t *ilist, instr_t *instr, OUT instr_t **first, OUT instr_t **last) { instr_t *mov1, *mov2; if (src_inst != NULL) val = (ptr_int_t) encode_estimate; #ifdef X64 if (X64_MODE_DC(dcontext) && !opnd_is_reg(dst)) { if (val <= INT_MAX && val >= INT_MIN) { /* mov is sign-extended, so we can use one move if it is all * 0 or 1 in top 33 bits */ mov1 = INSTR_CREATE_mov_imm(dcontext, dst, (src_inst == NULL) ? OPND_CREATE_INT32((int)val) : opnd_create_instr_ex(src_inst, OPSZ_4, 0)); PRE(ilist, instr, mov1); mov2 = NULL; } else { /* do mov-64-bit-immed in two pieces. tiny corner-case risk of racy * access to [dst] if this thread is suspended in between or another * thread is trying to read [dst], but o/w we have to spill and * restore a register. */ CLIENT_ASSERT(opnd_is_memory_reference(dst), "invalid dst opnd"); /* mov low32 => [mem32] */ opnd_set_size(&dst, OPSZ_4); mov1 = INSTR_CREATE_mov_st(dcontext, dst, (src_inst == NULL) ? OPND_CREATE_INT32((int)val) : opnd_create_instr_ex(src_inst, OPSZ_4, 0)); PRE(ilist, instr, mov1); /* mov high32 => [mem32+4] */ if (opnd_is_base_disp(dst)) { int disp = opnd_get_disp(dst); CLIENT_ASSERT(disp + 4 > disp, "disp overflow"); opnd_set_disp(&dst, disp+4); } else { byte *addr = opnd_get_addr(dst); CLIENT_ASSERT(!POINTER_OVERFLOW_ON_ADD(addr, 4), "addr overflow"); dst = OPND_CREATE_ABSMEM(addr+4, OPSZ_4); } mov2 = INSTR_CREATE_mov_st(dcontext, dst, (src_inst == NULL) ? OPND_CREATE_INT32((int)(val >> 32)) : opnd_create_instr_ex(src_inst, OPSZ_4, 32)); PRE(ilist, instr, mov2); } } else { #endif mov1 = INSTR_CREATE_mov_imm(dcontext, dst, (src_inst == NULL) ? OPND_CREATE_INTPTR(val) : opnd_create_instr_ex(src_inst, OPSZ_4, 0)); PRE(ilist, instr, mov1); mov2 = NULL; #ifdef X64 } #endif if (first != NULL) *first = mov1; if (last != NULL) *last = mov2; } /* If src_inst != NULL, uses it (and assumes it will be encoded at * encode_estimate to determine whether > 32 bits or not: so if unsure where * it will be encoded, pass a high address) as the immediate; else * uses val. */ void insert_push_immed_arch(dcontext_t *dcontext, instr_t *src_inst, byte *encode_estimate, ptr_int_t val, instrlist_t *ilist, instr_t *instr, OUT instr_t **first, OUT instr_t **last) { instr_t *push, *mov; if (src_inst != NULL) val = (ptr_int_t) encode_estimate; #ifdef X64 if (X64_MODE_DC(dcontext)) { /* do push-64-bit-immed in two pieces. tiny corner-case risk of racy * access to TOS if this thread is suspended in between or another * thread is trying to read its stack, but o/w we have to spill and * restore a register. */ push = INSTR_CREATE_push_imm(dcontext, (src_inst == NULL) ? OPND_CREATE_INT32((int)val) : opnd_create_instr_ex(src_inst, OPSZ_4, 0)); PRE(ilist, instr, push); /* push is sign-extended, so we can skip top half if it is all 0 or 1 * in top 33 bits */ if (val <= INT_MAX && val >= INT_MIN) { mov = NULL; } else { mov = INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, 4), (src_inst == NULL) ? OPND_CREATE_INT32((int)(val >> 32)) : opnd_create_instr_ex(src_inst, OPSZ_4, 32)); PRE(ilist, instr, mov); } } else { #endif push = INSTR_CREATE_push_imm(dcontext, (src_inst == NULL) ? OPND_CREATE_INT32(val) : opnd_create_instr_ex(src_inst, OPSZ_4, 0)); PRE(ilist, instr, push); mov = NULL; #ifdef X64 } #endif if (first != NULL) *first = push; if (last != NULL) *last = mov; } /* Far calls and rets have double total size */ static opnd_size_t stack_entry_size(instr_t *instr, opnd_size_t opsize) { if (instr_get_opcode(instr) == OP_call_far || instr_get_opcode(instr) == OP_call_far_ind || instr_get_opcode(instr) == OP_ret_far) { /* cut OPSZ_8_rex16_short4 in half */ if (opsize == OPSZ_4) return OPSZ_2; else if (opsize == OPSZ_8) return OPSZ_4; else { #ifdef X64 ASSERT(opsize == OPSZ_16); return OPSZ_8; #else ASSERT_NOT_REACHED(); #endif } } else if (instr_get_opcode(instr) == OP_iret) { /* convert OPSZ_12_rex40_short6 */ if (opsize == OPSZ_6) return OPSZ_2; else if (opsize == OPSZ_12) return OPSZ_4; else { #ifdef X64 ASSERT(opsize == OPSZ_40); return OPSZ_8; #else ASSERT_NOT_REACHED(); #endif } } return opsize; } /* Used for fault translation */ bool instr_check_xsp_mangling(dcontext_t *dcontext, instr_t *inst, int *xsp_adjust) { ASSERT(xsp_adjust != NULL); if (instr_get_opcode(inst) == OP_push || instr_get_opcode(inst) == OP_push_imm) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: push or push_imm\n"); *xsp_adjust -= opnd_size_in_bytes(opnd_get_size(instr_get_dst(inst, 1))); } else if (instr_get_opcode(inst) == OP_pop) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: pop\n"); *xsp_adjust += opnd_size_in_bytes(opnd_get_size(instr_get_src(inst, 1))); } /* 1st part of push emulation from insert_push_retaddr */ else if (instr_get_opcode(inst) == OP_lea && opnd_get_reg(instr_get_dst(inst, 0)) == REG_XSP && opnd_get_base(instr_get_src(inst, 0)) == REG_XSP && opnd_get_index(instr_get_src(inst, 0)) == REG_NULL) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: lea xsp adjust\n"); *xsp_adjust += opnd_get_disp(instr_get_src(inst, 0)); } /* 2nd part of push emulation from insert_push_retaddr */ else if (instr_get_opcode(inst) == OP_mov_st && opnd_is_base_disp(instr_get_dst(inst, 0)) && opnd_get_base(instr_get_dst(inst, 0)) == REG_XSP && opnd_get_index(instr_get_dst(inst, 0)) == REG_NULL) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: store to stack\n"); /* nothing to track: paired lea is what we undo */ } /* retrieval of target for call* or jmp* */ else if ((instr_get_opcode(inst) == OP_movzx && reg_overlap(opnd_get_reg(instr_get_dst(inst, 0)), REG_XCX)) || (instr_get_opcode(inst) == OP_mov_ld && reg_overlap(opnd_get_reg(instr_get_dst(inst, 0)), REG_XCX))) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: ib tgt to *cx\n"); /* nothing: our xcx spill restore will undo */ } /* part of pop emulation for iretd/lretd in x64 mode */ else if (instr_get_opcode(inst) == OP_mov_ld && opnd_is_base_disp(instr_get_src(inst, 0)) && opnd_get_base(instr_get_src(inst, 0)) == REG_XSP && opnd_get_index(instr_get_src(inst, 0)) == REG_NULL) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: load from stack\n"); /* nothing to track: paired lea is what we undo */ } /* part of data16 ret. once we have cs preservation (PR 271317) we'll * need to not fail when walking over a movzx to a pop cs (right now we * do not read the stack for the pop cs). */ else if (instr_get_opcode(inst) == OP_movzx && opnd_get_reg(instr_get_dst(inst, 0)) == REG_CX) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: movzx to cx\n"); /* nothing: our xcx spill restore will undo */ } /* fake pop of cs for iret */ else if (instr_get_opcode(inst) == OP_add && opnd_is_reg(instr_get_dst(inst, 0)) && opnd_get_reg(instr_get_dst(inst, 0)) == REG_XSP && opnd_is_immed_int(instr_get_src(inst, 0))) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: add to xsp\n"); ASSERT(CHECK_TRUNCATE_TYPE_int(opnd_get_immed_int(instr_get_src(inst, 0)))); *xsp_adjust += (int) opnd_get_immed_int(instr_get_src(inst, 0)); } /* popf for iret */ else if (instr_get_opcode(inst) == OP_popf) { LOG(THREAD_GET, LOG_INTERP, 4, "\tstate track: popf\n"); *xsp_adjust += opnd_size_in_bytes(opnd_get_size(instr_get_src(inst, 1))); } else { return false; } return true; } /* N.B.: keep in synch with instr_check_xsp_mangling() */ void insert_push_retaddr(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, ptr_int_t retaddr, opnd_size_t opsize) { if (opsize == OPSZ_2) { ptr_int_t val = retaddr & (ptr_int_t) 0x0000ffff; /* can't do a non-default operand size with a push immed so we emulate */ PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp(REG_XSP, REG_NULL, 0, -2, OPSZ_lea))); PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM16(REG_XSP, 2), OPND_CREATE_INT16(val))); } else if (opsize == OPSZ_PTR IF_X64(|| (!X64_CACHE_MODE_DC(dcontext) && opsize == OPSZ_4))) { insert_push_immed_ptrsz(dcontext, retaddr, ilist, instr, NULL, NULL); } else { #ifdef X64 ptr_int_t val = retaddr & (ptr_int_t) 0xffffffff; ASSERT(opsize == OPSZ_4); /* can't do a non-default operand size with a push immed so we emulate */ PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp(REG_XSP, REG_NULL, 0, -4, OPSZ_lea))); PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, 0), OPND_CREATE_INT32((int)val))); #else ASSERT_NOT_REACHED(); #endif } } #ifdef CLIENT_INTERFACE /* N.B.: keep in synch with instr_check_xsp_mangling() */ static void insert_mov_ptr_uint_beyond_TOS(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, ptr_int_t value, opnd_size_t opsize) { /* we insert non-meta b/c we want faults to go to app (should only fault * if the ret itself faulted, barring races) for simplicity: o/w our * our-mangling sequence gets broken up and more complex. */ if (opsize == OPSZ_2) { ptr_int_t val = value & (ptr_int_t) 0x0000ffff; PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM16(REG_XSP, -2), OPND_CREATE_INT16(val))); } else if (opsize == OPSZ_4) { ptr_int_t val = value & (ptr_int_t) 0xffffffff; PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, -4), OPND_CREATE_INT32(val))); } else { # ifdef X64 ptr_int_t val_low = value & (ptr_int_t) 0xffffffff; ASSERT(opsize == OPSZ_8); if (CHECK_TRUNCATE_TYPE_int(value)) { /* prefer a single write w/ sign-extension */ PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM64(REG_XSP, -8), OPND_CREATE_INT32(val_low))); } else { /* we need two 32-bit writes */ ptr_int_t val_high = (value >> 32); PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, -8), OPND_CREATE_INT32(val_low))); PRE(ilist, instr, INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, -4), OPND_CREATE_INT32(val_high))); } # else ASSERT_NOT_REACHED(); # endif } } #endif /* CLIENT_INTERFACE */ static void insert_push_cs(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, ptr_int_t retaddr, opnd_size_t opsize) { #ifdef X64 if (X64_CACHE_MODE_DC(dcontext)) { /* "push cs" is invalid; for now we push the typical cs values. * i#823 covers doing this more generally. */ insert_push_retaddr(dcontext, ilist, instr, X64_MODE_DC(dcontext) ? CS64_SELECTOR : CS32_SELECTOR, opsize); } else { #endif opnd_t stackop; /* we go ahead and push cs, but we won't pop into cs */ instr_t *push = INSTR_CREATE_push(dcontext, opnd_create_reg(SEG_CS)); /* 2nd dest is the stack operand size */ stackop = instr_get_dst(push, 1); opnd_set_size(&stackop, opsize); instr_set_dst(push, 1, stackop); PRE(ilist, instr, push); #ifdef X64 } #endif } /* We spill to XCX(private dcontext) slot for private fragments, * and to TLS MANGLE_XCX_SPILL_SLOT for shared fragments. * (Except for DYNAMO_OPTION(private_ib_in_tls), for which all use tls, * but that has a performance hit because of the extra data cache line) * We can get away with the split by having the shared ibl routine copy * xcx to the private dcontext, and by having the private ibl never * target shared fragments. * We also have to modify the xcx spill from tls to private dcontext when * adding a shared basic block to a trace. * * FIXME: if we do make non-trace-head basic blocks valid indirect branch * targets, we should have the private ibl have special code to test the * flags and copy xcx to the tls slot if necessary. */ #define SAVE_TO_DC_OR_TLS(dc, flags, reg, tls_offs, dc_offs) \ ((DYNAMO_OPTION(private_ib_in_tls) || TEST(FRAG_SHARED, (flags))) ? \ instr_create_save_to_tls(dc, reg, tls_offs) : \ instr_create_save_to_dcontext((dc), (reg), (dc_offs))) #define SAVE_TO_DC_OR_TLS_OR_REG(dc, flags, reg, tls_offs, dc_offs, dest_reg) \ ((X64_CACHE_MODE_DC(dc) && !X64_MODE_DC(dc) \ IF_X64(&& DYNAMO_OPTION(x86_to_x64_ibl_opt))) ? \ INSTR_CREATE_mov_ld(dc, opnd_create_reg(dest_reg), opnd_create_reg(reg)) : \ SAVE_TO_DC_OR_TLS(dc, flags, reg, tls_offs, dc_offs)) #define RESTORE_FROM_DC_OR_TLS(dc, flags, reg, tls_offs, dc_offs) \ ((DYNAMO_OPTION(private_ib_in_tls) || TEST(FRAG_SHARED, (flags))) ? \ instr_create_restore_from_tls(dc, reg, tls_offs) : \ instr_create_restore_from_dcontext((dc), (reg), (dc_offs))) static void mangle_far_direct_helper(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint flags) { /* FIXME i#823: we do not support other than flat 0-based CS, DS, SS, and ES. * If the app wants to change segments in a WOW64 process, we will * do the right thing for standard cs selector values (xref i#49). * For other cs changes or in other modes, we do go through far_ibl * today although we do not enact the cs change (nor bother to pass * the selector in xbx). * * For WOW64, I tried keeping this a direct jmp for nice linking by doing the * mode change in-fragment and then using a 64-bit stub with a 32-bit fragment, * but that gets messy b/c a lot of code assumes it can create or calculate the * size of exit stubs given nothing but the fragment flags. I tried adding * FRAG_ENDS_IN_FAR_DIRECT but still need to pass another param to all the stub * macros and routines for mid-trace exits and for prefixes for -disable_traces. * So, going for treating as indirect and using the far_ibl. It's a trace * barrier anyway, and rare. We treat it as indirect in all modes (including * x86 builds) for simplicity (and eventually for full i#823 we'll want * to issue cs changes there too). */ app_pc pc = opnd_get_pc(instr_get_target(instr)); #ifdef X64 if (!X64_MODE_DC(dcontext) && opnd_get_segment_selector(instr_get_target(instr)) == CS64_SELECTOR) { PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XBX, MANGLE_FAR_SPILL_SLOT, XBX_OFFSET, REG_R10)); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_EBX), OPND_CREATE_INT32(CS64_SELECTOR))); } #endif PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XCX, MANGLE_XCX_SPILL_SLOT, XCX_OFFSET, REG_R9)); ASSERT((ptr_uint_t)pc < UINT_MAX); /* 32-bit code! */ PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_ECX), OPND_CREATE_INT32((ptr_uint_t)pc))); } /*************************************************************************** * DIRECT CALL * Returns new next_instr */ instr_t * mangle_direct_call(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, bool mangle_calls, uint flags) { ptr_uint_t retaddr; app_pc target = NULL; opnd_t pushop = instr_get_dst(instr, 1); opnd_size_t pushsz = stack_entry_size(instr, opnd_get_size(pushop)); if (opnd_is_near_pc(instr_get_target(instr))) target = opnd_get_pc(instr_get_target(instr)); else if (opnd_is_instr(instr_get_target(instr))) { instr_t *tgt = opnd_get_instr(instr_get_target(instr)); /* assumption: target's raw bits are meaningful */ target = instr_get_raw_bits(tgt); ASSERT(target != 0); /* FIXME case 6962: for far instr, we ignore the segment and * assume it matches current cs */ } else if (opnd_is_far_pc(instr_get_target(instr))) { target = opnd_get_pc(instr_get_target(instr)); /* FIXME case 6962: we ignore the segment and assume it matches current cs */ } else ASSERT_NOT_REACHED(); if (!mangle_calls) { /* off-trace call that will be executed natively */ /* relative target must be re-encoded */ instr_set_raw_bits_valid(instr, false); #ifdef STEAL_REGISTER /* FIXME: need to push edi prior to call and pop after. * However, need to push edi prior to any args to this call, * and it may be hard to find pre-arg-pushing spot... * edi is supposed to be callee-saved, we're trusting this * off-trace call to return, we may as well trust it to * not trash edi -- these no-inline calls are dynamo's * own routines, after all. */ #endif return next_instr; } retaddr = get_call_return_address(dcontext, ilist, instr); #ifdef CHECK_RETURNS_SSE2 /* ASSUMPTION: a call to the next instr is not going to ever have a * matching ret! */ if (target == (app_pc)retaddr) { LOG(THREAD, LOG_INTERP, 3, "found call to next instruction "PFX"\n", target); } else { check_return_handle_call(dcontext, ilist, next_instr); } /* now do the normal thing for a call */ #endif if (instr_get_opcode(instr) == OP_call_far) { /* N.B.: we do not support other than flat 0-based CS, DS, SS, and ES. * if the app wants to change segments, we won't actually issue * a segment change, and so will only work properly if the new segment * is also 0-based. To properly issue new segments, we'd need a special * ibl that ends in a far cti, and all prior address manipulations would * need to be relative to the new segment, w/o messing up current segment. * FIXME: can we do better without too much work? * XXX: yes, for wow64: i#823: TODO mangle this like a far direct jmp */ SYSLOG_INTERNAL_WARNING_ONCE("Encountered a far direct call"); STATS_INC(num_far_dir_calls); mangle_far_direct_helper(dcontext, ilist, instr, next_instr, flags); insert_push_cs(dcontext, ilist, instr, 0, pushsz); } /* convert a direct call to a push of the return address */ insert_push_retaddr(dcontext, ilist, instr, retaddr, pushsz); /* remove the call */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); return next_instr; } #ifdef UNIX /*************************************************************************** * Mangle the memory reference operand that uses fs/gs semgents, * get the segment base of fs/gs into reg, and * replace oldop with newop using reg instead of fs/gs * The reg must not be used in the oldop, otherwise, the reg value * is corrupted. */ opnd_t mangle_seg_ref_opnd(dcontext_t *dcontext, instrlist_t *ilist, instr_t *where, opnd_t oldop, reg_id_t reg) { opnd_t newop; reg_id_t seg; ASSERT(opnd_is_far_base_disp(oldop)); seg = opnd_get_segment(oldop); /* we only mangle fs/gs */ if (seg != SEG_GS && seg != SEG_FS) return oldop; #ifdef CLIENT_INTERFACE if (seg == LIB_SEG_TLS && !INTERNAL_OPTION(private_loader)) return oldop; #endif /* The reg should not be used by the oldop */ ASSERT(!opnd_uses_reg(oldop, reg)); /* XXX: this mangling is pattern-matched in translation's instr_is_seg_ref_load() */ /* get app's segment base into reg. */ PRE(ilist, where, instr_create_restore_from_tls(dcontext, reg, os_get_app_tls_base_offset(seg))); if (opnd_get_index(oldop) != REG_NULL && opnd_get_base(oldop) != REG_NULL) { /* if both base and index are used, use * lea [base, reg, 1] => reg * to get the base + seg_base into reg. */ PRE(ilist, where, INSTR_CREATE_lea(dcontext, opnd_create_reg(reg), opnd_create_base_disp(opnd_get_base(oldop), reg, 1, 0, OPSZ_lea))); } if (opnd_get_index(oldop) != REG_NULL) { newop = opnd_create_base_disp(reg, opnd_get_index(oldop), opnd_get_scale(oldop), opnd_get_disp(oldop), opnd_get_size(oldop)); } else { newop = opnd_create_base_disp(opnd_get_base(oldop), reg, 1, opnd_get_disp(oldop), opnd_get_size(oldop)); } return newop; } #endif /* UNIX */ /*************************************************************************** * INDIRECT CALL */ static reg_id_t mangle_far_indirect_helper(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint flags, opnd_t *target_out) { opnd_t target = *target_out; opnd_size_t addr_size; reg_id_t reg_target = REG_NULL; ASSERT(instr_get_opcode(instr) == OP_jmp_far_ind || instr_get_opcode(instr) == OP_call_far_ind); /* FIXME i#823: we do not support other than flat 0-based CS, DS, SS, and ES. * If the app wants to change segments in a WOW64 process, we will * do the right thing for standard cs selector values (xref i#49). * For other cs changes or in other modes, we do go through far_ibl * today although we do not enact the cs change (nor bother to pass * the selector in xbx). */ /* opnd type is i_Ep, it's not a far base disp b/c segment is at * memory location, not specified as segment prefix on instr * we assume register operands are marked as invalid instrs long * before this point. */ ASSERT(opnd_is_base_disp(target)); /* Segment selector is the final 2 bytes. * For non-mixed-mode, we ignore it. * We assume DS base == target cti CS base. */ /* if data16 then just 2 bytes for address * if x64 mode and Intel and rex then 8 bytes for address */ ASSERT((X64_MODE_DC(dcontext) && opnd_get_size(target) == OPSZ_10 && proc_get_vendor() != VENDOR_AMD) || opnd_get_size(target) == OPSZ_6 || opnd_get_size(target) == OPSZ_4); if (opnd_get_size(target) == OPSZ_10) { addr_size = OPSZ_8; reg_target = REG_RCX; } else if (opnd_get_size(target) == OPSZ_6) { addr_size = OPSZ_4; reg_target = REG_ECX; } else /* target has OPSZ_4 */ { addr_size = OPSZ_2; reg_target = REG_XCX; /* caller uses movzx so size doesn't have to match */ } #ifdef X64 if (mixed_mode_enabled()) { /* While we don't support arbitrary segments, we do support * mode changes using standard cs selector values (i#823). * We save the selector into xbx. */ opnd_t sel = target; opnd_set_disp(&sel, opnd_get_disp(target) + opnd_size_in_bytes(addr_size)); opnd_set_size(&sel, OPSZ_2); /* all scratch space should be in TLS only */ ASSERT(TEST(FRAG_SHARED, flags) || DYNAMO_OPTION(private_ib_in_tls)); PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XBX, MANGLE_FAR_SPILL_SLOT, XBX_OFFSET, REG_R10)); PRE(ilist, instr, INSTR_CREATE_movzx(dcontext, opnd_create_reg(REG_EBX), sel)); if (instr_uses_reg(instr, REG_XBX)) { /* instr can't be both riprel (uses xax slot for mangling) and use * a register, so we spill to the riprel (== xax) slot */ PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, flags, REG_XBX, MANGLE_RIPREL_SPILL_SLOT, XAX_OFFSET)); POST(ilist, instr, instr_create_restore_from_tls(dcontext, REG_XBX, MANGLE_RIPREL_SPILL_SLOT)); } } #endif opnd_set_size(target_out, addr_size); return reg_target; } instr_t * mangle_indirect_call(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, bool mangle_calls, uint flags) { opnd_t target; ptr_uint_t retaddr; opnd_t pushop = instr_get_dst(instr, 1); opnd_size_t pushsz = stack_entry_size(instr, opnd_get_size(pushop)); reg_id_t reg_target = REG_XCX; if (!mangle_calls) return next_instr; retaddr = get_call_return_address(dcontext, ilist, instr); /* Convert near, indirect calls. The jump to the exit_stub that * jumps to indirect_branch_lookup was already inserted into the * instr list by interp EXCEPT for the case in which we're converting * an indirect call to a direct call. In that case, mangle later * inserts a direct exit stub. */ /* If this call is marked for conversion, do minimal processing. * FIXME Just a note that converted calls are not subjected to any of * the specialized builds' processing further down. */ if (TEST(INSTR_IND_CALL_DIRECT, instr->flags)) { /* convert the call to a push of the return address */ insert_push_retaddr(dcontext, ilist, instr, retaddr, pushsz); /* remove the call */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); return next_instr; } /* put the push AFTER the instruction that calculates * the target, b/c if target depends on xsp we must use * the value of xsp prior to this call instruction! * we insert before next_instr to accomplish this. */ if (instr_get_opcode(instr) == OP_call_far_ind) { /* goes right before the push of the ret addr */ insert_push_cs(dcontext, ilist, next_instr, 0, pushsz); /* see notes below -- we don't really support switching segments, * though we do go ahead and push cs, we won't pop into cs */ } insert_push_retaddr(dcontext, ilist, next_instr, retaddr, pushsz); /* save away xcx so that we can use it */ /* (it's restored in x86.s (indirect_branch_lookup) */ PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XCX, MANGLE_XCX_SPILL_SLOT, XCX_OFFSET, REG_R9)); #ifdef STEAL_REGISTER /* Steal edi if call uses it, using original call instruction */ steal_reg(dcontext, instr, ilist); if (ilist->flags) restore_state(dcontext, next_instr, ilist); /* It's impossible for our register stealing to use ecx * because no call can simultaneously use 3 registers, right? * Maximum is 2, in something like "call *(edi,ecx,4)"? * If it is possible, need to make sure stealing's use of ecx * doesn't conflict w/ our use */ #endif /* change: call /2, Ev -> movl Ev, %xcx */ target = instr_get_src(instr, 0); if (instr_get_opcode(instr) == OP_call_far_ind) { SYSLOG_INTERNAL_WARNING_ONCE("Encountered a far indirect call"); STATS_INC(num_far_ind_calls); reg_target = mangle_far_indirect_helper(dcontext, ilist, instr, next_instr, flags, &target); } #ifdef UNIX /* i#107, mangle the memory reference opnd that uses segment register. */ if (INTERNAL_OPTION(mangle_app_seg) && opnd_is_far_base_disp(target)) { /* FIXME: we use REG_XCX to store the segment base, which might be used * in target and cause assertion failure in mangle_seg_ref_opnd. */ ASSERT_BUG_NUM(107, !opnd_uses_reg(target, REG_XCX)); target = mangle_seg_ref_opnd(dcontext, ilist, instr, target, REG_XCX); } #endif /* cannot call instr_reset, it will kill prev & next ptrs */ instr_free(dcontext, instr); instr_set_num_opnds(dcontext, instr, 1, 1); instr_set_opcode(instr, opnd_get_size(target) == OPSZ_2 ? OP_movzx : OP_mov_ld); instr_set_dst(instr, 0, opnd_create_reg(reg_target)); instr_set_src(instr, 0, target); /* src stays the same */ if (instrlist_get_translation_target(ilist) != NULL) { /* make sure original raw bits are used for translation */ instr_set_translation(instr, instr_get_raw_bits(instr)); } instr_set_our_mangling(instr, true); #ifdef CHECK_RETURNS_SSE2 check_return_handle_call(dcontext, ilist, next_instr); #endif return next_instr; } /*************************************************************************** * RETURN */ #ifdef X64 /* Saves the selector from the top of the stack into xbx, after spilling xbx, * for far_ibl. */ static void mangle_far_return_save_selector(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, uint flags) { if (mixed_mode_enabled()) { /* While we don't support arbitrary segments, we do support * mode changes using standard cs selector values (i#823). * We save the selector into xbx. */ /* We could do a pop but state xl8 is already set up to restore lea */ /* all scratch space should be in TLS only */ ASSERT(TEST(FRAG_SHARED, flags) || DYNAMO_OPTION(private_ib_in_tls)); PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XBX, MANGLE_FAR_SPILL_SLOT, XBX_OFFSET, REG_R10)); PRE(ilist, instr, INSTR_CREATE_movzx(dcontext, opnd_create_reg(REG_EBX), OPND_CREATE_MEM16(REG_XSP, 0))); } } #endif void mangle_return(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint flags) { instr_t *pop; opnd_t retaddr; opnd_size_t retsz; #ifdef CHECK_RETURNS_SSE2 check_return_handle_return(dcontext, ilist, next_instr); /* now do the normal ret mangling */ #endif /* Convert returns. If aggressive we could take advantage of the * fact that xcx is dead at the return and not bother saving it? * The jump to the exit_stub that jumps to indirect_branch_lookup * was already inserted into the instr list by interp. */ /* save away xcx so that we can use it */ /* (it's restored in x86.s (indirect_branch_lookup) */ PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XCX, MANGLE_XCX_SPILL_SLOT, XCX_OFFSET, REG_R9)); /* see if ret has an immed int operand, assumed to be 1st src */ if (instr_num_srcs(instr) > 0 && opnd_is_immed_int(instr_get_src(instr, 0))) { /* if has an operand, return removes some stack space, * AFTER the return address is popped */ int val = (int) opnd_get_immed_int(instr_get_src(instr, 0)); IF_X64(ASSERT_TRUNCATE(val, int, opnd_get_immed_int(instr_get_src(instr, 0)))); /* addl sizeof_param_area, %xsp * except that clobbers the flags, so we use lea */ PRE(ilist, next_instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp(REG_XSP, REG_NULL, 0, val, OPSZ_lea))); } /* don't need to steal edi since return cannot use registers */ /* the retaddr operand is always the final source for all OP_ret* instrs */ retaddr = instr_get_src(instr, instr_num_srcs(instr) - 1); retsz = stack_entry_size(instr, opnd_get_size(retaddr)); if (X64_CACHE_MODE_DC(dcontext) && retsz == OPSZ_4) { if (instr_get_opcode(instr) == OP_iret || instr_get_opcode(instr) == OP_ret_far) { /* N.B.: For some unfathomable reason iret and ret_far default to operand * size 4 in 64-bit mode (making them, along w/ call_far, the only stack * operation instructions to do so). So if we see an iret or far ret with * OPSZ_4 in 64-bit mode we need a 4-byte pop, but since we can't actually * generate a 4-byte pop we have to emulate it here. */ SYSLOG_INTERNAL_WARNING_ONCE("Encountered iretd/lretd in 64-bit mode!"); } /* Note moving into ecx automatically zero extends which is what we want. */ PRE(ilist, instr, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(REG_ECX), OPND_CREATE_MEM32(REG_RSP, 0))); /* iret could use add since going to pop the eflags, but not lret. * lret could combine w/ segment lea below: but not perf-crit instr, and * anticipating cs preservation PR 271317 I'm leaving separate. */ PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp(REG_XSP, REG_NULL, 0, 4, OPSZ_lea))); } else { /* change RET into a POP, keeping the operand size */ opnd_t memop = retaddr; pop = INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_XCX)); /* need per-entry size, not total size (double for far ret) */ opnd_set_size(&memop, retsz); instr_set_src(pop, 1, memop); if (retsz == OPSZ_2) instr_set_dst(pop, 0, opnd_create_reg(REG_CX)); /* We can't do a 4-byte pop in 64-bit mode, but excepting iretd and lretd * handled above we should never see one. */ ASSERT(!X64_MODE_DC(dcontext) || retsz != OPSZ_4); PRE(ilist, instr, pop); if (retsz == OPSZ_2) { /* we need to zero out the top 2 bytes */ PRE(ilist, instr, INSTR_CREATE_movzx (dcontext, opnd_create_reg(REG_ECX), opnd_create_reg(REG_CX))); } } #ifdef CLIENT_INTERFACE if (TEST(INSTR_CLOBBER_RETADDR, instr->flags)) { /* we put the value in the note field earlier */ ptr_uint_t val = (ptr_uint_t) instr->note; insert_mov_ptr_uint_beyond_TOS(dcontext, ilist, instr, val, retsz); } #endif if (instr_get_opcode(instr) == OP_ret_far) { /* FIXME i#823: we do not support other than flat 0-based CS, DS, SS, and ES. * If the app wants to change segments in a WOW64 process, we will * do the right thing for standard cs selector values (xref i#49). * For other cs changes or in other modes, we do go through far_ibl * today although we do not enact the cs change (nor bother to pass * the selector in xbx). */ SYSLOG_INTERNAL_WARNING_ONCE("Encountered a far ret"); STATS_INC(num_far_rets); #ifdef X64 mangle_far_return_save_selector(dcontext, ilist, instr, flags); #endif /* pop selector from stack, but not into cs, just junk it * (the 16-bit selector is expanded to 32 bits on the push, unless data16) */ PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp (REG_XSP, REG_NULL, 0, opnd_size_in_bytes(retsz), OPSZ_lea))); } if (instr_get_opcode(instr) == OP_iret) { instr_t *popf; /* Xref PR 215553 and PR 191977 - we actually see this on 64-bit Vista */ LOG(THREAD, LOG_INTERP, 2, "Encountered iret at "PFX" - mangling\n", instr_get_translation(instr)); STATS_INC(num_irets); /* In 32-bit mode this is a pop->EIP pop->CS pop->eflags. * 64-bit mode (with either 32-bit or 64-bit operand size, * despite the (wrong) Intel manual pseudocode: see i#833 and * the win32.mixedmode test) extends * the above and additionally adds pop->RSP pop->ss. N.B.: like OP_far_ret we * ignore the CS (except mixed-mode WOW64) and SS segment changes * (see the comments there). */ #ifdef X64 mangle_far_return_save_selector(dcontext, ilist, instr, flags); #endif /* Return address is already popped, next up is CS segment which we ignore * (unless in mixed-mode, handled above) so * adjust stack pointer. Note we can use an add here since the eflags will * be written below. */ PRE(ilist, instr, INSTR_CREATE_add(dcontext, opnd_create_reg(REG_XSP), OPND_CREATE_INT8 (opnd_size_in_bytes(retsz)))); /* Next up is xflags, we use a popf. Popf should be setting the right flags * (it's difficult to tell because in the docs iret lists the flags it does * set while popf lists the flags it doesn't set). The docs aren't entirely * clear, but any flag that we or a user mode program would care about should * be right. */ popf = INSTR_CREATE_popf(dcontext); if (X64_CACHE_MODE_DC(dcontext) && retsz == OPSZ_4) { /* We can't actually create a 32-bit popf and there's no easy way to * simulate one. For now we'll do a 64-bit popf and fixup the stack offset. * If AMD/INTEL ever start using the top half of the rflags register then * we could have problems here. We could also break stack transparency and * do a mov, push, popf to zero extend the value. */ PRE(ilist, instr, popf); /* flags are already set, must use lea to fix stack */ PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XSP), opnd_create_base_disp (REG_XSP, REG_NULL, 0, -4, OPSZ_lea))); } else { /* get popf size right the same way we do it for the return address */ opnd_t memop = retaddr; opnd_set_size(&memop, retsz); DOCHECK(1, if (retsz == OPSZ_2) ASSERT_NOT_TESTED();); instr_set_src(popf, 1, memop); PRE(ilist, instr, popf); } #ifdef X64 /* In x64 mode, iret additionally does pop->RSP and pop->ss. */ if (X64_MODE_DC(dcontext)) { if (retsz == OPSZ_8) PRE(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_RSP))); else if (retsz == OPSZ_4) { PRE(ilist, instr, INSTR_CREATE_mov_ld (dcontext, opnd_create_reg(REG_ESP), OPND_CREATE_MEM32(REG_RSP, 0))); } else { ASSERT_NOT_TESTED(); PRE(ilist, instr, INSTR_CREATE_movzx (dcontext, opnd_create_reg(REG_ESP), OPND_CREATE_MEM16(REG_RSP, 0))); } /* We're ignoring the set of SS and since we just set RSP we don't need * to do anything to adjust the stack for the pop (since the pop would have * occurred with the old RSP). */ } #endif } /* remove the ret */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); } /*************************************************************************** * INDIRECT JUMP */ instr_t * mangle_indirect_jump(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint flags) { opnd_t target; reg_id_t reg_target = REG_XCX; /* Convert indirect branches (that are not returns). Again, the * jump to the exit_stub that jumps to indirect_branch_lookup * was already inserted into the instr list by interp. */ /* save away xcx so that we can use it */ /* (it's restored in x86.s (indirect_branch_lookup) */ PRE(ilist, instr, SAVE_TO_DC_OR_TLS_OR_REG(dcontext, flags, REG_XCX, MANGLE_XCX_SPILL_SLOT, XCX_OFFSET, REG_R9)); #ifdef STEAL_REGISTER /* Steal edi if branch uses it, using original instruction */ steal_reg(dcontext, instr, ilist); if (ilist->flags) restore_state(dcontext, next_instr, ilist); #endif /* change: jmp /4, i_Ev -> movl i_Ev, %xcx */ target = instr_get_target(instr); if (instr_get_opcode(instr) == OP_jmp_far_ind) { SYSLOG_INTERNAL_WARNING_ONCE("Encountered a far indirect jump"); STATS_INC(num_far_ind_jmps); reg_target = mangle_far_indirect_helper(dcontext, ilist, instr, next_instr, flags, &target); } #ifdef UNIX /* i#107, mangle the memory reference opnd that uses segment register. */ if (INTERNAL_OPTION(mangle_app_seg) && opnd_is_far_base_disp(target)) { /* FIXME: we use REG_XCX to store segment base, which might be used * in target and cause assertion failure in mangle_seg_ref_opnd. */ ASSERT_BUG_NUM(107, !opnd_uses_reg(target, REG_XCX)); target = mangle_seg_ref_opnd(dcontext, ilist, instr, target, REG_XCX); } #endif /* cannot call instr_reset, it will kill prev & next ptrs */ instr_free(dcontext, instr); instr_set_num_opnds(dcontext, instr, 1, 1); instr_set_opcode(instr, opnd_get_size(target) == OPSZ_2 ? OP_movzx : OP_mov_ld); instr_set_dst(instr, 0, opnd_create_reg(reg_target)); instr_set_src(instr, 0, target); /* src stays the same */ if (instrlist_get_translation_target(ilist) != NULL) { /* make sure original raw bits are used for translation */ instr_set_translation(instr, instr_get_raw_bits(instr)); } instr_set_our_mangling(instr, true); /* It's impossible for our register stealing to use ecx * because no branch can simultaneously use 3 registers, right? * Maximum is 2, in something like "jmp *(edi,ebx,4)"? * If it is possible, need to make sure stealing's use of ecx * doesn't conflict w/ our use = FIXME */ return next_instr; } /*************************************************************************** * FAR DIRECT JUMP */ void mangle_far_direct_jump(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint flags) { SYSLOG_INTERNAL_WARNING_ONCE("Encountered a far direct jmp"); STATS_INC(num_far_dir_jmps); mangle_far_direct_helper(dcontext, ilist, instr, next_instr, flags); instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); } /*************************************************************************** * SYSCALL */ #ifdef UNIX /* Inserts code to handle clone into ilist. * instr is the syscall instr itself. * Assumes that instructions exist beyond instr in ilist. * * CAUTION: don't use a lot of stack in the generated code because * get_clone_record() makes assumptions about the usage of stack being * less than a page. */ void mangle_insert_clone_code(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr _IF_X64(gencode_mode_t mode)) { /* int 0x80 * xchg xax,xcx * jecxz child * jmp parent * child: * xchg xax,xcx * # i#149/PR 403015: the child is on the dstack so no need to swap stacks * jmp new_thread_dynamo_start * parent: * xchg xax,xcx * <post system call, etc.> */ instr_t *in = instr_get_next(instr); instr_t *child = INSTR_CREATE_label(dcontext); instr_t *parent = INSTR_CREATE_label(dcontext); ASSERT(in != NULL); PRE(ilist, in, INSTR_CREATE_xchg(dcontext, opnd_create_reg(REG_XAX), opnd_create_reg(REG_XCX))); PRE(ilist, in, INSTR_CREATE_jecxz(dcontext, opnd_create_instr(child))); PRE(ilist, in, INSTR_CREATE_jmp(dcontext, opnd_create_instr(parent))); PRE(ilist, in, child); PRE(ilist, in, INSTR_CREATE_xchg(dcontext, opnd_create_reg(REG_XAX), opnd_create_reg(REG_XCX))); /* We used to insert this directly into fragments for inlined system * calls, but not once we eliminated clean calls out of the DR cache * for security purposes. Thus it can be a meta jmp, or an indirect jmp. */ insert_reachable_cti(dcontext, ilist, in, vmcode_get_start(), (byte *) get_new_thread_start(dcontext _IF_X64(mode)), true/*jmp*/, false/*!returns*/, false/*!precise*/, DR_REG_NULL/*no scratch*/, NULL); instr_set_meta(instr_get_prev(in)); PRE(ilist, in, parent); PRE(ilist, in, INSTR_CREATE_xchg(dcontext, opnd_create_reg(REG_XAX), opnd_create_reg(REG_XCX))); } #endif /* UNIX */ #ifdef WINDOWS /* Note that ignore syscalls processing for XP and 2003 is a two-phase operation. * For this reason, mangle_syscall() might be called with a 'next_instr' that's * not an original app instruction but one inserted by the earlier mangling phase. */ #endif /* XXX: any extra code here can interfere with mangle_syscall_code() * and interrupted_inlined_syscall() which have assumptions about the * exact code around inlined system calls. */ void mangle_syscall_arch(dcontext_t *dcontext, instrlist_t *ilist, uint flags, instr_t *instr, instr_t *next_instr) { #ifdef UNIX /* Shared routine already checked method, handled INSTR_NI_SYSCALL*, * and inserted the signal barrier and non-auto-restart nop. * If we get here, we're dealing with an ignorable syscall. */ # ifdef MACOS if (instr_get_opcode(instr) == OP_sysenter) { /* The kernel returns control to whatever user-mode places in edx. * We get control back here and then go to the ret ibl (since normally * there's a call to a shared routine that does "pop edx"). */ instr_t *post_sysenter = INSTR_CREATE_label(dcontext); PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, flags, REG_XDX, TLS_XDX_SLOT, XDX_OFFSET)); instrlist_insert_mov_instr_addr(dcontext, post_sysenter, NULL/*in cache*/, opnd_create_reg(REG_XDX), ilist, instr, NULL, NULL); /* sysenter goes here */ PRE(ilist, next_instr, post_sysenter); PRE(ilist, next_instr, RESTORE_FROM_DC_OR_TLS(dcontext, flags, REG_XDX, TLS_XDX_SLOT, XDX_OFFSET)); PRE(ilist, next_instr, SAVE_TO_DC_OR_TLS(dcontext, flags, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); PRE(ilist, next_instr, INSTR_CREATE_mov_st(dcontext, opnd_create_reg(REG_XCX), opnd_create_reg(REG_XDX))); } else if (TEST(INSTR_BRANCH_SPECIAL_EXIT, instr->flags)) { int num = instr_get_interrupt_number(instr); ASSERT(instr_get_opcode(instr) == OP_int); if (num == 0x81 || num == 0x82) { int reason = (num == 0x81) ? EXIT_REASON_NI_SYSCALL_INT_0x81 : EXIT_REASON_NI_SYSCALL_INT_0x82; if (DYNAMO_OPTION(private_ib_in_tls) || TEST(FRAG_SHARED, flags)) { insert_shared_get_dcontext(dcontext, ilist, instr, true/*save_xdi*/); PRE(ilist, instr, INSTR_CREATE_mov_st (dcontext, opnd_create_dcontext_field_via_reg_sz(dcontext, REG_NULL/*default*/, EXIT_REASON_OFFSET, OPSZ_2), OPND_CREATE_INT16(reason))); insert_shared_restore_dcontext_reg(dcontext, ilist, instr); } else { PRE(ilist, instr, instr_create_save_immed16_to_dcontext(dcontext, reason, EXIT_REASON_OFFSET)); } } } # endif # ifdef STEAL_REGISTER /* in linux, system calls get their parameters via registers. * edi is the last one used, but there are system calls that * use it, so we put the real value into edi. plus things * like fork() should get the real register values. * it's also a good idea to put the real edi into %edi for * debugger interrupts (int3). */ /* the only way we can save and then restore our dc * ptr is to use the stack! * this should be fine, all interrupt instructions push * both eflags and return address on stack, so esp must * be valid at this point. there could be an application * assuming only 2 slots on stack will be used, we use a 3rd * slot, could mess up that app...but what can we do? * also, if kernel examines user stack, we could have problems. * push edi # push dcontext ptr * restore edi # restore app edi * <syscall> * push ebx * mov edi, ebx * mov 4(esp), edi # get dcontext ptr * save ebx to edi slot * pop ebx * add 4,esp # clean up push of dcontext ptr */ IF_X64(ASSERT_NOT_IMPLEMENTED(false)); PRE(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_EDI))); PRE(ilist, instr, instr_create_restore_from_dcontext(dcontext, REG_EDI, XDI_OFFSET)); /* insert after in reverse order: */ POST(ilist, instr, INSTR_CREATE_add(dcontext, opnd_create_reg(REG_ESP), OPND_CREATE_INT8(4))); POST(ilist, instr, INSTR_CREATE_pop(dcontext, opnd_create_reg(REG_EBX))); POST(ilist, instr, instr_create_save_to_dcontext(dcontext, REG_EBX, XDI_OFFSET)); POST(ilist, instr, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(REG_EDI), OPND_CREATE_MEM32(REG_ESP, 4))); POST(ilist, instr, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(REG_EBX), opnd_create_reg(REG_EDI))); POST(ilist, instr, INSTR_CREATE_push(dcontext, opnd_create_reg(REG_EBX))); # endif /* STEAL_REGISTER */ #else /* WINDOWS */ /* special handling of system calls is performed in shared_syscall or * in do_syscall */ /* FIXME: for ignorable syscalls, * do we need support for exiting mid-fragment prior to a syscall * like we do on Linux, to bound time in cache? */ if (does_syscall_ret_to_callsite()) { uint len = instr_length(dcontext, instr); if (TEST(INSTR_SHARED_SYSCALL, instr->flags)) { ASSERT(DYNAMO_OPTION(shared_syscalls)); /* this syscall will be performed by the shared_syscall code * we just need to place a return address into the dcontext * xsi slot or the mangle-next-tag tls slot */ if (DYNAMO_OPTION(shared_fragment_shared_syscalls)) { # ifdef X64 ASSERT(instr_raw_bits_valid(instr)); /* PR 244741: no 64-bit store-immed-to-mem * FIXME: would be nice to move this to the stub and * use the dead rbx register! */ PRE(ilist, instr, instr_create_save_to_tls(dcontext, REG_XCX, MANGLE_NEXT_TAG_SLOT)); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR((instr->bytes + len)))); PRE(ilist, instr, INSTR_CREATE_xchg (dcontext, opnd_create_tls_slot(os_tls_offset(MANGLE_NEXT_TAG_SLOT)), opnd_create_reg(REG_XCX))); # else PRE(ilist, instr, INSTR_CREATE_mov_st (dcontext, opnd_create_tls_slot(os_tls_offset(MANGLE_NEXT_TAG_SLOT)), OPND_CREATE_INTPTR((instr->bytes + len)))); # endif } else { PRE(ilist, instr, instr_create_save_immed32_to_dcontext (dcontext, (uint)(ptr_uint_t)(instr->bytes + len), XSI_OFFSET)); } } /* Handle ignorable syscall. non-ignorable system calls are * destroyed and removed from the list at the end of this func. */ else if (!TEST(INSTR_NI_SYSCALL, instr->flags)) { if (get_syscall_method() == SYSCALL_METHOD_INT && DYNAMO_OPTION(sygate_int)) { /* for Sygate need to mangle into a call to int_syscall_addr * is anyone going to get screwed up by this change * (say flags change?) [-ignore_syscalls only]*/ ASSERT_NOT_TESTED(); instrlist_replace(ilist, instr, create_syscall_instr(dcontext)); instr_destroy(dcontext, instr); } else if (get_syscall_method() == SYSCALL_METHOD_SYSCALL) ASSERT_NOT_TESTED(); else if (get_syscall_method() == SYSCALL_METHOD_WOW64) ASSERT_NOT_TESTED(); return; } } else if (get_syscall_method() == SYSCALL_METHOD_SYSENTER) { /* on XP/2003 we have a choice between inserting a trampoline at the * return pt of the sysenter, which is 0x7ffe0304 (except for * SP2-patched XP), which is bad since it would clobber whatever's after * the ret there (unless we used a 0xcc, like Visual Studio 2005 debugger * does), or replacing the ret addr on the stack -- we choose the * latter as the lesser of two transparency evils. Note that the * page at 0x7ffe0000 can't be made writable anyway, so hooking * isn't possible. */ if (TEST(INSTR_SHARED_SYSCALL, instr->flags)) { ASSERT(DYNAMO_OPTION(shared_syscalls)); } /* Handle ignorable syscall. non-ignorable system calls are * destroyed and removed from the list at the end of this func. */ else if (!TEST(INSTR_NI_SYSCALL, instr->flags)) { instr_t *mov_imm; /* even w/ ignorable syscall, need to make sure regain control */ ASSERT(next_instr != NULL); ASSERT(DYNAMO_OPTION(indcall2direct)); /* for sygate hack need to basically duplicate what is done in * shared_syscall, but here we could be shared so would need to * grab dcontext first etc. */ ASSERT_NOT_IMPLEMENTED(!DYNAMO_OPTION(sygate_sysenter)); /* PR 253943: we don't support sysenter in x64 */ IF_X64(ASSERT_NOT_IMPLEMENTED(false)); /* can't have 8-byte imm-to-mem */ /* FIXME PR 303413: we won't properly translate a fault in our * app stack reference here. It's marked as our own mangling * so we'll at least return failure from our translate routine. */ mov_imm = INSTR_CREATE_mov_st(dcontext, OPND_CREATE_MEM32(REG_XSP, 0), opnd_create_instr(next_instr)); ASSERT(instr_is_mov_imm_to_tos(mov_imm)); PRE(ilist, instr, mov_imm); /* do not let any encoding for length be cached! * o/w will lose pc-relative opnd */ /* 'next_instr' is executed after the after-syscall vsyscall * 'ret', which is executed natively. */ instr_set_meta(instr_get_prev(instr)); return; /* leave syscall instr alone */ } } else { SYSLOG_INTERNAL_ERROR("unsupported system call method"); LOG(THREAD, LOG_INTERP, 1, "don't know convention for this syscall method\n"); if (!TEST(INSTR_NI_SYSCALL, instr->flags)) return; ASSERT_NOT_IMPLEMENTED(false); } /* destroy the syscall instruction */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); #endif /* WINDOWS */ } /*************************************************************************** * NON-SYSCALL INTERRUPT */ void mangle_interrupt(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr) { #ifdef WINDOWS int num; if (instr_get_opcode(instr) != OP_int) return; num = instr_get_interrupt_number(instr); if (num == 0x2b) { /* A callback finishes and returns to the interruption * point of the thread with the instruction "int 2b". * The interrupt ends the block; remove the instruction * since we'll come back to dynamo to perform the * interrupt. */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); } #endif /* WINDOWS */ } /*************************************************************************** * FLOATING POINT PC */ /* The offset of the last floating point PC in the saved state */ #define FNSAVE_PC_OFFS 12 #define FXSAVE_PC_OFFS 8 #define FXSAVE_SIZE 512 void float_pc_update(dcontext_t *dcontext) { byte *state = *(byte **)(((byte *)dcontext->local_state) + FLOAT_PC_STATE_SLOT); app_pc orig_pc, xl8_pc; uint offs = 0; LOG(THREAD, LOG_INTERP, 2, "%s: fp state "PFX"\n", __FUNCTION__, state); if (dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_XSAVE || dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_XSAVE64) { /* Check whether the FPU state was saved */ uint64 header_bv = *(uint64 *)(state + FXSAVE_SIZE); if (!TEST(XCR0_FP, header_bv)) { LOG(THREAD, LOG_INTERP, 2, "%s: xsave did not save FP state => nop\n", __FUNCTION__); } return; } if (dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_FNSAVE) { offs = FNSAVE_PC_OFFS; } else { offs = FXSAVE_PC_OFFS; } if (dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_FXSAVE64 || dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_XSAVE64) orig_pc = *(app_pc *)(state + offs); else /* just bottom 32 bits of pc */ orig_pc = (app_pc)(ptr_uint_t) *(uint *)(state + offs); if (orig_pc == NULL) { /* no fp instr yet */ LOG(THREAD, LOG_INTERP, 2, "%s: pc is NULL\n", __FUNCTION__); return; } /* i#1211-c#1: the orig_pc might be an app pc restored from fldenv */ if (!in_fcache(orig_pc) && /* XXX: i#698: there might be fp instr neither in fcache nor in app */ !(in_generated_routine(dcontext, orig_pc) || is_dynamo_address(orig_pc) || is_in_dynamo_dll(orig_pc) IF_CLIENT_INTERFACE(|| is_in_client_lib(orig_pc)))) { bool no_xl8 = true; #ifdef X64 if (dcontext->upcontext.upcontext.exit_reason != EXIT_REASON_FLOAT_PC_FXSAVE64 && dcontext->upcontext.upcontext.exit_reason != EXIT_REASON_FLOAT_PC_XSAVE64) { /* i#1427: try to fill in the top 32 bits */ ptr_uint_t vmcode = (ptr_uint_t) vmcode_get_start(); if ((vmcode & 0xffffffff00000000) > 0) { byte *orig_try = (byte *) ((vmcode & 0xffffffff00000000) | (ptr_uint_t)orig_pc); if (in_fcache(orig_try)) { LOG(THREAD, LOG_INTERP, 2, "%s: speculating: pc "PFX" + top half of vmcode = "PFX"\n", __FUNCTION__, orig_pc, orig_try); orig_pc = orig_try; no_xl8 = false; } } } #endif if (no_xl8) { LOG(THREAD, LOG_INTERP, 2, "%s: pc "PFX" is translated already\n", __FUNCTION__, orig_pc); return; } } /* We must either grab thread_initexit_lock or be couldbelinking to translate */ mutex_lock(&thread_initexit_lock); xl8_pc = recreate_app_pc(dcontext, orig_pc, NULL); mutex_unlock(&thread_initexit_lock); LOG(THREAD, LOG_INTERP, 2, "%s: translated "PFX" to "PFX"\n", __FUNCTION__, orig_pc, xl8_pc); if (dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_FXSAVE64 || dcontext->upcontext.upcontext.exit_reason == EXIT_REASON_FLOAT_PC_XSAVE64) *(app_pc *)(state + offs) = xl8_pc; else /* just bottom 32 bits of pc */ *(uint *)(state + offs) = (uint)(ptr_uint_t) xl8_pc; } void mangle_float_pc(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr, uint *flags INOUT) { /* If there is a prior non-control float instr, we can inline the pc update. * Otherwise, we go back to dispatch. In the latter case we do not support * building traces across the float pc save: we assume it's rare. */ app_pc prior_float = NULL; bool exit_is_normal = false; int op = instr_get_opcode(instr); opnd_t memop = instr_get_dst(instr, 0); ASSERT(opnd_is_memory_reference(memop)); /* To simplify the code here we don't support rip-rel for local handling. * We also don't support xsave, as it optionally writes the fpstate. */ if (opnd_is_base_disp(memop) && op != OP_xsave32 && op != OP_xsaveopt32 && op != OP_xsave64 && op != OP_xsaveopt64) { instr_t *prev; for (prev = instr_get_prev_expanded(dcontext, ilist, instr); prev != NULL; prev = instr_get_prev_expanded(dcontext, ilist, prev)) { dr_fp_type_t type; if (instr_is_app(prev) && instr_is_floating_ex(prev, &type)) { bool control_instr = false; if (type == DR_FP_STATE /* quick check */ && /* Check the list from Intel Vol 1 8.1.8 */ (op == OP_fnclex || op == OP_fldcw || op == OP_fnstcw || op == OP_fnstsw || op == OP_fnstenv || op == OP_fldenv || op == OP_fwait)) control_instr = true; if (!control_instr) { prior_float = get_app_instr_xl8(prev); break; } } } } if (prior_float != NULL) { /* We can link this */ exit_is_normal = true; STATS_INC(float_pc_from_cache); /* Replace the stored code cache pc with the original app pc. * If the app memory is unwritable, instr would have already crashed. */ if (op == OP_fnsave || op == OP_fnstenv) { opnd_set_disp(&memop, opnd_get_disp(memop) + FNSAVE_PC_OFFS); opnd_set_size(&memop, OPSZ_4); PRE(ilist, next_instr, INSTR_CREATE_mov_st(dcontext, memop, OPND_CREATE_INT32((int)(ptr_int_t)prior_float))); } else if (op == OP_fxsave32) { opnd_set_disp(&memop, opnd_get_disp(memop) + FXSAVE_PC_OFFS); opnd_set_size(&memop, OPSZ_4); PRE(ilist, next_instr, INSTR_CREATE_mov_st(dcontext, memop, OPND_CREATE_INT32((int)(ptr_int_t)prior_float))); } else if (op == OP_fxsave64) { opnd_set_disp(&memop, opnd_get_disp(memop) + FXSAVE_PC_OFFS); opnd_set_size(&memop, OPSZ_8); insert_mov_immed_ptrsz(dcontext, (ptr_int_t)prior_float, memop, ilist, next_instr, NULL, NULL); } else ASSERT_NOT_REACHED(); } else if (!DYNAMO_OPTION(translate_fpu_pc)) { /* We only support translating when inlined. * XXX: we can't recover the loss of coarse-grained: we live with that. */ exit_is_normal = true; ASSERT_CURIOSITY(!TEST(FRAG_CANNOT_BE_TRACE, *flags) || /* i#1562: it could be marked as no-trace for other reasons */ TEST(FRAG_SELFMOD_SANDBOXED, *flags)); } else { int reason = 0; CLIENT_ASSERT(!TEST(FRAG_IS_TRACE, *flags), "removing an FPU instr in a trace with an FPU state save " "is not supported"); switch (op) { case OP_fnsave: case OP_fnstenv: reason = EXIT_REASON_FLOAT_PC_FNSAVE; break; case OP_fxsave32: reason = EXIT_REASON_FLOAT_PC_FXSAVE; break; case OP_fxsave64: reason = EXIT_REASON_FLOAT_PC_FXSAVE64;break; case OP_xsave32: case OP_xsaveopt32: reason = EXIT_REASON_FLOAT_PC_XSAVE; break; case OP_xsave64: case OP_xsaveopt64: reason = EXIT_REASON_FLOAT_PC_XSAVE64; break; default: ASSERT_NOT_REACHED(); } if (DYNAMO_OPTION(private_ib_in_tls) || TEST(FRAG_SHARED, *flags)) { insert_shared_get_dcontext(dcontext, ilist, instr, true/*save_xdi*/); PRE(ilist, instr, INSTR_CREATE_mov_st (dcontext, opnd_create_dcontext_field_via_reg_sz(dcontext, REG_NULL/*default*/, EXIT_REASON_OFFSET, OPSZ_2), OPND_CREATE_INT16(reason))); } else { PRE(ilist, instr, instr_create_save_immed16_to_dcontext(dcontext, reason, EXIT_REASON_OFFSET)); PRE(ilist, instr, instr_create_save_to_tls(dcontext, REG_XDI, DCONTEXT_BASE_SPILL_SLOT)); } /* At this point, xdi is spilled into DCONTEXT_BASE_SPILL_SLOT */ /* We pass the address in the xbx tls slot, which is untouched by fcache_return. * * XXX: handle far refs! Xref drutil_insert_get_mem_addr(), and sandbox_write() * hitting this same issue. */ ASSERT_CURIOSITY(!opnd_is_far_memory_reference(memop)); if (opnd_is_base_disp(memop)) { opnd_set_size(&memop, OPSZ_lea); PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XDI), memop)); } else { ASSERT(opnd_is_abs_addr(memop) IF_X64( || opnd_is_rel_addr(memop))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XDI), OPND_CREATE_INTPTR(opnd_get_addr(memop)))); } PRE(ilist, instr, instr_create_save_to_tls(dcontext, REG_XDI, FLOAT_PC_STATE_SLOT)); /* Restore app %xdi */ if (TEST(FRAG_SHARED, *flags)) insert_shared_restore_dcontext_reg(dcontext, ilist, instr); else { PRE(ilist, instr, instr_create_restore_from_tls(dcontext, REG_XDI, DCONTEXT_BASE_SPILL_SLOT)); } } if (exit_is_normal && DYNAMO_OPTION(translate_fpu_pc)) { instr_t *exit_jmp = next_instr; while (exit_jmp != NULL && !instr_is_exit_cti(exit_jmp)) exit_jmp = instr_get_next(next_instr); ASSERT(exit_jmp != NULL); ASSERT(instr_branch_special_exit(exit_jmp)); instr_branch_set_special_exit(exit_jmp, false); /* XXX: there could be some other reason this was marked * cannot-be-trace that we're undoing here... */ if (TEST(FRAG_CANNOT_BE_TRACE, *flags)) *flags &= ~FRAG_CANNOT_BE_TRACE; } } /*************************************************************************** * CPUID FOOLING */ #ifdef FOOL_CPUID /* values returned by cpuid for Mobile Pentium MMX processor (family 5, model 8) * minus mmx (==0x00800000 in CPUID_1_EDX) * FIXME: change model number to a Pentium w/o MMX! */ #define CPUID_0_EAX 0x00000001 #define CPUID_0_EBX 0x756e6547 #define CPUID_0_ECX 0x6c65746e #define CPUID_0_EDX 0x49656e69 /* extended family, extended model, type, family, model, stepping id: */ /* 20:27, 16:19, 12:13, 8:11, 4:7, 0:3 */ #define CPUID_1_EAX 0x00000581 #define CPUID_1_EBX 0x00000000 #define CPUID_1_ECX 0x00000000 #define CPUID_1_EDX 0x000001bf static void mangle_cpuid(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr) { /* assumption: input value is put in eax on prev instr, or * on instr prior to that and prev is an inc instr. * alternative is to insert conditional branch...and save eflags, etc. */ instr_t *prev = instr_get_prev(instr); opnd_t op; int input, out_eax, out_ebx, out_ecx, out_edx; LOG(THREAD, LOG_INTERP, 1, "fooling cpuid instruction!\n"); ASSERT(prev != NULL); prev = instr_get_prev_expanded(dcontext, ilist, instr); instr_decode(dcontext, instr); if (!instr_valid(instr)) goto cpuid_give_up; loginst(dcontext, 2, prev, "prior to cpuid"); /* FIXME: maybe should insert code to dispatch on eax, rather than * this hack, which is based on photoshop, which either does * "xor eax,eax" or "xor eax,eax; inc eax" */ if (!instr_is_mov_constant(prev, &input)) { /* we only allow inc here */ if (instr_get_opcode(prev) != OP_inc) goto cpuid_give_up; op = instr_get_dst(prev, 0); if (!opnd_is_reg(op) || opnd_get_reg(op) != REG_EAX) goto cpuid_give_up; /* now check instr before inc */ prev = instr_get_prev(prev); if (!instr_is_mov_constant(prev, &input) || input != 0) goto cpuid_give_up; input = 1; /* now check that mov 0 is into eax */ } if (instr_num_dsts(prev) == 0) goto cpuid_give_up; op = instr_get_dst(prev, 0); if (!opnd_is_reg(op) || opnd_get_reg(op) != REG_EAX) goto cpuid_give_up; if (input == 0) { out_eax = CPUID_0_EAX; out_ebx = CPUID_0_EBX; out_ecx = CPUID_0_ECX; out_edx = CPUID_0_EDX; } else { /* 1 or anything higher all return same info */ out_eax = CPUID_1_EAX; out_ebx = CPUID_1_EBX; out_ecx = CPUID_1_ECX; out_edx = CPUID_1_EDX; } PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_EAX), OPND_CREATE_INT32(out_eax))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_EBX), OPND_CREATE_INT32(out_ebx))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_ECX), OPND_CREATE_INT32(out_ecx))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_EDX), OPND_CREATE_INT32(out_edx))); /* destroy the cpuid instruction */ instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); return; cpuid_give_up: LOG(THREAD, LOG_INTERP, 1, "\tcpuid fool: giving up\n"); return; } #endif /* FOOL_CPUID */ void mangle_exit_cti_prefixes(dcontext_t *dcontext, instr_t *instr) { uint prefixes = instr_get_prefixes(instr); if (prefixes != 0) { bool remove = false; /* Case 8738: while for transparency it would be best to maintain all * prefixes, our patching and other routines make assumptions about * the length of exit ctis. Plus our elision removes the whole * instr in any case. */ if (instr_is_cbr(instr)) { if (TESTANY(~(PREFIX_JCC_TAKEN|PREFIX_JCC_NOT_TAKEN), prefixes)) { remove = true; prefixes &= (PREFIX_JCC_TAKEN|PREFIX_JCC_NOT_TAKEN); } } else { /* prefixes on ubr or mbr should be nops and for ubr will mess up * our size assumptions so drop them (i#435) */ remove = true; prefixes = 0; } if (remove) { LOG(THREAD, LOG_INTERP, 4, "\tremoving unknown prefixes "PFX" from "PFX"\n", prefixes, instr_get_raw_bits(instr)); ASSERT(instr_operands_valid(instr)); /* ensure will encode w/o raw bits */ instr_set_prefixes(instr, prefixes); } } else if (instr_get_opcode(instr) == OP_jmp && instr_length(dcontext, instr) != JMP_LONG_LENGTH) { /* i#1988: remove MPX prefixes as they mess up our nop padding. * i#1312 covers marking as actual prefixes, and we should keep them. */ LOG(THREAD, LOG_INTERP, 4, "\tremoving unknown jmp prefixes from "PFX"\n", instr_get_raw_bits(instr)); instr_set_raw_bits_valid(instr, false); } } #ifdef X64 /* PR 215397: re-relativize rip-relative data addresses */ /* Should return NULL if it destroy "instr". We don't support both destroying * (done only for x86: i#393) and changing next_instr (done only for ARM). */ instr_t * mangle_rel_addr(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr) { uint opc = instr_get_opcode(instr); app_pc tgt; opnd_t dst, src; ASSERT(instr_has_rel_addr_reference(instr)); instr_get_rel_addr_target(instr, &tgt); STATS_INC(rip_rel_instrs); # ifdef RCT_IND_BRANCH if (TEST(OPTION_ENABLED, DYNAMO_OPTION(rct_ind_call)) || TEST(OPTION_ENABLED, DYNAMO_OPTION(rct_ind_jump))) { /* PR 215408: record addresses taken via rip-relative instrs */ rct_add_rip_rel_addr(dcontext, tgt _IF_DEBUG(instr_get_translation(instr))); } # endif if (opc == OP_lea) { /* segment overrides are ignored on lea */ opnd_t immed; dst = instr_get_dst(instr, 0); src = instr_get_src(instr, 0); ASSERT(opnd_is_reg(dst)); ASSERT(opnd_is_rel_addr(src)); ASSERT(opnd_get_addr(src) == tgt); /* Replace w/ an absolute immed of the target app address, following Intel * Table 3-59 "64-bit Mode LEA Operation with Address and Operand Size * Attributes" */ /* FIXME PR 253446: optimization: we could leave this as rip-rel if it * still reaches from the code cache. */ if (reg_get_size(opnd_get_reg(dst)) == OPSZ_8) { /* PR 253327: there is no explicit addr32 marker; we assume * that decode or the user already zeroed out the top bits * if there was an addr32 prefix byte or the user wants * that effect */ immed = OPND_CREATE_INTPTR((ptr_int_t)tgt); } else if (reg_get_size(opnd_get_reg(dst)) == OPSZ_4) immed = OPND_CREATE_INT32((int)(ptr_int_t)tgt); else { ASSERT(reg_get_size(opnd_get_reg(dst)) == OPSZ_2); immed = OPND_CREATE_INT16((short)(ptr_int_t)tgt); } PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, dst, immed)); instrlist_remove(ilist, instr); instr_destroy(dcontext, instr); STATS_INC(rip_rel_lea); return NULL; /* == destroyed instr */ } else { /* PR 251479 will automatically re-relativize if it reaches, * but if it doesn't we need to handle that here (since that * involves an encoding length change, which complicates many * use cases if done at instr encode time). * We don't yet know exactly where we're going to encode this bb, * so we're conservative and check for all reachability from our * heap (assumed to be a single heap: xref PR 215395, and xref * potential secondary code caches PR 253446. */ if (!rel32_reachable_from_vmcode(tgt)) { int si = -1, di = -1; opnd_t relop, newop; bool spill = true; /* FIXME PR 253446: for mbr, should share the xcx spill */ reg_id_t scratch_reg = REG_XAX; si = instr_get_rel_addr_src_idx(instr); di = instr_get_rel_addr_dst_idx(instr); if (si >= 0) { relop = instr_get_src(instr, si); ASSERT(di < 0 || opnd_same(relop, instr_get_dst(instr, di))); /* If it's a load (OP_mov_ld, or OP_movzx, etc.), use dead reg */ if (instr_num_srcs(instr) == 1 && /* src is the rip-rel opnd */ instr_num_dsts(instr) == 1 && /* only one dest: a register */ opnd_is_reg(instr_get_dst(instr, 0)) && !instr_is_predicated(instr)) { opnd_size_t sz = opnd_get_size(instr_get_dst(instr, 0)); reg_id_t reg = opnd_get_reg(instr_get_dst(instr, 0)); /* if target is 16 or 8 bit sub-register the whole reg is not dead * (for 32-bit, top 32 bits are cleared) */ if (reg_is_gpr(reg) && (reg_is_32bit(reg) || reg_is_64bit(reg))) { spill = false; scratch_reg = opnd_get_reg(instr_get_dst(instr, 0)); if (sz == OPSZ_4) scratch_reg = reg_32_to_64(scratch_reg); /* we checked all opnds: should not read reg */ ASSERT(!instr_reads_from_reg(instr, scratch_reg, DR_QUERY_DEFAULT)); STATS_INC(rip_rel_unreachable_nospill); } } } else { relop = instr_get_dst(instr, di); } /* PR 263369: we can't just look for instr_reads_from_reg here since * our no-spill optimization above may miss some writes. */ if (spill && instr_uses_reg(instr, scratch_reg)) { /* mbr (for which we'll use xcx once we optimize) should not * get here: can't use registers (except xsp) */ ASSERT(scratch_reg == REG_XAX); do { scratch_reg++; ASSERT(scratch_reg <= REG_STOP_64); } while (instr_uses_reg(instr, scratch_reg)); } ASSERT(!instr_reads_from_reg(instr, scratch_reg, DR_QUERY_DEFAULT)); ASSERT(!spill || !instr_writes_to_reg(instr, scratch_reg, DR_QUERY_DEFAULT)); /* XXX PR 253446: Optimize by looking ahead for dead registers, and * sharing single spill across whole bb, or possibly building local code * cache to avoid unreachability: all depending on how many rip-rel * instrs we see. We'll watch the stats. */ if (spill) { PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, 0, scratch_reg, MANGLE_RIPREL_SPILL_SLOT, XAX_OFFSET)); } PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(scratch_reg), OPND_CREATE_INTPTR((ptr_int_t)tgt))); newop = opnd_create_far_base_disp(opnd_get_segment(relop), scratch_reg, REG_NULL, 0, 0, opnd_get_size(relop)); if (si >= 0) instr_set_src(instr, si, newop); if (di >= 0) instr_set_dst(instr, di, newop); /* we need the whole spill...restore region to all be marked mangle */ instr_set_our_mangling(instr, true); if (spill) { PRE(ilist, next_instr, instr_create_restore_from_tls(dcontext, scratch_reg, MANGLE_RIPREL_SPILL_SLOT)); } STATS_INC(rip_rel_unreachable); } } return next_instr; } #endif /*************************************************************************** * Reference with segment register (fs/gs) */ #ifdef UNIX static int instr_get_seg_ref_dst_idx(instr_t *instr) { int i; opnd_t opnd; if (!instr_valid(instr)) return -1; /* must go to level 3 operands */ for (i=0; i<instr_num_dsts(instr); i++) { opnd = instr_get_dst(instr, i); if (opnd_is_far_base_disp(opnd) && (opnd_get_segment(opnd) == SEG_GS || opnd_get_segment(opnd) == SEG_FS)) return i; } return -1; } static int instr_get_seg_ref_src_idx(instr_t *instr) { int i; opnd_t opnd; if (!instr_valid(instr)) return -1; /* must go to level 3 operands */ for (i=0; i<instr_num_srcs(instr); i++) { opnd = instr_get_src(instr, i); if (opnd_is_far_base_disp(opnd) && (opnd_get_segment(opnd) == SEG_GS || opnd_get_segment(opnd) == SEG_FS)) return i; } return -1; } static ushort tls_slots[4] = {TLS_XAX_SLOT, TLS_XCX_SLOT, TLS_XDX_SLOT, TLS_XBX_SLOT}; /* mangle the instruction OP_mov_seg, i.e. the instruction that * read/update the segment register. */ void mangle_mov_seg(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr) { reg_id_t seg; opnd_t opnd, dst; opnd_size_t dst_sz; ASSERT(instr_get_opcode(instr) == OP_mov_seg); ASSERT(instr_num_srcs(instr) == 1); ASSERT(instr_num_dsts(instr) == 1); STATS_INC(app_mov_seg_mangled); /* for update, we simply change it to a nop because we will * update it when dynamorio entering code cache to execute * this basic block. */ dst = instr_get_dst(instr, 0); if (opnd_is_reg(dst) && reg_is_segment(opnd_get_reg(dst))) { app_pc xl8; seg = opnd_get_reg(dst); #ifdef CLIENT_INTERFACE if (seg == LIB_SEG_TLS && !INTERNAL_OPTION(private_loader)) return; #endif /* must use the original instr, which might be used by caller */ xl8 = get_app_instr_xl8(instr); instr_reuse(dcontext, instr); instr_set_opcode(instr, OP_nop); instr_set_num_opnds(dcontext, instr, 0, 0); instr_set_translation(instr, xl8); return; } /* for read seg, we mangle it */ opnd = instr_get_src(instr, 0); ASSERT(opnd_is_reg(opnd)); seg = opnd_get_reg(opnd); ASSERT(reg_is_segment(seg)); if (seg != SEG_FS && seg != SEG_GS) return; #ifdef CLIENT_INTERFACE if (seg == LIB_SEG_TLS && !INTERNAL_OPTION(private_loader)) return; #endif /* There are two possible mov_seg instructions: * 8C/r MOV r/m16,Sreg Move segment register to r/m16 * REX.W + 8C/r MOV r/m64,Sreg Move zero extended 16-bit segment * register to r/m64 * Note, In 32-bit mode, the assembler may insert the 16-bit operand-size * prefix with this instruction. */ /* we cannot replace the instruction but only change it. */ dst = instr_get_dst(instr, 0); dst_sz = opnd_get_size(dst); opnd = opnd_create_sized_tls_slot (os_tls_offset(os_get_app_tls_reg_offset(seg)), OPSZ_2); if (opnd_is_reg(dst)) { /* dst is a register */ /* mov %gs:off => reg */ instr_set_src(instr, 0, opnd); instr_set_opcode(instr, OP_mov_ld); if (dst_sz != OPSZ_2) instr_set_opcode(instr, OP_movzx); } else { /* dst is memory, need steal a register. */ reg_id_t reg; instr_t *ti; for (reg = REG_XAX; reg < REG_XBX; reg++) { if (!instr_uses_reg(instr, reg)) break; } /* We need save the register to corresponding slot for correct restore, * so only use the first four registers. */ ASSERT(reg <= REG_XBX); /* save reg */ PRE(ilist, instr, instr_create_save_to_tls(dcontext, reg, tls_slots[reg - REG_XAX])); /* restore reg */ PRE(ilist, next_instr, instr_create_restore_from_tls(dcontext, reg, tls_slots[reg - REG_XAX])); switch (dst_sz) { case OPSZ_8: IF_NOT_X64(ASSERT(false);) break; case OPSZ_4: IF_X64(reg = reg_64_to_32(reg);) break; case OPSZ_2: IF_X64(reg = reg_64_to_32(reg);) reg = reg_32_to_16(reg); break; default: ASSERT(false); } /* mov %gs:off => reg */ ti = INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(reg), opnd); if (dst_sz != OPSZ_2) instr_set_opcode(ti, OP_movzx); PRE(ilist, instr, ti); /* change mov_seg to mov_st: mov reg => [mem] */ instr_set_src(instr, 0, opnd_create_reg(reg)); instr_set_opcode(instr, OP_mov_st); } } /* mangle the instruction that reference memory via segment register */ void mangle_seg_ref(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next_instr) { int si = -1, di = -1; opnd_t segop, newop; bool spill = true; reg_id_t scratch_reg = REG_XAX, seg = REG_NULL; /* exit cti won't be seg ref */ if (instr_is_exit_cti(instr)) return; /* mbr will be handled separatly */ if (instr_is_mbr(instr)) return; if (instr_get_opcode(instr) == OP_lea) return; /* XXX: maybe using decode_cti and then a check on prefix could be * more efficient as it only examines a few byte and avoid fully decoding * the instruction. For simplicity, we examine every operands instead. */ /* 1. get ref opnd */ si = instr_get_seg_ref_src_idx(instr); di = instr_get_seg_ref_dst_idx(instr); if (si < 0 && di < 0) return; if (si >= 0) { segop = instr_get_src(instr, si); ASSERT(di < 0 || opnd_same(segop, instr_get_dst(instr, di))); } else { segop = instr_get_dst(instr, di); } seg = opnd_get_segment(segop); if (seg != SEG_GS && seg != SEG_FS) return; #ifdef CLIENT_INTERFACE if (seg == LIB_SEG_TLS && !INTERNAL_OPTION(private_loader)) return; #endif STATS_INC(app_seg_refs_mangled); DOLOG(3, LOG_INTERP, { loginst(dcontext, 3, instr, "reference with fs/gs segment"); }); /* 2. decide the scratch reg */ /* Opt: if it's a load (OP_mov_ld, or OP_movzx, etc.), use dead reg */ if (si >= 0 && instr_num_srcs(instr) == 1 && /* src is the seg ref opnd */ instr_num_dsts(instr) == 1 && /* only one dest: a register */ opnd_is_reg(instr_get_dst(instr, 0)) && !instr_is_predicated(instr)) { reg_id_t reg = opnd_get_reg(instr_get_dst(instr, 0)); /* if target is 16 or 8 bit sub-register the whole reg is not dead * (for 32-bit, top 32 bits are cleared) */ if (reg_is_gpr(reg) && (reg_is_32bit(reg) || reg_is_64bit(reg)) && /* mov [%fs:%xax] => %xax */ !instr_reads_from_reg(instr, reg, DR_QUERY_DEFAULT)) { spill = false; scratch_reg = reg; # ifdef X64 if (opnd_get_size(instr_get_dst(instr, 0)) == OPSZ_4) scratch_reg = reg_32_to_64(reg); # endif } } if (spill) { /* we pick a scratch register from XAX, XBX, XCX, or XDX * that has direct TLS slots. */ for (scratch_reg = REG_XAX; scratch_reg <= REG_XBX; scratch_reg++) { /* the register must not be used by the instr, either read or write, * because we will mangle it when executing the instr (no read from), * and restore it after that instr (no write to). */ if (!instr_uses_reg(instr, scratch_reg)) break; } ASSERT(scratch_reg <= REG_XBX); PRE(ilist, instr, instr_create_save_to_tls(dcontext, scratch_reg, tls_slots[scratch_reg - REG_XAX])); } newop = mangle_seg_ref_opnd(dcontext, ilist, instr, segop, scratch_reg); if (si >= 0) instr_set_src(instr, si, newop); if (di >= 0) instr_set_dst(instr, di, newop); /* we need the whole spill...restore region to all be marked mangle */ instr_set_our_mangling(instr, true); /* FIXME: i#107 we should check the bound and raise signal if out of bound. */ DOLOG(3, LOG_INTERP, { loginst(dcontext, 3, instr, "re-wrote app tls reference"); }); if (spill) { PRE(ilist, next_instr, instr_create_restore_from_tls(dcontext, scratch_reg, tls_slots[scratch_reg - REG_XAX])); } } #endif /* UNIX */ #ifdef ANNOTATIONS /*************************************************************************** * DR and Valgrind annotations */ void mangle_annotation_helper(dcontext_t *dcontext, instr_t *label, instrlist_t *ilist) { dr_instr_label_data_t *label_data = instr_get_label_data_area(label); dr_annotation_handler_t *handler = GET_ANNOTATION_HANDLER(label_data); dr_annotation_receiver_t *receiver = handler->receiver_list; opnd_t *args = NULL; ASSERT(handler->type == DR_ANNOTATION_HANDLER_CALL); while (receiver != NULL) { if (handler->num_args != 0) { args = HEAP_ARRAY_ALLOC(dcontext, opnd_t, handler->num_args, ACCT_CLEANCALL, UNPROTECTED); memcpy(args, handler->args, sizeof(opnd_t) * handler->num_args); } dr_insert_clean_call_ex_varg(dcontext, ilist, label, receiver->instrumentation.callback, receiver->save_fpstate ? DR_CLEANCALL_SAVE_FLOAT : 0, handler->num_args, args); if (handler->num_args != 0) { HEAP_ARRAY_FREE(dcontext, args, opnd_t, handler->num_args, ACCT_CLEANCALL, UNPROTECTED); } receiver = receiver->next; } } #endif /* END OF CONTROL-FLOW MANGLING ROUTINES *########################################################################### *########################################################################### */ /* SELF-MODIFYING-CODE SANDBOXING * * When we detect it, we take an exit that targets our own routine * fragment_self_write. Dispatch checks for that target and if it finds it, * it calls that routine, so don't worry about building a bb for it. * Returns false if the bb has invalid instrs in the middle and it should * be rebuilt from scratch. */ #undef SAVE_TO_DC_OR_TLS #undef RESTORE_FROM_DC_OR_TLS /* PR 244737: x64 uses tls to avoid reachability issues w/ absolute addresses */ #ifdef X64 # define SAVE_TO_DC_OR_TLS(dc, reg, tls_offs, dc_offs) \ instr_create_save_to_tls((dc), (reg), (tls_offs)) # define RESTORE_FROM_DC_OR_TLS(dc, reg, tls_offs, dc_offs) \ instr_create_restore_from_tls((dc), (reg), (tls_offs)) #else # define SAVE_TO_DC_OR_TLS(dc, reg, tls_offs, dc_offs) \ instr_create_save_to_dcontext((dc), (reg), (dc_offs)) # define RESTORE_FROM_DC_OR_TLS(dc, reg, tls_offs, dc_offs) \ instr_create_restore_from_dcontext((dc), (reg), (dc_offs)) #endif static void sandbox_rep_instr(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next, app_pc start_pc, app_pc end_pc /* end is open */) { /* put checks before instr, set some reg as a flag, act on it * after instr (even if overwrite self will execute rep to completion) * want to read DF to find direction (0=inc xsi/xdi, 1=dec), * but only way to read is to do a pushf! * Solution: if cld or std right before rep instr, use that info, * otherwise check for BOTH directions! * xcx is a pre-check, xsi/xdi are inc/dec after memory op, so * xdi+xcx*opndsize == instr of NEXT write, so open-ended there: * if DF==0: * if (xdi < end_pc && xdi+xcx*opndsize > start_pc) => self-write * if DF==1: * if (xdi > start_pc && xdi-xcx*opndsize > end_pc) => self-write * both: * if (xdi-xcx*opndsize < end_pc && xdi+xcx*opndsize > start_pc) => self-write * opndsize is 1,2, or 4 => use lea for mul * lea (xdi,xcx,opndsize),xcx * * save flags and xax * save xbx * lea (xdi,xcx,opndsize),xbx * if x64 && (start_pc > 4GB || end_pc > 4GB): save xdx * if x64 && start_pc > 4GB: mov start_pc, xdx * cmp xbx, IF_X64_>4GB_ELSE(xdx, start_pc) * mov $0,xbx # for if ok * jle ok # open b/c address of next rep write * lea (,xcx,opndsize),xbx * neg xbx # sub does dst - src * add xdi,xbx * if x64 && end_pc > 4GB: mov end_pc, xdx * cmp xbx, IF_X64_>4GB_ELSE(xdx, end_pc) * mov $0,xbx # for if ok * jge ok # end is open * mov $1,xbx * ok: * restore flags and xax (xax used by stos) * if x64 && (start_pc > 4GB || end_pc > 4GB): restore xdx * <rep instr> # doesn't use xbx * (PR 267764/i#398: we special-case restore xbx on cxt xl8 if this instr faults) * mov xbx,xcx # we can use xcx, it's dead since 0 after rep * restore xbx * jecxz ok2 # if xbx was 1 we'll fall through and exit * mov $0,xcx * jmp <instr after write, flag as INSTR_BRANCH_SPECIAL_EXIT> * ok2: * <label> # ok2 can't == next, b/c next may be ind br -> mangled w/ instrs * # inserted before it, so jecxz would target too far */ instr_t *ok = INSTR_CREATE_label(dcontext); instr_t *ok2 = INSTR_CREATE_label(dcontext); instr_t *jmp; app_pc after_write; uint opndsize = opnd_size_in_bytes(opnd_get_size(instr_get_dst(instr,0))); uint flags = instr_eflags_to_fragment_eflags(forward_eflags_analysis(dcontext, ilist, next)); bool use_tls = IF_X64_ELSE(true, false); IF_X64(bool x86_to_x64_ibl_opt = DYNAMO_OPTION(x86_to_x64_ibl_opt);) instr_t *next_app = next; DOLOG(3, LOG_INTERP, { loginst(dcontext, 3, instr, "writes memory"); }); ASSERT(!instr_is_call_indirect(instr)); /* FIXME: can you have REP on on CALL's */ /* skip meta instrs to find next app instr (xref PR 472190) */ while (next_app != NULL && instr_is_meta(next_app)) next_app = instr_get_next(next_app); if (next_app != NULL) { /* client may have inserted non-meta instrs, so use translation first * (xref PR 472190) */ if (instr_get_app_pc(next_app) != NULL) after_write = instr_get_app_pc(next_app); else if (!instr_raw_bits_valid(next_app)) { /* next must be the final jmp! */ ASSERT(instr_is_ubr(next_app) && instr_get_next(next_app) == NULL); after_write = opnd_get_pc(instr_get_target(next_app)); } else after_write = instr_get_raw_bits(next_app); } else { after_write = end_pc; } insert_save_eflags(dcontext, ilist, instr, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XBX, TLS_XBX_SLOT, XBX_OFFSET)); PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XBX), opnd_create_base_disp(REG_XDI, REG_XCX, opndsize, 0, OPSZ_lea))); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX || (ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XDX, TLS_XDX_SLOT, XDX_OFFSET)); } if ((ptr_uint_t)start_pc > UINT_MAX) { PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XDX), OPND_CREATE_INTPTR(start_pc))); PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), opnd_create_reg(REG_XDX))); } else { #endif PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32((int)(ptr_int_t)start_pc))); #ifdef X64 } #endif PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32(0))); PRE(ilist, instr, INSTR_CREATE_jcc(dcontext, OP_jle, opnd_create_instr(ok))); PRE(ilist, instr, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XBX), opnd_create_base_disp(REG_NULL, REG_XCX, opndsize, 0, OPSZ_lea))); PRE(ilist, instr, INSTR_CREATE_neg(dcontext, opnd_create_reg(REG_XBX))); PRE(ilist, instr, INSTR_CREATE_add(dcontext, opnd_create_reg(REG_XBX), opnd_create_reg(REG_XDI))); #ifdef X64 if ((ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XDX), OPND_CREATE_INTPTR(end_pc))); PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), opnd_create_reg(REG_XDX))); } else { #endif PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32((int)(ptr_int_t)end_pc))); #ifdef X64 } #endif PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32(0))); PRE(ilist, instr, INSTR_CREATE_jcc(dcontext, OP_jge, opnd_create_instr(ok))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32(1))); PRE(ilist, instr, ok); insert_restore_eflags(dcontext, ilist, instr, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX || (ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, instr, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XDX, TLS_XDX_SLOT, XDX_OFFSET)); } #endif /* instr goes here */ PRE(ilist, next, INSTR_CREATE_mov_ld(dcontext, opnd_create_reg(REG_XCX), opnd_create_reg(REG_XBX))); PRE(ilist, next, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XBX, TLS_XBX_SLOT, XBX_OFFSET)); PRE(ilist, next, INSTR_CREATE_jecxz(dcontext, opnd_create_instr(ok2))); PRE(ilist, next, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INT32(0))); /* on x64 top 32 bits zeroed */ jmp = INSTR_CREATE_jmp(dcontext, opnd_create_pc(after_write)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, next, jmp); PRE(ilist, next, ok2); } static void sandbox_write(dcontext_t *dcontext, instrlist_t *ilist, instr_t *instr, instr_t *next, opnd_t op, app_pc start_pc, app_pc end_pc /* end is open */) { /* can only test for equality w/o modifying flags, so save them * if (addr < end_pc && addr+opndsize > start_pc) => self-write * <write memory> * save xbx * lea memory,xbx * save flags and xax # after lea of memory in case memory includes xax * if x64 && (start_pc > 4GB || end_pc > 4GB): save xcx * if x64 && end_pc > 4GB: mov end_pc, xcx * cmp xbx, IF_X64_>4GB_ELSE(xcx, end_pc) * jge ok # end is open * lea opndsize(xbx),xbx * if x64 && start_pc > 4GB: mov start_pc, xcx * cmp xbx, IF_X64_>4GB_ELSE(xcx, start_pc) * jle ok # open since added size * restore flags (using xbx) and xax * restore xbx * if x64 && (start_pc > 4GB || end_pc > 4GB): restore xcx * jmp <instr after write, flag as INSTR_BRANCH_SPECIAL_EXIT> * ok: * restore flags and xax * restore xbx * if x64 && (start_pc > 4GB || end_pc > 4GB): restore xcx */ instr_t *ok = INSTR_CREATE_label(dcontext), *jmp; app_pc after_write = NULL; uint opndsize = opnd_size_in_bytes(opnd_get_size(op)); uint flags = instr_eflags_to_fragment_eflags(forward_eflags_analysis(dcontext, ilist, next)); bool use_tls = IF_X64_ELSE(true, false); IF_X64(bool x86_to_x64_ibl_opt = DYNAMO_OPTION(x86_to_x64_ibl_opt);) instr_t *next_app = next; instr_t *get_addr_at = next; int opcode = instr_get_opcode(instr); DOLOG(3, LOG_INTERP, { loginst(dcontext, 3, instr, "writes memory"); }); /* skip meta instrs to find next app instr (xref PR 472190) */ while (next_app != NULL && instr_is_meta(next_app)) next_app = instr_get_next(next_app); if (next_app != NULL) { /* client may have inserted non-meta instrs, so use translation first * (xref PR 472190) */ if (instr_get_app_pc(next_app) != NULL) after_write = instr_get_app_pc(next_app); else if (!instr_raw_bits_valid(next_app)) { /* next must be the final artificially added jmp! */ ASSERT(instr_is_ubr(next_app) && instr_get_next(next_app) == NULL); /* for sure this is the last jmp out, but it * doesn't have to be a direct jmp but instead * it could be the exit branch we add as an * for an indirect call - which is the only ind branch * that writes to memory * CALL* already means that we're leaving the block and it cannot be a selfmod * instruction even though it writes to memory */ DOLOG(4, LOG_INTERP, { loginst(dcontext, 4, next_app, "next app instr"); }); after_write = opnd_get_pc(instr_get_target(next_app)); LOG(THREAD, LOG_INTERP, 4, "after_write = "PFX" next should be final jmp\n", after_write); } else after_write = instr_get_raw_bits(next_app); } else { ASSERT_NOT_TESTED(); after_write = end_pc; } if (opcode == OP_ins || opcode == OP_movs || opcode == OP_stos) { /* These instrs modify their own addressing register so we must * get the address pre-write. None of them touch xbx. */ get_addr_at = instr; ASSERT(!instr_writes_to_reg(instr, REG_XBX, DR_QUERY_DEFAULT) && !instr_reads_from_reg(instr, REG_XBX, DR_QUERY_DEFAULT)); } PRE(ilist, get_addr_at, SAVE_TO_DC_OR_TLS(dcontext, REG_XBX, TLS_XBX_SLOT, XBX_OFFSET)); /* XXX: Basically reimplementing drutil_insert_get_mem_addr(). */ /* FIXME i#986: Sandbox far writes. Not a hypothetical problem! NaCl uses * segments for its x86 sandbox, although they are 0 based with a limit. * qq.exe has them in sandboxed code. */ ASSERT_CURIOSITY(!opnd_is_far_memory_reference(op) || /* Standard far refs */ opcode == OP_ins || opcode == OP_movs || opcode == OP_stos); if (opnd_is_base_disp(op)) { /* change to OPSZ_lea for lea */ opnd_set_size(&op, OPSZ_lea); PRE(ilist, get_addr_at, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XBX), op)); if ((opcode == OP_push && opnd_is_base_disp(op) && opnd_get_index(op) == DR_REG_NULL && reg_to_pointer_sized(opnd_get_base(op)) == DR_REG_XSP) || opcode == OP_push_imm || opcode == OP_pushf || opcode == OP_pusha || opcode == OP_pop /* pop into stack slot */ || opcode == OP_call || opcode == OP_call_ind || opcode == OP_call_far || opcode == OP_call_far_ind) { /* Undo xsp adjustment made by the instruction itself. * We could use get_addr_at to acquire the address pre-instruction * for some of these, but some can read or write ebx. */ PRE(ilist, next, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XBX), opnd_create_base_disp(REG_NULL, REG_XBX, 1, -opnd_get_disp(op), OPSZ_lea))); } } else { /* handle abs addr pointing within fragment */ /* XXX: Can optimize this by doing address comparison at translation * time. Might happen frequently if a JIT stores data on the same page * as its code. For now we hook into existing sandboxing code. */ app_pc abs_addr; ASSERT(opnd_is_abs_addr(op) IF_X64( || opnd_is_rel_addr(op))); abs_addr = opnd_get_addr(op); PRE(ilist, get_addr_at, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INTPTR(abs_addr))); } insert_save_eflags(dcontext, ilist, next, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX || (ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, next, SAVE_TO_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); } if ((ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, next, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR(end_pc))); PRE(ilist, next, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), opnd_create_reg(REG_XCX))); } else { #endif PRE(ilist, next, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32((int)(ptr_int_t)end_pc))); #ifdef X64 } #endif PRE(ilist, next, INSTR_CREATE_jcc(dcontext, OP_jge, opnd_create_instr(ok))); PRE(ilist, next, INSTR_CREATE_lea(dcontext, opnd_create_reg(REG_XBX), opnd_create_base_disp(REG_XBX, REG_NULL, 0, opndsize, OPSZ_lea))); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX) { PRE(ilist, next, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR(start_pc))); PRE(ilist, next, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), opnd_create_reg(REG_XCX))); } else { #endif PRE(ilist, next, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XBX), OPND_CREATE_INT32((int)(ptr_int_t)start_pc))); #ifdef X64 } #endif PRE(ilist, next, INSTR_CREATE_jcc(dcontext, OP_jle, opnd_create_instr(ok))); insert_restore_eflags(dcontext, ilist, next, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); PRE(ilist, next, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XBX, TLS_XBX_SLOT, XBX_OFFSET)); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX || (ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, next, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); } #endif jmp = INSTR_CREATE_jmp(dcontext, opnd_create_pc(after_write)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, next, jmp); PRE(ilist, next, ok); insert_restore_eflags(dcontext, ilist, next, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); PRE(ilist, next, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XBX, TLS_XBX_SLOT, XBX_OFFSET)); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX || (ptr_uint_t)end_pc > UINT_MAX) { PRE(ilist, next, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); } #endif } static bool sandbox_top_of_bb_check_s2ro(dcontext_t *dcontext, app_pc start_pc) { return (DYNAMO_OPTION(sandbox2ro_threshold) > 0 && /* we can't make stack regions ro so don't put in the instrumentation */ !is_address_on_stack(dcontext, start_pc) && /* case 9098 we don't want to ever make RO untrackable driver areas */ !is_driver_address(start_pc)); } static void sandbox_top_of_bb(dcontext_t *dcontext, instrlist_t *ilist, bool s2ro, uint flags, app_pc start_pc, app_pc end_pc, /* end is open */ bool for_cache, /* for obtaining the two patch locations: */ patch_list_t *patchlist, cache_pc *copy_start_loc, cache_pc *copy_end_loc) { /* add check at top of ilist that compares actual app instructions versus * copy we saved, stored in cache right after fragment itself. leave its * start address blank here, will be touched up after emitting this ilist. * * FIXME case 8165/PR 212600: optimize this: move reg restores to * custom fcache_return, use cmpsd instead of cmpsb, etc. * * if eflags live entering this bb: * save xax * lahf * seto %al * endif * if (-sandbox2ro_threshold > 0) * if x64: save xcx * incl &vm_area_t->exec_count (for x64, via xcx) * cmp sandbox2ro_threshold, vm_area_t->exec_count (for x64, via xcx) * if eflags live entering this bb, or x64: * jl past_threshold * if x64: restore xcx * if eflags live entering this bb: * jmp restore_eflags_and_exit * else * jmp start_pc marked as selfmod exit * endif * past_threshold: * else * jge start_pc marked as selfmod exit * endif * endif * if (-sandbox2ro_threshold == 0) && !x64) * save xcx * endif * save xsi * save xdi * if stats: * inc num_sandbox_execs stat (for x64, via xsi) * endif * mov start_pc,xsi * mov copy_start_pc,xdi # 1 opcode byte, then offset * # => patch point 1 * cmpsb * if copy_size > 1 # not an opt: for correctness: if "repe cmpsb" has xcx==0, it * # doesn't touch eflags and we treat cmp results as cmpsb results * jne check_results * if x64 && start_pc > 4GB * mov start_pc, xcx * cmp xsi, xcx * else * cmp xsi, start_pc * endif * mov copy_size-1, xcx # -1 b/c we already checked 1st byte * jge forward * mov copy_end_pc - 1, xdi # -1 b/c it is the end of this basic block * # => patch point 2 * mov end_pc - 1, xsi * forward: * repe cmpsb * endif # copy_size > 1 * check_results: * restore xcx * restore xsi * restore xdi * if eflags live: * je start_bb * restore_eflags_and_exit: * add $0x7f,%al * sahf * restore xax * jmp start_pc marked as selfmod exit * else * jne start_pc marked as selfmod exit * endif * start_bb: * if eflags live: * add $0x7f,%al * sahf * restore xax * endif */ instr_t *instr, *jmp; instr_t *restore_eflags_and_exit = NULL; bool use_tls = IF_X64_ELSE(true, false); IF_X64(bool x86_to_x64_ibl_opt = DYNAMO_OPTION(x86_to_x64_ibl_opt);) bool saved_xcx = false; instr_t *check_results = INSTR_CREATE_label(dcontext); instr = instrlist_first_expanded(dcontext, ilist); insert_save_eflags(dcontext, ilist, instr, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); if (s2ro) { /* It's difficult to use lea/jecxz here as we want to use a shared * counter but no lock, and thus need a relative comparison, while * lea/jecxz can only do an exact comparison. We could be exact by * having a separate counter per (private) fragment but by spilling * eflags we can inc memory, making the scheme here not inefficient. */ uint thresh = DYNAMO_OPTION(sandbox2ro_threshold); uint *counter; if (for_cache) counter = get_selfmod_exec_counter(start_pc); else { /* Won't find exec area since not a real fragment (probably * a recreation post-flush). Won't execute, so NULL is fine. */ counter = NULL; } #ifdef X64 PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); saved_xcx = true; PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR(counter))); PRE(ilist, instr, INSTR_CREATE_inc(dcontext, OPND_CREATE_MEM32(REG_XCX, 0))); PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, OPND_CREATE_MEM32(REG_XCX, 0), OPND_CREATE_INT_32OR8((int)thresh))); #else PRE(ilist, instr, INSTR_CREATE_inc(dcontext, OPND_CREATE_ABSMEM(counter, OPSZ_4))); PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, OPND_CREATE_ABSMEM(counter, OPSZ_4), OPND_CREATE_INT_32OR8(thresh))); #endif if (TEST(FRAG_WRITES_EFLAGS_6, flags) IF_X64(&& false)) { jmp = INSTR_CREATE_jcc(dcontext, OP_jge, opnd_create_pc(start_pc)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, instr, jmp); } else { instr_t *past_threshold = INSTR_CREATE_label(dcontext); PRE(ilist, instr, INSTR_CREATE_jcc_short(dcontext, OP_jl_short, opnd_create_instr(past_threshold))); #ifdef X64 PRE(ilist, instr, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); #endif if (!TEST(FRAG_WRITES_EFLAGS_6, flags)) { ASSERT(restore_eflags_and_exit == NULL); restore_eflags_and_exit = INSTR_CREATE_label(dcontext); PRE(ilist, instr, INSTR_CREATE_jmp (dcontext, opnd_create_instr(restore_eflags_and_exit))); } #ifdef X64 else { jmp = INSTR_CREATE_jmp(dcontext, opnd_create_pc(start_pc)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, instr, jmp); } #endif PRE(ilist, instr, past_threshold); } } if (!saved_xcx) { PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); } PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XSI, TLS_XBX_SLOT, XSI_OFFSET)); PRE(ilist, instr, SAVE_TO_DC_OR_TLS(dcontext, REG_XDI, TLS_XDX_SLOT, XDI_OFFSET)); DOSTATS({ if (GLOBAL_STATS_ON()) { /* We only do global inc, not bothering w/ thread-private stats. * We don't care about races: ballpark figure is good enough. * We could do a direct inc of memory for 32-bit. */ PRE(ilist, instr, INSTR_CREATE_mov_imm (dcontext, opnd_create_reg(REG_XSI), OPND_CREATE_INTPTR(GLOBAL_STAT_ADDR(num_sandbox_execs)))); PRE(ilist, instr, INSTR_CREATE_inc (dcontext, opnd_create_base_disp(REG_XSI, REG_NULL, 0, 0, OPSZ_STATS))); } }); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XSI), OPND_CREATE_INTPTR(start_pc))); PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XDI), /* will become copy start */ OPND_CREATE_INTPTR(start_pc))); if (patchlist != NULL) { ASSERT(copy_start_loc != NULL); add_patch_marker(patchlist, instr_get_prev(instr), PATCH_ASSEMBLE_ABSOLUTE, -(short)sizeof(cache_pc), (ptr_uint_t*)copy_start_loc); } PRE(ilist, instr, INSTR_CREATE_cmps_1(dcontext)); /* For a 1-byte copy size we cannot use "repe cmpsb" as it won't * touch eflags and we'll treat the cmp results as cmpsb results, which * doesn't work (cmp will never be equal) */ if (end_pc - start_pc > 1) { instr_t *forward = INSTR_CREATE_label(dcontext); PRE(ilist, instr, INSTR_CREATE_jcc(dcontext, OP_jne, opnd_create_instr(check_results))); #ifdef X64 if ((ptr_uint_t)start_pc > UINT_MAX) { PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR(start_pc))); PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XSI), opnd_create_reg(REG_XCX))); } else { #endif PRE(ilist, instr, INSTR_CREATE_cmp(dcontext, opnd_create_reg(REG_XSI), OPND_CREATE_INT32((int)(ptr_int_t)start_pc))); #ifdef X64 } #endif PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XCX), OPND_CREATE_INTPTR(end_pc - (start_pc + 1)))); /* i#2155: In the case where the direction flag is set, xsi will be lesser * than start_pc after cmps, and the jump branch will not be taken. */ PRE(ilist, instr, INSTR_CREATE_jcc(dcontext, OP_jge, opnd_create_instr(forward))); /* i#2155: The immediate value is only psychological * since it will be modified in finalize_selfmod_sandbox. */ PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XDI), /* will become copy end */ OPND_CREATE_INTPTR(end_pc - 1))); if (patchlist != NULL) { ASSERT(copy_end_loc != NULL); add_patch_marker(patchlist, instr_get_prev(instr), PATCH_ASSEMBLE_ABSOLUTE, -(short)sizeof(cache_pc), (ptr_uint_t*)copy_end_loc); } /* i#2155: The next rep cmps comparison will be done backward, * and thus it should be started at end_pc - 1 * because current basic block is [start_pc:end_pc-1]. */ PRE(ilist, instr, INSTR_CREATE_mov_imm(dcontext, opnd_create_reg(REG_XSI), OPND_CREATE_INTPTR(end_pc - 1))); PRE(ilist, instr, forward); PRE(ilist, instr, INSTR_CREATE_rep_cmps_1(dcontext)); } PRE(ilist, instr, check_results); PRE(ilist, instr, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XCX, TLS_XCX_SLOT, XCX_OFFSET)); PRE(ilist, instr, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XSI, TLS_XBX_SLOT, XSI_OFFSET)); PRE(ilist, instr, RESTORE_FROM_DC_OR_TLS(dcontext, REG_XDI, TLS_XDX_SLOT, XDI_OFFSET)); if (!TEST(FRAG_WRITES_EFLAGS_6, flags)) { instr_t *start_bb = INSTR_CREATE_label(dcontext); PRE(ilist, instr, INSTR_CREATE_jcc(dcontext, OP_je, opnd_create_instr(start_bb))); if (restore_eflags_and_exit != NULL) /* somebody needs this label */ PRE(ilist, instr, restore_eflags_and_exit); insert_restore_eflags(dcontext, ilist, instr, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); jmp = INSTR_CREATE_jmp(dcontext, opnd_create_pc(start_pc)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, instr, jmp); PRE(ilist, instr, start_bb); } else { jmp = INSTR_CREATE_jcc(dcontext, OP_jne, opnd_create_pc(start_pc)); instr_branch_set_special_exit(jmp, true); /* an exit cti, not a meta instr */ instrlist_preinsert(ilist, instr, jmp); } insert_restore_eflags(dcontext, ilist, instr, flags, use_tls, !use_tls _IF_X64(X64_CACHE_MODE_DC(dcontext) && !X64_MODE_DC(dcontext) && x86_to_x64_ibl_opt)); /* fall-through to bb start */ } /* returns false if failed to add sandboxing b/c of a problematic ilist -- * invalid instrs, elided ctis, etc. */ bool insert_selfmod_sandbox(dcontext_t *dcontext, instrlist_t *ilist, uint flags, app_pc start_pc, app_pc end_pc, /* end is open */ bool record_translation, bool for_cache) { instr_t *instr, *next; if (!INTERNAL_OPTION(hw_cache_consistency)) return true; /* nothing to do */ /* this code assumes bb covers single, contiguous region */ ASSERT((flags & FRAG_HAS_DIRECT_CTI) == 0); /* store first instr so loop below will skip top check */ instr = instrlist_first_expanded(dcontext, ilist); instrlist_set_our_mangling(ilist, true); /* PR 267260 */ if (record_translation) { /* skip client instrumentation, if any, as is done below */ while (instr != NULL && instr_is_meta(instr)) instr = instr_get_next_expanded(dcontext, ilist, instr); /* make sure inserted instrs translate to the proper original instr */ ASSERT(instr != NULL && instr_get_translation(instr) != NULL); instrlist_set_translation_target(ilist, instr_get_translation(instr)); } sandbox_top_of_bb(dcontext, ilist, sandbox_top_of_bb_check_s2ro(dcontext, start_pc), flags, start_pc, end_pc, for_cache, NULL, NULL, NULL); if (INTERNAL_OPTION(sandbox_writes)) { for (; instr != NULL; instr = next) { int i, opcode; opnd_t op; opcode = instr_get_opcode(instr); if (!instr_valid(instr)) { /* invalid instr -- best to truncate block here, easiest way * to do that and get all flags right is to re-build it, * but this time we'll use full decode so we'll avoid the discrepancy * between fast and full decode on invalid instr detection. */ if (record_translation) instrlist_set_translation_target(ilist, NULL); instrlist_set_our_mangling(ilist, false); /* PR 267260 */ return false; } /* don't mangle anything that mangle inserts! */ next = instr_get_next_expanded(dcontext, ilist, instr); if (instr_is_meta(instr)) continue; if (record_translation) { /* make sure inserted instrs translate to the proper original instr */ ASSERT(instr_get_translation(instr) != NULL); instrlist_set_translation_target(ilist, instr_get_translation(instr)); } if (opcode == OP_rep_ins || opcode == OP_rep_movs || opcode == OP_rep_stos) { sandbox_rep_instr(dcontext, ilist, instr, next, start_pc, end_pc); continue; } /* FIXME case 8165: optimize for multiple push/pop */ for (i=0; i<instr_num_dsts(instr); i++) { op = instr_get_dst(instr, i); if (opnd_is_memory_reference(op)) { /* ignore CALL* since last anyways */ if (instr_is_call_indirect(instr)) { ASSERT(next != NULL && !instr_raw_bits_valid(next)); /* FIXME case 8165: why do we ever care about the last * instruction modifying anything? */ /* conversion of IAT calls (but not elision) * transforms this into a direct CALL, * in that case 'next' is a direct jmp * fall through, so has no exit flags */ ASSERT(EXIT_IS_CALL(instr_exit_branch_type(next)) || (DYNAMO_OPTION(IAT_convert) && TEST(INSTR_IND_CALL_DIRECT, instr->flags))); LOG(THREAD, LOG_INTERP, 3, " ignoring CALL* at end of fragment\n"); /* This test could be done outside of this loop on * destinations, but since it is rare it is faster * to do it here. Using continue instead of break in case * it gets moved out. */ continue; } if (opnd_is_abs_addr(op) IF_X64(|| opnd_is_rel_addr(op))) { app_pc abs_addr = opnd_get_addr(op); uint size = opnd_size_in_bytes(opnd_get_size(op)); if (!POINTER_OVERFLOW_ON_ADD(abs_addr, size) && (abs_addr + size < start_pc || abs_addr >= end_pc)) { /* This is an absolute memory reference that points * outside the current basic block and doesn't need * sandboxing. */ continue; } } sandbox_write(dcontext, ilist, instr, next, op, start_pc, end_pc); } } } } if (record_translation) instrlist_set_translation_target(ilist, NULL); instrlist_set_our_mangling(ilist, false); /* PR 267260 */ return true; } /* Offsets within selfmod sandbox top-of-bb code that we patch once * the code is emitted, as the values depend on the emitted address. * These vary by whether sandbox_top_of_bb_check_s2ro() and whether * eflags are not written, all written, or just OF is written. * For the copy_size == 1 variation, we simply ignore the 2nd patch point. */ static bool selfmod_s2ro[] = { false, true }; static uint selfmod_eflags[] = { FRAG_WRITES_EFLAGS_6, FRAG_WRITES_EFLAGS_OF, 0 }; #define SELFMOD_NUM_S2RO (sizeof(selfmod_s2ro)/sizeof(selfmod_s2ro[0])) #define SELFMOD_NUM_EFLAGS (sizeof(selfmod_eflags)/sizeof(selfmod_eflags[0])) #ifdef X64 /* additional complexity: start_pc > 4GB? */ static app_pc selfmod_gt4G[] = { NULL, (app_pc)(POINTER_MAX-2)/*so end can be +2*/ }; # define SELFMOD_NUM_GT4G (sizeof(selfmod_gt4G)/sizeof(selfmod_gt4G[0])) #endif uint selfmod_copy_start_offs[SELFMOD_NUM_S2RO][SELFMOD_NUM_EFLAGS] IF_X64([SELFMOD_NUM_GT4G]); uint selfmod_copy_end_offs[SELFMOD_NUM_S2RO][SELFMOD_NUM_EFLAGS] IF_X64([SELFMOD_NUM_GT4G]); void set_selfmod_sandbox_offsets(dcontext_t *dcontext) { int i, j; #ifdef X64 int k; #endif instrlist_t ilist; patch_list_t patch; static byte buf[256]; uint len; /* We assume this is called at init, when .data is +w and we need no * synch on accessing buf */ ASSERT(!dynamo_initialized); for (i = 0; i < SELFMOD_NUM_S2RO; i++) { for (j = 0; j < SELFMOD_NUM_EFLAGS; j++) { #ifdef X64 for (k = 0; k < SELFMOD_NUM_GT4G; k++) { #endif cache_pc start_pc, end_pc; app_pc app_start; instr_t *inst; instrlist_init(&ilist); /* sandbox_top_of_bb assumes there's an instr there */ instrlist_append(&ilist, INSTR_CREATE_label(dcontext)); init_patch_list(&patch, PATCH_TYPE_ABSOLUTE); app_start = IF_X64_ELSE(selfmod_gt4G[k], NULL); sandbox_top_of_bb(dcontext, &ilist, selfmod_s2ro[i], selfmod_eflags[j], /* we must have a >1-byte region to get * both patch points */ app_start, app_start + 2, false, &patch, &start_pc, &end_pc); /* The exit cti's may not reachably encode (normally * they'd be mangled away) so we munge them first */ for (inst = instrlist_first(&ilist); inst != NULL; inst = instr_get_next(inst)) { if (instr_is_exit_cti(inst)) { instr_set_target(inst, opnd_create_pc(buf)); } } len = encode_with_patch_list(dcontext, &patch, &ilist, buf); ASSERT(len < BUFFER_SIZE_BYTES(buf)); IF_X64(ASSERT(CHECK_TRUNCATE_TYPE_uint(start_pc - buf))); selfmod_copy_start_offs[i][j]IF_X64([k]) = (uint) (start_pc - buf); IF_X64(ASSERT(CHECK_TRUNCATE_TYPE_uint(end_pc - buf))); selfmod_copy_end_offs[i][j]IF_X64([k]) = (uint) (end_pc - buf); LOG(THREAD, LOG_EMIT, 3, "selfmod offs %d %d"IF_X64(" %d")": %u %u\n", i, j, IF_X64_(k) selfmod_copy_start_offs[i][j]IF_X64([k]), selfmod_copy_end_offs[i][j]IF_X64([k])); /* free the instrlist_t elements */ instrlist_clear(dcontext, &ilist); #ifdef X64 } #endif } } } void finalize_selfmod_sandbox(dcontext_t *dcontext, fragment_t *f) { cache_pc copy_pc = FRAGMENT_SELFMOD_COPY_PC(f); byte *pc; int i, j; #ifdef X64 int k = ((ptr_uint_t)f->tag) > UINT_MAX ? 1 : 0; #endif i = (sandbox_top_of_bb_check_s2ro(dcontext, f->tag)) ? 1 : 0; j = (TEST(FRAG_WRITES_EFLAGS_6, f->flags) ? 0 : (TEST(FRAG_WRITES_EFLAGS_OF, f->flags) ? 1 : 2)); pc = FCACHE_ENTRY_PC(f) + selfmod_copy_start_offs[i][j]IF_X64([k]); /* The copy start gets updated after sandbox_top_of_bb. */ *((cache_pc*)pc) = copy_pc; if (FRAGMENT_SELFMOD_COPY_CODE_SIZE(f) > 1) { pc = FCACHE_ENTRY_PC(f) + selfmod_copy_end_offs[i][j]IF_X64([k]); /* i#2155: The copy end gets updated. * This value will be used in the case where the direction flag is set. * It will then be the starting point for the backward repe cmps. */ *((cache_pc*)pc) = (copy_pc + FRAGMENT_SELFMOD_COPY_CODE_SIZE(f) - 1); } /* else, no 2nd patch point */ } #endif /* !STANDALONE_DECODER */ /***************************************************************************/
1
10,996
I think that the iret handling is not yet good.
DynamoRIO-dynamorio
c
@@ -78,7 +78,7 @@ const DeviceSizeTabBar = ( { { icon } </Tab> ); - } + }, ) } </TabBar> );
1
/** * DeviceSizeTabBar component. * * Site Kit by Google, Copyright 2021 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * External dependencies */ import Tab from '@material/react-tab'; import TabBar from '@material/react-tab-bar'; import PropTypes from 'prop-types'; /** * WordPress dependencies */ import { useCallback } from '@wordpress/element'; import { __ } from '@wordpress/i18n'; /** * Internal dependencies */ import DeviceSizeMobileIcon from '../../svg/device-size-mobile-icon.svg'; import DeviceSizeDesktopIcon from '../../svg/device-size-desktop-icon.svg'; const DeviceSizeTabBar = ( { activeTab, handleDeviceSizeUpdate, deviceSizes = [ { slug: 'mobile', label: __( 'Mobile', 'google-site-kit' ), icon: <DeviceSizeMobileIcon width="15" height="22" />, }, { slug: 'desktop', label: __( 'Desktop', 'google-site-kit' ), icon: <DeviceSizeDesktopIcon width="23" height="17" />, }, ], } ) => { const onUpdate = useCallback( ( index ) => { const device = deviceSizes[ index ]; handleDeviceSizeUpdate( device, index ); }, [ deviceSizes, handleDeviceSizeUpdate ] ); if ( ! deviceSizes?.length ) { return null; } const activeIndex = deviceSizes.findIndex( ( { slug } ) => slug === activeTab ); return ( <TabBar className="googlesitekit-device-size-tab-bar" activeIndex={ activeIndex } handleActiveIndexUpdate={ onUpdate } > { deviceSizes.map( ( { icon, label }, i ) => { return ( <Tab key={ `google-sitekit-device-size-tab-key-${ i }` } aria-label={ label } focusOnActivate={ false } > { icon } </Tab> ); } ) } </TabBar> ); }; DeviceSizeTabBar.propTypes = { activeTab: PropTypes.string, deviceSizes: PropTypes.arrayOf( PropTypes.shape( { label: PropTypes.string, slug: PropTypes.string, icon: PropTypes.node, } ), ), handleDeviceSizeUpdate: PropTypes.func, }; DeviceSizeTabBar.defaultProps = { handleDeviceSizeUpdate: () => {}, }; export default DeviceSizeTabBar;
1
40,145
Huh, that's kinda weird. I get it, but it's unexpected to me...
google-site-kit-wp
js
@@ -172,15 +172,6 @@ func (t *Tag) Done(s State) bool { return err == nil && n == total } -// DoneSplit sets total count to SPLIT count and sets the associated swarm hash for this tag -// is meant to be called when splitter finishes for input streams of unknown size -func (t *Tag) DoneSplit(address swarm.Address) int64 { - total := atomic.LoadInt64(&t.Split) - atomic.StoreInt64(&t.Total, total) - t.Address = address - return total -} - // Status returns the value of state and the total count func (t *Tag) Status(state State) (int64, int64, error) { count, seen, total := t.Get(state), atomic.LoadInt64(&t.Seen), atomic.LoadInt64(&t.Total)
1
// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package tags import ( "context" "encoding/binary" "errors" "sync" "sync/atomic" "time" "github.com/ethersphere/bee/pkg/swarm" "github.com/ethersphere/bee/pkg/tracing" "github.com/opentracing/opentracing-go" ) var ( errExists = errors.New("already exists") errNA = errors.New("not available yet") errNoETA = errors.New("unable to calculate ETA") ) // State is the enum type for chunk states type State = uint32 const ( TotalChunks State = iota // The total no of chunks for the tag StateSplit // chunk has been processed by filehasher/swarm safe call StateStored // chunk stored locally StateSeen // chunk previously seen StateSent // chunk sent to neighbourhood StateSynced // proof is received; chunk removed from sync db; chunk is available everywhere ) // Tag represents info on the status of new chunks type Tag struct { Total int64 // total chunks belonging to a tag Split int64 // number of chunks already processed by splitter for hashing Seen int64 // number of chunks already seen Stored int64 // number of chunks already stored locally Sent int64 // number of chunks sent for push syncing Synced int64 // number of chunks synced with proof Uid uint32 // a unique identifier for this tag Anonymous bool // indicates if the tag is anonymous (i.e. if only pull sync should be used) Name string // a name tag for this tag Address swarm.Address // the associated swarm hash for this tag StartedAt time.Time // tag started to calculate ETA // end-to-end tag tracing ctx context.Context // tracing context span opentracing.Span // tracing root span spanOnce sync.Once // make sure we close root span only once } // NewTag creates a new tag, and returns it func NewTag(ctx context.Context, uid uint32, s string, total int64, anon bool, tracer *tracing.Tracer) *Tag { t := &Tag{ Uid: uid, Anonymous: anon, Name: s, StartedAt: time.Now(), Total: total, } // context here is used only to store the root span `new.upload.tag` within Tag, // we don't need any type of ctx Deadline or cancellation for this particular ctx t.span, _, t.ctx = tracer.StartSpanFromContext(ctx, "new.upload.tag", nil) return t } // Context accessor func (t *Tag) Context() context.Context { return t.ctx } // FinishRootSpan closes the pushsync span of the tags func (t *Tag) FinishRootSpan() { t.spanOnce.Do(func() { t.span.Finish() }) } // IncN increments the count for a state func (t *Tag) IncN(state State, n int) { var v *int64 switch state { case TotalChunks: v = &t.Total case StateSplit: v = &t.Split case StateStored: v = &t.Stored case StateSeen: v = &t.Seen case StateSent: v = &t.Sent case StateSynced: v = &t.Synced } atomic.AddInt64(v, int64(n)) } // Inc increments the count for a state func (t *Tag) Inc(state State) { t.IncN(state, 1) } // Get returns the count for a state on a tag func (t *Tag) Get(state State) int64 { var v *int64 switch state { case TotalChunks: v = &t.Total case StateSplit: v = &t.Split case StateStored: v = &t.Stored case StateSeen: v = &t.Seen case StateSent: v = &t.Sent case StateSynced: v = &t.Synced } return atomic.LoadInt64(v) } // GetTotal returns the total count func (t *Tag) TotalCounter() int64 { return atomic.LoadInt64(&t.Total) } // WaitTillDone returns without error once the tag is complete // wrt the state given as argument // it returns an error if the context is done func (t *Tag) WaitTillDone(ctx context.Context, s State) error { if t.Done(s) { return nil } ticker := time.NewTicker(100 * time.Millisecond) for { select { case <-ticker.C: if t.Done(s) { return nil } case <-ctx.Done(): return ctx.Err() } } } // Done returns true if tag is complete wrt the state given as argument func (t *Tag) Done(s State) bool { n, total, err := t.Status(s) return err == nil && n == total } // DoneSplit sets total count to SPLIT count and sets the associated swarm hash for this tag // is meant to be called when splitter finishes for input streams of unknown size func (t *Tag) DoneSplit(address swarm.Address) int64 { total := atomic.LoadInt64(&t.Split) atomic.StoreInt64(&t.Total, total) t.Address = address return total } // Status returns the value of state and the total count func (t *Tag) Status(state State) (int64, int64, error) { count, seen, total := t.Get(state), atomic.LoadInt64(&t.Seen), atomic.LoadInt64(&t.Total) if total == 0 { return count, total, errNA } switch state { case StateSplit, StateStored, StateSeen: return count, total, nil case StateSent, StateSynced: stored := atomic.LoadInt64(&t.Stored) if stored < total { return count, total - seen, errNA } return count, total - seen, nil } return count, total, errNA } // ETA returns the time of completion estimated based on time passed and rate of completion func (t *Tag) ETA(state State) (time.Time, error) { cnt, total, err := t.Status(state) if err != nil { return time.Time{}, err } if cnt == 0 || total == 0 { return time.Time{}, errNoETA } diff := time.Since(t.StartedAt) dur := time.Duration(total) * diff / time.Duration(cnt) return t.StartedAt.Add(dur), nil } // MarshalBinary marshals the tag into a byte slice func (tag *Tag) MarshalBinary() (data []byte, err error) { buffer := make([]byte, 4) binary.BigEndian.PutUint32(buffer, tag.Uid) encodeInt64Append(&buffer, tag.Total) encodeInt64Append(&buffer, tag.Split) encodeInt64Append(&buffer, tag.Seen) encodeInt64Append(&buffer, tag.Stored) encodeInt64Append(&buffer, tag.Sent) encodeInt64Append(&buffer, tag.Synced) intBuffer := make([]byte, 8) n := binary.PutVarint(intBuffer, tag.StartedAt.Unix()) buffer = append(buffer, intBuffer[:n]...) n = binary.PutVarint(intBuffer, int64(len(tag.Address.Bytes()))) buffer = append(buffer, intBuffer[:n]...) buffer = append(buffer, tag.Address.Bytes()...) buffer = append(buffer, []byte(tag.Name)...) return buffer, nil } // UnmarshalBinary unmarshals a byte slice into a tag func (tag *Tag) UnmarshalBinary(buffer []byte) error { if len(buffer) < 13 { return errors.New("buffer too short") } tag.Uid = binary.BigEndian.Uint32(buffer) buffer = buffer[4:] tag.Total = decodeInt64Splice(&buffer) tag.Split = decodeInt64Splice(&buffer) tag.Seen = decodeInt64Splice(&buffer) tag.Stored = decodeInt64Splice(&buffer) tag.Sent = decodeInt64Splice(&buffer) tag.Synced = decodeInt64Splice(&buffer) t, n := binary.Varint(buffer) tag.StartedAt = time.Unix(t, 0) buffer = buffer[n:] t, n = binary.Varint(buffer) buffer = buffer[n:] if t > 0 { tag.Address = swarm.NewAddress(buffer[:t]) } tag.Name = string(buffer[t:]) return nil } func encodeInt64Append(buffer *[]byte, val int64) { intBuffer := make([]byte, 8) n := binary.PutVarint(intBuffer, val) *buffer = append(*buffer, intBuffer[:n]...) } func decodeInt64Splice(buffer *[]byte) int64 { val, n := binary.Varint((*buffer)) *buffer = (*buffer)[n:] return val }
1
10,770
why is this removed? it is important when you upload from stream of unknown size
ethersphere-bee
go
@@ -3,7 +3,7 @@ class ApiToken < ActiveRecord::Base before_create :generate_token - belongs_to :approval + belongs_to :approval, class_name: 'Approvals::Individual' has_one :proposal, through: :approval has_one :user, through: :approval
1
class ApiToken < ActiveRecord::Base has_paper_trail before_create :generate_token belongs_to :approval has_one :proposal, through: :approval has_one :user, through: :approval # TODO validates :access_token, presence: true validates :approval_id, presence: true scope :unexpired, -> { where('expires_at >= ?', Time.now) } scope :expired, -> { where('expires_at < ?', Time.now) } scope :unused, -> { where(used_at: nil) } scope :fresh, -> { unused.unexpired } def used? !!self.used_at end # @todo: validate presence of expires_at def expired? self.expires_at && self.expires_at < Time.now end def use! self.update_attributes!(used_at: Time.now) end private def generate_token begin self.access_token = SecureRandom.hex end while self.class.exists?(access_token: access_token) self.expires_at ||= Time.now + 7.days end end
1
13,628
Out of curiosity, why is this needed? Does it enforce what class can be assigned?
18F-C2
rb
@@ -174,6 +174,11 @@ func (a *Agent) initEndpoints() error { return fmt.Errorf("Error creating GRPC listener: %s", err) } + if addr.Network() == "unix" { + // Any process should be able to use this unix socket + os.Chmod(addr.String(), os.ModePerm) + } + go func() { a.config.ErrorCh <- a.grpcServer.Serve(listener) }()
1
package agent import ( "context" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/tls" "crypto/x509" "crypto/x509/pkix" "fmt" "io/ioutil" "net" "net/url" "os" "path" "time" "github.com/sirupsen/logrus" "github.com/spiffe/go-spiffe/uri" "github.com/spiffe/spire/pkg/agent/auth" "github.com/spiffe/spire/pkg/agent/cache" "github.com/spiffe/spire/pkg/agent/catalog" "github.com/spiffe/spire/proto/agent/keymanager" "github.com/spiffe/spire/proto/agent/nodeattestor" "github.com/spiffe/spire/proto/api/node" "github.com/spiffe/spire/proto/api/workload" "github.com/spiffe/spire/proto/common" "google.golang.org/grpc" "google.golang.org/grpc/credentials" "google.golang.org/grpc/peer" spiffe_tls "github.com/spiffe/go-spiffe/tls" ) type Config struct { // Address to bind the workload api to BindAddress *net.UnixAddr // Distinguished Name to use for all CSRs CertDN *pkix.Name // Directory to store runtime data DataDir string // Directory for plugin configs PluginDir string Log logrus.FieldLogger // Address of SPIRE server ServerAddress *net.TCPAddr // A channel for receiving errors from agent goroutines ErrorCh chan error // A channel to trigger agent shutdown ShutdownCh chan struct{} // Trust domain and associated CA bundle TrustDomain url.URL TrustBundle *x509.CertPool } type Agent struct { BaseSVID []byte baseSVIDKey *ecdsa.PrivateKey BaseSVIDTTL int32 config *Config grpcServer *grpc.Server Cache cache.Cache Catalog catalog.Catalog serverCerts []*x509.Certificate } func New(c *Config) *Agent { config := &catalog.Config{ ConfigDir: c.PluginDir, Log: c.Log.WithField("subsystem_name", "catalog"), } return &Agent{config: c, Catalog: catalog.New(config)} } // Run the agent // This method initializes the agent, including its plugins, // and then blocks on the main event loop. func (a *Agent) Run() error { a.Cache = cache.NewCache() err := a.initPlugins() if err != nil { return err } err = a.bootstrap() if err != nil { return err } err = a.initEndpoints() if err != nil { return err } // Main event loop a.config.Log.Info("SPIRE Agent is now running") for { select { case err = <-a.config.ErrorCh: return err case <-a.config.ShutdownCh: return a.Shutdown() } } } func (a *Agent) Shutdown() error { if a.Catalog != nil { a.Catalog.Stop() } a.grpcServer.GracefulStop() // Drain error channel, last one wins var err error Drain: for { select { case e := <-a.config.ErrorCh: err = e default: break Drain } } return err } func (a *Agent) initPlugins() error { err := a.Catalog.Run() if err != nil { return err } return nil } func (a *Agent) initEndpoints() error { a.config.Log.Info("Starting the workload API") maxWorkloadTTL := time.Duration(a.BaseSVIDTTL/2) * time.Second log := a.config.Log.WithField("subsystem_name", "workload") ws := &workloadServer{ bundle: a.serverCerts[1].Raw, // TODO: Fix handling of serverCerts cache: a.Cache, catalog: a.Catalog, l: log, maxTTL: maxWorkloadTTL, } // Create a gRPC server with our custom "credential" resolver a.grpcServer = grpc.NewServer(grpc.Creds(auth.NewCredentials())) workload.RegisterWorkloadServer(a.grpcServer, ws) addr := a.config.BindAddress if addr.Network() == "unix" { _ = os.Remove(addr.String()) } listener, err := net.Listen(addr.Network(), addr.String()) if err != nil { return fmt.Errorf("Error creating GRPC listener: %s", err) } go func() { a.config.ErrorCh <- a.grpcServer.Serve(listener) }() return nil } func (a *Agent) bootstrap() error { a.config.Log.Info("Bootstrapping SPIRE agent") plugins := a.Catalog.KeyManagers() if len(plugins) != 1 { return fmt.Errorf("Expected only one key manager plugin, found %i", len(plugins)) } keyManager := plugins[0] // Fetch or generate private key res, err := keyManager.FetchPrivateKey(&keymanager.FetchPrivateKeyRequest{}) if err != nil { return err } if len(res.PrivateKey) > 0 { key, err := x509.ParseECPrivateKey(res.PrivateKey) if err != nil { return err } err = a.loadBaseSVID() if err != nil { return err } a.baseSVIDKey = key } else { if a.BaseSVID != nil { a.config.Log.Info("Certificate configured but no private key found!") } a.config.Log.Info("Generating private key for new base SVID") res, err := keyManager.GenerateKeyPair(&keymanager.GenerateKeyPairRequest{}) if err != nil { return fmt.Errorf("Failed to generate private key: %s", err) } key, err := x509.ParseECPrivateKey(res.PrivateKey) if err != nil { return err } a.baseSVIDKey = key // If we're here, we need to attest/Re-attest regEntryMap, err := a.attest() if err != nil { return err } err = a.FetchSVID(regEntryMap, a.BaseSVID, a.baseSVIDKey) if err != nil { return err } } a.config.Log.Info("Bootstrapping done") return nil } /* Attest the agent, obtain a new Base SVID returns a spiffeid->registration entries map This map is used generated CSR for non-base SVIDs and update the agent cache entries */ func (a *Agent) attest() (map[string]*common.RegistrationEntry, error) { a.config.Log.Info("Preparing to attest against %s", a.config.ServerAddress.String()) plugins := a.Catalog.NodeAttestors() if len(plugins) != 1 { return nil, fmt.Errorf("Expected only one node attestor plugin, found %i", len(plugins)) } attestor := plugins[0] pluginResponse, err := attestor.FetchAttestationData(&nodeattestor.FetchAttestationDataRequest{}) if err != nil { return nil, fmt.Errorf("Failed to get attestation data from plugin: %s", err) } // Parse the SPIFFE ID, form a CSR with it id, err := url.Parse(pluginResponse.SpiffeId) if err != nil { return nil, fmt.Errorf("Failed to form SPIFFE ID: %s", err) } csr, err := a.generateCSR(id, a.baseSVIDKey) if err != nil { return nil, fmt.Errorf("Failed to generate CSR for attestation: %s", err) } // Since we are bootstrapping, this is explicitly _not_ mTLS conn := a.getNodeAPIClientConn(false, a.BaseSVID, a.baseSVIDKey) defer conn.Close() nodeClient := node.NewNodeClient(conn) // Perform attestation req := &node.FetchBaseSVIDRequest{ AttestedData: pluginResponse.AttestedData, Csr: csr, } calloptPeer := new(peer.Peer) serverResponse, err := nodeClient.FetchBaseSVID(context.Background(), req, grpc.Peer(calloptPeer)) if err != nil { return nil, fmt.Errorf("Failed attestation against spire server: %s", err) } if tlsInfo, ok := calloptPeer.AuthInfo.(credentials.TLSInfo); ok { a.serverCerts = tlsInfo.State.PeerCertificates } // Pull base SVID out of the response svids := serverResponse.SvidUpdate.Svids if len(svids) > 1 { a.config.Log.Info("More than one SVID received during attestation!") } svid, ok := svids[id.String()] if !ok { return nil, fmt.Errorf("Base SVID not found in attestation response") } var registrationEntryMap = make(map[string]*common.RegistrationEntry) for _, entry := range serverResponse.SvidUpdate.RegistrationEntries { registrationEntryMap[entry.SpiffeId] = entry } a.BaseSVID = svid.SvidCert a.BaseSVIDTTL = svid.Ttl a.storeBaseSVID() a.config.Log.Info("Attestation complete") return registrationEntryMap, nil } // Generate a CSR for the given SPIFFE ID func (a *Agent) generateCSR(spiffeID *url.URL, key *ecdsa.PrivateKey) ([]byte, error) { a.config.Log.Info("Generating a CSR for %s", spiffeID.String()) uriSANs, err := uri.MarshalUriSANs([]string{spiffeID.String()}) if err != nil { return []byte{}, err } uriSANExtension := []pkix.Extension{{ Id: uri.OidExtensionSubjectAltName, Value: uriSANs, Critical: true, }} csrData := &x509.CertificateRequest{ Subject: *a.config.CertDN, SignatureAlgorithm: x509.ECDSAWithSHA256, ExtraExtensions: uriSANExtension, } csr, err := x509.CreateCertificateRequest(rand.Reader, csrData, key) if err != nil { return nil, err } return csr, nil } // Read base SVID from data dir and load it func (a *Agent) loadBaseSVID() error { a.config.Log.Info("Loading base SVID from disk") certPath := path.Join(a.config.DataDir, "base_svid.crt") if _, err := os.Stat(certPath); os.IsNotExist(err) { a.config.Log.Info("A base SVID could not be found. A new one will be generated") return nil } data, err := ioutil.ReadFile(certPath) if err != nil { return fmt.Errorf("Could not read Base SVID at path %s: %s", certPath, err) } // Sanity check _, err = x509.ParseCertificate(data) if err != nil { return fmt.Errorf("Certificate at %s could not be understood: %s", certPath, err) } a.BaseSVID = data return nil } // Write base SVID to storage dir func (a *Agent) storeBaseSVID() { certPath := path.Join(a.config.DataDir, "base_svid.crt") f, err := os.Create(certPath) defer f.Close() if err != nil { a.config.Log.Info("Unable to store Base SVID at path %s!", certPath) return } f.Write(a.BaseSVID) f.Sync() return } func (a *Agent) FetchSVID(registrationEntryMap map[string]*common.RegistrationEntry, svidCert []byte, key *ecdsa.PrivateKey) (err error) { if len(registrationEntryMap) != 0 { Csrs, pkeyMap, err := a.generateCSRForRegistrationEntries(registrationEntryMap) if err != nil { return err } conn := a.getNodeAPIClientConn(true, svidCert, key) defer conn.Close() nodeClient := node.NewNodeClient(conn) req := &node.FetchSVIDRequest{Csrs: Csrs} callOptPeer := new(peer.Peer) resp, err := nodeClient.FetchSVID(context.Background(), req, grpc.Peer(callOptPeer)) if err != nil { return err } if tlsInfo, ok := callOptPeer.AuthInfo.(credentials.TLSInfo); ok { a.serverCerts = tlsInfo.State.PeerCertificates } svidMap := resp.GetSvidUpdate().GetSvids() // TODO: Fetch the referenced federated bundles and // set them here bundles := make(map[string][]byte) for spiffeID, entry := range registrationEntryMap { svid, svidInMap := svidMap[spiffeID] pkey, pkeyInMap := pkeyMap[spiffeID] if svidInMap && pkeyInMap { svidCert, err := x509.ParseCertificate(svid.SvidCert) if err != nil { return fmt.Errorf("SVID for ID %s could not be parsed: %s", spiffeID, err) } entry := cache.CacheEntry{ RegistrationEntry: entry, SVID: svid, PrivateKey: pkey, Bundles: bundles, Expiry: svidCert.NotAfter, } a.Cache.SetEntry(entry) } } newRegistrationMap := make(map[string]*common.RegistrationEntry) if len(resp.SvidUpdate.RegistrationEntries) != 0 { for _, entry := range resp.SvidUpdate.RegistrationEntries { if _, ok := registrationEntryMap[entry.SpiffeId]; ok != true { newRegistrationMap[entry.SpiffeId] = entry } a.FetchSVID(newRegistrationMap, svidMap[entry.SpiffeId].SvidCert, pkeyMap[entry.SpiffeId]) } } } return } func (a *Agent) getNodeAPIClientConn(mtls bool, svid []byte, key *ecdsa.PrivateKey) (conn *grpc.ClientConn) { serverID := a.config.TrustDomain serverID.Path = "spiffe/cp" var spiffePeer *spiffe_tls.TLSPeer var tlsCert []tls.Certificate var tlsConfig *tls.Config if !mtls { spiffePeer = &spiffe_tls.TLSPeer{ SpiffeIDs: []string{serverID.String()}, TrustRoots: a.config.TrustBundle, } tlsConfig = spiffePeer.NewTLSConfig(tlsCert) } else { certPool := x509.NewCertPool() for _, cert := range a.serverCerts { certPool.AddCert(cert) } spiffePeer = &spiffe_tls.TLSPeer{ SpiffeIDs: []string{serverID.String()}, TrustRoots: certPool, } tlsCert = append(tlsCert, tls.Certificate{Certificate: [][]byte{svid}, PrivateKey: key}) tlsConfig = spiffePeer.NewTLSConfig(tlsCert) } dialCreds := grpc.WithTransportCredentials(credentials.NewTLS(tlsConfig)) conn, err := grpc.Dial(a.config.ServerAddress.String(), dialCreds) if err != nil { return } return } func (a *Agent) generateCSRForRegistrationEntries( regEntryMap map[string]*common.RegistrationEntry) (CSRs [][]byte, pkeyMap map[string]*ecdsa.PrivateKey, err error) { pkeyMap = make(map[string]*ecdsa.PrivateKey) for id, _ := range regEntryMap { key, err := ecdsa.GenerateKey(elliptic.P521(), rand.Reader) if err != nil { return nil, nil, err } spiffeid, err := url.Parse(id) if err != nil { return nil, nil, err } csr, err := a.generateCSR(spiffeid, key) if err != nil { return nil, nil, err } CSRs = append(CSRs, csr) pkeyMap[id] = key } return }
1
8,671
non-blocking: Now that we have a handful of statements which deal with creating a listener, it may make sense to introduce a `createListener` method or something similar
spiffe-spire
go
@@ -34,6 +34,8 @@ namespace Nethermind.Mev } public IBlockProcessor.IBlockTransactionsExecutor Create(ReadOnlyTxProcessingEnv readOnlyTxProcessingEnv) => - new MevBlockProductionTransactionsExecutor(readOnlyTxProcessingEnv, _specProvider, _logManager); + LastExecutor = new MevBlockProductionTransactionsExecutor(readOnlyTxProcessingEnv, _specProvider, _logManager); + + public MevBlockProductionTransactionsExecutor LastExecutor { get; private set; } = null!; } }
1
// Copyright (c) 2021 Demerzel Solutions Limited // This file is part of the Nethermind library. // // The Nethermind library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The Nethermind library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the Nethermind. If not, see <http://www.gnu.org/licenses/>. // using Nethermind.Blockchain.Processing; using Nethermind.Blockchain.Producers; using Nethermind.Core.Specs; using Nethermind.Logging; namespace Nethermind.Mev { public class MevBlockProducerTransactionsExecutorFactory : IBlockTransactionsExecutorFactory { private readonly ISpecProvider _specProvider; private readonly ILogManager _logManager; public MevBlockProducerTransactionsExecutorFactory(ISpecProvider specProvider, ILogManager logManager) { _specProvider = specProvider; _logManager = logManager; } public IBlockProcessor.IBlockTransactionsExecutor Create(ReadOnlyTxProcessingEnv readOnlyTxProcessingEnv) => new MevBlockProductionTransactionsExecutor(readOnlyTxProcessingEnv, _specProvider, _logManager); } }
1
26,102
factory should be stateless if possible, looks like much complexity added
NethermindEth-nethermind
.cs
@@ -527,6 +527,12 @@ class BigQueryLoadTask(MixinBigQueryBulkComplete, luigi.Task): """ Indicates if BigQuery should allow quoted data sections that contain newline characters in a CSV file. The default value is false.""" return False + @property + def project_id(self): + """Project ID on which to run the BigQuery Job + """ + return self.output().table.project_id + def run(self): output = self.output() assert isinstance(output, BigQueryTarget), 'Output must be a BigQueryTarget, not %s' % (output)
1
# -*- coding: utf-8 -*- # # Copyright 2015 Twitter Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import collections import logging import luigi.target import time from luigi.contrib import gcp logger = logging.getLogger('luigi-interface') try: from googleapiclient import discovery from googleapiclient import http except ImportError: logger.warning('BigQuery module imported, but google-api-python-client is ' 'not installed. Any BigQuery task will fail') class CreateDisposition: CREATE_IF_NEEDED = 'CREATE_IF_NEEDED' CREATE_NEVER = 'CREATE_NEVER' class WriteDisposition: WRITE_TRUNCATE = 'WRITE_TRUNCATE' WRITE_APPEND = 'WRITE_APPEND' WRITE_EMPTY = 'WRITE_EMPTY' class QueryMode: INTERACTIVE = 'INTERACTIVE' BATCH = 'BATCH' class SourceFormat: AVRO = 'AVRO' CSV = 'CSV' DATASTORE_BACKUP = 'DATASTORE_BACKUP' NEWLINE_DELIMITED_JSON = 'NEWLINE_DELIMITED_JSON' class FieldDelimiter: """ The separator for fields in a CSV file. The separator can be any ISO-8859-1 single-byte character. To use a character in the range 128-255, you must encode the character as UTF8. BigQuery converts the string to ISO-8859-1 encoding, and then uses the first byte of the encoded string to split the data in its raw, binary state. BigQuery also supports the escape sequence "\t" to specify a tab separator. The default value is a comma (','). https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load """ COMMA = ',' # Default TAB = "\t" PIPE = "|" class PrintHeader: TRUE = True FALSE = False class DestinationFormat: AVRO = 'AVRO' CSV = 'CSV' NEWLINE_DELIMITED_JSON = 'NEWLINE_DELIMITED_JSON' class Compression: GZIP = 'GZIP' NONE = 'NONE' class Encoding: """ [Optional] The character encoding of the data. The supported values are UTF-8 or ISO-8859-1. The default value is UTF-8. BigQuery decodes the data after the raw, binary data has been split using the values of the quote and fieldDelimiter properties. """ UTF_8 = 'UTF-8' ISO_8859_1 = 'ISO-8859-1' BQDataset = collections.namedtuple('BQDataset', 'project_id dataset_id location') class BQTable(collections.namedtuple('BQTable', 'project_id dataset_id table_id location')): @property def dataset(self): return BQDataset(project_id=self.project_id, dataset_id=self.dataset_id, location=self.location) @property def uri(self): return "bq://" + self.project_id + "/" + \ self.dataset.dataset_id + "/" + self.table_id class BigQueryClient: """A client for Google BigQuery. For details of how authentication and the descriptor work, see the documentation for the GCS client. The descriptor URL for BigQuery is https://www.googleapis.com/discovery/v1/apis/bigquery/v2/rest """ def __init__(self, oauth_credentials=None, descriptor='', http_=None): authenticate_kwargs = gcp.get_authenticate_kwargs(oauth_credentials, http_) if descriptor: self.client = discovery.build_from_document(descriptor, **authenticate_kwargs) else: self.client = discovery.build('bigquery', 'v2', cache_discovery=False, **authenticate_kwargs) def dataset_exists(self, dataset): """Returns whether the given dataset exists. If regional location is specified for the dataset, that is also checked to be compatible with the remote dataset, otherwise an exception is thrown. :param dataset: :type dataset: BQDataset """ try: response = self.client.datasets().get(projectId=dataset.project_id, datasetId=dataset.dataset_id).execute() if dataset.location is not None: fetched_location = response.get('location') if dataset.location != fetched_location: raise Exception('''Dataset already exists with regional location {}. Can't use {}.'''.format( fetched_location if fetched_location is not None else 'unspecified', dataset.location)) except http.HttpError as ex: if ex.resp.status == 404: return False raise return True def table_exists(self, table): """Returns whether the given table exists. :param table: :type table: BQTable """ if not self.dataset_exists(table.dataset): return False try: self.client.tables().get(projectId=table.project_id, datasetId=table.dataset_id, tableId=table.table_id).execute() except http.HttpError as ex: if ex.resp.status == 404: return False raise return True def make_dataset(self, dataset, raise_if_exists=False, body=None): """Creates a new dataset with the default permissions. :param dataset: :type dataset: BQDataset :param raise_if_exists: whether to raise an exception if the dataset already exists. :raises luigi.target.FileAlreadyExists: if raise_if_exists=True and the dataset exists """ if body is None: body = {} try: # Construct a message body in the format required by # https://developers.google.com/resources/api-libraries/documentation/bigquery/v2/python/latest/bigquery_v2.datasets.html#insert body['datasetReference'] = { 'projectId': dataset.project_id, 'datasetId': dataset.dataset_id } if dataset.location is not None: body['location'] = dataset.location self.client.datasets().insert(projectId=dataset.project_id, body=body).execute() except http.HttpError as ex: if ex.resp.status == 409: if raise_if_exists: raise luigi.target.FileAlreadyExists() else: raise def delete_dataset(self, dataset, delete_nonempty=True): """Deletes a dataset (and optionally any tables in it), if it exists. :param dataset: :type dataset: BQDataset :param delete_nonempty: if true, will delete any tables before deleting the dataset """ if not self.dataset_exists(dataset): return self.client.datasets().delete(projectId=dataset.project_id, datasetId=dataset.dataset_id, deleteContents=delete_nonempty).execute() def delete_table(self, table): """Deletes a table, if it exists. :param table: :type table: BQTable """ if not self.table_exists(table): return self.client.tables().delete(projectId=table.project_id, datasetId=table.dataset_id, tableId=table.table_id).execute() def list_datasets(self, project_id): """Returns the list of datasets in a given project. :param project_id: :type project_id: str """ request = self.client.datasets().list(projectId=project_id, maxResults=1000) response = request.execute() while response is not None: for ds in response.get('datasets', []): yield ds['datasetReference']['datasetId'] request = self.client.datasets().list_next(request, response) if request is None: break response = request.execute() def list_tables(self, dataset): """Returns the list of tables in a given dataset. :param dataset: :type dataset: BQDataset """ request = self.client.tables().list(projectId=dataset.project_id, datasetId=dataset.dataset_id, maxResults=1000) response = request.execute() while response is not None: for t in response.get('tables', []): yield t['tableReference']['tableId'] request = self.client.tables().list_next(request, response) if request is None: break response = request.execute() def get_view(self, table): """Returns the SQL query for a view, or None if it doesn't exist or is not a view. :param table: The table containing the view. :type table: BQTable """ request = self.client.tables().get(projectId=table.project_id, datasetId=table.dataset_id, tableId=table.table_id) try: response = request.execute() except http.HttpError as ex: if ex.resp.status == 404: return None raise return response['view']['query'] if 'view' in response else None def update_view(self, table, view): """Updates the SQL query for a view. If the output table exists, it is replaced with the supplied view query. Otherwise a new table is created with this view. :param table: The table to contain the view. :type table: BQTable :param view: The SQL query for the view. :type view: str """ body = { 'tableReference': { 'projectId': table.project_id, 'datasetId': table.dataset_id, 'tableId': table.table_id }, 'view': { 'query': view } } if self.table_exists(table): self.client.tables().update(projectId=table.project_id, datasetId=table.dataset_id, tableId=table.table_id, body=body).execute() else: self.client.tables().insert(projectId=table.project_id, datasetId=table.dataset_id, body=body).execute() def run_job(self, project_id, body, dataset=None): """Runs a BigQuery "job". See the documentation for the format of body. .. note:: You probably don't need to use this directly. Use the tasks defined below. :param dataset: :type dataset: BQDataset :return: the job id of the job. :rtype: str :raises luigi.contrib.BigQueryExecutionError: if the job fails. """ if dataset and not self.dataset_exists(dataset): self.make_dataset(dataset) new_job = self.client.jobs().insert(projectId=project_id, body=body).execute() job_id = new_job['jobReference']['jobId'] logger.info('Started import job %s:%s', project_id, job_id) while True: status = self.client.jobs().get(projectId=project_id, jobId=job_id).execute(num_retries=10) if status['status']['state'] == 'DONE': if status['status'].get('errorResult'): raise BigQueryExecutionError(job_id, status['status']['errorResult']) return job_id logger.info('Waiting for job %s:%s to complete...', project_id, job_id) time.sleep(5) def copy(self, source_table, dest_table, create_disposition=CreateDisposition.CREATE_IF_NEEDED, write_disposition=WriteDisposition.WRITE_TRUNCATE): """Copies (or appends) a table to another table. :param source_table: :type source_table: BQTable :param dest_table: :type dest_table: BQTable :param create_disposition: whether to create the table if needed :type create_disposition: CreateDisposition :param write_disposition: whether to append/truncate/fail if the table exists :type write_disposition: WriteDisposition """ job = { "configuration": { "copy": { "sourceTable": { "projectId": source_table.project_id, "datasetId": source_table.dataset_id, "tableId": source_table.table_id, }, "destinationTable": { "projectId": dest_table.project_id, "datasetId": dest_table.dataset_id, "tableId": dest_table.table_id, }, "createDisposition": create_disposition, "writeDisposition": write_disposition, } } } self.run_job(dest_table.project_id, job, dataset=dest_table.dataset) class BigQueryTarget(luigi.target.Target): def __init__(self, project_id, dataset_id, table_id, client=None, location=None): self.table = BQTable(project_id=project_id, dataset_id=dataset_id, table_id=table_id, location=location) self.client = client or BigQueryClient() @classmethod def from_bqtable(cls, table, client=None): """A constructor that takes a :py:class:`BQTable`. :param table: :type table: BQTable """ return cls(table.project_id, table.dataset_id, table.table_id, client=client) def exists(self): return self.client.table_exists(self.table) def __str__(self): return str(self.table) class MixinBigQueryBulkComplete: """ Allows to efficiently check if a range of BigQueryTargets are complete. This enables scheduling tasks with luigi range tools. If you implement a custom Luigi task with a BigQueryTarget output, make sure to also inherit from this mixin to enable range support. """ @classmethod def bulk_complete(cls, parameter_tuples): # Instantiate the tasks to inspect them tasks_with_params = [(cls(p), p) for p in parameter_tuples] if not tasks_with_params: return # Grab the set of BigQuery datasets we are interested in datasets = {t.output().table.dataset for t, p in tasks_with_params} logger.info('Checking datasets %s for available tables', datasets) # Query the available tables for all datasets client = tasks_with_params[0][0].output().client available_datasets = filter(client.dataset_exists, datasets) available_tables = {d: set(client.list_tables(d)) for d in available_datasets} # Return parameter_tuples belonging to available tables for t, p in tasks_with_params: table = t.output().table if table.table_id in available_tables.get(table.dataset, []): yield p class BigQueryLoadTask(MixinBigQueryBulkComplete, luigi.Task): """Load data into BigQuery from GCS.""" @property def source_format(self): """The source format to use (see :py:class:`SourceFormat`).""" return SourceFormat.NEWLINE_DELIMITED_JSON @property def encoding(self): """The encoding of the data that is going to be loaded (see :py:class:`Encoding`).""" return Encoding.UTF_8 @property def write_disposition(self): """What to do if the table already exists. By default this will fail the job. See :py:class:`WriteDisposition`""" return WriteDisposition.WRITE_EMPTY @property def schema(self): """Schema in the format defined at https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load.schema. If the value is falsy, it is omitted and inferred by BigQuery.""" return [] @property def max_bad_records(self): """ The maximum number of bad records that BigQuery can ignore when reading data. If the number of bad records exceeds this value, an invalid error is returned in the job result.""" return 0 @property def field_delimiter(self): """The separator for fields in a CSV file. The separator can be any ISO-8859-1 single-byte character.""" return FieldDelimiter.COMMA def source_uris(self): """The fully-qualified URIs that point to your data in Google Cloud Storage. Each URI can contain one '*' wildcard character and it must come after the 'bucket' name.""" return [x.path for x in luigi.task.flatten(self.input())] @property def skip_leading_rows(self): """The number of rows at the top of a CSV file that BigQuery will skip when loading the data. The default value is 0. This property is useful if you have header rows in the file that should be skipped.""" return 0 @property def allow_jagged_rows(self): """Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. Only applicable to CSV, ignored for other formats.""" return False @property def ignore_unknown_values(self): """Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. The sourceFormat property determines what BigQuery treats as an extra value: CSV: Trailing columns JSON: Named values that don't match any column names""" return False @property def allow_quoted_new_lines(self): """ Indicates if BigQuery should allow quoted data sections that contain newline characters in a CSV file. The default value is false.""" return False def run(self): output = self.output() assert isinstance(output, BigQueryTarget), 'Output must be a BigQueryTarget, not %s' % (output) bq_client = output.client source_uris = self.source_uris() assert all(x.startswith('gs://') for x in source_uris) job = { 'configuration': { 'load': { 'destinationTable': { 'projectId': output.table.project_id, 'datasetId': output.table.dataset_id, 'tableId': output.table.table_id, }, 'encoding': self.encoding, 'sourceFormat': self.source_format, 'writeDisposition': self.write_disposition, 'sourceUris': source_uris, 'maxBadRecords': self.max_bad_records, 'ignoreUnknownValues': self.ignore_unknown_values } } } if self.source_format == SourceFormat.CSV: job['configuration']['load']['fieldDelimiter'] = self.field_delimiter job['configuration']['load']['skipLeadingRows'] = self.skip_leading_rows job['configuration']['load']['allowJaggedRows'] = self.allow_jagged_rows job['configuration']['load']['allowQuotedNewlines'] = self.allow_quoted_new_lines if self.schema: job['configuration']['load']['schema'] = {'fields': self.schema} else: job['configuration']['load']['autodetect'] = True bq_client.run_job(output.table.project_id, job, dataset=output.table.dataset) class BigQueryRunQueryTask(MixinBigQueryBulkComplete, luigi.Task): @property def write_disposition(self): """What to do if the table already exists. By default this will fail the job. See :py:class:`WriteDisposition`""" return WriteDisposition.WRITE_TRUNCATE @property def create_disposition(self): """Whether to create the table or not. See :py:class:`CreateDisposition`""" return CreateDisposition.CREATE_IF_NEEDED @property def flatten_results(self): """Flattens all nested and repeated fields in the query results. allowLargeResults must be true if this is set to False.""" return True @property def query(self): """The query, in text form.""" raise NotImplementedError() @property def query_mode(self): """The query mode. See :py:class:`QueryMode`.""" return QueryMode.INTERACTIVE @property def udf_resource_uris(self): """Iterator of code resource to load from a Google Cloud Storage URI (gs://bucket/path). """ return [] @property def use_legacy_sql(self): """Whether to use legacy SQL """ return True def run(self): output = self.output() assert isinstance(output, BigQueryTarget), 'Output must be a BigQueryTarget, not %s' % (output) query = self.query assert query, 'No query was provided' bq_client = output.client logger.info('Launching Query') logger.info('Query destination: %s (%s)', output, self.write_disposition) logger.info('Query SQL: %s', query) job = { 'configuration': { 'query': { 'query': query, 'priority': self.query_mode, 'destinationTable': { 'projectId': output.table.project_id, 'datasetId': output.table.dataset_id, 'tableId': output.table.table_id, }, 'allowLargeResults': True, 'createDisposition': self.create_disposition, 'writeDisposition': self.write_disposition, 'flattenResults': self.flatten_results, 'userDefinedFunctionResources': [{"resourceUri": v} for v in self.udf_resource_uris], 'useLegacySql': self.use_legacy_sql, } } } bq_client.run_job(output.table.project_id, job, dataset=output.table.dataset) class BigQueryCreateViewTask(luigi.Task): """ Creates (or updates) a view in BigQuery. The output of this task needs to be a BigQueryTarget. Instances of this class should specify the view SQL in the view property. If a view already exist in BigQuery at output(), it will be updated. """ @property def view(self): """The SQL query for the view, in text form.""" raise NotImplementedError() def complete(self): output = self.output() assert isinstance(output, BigQueryTarget), 'Output must be a BigQueryTarget, not %s' % (output) if not output.exists(): return False existing_view = output.client.get_view(output.table) return existing_view == self.view def run(self): output = self.output() assert isinstance(output, BigQueryTarget), 'Output must be a BigQueryTarget, not %s' % (output) view = self.view assert view, 'No view was provided' logger.info('Create view') logger.info('Destination: %s', output) logger.info('View SQL: %s', view) output.client.update_view(output.table, view) class ExternalBigQueryTask(MixinBigQueryBulkComplete, luigi.ExternalTask): """ An external task for a BigQuery target. """ pass class BigQueryExtractTask(luigi.Task): """ Extracts (unloads) a table from BigQuery to GCS. This tasks requires the input to be exactly one BigQueryTarget while the output should be one or more GCSTargets from luigi.contrib.gcs depending on the use of destinationUris property. """ @property def destination_uris(self): """ The fully-qualified URIs that point to your data in Google Cloud Storage. Each URI can contain one '*' wildcard character and it must come after the 'bucket' name. Wildcarded destinationUris in GCSQueryTarget might not be resolved correctly and result in incomplete data. If a GCSQueryTarget is used to pass wildcarded destinationUris be sure to overwrite this property to suppress the warning. """ return [x.path for x in luigi.task.flatten(self.output())] @property def print_header(self): """Whether to print the header or not.""" return PrintHeader.TRUE @property def field_delimiter(self): """ The separator for fields in a CSV file. The separator can be any ISO-8859-1 single-byte character. """ return FieldDelimiter.COMMA @property def destination_format(self): """ The destination format to use (see :py:class:`DestinationFormat`). """ return DestinationFormat.CSV @property def compression(self): """Whether to use compression.""" return Compression.NONE def run(self): input = luigi.task.flatten(self.input())[0] assert ( isinstance(input, BigQueryTarget) or (len(input) == 1 and isinstance(input[0], BigQueryTarget))), \ 'Input must be exactly one BigQueryTarget, not %s' % (input) bq_client = input.client destination_uris = self.destination_uris assert all(x.startswith('gs://') for x in destination_uris) logger.info('Launching Extract Job') logger.info('Extract source: %s', input) logger.info('Extract destination: %s', destination_uris) job = { 'configuration': { 'extract': { 'sourceTable': { 'projectId': input.table.project_id, 'datasetId': input.table.dataset_id, 'tableId': input.table.table_id }, 'destinationUris': destination_uris, 'destinationFormat': self.destination_format, 'compression': self.compression } } } if self.destination_format == 'CSV': # "Only exports to CSV may specify a field delimiter." job['configuration']['extract']['printHeader'] = self.print_header job['configuration']['extract']['fieldDelimiter'] = \ self.field_delimiter bq_client.run_job( input.table.project_id, job, dataset=input.table.dataset) # the original inconsistently capitalized aliases, for backwards compatibility BigqueryClient = BigQueryClient BigqueryTarget = BigQueryTarget MixinBigqueryBulkComplete = MixinBigQueryBulkComplete BigqueryLoadTask = BigQueryLoadTask BigqueryRunQueryTask = BigQueryRunQueryTask BigqueryCreateViewTask = BigQueryCreateViewTask ExternalBigqueryTask = ExternalBigQueryTask class BigQueryExecutionError(Exception): def __init__(self, job_id, error_message) -> None: """ :param job_id: BigQuery Job ID :type job_id: str :param error_message: status['status']['errorResult'] for the failed job :type error_message: str """ super().__init__('BigQuery job {} failed: {}'.format(job_id, error_message)) self.error_message = error_message self.job_id = job_id
1
19,970
Could you please add short description for the default value as well?
spotify-luigi
py
@@ -744,7 +744,7 @@ func (bc *blockchain) commitBlock(blk *Block) error { if bc.sf != nil { ExecuteContracts(blk, bc) if err := bc.sf.CommitStateChanges(blk.Height(), blk.Transfers, blk.Votes, blk.Executions); err != nil { - return err + logger.Fatal().Err(err).Msgf("Failed to commit state changes on height %d", blk.Height()) } } // write smart contract receipt into DB
1
// Copyright (c) 2018 IoTeX // This is an alpha (internal) release and is not suitable for production. This source code is provided 'as is' and no // warranties are given as to title or non-infringement, merchantability or fitness for purpose and, to the extent // permitted by law, all liability for your use of the code is disclaimed. This source code is governed by Apache // License 2.0 that can be found in the LICENSE file. package blockchain import ( "context" "math/big" "sync" "github.com/facebookgo/clock" "github.com/pkg/errors" "github.com/iotexproject/iotex-core/blockchain/action" "github.com/iotexproject/iotex-core/config" "github.com/iotexproject/iotex-core/crypto" "github.com/iotexproject/iotex-core/db" "github.com/iotexproject/iotex-core/iotxaddress" "github.com/iotexproject/iotex-core/logger" "github.com/iotexproject/iotex-core/pkg/hash" "github.com/iotexproject/iotex-core/pkg/keypair" "github.com/iotexproject/iotex-core/pkg/lifecycle" "github.com/iotexproject/iotex-core/state" ) // Blockchain represents the blockchain data structure and hosts the APIs to access it type Blockchain interface { lifecycle.StartStopper // Balance returns balance of an account Balance(addr string) (*big.Int, error) // Nonce returns the nonce if the account exists Nonce(addr string) (uint64, error) // CreateState adds a new State with initial balance to the factory CreateState(addr string, init uint64) (*state.State, error) // CommitStateChanges updates a State from the given actions CommitStateChanges(chainHeight uint64, tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution) error // Candidates returns the candidate list Candidates() (uint64, []*state.Candidate) // CandidatesByHeight returns the candidate list by a given height CandidatesByHeight(height uint64) ([]*state.Candidate, error) // For exposing blockchain states // GetHeightByHash returns Block's height by hash GetHeightByHash(h hash.Hash32B) (uint64, error) // GetHashByHeight returns Block's hash by height GetHashByHeight(height uint64) (hash.Hash32B, error) // GetBlockByHeight returns Block by height GetBlockByHeight(height uint64) (*Block, error) // GetBlockByHash returns Block by hash GetBlockByHash(h hash.Hash32B) (*Block, error) // GetTotalTransfers returns the total number of transfers GetTotalTransfers() (uint64, error) // GetTotalVotes returns the total number of votes GetTotalVotes() (uint64, error) // GetTotalExecutions returns the total number of executions GetTotalExecutions() (uint64, error) // GetTransfersFromAddress returns transaction from address GetTransfersFromAddress(address string) ([]hash.Hash32B, error) // GetTransfersToAddress returns transaction to address GetTransfersToAddress(address string) ([]hash.Hash32B, error) // GetTransfersByTransferHash returns transfer by transfer hash GetTransferByTransferHash(h hash.Hash32B) (*action.Transfer, error) // GetBlockHashByTransferHash returns Block hash by transfer hash GetBlockHashByTransferHash(h hash.Hash32B) (hash.Hash32B, error) // GetVoteFromAddress returns vote from address GetVotesFromAddress(address string) ([]hash.Hash32B, error) // GetVoteToAddress returns vote to address GetVotesToAddress(address string) ([]hash.Hash32B, error) // GetVotesByVoteHash returns vote by vote hash GetVoteByVoteHash(h hash.Hash32B) (*action.Vote, error) // GetBlockHashByVoteHash returns Block hash by vote hash GetBlockHashByVoteHash(h hash.Hash32B) (hash.Hash32B, error) // GetExecutionsFromAddress returns executions from address GetExecutionsFromAddress(address string) ([]hash.Hash32B, error) // GetExecutionsToAddress returns executions to address GetExecutionsToAddress(address string) ([]hash.Hash32B, error) // GetExecutionByExecutionHash returns execution by execution hash GetExecutionByExecutionHash(h hash.Hash32B) (*action.Execution, error) // GetBlockHashByExecutionHash returns Block hash by execution hash GetBlockHashByExecutionHash(h hash.Hash32B) (hash.Hash32B, error) // GetReceiptByExecutionHash returns the receipt by execution hash GetReceiptByExecutionHash(h hash.Hash32B) (*Receipt, error) // GetFactory returns the State Factory GetFactory() state.Factory // TipHash returns tip block's hash TipHash() (hash.Hash32B, error) // TipHeight returns tip block's height TipHeight() (uint64, error) // StateByAddr returns state of a given address StateByAddr(address string) (*state.State, error) // For block operations // MintNewBlock creates a new block with given actions // Note: the coinbase transfer will be added to the given transfers when minting a new block MintNewBlock(tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution, address *iotxaddress.Address, data string) (*Block, error) // TODO: Merge the MintNewDKGBlock into MintNewBlock // MintNewDKGBlock creates a new block with given actions and dkg keys MintNewDKGBlock(tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution, producer *iotxaddress.Address, dkgAddress *iotxaddress.DKGAddress, seed []byte, data string) (*Block, error) // MintDummyNewBlock creates a new dummy block, used for unreached consensus MintNewDummyBlock() *Block // CommitBlock validates and appends a block to the chain CommitBlock(blk *Block) error // ValidateBlock validates a new block before adding it to the blockchain ValidateBlock(blk *Block) error // For action operations // Validator returns the current validator object Validator() Validator // SetValidator sets the current validator object SetValidator(val Validator) // For smart contract operations // ExecuteContractRead runs a read-only smart contract operation, this is done off the network since it does not // cause any state change ExecuteContractRead(*action.Execution) ([]byte, error) } // blockchain implements the Blockchain interface type blockchain struct { mu sync.RWMutex // mutex to protect utk, tipHeight and tipHash dao *blockDAO config *config.Config genesis *Genesis chainID uint32 tipHeight uint64 tipHash hash.Hash32B validator Validator lifecycle lifecycle.Lifecycle clk clock.Clock // used by account-based model sf state.Factory } // Option sets blockchain construction parameter type Option func(*blockchain, *config.Config) error // DefaultStateFactoryOption sets blockchain's sf from config func DefaultStateFactoryOption() Option { return func(bc *blockchain, cfg *config.Config) error { sf, err := state.NewFactory(cfg, state.DefaultTrieOption()) if err != nil { return errors.Wrapf(err, "Failed to create state factory") } bc.sf = sf return nil } } // PrecreatedStateFactoryOption sets blockchain's state.Factory to sf func PrecreatedStateFactoryOption(sf state.Factory) Option { return func(bc *blockchain, conf *config.Config) error { bc.sf = sf return nil } } // InMemStateFactoryOption sets blockchain's state.Factory as in memory sf func InMemStateFactoryOption() Option { return func(bc *blockchain, cfg *config.Config) error { sf, err := state.NewFactory(cfg, state.InMemTrieOption()) if err != nil { return errors.Wrapf(err, "Failed to create state factory") } bc.sf = sf return nil } } // PrecreatedDaoOption sets blockchain's dao func PrecreatedDaoOption(dao *blockDAO) Option { return func(bc *blockchain, conf *config.Config) error { bc.dao = dao return nil } } // BoltDBDaoOption sets blockchain's dao with BoltDB from config.Chain.ChainDBPath func BoltDBDaoOption() Option { return func(bc *blockchain, cfg *config.Config) error { bc.dao = newBlockDAO(cfg, db.NewBoltDB(cfg.Chain.ChainDBPath, &cfg.DB)) return nil } } // InMemDaoOption sets blockchain's dao with MemKVStore func InMemDaoOption() Option { return func(bc *blockchain, cfg *config.Config) error { bc.dao = newBlockDAO(cfg, db.NewMemKVStore()) return nil } } // ClockOption overrides the default clock func ClockOption(clk clock.Clock) Option { return func(bc *blockchain, conf *config.Config) error { bc.clk = clk return nil } } // NewBlockchain creates a new blockchain and DB instance func NewBlockchain(cfg *config.Config, opts ...Option) Blockchain { // create the Blockchain chain := &blockchain{ config: cfg, genesis: Gen, clk: clock.New(), } for _, opt := range opts { if err := opt(chain, cfg); err != nil { logger.Error().Err(err).Msgf("Failed to create blockchain option %s", opt) return nil } } chain.initValidator() if chain.dao != nil { chain.lifecycle.Add(chain.dao) } if chain.sf != nil { chain.lifecycle.Add(chain.sf) } if err := chain.Start(context.Background()); err != nil { logger.Error().Err(err).Msg("Failed to start blockchain") return nil } height, err := chain.TipHeight() if err != nil { logger.Error().Err(err).Msg("Failed to get blockchain height") return nil } if height > 0 { factoryHeight, err := chain.sf.Height() if err != nil { logger.Error().Err(err).Msg("Failed to get factory's height") return nil } logger.Info(). Uint64("blockchain height", height).Uint64("factory height", factoryHeight). Msg("Restarting blockchain") return chain } genesis := NewGenesisBlock(cfg) if genesis == nil { logger.Error().Msg("Cannot create genesis block.") return nil } // Genesis block has height 0 if genesis.Header.height != 0 { logger.Error(). Uint64("Genesis block has height", genesis.Height()). Msg("Expecting 0") return nil } // add producer into Trie if chain.sf != nil { if _, err := chain.sf.LoadOrCreateState(Gen.CreatorAddr, Gen.TotalSupply); err != nil { logger.Error().Err(err).Msg("Failed to add Creator into StateFactory") return nil } } // add Genesis block as very first block if err := chain.CommitBlock(genesis); err != nil { logger.Error().Err(err).Msg("Failed to commit Genesis block") return nil } return chain } func (bc *blockchain) initValidator() { bc.validator = &validator{sf: bc.sf} } // Start starts the blockchain func (bc *blockchain) Start(ctx context.Context) (err error) { if err = bc.lifecycle.OnStart(ctx); err != nil { return err } // get blockchain tip height bc.mu.Lock() defer bc.mu.Unlock() if bc.tipHeight, err = bc.dao.getBlockchainHeight(); err != nil { return err } if bc.tipHeight == 0 { return nil } // get blockchain tip hash if bc.tipHash, err = bc.dao.getBlockHash(bc.tipHeight); err != nil { return err } // populate state factory if bc.sf == nil { return errors.New("statefactory cannot be nil") } var startHeight uint64 if factoryHeight, err := bc.sf.Height(); err == nil { if factoryHeight > bc.tipHeight { return errors.New("factory is higher than blockchain") } startHeight = factoryHeight + 1 } // If restarting factory from fresh db, first create creator's state if startHeight == 0 { if _, err := bc.sf.LoadOrCreateState(Gen.CreatorAddr, Gen.TotalSupply); err != nil { return err } } for i := startHeight; i <= bc.tipHeight; i++ { blk, err := bc.GetBlockByHeight(i) if err != nil { return err } if err := bc.sf.CommitStateChanges(blk.Height(), blk.Transfers, blk.Votes, blk.Executions); err != nil { return err } } return nil } // Stop stops the blockchain. func (bc *blockchain) Stop(ctx context.Context) error { return bc.lifecycle.OnStop(ctx) } // Balance returns balance of address func (bc *blockchain) Balance(addr string) (*big.Int, error) { return bc.sf.Balance(addr) } // Nonce returns the nonce if the account exists func (bc *blockchain) Nonce(addr string) (uint64, error) { return bc.sf.Nonce(addr) } // CreateState adds a new State with initial balance to the factory func (bc *blockchain) CreateState(addr string, init uint64) (*state.State, error) { return bc.sf.LoadOrCreateState(addr, init) } // CommitStateChanges updates a State from the given actions func (bc *blockchain) CommitStateChanges(blockHeight uint64, tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution) error { return bc.sf.CommitStateChanges(blockHeight, tsf, vote, executions) } // Candidates returns the candidate list func (bc *blockchain) Candidates() (uint64, []*state.Candidate) { return bc.sf.Candidates() } // CandidatesByHeight returns the candidate list by a given height func (bc *blockchain) CandidatesByHeight(height uint64) ([]*state.Candidate, error) { return bc.sf.CandidatesByHeight(height) } // GetHeightByHash returns block's height by hash func (bc *blockchain) GetHeightByHash(h hash.Hash32B) (uint64, error) { return bc.dao.getBlockHeight(h) } // GetHashByHeight returns block's hash by height func (bc *blockchain) GetHashByHeight(height uint64) (hash.Hash32B, error) { return bc.dao.getBlockHash(height) } // GetBlockByHeight returns block from the blockchain hash by height func (bc *blockchain) GetBlockByHeight(height uint64) (*Block, error) { hash, err := bc.GetHashByHeight(height) if err != nil { return nil, err } return bc.GetBlockByHash(hash) } // GetBlockByHash returns block from the blockchain hash by hash func (bc *blockchain) GetBlockByHash(h hash.Hash32B) (*Block, error) { return bc.dao.getBlock(h) } // GetTotalTransfers returns the total number of transfers func (bc *blockchain) GetTotalTransfers() (uint64, error) { if !bc.config.Explorer.Enabled { return 0, errors.New("explorer not enabled") } return bc.dao.getTotalTransfers() } // GetTotalVotes returns the total number of votes func (bc *blockchain) GetTotalVotes() (uint64, error) { if !bc.config.Explorer.Enabled { return 0, errors.New("explorer not enabled") } return bc.dao.getTotalVotes() } // GetTotalExecutions returns the total number of executions func (bc *blockchain) GetTotalExecutions() (uint64, error) { if !bc.config.Explorer.Enabled { return 0, errors.New("explorer not enabled") } return bc.dao.getTotalExecutions() } // GetTransfersFromAddress returns transfers from address func (bc *blockchain) GetTransfersFromAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getTransfersBySenderAddress(address) } // GetTransfersToAddress returns transfers to address func (bc *blockchain) GetTransfersToAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getTransfersByRecipientAddress(address) } // GetTransferByTransferHash returns transfer by transfer hash func (bc *blockchain) GetTransferByTransferHash(h hash.Hash32B) (*action.Transfer, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } blkHash, err := bc.dao.getBlockHashByTransferHash(h) if err != nil { return nil, err } blk, err := bc.dao.getBlock(blkHash) if err != nil { return nil, err } for _, transfer := range blk.Transfers { if transfer.Hash() == h { return transfer, nil } } return nil, errors.Errorf("block %x does not have transfer %x", blkHash, h) } // GetBlockHashByTxHash returns Block hash by transfer hash func (bc *blockchain) GetBlockHashByTransferHash(h hash.Hash32B) (hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return hash.ZeroHash32B, errors.New("explorer not enabled") } return bc.dao.getBlockHashByTransferHash(h) } // GetVoteFromAddress returns votes from address func (bc *blockchain) GetVotesFromAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getVotesBySenderAddress(address) } // GetVoteToAddress returns votes to address func (bc *blockchain) GetVotesToAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getVotesByRecipientAddress(address) } // GetVotesByVoteHash returns vote by vote hash func (bc *blockchain) GetVoteByVoteHash(h hash.Hash32B) (*action.Vote, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } blkHash, err := bc.dao.getBlockHashByVoteHash(h) if err != nil { return nil, err } blk, err := bc.dao.getBlock(blkHash) if err != nil { return nil, err } for _, vote := range blk.Votes { if vote.Hash() == h { return vote, nil } } return nil, errors.Errorf("block %x does not have vote %x", blkHash, h) } // GetBlockHashByVoteHash returns Block hash by vote hash func (bc *blockchain) GetBlockHashByVoteHash(h hash.Hash32B) (hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return hash.ZeroHash32B, errors.New("explorer not enabled") } return bc.dao.getBlockHashByVoteHash(h) } // GetExecutionsFromAddress returns executions from address func (bc *blockchain) GetExecutionsFromAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getExecutionsByExecutorAddress(address) } // GetExecutionsToAddress returns executions to address func (bc *blockchain) GetExecutionsToAddress(address string) ([]hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getExecutionsByContractAddress(address) } // GetExecutionByExecutionHash returns execution by execution hash func (bc *blockchain) GetExecutionByExecutionHash(h hash.Hash32B) (*action.Execution, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } blkHash, err := bc.dao.getBlockHashByExecutionHash(h) if err != nil { return nil, err } blk, err := bc.dao.getBlock(blkHash) if err != nil { return nil, err } for _, execution := range blk.Executions { if execution.Hash() == h { return execution, nil } } return nil, errors.Errorf("block %x does not have execution %x", blkHash, h) } // GetBlockHashByExecutionHash returns Block hash by execution hash func (bc *blockchain) GetBlockHashByExecutionHash(h hash.Hash32B) (hash.Hash32B, error) { if !bc.config.Explorer.Enabled { return hash.ZeroHash32B, errors.New("explorer not enabled") } return bc.dao.getBlockHashByExecutionHash(h) } // GetReceiptByExecutionHash returns the receipt by execution hash func (bc *blockchain) GetReceiptByExecutionHash(h hash.Hash32B) (*Receipt, error) { if !bc.config.Explorer.Enabled { return nil, errors.New("explorer not enabled") } return bc.dao.getReceiptByExecutionHash(h) } // GetFactory returns the State Factory func (bc *blockchain) GetFactory() state.Factory { return bc.sf } // TipHash returns tip block's hash func (bc *blockchain) TipHash() (hash.Hash32B, error) { bc.mu.RLock() defer bc.mu.RUnlock() return bc.tipHash, nil } // TipHeight returns tip block's height func (bc *blockchain) TipHeight() (uint64, error) { bc.mu.RLock() defer bc.mu.RUnlock() return bc.tipHeight, nil } // ValidateBlock validates a new block before adding it to the blockchain func (bc *blockchain) ValidateBlock(blk *Block) error { bc.mu.RLock() defer bc.mu.RUnlock() if bc.validator == nil { panic("no block validator") } // replacement logic, used to replace a fake old dummy block if blk.Height() != 0 && blk.Height() <= bc.tipHeight { oldDummyBlock, err := bc.GetBlockByHeight(blk.Height()) if err != nil { return errors.Wrapf(err, "The height of the new block is invalid") } if !oldDummyBlock.IsDummyBlock() { return errors.New("The replaced block is not a dummy block") } lastBlock, err := bc.GetBlockByHeight(blk.Height() - 1) if err != nil { return errors.Wrapf(err, "Failed to get the last block when replacing the dummy block") } return bc.validator.Validate(blk, lastBlock.Height(), lastBlock.HashBlock()) } return bc.validator.Validate(blk, bc.tipHeight, bc.tipHash) } // MintNewBlock creates a new block with given actions // Note: the coinbase transfer will be added to the given transfers // when minting a new block func (bc *blockchain) MintNewBlock(tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution, producer *iotxaddress.Address, data string) (*Block, error) { bc.mu.RLock() defer bc.mu.RUnlock() tsf = append(tsf, action.NewCoinBaseTransfer(big.NewInt(int64(bc.genesis.BlockReward)), producer.RawAddress)) blk := NewBlock(bc.chainID, bc.tipHeight+1, bc.tipHash, bc.clk, tsf, vote, executions) if producer.PrivateKey == keypair.ZeroPrivateKey { logger.Warn().Msg("Unsigned block...") return blk, nil } blk.Header.DKGID = []byte{} blk.Header.DKGPubkey = []byte{} blk.Header.DKGBlockSig = []byte{} blk.Header.Pubkey = producer.PublicKey blkHash := blk.HashBlock() blk.Header.blockSig = crypto.EC283.Sign(producer.PrivateKey, blkHash[:]) return blk, nil } // MintNewDKGBlock creates a new block with given actions and dkg keys // Note: the coinbase transfer will be added to the given transfers // when minting a new block func (bc *blockchain) MintNewDKGBlock(tsf []*action.Transfer, vote []*action.Vote, executions []*action.Execution, producer *iotxaddress.Address, dkgAddress *iotxaddress.DKGAddress, seed []byte, data string) (*Block, error) { bc.mu.RLock() defer bc.mu.RUnlock() tsf = append(tsf, action.NewCoinBaseTransfer(big.NewInt(int64(bc.genesis.BlockReward)), producer.RawAddress)) blk := NewBlock(bc.chainID, bc.tipHeight+1, bc.tipHash, bc.clk, tsf, vote, executions) if producer.PrivateKey == keypair.ZeroPrivateKey { logger.Warn().Msg("Unsigned block...") return blk, nil } blk.Header.DKGID = []byte{} blk.Header.DKGPubkey = []byte{} blk.Header.DKGBlockSig = []byte{} if len(dkgAddress.PublicKey) > 0 && len(dkgAddress.PrivateKey) > 0 && len(dkgAddress.ID) > 0 { blk.Header.DKGID = dkgAddress.ID blk.Header.DKGPubkey = dkgAddress.PublicKey var err error if _, blk.Header.DKGBlockSig, err = crypto.BLS.SignShare(dkgAddress.PrivateKey, seed); err != nil { return nil, errors.Wrap(err, "Failed to do DKG sign") } } blk.Header.Pubkey = producer.PublicKey blkHash := blk.HashBlock() blk.Header.blockSig = crypto.EC283.Sign(producer.PrivateKey, blkHash[:]) return blk, nil } // MintDummyNewBlock creates a new dummy block, used for unreached consensus func (bc *blockchain) MintNewDummyBlock() *Block { bc.mu.RLock() defer bc.mu.RUnlock() blk := NewBlock(bc.chainID, bc.tipHeight+1, bc.tipHash, bc.clk, nil, nil, nil) blk.Header.Pubkey = keypair.ZeroPublicKey blk.Header.blockSig = []byte{} return blk } // CommitBlock validates and appends a block to the chain func (bc *blockchain) CommitBlock(blk *Block) error { if err := bc.ValidateBlock(blk); err != nil { return err } return bc.commitBlock(blk) } // StateByAddr returns the state of an address func (bc *blockchain) StateByAddr(address string) (*state.State, error) { if bc.sf != nil { s, err := bc.sf.State(address) if err != nil { logger.Warn().Err(err).Str("Address", address) return nil, errors.New("account does not exist") } return s, nil } return nil, errors.New("state factory is nil") } // SetValidator sets the current validator object func (bc *blockchain) SetValidator(val Validator) { bc.validator = val } // Validator gets the current validator object func (bc *blockchain) Validator() Validator { return bc.validator } // ExecuteContractRead runs a read-only smart contract operation, this is done off the network since it does not // cause any state change func (bc *blockchain) ExecuteContractRead(ex *action.Execution) ([]byte, error) { // use latest block as carrier to run the offline execution // the block itself is not used h, _ := bc.TipHeight() blk, err := bc.GetBlockByHeight(h) if err != nil { return nil, errors.Wrap(err, "failed to get block in ExecuteContractRead") } blk.Executions = nil blk.Executions = []*action.Execution{ex} blk.receipts = nil ExecuteContracts(blk, bc) // pull the results from receipt exHash := ex.Hash() receipt, ok := blk.receipts[exHash] if !ok { return nil, errors.Wrap(err, "failed to get receipt in ExecuteContractRead") } return receipt.ReturnValue, nil } //====================================== // private functions //===================================== // commitBlock commits a block to the chain func (bc *blockchain) commitBlock(blk *Block) error { // write block into DB if err := bc.dao.putBlock(blk); err != nil { return err } // update tip hash and height bc.mu.Lock() defer bc.mu.Unlock() bc.tipHeight = blk.Header.height bc.tipHash = blk.HashBlock() // update state factory if bc.sf != nil { ExecuteContracts(blk, bc) if err := bc.sf.CommitStateChanges(blk.Height(), blk.Transfers, blk.Votes, blk.Executions); err != nil { return err } } // write smart contract receipt into DB if err := bc.dao.putReceipts(blk); err != nil { return err } logger.Info().Uint64("height", blk.Header.height).Msg("commit a block") return nil }
1
11,854
Leave a TODO message to say we will fix the log level in the future, once committing the block and the state become a transaction
iotexproject-iotex-core
go
@@ -107,6 +107,18 @@ public class TableProperties { public static final String DELETE_PARQUET_COMPRESSION_LEVEL = "write.delete.parquet.compression-level"; public static final String PARQUET_COMPRESSION_LEVEL_DEFAULT = null; + public static final String PARQUET_ROW_GROUP_CHECK_MIN_RECORD_COUNT = + "write.parquet.row-group-check-min-record-count"; + public static final String DELETE_PARQUET_ROW_GROUP_CHECK_MIN_RECORD_COUNT = + "write.delete.parquet.row-group-check-min-record-count"; + public static final String PARQUET_ROW_GROUP_CHECK_MIN_RECORD_COUNT_DEFAULT = "100"; + + public static final String PARQUET_ROW_GROUP_CHECK_MAX_RECORD_COUNT = + "write.parquet.row-group-check-max-record-count"; + public static final String DELETE_PARQUET_ROW_GROUP_CHECK_MAX_RECORD_COUNT = + "write.delete.parquet.row-group-check-max-record-count"; + public static final String PARQUET_ROW_GROUP_CHECK_MAX_RECORD_COUNT_DEFAULT = "10000"; + public static final String AVRO_COMPRESSION = "write.avro.compression-codec"; public static final String DELETE_AVRO_COMPRESSION = "write.delete.avro.compression-codec"; public static final String AVRO_COMPRESSION_DEFAULT = "gzip";
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg; import java.util.Set; import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet; public class TableProperties { private TableProperties() { } /** * Reserved table property for table format version. * <p> * Iceberg will default a new table's format version to the latest stable and recommended version. * This reserved property keyword allows users to override the Iceberg format version of the table metadata. * <p> * If this table property exists when creating a table, the table will use the specified format version. * If a table updates this property, it will try to upgrade to the specified format version. * <p> * Note: incomplete or unstable versions cannot be selected using this property. */ public static final String FORMAT_VERSION = "format-version"; /** * Reserved Iceberg table properties list. * <p> * Reserved table properties are only used to control behaviors when creating or updating a table. * The value of these properties are not persisted as a part of the table metadata. */ public static final Set<String> RESERVED_PROPERTIES = ImmutableSet.of( FORMAT_VERSION ); public static final String COMMIT_NUM_RETRIES = "commit.retry.num-retries"; public static final int COMMIT_NUM_RETRIES_DEFAULT = 4; public static final String COMMIT_MIN_RETRY_WAIT_MS = "commit.retry.min-wait-ms"; public static final int COMMIT_MIN_RETRY_WAIT_MS_DEFAULT = 100; public static final String COMMIT_MAX_RETRY_WAIT_MS = "commit.retry.max-wait-ms"; public static final int COMMIT_MAX_RETRY_WAIT_MS_DEFAULT = 60 * 1000; // 1 minute public static final String COMMIT_TOTAL_RETRY_TIME_MS = "commit.retry.total-timeout-ms"; public static final int COMMIT_TOTAL_RETRY_TIME_MS_DEFAULT = 30 * 60 * 1000; // 30 minutes public static final String COMMIT_NUM_STATUS_CHECKS = "commit.status-check.num-retries"; public static final int COMMIT_NUM_STATUS_CHECKS_DEFAULT = 3; public static final String COMMIT_STATUS_CHECKS_MIN_WAIT_MS = "commit.status-check.min-wait-ms"; public static final long COMMIT_STATUS_CHECKS_MIN_WAIT_MS_DEFAULT = 1000; // 1 second public static final String COMMIT_STATUS_CHECKS_MAX_WAIT_MS = "commit.status-check.max-wait-ms"; public static final long COMMIT_STATUS_CHECKS_MAX_WAIT_MS_DEFAULT = 60 * 1000; // 1 minute public static final String COMMIT_STATUS_CHECKS_TOTAL_WAIT_MS = "commit.status-check.total-timeout-ms"; public static final long COMMIT_STATUS_CHECKS_TOTAL_WAIT_MS_DEFAULT = 30 * 60 * 1000; // 30 minutes public static final String MANIFEST_TARGET_SIZE_BYTES = "commit.manifest.target-size-bytes"; public static final long MANIFEST_TARGET_SIZE_BYTES_DEFAULT = 8 * 1024 * 1024; // 8 MB public static final String MANIFEST_MIN_MERGE_COUNT = "commit.manifest.min-count-to-merge"; public static final int MANIFEST_MIN_MERGE_COUNT_DEFAULT = 100; public static final String MANIFEST_MERGE_ENABLED = "commit.manifest-merge.enabled"; public static final boolean MANIFEST_MERGE_ENABLED_DEFAULT = true; public static final String DEFAULT_FILE_FORMAT = "write.format.default"; public static final String DELETE_DEFAULT_FILE_FORMAT = "write.delete.format.default"; public static final String DEFAULT_FILE_FORMAT_DEFAULT = "parquet"; public static final String PARQUET_ROW_GROUP_SIZE_BYTES = "write.parquet.row-group-size-bytes"; public static final String DELETE_PARQUET_ROW_GROUP_SIZE_BYTES = "write.delete.parquet.row-group-size-bytes"; public static final String PARQUET_ROW_GROUP_SIZE_BYTES_DEFAULT = "134217728"; // 128 MB public static final String PARQUET_PAGE_SIZE_BYTES = "write.parquet.page-size-bytes"; public static final String DELETE_PARQUET_PAGE_SIZE_BYTES = "write.delete.parquet.page-size-bytes"; public static final String PARQUET_PAGE_SIZE_BYTES_DEFAULT = "1048576"; // 1 MB public static final String PARQUET_DICT_SIZE_BYTES = "write.parquet.dict-size-bytes"; public static final String DELETE_PARQUET_DICT_SIZE_BYTES = "write.delete.parquet.dict-size-bytes"; public static final String PARQUET_DICT_SIZE_BYTES_DEFAULT = "2097152"; // 2 MB public static final String PARQUET_COMPRESSION = "write.parquet.compression-codec"; public static final String DELETE_PARQUET_COMPRESSION = "write.delete.parquet.compression-codec"; public static final String PARQUET_COMPRESSION_DEFAULT = "gzip"; public static final String PARQUET_COMPRESSION_LEVEL = "write.parquet.compression-level"; public static final String DELETE_PARQUET_COMPRESSION_LEVEL = "write.delete.parquet.compression-level"; public static final String PARQUET_COMPRESSION_LEVEL_DEFAULT = null; public static final String AVRO_COMPRESSION = "write.avro.compression-codec"; public static final String DELETE_AVRO_COMPRESSION = "write.delete.avro.compression-codec"; public static final String AVRO_COMPRESSION_DEFAULT = "gzip"; public static final String SPLIT_SIZE = "read.split.target-size"; public static final long SPLIT_SIZE_DEFAULT = 128 * 1024 * 1024; // 128 MB public static final String METADATA_SPLIT_SIZE = "read.split.metadata-target-size"; public static final long METADATA_SPLIT_SIZE_DEFAULT = 32 * 1024 * 1024; // 32 MB public static final String SPLIT_LOOKBACK = "read.split.planning-lookback"; public static final int SPLIT_LOOKBACK_DEFAULT = 10; public static final String SPLIT_OPEN_FILE_COST = "read.split.open-file-cost"; public static final long SPLIT_OPEN_FILE_COST_DEFAULT = 4 * 1024 * 1024; // 4MB public static final String PARQUET_VECTORIZATION_ENABLED = "read.parquet.vectorization.enabled"; public static final boolean PARQUET_VECTORIZATION_ENABLED_DEFAULT = false; public static final String PARQUET_BATCH_SIZE = "read.parquet.vectorization.batch-size"; public static final int PARQUET_BATCH_SIZE_DEFAULT = 5000; public static final String ORC_VECTORIZATION_ENABLED = "read.orc.vectorization.enabled"; public static final boolean ORC_VECTORIZATION_ENABLED_DEFAULT = false; public static final String ORC_BATCH_SIZE = "read.orc.vectorization.batch-size"; public static final int ORC_BATCH_SIZE_DEFAULT = 5000; public static final String OBJECT_STORE_ENABLED = "write.object-storage.enabled"; public static final boolean OBJECT_STORE_ENABLED_DEFAULT = false; /** * @deprecated Use {@link #WRITE_DATA_LOCATION} instead. */ @Deprecated public static final String OBJECT_STORE_PATH = "write.object-storage.path"; public static final String WRITE_LOCATION_PROVIDER_IMPL = "write.location-provider.impl"; /** * @deprecated Use {@link #WRITE_DATA_LOCATION} instead. */ @Deprecated public static final String WRITE_FOLDER_STORAGE_LOCATION = "write.folder-storage.path"; /** * @deprecated will be removed in 0.14.0, use {@link #WRITE_DATA_LOCATION} instead */ @Deprecated public static final String WRITE_NEW_DATA_LOCATION = "write.folder-storage.path"; // This only applies to files written after this property is set. Files previously written aren't // relocated to reflect this parameter. // If not set, defaults to a "data" folder underneath the root path of the table. public static final String WRITE_DATA_LOCATION = "write.data.path"; // This only applies to files written after this property is set. Files previously written aren't // relocated to reflect this parameter. // If not set, defaults to a "metadata" folder underneath the root path of the table. public static final String WRITE_METADATA_LOCATION = "write.metadata.path"; public static final String WRITE_PARTITION_SUMMARY_LIMIT = "write.summary.partition-limit"; public static final int WRITE_PARTITION_SUMMARY_LIMIT_DEFAULT = 0; public static final String MANIFEST_LISTS_ENABLED = "write.manifest-lists.enabled"; public static final boolean MANIFEST_LISTS_ENABLED_DEFAULT = true; public static final String METADATA_COMPRESSION = "write.metadata.compression-codec"; public static final String METADATA_COMPRESSION_DEFAULT = "none"; public static final String METADATA_PREVIOUS_VERSIONS_MAX = "write.metadata.previous-versions-max"; public static final int METADATA_PREVIOUS_VERSIONS_MAX_DEFAULT = 100; // This enables to delete the oldest metadata file after commit. public static final String METADATA_DELETE_AFTER_COMMIT_ENABLED = "write.metadata.delete-after-commit.enabled"; public static final boolean METADATA_DELETE_AFTER_COMMIT_ENABLED_DEFAULT = false; public static final String METRICS_MODE_COLUMN_CONF_PREFIX = "write.metadata.metrics.column."; public static final String DEFAULT_WRITE_METRICS_MODE = "write.metadata.metrics.default"; public static final String DEFAULT_WRITE_METRICS_MODE_DEFAULT = "truncate(16)"; public static final String DEFAULT_NAME_MAPPING = "schema.name-mapping.default"; public static final String WRITE_AUDIT_PUBLISH_ENABLED = "write.wap.enabled"; public static final String WRITE_AUDIT_PUBLISH_ENABLED_DEFAULT = "false"; public static final String WRITE_TARGET_FILE_SIZE_BYTES = "write.target-file-size-bytes"; public static final String DELETE_TARGET_FILE_SIZE_BYTES = "write.delete.target-file-size-bytes"; public static final long WRITE_TARGET_FILE_SIZE_BYTES_DEFAULT = 512 * 1024 * 1024; // 512 MB public static final String SPARK_WRITE_PARTITIONED_FANOUT_ENABLED = "write.spark.fanout.enabled"; public static final boolean SPARK_WRITE_PARTITIONED_FANOUT_ENABLED_DEFAULT = false; public static final String SNAPSHOT_ID_INHERITANCE_ENABLED = "compatibility.snapshot-id-inheritance.enabled"; public static final boolean SNAPSHOT_ID_INHERITANCE_ENABLED_DEFAULT = false; public static final String ENGINE_HIVE_ENABLED = "engine.hive.enabled"; public static final boolean ENGINE_HIVE_ENABLED_DEFAULT = false; public static final String WRITE_DISTRIBUTION_MODE = "write.distribution-mode"; public static final String WRITE_DISTRIBUTION_MODE_NONE = "none"; public static final String WRITE_DISTRIBUTION_MODE_HASH = "hash"; public static final String WRITE_DISTRIBUTION_MODE_RANGE = "range"; /** * @deprecated will be removed in 0.14.0, use specific modes instead */ @Deprecated public static final String WRITE_DISTRIBUTION_MODE_DEFAULT = WRITE_DISTRIBUTION_MODE_NONE; public static final String GC_ENABLED = "gc.enabled"; public static final boolean GC_ENABLED_DEFAULT = true; public static final String MAX_SNAPSHOT_AGE_MS = "history.expire.max-snapshot-age-ms"; public static final long MAX_SNAPSHOT_AGE_MS_DEFAULT = 5 * 24 * 60 * 60 * 1000; // 5 days public static final String MIN_SNAPSHOTS_TO_KEEP = "history.expire.min-snapshots-to-keep"; public static final int MIN_SNAPSHOTS_TO_KEEP_DEFAULT = 1; public static final String DELETE_ISOLATION_LEVEL = "write.delete.isolation-level"; public static final String DELETE_ISOLATION_LEVEL_DEFAULT = "serializable"; public static final String DELETE_MODE = "write.delete.mode"; public static final String DELETE_MODE_DEFAULT = "copy-on-write"; public static final String DELETE_DISTRIBUTION_MODE = "write.delete.distribution-mode"; public static final String UPDATE_ISOLATION_LEVEL = "write.update.isolation-level"; public static final String UPDATE_ISOLATION_LEVEL_DEFAULT = "serializable"; public static final String UPDATE_MODE = "write.update.mode"; public static final String UPDATE_MODE_DEFAULT = "copy-on-write"; public static final String UPDATE_DISTRIBUTION_MODE = "write.update.distribution-mode"; public static final String MERGE_ISOLATION_LEVEL = "write.merge.isolation-level"; public static final String MERGE_ISOLATION_LEVEL_DEFAULT = "serializable"; public static final String MERGE_MODE = "write.merge.mode"; public static final String MERGE_MODE_DEFAULT = "copy-on-write"; public static final String MERGE_CARDINALITY_CHECK_ENABLED = "write.merge.cardinality-check.enabled"; public static final boolean MERGE_CARDINALITY_CHECK_ENABLED_DEFAULT = true; public static final String MERGE_DISTRIBUTION_MODE = "write.merge.distribution-mode"; public static final String UPSERT_ENABLED = "write.upsert.enabled"; public static final boolean UPSERT_ENABLED_DEFAULT = false; }
1
42,409
this can be integer
apache-iceberg
java
@@ -69,6 +69,8 @@ class CompletionView(QTreeView): {{ color['completion.category.border.top'] }}; border-bottom: 1px solid {{ color['completion.category.border.bottom'] }}; + font: {{ font['completion.category'] }}; + } QTreeView::item:selected, QTreeView::item:selected:hover {
1
# vim: ft=python fileencoding=utf-8 sts=4 sw=4 et: # Copyright 2014-2016 Florian Bruhin (The Compiler) <[email protected]> # # This file is part of qutebrowser. # # qutebrowser is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # qutebrowser is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with qutebrowser. If not, see <http://www.gnu.org/licenses/>. """Completion view for statusbar command section. Defines a CompletionView which uses CompletionFiterModel and CompletionModel subclasses to provide completions. """ from PyQt5.QtWidgets import QStyle, QTreeView, QSizePolicy from PyQt5.QtCore import pyqtSlot, pyqtSignal, Qt, QItemSelectionModel from qutebrowser.config import config, style from qutebrowser.completion import completiondelegate, completer from qutebrowser.completion.models import base from qutebrowser.utils import qtutils, objreg, utils, usertypes from qutebrowser.commands import cmdexc, cmdutils class CompletionView(QTreeView): """The view showing available completions. Based on QTreeView but heavily customized so root elements show as category headers, and children show as flat list. Attributes: enabled: Whether showing the CompletionView is enabled. _win_id: The ID of the window this CompletionView is associated with. _height: The height to use for the CompletionView. _height_perc: Either None or a percentage if height should be relative. _delegate: The item delegate used. _column_widths: A list of column widths, in percent. Signals: resize_completion: Emitted when the completion should be resized. """ # Drawing the item foreground will be done by CompletionItemDelegate, so we # don't define that in this stylesheet. STYLESHEET = """ QTreeView { font: {{ font['completion'] }}; background-color: {{ color['completion.bg'] }}; alternate-background-color: {{ color['completion.alternate-bg'] }}; outline: 0; border: 0px; } QTreeView::item:disabled { background-color: {{ color['completion.category.bg'] }}; border-top: 1px solid {{ color['completion.category.border.top'] }}; border-bottom: 1px solid {{ color['completion.category.border.bottom'] }}; } QTreeView::item:selected, QTreeView::item:selected:hover { border-top: 1px solid {{ color['completion.item.selected.border.top'] }}; border-bottom: 1px solid {{ color['completion.item.selected.border.bottom'] }}; background-color: {{ color['completion.item.selected.bg'] }}; } QTreeView:item::hover { border: 0px; } QTreeView QScrollBar { width: {{ config.get('completion', 'scrollbar-width') }}px; background: {{ color['completion.scrollbar.bg'] }}; } QTreeView QScrollBar::handle { background: {{ color['completion.scrollbar.fg'] }}; border: {{ config.get('completion', 'scrollbar-padding') }}px solid {{ color['completion.scrollbar.bg'] }}; min-height: 10px; } QTreeView QScrollBar::sub-line, QScrollBar::add-line { border: none; background: none; } """ resize_completion = pyqtSignal() def __init__(self, win_id, parent=None): super().__init__(parent) self._win_id = win_id objreg.register('completion', self, scope='window', window=win_id) cmd = objreg.get('status-command', scope='window', window=win_id) completer_obj = completer.Completer(cmd, win_id, self) completer_obj.next_prev_item.connect(self.on_next_prev_item) objreg.register('completer', completer_obj, scope='window', window=win_id) self.enabled = config.get('completion', 'show') objreg.get('config').changed.connect(self.set_enabled) # FIXME handle new aliases. # objreg.get('config').changed.connect(self.init_command_completion) self._column_widths = base.BaseCompletionModel.COLUMN_WIDTHS self._delegate = completiondelegate.CompletionItemDelegate(self) self.setItemDelegate(self._delegate) style.set_register_stylesheet(self) self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Minimum) self.setHeaderHidden(True) self.setAlternatingRowColors(True) self.setIndentation(0) self.setItemsExpandable(False) self.setExpandsOnDoubleClick(False) self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) # WORKAROUND # This is a workaround for weird race conditions with invalid # item indexes leading to segfaults in Qt. # # Some background: http://bugs.quassel-irc.org/issues/663 # The proposed fix there was later reverted because it didn't help. self.setUniformRowHeights(True) self.hide() # FIXME set elidemode # https://github.com/The-Compiler/qutebrowser/issues/118 def __repr__(self): return utils.get_repr(self) def _resize_columns(self): """Resize the completion columns based on column_widths.""" width = self.size().width() pixel_widths = [(width * perc // 100) for perc in self._column_widths] if self.verticalScrollBar().isVisible(): pixel_widths[-1] -= self.style().pixelMetric( QStyle.PM_ScrollBarExtent) + 5 for i, w in enumerate(pixel_widths): self.setColumnWidth(i, w) def _next_idx(self, upwards): """Get the previous/next QModelIndex displayed in the view. Used by tab_handler. Args: upwards: Get previous item, not next. Return: A QModelIndex. """ idx = self.selectionModel().currentIndex() if not idx.isValid(): # No item selected yet if upwards: return self.model().last_item() else: return self.model().first_item() while True: idx = self.indexAbove(idx) if upwards else self.indexBelow(idx) # wrap around if we arrived at beginning/end if not idx.isValid() and upwards: return self.model().last_item() elif not idx.isValid() and not upwards: idx = self.model().first_item() self.scrollTo(idx.parent()) return idx elif idx.parent().isValid(): # Item is a real item, not a category header -> success return idx @pyqtSlot(bool) def on_next_prev_item(self, prev): """Handle a tab press for the CompletionView. Select the previous/next item and write the new text to the statusbar. Called from the Completer's next_prev_item signal. Args: prev: True for prev item, False for next one. """ if not self.isVisible(): # No completion running at the moment, ignore keypress return idx = self._next_idx(prev) qtutils.ensure_valid(idx) self.selectionModel().setCurrentIndex( idx, QItemSelectionModel.ClearAndSelect | QItemSelectionModel.Rows) def set_model(self, model): """Switch completion to a new model. Called from on_update_completion(). Args: model: The model to use. """ old_model = self.model() sel_model = self.selectionModel() self.setModel(model) if sel_model is not None: sel_model.deleteLater() if old_model is not None: old_model.deleteLater() for i in range(model.rowCount()): self.expand(model.index(i, 0)) self._column_widths = model.srcmodel.COLUMN_WIDTHS self._resize_columns() self.maybe_resize_completion() def set_pattern(self, pattern): """Set the completion pattern for the current model. Called from on_update_completion(). Args: pattern: The filter pattern to set (what the user entered). """ self.model().set_pattern(pattern) self.maybe_resize_completion() @pyqtSlot() def maybe_resize_completion(self): """Emit the resize_completion signal if the config says so.""" if config.get('completion', 'shrink'): self.resize_completion.emit() @config.change_filter('completion', 'show') def set_enabled(self): """Update self.enabled when the config changed.""" self.enabled = config.get('completion', 'show') @pyqtSlot() def on_clear_completion_selection(self): """Clear the selection model when an item is activated.""" selmod = self.selectionModel() if selmod is not None: selmod.clearSelection() selmod.clearCurrentIndex() def selectionChanged(self, selected, deselected): """Extend selectionChanged to call completers selection_changed.""" super().selectionChanged(selected, deselected) completer_obj = objreg.get('completer', scope='window', window=self._win_id) completer_obj.selection_changed(selected, deselected) def resizeEvent(self, e): """Extend resizeEvent to adjust column size.""" super().resizeEvent(e) self._resize_columns() def showEvent(self, e): """Adjust the completion size and scroll when it's freshly shown.""" self.resize_completion.emit() scrollbar = self.verticalScrollBar() if scrollbar is not None: scrollbar.setValue(scrollbar.minimum()) super().showEvent(e) @cmdutils.register(instance='completion', hide=True, modes=[usertypes.KeyMode.command], scope='window') def completion_item_del(self): """Delete the current completion item.""" if not self.currentIndex().isValid(): raise cmdexc.CommandError("No item selected!") try: self.model().srcmodel.delete_cur_item(self) except NotImplementedError: raise cmdexc.CommandError("Cannot delete this item.")
1
15,469
nitpick: Please remove the blank line here
qutebrowser-qutebrowser
py
@@ -4,6 +4,7 @@ class Way < ActiveRecord::Base include ConsistencyValidations set_table_name 'current_ways' + foreign_key 'changeset_id' belongs_to :changeset
1
class Way < ActiveRecord::Base require 'xml/libxml' include ConsistencyValidations set_table_name 'current_ways' belongs_to :changeset has_many :old_ways, :order => 'version' has_many :way_nodes, :order => 'sequence_id' has_many :nodes, :through => :way_nodes, :order => 'sequence_id' has_many :way_tags has_many :containing_relation_members, :class_name => "RelationMember", :as => :member has_many :containing_relations, :class_name => "Relation", :through => :containing_relation_members, :source => :relation, :extend => ObjectFinder validates_presence_of :id, :on => :update validates_presence_of :changeset_id,:version, :timestamp validates_uniqueness_of :id validates_inclusion_of :visible, :in => [ true, false ] validates_numericality_of :changeset_id, :version, :integer_only => true validates_numericality_of :id, :on => :update, :integer_only => true validates_associated :changeset scope :visible, where(:visible => true) scope :invisible, where(:visible => false) # Read in xml as text and return it's Way object representation def self.from_xml(xml, create=false) begin p = XML::Parser.string(xml) doc = p.parse doc.find('//osm/way').each do |pt| return Way.from_xml_node(pt, create) end raise OSM::APIBadXMLError.new("node", xml, "XML doesn't contain an osm/way element.") rescue LibXML::XML::Error, ArgumentError => ex raise OSM::APIBadXMLError.new("way", xml, ex.message) end end def self.from_xml_node(pt, create=false) way = Way.new raise OSM::APIBadXMLError.new("way", pt, "Version is required when updating") unless create or not pt['version'].nil? way.version = pt['version'] raise OSM::APIBadXMLError.new("way", pt, "Changeset id is missing") if pt['changeset'].nil? way.changeset_id = pt['changeset'] unless create raise OSM::APIBadXMLError.new("way", pt, "ID is required when updating") if pt['id'].nil? way.id = pt['id'].to_i # .to_i will return 0 if there is no number that can be parsed. # We want to make sure that there is no id with zero anyway raise OSM::APIBadUserInput.new("ID of way cannot be zero when updating.") if way.id == 0 end # We don't care about the timestamp nor the visibility as these are either # set explicitly or implicit in the action. The visibility is set to true, # and manually set to false before the actual delete. way.visible = true pt.find('tag').each do |tag| raise OSM::APIBadXMLError.new("way", pt, "tag is missing key") if tag['k'].nil? raise OSM::APIBadXMLError.new("way", pt, "tag is missing value") if tag['v'].nil? way.add_tag_keyval(tag['k'], tag['v']) end pt.find('nd').each do |nd| way.add_nd_num(nd['ref']) end return way end # Find a way given it's ID, and in a single SQL call also grab its nodes # # You can't pull in all the tags too unless we put a sequence_id on the way_tags table and have a multipart key def self.find_eager(id) way = Way.find(id, :include => {:way_nodes => :node}) #If waytag had a multipart key that was real, you could do this: #way = Way.find(id, :include => [:way_tags, {:way_nodes => :node}]) end # Find a way given it's ID, and in a single SQL call also grab its nodes and tags def to_xml doc = OSM::API.new.get_xml_doc doc.root << to_xml_node() return doc end def to_xml_node(visible_nodes = nil, changeset_cache = {}, user_display_name_cache = {}) el1 = XML::Node.new 'way' el1['id'] = self.id.to_s el1['visible'] = self.visible.to_s el1['timestamp'] = self.timestamp.xmlschema el1['version'] = self.version.to_s el1['changeset'] = self.changeset_id.to_s if changeset_cache.key?(self.changeset_id) # use the cache if available else changeset_cache[self.changeset_id] = self.changeset.user_id end user_id = changeset_cache[self.changeset_id] if user_display_name_cache.key?(user_id) # use the cache if available elsif self.changeset.user.data_public? user_display_name_cache[user_id] = self.changeset.user.display_name else user_display_name_cache[user_id] = nil end if not user_display_name_cache[user_id].nil? el1['user'] = user_display_name_cache[user_id] el1['uid'] = user_id.to_s end # make sure nodes are output in sequence_id order ordered_nodes = [] self.way_nodes.each do |nd| if visible_nodes # if there is a list of visible nodes then use that to weed out deleted nodes if visible_nodes[nd.node_id] ordered_nodes[nd.sequence_id] = nd.node_id.to_s end else # otherwise, manually go to the db to check things if nd.node and nd.node.visible? ordered_nodes[nd.sequence_id] = nd.node_id.to_s end end end ordered_nodes.each do |nd_id| if nd_id and nd_id != '0' e = XML::Node.new 'nd' e['ref'] = nd_id el1 << e end end self.way_tags.each do |tag| e = XML::Node.new 'tag' e['k'] = tag.k e['v'] = tag.v el1 << e end return el1 end def nds unless @nds @nds = Array.new self.way_nodes.each do |nd| @nds += [nd.node_id] end end @nds end def tags unless @tags @tags = {} self.way_tags.each do |tag| @tags[tag.k] = tag.v end end @tags end def nds=(s) @nds = s end def tags=(t) @tags = t end def add_nd_num(n) @nds = Array.new unless @nds @nds << n.to_i end def add_tag_keyval(k, v) @tags = Hash.new unless @tags # duplicate tags are now forbidden, so we can't allow values # in the hash to be overwritten. raise OSM::APIDuplicateTagsError.new("way", self.id, k) if @tags.include? k @tags[k] = v end ## # the integer coords (i.e: unscaled) bounding box of the way, assuming # straight line segments. def bbox lons = nodes.collect { |n| n.longitude } lats = nodes.collect { |n| n.latitude } BoundingBox.new(lons.min, lats.min, lons.max, lats.max) end def update_from(new_way, user) Way.transaction do self.lock! check_consistency(self, new_way, user) unless new_way.preconditions_ok?(self.nds) raise OSM::APIPreconditionFailedError.new("Cannot update way #{self.id}: data is invalid.") end self.changeset_id = new_way.changeset_id self.changeset = new_way.changeset self.tags = new_way.tags self.nds = new_way.nds self.visible = true save_with_history! end end def create_with_history(user) check_create_consistency(self, user) unless self.preconditions_ok? raise OSM::APIPreconditionFailedError.new("Cannot create way: data is invalid.") end self.version = 0 self.visible = true save_with_history! end def preconditions_ok?(old_nodes = []) return false if self.nds.empty? if self.nds.length > MAX_NUMBER_OF_WAY_NODES raise OSM::APITooManyWayNodesError.new(self.id, self.nds.length, MAX_NUMBER_OF_WAY_NODES) end # check only the new nodes, for efficiency - old nodes having been checked last time and can't # be deleted when they're in-use. new_nds = (self.nds - old_nodes).sort.uniq unless new_nds.empty? db_nds = Node.where(:id => new_nds, :visible => true) if db_nds.length < new_nds.length missing = new_nds - db_nds.collect { |n| n.id } raise OSM::APIPreconditionFailedError.new("Way #{self.id} requires the nodes with id in (#{missing.join(',')}), which either do not exist, or are not visible.") end end return true end def delete_with_history!(new_way, user) unless self.visible raise OSM::APIAlreadyDeletedError.new("way", new_way.id) end # need to start the transaction here, so that the database can # provide repeatable reads for the used-by checks. this means it # shouldn't be possible to get race conditions. Way.transaction do self.lock! check_consistency(self, new_way, user) rels = Relation.joins(:relation_members).where(:visible => true, :current_relation_members => { :member_type => "Way", :member_id => id }).order(:id) raise OSM::APIPreconditionFailedError.new("Way #{self.id} is still used by relations #{rels.collect { |r| r.id }.join(",")}.") unless rels.empty? self.changeset_id = new_way.changeset_id self.changeset = new_way.changeset self.tags = [] self.nds = [] self.visible = false save_with_history! end end # Temporary method to match interface to nodes def tags_as_hash return self.tags end ## # if any referenced nodes are placeholder IDs (i.e: are negative) then # this calling this method will fix them using the map from placeholders # to IDs +id_map+. def fix_placeholders!(id_map, placeholder_id = nil) self.nds.map! do |node_id| if node_id < 0 new_id = id_map[:node][node_id] raise OSM::APIBadUserInput.new("Placeholder node not found for reference #{node_id} in way #{self.id.nil? ? placeholder_id : self.id}") if new_id.nil? new_id else node_id end end end private def save_with_history! t = Time.now.getutc # update the bounding box, note that this has to be done both before # and after the save, so that nodes from both versions are included in the # bbox. we use a copy of the changeset so that it isn't reloaded # later in the save. cs = self.changeset cs.update_bbox!(bbox) unless nodes.empty? Way.transaction do self.version += 1 self.timestamp = t self.save! tags = self.tags WayTag.delete_all(:way_id => self.id) tags.each do |k,v| tag = WayTag.new tag.way_id = self.id tag.k = k tag.v = v tag.save! end nds = self.nds WayNode.delete_all(:way_id => self.id) sequence = 1 nds.each do |n| nd = WayNode.new nd.id = [self.id, sequence] nd.node_id = n nd.save! sequence += 1 end old_way = OldWay.from_way(self) old_way.timestamp = t old_way.save_with_dependencies! # reload the way so that the nodes array points to the correct # new set of nodes. self.reload # update and commit the bounding box, now that way nodes # have been updated and we're in a transaction. cs.update_bbox!(bbox) unless nodes.empty? # tell the changeset we updated one element only cs.add_changes! 1 cs.save! end end end
1
7,515
What is this for? The only methods I can see by that name in the rails doc are generating a foreign key name from a model class name but you seem to be giving a key name as argument?
openstreetmap-openstreetmap-website
rb
@@ -798,6 +798,12 @@ public class CoreContainer { SecurityConfHandler.SecurityConfig securityConfig = securityConfHandler.getSecurityConfig(false); initializeAuthorizationPlugin((Map<String, Object>) securityConfig.getData().get("authorization")); initializeAuthenticationPlugin((Map<String, Object>) securityConfig.getData().get("authentication")); + if (authenticationPlugin != null && authenticationPlugin.plugin.getMetricRegistry() == null) { + authenticationPlugin.plugin.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, "/authentication"); + } + if (pkiAuthenticationPlugin != null && pkiAuthenticationPlugin.getMetricRegistry() == null) { + pkiAuthenticationPlugin.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, "/authentication/pki"); + } } private static void checkForDuplicateCoreNames(List<CoreDescriptor> cds) {
1
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.solr.core; import java.io.IOException; import java.lang.invoke.MethodHandles; import java.nio.file.Path; import java.nio.file.Paths; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Date; import java.util.HashMap; import java.util.List; import java.util.Locale; import java.util.Map; import java.util.Optional; import java.util.Properties; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Future; import com.google.common.collect.ImmutableMap; import com.google.common.collect.Maps; import org.apache.http.auth.AuthSchemeProvider; import org.apache.http.client.CredentialsProvider; import org.apache.http.config.Lookup; import org.apache.lucene.index.CorruptIndexException; import org.apache.lucene.store.Directory; import org.apache.solr.client.solrj.SolrClient; import org.apache.solr.client.solrj.cloud.SolrCloudManager; import org.apache.solr.client.solrj.embedded.EmbeddedSolrServer; import org.apache.solr.client.solrj.impl.CloudSolrClient; import org.apache.solr.client.solrj.impl.HttpClientUtil; import org.apache.solr.client.solrj.impl.SolrHttpClientBuilder; import org.apache.solr.client.solrj.impl.SolrHttpClientContextBuilder; import org.apache.solr.client.solrj.impl.SolrHttpClientContextBuilder.AuthSchemeRegistryProvider; import org.apache.solr.client.solrj.impl.SolrHttpClientContextBuilder.CredentialsProviderProvider; import org.apache.solr.client.solrj.util.SolrIdentifierValidator; import org.apache.solr.cloud.CloudDescriptor; import org.apache.solr.cloud.Overseer; import org.apache.solr.cloud.ZkController; import org.apache.solr.cloud.autoscaling.AutoScalingHandler; import org.apache.solr.common.SolrException; import org.apache.solr.common.SolrException.ErrorCode; import org.apache.solr.common.cloud.DocCollection; import org.apache.solr.common.cloud.Replica; import org.apache.solr.common.cloud.Replica.State; import org.apache.solr.common.params.CollectionAdminParams; import org.apache.solr.common.util.ExecutorUtil; import org.apache.solr.common.util.IOUtils; import org.apache.solr.common.util.Utils; import org.apache.solr.core.DirectoryFactory.DirContext; import org.apache.solr.core.backup.repository.BackupRepository; import org.apache.solr.core.backup.repository.BackupRepositoryFactory; import org.apache.solr.handler.RequestHandlerBase; import org.apache.solr.handler.SnapShooter; import org.apache.solr.handler.admin.AutoscalingHistoryHandler; import org.apache.solr.handler.admin.CollectionsHandler; import org.apache.solr.handler.admin.ConfigSetsHandler; import org.apache.solr.handler.admin.CoreAdminHandler; import org.apache.solr.handler.admin.HealthCheckHandler; import org.apache.solr.handler.admin.InfoHandler; import org.apache.solr.handler.admin.MetricsCollectorHandler; import org.apache.solr.handler.admin.MetricsHandler; import org.apache.solr.handler.admin.MetricsHistoryHandler; import org.apache.solr.handler.admin.SecurityConfHandler; import org.apache.solr.handler.admin.SecurityConfHandlerLocal; import org.apache.solr.handler.admin.SecurityConfHandlerZk; import org.apache.solr.handler.admin.ZookeeperInfoHandler; import org.apache.solr.handler.admin.ZookeeperStatusHandler; import org.apache.solr.handler.component.ShardHandlerFactory; import org.apache.solr.logging.LogWatcher; import org.apache.solr.logging.MDCLoggingContext; import org.apache.solr.metrics.SolrCoreMetricManager; import org.apache.solr.metrics.SolrMetricManager; import org.apache.solr.metrics.SolrMetricProducer; import org.apache.solr.request.SolrRequestHandler; import org.apache.solr.search.SolrFieldCacheBean; import org.apache.solr.security.AuthenticationPlugin; import org.apache.solr.security.AuthorizationPlugin; import org.apache.solr.security.HttpClientBuilderPlugin; import org.apache.solr.security.PKIAuthenticationPlugin; import org.apache.solr.security.PublicKeyHandler; import org.apache.solr.security.SecurityPluginHolder; import org.apache.solr.update.SolrCoreState; import org.apache.solr.update.UpdateShardHandler; import org.apache.solr.util.DefaultSolrThreadFactory; import org.apache.solr.util.OrderedExecutor; import org.apache.solr.util.stats.MetricUtils; import org.apache.zookeeper.KeeperException; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import static java.util.Objects.requireNonNull; import static org.apache.solr.common.params.CommonParams.AUTHC_PATH; import static org.apache.solr.common.params.CommonParams.AUTHZ_PATH; import static org.apache.solr.common.params.CommonParams.AUTOSCALING_HISTORY_PATH; import static org.apache.solr.common.params.CommonParams.COLLECTIONS_HANDLER_PATH; import static org.apache.solr.common.params.CommonParams.CONFIGSETS_HANDLER_PATH; import static org.apache.solr.common.params.CommonParams.CORES_HANDLER_PATH; import static org.apache.solr.common.params.CommonParams.HEALTH_CHECK_HANDLER_PATH; import static org.apache.solr.common.params.CommonParams.INFO_HANDLER_PATH; import static org.apache.solr.common.params.CommonParams.METRICS_HISTORY_PATH; import static org.apache.solr.common.params.CommonParams.METRICS_PATH; import static org.apache.solr.common.params.CommonParams.ZK_PATH; import static org.apache.solr.common.params.CommonParams.ZK_STATUS_PATH; import static org.apache.solr.core.CorePropertiesLocator.PROPERTIES_FILENAME; import static org.apache.solr.security.AuthenticationPlugin.AUTHENTICATION_PLUGIN_PROP; /** * * @since solr 1.3 */ public class CoreContainer { private static final Logger log = LoggerFactory.getLogger(MethodHandles.lookup().lookupClass()); final SolrCores solrCores = new SolrCores(this); public static class CoreLoadFailure { public final CoreDescriptor cd; public final Exception exception; public CoreLoadFailure(CoreDescriptor cd, Exception loadFailure) { this.cd = new CoreDescriptor(cd.getName(), cd); this.exception = loadFailure; } } protected final Map<String, CoreLoadFailure> coreInitFailures = new ConcurrentHashMap<>(); protected CoreAdminHandler coreAdminHandler = null; protected CollectionsHandler collectionsHandler = null; protected HealthCheckHandler healthCheckHandler = null; private InfoHandler infoHandler; protected ConfigSetsHandler configSetsHandler = null; private PKIAuthenticationPlugin pkiAuthenticationPlugin; protected Properties containerProperties; private ConfigSetService coreConfigService; protected ZkContainer zkSys = new ZkContainer(); protected ShardHandlerFactory shardHandlerFactory; private UpdateShardHandler updateShardHandler; private ExecutorService coreContainerWorkExecutor = ExecutorUtil.newMDCAwareCachedThreadPool( new DefaultSolrThreadFactory("coreContainerWorkExecutor") ); private final OrderedExecutor replayUpdatesExecutor; protected LogWatcher logging = null; private CloserThread backgroundCloser = null; protected final NodeConfig cfg; protected final SolrResourceLoader loader; protected final String solrHome; protected final CoresLocator coresLocator; private String hostName; private final BlobRepository blobRepository = new BlobRepository(this); private PluginBag<SolrRequestHandler> containerHandlers = new PluginBag<>(SolrRequestHandler.class, null); private boolean asyncSolrCoreLoad; protected SecurityConfHandler securityConfHandler; private SecurityPluginHolder<AuthorizationPlugin> authorizationPlugin; private SecurityPluginHolder<AuthenticationPlugin> authenticationPlugin; private BackupRepositoryFactory backupRepoFactory; protected SolrMetricManager metricManager; protected String metricTag = Integer.toHexString(hashCode()); protected MetricsHandler metricsHandler; protected MetricsHistoryHandler metricsHistoryHandler; protected MetricsCollectorHandler metricsCollectorHandler; protected AutoscalingHistoryHandler autoscalingHistoryHandler; // Bits for the state variable. public final static long LOAD_COMPLETE = 0x1L; public final static long CORE_DISCOVERY_COMPLETE = 0x2L; public final static long INITIAL_CORE_LOAD_COMPLETE = 0x4L; private volatile long status = 0L; protected AutoScalingHandler autoScalingHandler; private enum CoreInitFailedAction { fromleader, none } /** * This method instantiates a new instance of {@linkplain BackupRepository}. * * @param repositoryName The name of the backup repository (Optional). * If not specified, a default implementation is used. * @return a new instance of {@linkplain BackupRepository}. */ public BackupRepository newBackupRepository(Optional<String> repositoryName) { BackupRepository repository; if (repositoryName.isPresent()) { repository = backupRepoFactory.newInstance(getResourceLoader(), repositoryName.get()); } else { repository = backupRepoFactory.newInstance(getResourceLoader()); } return repository; } public ExecutorService getCoreZkRegisterExecutorService() { return zkSys.getCoreZkRegisterExecutorService(); } public SolrRequestHandler getRequestHandler(String path) { return RequestHandlerBase.getRequestHandler(path, containerHandlers); } public PluginBag<SolrRequestHandler> getRequestHandlers() { return this.containerHandlers; } { log.debug("New CoreContainer " + System.identityHashCode(this)); } /** * Create a new CoreContainer using system properties to detect the solr home * directory. The container's cores are not loaded. * @see #load() */ public CoreContainer() { this(new SolrResourceLoader(SolrResourceLoader.locateSolrHome())); } /** * Create a new CoreContainer using the given SolrResourceLoader. The container's * cores are not loaded. * @param loader the SolrResourceLoader * @see #load() */ public CoreContainer(SolrResourceLoader loader) { this(SolrXmlConfig.fromSolrHome(loader, loader.getInstancePath())); } /** * Create a new CoreContainer using the given solr home directory. The container's * cores are not loaded. * @param solrHome a String containing the path to the solr home directory * @see #load() */ public CoreContainer(String solrHome) { this(new SolrResourceLoader(Paths.get(solrHome))); } /** * Create a new CoreContainer using the given SolrResourceLoader, * configuration and CoresLocator. The container's cores are * not loaded. * @param config a ConfigSolr representation of this container's configuration * @see #load() */ public CoreContainer(NodeConfig config) { this(config, new Properties()); } public CoreContainer(NodeConfig config, Properties properties) { this(config, properties, new CorePropertiesLocator(config.getCoreRootDirectory())); } public CoreContainer(NodeConfig config, Properties properties, boolean asyncSolrCoreLoad) { this(config, properties, new CorePropertiesLocator(config.getCoreRootDirectory()), asyncSolrCoreLoad); } public CoreContainer(NodeConfig config, Properties properties, CoresLocator locator) { this(config, properties, locator, false); } public CoreContainer(NodeConfig config, Properties properties, CoresLocator locator, boolean asyncSolrCoreLoad) { this.loader = config.getSolrResourceLoader(); this.solrHome = loader.getInstancePath().toString(); containerHandlers.put(PublicKeyHandler.PATH, new PublicKeyHandler()); this.cfg = requireNonNull(config); this.coresLocator = locator; this.containerProperties = new Properties(properties); this.asyncSolrCoreLoad = asyncSolrCoreLoad; this.replayUpdatesExecutor = new OrderedExecutor( cfg.getReplayUpdatesThreads(), ExecutorUtil.newMDCAwareCachedThreadPool( cfg.getReplayUpdatesThreads(), new DefaultSolrThreadFactory("replayUpdatesExecutor"))); } private synchronized void initializeAuthorizationPlugin(Map<String, Object> authorizationConf) { authorizationConf = Utils.getDeepCopy(authorizationConf, 4); //Initialize the Authorization module SecurityPluginHolder<AuthorizationPlugin> old = authorizationPlugin; SecurityPluginHolder<AuthorizationPlugin> authorizationPlugin = null; if (authorizationConf != null) { String klas = (String) authorizationConf.get("class"); if (klas == null) { throw new SolrException(ErrorCode.SERVER_ERROR, "class is required for authorization plugin"); } if (old != null && old.getZnodeVersion() == readVersion(authorizationConf)) { return; } log.info("Initializing authorization plugin: " + klas); authorizationPlugin = new SecurityPluginHolder<>(readVersion(authorizationConf), getResourceLoader().newInstance(klas, AuthorizationPlugin.class)); // Read and pass the authorization context to the plugin authorizationPlugin.plugin.init(authorizationConf); } else { log.debug("Security conf doesn't exist. Skipping setup for authorization module."); } this.authorizationPlugin = authorizationPlugin; if (old != null) { try { old.plugin.close(); } catch (Exception e) { } } } private synchronized void initializeAuthenticationPlugin(Map<String, Object> authenticationConfig) { authenticationConfig = Utils.getDeepCopy(authenticationConfig, 4); String pluginClassName = null; if (authenticationConfig != null) { if (authenticationConfig.containsKey("class")) { pluginClassName = String.valueOf(authenticationConfig.get("class")); } else { throw new SolrException(ErrorCode.SERVER_ERROR, "No 'class' specified for authentication in ZK."); } } if (pluginClassName != null) { log.debug("Authentication plugin class obtained from security.json: "+pluginClassName); } else if (System.getProperty(AUTHENTICATION_PLUGIN_PROP) != null) { pluginClassName = System.getProperty(AUTHENTICATION_PLUGIN_PROP); log.debug("Authentication plugin class obtained from system property '" + AUTHENTICATION_PLUGIN_PROP + "': " + pluginClassName); } else { log.debug("No authentication plugin used."); } SecurityPluginHolder<AuthenticationPlugin> old = authenticationPlugin; SecurityPluginHolder<AuthenticationPlugin> authenticationPlugin = null; // Initialize the plugin if (pluginClassName != null) { log.info("Initializing authentication plugin: " + pluginClassName); authenticationPlugin = new SecurityPluginHolder<>(readVersion(authenticationConfig), getResourceLoader().newInstance(pluginClassName, AuthenticationPlugin.class, null, new Class[]{CoreContainer.class}, new Object[]{this})); } if (authenticationPlugin != null) { authenticationPlugin.plugin.init(authenticationConfig); setupHttpClientForAuthPlugin(authenticationPlugin.plugin); } this.authenticationPlugin = authenticationPlugin; try { if (old != null) old.plugin.close(); } catch (Exception e) {/*do nothing*/ } } private void setupHttpClientForAuthPlugin(Object authcPlugin) { if (authcPlugin instanceof HttpClientBuilderPlugin) { // Setup HttpClient for internode communication SolrHttpClientBuilder builder = ((HttpClientBuilderPlugin) authcPlugin).getHttpClientBuilder(HttpClientUtil.getHttpClientBuilder()); // The default http client of the core container's shardHandlerFactory has already been created and // configured using the default httpclient configurer. We need to reconfigure it using the plugin's // http client configurer to set it up for internode communication. log.debug("Reconfiguring HttpClient settings."); SolrHttpClientContextBuilder httpClientBuilder = new SolrHttpClientContextBuilder(); if (builder.getCredentialsProviderProvider() != null) { httpClientBuilder.setDefaultCredentialsProvider(new CredentialsProviderProvider() { @Override public CredentialsProvider getCredentialsProvider() { return builder.getCredentialsProviderProvider().getCredentialsProvider(); } }); } if (builder.getAuthSchemeRegistryProvider() != null) { httpClientBuilder.setAuthSchemeRegistryProvider(new AuthSchemeRegistryProvider() { @Override public Lookup<AuthSchemeProvider> getAuthSchemeRegistry() { return builder.getAuthSchemeRegistryProvider().getAuthSchemeRegistry(); } }); } HttpClientUtil.setHttpClientRequestContextBuilder(httpClientBuilder); } else { if (pkiAuthenticationPlugin != null) { //this happened due to an authc plugin reload. no need to register the pkiAuthc plugin again if(pkiAuthenticationPlugin.isInterceptorRegistered()) return; log.info("PKIAuthenticationPlugin is managing internode requests"); setupHttpClientForAuthPlugin(pkiAuthenticationPlugin); pkiAuthenticationPlugin.setInterceptorRegistered(); } } } private static int readVersion(Map<String, Object> conf) { if (conf == null) return -1; Map meta = (Map) conf.get(""); if (meta == null) return -1; Number v = (Number) meta.get("v"); return v == null ? -1 : v.intValue(); } /** * This method allows subclasses to construct a CoreContainer * without any default init behavior. * * @param testConstructor pass (Object)null. * @lucene.experimental */ protected CoreContainer(Object testConstructor) { solrHome = null; loader = null; coresLocator = null; cfg = null; containerProperties = null; replayUpdatesExecutor = null; } public static CoreContainer createAndLoad(Path solrHome) { return createAndLoad(solrHome, solrHome.resolve(SolrXmlConfig.SOLR_XML_FILE)); } /** * Create a new CoreContainer and load its cores * @param solrHome the solr home directory * @param configFile the file containing this container's configuration * @return a loaded CoreContainer */ public static CoreContainer createAndLoad(Path solrHome, Path configFile) { SolrResourceLoader loader = new SolrResourceLoader(solrHome); CoreContainer cc = new CoreContainer(SolrXmlConfig.fromFile(loader, configFile)); try { cc.load(); } catch (Exception e) { cc.shutdown(); throw e; } return cc; } public Properties getContainerProperties() { return containerProperties; } public PKIAuthenticationPlugin getPkiAuthenticationPlugin() { return pkiAuthenticationPlugin; } public SolrMetricManager getMetricManager() { return metricManager; } public MetricsHandler getMetricsHandler() { return metricsHandler; } public MetricsHistoryHandler getMetricsHistoryHandler() { return metricsHistoryHandler; } public OrderedExecutor getReplayUpdatesExecutor() { return replayUpdatesExecutor; } //------------------------------------------------------------------- // Initialization / Cleanup //------------------------------------------------------------------- /** * Load the cores defined for this CoreContainer */ public void load() { log.debug("Loading cores into CoreContainer [instanceDir={}]", loader.getInstancePath()); // add the sharedLib to the shared resource loader before initializing cfg based plugins String libDir = cfg.getSharedLibDirectory(); if (libDir != null) { Path libPath = loader.getInstancePath().resolve(libDir); try { loader.addToClassLoader(SolrResourceLoader.getURLs(libPath)); loader.reloadLuceneSPI(); } catch (IOException e) { if (!libDir.equals("lib")) { // Don't complain if default "lib" dir does not exist log.warn("Couldn't add files from {} to classpath: {}", libPath, e.getMessage()); } } } metricManager = new SolrMetricManager(loader, cfg.getMetricsConfig()); coreContainerWorkExecutor = MetricUtils.instrumentedExecutorService( coreContainerWorkExecutor, null, metricManager.registry(SolrMetricManager.getRegistryName(SolrInfoBean.Group.node)), SolrMetricManager.mkName("coreContainerWorkExecutor", SolrInfoBean.Category.CONTAINER.toString(), "threadPool")); shardHandlerFactory = ShardHandlerFactory.newInstance(cfg.getShardHandlerFactoryPluginInfo(), loader); if (shardHandlerFactory instanceof SolrMetricProducer) { SolrMetricProducer metricProducer = (SolrMetricProducer) shardHandlerFactory; metricProducer.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, "httpShardHandler"); } updateShardHandler = new UpdateShardHandler(cfg.getUpdateShardHandlerConfig()); updateShardHandler.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, "updateShardHandler"); solrCores.load(loader); logging = LogWatcher.newRegisteredLogWatcher(cfg.getLogWatcherConfig(), loader); hostName = cfg.getNodeName(); zkSys.initZooKeeper(this, solrHome, cfg.getCloudConfig()); if(isZooKeeperAware()) pkiAuthenticationPlugin = new PKIAuthenticationPlugin(this, zkSys.getZkController().getNodeName(), (PublicKeyHandler) containerHandlers.get(PublicKeyHandler.PATH)); MDCLoggingContext.setNode(this); securityConfHandler = isZooKeeperAware() ? new SecurityConfHandlerZk(this) : new SecurityConfHandlerLocal(this); reloadSecurityProperties(); this.backupRepoFactory = new BackupRepositoryFactory(cfg.getBackupRepositoryPlugins()); createHandler(ZK_PATH, ZookeeperInfoHandler.class.getName(), ZookeeperInfoHandler.class); createHandler(ZK_STATUS_PATH, ZookeeperStatusHandler.class.getName(), ZookeeperStatusHandler.class); collectionsHandler = createHandler(COLLECTIONS_HANDLER_PATH, cfg.getCollectionsHandlerClass(), CollectionsHandler.class); healthCheckHandler = createHandler(HEALTH_CHECK_HANDLER_PATH, cfg.getHealthCheckHandlerClass(), HealthCheckHandler.class); infoHandler = createHandler(INFO_HANDLER_PATH, cfg.getInfoHandlerClass(), InfoHandler.class); coreAdminHandler = createHandler(CORES_HANDLER_PATH, cfg.getCoreAdminHandlerClass(), CoreAdminHandler.class); configSetsHandler = createHandler(CONFIGSETS_HANDLER_PATH, cfg.getConfigSetsHandlerClass(), ConfigSetsHandler.class); // metricsHistoryHandler uses metricsHandler, so create it first metricsHandler = new MetricsHandler(this); containerHandlers.put(METRICS_PATH, metricsHandler); metricsHandler.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, METRICS_PATH); createMetricsHistoryHandler(); autoscalingHistoryHandler = createHandler(AUTOSCALING_HISTORY_PATH, AutoscalingHistoryHandler.class.getName(), AutoscalingHistoryHandler.class); metricsCollectorHandler = createHandler(MetricsCollectorHandler.HANDLER_PATH, MetricsCollectorHandler.class.getName(), MetricsCollectorHandler.class); // may want to add some configuration here in the future metricsCollectorHandler.init(null); containerHandlers.put(AUTHZ_PATH, securityConfHandler); securityConfHandler.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, AUTHZ_PATH); containerHandlers.put(AUTHC_PATH, securityConfHandler); PluginInfo[] metricReporters = cfg.getMetricsConfig().getMetricReporters(); metricManager.loadReporters(metricReporters, loader, this, null, null, SolrInfoBean.Group.node); metricManager.loadReporters(metricReporters, loader, this, null, null, SolrInfoBean.Group.jvm); metricManager.loadReporters(metricReporters, loader, this, null, null, SolrInfoBean.Group.jetty); coreConfigService = ConfigSetService.createConfigSetService(cfg, loader, zkSys.zkController); containerProperties.putAll(cfg.getSolrProperties()); // initialize gauges for reporting the number of cores and disk total/free String registryName = SolrMetricManager.getRegistryName(SolrInfoBean.Group.node); String metricTag = Integer.toHexString(hashCode()); metricManager.registerGauge(null, registryName, () -> solrCores.getCores().size(), metricTag,true, "loaded", SolrInfoBean.Category.CONTAINER.toString(), "cores"); metricManager.registerGauge(null, registryName, () -> solrCores.getLoadedCoreNames().size() - solrCores.getCores().size(), metricTag,true, "lazy", SolrInfoBean.Category.CONTAINER.toString(), "cores"); metricManager.registerGauge(null, registryName, () -> solrCores.getAllCoreNames().size() - solrCores.getLoadedCoreNames().size(), metricTag,true, "unloaded", SolrInfoBean.Category.CONTAINER.toString(), "cores"); Path dataHome = cfg.getSolrDataHome() != null ? cfg.getSolrDataHome() : cfg.getCoreRootDirectory(); metricManager.registerGauge(null, registryName, () -> dataHome.toFile().getTotalSpace(), metricTag,true, "totalSpace", SolrInfoBean.Category.CONTAINER.toString(), "fs"); metricManager.registerGauge(null, registryName, () -> dataHome.toFile().getUsableSpace(), metricTag,true, "usableSpace", SolrInfoBean.Category.CONTAINER.toString(), "fs"); metricManager.registerGauge(null, registryName, () -> dataHome.toAbsolutePath().toString(), metricTag,true, "path", SolrInfoBean.Category.CONTAINER.toString(), "fs"); metricManager.registerGauge(null, registryName, () -> { try { return org.apache.lucene.util.IOUtils.spins(dataHome.toAbsolutePath()); } catch (IOException e) { // default to spinning return true; } }, metricTag,true, "spins", SolrInfoBean.Category.CONTAINER.toString(), "fs"); metricManager.registerGauge(null, registryName, () -> cfg.getCoreRootDirectory().toFile().getTotalSpace(), metricTag,true, "totalSpace", SolrInfoBean.Category.CONTAINER.toString(), "fs", "coreRoot"); metricManager.registerGauge(null, registryName, () -> cfg.getCoreRootDirectory().toFile().getUsableSpace(), metricTag,true, "usableSpace", SolrInfoBean.Category.CONTAINER.toString(), "fs", "coreRoot"); metricManager.registerGauge(null, registryName, () -> cfg.getCoreRootDirectory().toAbsolutePath().toString(), metricTag,true, "path", SolrInfoBean.Category.CONTAINER.toString(), "fs", "coreRoot"); metricManager.registerGauge(null, registryName, () -> { try { return org.apache.lucene.util.IOUtils.spins(cfg.getCoreRootDirectory().toAbsolutePath()); } catch (IOException e) { // default to spinning return true; } }, metricTag,true, "spins", SolrInfoBean.Category.CONTAINER.toString(), "fs", "coreRoot"); // add version information metricManager.registerGauge(null, registryName, () -> this.getClass().getPackage().getSpecificationVersion(), metricTag,true, "specification", SolrInfoBean.Category.CONTAINER.toString(), "version"); metricManager.registerGauge(null, registryName, () -> this.getClass().getPackage().getImplementationVersion(), metricTag,true, "implementation", SolrInfoBean.Category.CONTAINER.toString(), "version"); SolrFieldCacheBean fieldCacheBean = new SolrFieldCacheBean(); fieldCacheBean.initializeMetrics(metricManager, registryName, metricTag, null); if (isZooKeeperAware()) { metricManager.loadClusterReporters(metricReporters, this); } // setup executor to load cores in parallel ExecutorService coreLoadExecutor = MetricUtils.instrumentedExecutorService( ExecutorUtil.newMDCAwareFixedThreadPool( cfg.getCoreLoadThreadCount(isZooKeeperAware()), new DefaultSolrThreadFactory("coreLoadExecutor")), null, metricManager.registry(SolrMetricManager.getRegistryName(SolrInfoBean.Group.node)), SolrMetricManager.mkName("coreLoadExecutor", SolrInfoBean.Category.CONTAINER.toString(), "threadPool")); final List<Future<SolrCore>> futures = new ArrayList<>(); try { List<CoreDescriptor> cds = coresLocator.discover(this); if (isZooKeeperAware()) { //sort the cores if it is in SolrCloud. In standalone node the order does not matter CoreSorter coreComparator = new CoreSorter().init(this); cds = new ArrayList<>(cds);//make a copy Collections.sort(cds, coreComparator::compare); } checkForDuplicateCoreNames(cds); status |= CORE_DISCOVERY_COMPLETE; for (final CoreDescriptor cd : cds) { if (cd.isTransient() || !cd.isLoadOnStartup()) { solrCores.addCoreDescriptor(cd); } else if (asyncSolrCoreLoad) { solrCores.markCoreAsLoading(cd); } if (cd.isLoadOnStartup()) { futures.add(coreLoadExecutor.submit(() -> { SolrCore core; try { if (zkSys.getZkController() != null) { zkSys.getZkController().throwErrorIfReplicaReplaced(cd); } solrCores.waitAddPendingCoreOps(cd.getName()); core = createFromDescriptor(cd, false, false); } finally { solrCores.removeFromPendingOps(cd.getName()); if (asyncSolrCoreLoad) { solrCores.markCoreAsNotLoading(cd); } } try { zkSys.registerInZk(core, true, false); } catch (RuntimeException e) { SolrException.log(log, "Error registering SolrCore", e); } return core; })); } } // Start the background thread backgroundCloser = new CloserThread(this, solrCores, cfg); backgroundCloser.start(); } finally { if (asyncSolrCoreLoad && futures != null) { coreContainerWorkExecutor.submit(() -> { try { for (Future<SolrCore> future : futures) { try { future.get(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } catch (ExecutionException e) { log.error("Error waiting for SolrCore to be loaded on startup", e.getCause()); } } } finally { ExecutorUtil.shutdownAndAwaitTermination(coreLoadExecutor); } }); } else { ExecutorUtil.shutdownAndAwaitTermination(coreLoadExecutor); } } if (isZooKeeperAware()) { zkSys.getZkController().checkOverseerDesignate(); // initialize this handler here when SolrCloudManager is ready autoScalingHandler = new AutoScalingHandler(getZkController().getSolrCloudManager(), loader); containerHandlers.put(AutoScalingHandler.HANDLER_PATH, autoScalingHandler); autoScalingHandler.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, AutoScalingHandler.HANDLER_PATH); } // This is a bit redundant but these are two distinct concepts for all they're accomplished at the same time. status |= LOAD_COMPLETE | INITIAL_CORE_LOAD_COMPLETE; } // MetricsHistoryHandler supports both cloud and standalone configs private void createMetricsHistoryHandler() { PluginInfo plugin = cfg.getMetricsConfig().getHistoryHandler(); Map<String, Object> initArgs; if (plugin != null && plugin.initArgs != null) { initArgs = plugin.initArgs.asMap(5); initArgs.put(MetricsHistoryHandler.ENABLE_PROP, plugin.isEnabled()); } else { initArgs = new HashMap<>(); } String name; SolrCloudManager cloudManager; SolrClient client; if (isZooKeeperAware()) { name = getZkController().getNodeName(); cloudManager = getZkController().getSolrCloudManager(); client = new CloudSolrClient.Builder(Collections.singletonList(getZkController().getZkServerAddress()), Optional.empty()) .withHttpClient(updateShardHandler.getDefaultHttpClient()).build(); } else { name = getNodeConfig().getNodeName(); if (name == null || name.isEmpty()) { name = "localhost"; } cloudManager = null; client = new EmbeddedSolrServer(this, CollectionAdminParams.SYSTEM_COLL) { @Override public void close() throws IOException { // do nothing - we close the container ourselves } }; // enable local metrics unless specifically set otherwise if (!initArgs.containsKey(MetricsHistoryHandler.ENABLE_NODES_PROP)) { initArgs.put(MetricsHistoryHandler.ENABLE_NODES_PROP, true); } if (!initArgs.containsKey(MetricsHistoryHandler.ENABLE_REPLICAS_PROP)) { initArgs.put(MetricsHistoryHandler.ENABLE_REPLICAS_PROP, true); } } metricsHistoryHandler = new MetricsHistoryHandler(name, metricsHandler, client, cloudManager, initArgs); containerHandlers.put(METRICS_HISTORY_PATH, metricsHistoryHandler); metricsHistoryHandler.initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, METRICS_HISTORY_PATH); } public void securityNodeChanged() { log.info("Security node changed, reloading security.json"); reloadSecurityProperties(); } /** * Make sure securityConfHandler is initialized */ private void reloadSecurityProperties() { SecurityConfHandler.SecurityConfig securityConfig = securityConfHandler.getSecurityConfig(false); initializeAuthorizationPlugin((Map<String, Object>) securityConfig.getData().get("authorization")); initializeAuthenticationPlugin((Map<String, Object>) securityConfig.getData().get("authentication")); } private static void checkForDuplicateCoreNames(List<CoreDescriptor> cds) { Map<String, Path> addedCores = Maps.newHashMap(); for (CoreDescriptor cd : cds) { final String name = cd.getName(); if (addedCores.containsKey(name)) throw new SolrException(ErrorCode.SERVER_ERROR, String.format(Locale.ROOT, "Found multiple cores with the name [%s], with instancedirs [%s] and [%s]", name, addedCores.get(name), cd.getInstanceDir())); addedCores.put(name, cd.getInstanceDir()); } } private volatile boolean isShutDown = false; public boolean isShutDown() { return isShutDown; } /** * Stops all cores. */ public void shutdown() { log.info("Shutting down CoreContainer instance=" + System.identityHashCode(this)); isShutDown = true; ExecutorUtil.shutdownAndAwaitTermination(coreContainerWorkExecutor); replayUpdatesExecutor.shutdownAndAwaitTermination(); if (metricsHistoryHandler != null) { IOUtils.closeQuietly(metricsHistoryHandler.getSolrClient()); metricsHistoryHandler.close(); } if (metricManager != null) { metricManager.closeReporters(SolrMetricManager.getRegistryName(SolrInfoBean.Group.node)); metricManager.closeReporters(SolrMetricManager.getRegistryName(SolrInfoBean.Group.jvm)); metricManager.closeReporters(SolrMetricManager.getRegistryName(SolrInfoBean.Group.jetty)); metricManager.unregisterGauges(SolrMetricManager.getRegistryName(SolrInfoBean.Group.node), metricTag); metricManager.unregisterGauges(SolrMetricManager.getRegistryName(SolrInfoBean.Group.jvm), metricTag); metricManager.unregisterGauges(SolrMetricManager.getRegistryName(SolrInfoBean.Group.jetty), metricTag); } if (isZooKeeperAware()) { cancelCoreRecoveries(); zkSys.zkController.publishNodeAsDown(zkSys.zkController.getNodeName()); try { zkSys.zkController.removeEphemeralLiveNode(); } catch (Exception e) { log.warn("Error removing live node. Continuing to close CoreContainer", e); } if (metricManager != null) { metricManager.closeReporters(SolrMetricManager.getRegistryName(SolrInfoBean.Group.cluster)); } } try { if (coreAdminHandler != null) coreAdminHandler.shutdown(); } catch (Exception e) { log.warn("Error shutting down CoreAdminHandler. Continuing to close CoreContainer.", e); } try { // First wake up the closer thread, it'll terminate almost immediately since it checks isShutDown. synchronized (solrCores.getModifyLock()) { solrCores.getModifyLock().notifyAll(); // wake up anyone waiting } if (backgroundCloser != null) { // Doesn't seem right, but tests get in here without initializing the core. try { while (true) { backgroundCloser.join(15000); if (backgroundCloser.isAlive()) { synchronized (solrCores.getModifyLock()) { solrCores.getModifyLock().notifyAll(); // there is a race we have to protect against } } else { break; } } } catch (InterruptedException e) { Thread.currentThread().interrupt(); if (log.isDebugEnabled()) { log.debug("backgroundCloser thread was interrupted before finishing"); } } } // Now clear all the cores that are being operated upon. solrCores.close(); // It's still possible that one of the pending dynamic load operation is waiting, so wake it up if so. // Since all the pending operations queues have been drained, there should be nothing to do. synchronized (solrCores.getModifyLock()) { solrCores.getModifyLock().notifyAll(); // wake up the thread } } finally { try { if (shardHandlerFactory != null) { shardHandlerFactory.close(); } } finally { try { if (updateShardHandler != null) { updateShardHandler.close(); } } finally { // we want to close zk stuff last zkSys.close(); } } } // It should be safe to close the authorization plugin at this point. try { if(authorizationPlugin != null) { authorizationPlugin.plugin.close(); } } catch (IOException e) { log.warn("Exception while closing authorization plugin.", e); } // It should be safe to close the authentication plugin at this point. try { if(authenticationPlugin != null) { authenticationPlugin.plugin.close(); authenticationPlugin = null; } } catch (Exception e) { log.warn("Exception while closing authentication plugin.", e); } org.apache.lucene.util.IOUtils.closeWhileHandlingException(loader); // best effort } public void cancelCoreRecoveries() { List<SolrCore> cores = solrCores.getCores(); // we must cancel without holding the cores sync // make sure we wait for any recoveries to stop for (SolrCore core : cores) { try { core.getSolrCoreState().cancelRecovery(); } catch (Exception e) { SolrException.log(log, "Error canceling recovery for core", e); } } } @Override protected void finalize() throws Throwable { try { if(!isShutDown){ log.error("CoreContainer was not close prior to finalize(), indicates a bug -- POSSIBLE RESOURCE LEAK!!! instance=" + System.identityHashCode(this)); } } finally { super.finalize(); } } public CoresLocator getCoresLocator() { return coresLocator; } protected SolrCore registerCore(CoreDescriptor cd, SolrCore core, boolean registerInZk, boolean skipRecovery) { if( core == null ) { throw new RuntimeException( "Can not register a null core." ); } if (isShutDown) { core.close(); throw new IllegalStateException("This CoreContainer has been closed"); } SolrCore old = solrCores.putCore(cd, core); /* * set both the name of the descriptor and the name of the * core, since the descriptors name is used for persisting. */ core.setName(cd.getName()); coreInitFailures.remove(cd.getName()); if( old == null || old == core) { log.debug( "registering core: " + cd.getName() ); if (registerInZk) { zkSys.registerInZk(core, false, skipRecovery); } return null; } else { log.debug( "replacing core: " + cd.getName() ); old.close(); if (registerInZk) { zkSys.registerInZk(core, false, skipRecovery); } return old; } } /** * Creates a new core, publishing the core state to the cluster * @param coreName the core name * @param parameters the core parameters * @return the newly created core */ public SolrCore create(String coreName, Map<String, String> parameters) { return create(coreName, cfg.getCoreRootDirectory().resolve(coreName), parameters, false); } /** * Creates a new core in a specified instance directory, publishing the core state to the cluster * @param coreName the core name * @param instancePath the instance directory * @param parameters the core parameters * @return the newly created core */ public SolrCore create(String coreName, Path instancePath, Map<String, String> parameters, boolean newCollection) { CoreDescriptor cd = new CoreDescriptor(coreName, instancePath, parameters, getContainerProperties(), isZooKeeperAware()); // TODO: There's a race here, isn't there? // Since the core descriptor is removed when a core is unloaded, it should never be anywhere when a core is created. if (getAllCoreNames().contains(coreName)) { log.warn("Creating a core with existing name is not allowed"); // TODO: Shouldn't this be a BAD_REQUEST? throw new SolrException(ErrorCode.SERVER_ERROR, "Core with name '" + coreName + "' already exists."); } boolean preExisitingZkEntry = false; try { if (getZkController() != null) { if (!Overseer.isLegacy(getZkController().getZkStateReader())) { if (cd.getCloudDescriptor().getCoreNodeName() == null) { throw new SolrException(ErrorCode.SERVER_ERROR, "non legacy mode coreNodeName missing " + parameters.toString()); } } preExisitingZkEntry = getZkController().checkIfCoreNodeNameAlreadyExists(cd); } // Much of the logic in core handling pre-supposes that the core.properties file already exists, so create it // first and clean it up if there's an error. coresLocator.create(this, cd); SolrCore core = null; try { solrCores.waitAddPendingCoreOps(cd.getName()); core = createFromDescriptor(cd, true, newCollection); coresLocator.persist(this, cd); // Write out the current core properties in case anything changed when the core was created } finally { solrCores.removeFromPendingOps(cd.getName()); } return core; } catch (Exception ex) { // First clean up any core descriptor, there should never be an existing core.properties file for any core that // failed to be created on-the-fly. coresLocator.delete(this, cd); if (isZooKeeperAware() && !preExisitingZkEntry) { try { getZkController().unregister(coreName, cd); } catch (InterruptedException e) { Thread.currentThread().interrupt(); SolrException.log(log, null, e); } catch (KeeperException e) { SolrException.log(log, null, e); } catch (Exception e) { SolrException.log(log, null, e); } } Throwable tc = ex; Throwable c = null; do { tc = tc.getCause(); if (tc != null) { c = tc; } } while (tc != null); String rootMsg = ""; if (c != null) { rootMsg = " Caused by: " + c.getMessage(); } throw new SolrException(SolrException.ErrorCode.BAD_REQUEST, "Error CREATEing SolrCore '" + coreName + "': " + ex.getMessage() + rootMsg, ex); } } /** * Creates a new core based on a CoreDescriptor. * * @param dcore a core descriptor * @param publishState publish core state to the cluster if true * * WARNING: Any call to this method should be surrounded by a try/finally block * that calls solrCores.waitAddPendingCoreOps(...) and solrCores.removeFromPendingOps(...) * * <pre> * <code> * try { * solrCores.waitAddPendingCoreOps(dcore.getName()); * createFromDescriptor(...); * } finally { * solrCores.removeFromPendingOps(dcore.getName()); * } * </code> * </pre> * * Trying to put the waitAddPending... in this method results in Bad Things Happening due to race conditions. * getCore() depends on getting the core returned _if_ it's in the pending list due to some other thread opening it. * If the core is not in the pending list and not loaded, then getCore() calls this method. Anything that called * to check if the core was loaded _or_ in pending ops and, based on the return called createFromDescriptor would * introduce a race condition, see getCore() for the place it would be a problem * * @return the newly created core */ @SuppressWarnings("resource") private SolrCore createFromDescriptor(CoreDescriptor dcore, boolean publishState, boolean newCollection) { if (isShutDown) { throw new SolrException(ErrorCode.SERVICE_UNAVAILABLE, "Solr has been shutdown."); } SolrCore core = null; try { MDCLoggingContext.setCoreDescriptor(this, dcore); SolrIdentifierValidator.validateCoreName(dcore.getName()); if (zkSys.getZkController() != null) { zkSys.getZkController().preRegister(dcore, publishState); } ConfigSet coreConfig = getConfigSet(dcore); dcore.setConfigSetTrusted(coreConfig.isTrusted()); log.info("Creating SolrCore '{}' using configuration from {}, trusted={}", dcore.getName(), coreConfig.getName(), dcore.isConfigSetTrusted()); try { core = new SolrCore(this, dcore, coreConfig); } catch (SolrException e) { core = processCoreCreateException(e, dcore, coreConfig); } // always kick off recovery if we are in non-Cloud mode if (!isZooKeeperAware() && core.getUpdateHandler().getUpdateLog() != null) { core.getUpdateHandler().getUpdateLog().recoverFromLog(); } registerCore(dcore, core, publishState, newCollection); return core; } catch (Exception e) { coreInitFailures.put(dcore.getName(), new CoreLoadFailure(dcore, e)); if (e instanceof ZkController.NotInClusterStateException && !newCollection) { // this mostly happen when the core is deleted when this node is down unload(dcore.getName(), true, true, true); throw e; } solrCores.removeCoreDescriptor(dcore); final SolrException solrException = new SolrException(ErrorCode.SERVER_ERROR, "Unable to create core [" + dcore.getName() + "]", e); if(core != null && !core.isClosed()) IOUtils.closeQuietly(core); throw solrException; } catch (Throwable t) { SolrException e = new SolrException(ErrorCode.SERVER_ERROR, "JVM Error creating core [" + dcore.getName() + "]: " + t.getMessage(), t); coreInitFailures.put(dcore.getName(), new CoreLoadFailure(dcore, e)); solrCores.removeCoreDescriptor(dcore); if(core != null && !core.isClosed()) IOUtils.closeQuietly(core); throw t; } finally { MDCLoggingContext.clear(); } } public boolean isSharedFs(CoreDescriptor cd) { try (SolrCore core = this.getCore(cd.getName())) { if (core != null) { return core.getDirectoryFactory().isSharedStorage(); } else { ConfigSet configSet = getConfigSet(cd); return DirectoryFactory.loadDirectoryFactory(configSet.getSolrConfig(), this, null).isSharedStorage(); } } } private ConfigSet getConfigSet(CoreDescriptor cd) { return coreConfigService.getConfig(cd); } /** * Take action when we failed to create a SolrCore. If error is due to corrupt index, try to recover. Various recovery * strategies can be specified via system properties "-DCoreInitFailedAction={fromleader, none}" * * @see CoreInitFailedAction * * @param original * the problem seen when loading the core the first time. * @param dcore * core descriptor for the core to create * @param coreConfig * core config for the core to create * @return if possible * @throws SolrException * rethrows the original exception if we will not attempt to recover, throws a new SolrException with the * original exception as a suppressed exception if there is a second problem creating the solr core. */ private SolrCore processCoreCreateException(SolrException original, CoreDescriptor dcore, ConfigSet coreConfig) { // Traverse full chain since CIE may not be root exception Throwable cause = original; while ((cause = cause.getCause()) != null) { if (cause instanceof CorruptIndexException) { break; } } // If no CorruptIndexException, nothing we can try here if (cause == null) throw original; CoreInitFailedAction action = CoreInitFailedAction.valueOf(System.getProperty(CoreInitFailedAction.class.getSimpleName(), "none")); log.debug("CorruptIndexException while creating core, will attempt to repair via {}", action); switch (action) { case fromleader: // Recovery from leader on a CorruptedIndexException if (isZooKeeperAware()) { CloudDescriptor desc = dcore.getCloudDescriptor(); try { Replica leader = getZkController().getClusterState() .getCollection(desc.getCollectionName()) .getSlice(desc.getShardId()) .getLeader(); if (leader != null && leader.getState() == State.ACTIVE) { log.info("Found active leader, will attempt to create fresh core and recover."); resetIndexDirectory(dcore, coreConfig); // the index of this core is emptied, its term should be set to 0 getZkController().getShardTerms(desc.getCollectionName(), desc.getShardId()).setTermToZero(desc.getCoreNodeName()); return new SolrCore(this, dcore, coreConfig); } } catch (SolrException se) { se.addSuppressed(original); throw se; } } throw original; case none: throw original; default: log.warn("Failed to create core, and did not recognize specified 'CoreInitFailedAction': [{}]. Valid options are {}.", action, Arrays.asList(CoreInitFailedAction.values())); throw original; } } /** * Write a new index directory for the a SolrCore, but do so without loading it. */ private void resetIndexDirectory(CoreDescriptor dcore, ConfigSet coreConfig) { SolrConfig config = coreConfig.getSolrConfig(); String registryName = SolrMetricManager.getRegistryName(SolrInfoBean.Group.core, dcore.getName()); DirectoryFactory df = DirectoryFactory.loadDirectoryFactory(config, this, registryName); String dataDir = SolrCore.findDataDir(df, null, config, dcore); String tmpIdxDirName = "index." + new SimpleDateFormat(SnapShooter.DATE_FMT, Locale.ROOT).format(new Date()); SolrCore.modifyIndexProps(df, dataDir, config, tmpIdxDirName); // Free the directory object that we had to create for this Directory dir = null; try { dir = df.get(dataDir, DirContext.META_DATA, config.indexConfig.lockType); } catch (IOException e) { throw new SolrException(SolrException.ErrorCode.SERVER_ERROR, e); } finally { try { df.release(dir); df.doneWithDirectory(dir); } catch (IOException e) { SolrException.log(log, e); } } } /** * @return a Collection of registered SolrCores */ public Collection<SolrCore> getCores() { return solrCores.getCores(); } /** * Gets the cores that are currently loaded, i.e. cores that have * 1: loadOnStartup=true and are either not-transient or, if transient, have been loaded and have not been aged out * 2: loadOnStartup=false and have been loaded but are either non-transient or have not been aged out. * * Put another way, this will not return any names of cores that are lazily loaded but have not been called for yet * or are transient and either not loaded or have been swapped out. * */ public Collection<String> getLoadedCoreNames() { return solrCores.getLoadedCoreNames(); } /** This method is currently experimental. * * @return a Collection of the names that a specific core object is mapped to, there are more than one. */ public Collection<String> getNamesForCore(SolrCore core) { return solrCores.getNamesForCore(core); } /** * get a list of all the cores that are currently known, whether currently loaded or not * @return a list of all the available core names in either permanent or transient cores * */ public Collection<String> getAllCoreNames() { return solrCores.getAllCoreNames(); } /** * Returns an immutable Map of Exceptions that occured when initializing * SolrCores (either at startup, or do to runtime requests to create cores) * keyed off of the name (String) of the SolrCore that had the Exception * during initialization. * <p> * While the Map returned by this method is immutable and will not change * once returned to the client, the source data used to generate this Map * can be changed as various SolrCore operations are performed: * </p> * <ul> * <li>Failed attempts to create new SolrCores will add new Exceptions.</li> * <li>Failed attempts to re-create a SolrCore using a name already contained in this Map will replace the Exception.</li> * <li>Failed attempts to reload a SolrCore will cause an Exception to be added to this list -- even though the existing SolrCore with that name will continue to be available.</li> * <li>Successful attempts to re-created a SolrCore using a name already contained in this Map will remove the Exception.</li> * <li>Registering an existing SolrCore with a name already contained in this Map (ie: ALIAS or SWAP) will remove the Exception.</li> * </ul> */ public Map<String, CoreLoadFailure> getCoreInitFailures() { return ImmutableMap.copyOf(coreInitFailures); } // ---------------- Core name related methods --------------- private CoreDescriptor reloadCoreDescriptor(CoreDescriptor oldDesc) { if (oldDesc == null) { return null; } CorePropertiesLocator cpl = new CorePropertiesLocator(null); CoreDescriptor ret = cpl.buildCoreDescriptor(oldDesc.getInstanceDir().resolve(PROPERTIES_FILENAME), this); // Ok, this little jewel is all because we still create core descriptors on the fly from lists of properties // in tests particularly. Theoretically, there should be _no_ way to create a CoreDescriptor in the new world // of core discovery without writing the core.properties file out first. // // TODO: remove core.properties from the conf directory in test files, it's in a bad place there anyway. if (ret == null) { oldDesc.loadExtraProperties(); // there may be changes to extra properties that we need to pick up. return oldDesc; } // The CloudDescriptor bit here is created in a very convoluted way, requiring access to private methods // in ZkController. When reloading, this behavior is identical to what used to happen where a copy of the old // CoreDescriptor was just re-used. if (ret.getCloudDescriptor() != null) { ret.getCloudDescriptor().reload(oldDesc.getCloudDescriptor()); } return ret; } /** * Recreates a SolrCore. * While the new core is loading, requests will continue to be dispatched to * and processed by the old core * * @param name the name of the SolrCore to reload */ public void reload(String name) { SolrCore core = solrCores.getCoreFromAnyList(name, false); if (core != null) { // The underlying core properties files may have changed, we don't really know. So we have a (perhaps) stale // CoreDescriptor and we need to reload it from the disk files CoreDescriptor cd = reloadCoreDescriptor(core.getCoreDescriptor()); solrCores.addCoreDescriptor(cd); try { solrCores.waitAddPendingCoreOps(cd.getName()); ConfigSet coreConfig = coreConfigService.getConfig(cd); log.info("Reloading SolrCore '{}' using configuration from {}", cd.getName(), coreConfig.getName()); SolrCore newCore = core.reload(coreConfig); registerCore(cd, newCore, false, false); if (getZkController() != null) { DocCollection docCollection = getZkController().getClusterState().getCollection(cd.getCollectionName()); Replica replica = docCollection.getReplica(cd.getCloudDescriptor().getCoreNodeName()); assert replica != null; if (replica.getType() == Replica.Type.TLOG) { //TODO: needed here? getZkController().stopReplicationFromLeader(core.getName()); if (!cd.getCloudDescriptor().isLeader()) { getZkController().startReplicationFromLeader(newCore.getName(), true); } } else if(replica.getType() == Replica.Type.PULL) { getZkController().stopReplicationFromLeader(core.getName()); getZkController().startReplicationFromLeader(newCore.getName(), false); } } } catch (SolrCoreState.CoreIsClosedException e) { throw e; } catch (Exception e) { coreInitFailures.put(cd.getName(), new CoreLoadFailure(cd, e)); throw new SolrException(ErrorCode.SERVER_ERROR, "Unable to reload core [" + cd.getName() + "]", e); } finally { solrCores.removeFromPendingOps(cd.getName()); } } else { CoreLoadFailure clf = coreInitFailures.get(name); if (clf != null) { try { solrCores.waitAddPendingCoreOps(clf.cd.getName()); createFromDescriptor(clf.cd, true, false); } finally { solrCores.removeFromPendingOps(clf.cd.getName()); } } else { throw new SolrException(SolrException.ErrorCode.BAD_REQUEST, "No such core: " + name ); } } } /** * Swaps two SolrCore descriptors. */ public void swap(String n0, String n1) { if( n0 == null || n1 == null ) { throw new SolrException( SolrException.ErrorCode.BAD_REQUEST, "Can not swap unnamed cores." ); } solrCores.swap(n0, n1); coresLocator.swap(this, solrCores.getCoreDescriptor(n0), solrCores.getCoreDescriptor(n1)); log.info("swapped: " + n0 + " with " + n1); } /** * Unload a core from this container, leaving all files on disk * @param name the name of the core to unload */ public void unload(String name) { unload(name, false, false, false); } /** * Unload a core from this container, optionally removing the core's data and configuration * * @param name the name of the core to unload * @param deleteIndexDir if true, delete the core's index on close * @param deleteDataDir if true, delete the core's data directory on close * @param deleteInstanceDir if true, delete the core's instance directory on close */ public void unload(String name, boolean deleteIndexDir, boolean deleteDataDir, boolean deleteInstanceDir) { CoreDescriptor cd = solrCores.getCoreDescriptor(name); if (name != null) { // check for core-init errors first CoreLoadFailure loadFailure = coreInitFailures.remove(name); if (loadFailure != null) { // getting the index directory requires opening a DirectoryFactory with a SolrConfig, etc, // which we may not be able to do because of the init error. So we just go with what we // can glean from the CoreDescriptor - datadir and instancedir SolrCore.deleteUnloadedCore(loadFailure.cd, deleteDataDir, deleteInstanceDir); // If last time around we didn't successfully load, make sure that all traces of the coreDescriptor are gone. if (cd != null) { solrCores.removeCoreDescriptor(cd); coresLocator.delete(this, cd); } return; } } if (cd == null) { throw new SolrException(ErrorCode.BAD_REQUEST, "Cannot unload non-existent core [" + name + "]"); } boolean close = solrCores.isLoadedNotPendingClose(name); SolrCore core = solrCores.remove(name); solrCores.removeCoreDescriptor(cd); coresLocator.delete(this, cd); if (core == null) { // transient core SolrCore.deleteUnloadedCore(cd, deleteDataDir, deleteInstanceDir); return; } // delete metrics specific to this core metricManager.removeRegistry(core.getCoreMetricManager().getRegistryName()); if (zkSys.getZkController() != null) { // cancel recovery in cloud mode core.getSolrCoreState().cancelRecovery(); if (cd.getCloudDescriptor().getReplicaType() == Replica.Type.PULL || cd.getCloudDescriptor().getReplicaType() == Replica.Type.TLOG) { // Stop replication if this is part of a pull/tlog replica before closing the core zkSys.getZkController().stopReplicationFromLeader(name); } } core.unloadOnClose(cd, deleteIndexDir, deleteDataDir, deleteInstanceDir); if (close) core.closeAndWait(); if (zkSys.getZkController() != null) { try { zkSys.getZkController().unregister(name, cd); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new SolrException(ErrorCode.SERVER_ERROR, "Interrupted while unregistering core [" + name + "] from cloud state"); } catch (KeeperException e) { throw new SolrException(ErrorCode.SERVER_ERROR, "Error unregistering core [" + name + "] from cloud state", e); } catch (Exception e) { throw new SolrException(ErrorCode.SERVER_ERROR, "Error unregistering core [" + name + "] from cloud state", e); } } } public void rename(String name, String toName) { SolrIdentifierValidator.validateCoreName(toName); try (SolrCore core = getCore(name)) { if (core != null) { String oldRegistryName = core.getCoreMetricManager().getRegistryName(); String newRegistryName = SolrCoreMetricManager.createRegistryName(core, toName); metricManager.swapRegistries(oldRegistryName, newRegistryName); // The old coreDescriptor is obsolete, so remove it. registerCore will put it back. CoreDescriptor cd = core.getCoreDescriptor(); solrCores.removeCoreDescriptor(cd); cd.setProperty("name", toName); solrCores.addCoreDescriptor(cd); core.setName(toName); registerCore(cd, core, true, false); SolrCore old = solrCores.remove(name); coresLocator.rename(this, old.getCoreDescriptor(), core.getCoreDescriptor()); } } } /** * Get the CoreDescriptors for all cores managed by this container * @return a List of CoreDescriptors */ public List<CoreDescriptor> getCoreDescriptors() { return solrCores.getCoreDescriptors(); } public CoreDescriptor getCoreDescriptor(String coreName) { return solrCores.getCoreDescriptor(coreName); } public Path getCoreRootDirectory() { return cfg.getCoreRootDirectory(); } /** * Gets a core by name and increase its refcount. * * @see SolrCore#close() * @param name the core name * @return the core if found, null if a SolrCore by this name does not exist * @exception SolrCoreInitializationException if a SolrCore with this name failed to be initialized */ public SolrCore getCore(String name) { // Do this in two phases since we don't want to lock access to the cores over a load. SolrCore core = solrCores.getCoreFromAnyList(name, true); // If a core is loaded, we're done just return it. if (core != null) { return core; } // If it's not yet loaded, we can check if it's had a core init failure and "do the right thing" CoreDescriptor desc = solrCores.getCoreDescriptor(name); // if there was an error initializing this core, throw a 500 // error with the details for clients attempting to access it. CoreLoadFailure loadFailure = getCoreInitFailures().get(name); if (null != loadFailure) { throw new SolrCoreInitializationException(name, loadFailure.exception); } // This is a bit of awkwardness where SolrCloud and transient cores don't play nice together. For transient cores, // we have to allow them to be created at any time there hasn't been a core load failure (use reload to cure that). // But for TestConfigSetsAPI.testUploadWithScriptUpdateProcessor, this needs to _not_ try to load the core if // the core is null and there was an error. If you change this, be sure to run both TestConfiSetsAPI and // TestLazyCores if (desc == null || zkSys.getZkController() != null) return null; // This will put an entry in pending core ops if the core isn't loaded. Here's where moving the // waitAddPendingCoreOps to createFromDescriptor would introduce a race condition. core = solrCores.waitAddPendingCoreOps(name); if (isShutDown) return null; // We're quitting, so stop. This needs to be after the wait above since we may come off // the wait as a consequence of shutting down. try { if (core == null) { if (zkSys.getZkController() != null) { zkSys.getZkController().throwErrorIfReplicaReplaced(desc); } core = createFromDescriptor(desc, true, false); // This should throw an error if it fails. } core.open(); } finally { solrCores.removeFromPendingOps(name); } return core; } public BlobRepository getBlobRepository(){ return blobRepository; } /** * If using asyncSolrCoreLoad=true, calling this after {@link #load()} will * not return until all cores have finished loading. * * @param timeoutMs timeout, upon which method simply returns */ public void waitForLoadingCoresToFinish(long timeoutMs) { solrCores.waitForLoadingCoresToFinish(timeoutMs); } public void waitForLoadingCore(String name, long timeoutMs) { solrCores.waitForLoadingCoreToFinish(name, timeoutMs); } // ---------------- CoreContainer request handlers -------------- protected <T> T createHandler(String path, String handlerClass, Class<T> clazz) { T handler = loader.newInstance(handlerClass, clazz, null, new Class[] { CoreContainer.class }, new Object[] { this }); if (handler instanceof SolrRequestHandler) { containerHandlers.put(path, (SolrRequestHandler)handler); } if (handler instanceof SolrMetricProducer) { ((SolrMetricProducer)handler).initializeMetrics(metricManager, SolrInfoBean.Group.node.toString(), metricTag, path); } return handler; } public CoreAdminHandler getMultiCoreHandler() { return coreAdminHandler; } public CollectionsHandler getCollectionsHandler() { return collectionsHandler; } public HealthCheckHandler getHealthCheckHandler() { return healthCheckHandler; } public InfoHandler getInfoHandler() { return infoHandler; } public ConfigSetsHandler getConfigSetsHandler() { return configSetsHandler; } public String getHostName() { return this.hostName; } /** * Gets the alternate path for multicore handling: * This is used in case there is a registered unnamed core (aka name is "") to * declare an alternate way of accessing named cores. * This can also be used in a pseudo single-core environment so admins can prepare * a new version before swapping. */ public String getManagementPath() { return cfg.getManagementPath(); } public LogWatcher getLogging() { return logging; } /** * Determines whether the core is already loaded or not but does NOT load the core * */ public boolean isLoaded(String name) { return solrCores.isLoaded(name); } public boolean isLoadedNotPendingClose(String name) { return solrCores.isLoadedNotPendingClose(name); } /** * Gets a solr core descriptor for a core that is not loaded. Note that if the caller calls this on a * loaded core, the unloaded descriptor will be returned. * * @param cname - name of the unloaded core descriptor to load. NOTE: * @return a coreDescriptor. May return null */ public CoreDescriptor getUnloadedCoreDescriptor(String cname) { return solrCores.getUnloadedCoreDescriptor(cname); } public String getSolrHome() { return solrHome; } public boolean isZooKeeperAware() { return zkSys.getZkController() != null; } public ZkController getZkController() { return zkSys.getZkController(); } public NodeConfig getConfig() { return cfg; } /** The default ShardHandlerFactory used to communicate with other solr instances */ public ShardHandlerFactory getShardHandlerFactory() { return shardHandlerFactory; } public UpdateShardHandler getUpdateShardHandler() { return updateShardHandler; } public SolrResourceLoader getResourceLoader() { return loader; } public boolean isCoreLoading(String name) { return solrCores.isCoreLoading(name); } public AuthorizationPlugin getAuthorizationPlugin() { return authorizationPlugin == null ? null : authorizationPlugin.plugin; } public AuthenticationPlugin getAuthenticationPlugin() { return authenticationPlugin == null ? null : authenticationPlugin.plugin; } public NodeConfig getNodeConfig() { return cfg; } public long getStatus() { return status; } // Occasaionally we need to access the transient cache handler in places other than coreContainer. public TransientSolrCoreCache getTransientCache() { return solrCores.getTransientCacheHandler(); } /** * * @param cd CoreDescriptor, presumably a deficient one * @param prop The property that needs to be repaired. * @return true if we were able to successfuly perisist the repaired coreDescriptor, false otherwise. * * See SOLR-11503, This can be removed when there's no chance we'll need to upgrade a * Solr installation created with legacyCloud=true from 6.6.1 through 7.1 */ public boolean repairCoreProperty(CoreDescriptor cd, String prop) { // So far, coreNodeName is the only property that we need to repair, this may get more complex as other properties // are added. if (CoreDescriptor.CORE_NODE_NAME.equals(prop) == false) { throw new SolrException(ErrorCode.SERVER_ERROR, String.format(Locale.ROOT,"The only supported property for repair is currently [%s]", CoreDescriptor.CORE_NODE_NAME)); } // Try to read the coreNodeName from the cluster state. String coreName = cd.getName(); DocCollection coll = getZkController().getZkStateReader().getClusterState().getCollection(cd.getCollectionName()); for (Replica rep : coll.getReplicas()) { if (coreName.equals(rep.getCoreName())) { log.warn("Core properties file for node {} found with no coreNodeName, attempting to repair with value {}. See SOLR-11503. " + "This message should only appear if upgrading from collections created Solr 6.6.1 through 7.1.", rep.getCoreName(), rep.getName()); cd.getCloudDescriptor().setCoreNodeName(rep.getName()); coresLocator.persist(this, cd); return true; } } log.error("Could not repair coreNodeName in core.properties file for core {}", coreName); return false; } /** * @param solrCore te core against which we check if there has been a tragic exception * @return whether this solr core has tragic exception */ public boolean checkTragicException(SolrCore solrCore) { Throwable tragicException; try { tragicException = solrCore.getSolrCoreState().getTragicException(); } catch (IOException e) { // failed to open an indexWriter tragicException = e; } if (tragicException != null) { if (isZooKeeperAware()) { getZkController().giveupLeadership(solrCore.getCoreDescriptor(), tragicException); } } return tragicException != null; } } class CloserThread extends Thread { CoreContainer container; SolrCores solrCores; NodeConfig cfg; CloserThread(CoreContainer container, SolrCores solrCores, NodeConfig cfg) { this.container = container; this.solrCores = solrCores; this.cfg = cfg; } // It's important that this be the _only_ thread removing things from pendingDynamicCloses! // This is single-threaded, but I tried a multi-threaded approach and didn't see any performance gains, so // there's no good justification for the complexity. I suspect that the locking on things like DefaultSolrCoreState // essentially create a single-threaded process anyway. @Override public void run() { while (! container.isShutDown()) { synchronized (solrCores.getModifyLock()) { // need this so we can wait and be awoken. try { solrCores.getModifyLock().wait(); } catch (InterruptedException e) { // Well, if we've been told to stop, we will. Otherwise, continue on and check to see if there are // any cores to close. } } for (SolrCore removeMe = solrCores.getCoreToClose(); removeMe != null && !container.isShutDown(); removeMe = solrCores.getCoreToClose()) { try { removeMe.close(); } finally { solrCores.removeFromPendingOps(removeMe.getName()); } } } } }
1
27,769
Is this second check necessary? we know that just after the plugin was created its metricRegistry is null, it's set only after `initializeMetrics` has been called.
apache-lucene-solr
java
@@ -130,6 +130,16 @@ TalkActionResult_t TalkActions::playerSaySpell(Player* player, SpeakClasses type } } + if (it->second.fromLua) { + if (it->second.getNeedAccess() && !player->getGroup()->access) { + return TALKACTION_CONTINUE; + } + + if (player->getAccountType() < it->second.getRequiredAccountType()) { + return TALKACTION_BREAK; + } + } + if (it->second.executeSay(player, words, param, type)) { return TALKACTION_CONTINUE; } else {
1
/** * The Forgotten Server - a free and open-source MMORPG server emulator * Copyright (C) 2019 Mark Samman <[email protected]> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "otpch.h" #include "player.h" #include "talkaction.h" #include "pugicast.h" TalkActions::TalkActions() : scriptInterface("TalkAction Interface") { scriptInterface.initState(); } TalkActions::~TalkActions() { clear(false); } void TalkActions::clear(bool fromLua) { for (auto it = talkActions.begin(); it != talkActions.end(); ) { if (fromLua == it->second.fromLua) { it = talkActions.erase(it); } else { ++it; } } reInitState(fromLua); } LuaScriptInterface& TalkActions::getScriptInterface() { return scriptInterface; } std::string TalkActions::getScriptBaseName() const { return "talkactions"; } Event_ptr TalkActions::getEvent(const std::string& nodeName) { if (strcasecmp(nodeName.c_str(), "talkaction") != 0) { return nullptr; } return Event_ptr(new TalkAction(&scriptInterface)); } bool TalkActions::registerEvent(Event_ptr event, const pugi::xml_node&) { TalkAction_ptr talkAction{static_cast<TalkAction*>(event.release())}; // event is guaranteed to be a TalkAction std::vector<std::string> words = talkAction->getWordsMap(); for (size_t i = 0; i < words.size(); i++) { if (i == words.size() - 1) { talkActions.emplace(words[i], std::move(*talkAction)); } else { talkActions.emplace(words[i], *talkAction); } } return true; } bool TalkActions::registerLuaEvent(TalkAction* event) { TalkAction_ptr talkAction{ event }; std::vector<std::string> words = talkAction->getWordsMap(); for (size_t i = 0; i < words.size(); i++) { if (i == words.size() - 1) { talkActions.emplace(words[i], std::move(*talkAction)); } else { talkActions.emplace(words[i], *talkAction); } } return true; } TalkActionResult_t TalkActions::playerSaySpell(Player* player, SpeakClasses type, const std::string& words) const { size_t wordsLength = words.length(); for (auto it = talkActions.begin(); it != talkActions.end(); ) { const std::string& talkactionWords = it->first; size_t talkactionLength = talkactionWords.length(); if (wordsLength < talkactionLength || strncasecmp(words.c_str(), talkactionWords.c_str(), talkactionLength) != 0) { ++it; continue; } std::string param; if (wordsLength != talkactionLength) { param = words.substr(talkactionLength); if (param.front() != ' ') { ++it; continue; } trim_left(param, ' '); std::string separator = it->second.getSeparator(); if (separator != " ") { if (!param.empty()) { if (param != separator) { ++it; continue; } else { param.erase(param.begin()); } } } } if (it->second.executeSay(player, words, param, type)) { return TALKACTION_CONTINUE; } else { return TALKACTION_BREAK; } } return TALKACTION_CONTINUE; } bool TalkAction::configureEvent(const pugi::xml_node& node) { pugi::xml_attribute wordsAttribute = node.attribute("words"); if (!wordsAttribute) { std::cout << "[Error - TalkAction::configureEvent] Missing words for talk action or spell" << std::endl; return false; } pugi::xml_attribute separatorAttribute = node.attribute("separator"); if (separatorAttribute) { separator = pugi::cast<char>(separatorAttribute.value()); } for (auto word : explodeString(wordsAttribute.as_string(), ";")) { setWords(word); } return true; } std::string TalkAction::getScriptEventName() const { return "onSay"; } bool TalkAction::executeSay(Player* player, const std::string& words, const std::string& param, SpeakClasses type) const { //onSay(player, words, param, type) if (!scriptInterface->reserveScriptEnv()) { std::cout << "[Error - TalkAction::executeSay] Call stack overflow" << std::endl; return false; } ScriptEnvironment* env = scriptInterface->getScriptEnv(); env->setScriptId(scriptId, scriptInterface); lua_State* L = scriptInterface->getLuaState(); scriptInterface->pushFunction(scriptId); LuaScriptInterface::pushUserdata<Player>(L, player); LuaScriptInterface::setMetatable(L, -1, "Player"); LuaScriptInterface::pushString(L, words); LuaScriptInterface::pushString(L, param); lua_pushnumber(L, type); return scriptInterface->callFunction(4); }
1
18,294
shouldn't this be `return TALKACTION_BREAK;` as the player does not meet the required group access?
otland-forgottenserver
cpp
@@ -72,6 +72,8 @@ public class CliqueMiningAcceptanceTest extends AcceptanceTestBase { cluster.stopNode(minerNode2); cluster.stopNode(minerNode3); minerNode1.verify(net.awaitPeerCount(0)); + minerNode1.verify(clique.blockIsCreatedByProposer(minerNode1)); + minerNode1.verify(clique.noNewBlockCreated(minerNode1)); }
1
/* * Copyright ConsenSys AG. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. * * SPDX-License-Identifier: Apache-2.0 */ package org.hyperledger.besu.tests.acceptance.clique; import org.hyperledger.besu.tests.acceptance.dsl.AcceptanceTestBase; import org.hyperledger.besu.tests.acceptance.dsl.account.Account; import org.hyperledger.besu.tests.acceptance.dsl.node.BesuNode; import java.io.IOException; import org.junit.Test; public class CliqueMiningAcceptanceTest extends AcceptanceTestBase { @Test public void shouldMineTransactionsOnSingleNode() throws IOException { final BesuNode minerNode = besu.createCliqueNode("miner1"); cluster.start(minerNode); final Account sender = accounts.createAccount("account1"); final Account receiver = accounts.createAccount("account2"); minerNode.execute(accountTransactions.createTransfer(sender, 50)); cluster.verify(sender.balanceEquals(50)); minerNode.execute(accountTransactions.createIncrementalTransfers(sender, receiver, 1)); cluster.verify(receiver.balanceEquals(1)); minerNode.execute(accountTransactions.createIncrementalTransfers(sender, receiver, 2)); cluster.verify(receiver.balanceEquals(3)); } @Test public void shouldMineTransactionsOnMultipleNodes() throws IOException { final BesuNode minerNode1 = besu.createCliqueNode("miner1"); final BesuNode minerNode2 = besu.createCliqueNode("miner2"); final BesuNode minerNode3 = besu.createCliqueNode("miner3"); cluster.start(minerNode1, minerNode2, minerNode3); final Account sender = accounts.createAccount("account1"); final Account receiver = accounts.createAccount("account2"); minerNode1.execute(accountTransactions.createTransfer(sender, 50)); cluster.verify(sender.balanceEquals(50)); minerNode2.execute(accountTransactions.createIncrementalTransfers(sender, receiver, 1)); cluster.verify(receiver.balanceEquals(1)); minerNode3.execute(accountTransactions.createIncrementalTransfers(sender, receiver, 2)); cluster.verify(receiver.balanceEquals(3)); } @Test public void shouldStallMiningWhenInsufficientValidators() throws IOException { final BesuNode minerNode1 = besu.createCliqueNode("miner1"); final BesuNode minerNode2 = besu.createCliqueNode("miner2"); final BesuNode minerNode3 = besu.createCliqueNode("miner3"); cluster.start(minerNode1, minerNode2, minerNode3); cluster.stopNode(minerNode2); cluster.stopNode(minerNode3); minerNode1.verify(net.awaitPeerCount(0)); minerNode1.verify(clique.noNewBlockCreated(minerNode1)); } @Test public void shouldStillMineWhenANodeFailsAndHasSufficientValidators() throws IOException { final BesuNode minerNode1 = besu.createCliqueNode("miner1"); final BesuNode minerNode2 = besu.createCliqueNode("miner2"); final BesuNode minerNode3 = besu.createCliqueNode("miner3"); cluster.start(minerNode1, minerNode2, minerNode3); cluster.verifyOnActiveNodes(blockchain.reachesHeight(minerNode1, 1, 85)); cluster.stopNode(minerNode3); cluster.verifyOnActiveNodes(net.awaitPeerCount(1)); cluster.verifyOnActiveNodes(blockchain.reachesHeight(minerNode1, 2)); cluster.verifyOnActiveNodes(clique.blockIsCreatedByProposer(minerNode1)); cluster.verifyOnActiveNodes(clique.blockIsCreatedByProposer(minerNode2)); } }
1
24,534
does this still work if minerNode1 has already proposed a block before 2 & 3 are stopped?
hyperledger-besu
java
@@ -91,6 +91,12 @@ var _ topicreconciler.Interface = (*Reconciler)(nil) func (r *Reconciler) ReconcileKind(ctx context.Context, topic *v1.Topic) reconciler.Event { ctx = logging.WithLogger(ctx, r.Logger.With(zap.Any("topic", topic))) + if v, present := topic.Annotations[v1.LoggingE2ETestAnnotation]; present { + // This is added purely for the TestCloudLogging E2E tests, which verify that the log line + // is written if this annotation is present. + logging.FromContext(ctx).Desugar().Error("Adding log line for the TestCloudLogging E2E tests", zap.String(v1.LoggingE2EFieldName, v)) + } + topic.Status.InitializeConditions() topic.Status.ObservedGeneration = topic.Generation
1
/* Copyright 2019 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package topic import ( "context" "encoding/json" "fmt" "cloud.google.com/go/pubsub" "go.uber.org/zap" "google.golang.org/grpc/codes" corev1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/equality" apierrors "k8s.io/apimachinery/pkg/api/errors" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" corev1listers "k8s.io/client-go/listers/core/v1" "github.com/google/knative-gcp/pkg/tracing" "github.com/google/knative-gcp/pkg/utils" "knative.dev/pkg/logging" "knative.dev/pkg/reconciler" tracingconfig "knative.dev/pkg/tracing/config" servingv1 "knative.dev/serving/pkg/apis/serving/v1" servinglisters "knative.dev/serving/pkg/client/listers/serving/v1" gstatus "google.golang.org/grpc/status" "github.com/google/knative-gcp/pkg/apis/configs/dataresidency" v1 "github.com/google/knative-gcp/pkg/apis/intevents/v1" topicreconciler "github.com/google/knative-gcp/pkg/client/injection/reconciler/intevents/v1/topic" listers "github.com/google/knative-gcp/pkg/client/listers/intevents/v1" "github.com/google/knative-gcp/pkg/reconciler/identity" "github.com/google/knative-gcp/pkg/reconciler/intevents" "github.com/google/knative-gcp/pkg/reconciler/intevents/topic/resources" reconcilerutilspubsub "github.com/google/knative-gcp/pkg/reconciler/utils/pubsub" ) const ( resourceGroup = "topics.internal.events.cloud.google.com" deleteTopicFailed = "TopicDeleteFailed" deleteWorkloadIdentityFailed = "WorkloadIdentityDeleteFailed" reconciledPublisherFailedReason = "PublisherReconcileFailed" reconciledSuccessReason = "TopicReconciled" reconciledTopicFailedReason = "TopicReconcileFailed" workloadIdentityFailed = "WorkloadIdentityReconcileFailed" ) // Reconciler implements controller.Reconciler for Topic resources. type Reconciler struct { *intevents.PubSubBase // identity reconciler for reconciling workload identity. *identity.Identity // data residency store dataresidencyStore *dataresidency.Store // topicLister index properties about topics. topicLister listers.TopicLister // serviceLister index properties about services. serviceLister servinglisters.ServiceLister // serviceAccountLister for reading serviceAccounts. serviceAccountLister corev1listers.ServiceAccountLister publisherImage string tracingConfig *tracingconfig.Config // createClientFn is the function used to create the Pub/Sub client that interacts with Pub/Sub. // This is needed so that we can inject a mock client for UTs purposes. createClientFn reconcilerutilspubsub.CreateFn } // Check that our Reconciler implements Interface. var _ topicreconciler.Interface = (*Reconciler)(nil) func (r *Reconciler) ReconcileKind(ctx context.Context, topic *v1.Topic) reconciler.Event { ctx = logging.WithLogger(ctx, r.Logger.With(zap.Any("topic", topic))) topic.Status.InitializeConditions() topic.Status.ObservedGeneration = topic.Generation // If topic doesn't have ownerReference and ServiceAccountName is provided, reconcile workload identity. // Otherwise, its owner will reconcile workload identity. if (topic.OwnerReferences == nil || len(topic.OwnerReferences) == 0) && topic.Spec.ServiceAccountName != "" { if _, err := r.Identity.ReconcileWorkloadIdentity(ctx, topic.Spec.Project, topic); err != nil { return reconciler.NewEvent(corev1.EventTypeWarning, workloadIdentityFailed, "Failed to reconcile Pub/Sub topic workload identity: %s", err.Error()) } } if err := r.reconcileTopic(ctx, topic); err != nil { topic.Status.MarkNoTopic(reconciledTopicFailedReason, "Failed to reconcile Pub/Sub topic: %s", err.Error()) return reconciler.NewEvent(corev1.EventTypeWarning, reconciledTopicFailedReason, "Failed to reconcile Pub/Sub topic: %s", err.Error()) } topic.Status.MarkTopicReady() // Set the topic being used. topic.Status.TopicID = topic.Spec.Topic // If enablePublisher is false, then skip creating the publisher. if enablePublisher := topic.Spec.EnablePublisher; enablePublisher != nil && !*enablePublisher { return reconciler.NewEvent(corev1.EventTypeNormal, reconciledSuccessReason, `Topic reconciled: "%s/%s"`, topic.Namespace, topic.Name) } err, svc := r.reconcilePublisher(ctx, topic) if err != nil { topic.Status.MarkPublisherNotDeployed(reconciledPublisherFailedReason, "Failed to reconcile Publisher: %s", err.Error()) return reconciler.NewEvent(corev1.EventTypeWarning, reconciledPublisherFailedReason, "Failed to reconcile Publisher: %s", err.Error()) } // Update the topic. topic.Status.PropagatePublisherStatus(&svc.Status) return reconciler.NewEvent(corev1.EventTypeNormal, reconciledSuccessReason, `Topic reconciled: "%s/%s"`, topic.Namespace, topic.Name) } func (r *Reconciler) reconcileTopic(ctx context.Context, topic *v1.Topic) error { if topic.Status.ProjectID == "" { projectID, err := utils.ProjectIDOrDefault(topic.Spec.Project) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to find project id", zap.Error(err)) return err } // Set the projectID in the status. topic.Status.ProjectID = projectID } // Auth to GCP is handled by having the GOOGLE_APPLICATION_CREDENTIALS environment variable // pointing at a credential file. client, err := r.createClientFn(ctx, topic.Status.ProjectID) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to create Pub/Sub client", zap.Error(err)) return err } defer client.Close() t := client.Topic(topic.Spec.Topic) exists, err := t.Exists(ctx) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to verify Pub/Sub topic exists", zap.Error(err)) return err } if !exists { if topic.Spec.PropagationPolicy == v1.TopicPolicyNoCreateNoDelete { logging.FromContext(ctx).Desugar().Error("Topic does not exist and the topic policy doesn't allow creation") return fmt.Errorf("Topic %q does not exist and the topic policy doesn't allow creation", topic.Spec.Topic) } else { topicConfig := &pubsub.TopicConfig{} if r.dataresidencyStore != nil { if dataresidencyCfg := r.dataresidencyStore.Load(); dataresidencyCfg != nil { if dataresidencyCfg.DataResidencyDefaults.ComputeAllowedPersistenceRegions(topicConfig) { r.Logger.Debugw("Updated Topic Config AllowedPersistenceRegions for topic reconciler", zap.Any("topicConfig", *topicConfig)) } } } // Create a new topic with the given name. t, err = client.CreateTopicWithConfig(ctx, topic.Spec.Topic, topicConfig) if err != nil { // For some reason (maybe some cache invalidation thing), sometimes t.Exists returns that the topic // doesn't exist but it actually does. When we try to create it again, it fails with an AlreadyExists // reason. We check for that error here. If it happens, then return nil. if st, ok := gstatus.FromError(err); !ok { logging.FromContext(ctx).Desugar().Error("Failed from Pub/Sub client while creating topic", zap.Error(err)) return err } else if st.Code() != codes.AlreadyExists { logging.FromContext(ctx).Desugar().Error("Failed to create Pub/Sub topic", zap.Error(err)) return err } return nil } } } return nil } // deleteTopic looks at the status.TopicID and if non-empty, // hence indicating that we have created a topic successfully, // remove it. func (r *Reconciler) deleteTopic(ctx context.Context, topic *v1.Topic) error { if topic.Status.TopicID == "" { return nil } // At this point the project ID should have been populated in the status. // Querying Pub/Sub as the topic could have been deleted outside the cluster (e.g, through gcloud). client, err := r.createClientFn(ctx, topic.Status.ProjectID) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to create Pub/Sub client", zap.Error(err)) return err } defer client.Close() t := client.Topic(topic.Status.TopicID) exists, err := t.Exists(ctx) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to verify Pub/Sub topic exists", zap.Error(err)) return err } if exists { // Delete the topic. if err := t.Delete(ctx); err != nil { logging.FromContext(ctx).Desugar().Error("Failed to delete Pub/Sub topic", zap.Error(err)) return err } } return nil } func (r *Reconciler) reconcilePublisher(ctx context.Context, topic *v1.Topic) (error, *servingv1.Service) { name := resources.GeneratePublisherName(topic) existing, err := r.serviceLister.Services(topic.Namespace).Get(name) if err != nil { if !apierrors.IsNotFound(err) { logging.FromContext(ctx).Desugar().Error("Unable to get an existing publisher", zap.Error(err)) return err, nil } existing = nil } else if !metav1.IsControlledBy(existing, topic) { p, _ := json.Marshal(existing) logging.FromContext(ctx).Desugar().Error("Topic does not own publisher service", zap.Any("publisher", p)) return fmt.Errorf("Topic %q does not own publisher service: %q", topic.Name, name), nil } tracingCfg, err := tracing.ConfigToJSON(r.tracingConfig) if err != nil { logging.FromContext(ctx).Desugar().Error("Error serializing tracing config", zap.Error(err)) } desired := resources.MakePublisher(&resources.PublisherArgs{ Image: r.publisherImage, Topic: topic, Labels: resources.GetLabels(controllerAgentName, topic.Name), TracingConfig: tracingCfg, }) svc := existing if existing == nil { svc, err = r.ServingClientSet.ServingV1().Services(topic.Namespace).Create(ctx, desired, metav1.CreateOptions{}) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to create publisher", zap.Error(err)) return err, nil } } else if !equality.Semantic.DeepEqual(&existing.Spec, &desired.Spec) { existing.Spec = desired.Spec svc, err = r.ServingClientSet.ServingV1().Services(topic.Namespace).Update(ctx, existing, metav1.UpdateOptions{}) if err != nil { logging.FromContext(ctx).Desugar().Error("Failed to update publisher", zap.Any("publisher", existing), zap.Error(err)) return err, nil } } return nil, svc } func (r *Reconciler) UpdateFromTracingConfigMap(cfg *corev1.ConfigMap) { if cfg == nil { r.Logger.Error("Tracing ConfigMap is nil") return } delete(cfg.Data, "_example") tracingCfg, err := tracingconfig.NewTracingConfigFromConfigMap(cfg) if err != nil { r.Logger.Warnw("failed to create tracing config from configmap", zap.String("cfg.Name", cfg.Name)) return } r.tracingConfig = tracingCfg r.Logger.Debugw("Updated Tracing config", zap.Any("tracingCfg", r.tracingConfig)) // TODO: requeue all Topics. See https://github.com/google/knative-gcp/issues/457. } func (r *Reconciler) FinalizeKind(ctx context.Context, topic *v1.Topic) reconciler.Event { // If topic doesn't have ownerReference, and // k8s ServiceAccount exists, binds to the default GCP ServiceAccount, and it only has one ownerReference, // remove the corresponding GCP ServiceAccount iam policy binding. // No need to delete k8s ServiceAccount, it will be automatically handled by k8s Garbage Collection. if (topic.OwnerReferences == nil || len(topic.OwnerReferences) == 0) && topic.Spec.ServiceAccountName != "" { if err := r.Identity.DeleteWorkloadIdentity(ctx, topic.Spec.Project, topic); err != nil { return reconciler.NewEvent(corev1.EventTypeWarning, deleteWorkloadIdentityFailed, "Failed to delete delete Pub/Sub topic workload identity: %s", err.Error()) } } if topic.Spec.PropagationPolicy == v1.TopicPolicyCreateDelete { logging.FromContext(ctx).Desugar().Debug("Deleting Pub/Sub topic") if err := r.deleteTopic(ctx, topic); err != nil { return reconciler.NewEvent(corev1.EventTypeWarning, deleteTopicFailed, "Failed to delete Pub/Sub topic: %s", err.Error()) } } return nil }
1
18,627
I am wondering if we can either make this a feature or have a way to turn it off in production. My concern is that we might be adding more of these kind of code in the future.
google-knative-gcp
go
@@ -960,11 +960,8 @@ class DataFrame(_Frame, Generic[T]): # sum 12.0 NaN # # Aggregated output is usually pretty much small. So it is fine to directly use pandas API. - pdf = kdf.to_pandas().transpose().reset_index() - pdf = pdf.groupby(['level_1']).apply( - lambda gpdf: gpdf.drop('level_1', 1).set_index('level_0').transpose() - ).reset_index(level=1) - pdf = pdf.drop(columns='level_1') + pdf = kdf.to_pandas().stack(level=1) + pdf.index = pdf.index.droplevel() pdf.columns.names = [None] pdf.index.names = [None]
1
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A wrapper class for Spark DataFrame to behave similar to pandas DataFrame. """ from collections import OrderedDict from distutils.version import LooseVersion import re import warnings import inspect import json from functools import partial, reduce import sys from itertools import zip_longest from typing import Any, Optional, List, Tuple, Union, Generic, TypeVar, Iterable, Dict import numpy as np import pandas as pd from pandas.api.types import is_list_like, is_dict_like if LooseVersion(pd.__version__) >= LooseVersion('0.24'): from pandas.core.dtypes.common import infer_dtype_from_object else: from pandas.core.dtypes.common import _get_dtype_from_object as infer_dtype_from_object from pandas.core.accessor import CachedAccessor from pandas.core.dtypes.inference import is_sequence from pyspark import sql as spark from pyspark.sql import functions as F, Column from pyspark.sql.functions import pandas_udf from pyspark.sql.types import (BooleanType, ByteType, DecimalType, DoubleType, FloatType, IntegerType, LongType, NumericType, ShortType) from pyspark.sql.utils import AnalysisException from pyspark.sql.window import Window from databricks import koalas as ks # For running doctests and reference resolution in PyCharm. from databricks.koalas.utils import validate_arguments_and_invoke_function, align_diff_frames from databricks.koalas.generic import _Frame from databricks.koalas.internal import _InternalFrame, IndexMap from databricks.koalas.missing.frame import _MissingPandasLikeDataFrame from databricks.koalas.ml import corr from databricks.koalas.utils import column_index_level, scol_for from databricks.koalas.typedef import as_spark_type, as_python_type from databricks.koalas.plot import KoalasFramePlotMethods from databricks.koalas.config import get_option # These regular expression patterns are complied and defined here to avoid to compile the same # pattern every time it is used in _repr_ and _repr_html_ in DataFrame. # Two patterns basically seek the footer string from Pandas' REPR_PATTERN = re.compile(r"\n\n\[(?P<rows>[0-9]+) rows x (?P<columns>[0-9]+) columns\]$") REPR_HTML_PATTERN = re.compile( r"\n\<p\>(?P<rows>[0-9]+) rows × (?P<columns>[0-9]+) columns\<\/p\>\n\<\/div\>$") _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`. Parameters ---------- other : scalar Any single data Returns ------- DataFrame Result of the arithmetic operation. Examples -------- >>> df = ks.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle'], ... columns=['angles', 'degrees']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. Also reverse version. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.radd(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide and true divide by constant with reverse version. >>> df / 10 angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle NaN 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 >>> df.truediv(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rtruediv(10) angles degrees circle NaN 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract by constant with reverse version. >>> df - 1 angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.rsub(1) angles degrees circle 1 -359 triangle -2 -179 rectangle -3 -359 Multiply by constant with reverse version. >>> df * 1 angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.mul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.rmul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Floor Divide by constant with reverse version. >>> df // 10 angles degrees circle 0 36 triangle 0 18 rectangle 0 36 >>> df.floordiv(10) angles degrees circle 0 36 triangle 0 18 rectangle 0 36 >>> df.rfloordiv(10) angles degrees circle NaN 0 triangle 3.0 0 rectangle 2.0 0 Mod by constant with reverse version. >>> df % 2 angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.mod(2) angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.rmod(2) angles degrees circle NaN 2 triangle 2.0 2 rectangle 2.0 2 Power by constant with reverse version. >>> df ** 2 angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.pow(2) angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.rpow(2) angles degrees circle 1.0 2.348543e+108 triangle 8.0 1.532496e+54 rectangle 16.0 2.348543e+108 """ T = TypeVar('T') if (3, 5) <= sys.version_info < (3, 7): from typing import GenericMeta # This is a workaround to support variadic generic in DataFrame in Python 3.5+. # See https://github.com/python/typing/issues/193 # We wrap the input params by a tuple to mimic variadic generic. old_getitem = GenericMeta.__getitem__ # type: ignore def new_getitem(self, params): if hasattr(self, "is_dataframe"): return old_getitem(self, Tuple[params]) else: return old_getitem(self, params) GenericMeta.__getitem__ = new_getitem # type: ignore class DataFrame(_Frame, Generic[T]): """ Koala DataFrame that corresponds to Pandas DataFrame logically. This holds Spark DataFrame internally. :ivar _internal: an internal immutable Frame to manage metadata. :type _internal: _InternalFrame Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, Pandas DataFrame, Spark DataFrame \ or Koalas Series Dict can contain Series, arrays, constants, or list-like objects If data is a dict, argument order is maintained for Python 3.6 and later. Note that if `data` is a Pandas DataFrame, a Spark DataFrame, and a Koalas Series, other arguments should not be used. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = ks.DataFrame(data=d, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 Constructing DataFrame from Pandas DataFrame >>> df = ks.DataFrame(pd.DataFrame(data=d, columns=['col1', 'col2'])) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = ks.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = ks.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 # doctest: +SKIP a b c d e 0 3 1 4 9 8 1 4 8 4 8 4 2 7 6 5 6 7 3 8 7 9 1 0 4 2 5 4 3 9 """ def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if isinstance(data, _InternalFrame): assert index is None assert columns is None assert dtype is None assert not copy super(DataFrame, self).__init__(data) elif isinstance(data, spark.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy super(DataFrame, self).__init__(_InternalFrame(data)) elif isinstance(data, ks.Series): assert index is None assert columns is None assert dtype is None assert not copy data = data.to_dataframe() super(DataFrame, self).__init__(data._internal) else: if isinstance(data, pd.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy pdf = data else: pdf = pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy) super(DataFrame, self).__init__(_InternalFrame.from_pandas(pdf)) @property def _sdf(self) -> spark.DataFrame: return self._internal.sdf def _reduce_for_stat_function(self, sfun, name, axis=None, numeric_only=False): """ Applies sfun to each column and returns a pd.Series where the number of rows equal the number of columns. Parameters ---------- sfun : either an 1-arg function that takes a Column and returns a Column, or a 2-arg function that takes a Column and its DataType and returns a Column. axis: used only for sanity check because series only support index axis. name : original pandas API name. axis : axis to apply. 0 or 1, or 'index' or 'columns. numeric_only : boolean, default False If True, sfun is applied on numeric columns (including booleans) only. """ from inspect import signature from databricks.koalas import Series if axis in ('index', 0, None): exprs = [] num_args = len(signature(sfun).parameters) for idx in self._internal.column_index: col_sdf = self._internal.scol_for(idx) col_type = self._internal.spark_type_for(idx) is_numeric_or_boolean = isinstance(col_type, (NumericType, BooleanType)) min_or_max = sfun.__name__ in ('min', 'max') keep_column = not numeric_only or is_numeric_or_boolean or min_or_max if keep_column: if isinstance(col_type, BooleanType) and not min_or_max: # Stat functions cannot be used with boolean values by default # Thus, cast to integer (true to 1 and false to 0) # Exclude the min and max methods though since those work with booleans col_sdf = col_sdf.cast('integer') if num_args == 1: # Only pass in the column if sfun accepts only one arg col_sdf = sfun(col_sdf) else: # must be 2 assert num_args == 2 # Pass in both the column and its data type if sfun accepts two args col_sdf = sfun(col_sdf, col_type) exprs.append(col_sdf.alias(str(idx) if len(idx) > 1 else idx[0])) sdf = self._sdf.select(*exprs) pdf = sdf.toPandas() if self._internal.column_index_level > 1: pdf.columns = pd.MultiIndex.from_tuples(self._internal.column_index) assert len(pdf) == 1, (sdf, pdf) row = pdf.iloc[0] row.name = None # TODO: return Koalas series. return row # Return first row as a Series elif axis in ('columns', 1): # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() pser = getattr(pdf, name)(axis=axis, numeric_only=numeric_only) if len(pdf) <= limit: return Series(pser) @pandas_udf(returnType=as_spark_type(pser.dtype.type)) def calculate_columns_axis(*cols): return getattr(pd.concat(cols, axis=1), name)(axis=axis, numeric_only=numeric_only) df = self._sdf.select(calculate_columns_axis(*self._internal.data_scols).alias("0")) return DataFrame(df)["0"] else: raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) # Arithmetic Operators def _map_series_op(self, op, other): if not isinstance(other, DataFrame) and is_sequence(other): raise ValueError( "%s with a sequence is currently not supported; " "however, got %s." % (op, type(other))) if isinstance(other, DataFrame) and self is not other: if self._internal.column_index_level != other._internal.column_index_level: raise ValueError('cannot join with no overlapping index names') # Different DataFrames def apply_op(kdf, this_column_index, that_column_index): for this_idx, that_idx in zip(this_column_index, that_column_index): yield (getattr(kdf[this_idx], op)(kdf[that_idx]), this_idx) return align_diff_frames(apply_op, self, other, fillna=True, how="full") else: # DataFrame and Series applied = [] for idx in self._internal.column_index: applied.append(getattr(self[idx], op)(other)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def __add__(self, other): return self._map_series_op("add", other) def __radd__(self, other): return self._map_series_op("radd", other) def __div__(self, other): return self._map_series_op("div", other) def __rdiv__(self, other): return self._map_series_op("rdiv", other) def __truediv__(self, other): return self._map_series_op("truediv", other) def __rtruediv__(self, other): return self._map_series_op("rtruediv", other) def __mul__(self, other): return self._map_series_op("mul", other) def __rmul__(self, other): return self._map_series_op("rmul", other) def __sub__(self, other): return self._map_series_op("sub", other) def __rsub__(self, other): return self._map_series_op("rsub", other) def __pow__(self, other): return self._map_series_op("pow", other) def __rpow__(self, other): return self._map_series_op("rpow", other) def __mod__(self, other): return self._map_series_op("mod", other) def __rmod__(self, other): return self._map_series_op("rmod", other) def __floordiv__(self, other): return self._map_series_op("floordiv", other) def __rfloordiv__(self, other): return self._map_series_op("rfloordiv", other) def add(self, other): return self + other # create accessor for plot plot = CachedAccessor("plot", KoalasFramePlotMethods) def hist(self, bins=10, **kwds): return self.plot.hist(bins, **kwds) hist.__doc__ = KoalasFramePlotMethods.hist.__doc__ add.__doc__ = _flex_doc_FRAME.format( desc='Addition', op_name='+', equiv='dataframe + other', reverse='radd') def radd(self, other): return other + self radd.__doc__ = _flex_doc_FRAME.format( desc='Addition', op_name="+", equiv="other + dataframe", reverse='add') def div(self, other): return self / other div.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="dataframe / other", reverse='rdiv') divide = div def rdiv(self, other): return other / self rdiv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="other / dataframe", reverse='div') def truediv(self, other): return self / other truediv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="dataframe / other", reverse='rtruediv') def rtruediv(self, other): return other / self rtruediv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="other / dataframe", reverse='truediv') def mul(self, other): return self * other mul.__doc__ = _flex_doc_FRAME.format( desc='Multiplication', op_name="*", equiv="dataframe * other", reverse='rmul') multiply = mul def rmul(self, other): return other * self rmul.__doc__ = _flex_doc_FRAME.format( desc='Multiplication', op_name="*", equiv="other * dataframe", reverse='mul') def sub(self, other): return self - other sub.__doc__ = _flex_doc_FRAME.format( desc='Subtraction', op_name="-", equiv="dataframe - other", reverse='rsub') subtract = sub def rsub(self, other): return other - self rsub.__doc__ = _flex_doc_FRAME.format( desc='Subtraction', op_name="-", equiv="other - dataframe", reverse='sub') def mod(self, other): return self % other mod.__doc__ = _flex_doc_FRAME.format( desc='Modulo', op_name='%', equiv='dataframe % other', reverse='rmod') def rmod(self, other): return other % self rmod.__doc__ = _flex_doc_FRAME.format( desc='Modulo', op_name='%', equiv='other % dataframe', reverse='mod') def pow(self, other): return self ** other pow.__doc__ = _flex_doc_FRAME.format( desc='Exponential power of series', op_name='**', equiv='dataframe ** other', reverse='rpow') def rpow(self, other): return other ** self rpow.__doc__ = _flex_doc_FRAME.format( desc='Exponential power', op_name='**', equiv='other ** dataframe', reverse='pow') def floordiv(self, other): return self // other floordiv.__doc__ = _flex_doc_FRAME.format( desc='Integer division', op_name='//', equiv='dataframe // other', reverse='rfloordiv') def rfloordiv(self, other): return other // self rfloordiv.__doc__ = _flex_doc_FRAME.format( desc='Integer division', op_name='//', equiv='other // dataframe', reverse='floordiv') # Comparison Operators def __eq__(self, other): return self._map_series_op("eq", other) def __ne__(self, other): return self._map_series_op("ne", other) def __lt__(self, other): return self._map_series_op("lt", other) def __le__(self, other): return self._map_series_op("le", other) def __ge__(self, other): return self._map_series_op("ge", other) def __gt__(self, other): return self._map_series_op("gt", other) def eq(self, other): """ Compare if the current value is equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.eq(1) a b a True True b False None c False True d False None """ return self == other equals = eq def gt(self, other): """ Compare if the current value is greater than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.gt(2) a b a False False b False None c True False d True None """ return self > other def ge(self, other): """ Compare if the current value is greater than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ge(1) a b a True True b True None c True True d True None """ return self >= other def lt(self, other): """ Compare if the current value is less than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.lt(1) a b a False False b False None c False False d False None """ return self < other def le(self, other): """ Compare if the current value is less than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.le(2) a b a True True b True None c False True d False None """ return self <= other def ne(self, other): """ Compare if the current value is not equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ne(1) a b a False False b True None c True False d True None """ return self != other def applymap(self, func): """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. .. note:: unlike pandas, it is required for `func` to specify return type hint. See https://docs.python.org/3/library/typing.html. For instance, as below: >>> def function() -> int: ... return 1 Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. Examples -------- >>> df = ks.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> def str_len(x) -> int: ... return len(str(x)) >>> df.applymap(str_len) 0 1 0 3 4 1 5 5 >>> def power(x) -> float: ... return x ** 2 >>> df.applymap(power) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ applied = [] for idx in self._internal.column_index: applied.append(self[idx].apply(func)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: Series support is not implemented yet. # TODO: not all arguments are implemented comparing to Pandas' for now. def aggregate(self, func: Union[List[str], Dict[str, List[str]]]): """Aggregate using one or more operations over the specified axis. Parameters ---------- func : dict or a list a dict mapping from column name (string) to aggregate functions (list of strings). If a list is given, the aggregation is performed against all columns. Returns ------- DataFrame Notes ----- `agg` is an alias for `aggregate`. Use the alias. See Also -------- databricks.koalas.Series.groupby databricks.koalas.DataFrame.groupby Examples -------- >>> df = ks.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) >>> df A B C 0 1.0 2.0 3.0 1 4.0 5.0 6.0 2 7.0 8.0 9.0 3 NaN NaN NaN Aggregate these functions over the rows. >>> df.agg(['sum', 'min'])[['A', 'B', 'C']] A B C min 1.0 2.0 3.0 sum 12.0 15.0 18.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})[['A', 'B']] A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN """ from databricks.koalas.groupby import GroupBy if isinstance(func, list): if all((isinstance(f, str) for f in func)): func = dict([ (column, func) for column in self.columns]) else: raise ValueError("If the given function is a list, it " "should only contains function names as strings.") if not isinstance(func, dict) or \ not all(isinstance(key, str) and (isinstance(value, str) or isinstance(value, list) and all(isinstance(v, str) for v in value)) for key, value in func.items()): raise ValueError("aggs must be a dict mapping from column name (string) to aggregate " "functions (list of strings).") kdf = DataFrame(GroupBy._spark_groupby(self, func, ())) # type: DataFrame # The codes below basically converts: # # A B # sum min min max # 0 12.0 1.0 2.0 8.0 # # to: # A B # max NaN 8.0 # min 1.0 2.0 # sum 12.0 NaN # # Aggregated output is usually pretty much small. So it is fine to directly use pandas API. pdf = kdf.to_pandas().transpose().reset_index() pdf = pdf.groupby(['level_1']).apply( lambda gpdf: gpdf.drop('level_1', 1).set_index('level_0').transpose() ).reset_index(level=1) pdf = pdf.drop(columns='level_1') pdf.columns.names = [None] pdf.index.names = [None] return DataFrame(pdf[list(func.keys())]) agg = aggregate def corr(self, method='pearson'): """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'spearman'} * pearson : standard correlation coefficient * spearman : Spearman rank correlation Returns ------- y : pandas.DataFrame See Also -------- Series.corr Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr('pearson') dogs cats dogs 1.000000 -0.851064 cats -0.851064 1.000000 >>> df.corr('spearman') dogs cats dogs 1.000000 -0.948683 cats -0.948683 1.000000 Notes ----- There are behavior differences between Koalas and pandas. * the `method` argument only accepts 'pearson', 'spearman' * the data should not contain NaNs. Koalas will return an error. * Koalas doesn't support the following argument(s). * `min_periods` argument is not supported """ return corr(self, method) def iteritems(self) -> Iterable: """ Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Returns ------- label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. Examples -------- >>> df = ks.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala'], ... columns=['species', 'population']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.iteritems(): ... print('label:', label) ... print('content:', content.to_string()) ... label: species content: panda bear polar bear koala marsupial label: population content: panda 1864 polar 22000 koala 80000 """ cols = list(self.columns) return list((col_name, self[col_name]) for col_name in cols) def items(self) -> Iterable: """This is an alias of ``iteritems``.""" return self.iteritems() def to_clipboard(self, excel=True, sep=None, **kwargs): """ Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none See Also -------- read_clipboard : Read text from clipboard. Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = ks.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 This function also works for Series: >>> df = ks.Series([1, 2, 3, 4, 5, 6, 7], name='x') # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # 0, 1 ... # 1, 2 ... # 2, 3 ... # 3, 4 ... # 4, 5 ... # 5, 6 ... # 6, 7 """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_clipboard, pd.DataFrame.to_clipboard, args) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False): """ Render a DataFrame as an HTML table. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links (only works with Pandas 0.24+). Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_string : Convert DataFrame to a string. """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_html, pd.DataFrame.to_html, args) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', line_width=None): """ Render a DataFrame to a console-friendly tabular output. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. line_width : int, optional Width to wrap a line in characters. Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]}, columns=['col1', 'col2']) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 >>> print(df.to_string(max_rows=2)) col1 col2 0 1 4 1 2 5 """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_string, pd.DataFrame.to_string, args) def to_dict(self, orient='dict', into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2'], ... columns=['col1', 'col2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df_dict = df.to_dict() >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('col1', [('row1', 1), ('row2', 2)]), ('col2', [('row1', 0.5), ('row2', 0.75)])] You can specify the return orientation. >>> df_dict = df.to_dict('series') >>> sorted(df_dict.items()) [('col1', row1 1 row2 2 Name: col1, dtype: int64), ('col2', row1 0.50 row2 0.75 Name: col2, dtype: float64)] >>> df_dict = df.to_dict('split') >>> sorted(df_dict.items()) # doctest: +ELLIPSIS [('columns', ['col1', 'col2']), ('data', [[1..., 0.75]]), ('index', ['row1', 'row2'])] >>> df_dict = df.to_dict('records') >>> [sorted(values.items()) for values in df_dict] # doctest: +ELLIPSIS [[('col1', 1...), ('col2', 0.5)], [('col1', 2...), ('col2', 0.75)]] >>> df_dict = df.to_dict('index') >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('row1', [('col1', 1), ('col2', 0.5)]), ('row2', [('col1', 2), ('col2', 0.75)])] You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), \ ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) # doctest: +ELLIPSIS [defaultdict(<class 'list'>, {'col..., 'col...}), \ defaultdict(<class 'list'>, {'col..., 'col...})] """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_dict, pd.DataFrame.to_dict, args) def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None): r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, consider alternative formats. Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default ‘NaN’ Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in LaTeX table format e.g. ‘rcl’ for 3 columns. By default, ‘l’ will be used for all columns except columns of numbers, which default to ‘r’. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3. decimal : str, default ‘.’ Character recognized as decimal separator, e.g. ‘,’ in Europe. multicolumn : bool, default True Use multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default ‘l’ The alignment for multicolumns, similar to column_format The default will be read from the config module. multirow : bool, default False Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = ks.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}, ... columns=['name', 'mask', 'weapon']) >>> df.to_latex(index=False) # doctest: +NORMALIZE_WHITESPACE '\\begin{tabular}{lll}\n\\toprule\n name & mask & weapon \\\\\n\\midrule\n Raphael & red & sai \\\\\n Donatello & purple & bo staff \\\\\n\\bottomrule\n\\end{tabular}\n' """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_latex, pd.DataFrame.to_latex, args) # TODO: enable doctests once we drop Spark 2.3.x (due to type coercion logic # when creating arrays) def transpose(self): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. .. note:: This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misusage, this method has the 'compute.max_rows' default limit of input length, and raises a ValueError. >>> from databricks.koalas.config import get_option, set_option >>> set_option('compute.max_rows', 1000) >>> ks.DataFrame({'a': range(1001)}).transpose() # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Current DataFrame has more then the given limit 1000 rows. Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' to retrieve to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. Returns ------- DataFrame The transposed DataFrame. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the coerced dtype. For instance, if int and float have to be placed in same column, it becomes float. If type coercion is not possible, it fails. Also, note that the values in index should be unique because they become unique column names. In addition, if Spark 2.3 is used, the types should always be exactly same. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = ks.DataFrame(data=d1, columns=['col1', 'col2']) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T.sort_index() # doctest: +SKIP >>> df1_transposed # doctest: +SKIP 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes # doctest: +SKIP 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'score': [9.5, 8], ... 'kids': [0, 0], ... 'age': [12, 22]} >>> df2 = ks.DataFrame(data=d2, columns=['score', 'kids', 'age']) >>> df2 score kids age 0 9.5 0 12 1 8.0 0 22 >>> df2_transposed = df2.T.sort_index() # doctest: +SKIP >>> df2_transposed # doctest: +SKIP 0 1 age 12.0 22.0 kids 0.0 0.0 score 9.5 8.0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the coerced dtype: >>> df2.dtypes score float64 kids int64 age int64 dtype: object >>> df2_transposed.dtypes # doctest: +SKIP 0 float64 1 float64 dtype: object """ max_compute_count = get_option("compute.max_rows") if max_compute_count is not None: pdf = self.head(max_compute_count + 1)._to_internal_pandas() if len(pdf) > max_compute_count: raise ValueError( "Current DataFrame has more then the given limit {0} rows. " "Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' " "to retrieve to retrieve more than {0} rows. Note that, before changing the " "'compute.max_rows', this operation is considerably expensive." .format(max_compute_count)) return DataFrame(pdf.transpose()) # Explode the data to be pairs. # # For instance, if the current input DataFrame is as below: # # +------+------+------+------+------+ # |index1|index2|(a,x1)|(a,x2)|(b,x3)| # +------+------+------+------+------+ # | y1| z1| 1| 0| 0| # | y2| z2| 0| 50| 0| # | y3| z3| 3| 2| 1| # +------+------+------+------+------+ # # Output of `exploded_df` becomes as below: # # +-----------------+-----------------+-----------------+-----+ # | index|__index_level_0__|__index_level_1__|value| # +-----------------+-----------------+-----------------+-----+ # |{"a":["y1","z1"]}| a| x1| 1| # |{"a":["y1","z1"]}| a| x2| 0| # |{"a":["y1","z1"]}| b| x3| 0| # |{"a":["y2","z2"]}| a| x1| 0| # |{"a":["y2","z2"]}| a| x2| 50| # |{"a":["y2","z2"]}| b| x3| 0| # |{"a":["y3","z3"]}| a| x1| 3| # |{"a":["y3","z3"]}| a| x2| 2| # |{"a":["y3","z3"]}| b| x3| 1| # +-----------------+-----------------+-----------------+-----+ internal_index_column = "__index_level_{}__".format pairs = F.explode(F.array(*[ F.struct( [F.lit(col).alias(internal_index_column(i)) for i, col in enumerate(idx)] + [self[idx]._scol.alias("value")] ) for idx in self._internal.column_index])) exploded_df = self._sdf.withColumn("pairs", pairs).select( [F.to_json(F.struct(F.array([scol.cast('string') for scol in self._internal.index_scols]) .alias('a'))).alias('index'), F.col("pairs.*")]) # After that, executes pivot with key and its index column. # Note that index column should contain unique values since column names # should be unique. internal_index_columns = [internal_index_column(i) for i in range(self._internal.column_index_level)] pivoted_df = exploded_df.groupBy(internal_index_columns).pivot('index') transposed_df = pivoted_df.agg(F.first(F.col("value"))) new_data_columns = list(filter(lambda x: x not in internal_index_columns, transposed_df.columns)) internal = self._internal.copy( sdf=transposed_df, data_columns=new_data_columns, index_map=[(col, None) for col in internal_index_columns], column_index=[tuple(json.loads(col)['a']) for col in new_data_columns], column_index_names=None) return DataFrame(internal) T = property(transpose) def transform(self, func): """ Call ``func`` on self producing a Series with transformed values and that has the same length as its input. .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 Koalas uses return type hint and does not try to infer the type. .. note:: the series within ``func`` is actually a pandas series, and the length of each series is not guaranteed. Parameters ---------- func : function Function to use for transforming the data. It must work when pandas Series is passed. Returns ------- DataFrame A DataFrame that must have the same length as self. Raises ------ Exception : If the returned DataFrame has a different length than self. Examples -------- >>> df = ks.DataFrame({'A': range(3), 'B': range(1, 4)}, columns=['A', 'B']) >>> df A B 0 0 1 1 1 2 2 2 3 >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 >>> df.transform(square) A B 0 0 1 1 1 4 2 4 9 You can omit the type hint and let Koalas infer its type. >>> df.transform(lambda x: x ** 2) A B 0 0 1 1 1 4 2 4 9 For multi-index columns: >>> df.columns = [('X', 'A'), ('X', 'B')] >>> df.transform(square) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 4 2 4 9 >>> df.transform(lambda x: x ** 2) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 4 2 4 9 """ assert callable(func), "the first argument should be a callable function." spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() transformed = pdf.transform(func) kdf = DataFrame(transformed) if len(pdf) <= limit: return kdf applied = [] for input_idx, output_idx in zip( self._internal.column_index, kdf._internal.column_index): wrapped = ks.pandas_wraps( func, return_col=as_python_type(kdf[output_idx].spark_type)) applied.append(wrapped(self[input_idx]).rename(input_idx)) else: wrapped = ks.pandas_wraps(func) applied = [] for idx in self._internal.column_index: applied.append(wrapped(self[idx]).rename(idx)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN Also support for MultiIndex >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> columns = [('a', 'name'), ('a', 'class'), ('b', 'max_speed')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df a b name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('a') name class 0 falcon bird 1 parrot bird 2 lion mammal 3 monkey mammal >>> df b max_speed 0 389.0 1 24.0 2 80.5 3 NaN """ result = self[item] self._internal = self.drop(item)._internal return result @property def index(self): """The index (row labels) Column of the DataFrame. Currently not supported when the DataFrame has no index. See Also -------- Index """ from databricks.koalas.indexes import Index, MultiIndex if len(self._internal.index_map) == 1: return Index(self) else: return MultiIndex(self) @property def empty(self): """ Returns true if the current DataFrame is empty. Otherwise, returns false. Examples -------- >>> ks.range(10).empty False >>> ks.range(0).empty True >>> ks.DataFrame({}, index=list('abc')).empty True """ return len(self._internal.column_index) == 0 or self._sdf.rdd.isEmpty() @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. .. note:: currently it collects top 1000 rows and return its pandas `pandas.io.formats.style.Styler` instance. Examples -------- >>> ks.range(1001).style # doctest: +ELLIPSIS <pandas.io.formats.style.Styler object at ...> """ max_results = get_option('compute.max_rows') pdf = self.head(max_results + 1).to_pandas() if len(pdf) > max_results: warnings.warn( "'style' property will only use top %s rows." % max_results, UserWarning) return pdf.head(max_results).style def set_index(self, keys, drop=True, append=False, inplace=False): """Set the DataFrame index (row labels) using one or more existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index` and ``np.ndarray``. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. Examples -------- >>> df = ks.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}, ... columns=['month', 'year', 'sale']) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') # doctest: +NORMALIZE_WHITESPACE year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) # doctest: +NORMALIZE_WHITESPACE sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 """ if isinstance(keys, (str, tuple)): keys = [keys] else: keys = list(keys) columns = set(self.columns) for key in keys: if key not in columns: raise KeyError(key) keys = [key if isinstance(key, tuple) else (key,) for key in keys] if drop: column_index = [idx for idx in self._internal.column_index if idx not in keys] else: column_index = self._internal.column_index if append: index_map = self._internal.index_map + [(self._internal.column_name_for(idx), idx) for idx in keys] else: index_map = [(self._internal.column_name_for(idx), idx) for idx in keys] internal = self._internal.copy(index_map=index_map, column_index=column_index, data_columns=[self._internal.column_name_for(idx) for idx in column_index]) if inplace: self._internal = internal else: return DataFrame(internal) def reset_index(self, level=None, drop=False, inplace=False, col_level=0, col_fill=''): """Reset the index, or a level of it. For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame DataFrame with the new index. See Also -------- DataFrame.set_index : Opposite of reset_index. Examples -------- >>> df = ks.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column. Unlike pandas, Koalas does not automatically add a sequential index. The following 0, 1, 2, 3 are only there when we display the DataFrame. >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = ks.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df # doctest: +NORMALIZE_WHITESPACE speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') # doctest: +NORMALIZE_WHITESPACE class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) # doctest: +NORMALIZE_WHITESPACE speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, ... col_fill='species') # doctest: +NORMALIZE_WHITESPACE species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, ... col_fill='genus') # doctest: +NORMALIZE_WHITESPACE genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ multi_index = len(self._internal.index_map) > 1 def rename(index): if multi_index: return ('level_{}'.format(index),) else: if ('index',) not in self._internal.column_index: return ('index',) else: return ('level_{}'.format(index),) if level is None: new_index_map = [(column, name if name is not None else rename(i)) for i, (column, name) in enumerate(self._internal.index_map)] index_map = [] else: if isinstance(level, (int, str)): level = [level] level = list(level) if all(isinstance(l, int) for l in level): for lev in level: if lev >= len(self._internal.index_map): raise IndexError('Too many levels: Index has only {} level, not {}' .format(len(self._internal.index_map), lev + 1)) idx = level elif all(isinstance(lev, str) for lev in level): idx = [] for l in level: try: i = self._internal.index_columns.index(l) idx.append(i) except ValueError: if multi_index: raise KeyError('Level unknown not found') else: raise KeyError('Level unknown must be same as name ({})' .format(self._internal.index_columns[0])) else: raise ValueError('Level should be all int or all string.') idx.sort() new_index_map = [] index_map = self._internal.index_map.copy() for i in idx: info = self._internal.index_map[i] index_column, index_name = info new_index_map.append( (index_column, index_name if index_name is not None else rename(index_name))) index_map.remove(info) new_data_scols = [ self._internal.scol_for(column).alias(str(name)) for column, name in new_index_map] if len(index_map) > 0: index_scols = [scol_for(self._sdf, column) for column, _ in index_map] sdf = self._sdf.select( index_scols + new_data_scols + self._internal.data_scols) else: sdf = self._sdf.select(new_data_scols + self._internal.data_scols) # Now, new internal Spark columns are named as same as index name. new_index_map = [(column, name) for column, name in new_index_map] index_map = [('__index_level_0__', None)] sdf = _InternalFrame.attach_default_index(sdf) if drop: new_index_map = [] internal = self._internal.copy( sdf=sdf, data_columns=[str(name) for _, name in new_index_map] + self._internal.data_columns, index_map=index_map, column_index=None) if self._internal.column_index_level > 1: column_depth = len(self._internal.column_index[0]) if col_level >= column_depth: raise IndexError('Too many levels: Index has only {} levels, not {}' .format(column_depth, col_level + 1)) if any(col_level + len(name) > column_depth for _, name in new_index_map): raise ValueError('Item must have length equal to number of levels.') columns = pd.MultiIndex.from_tuples( [tuple(([col_fill] * col_level) + list(name) + ([col_fill] * (column_depth - (len(name) + col_level)))) for _, name in new_index_map] + self._internal.column_index) else: columns = [name for _, name in new_index_map] + self._internal.column_index if inplace: self._internal = internal self.columns = columns else: kdf = DataFrame(internal) kdf.columns = columns return kdf def isnull(self): """ Detects missing values for items in the current Dataframe. Return a boolean same-sized Dataframe indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. See Also -------- Dataframe.notnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.isnull() 0 1 0 False False 1 False True 2 False True 3 False False >>> df = ks.DataFrame([[None, 'bee', None], ['dog', None, 'fly']]) >>> df.isnull() 0 1 2 0 True False True 1 False True False """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.isnull() return kdf isna = isnull def notnull(self): """ Detects non-missing values for items in the current Dataframe. This function takes a dataframe and indicates whether it's values are valid (not missing, which is ``NaN`` in numeric datatypes, ``None`` or ``NaN`` in objects and ``NaT`` in datetimelike). See Also -------- Dataframe.isnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True >>> df = ks.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.notnull() return kdf notna = notnull # TODO: add frep and axis parameter def shift(self, periods=1, fill_value=None): """ Shift DataFrame by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input DataFrame, shifted. Examples -------- >>> df = ks.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27 """ applied = [] for idx in self._internal.column_index: applied.append(self[idx].shift(periods, fill_value)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: axis should support 1 or 'columns' either at this moment def diff(self, periods: int = 1, axis: Union[int, str] = 0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). .. note:: the current implementation of diff uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : int, default 0 or 'index' Can only be set to 0 at the moment. Returns ------- diffed : DataFrame Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}, columns=['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] for idx in self._internal.column_index: applied.append(self[idx].diff(periods)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: axis should support 1 or 'columns' either at this moment def nunique(self, axis: Union[int, str] = 0, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> pd.Series: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- axis : int, default 0 or 'index' Can only be set to 0 at the moment. dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to Koalas and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to Koalas. Returns ------- The number of unique values per column as a pandas Series. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [np.nan, 3, np.nan]}) >>> df.nunique() A 3 B 1 Name: 0, dtype: int64 >>> df.nunique(dropna=False) A 3 B 2 Name: 0, dtype: int64 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> df.nunique(approx=True) A 3 B 1 Name: 0, dtype: int64 """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') res = self._sdf.select([self[column]._nunique(dropna, approx, rsd) for column in self.columns]) return res.toPandas().T.iloc[:, 0] def round(self, decimals=0): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. Returns ------- DataFrame See Also -------- Series.round Examples -------- >>> df = ks.DataFrame({'A':[0.028208, 0.038683, 0.877076], ... 'B':[0.992815, 0.645646, 0.149370], ... 'C':[0.173891, 0.577595, 0.491027]}, ... columns=['A', 'B', 'C'], ... index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = ks.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1.0 0.17 second 0.0 1.0 0.58 third 0.9 0.0 0.49 """ if isinstance(decimals, ks.Series): decimals_list = [(k if isinstance(k, tuple) else (k,), v) for k, v in decimals._to_internal_pandas().items()] elif isinstance(decimals, dict): decimals_list = [(k if isinstance(k, tuple) else (k,), v) for k, v in decimals.items()] elif isinstance(decimals, int): decimals_list = [(k, decimals) for k in self._internal.column_index] else: raise ValueError("decimals must be an integer, a dict-like or a Series") sdf = self._sdf for idx, decimal in decimals_list: if idx in self._internal.column_index: col = self._internal.column_name_for(idx) sdf = sdf.withColumn(col, F.round(scol_for(sdf, col), decimal)) return DataFrame(self._internal.copy(sdf=sdf)) def duplicated(self, subset=None, keep='first'): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series Examples -------- >>> df = ks.DataFrame({'a': [1, 1, 1, 3], 'b': [1, 1, 1, 4], 'c': [1, 1, 1, 5]}, ... columns = ['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 1 1 1 2 1 1 1 3 3 4 5 >>> df.duplicated().sort_index() 0 False 1 True 2 True 3 False Name: 0, dtype: bool Mark duplicates as ``True`` except for the last occurrence. >>> df.duplicated(keep='last').sort_index() 0 True 1 True 2 False 3 False Name: 0, dtype: bool Mark all duplicates as ``True``. >>> df.duplicated(keep=False).sort_index() 0 True 1 True 2 True 3 False Name: 0, dtype: bool """ from databricks.koalas.series import _col if len(self._internal.index_names) > 1: raise ValueError("Now we don't support multi-index Now.") if subset is None: group_cols = self._internal.data_columns else: group_cols = subset diff = set(subset).difference(set(self._internal.data_columns)) if len(diff) > 0: raise KeyError(', '.join(diff)) sdf = self._sdf index = self._internal.index_columns[0] if self._internal.index_names[0] is not None: name = self._internal.index_names[0] else: name = '0' if keep == 'first' or keep == 'last': if keep == 'first': ord_func = spark.functions.asc else: ord_func = spark.functions.desc window = Window.partitionBy(group_cols).orderBy(ord_func(index)).rowsBetween( Window.unboundedPreceding, Window.currentRow) sdf = sdf.withColumn(name, F.row_number().over(window) > 1) elif not keep: window = Window.partitionBy(group_cols).orderBy(F.col(index).desc())\ .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) sdf = sdf.withColumn(name, F.count(F.col(index)).over(window) > 1) else: raise ValueError("'keep' only support 'first', 'last' and False") return _col(DataFrame(_InternalFrame(sdf=sdf.select(index, name), data_columns=[name], index_map=self._internal.index_map))) def to_koalas(self): """ Converts the existing DataFrame into a Koalas DataFrame. This method is monkey-patched into Spark's DataFrame and can be used to convert a Spark DataFrame into a Koalas DataFrame. If running on an existing Koalas DataFrame, the method returns itself. If a Koalas DataFrame is converted to a Spark DataFrame and then back to Koalas, it will lose the index information and the original index will be turned into a normal column. See Also -------- DataFrame.to_spark Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 >>> spark_df = df.to_spark() >>> spark_df DataFrame[col1: bigint, col2: bigint] >>> kdf = spark_df.to_koalas() >>> kdf col1 col2 0 1 3 1 2 4 Calling to_koalas on a Koalas DataFrame simply returns itself. >>> df.to_koalas() col1 col2 0 1 3 1 2 4 """ if isinstance(self, DataFrame): return self else: return DataFrame(self) def cache(self): """ Yields and caches the current DataFrame. The Koalas DataFrame is yielded as a protected resource and its corresponding data is cached which gets uncached after execution goes of the context. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 >>> with df.cache() as cached_df: ... print(cached_df.count()) ... dogs 4 cats 4 dtype: int64 >>> df = df.cache() >>> df.to_pandas().mean(axis=1) 0 0.25 1 0.30 2 0.30 3 0.15 dtype: float64 To uncache the dataframe, use `unpersist` function >>> df.unpersist() """ return _CachedDataFrame(self._internal) def to_table(self, name: str, format: Optional[str] = None, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """ Write the DataFrame into a Spark table. Parameters ---------- name : str, required Table name in Spark. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the table exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns options Additional options passed directly to Spark. See Also -------- read_table DataFrame.to_spark_io DataFrame.to_parquet Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_table('%s.my_table' % db, partition_cols='date') """ self.to_spark().write.saveAsTable(name=name, format=format, mode=mode, partitionBy=partition_cols, options=options) def to_delta(self, path: str, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """ Write the DataFrame out as a Delta Lake table. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns options : dict All other options passed directly into Delta Lake. See Also -------- read_delta DataFrame.to_parquet DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 Create a new Delta Lake table, partitioned by one column: >>> df.to_delta('%s/to_delta/foo' % path, partition_cols='date') Partitioned by two columns: >>> df.to_delta('%s/to_delta/bar' % path, partition_cols=['date', 'country']) Overwrite an existing table's partitions, using the 'replaceWhere' capability in Delta: >>> df.to_delta('%s/to_delta/bar' % path, ... mode='overwrite', replaceWhere='date >= "2019-01-01"') """ self.to_spark_io( path=path, mode=mode, format="delta", partition_cols=partition_cols, options=options) def to_parquet(self, path: str, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, compression: Optional[str] = None): """ Write the DataFrame out as a Parquet file or directory. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns compression : str {'none', 'uncompressed', 'snappy', 'gzip', 'lzo', 'brotli', 'lz4', 'zstd'} Compression codec to use when saving to file. If None is set, it uses the value specified in `spark.sql.parquet.compression.codec`. See Also -------- read_parquet DataFrame.to_delta DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_parquet('%s/to_parquet/foo.parquet' % path, partition_cols='date') >>> df.to_parquet( ... '%s/to_parquet/foo.parquet' % path, ... mode = 'overwrite', ... partition_cols=['date', 'country']) """ self.to_spark().write.parquet( path=path, mode=mode, partitionBy=partition_cols, compression=compression) def to_spark_io(self, path: Optional[str] = None, format: Optional[str] = None, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """Write the DataFrame out to a Spark data source. Parameters ---------- path : string, optional Path to the data source. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when data already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional Names of partitioning columns options : dict All other options passed directly into Spark's data source. See Also -------- read_spark_io DataFrame.to_delta DataFrame.to_parquet DataFrame.to_table Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_spark_io(path='%s/to_spark_io/foo.json' % path, format='json') """ self.to_spark().write.save( path=path, format=format, mode=mode, partitionBy=partition_cols, options=options) def to_spark(self): """ Return the current DataFrame as a Spark DataFrame. .. note:: Index information is lost. So, if the index columns are not present in actual columns, they are lost. See Also -------- DataFrame.to_koalas """ return self._internal.spark_df def to_pandas(self): """ Return a pandas DataFrame. .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.to_pandas() dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 """ return self._internal.pandas_df.copy() # Alias to maintain backward compatibility with Spark toPandas = to_pandas def assign(self, **kwargs): """ Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though Koalas doesn't check it). If the values are not callable, (e.g. a Series or a literal), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Examples -------- >>> df = ks.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence and you can also create multiple columns within the same assign. >>> assigned = df.assign(temp_f=df['temp_c'] * 9 / 5 + 32, ... temp_k=df['temp_c'] + 273.15) >>> assigned[['temp_c', 'temp_f', 'temp_k']] temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 Notes ----- Assigning multiple columns within the same ``assign`` is possible but you cannot refer to newly created or modified columns. This feature is supported in pandas for Python 3.6 and later but not in Koalas. In Koalas, all items are computed first, and then assigned. """ from databricks.koalas.series import Series for k, v in kwargs.items(): if not (isinstance(v, (Series, spark.Column)) or callable(v) or pd.api.types.is_scalar(v)): raise TypeError("Column assignment doesn't support type " "{0}".format(type(v).__name__)) if callable(v): kwargs[k] = v(self) pairs = list(kwargs.items()) sdf = self._sdf for (name, c) in pairs: if isinstance(c, Series): sdf = sdf.withColumn(name, c._scol) elif isinstance(c, Column): sdf = sdf.withColumn(name, c) else: sdf = sdf.withColumn(name, F.lit(c)) data_columns = set(self._internal.data_columns) adding_columns = [name for name, _ in pairs if name not in data_columns] level = self._internal.column_index_level adding_column_index = [tuple([col, *([''] * (level - 1))]) for col in adding_columns] internal = self._internal.copy( sdf=sdf, data_columns=(self._internal.data_columns + adding_columns), column_index=(self._internal.column_index + adding_column_index)) return DataFrame(internal) @staticmethod def from_records(data: Union[np.array, List[tuple], dict, pd.DataFrame], index: Union[str, list, np.array] = None, exclude: list = None, columns: list = None, coerce_float: bool = False, nrows: int = None) \ -> 'DataFrame': """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- df : DataFrame Examples -------- Use dict as input >>> ks.DataFrame.from_records({'A': [1, 2, 3]}) A 0 1 1 2 2 3 Use list of tuples as input >>> ks.DataFrame.from_records([(1, 2), (3, 4)]) 0 1 0 1 2 1 3 4 Use NumPy array as input >>> ks.DataFrame.from_records(np.eye(3)) 0 1 2 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ return DataFrame(pd.DataFrame.from_records(data, index, exclude, columns, coerce_float, nrows)) def to_records(self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None): """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. convert_datetime64 : bool, default None Whether to convert the index to datetime.datetime if it is a DatetimeIndex. column_dtypes : str, type, dict, default None If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = ks.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) # doctest: +SKIP rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Specification of dtype for columns is new in Pandas 0.24.0. Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i4'), ('B', '<f8')]) Specification of dtype for index is new in Pandas 0.24.0. Data types can also be specified for the index: >>> df.to_records(index_dtypes="<S2") # doctest: +SKIP rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('index', 'S2'), ('A', '<i8'), ('B', '<f8')]) """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_records, pd.DataFrame.to_records, args) def copy(self) -> 'DataFrame': """ Make a copy of this object's indices and data. Returns ------- copy : DataFrame """ return DataFrame(self._internal.copy()) def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Remove missing values. Parameters ---------- axis : {0 or 'index'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.drop : Drop specified labels from columns. DataFrame.isnull: Indicate missing values. DataFrame.notnull : Indicate existing (non-missing) values. Examples -------- >>> df = ks.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [None, "1940-04-25", None]}, ... columns=['name', 'toy', 'born']) >>> df name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ if axis == 0 or axis == 'index': if subset is not None: if isinstance(subset, str): columns = [subset] else: columns = list(subset) invalids = [column for column in columns if column not in self._internal.data_columns] if len(invalids) > 0: raise KeyError(invalids) else: columns = list(self.columns) cnt = reduce(lambda x, y: x + y, [F.when(self[column].notna()._scol, 1).otherwise(0) for column in columns], F.lit(0)) if thresh is not None: pred = cnt >= F.lit(int(thresh)) elif how == 'any': pred = cnt == F.lit(len(columns)) elif how == 'all': pred = cnt > F.lit(0) else: if how is not None: raise ValueError('invalid how option: {h}'.format(h=how)) else: raise TypeError('must specify how or thresh') sdf = self._sdf.filter(pred) internal = self._internal.copy(sdf=sdf) if inplace: self._internal = internal else: return DataFrame(internal) else: raise NotImplementedError("dropna currently only works for axis=0 or axis='index'") # TODO: add 'limit' when value parameter exists def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None): """Fill NA/NaN values. .. note:: the current implementation of 'method' parameter in fillna uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- value : scalar, dict, Series Value to use to fill holes. alternately a dict/Series of values specifying which value to use for each column. DataFrame is not supported. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 1.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 1.0 4 """ sdf = self._sdf if value is not None: if axis is None: axis = 0 if not (axis == 0 or axis == "index"): raise NotImplementedError("fillna currently only works for axis=0 or axis='index'") if (value is None) and (method is None): raise ValueError("Must specify a fillna 'value' or 'method' parameter.") if not isinstance(value, (float, int, str, bool, dict, pd.Series)): raise TypeError("Unsupported type %s" % type(value)) if isinstance(value, pd.Series): value = value.to_dict() if isinstance(value, dict): for v in value.values(): if not isinstance(v, (float, int, str, bool)): raise TypeError("Unsupported type %s" % type(v)) value = {self._internal.column_name_for(key): value for key, value in value.items()} if limit is not None: raise ValueError('limit parameter for value is not support now') sdf = sdf.fillna(value) internal = self._internal.copy(sdf=sdf) else: applied = [] for idx in self._internal.column_index: applied.append(self[idx].fillna(value=value, method=method, axis=axis, inplace=False, limit=limit)) sdf = self._sdf.select(self._internal.index_scols + [col._scol for col in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[col._internal.data_columns[0] for col in applied], column_index=[col._internal.column_index[0] for col in applied]) if inplace: self._internal = internal else: return DataFrame(internal) # TODO: add 'downcast' when value parameter exists def bfill(self, axis=None, inplace=False, limit=None): """ Synonym for `DataFrame.fillna()` with ``method=`bfill```. .. note:: the current implementation of 'bfiff' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values backward. >>> df.bfill() A B C D 0 3.0 2.0 1.0 0 1 3.0 4.0 1.0 1 2 NaN 3.0 1.0 5 3 NaN 3.0 1.0 4 """ return self.fillna(method='bfill', axis=axis, inplace=inplace, limit=limit) # TODO: add 'downcast' when value parameter exists def ffill(self, axis=None, inplace=False, limit=None): """ Synonym for `DataFrame.fillna()` with ``method=`ffill```. .. note:: the current implementation of 'ffiff' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values forward. >>> df.ffill() A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 """ return self.fillna(method='ffill', axis=axis, inplace=inplace, limit=limit) def replace(self, to_replace=None, value=None, subset=None, inplace=False, limit=None, regex=False, method='pad'): """ Returns a new DataFrame replacing a value with another value. Parameters ---------- to_replace : int, float, string, or list Value to be replaced. If the value is a dict, then value is ignored and to_replace must be a mapping from column name (string) to replacement value. The value to be replaced must be an int, float, or string. value : int, float, string, or list Value to use to replace holes. The replacement value must be an int, float, or string. If value is a list, value should be of the same length with to_replace. subset : string, list Optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if value is a string, and subset contains a non-string column, then the non-string column is simply ignored. inplace : boolean, default False Fill in place (do not create a new object) Returns ------- DataFrame Object after replacement. Examples -------- >>> df = ks.DataFrame({"name": ['Ironman', 'Captain America', 'Thor', 'Hulk'], ... "weapon": ['Mark-45', 'Shield', 'Mjolnir', 'Smash']}, ... columns=['name', 'weapon']) >>> df name weapon 0 Ironman Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash Scalar `to_replace` and `value` >>> df.replace('Ironman', 'War-Machine') name weapon 0 War-Machine Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash List like `to_replace` and `value` >>> df.replace(['Ironman', 'Captain America'], ['Rescue', 'Hawkeye'], inplace=True) >>> df name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Mjolnir 3 Hulk Smash Replacing value by specifying column >>> df.replace('Mjolnir', 'Stormbuster', subset='weapon') name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash Dict like `to_replace` >>> df = ks.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}, ... columns=['A', 'B', 'C']) >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e Notes ----- One difference between this implementation and pandas is that it is necessary to specify the column name when you are passing dictionary in `to_replace` parameter. Calling `replace` on its index such as `df.replace({0: 10, 1: 100})` will throw an error. Instead specify column-name like `df.replace({'A': {0: 10, 1: 100}})`. """ if method != 'pad': raise NotImplementedError("replace currently works only for method='pad") if limit is not None: raise NotImplementedError("replace currently works only when limit=None") if regex is not False: raise NotImplementedError("replace currently doesn't supports regex") if value is not None and not isinstance(value, (int, float, str, list, dict)): raise TypeError("Unsupported type {}".format(type(value))) if to_replace is not None and not isinstance(to_replace, (int, float, str, list, dict)): raise TypeError("Unsupported type {}".format(type(to_replace))) if isinstance(value, list) and isinstance(to_replace, list): if len(value) != len(to_replace): raise ValueError('Length of to_replace and value must be same') sdf = self._sdf.select(self._internal.data_columns) if isinstance(to_replace, dict) and value is None and \ (not any(isinstance(i, dict) for i in to_replace.values())): sdf = sdf.replace(to_replace, value, subset) elif isinstance(to_replace, dict): for df_column, replacement in to_replace.items(): if isinstance(replacement, dict): sdf = sdf.replace(replacement, subset=df_column) else: sdf = sdf.withColumn(df_column, F.when(scol_for(sdf, df_column) == replacement, value) .otherwise(scol_for(sdf, df_column))) else: sdf = sdf.replace(to_replace, value, subset) kdf = DataFrame(sdf) if inplace: self._internal = kdf._internal else: return kdf def clip(self, lower: Union[float, int] = None, upper: Union[float, int] = None) \ -> 'DataFrame': """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Parameters ---------- lower : float or int, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or int, default None Maximum threshold value. All values above this threshold will be set to it. Returns ------- DataFrame DataFrame with the values outside the clip boundaries replaced. Examples -------- >>> ks.DataFrame({'A': [0, 2, 4]}).clip(1, 3) A 0 1 1 2 2 3 Notes ----- One difference between this implementation and pandas is that running pd.DataFrame({'A': ['a', 'b']}).clip(0, 1) will crash with "TypeError: '<=' not supported between instances of 'str' and 'int'" while ks.DataFrame({'A': ['a', 'b']}).clip(0, 1) will output the original DataFrame, simply ignoring the incompatible types. """ if is_list_like(lower) or is_list_like(upper): raise ValueError("List-like value are not supported for 'lower' and 'upper' at the " + "moment") if lower is None and upper is None: return self numeric_types = (DecimalType, DoubleType, FloatType, ByteType, IntegerType, LongType, ShortType) numeric_columns = [(c, self._internal.scol_for(c)) for c in self.columns if isinstance(self._internal.spark_type_for(c), numeric_types)] if lower is not None: numeric_columns = [(c, F.when(scol < lower, lower).otherwise(scol).alias(c)) for c, scol in numeric_columns] if upper is not None: numeric_columns = [(c, F.when(scol > upper, upper).otherwise(scol).alias(c)) for c, scol in numeric_columns] nonnumeric_columns = [self._internal.scol_for(c) for c in self.columns if not isinstance(self._internal.spark_type_for(c), numeric_types)] sdf = self._sdf.select([scol for _, scol in numeric_columns] + nonnumeric_columns) return ks.DataFrame(sdf)[list(self.columns)] def head(self, n=5): """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- obj_head : same type as caller The first `n` rows of the caller object. Examples -------- >>> df = ks.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon """ return DataFrame(self._internal.copy(sdf=self._sdf.limit(n))) # TODO: support multi-index columns def pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None): """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ---------- values : column to aggregate. They should be either a list less than three or a string. index : column (string) or list of columns If an array is passed, it must be the same length as the data. The list should contain string. columns : column Columns used in the pivot operation. Only one column is supported and it should be a string. aggfunc : function (string), dict, default mean If dict is passed, the resulting pivot table will have columns concatenated by "_" where the first part is the value of columns and the second part is the column name in values If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. Returns ------- table : DataFrame Examples -------- >>> df = ks.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}, ... columns=['A', 'B', 'C', 'D', 'E']) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum') >>> table # doctest: +NORMALIZE_WHITESPACE C large small A B foo one 4.0 1 two NaN 6 bar two 7.0 6 one 4.0 5 We can also fill missing values using the `fill_value` parameter. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum', fill_value=0) >>> table # doctest: +NORMALIZE_WHITESPACE C large small A B foo one 4 1 two 0 6 bar two 7 6 one 4 5 We can also calculate multiple types of aggregations for any given value column. >>> table = df.pivot_table(values = ['D'], index =['C'], ... columns="A", aggfunc={'D':'mean'}) >>> table # doctest: +NORMALIZE_WHITESPACE A bar foo C small 5.5 2.333333 large 5.5 2.000000 The next example aggregates on multiple values. >>> table = df.pivot_table(index=['C'], columns="A", values=['D', 'E'], ... aggfunc={'D': 'mean', 'E': 'sum'}) >>> table # doctest: +NORMALIZE_WHITESPACE D E A bar foo bar foo C small 5.5 2.333333 17 13 large 5.5 2.000000 15 9 """ if not isinstance(columns, str): raise ValueError("columns should be string.") if not isinstance(values, str) and not isinstance(values, list): raise ValueError('values should be string or list of one column.') if not isinstance(aggfunc, str) and (not isinstance(aggfunc, dict) or not all( isinstance(key, str) and isinstance(value, str) for key, value in aggfunc.items())): raise ValueError("aggfunc must be a dict mapping from column name (string) " "to aggregate functions (string).") if isinstance(aggfunc, dict) and index is None: raise NotImplementedError("pivot_table doesn't support aggfunc" " as dict and without index.") if isinstance(values, list) and index is None: raise NotImplementedError("values can't be a list without index.") if isinstance(values, list) and len(values) > 2: raise NotImplementedError("values more than two is not supported yet!") if columns not in self.columns.values: raise ValueError("Wrong columns {}.".format(columns)) if isinstance(values, list): if not all(isinstance(self._internal.spark_type_for(col), NumericType) for col in values): raise TypeError('values should be a numeric type.') elif not isinstance(self._internal.spark_type_for(values), NumericType): raise TypeError('values should be a numeric type.') if isinstance(aggfunc, str): agg_cols = [F.expr('{1}(`{0}`) as `{0}`'.format(values, aggfunc))] elif isinstance(aggfunc, dict): agg_cols = [F.expr('{1}(`{0}`) as `{0}`'.format(key, value)) for key, value in aggfunc.items()] agg_columns = [key for key, value in aggfunc.items()] if set(agg_columns) != set(values): raise ValueError("Columns in aggfunc must be the same as values.") if index is None: sdf = self._sdf.groupBy().pivot(pivot_col=columns).agg(*agg_cols) elif isinstance(index, list): sdf = self._sdf.groupBy(index).pivot(pivot_col=columns).agg(*agg_cols) else: raise ValueError("index should be a None or a list of columns.") if fill_value is not None and isinstance(fill_value, (int, float)): sdf = sdf.fillna(fill_value) if index is not None: if isinstance(values, list): data_columns = [column for column in sdf.columns if column not in index] if len(values) == 2: # If we have two values, Spark will return column's name # in this format: column_values, where column contains # their values in the DataFrame and values is # the column list passed to the pivot_table(). # E.g. if column is b and values is ['b','e'], # then ['2_b', '2_e', '3_b', '3_e']. # We sort the columns of Spark DataFrame by values. data_columns.sort(key=lambda x: x.split('_', 1)[1]) sdf = sdf.select(index + data_columns) index_map = [(column, (column,)) for column in index] internal = _InternalFrame(sdf=sdf, data_columns=data_columns, index_map=index_map) kdf = DataFrame(internal) # We build the MultiIndex from the list of columns returned by Spark. tuples = [(name.split('_')[1], self.dtypes[columns].type(name.split('_')[0])) for name in kdf._internal.data_columns] kdf.columns = pd.MultiIndex.from_tuples(tuples, names=[None, columns]) else: index_map = [(column, (column,)) for column in index] internal = _InternalFrame(sdf=sdf, data_columns=data_columns, index_map=index_map, column_index_names=[columns]) kdf = DataFrame(internal) return kdf else: data_columns = [column for column in sdf.columns if column not in index] index_map = [(column, (column,)) for column in index] internal = _InternalFrame(sdf=sdf, data_columns=data_columns, index_map=index_map, column_index_names=[columns]) return DataFrame(internal) else: if isinstance(values, list): index_values = values[-1] else: index_values = values sdf = sdf.withColumn(columns, F.lit(index_values)) data_columns = [column for column in sdf.columns if column not in [columns]] index_map = [(column, (column,)) for column in [columns]] internal = _InternalFrame(sdf=sdf, data_columns=data_columns, index_map=index_map, column_index_names=[columns]) return DataFrame(internal) def pivot(self, index=None, columns=None, values=None): """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation. Parameters ---------- index : string, optional Column to use to make new frame's index. If None, uses existing index. columns : string Column to use to make new frame's columns. values : string, object or a list of the previous Column(s) to use for populating new frame's values. Returns ------- DataFrame Returns reshaped DataFrame. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. Examples -------- >>> df = ks.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}, ... columns=['foo', 'bar', 'baz', 'zoo']) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C 0 1.0 NaN NaN 1 NaN 2.0 NaN 2 NaN NaN 3.0 3 4.0 NaN NaN 4 NaN 5.0 NaN 5 NaN NaN 6.0 Notice that, unlike pandas raises an ValueError when duplicated values are found, Koalas' pivot still works with its first value it meets during operation because pivot is an expensive operation and it is preferred to permissively execute over failing fast when processing large data. >>> df = ks.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}, columns=['foo', 'bar', 'baz']) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1.0 NaN NaN two NaN 3.0 4.0 """ if columns is None: raise ValueError("columns should be set.") if values is None: raise ValueError("values should be set.") should_use_existing_index = index is not None if should_use_existing_index: index = [index] else: index = self._internal.index_columns df = self.pivot_table( index=index, columns=columns, values=values, aggfunc='first') if should_use_existing_index: return df else: index_columns = df._internal.index_columns # Note that the existing indexing column won't exist in the pivoted DataFrame. internal = df._internal.copy( index_map=[(index_column, None) for index_column in index_columns]) return DataFrame(internal) @property def columns(self): """The column labels of the DataFrame.""" if self._internal.column_index_level > 1: columns = pd.MultiIndex.from_tuples(self._internal.column_index) else: columns = pd.Index([idx[0] for idx in self._internal.column_index]) if self._internal.column_index_names is not None: columns.names = self._internal.column_index_names return columns @columns.setter def columns(self, columns): if isinstance(columns, pd.MultiIndex): column_index = columns.tolist() old_names = self._internal.column_index if len(old_names) != len(column_index): raise ValueError( "Length mismatch: Expected axis has %d elements, new values have %d elements" % (len(old_names), len(column_index))) column_index_names = columns.names data_columns = [str(idx) if len(idx) > 1 else idx[0] for idx in column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) self._internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) else: old_names = self._internal.column_index if len(old_names) != len(columns): raise ValueError( "Length mismatch: Expected axis has %d elements, new values have %d elements" % (len(old_names), len(columns))) column_index = [col if isinstance(col, tuple) else (col,) for col in columns] if isinstance(columns, pd.Index): column_index_names = columns.names else: column_index_names = None data_columns = [str(idx) if len(idx) > 1 else idx[0] for idx in column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) self._internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) @property def dtypes(self): """Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the object dtype. Returns ------- pd.Series The data type of each column. Examples -------- >>> df = ks.DataFrame({'a': list('abc'), ... 'b': list(range(1, 4)), ... 'c': np.arange(3, 6).astype('i1'), ... 'd': np.arange(4.0, 7.0, dtype='float64'), ... 'e': [True, False, True], ... 'f': pd.date_range('20130101', periods=3)}, ... columns=['a', 'b', 'c', 'd', 'e', 'f']) >>> df.dtypes a object b int64 c int8 d float64 e bool f datetime64[ns] dtype: object """ return pd.Series([self[col].dtype for col in self._internal.data_columns], index=self._internal.data_columns) def select_dtypes(self, include=None, exclude=None): """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. It also takes Spark SQL DDL type strings, for instance, 'string' and 'date'. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes() Traceback (most recent call last): ... ValueError: at least one of include or exclude must be nonempty * If ``include`` and ``exclude`` have overlapping elements >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes(include='a', exclude='a') Traceback (most recent call last): ... TypeError: string dtypes are not allowed, use 'object' instead Notes ----- * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` Examples -------- >>> df = ks.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3, ... 'd': ['a', 'b'] * 3}, columns=['a', 'b', 'c', 'd']) >>> df a b c d 0 1 True 1.0 a 1 2 False 2.0 b 2 1 True 1.0 a 3 2 False 2.0 b 4 1 True 1.0 a 5 2 False 2.0 b >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64'], exclude=['int']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c d 0 True 1.0 a 1 False 2.0 b 2 True 1.0 a 3 False 2.0 b 4 True 1.0 a 5 False 2.0 b Spark SQL DDL type strings can be used as well. >>> df.select_dtypes(exclude=['string']) a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 """ from pyspark.sql.types import _parse_datatype_string if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () if not any((include, exclude)): raise ValueError('at least one of include or exclude must be ' 'nonempty') # can't both include AND exclude! if set(include).intersection(set(exclude)): raise ValueError('include and exclude overlap on {inc_ex}'.format( inc_ex=set(include).intersection(set(exclude)))) # Handle Spark types include_spark_type = [] for inc in include: try: include_spark_type.append(_parse_datatype_string(inc)) except: pass exclude_spark_type = [] for exc in exclude: try: exclude_spark_type.append(_parse_datatype_string(exc)) except: pass # Handle Pandas types include_numpy_type = [] for inc in include: try: include_numpy_type.append(infer_dtype_from_object(inc)) except: pass exclude_numpy_type = [] for exc in exclude: try: exclude_numpy_type.append(infer_dtype_from_object(exc)) except: pass columns = [] column_index = [] for idx in self._internal.column_index: if len(include) > 0: should_include = ( infer_dtype_from_object(self[idx].dtype.name) in include_numpy_type or self._internal.spark_type_for(idx) in include_spark_type) else: should_include = not ( infer_dtype_from_object(self[idx].dtype.name) in exclude_numpy_type or self._internal.spark_type_for(idx) in exclude_spark_type) if should_include: columns.append(self._internal.column_name_for(idx)) column_index.append(idx) return DataFrame(self._internal.copy( sdf=self._sdf.select(self._internal.index_scols + [self._internal.scol_for(col) for col in columns]), data_columns=columns, column_index=column_index)) def count(self, axis=None): """ Count non-NA cells for each column. The values `None`, `NaN` are considered NA. Parameters ---------- axis : {0 or ‘index’, 1 or ‘columns’}, default 0 If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. Returns ------- pandas.Series See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = ks.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 >>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 Name: 0, dtype: int64 """ return self._reduce_for_stat_function( _Frame._count_expr, name="count", axis=axis, numeric_only=False) def drop(self, labels=None, axis=1, columns: Union[str, Tuple[str, ...], List[str], List[Tuple[str, ...]]] = None): """ Drop specified labels from columns. Remove columns by specifying label names and axis=1 or columns. When specifying both labels and columns, only labels will be dropped. Removing rows is yet to be implemented. Parameters ---------- labels : single label or list-like Column labels to drop. axis : {1 or 'columns'}, default 1 .. dropna currently only works for axis=1 'columns' axis=0 is yet to be implemented. columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). Returns ------- dropped : DataFrame See Also -------- Series.dropna Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('x', axis=1) y z w 0 3 5 7 1 4 6 8 >>> df.drop(['y', 'z'], axis=1) x w 0 1 7 1 2 8 >>> df.drop(columns=['y', 'z']) x w 0 1 7 1 2 8 Also support for MultiIndex >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> columns = [('a', 'x'), ('a', 'y'), ('b', 'z'), ('b', 'w')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df # doctest: +NORMALIZE_WHITESPACE a b x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('a') # doctest: +NORMALIZE_WHITESPACE b z w 0 5 7 1 6 8 Notes ----- Currently only axis = 1 is supported in this function, axis = 0 is yet to be implemented. """ if labels is not None: axis = self._validate_axis(axis) if axis == 1: return self.drop(columns=labels) raise NotImplementedError("Drop currently only works for axis=1") elif columns is not None: if isinstance(columns, str): columns = [(columns,)] # type: ignore elif isinstance(columns, tuple): columns = [columns] else: columns = [col if isinstance(col, tuple) else (col,) # type: ignore for col in columns] drop_column_index = set(idx for idx in self._internal.column_index for col in columns if idx[:len(col)] == col) if len(drop_column_index) == 0: raise KeyError(columns) cols, idxes = zip(*((column, idx) for column, idx in zip(self._internal.data_columns, self._internal.column_index) if idx not in drop_column_index)) internal = self._internal.copy( sdf=self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx) for idx in idxes]), data_columns=list(cols), column_index=list(idxes)) return DataFrame(internal) else: raise ValueError("Need to specify at least one of 'labels' or 'columns'") def get(self, key, default=None): """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object Examples -------- >>> df = ks.DataFrame({'x':range(3), 'y':['a','b','b'], 'z':['a','b','b']}, ... columns=['x', 'y', 'z']) >>> df x y z 0 0 a a 1 1 b b 2 2 b b >>> df.get('x') 0 0 1 1 2 2 Name: x, dtype: int64 >>> df.get(['x', 'y']) x y 0 0 a 1 1 b 2 2 b """ try: return self._pd_getitem(key) except (KeyError, ValueError, IndexError): return default def _sort(self, by: List[Column], ascending: Union[bool, List[bool]], inplace: bool, na_position: str): if isinstance(ascending, bool): ascending = [ascending] * len(by) if len(ascending) != len(by): raise ValueError('Length of ascending ({}) != length of by ({})' .format(len(ascending), len(by))) if na_position not in ('first', 'last'): raise ValueError("invalid na_position: '{}'".format(na_position)) # Mapper: Get a spark column function for (ascending, na_position) combination # Note that 'asc_nulls_first' and friends were added as of Spark 2.4, see SPARK-23847. mapper = { (True, 'first'): lambda x: Column(getattr(x._jc, "asc_nulls_first")()), (True, 'last'): lambda x: Column(getattr(x._jc, "asc_nulls_last")()), (False, 'first'): lambda x: Column(getattr(x._jc, "desc_nulls_first")()), (False, 'last'): lambda x: Column(getattr(x._jc, "desc_nulls_last")()), } by = [mapper[(asc, na_position)](scol) for scol, asc in zip(by, ascending)] kdf = DataFrame(self._internal.copy(sdf=self._sdf.sort(*by))) # type: ks.DataFrame if inplace: self._internal = kdf._internal return None else: return kdf def sort_values(self, by: Union[str, List[str]], ascending: Union[bool, List[bool]] = True, inplace: bool = False, na_position: str = 'last') -> Optional['DataFrame']: """ Sort by the values along either axis. Parameters ---------- by : str or list of str ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False if True, perform operation in-place na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({ ... 'col1': ['A', 'B', None, 'D', 'C'], ... 'col2': [2, 9, 8, 7, 4], ... 'col3': [0, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df col1 col2 col3 0 A 2 0 1 B 9 9 2 None 8 4 3 D 7 2 4 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 B 9 9 4 C 4 3 3 D 7 2 2 None 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 3 D 7 2 4 C 4 3 1 B 9 9 0 A 2 0 2 None 8 4 Sort by multiple columns >>> df = ks.DataFrame({ ... 'col1': ['A', 'A', 'B', None, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 None 8 4 """ if isinstance(by, str): by = [by] by = [self[colname]._scol for colname in by] return self._sort(by=by, ascending=ascending, inplace=inplace, na_position=na_position) def sort_index(self, axis: int = 0, level: Optional[Union[int, List[int]]] = None, ascending: bool = True, inplace: bool = False, kind: str = None, na_position: str = 'last') \ -> Optional['DataFrame']: """ Sort object by labels (along an axis) Parameters ---------- axis : index, columns to direct sorting. Currently, only axis = 0 is supported. level : int or level name or list of ints or list of level names if not None, sort on values in specified index level(s) ascending : boolean, default True Sort ascending vs. descending inplace : bool, default False if True, perform operation in-place kind : str, default None Koalas does not allow specifying the sorting algorithm at the moment, default None na_position : {‘first’, ‘last’}, default ‘last’ first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for MultiIndex. Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({'A': [2, 1, np.nan]}, index=['b', 'a', np.nan]) >>> df.sort_index() A a 1.0 b 2.0 NaN NaN >>> df.sort_index(ascending=False) A b 2.0 a 1.0 NaN NaN >>> df.sort_index(na_position='first') A NaN NaN a 1.0 b 2.0 >>> df.sort_index(inplace=True) >>> df A a 1.0 b 2.0 NaN NaN >>> df = ks.DataFrame({'A': range(4), 'B': range(4)[::-1]}, ... index=[['b', 'b', 'a', 'a'], [1, 0, 1, 0]], ... columns=['A', 'B']) >>> df.sort_index() A B a 0 3 0 1 2 1 b 0 1 2 1 0 3 >>> df.sort_index(level=1) # doctest: +SKIP A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 >>> df.sort_index(level=[1, 0]) A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 """ if axis != 0: raise ValueError("No other axes than 0 are supported at the moment") if kind is not None: raise ValueError("Specifying the sorting algorithm is supported at the moment.") if level is None or (is_list_like(level) and len(level) == 0): # type: ignore by = self._internal.index_scols elif is_list_like(level): by = [self._internal.index_scols[l] for l in level] # type: ignore else: by = [self._internal.index_scols[level]] return self._sort(by=by, ascending=ascending, inplace=inplace, na_position=na_position) # TODO: add keep = First def nlargest(self, n: int, columns: 'Any') -> 'DataFrame': """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant in Pandas. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(n=3, columns='X') X Y 5 7.0 11 4 6.0 10 3 5.0 9 >>> df.nlargest(n=3, columns=['Y', 'X']) X Y 6 NaN 12 5 7.0 11 4 6.0 10 """ kdf = self.sort_values(by=columns, ascending=False) # type: Optional[DataFrame] assert kdf is not None return kdf.head(n=n) # TODO: add keep = First def nsmallest(self, n: int, columns: 'Any') -> 'DataFrame': """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(n=3, columns='X') # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(n=3, columns=['Y', 'X']) # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 """ kdf = self.sort_values(by=columns, ascending=True) # type: Optional[DataFrame] assert kdf is not None return kdf.head(n=n) def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable or dict The sequence of values to test. If values is a dict, the keys must be the column names, which must match. Series and DataFrame are not supported. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog'], ... columns=['num_legs', 'num_wings']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True """ if isinstance(values, (pd.DataFrame, pd.Series)): raise NotImplementedError("DataFrame and Series are not supported") if isinstance(values, dict) and not set(values.keys()).issubset(self.columns): raise AttributeError( "'DataFrame' object has no attribute %s" % (set(values.keys()).difference(self.columns))) _select_columns = self._internal.index_columns.copy() if isinstance(values, dict): for col in self.columns: if col in values: _select_columns.append(self._internal.scol_for(col) .isin(values[col]).alias(col)) else: _select_columns.append(F.lit(False).alias(col)) elif is_list_like(values): _select_columns += [ self._internal.scol_for(col).isin(list(values)).alias(col) for col in self.columns] else: raise TypeError('Values should be iterable, Series, DataFrame or dict.') return DataFrame(self._internal.copy(sdf=self._sdf.select(_select_columns))) @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self), len(self.columns) # TODO: support multi-index columns def merge(self, right: 'DataFrame', how: str = 'inner', on: Optional[Union[str, List[str]]] = None, left_on: Optional[Union[str, List[str]]] = None, right_on: Optional[Union[str, List[str]]] = None, left_index: bool = False, right_index: bool = False, suffixes: Tuple[str, str] = ('_x', '_y')) -> 'DataFrame': """ Merge DataFrame objects with a database-style join. The index of the resulting DataFrame will be one of the following: - 0...n if no index is used for merging - Index of the left DataFrame if merged only on the index of the right DataFrame - Index of the right DataFrame if merged only on the index of the left DataFrame - All involved indices if merged using the indices of both DataFrames e.g. if `left` with indices (a, x) and `right` with indices (b, x), the result will be an index (x, a, b) Parameters ---------- right: Object to merge with. how: Type of merge to be performed. {'left', 'right', 'outer', 'inner'}, default 'inner' left: use only keys from left frame, similar to a SQL left outer join; preserve key order. right: use only keys from right frame, similar to a SQL right outer join; preserve key order. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on: Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on: Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on: Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index: Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index: Use the index from the right DataFrame as the join key. Same caveats as left_index. suffixes: Suffix to apply to overlapping column names in the left and right side, respectively. Returns ------- DataFrame A DataFrame of the two merged objects. Examples -------- >>> df1 = ks.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']) >>> df2 = ks.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> merged = df1.merge(df2, left_on='lkey', right_on='rkey') >>> merged.sort_values(by=['lkey', 'value_x', 'rkey', 'value_y']) lkey value_x rkey value_y 0 bar 2 bar 6 5 baz 3 baz 7 1 foo 1 foo 5 2 foo 1 foo 8 3 foo 5 foo 5 4 foo 5 foo 8 >>> left_kdf = ks.DataFrame({'A': [1, 2]}) >>> right_kdf = ks.DataFrame({'B': ['x', 'y']}, index=[1, 2]) >>> left_kdf.merge(right_kdf, left_index=True, right_index=True) A B 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='left') A B 0 1 None 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='right') A B 1 2.0 x 2 NaN y >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='outer') A B 0 1.0 None 1 2.0 x 2 NaN y Notes ----- As described in #263, joining string columns currently returns None for missing values instead of NaN. """ _to_list = lambda o: o if o is None or is_list_like(o) else [o] if on: if left_on or right_on: raise ValueError('Can only pass argument "on" OR "left_on" and "right_on", ' 'not a combination of both.') left_keys = _to_list(on) right_keys = _to_list(on) else: # TODO: need special handling for multi-index. if left_index: left_keys = self._internal.index_columns else: left_keys = _to_list(left_on) if right_index: right_keys = right._internal.index_columns else: right_keys = _to_list(right_on) if left_keys and not right_keys: raise ValueError('Must pass right_on or right_index=True') if right_keys and not left_keys: raise ValueError('Must pass left_on or left_index=True') if not left_keys and not right_keys: common = list(self.columns.intersection(right.columns)) if len(common) == 0: raise ValueError( 'No common columns to perform merge on. Merge options: ' 'left_on=None, right_on=None, left_index=False, right_index=False') left_keys = common right_keys = common if len(left_keys) != len(right_keys): # type: ignore raise ValueError('len(left_keys) must equal len(right_keys)') if how == 'full': warnings.warn("Warning: While Koalas will accept 'full', you should use 'outer' " + "instead to be compatible with the pandas merge API", UserWarning) if how == 'outer': # 'outer' in pandas equals 'full' in Spark how = 'full' if how not in ('inner', 'left', 'right', 'full'): raise ValueError("The 'how' parameter has to be amongst the following values: ", "['inner', 'left', 'right', 'outer']") left_table = self._internal.spark_internal_df.alias('left_table') right_table = right._internal.spark_internal_df.alias('right_table') left_key_columns = [scol_for(left_table, col) for col in left_keys] # type: ignore right_key_columns = [scol_for(right_table, col) for col in right_keys] # type: ignore join_condition = reduce(lambda x, y: x & y, [lkey == rkey for lkey, rkey in zip(left_key_columns, right_key_columns)]) joined_table = left_table.join(right_table, join_condition, how=how) # Unpack suffixes tuple for convenience left_suffix = suffixes[0] right_suffix = suffixes[1] # Append suffixes to columns with the same name to avoid conflicts later duplicate_columns = (set(self._internal.data_columns) & set(right._internal.data_columns)) left_index_columns = set(self._internal.index_columns) right_index_columns = set(right._internal.index_columns) exprs = [] for col in left_table.columns: if col in left_index_columns: continue scol = scol_for(left_table, col) if col in duplicate_columns: if col in left_keys and col in right_keys: right_scol = scol_for(right_table, col) if how == 'right': scol = right_scol elif how == 'full': scol = F.when(scol.isNotNull(), scol).otherwise(right_scol).alias(col) else: pass else: col = col + left_suffix scol = scol.alias(col) exprs.append(scol) for col in right_table.columns: if col in right_index_columns: continue scol = scol_for(right_table, col) if col in duplicate_columns: if col in left_keys and col in right_keys: continue else: col = col + right_suffix scol = scol.alias(col) exprs.append(scol) # Retain indices if they are used for joining if left_index: if right_index: exprs.extend(['left_table.`{}`'.format(col) for col in left_index_columns]) exprs.extend(['right_table.`{}`'.format(col) for col in right_index_columns]) index_map = self._internal.index_map + [idx for idx in right._internal.index_map if idx not in self._internal.index_map] else: exprs.extend(['right_table.`{}`'.format(col) for col in right_index_columns]) index_map = right._internal.index_map elif right_index: exprs.extend(['left_table.`{}`'.format(col) for col in left_index_columns]) index_map = self._internal.index_map else: index_map = [] selected_columns = joined_table.select(*exprs) # Merge left and right indices after the join by replacing missing values in the left index # with values from the right index and dropping if (how == 'right' or how == 'full') and right_index: for left_index_col, right_index_col in zip(self._internal.index_columns, right._internal.index_columns): selected_columns = selected_columns.withColumn( 'left_table.' + left_index_col, F.when(F.col('left_table.`{}`'.format(left_index_col)).isNotNull(), F.col('left_table.`{}`'.format(left_index_col))) .otherwise(F.col('right_table.`{}`'.format(right_index_col))) ).withColumnRenamed( 'left_table.' + left_index_col, left_index_col ).drop(F.col('left_table.`{}`'.format(left_index_col))) if not (left_index and not right_index): for right_index_col in right_index_columns: if right_index_col in left_index_columns: selected_columns = \ selected_columns.drop(F.col('right_table.`{}`'.format(right_index_col))) if index_map: data_columns = [c for c in selected_columns.columns if c not in [idx[0] for idx in index_map]] internal = _InternalFrame( sdf=selected_columns, data_columns=data_columns, index_map=index_map) return DataFrame(internal) else: return DataFrame(selected_columns) def join(self, right: 'DataFrame', on: Optional[Union[str, List[str]]] = None, how: str = 'left', lsuffix: str = '', rsuffix: str = '') -> 'DataFrame': """ Join columns of another DataFrame. Join columns with `right` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- right: DataFrame, Series on: str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `right`, otherwise joins index-on-index. If multiple values given, the `right` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how: {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use `left` frame’s index (or column if on is specified). * right: use `right`’s index. * outer: form union of `left` frame’s index (or column if on is specified) with right’s index, and sort it. lexicographically. * inner: form intersection of `left` frame’s index (or column if on is specified) with `right`’s index, preserving the order of the `left`’s one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from `right` frame's overlapping columns. Returns ------- DataFrame A dataframe containing columns from both the `left` and `right`. See Also -------- DataFrame.merge: For column(s)-on-columns(s) operations. Notes ----- Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects. Examples -------- >>> kdf1 = ks.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ... 'A': ['A0', 'A1', 'A2', 'A3']}, ... columns=['key', 'A']) >>> kdf2 = ks.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}, ... columns=['key', 'B']) >>> kdf1 key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 >>> kdf2 key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> join_kdf = kdf1.join(kdf2, lsuffix='_left', rsuffix='_right') >>> join_kdf.sort_values(by=join_kdf.columns) key_left A key_right B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 None None If we want to join using the key columns, we need to set key to be the index in both df and right. The joined DataFrame will have key as its index. >>> join_kdf = kdf1.set_index('key').join(kdf2.set_index('key')) >>> join_kdf.sort_values(by=join_kdf.columns) # doctest: +NORMALIZE_WHITESPACE A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 None Another option to join using the key columns is to use the on parameter. DataFrame.join always uses right’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result. >>> join_kdf = kdf1.join(kdf2.set_index('key'), on='key') >>> join_kdf.sort_index() key A B 0 K3 A3 None 1 K0 A0 B0 2 K1 A1 B1 3 K2 A2 B2 """ if isinstance(right, ks.Series): common = list(self.columns.intersection([right.name])) else: common = list(self.columns.intersection(right.columns)) if len(common) > 0 and not lsuffix and not rsuffix: raise ValueError( "columns overlap but no suffix specified: " "{rename}".format(rename=common)) if on: self = self.set_index(on) join_kdf = self.merge(right, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix)).reset_index() else: join_kdf = self.merge(right, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix)) return join_kdf def append(self, other: 'DataFrame', ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False) -> 'DataFrame': """ Append rows of other to the end of caller, returning a new object. Columns in other that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default False Currently not supported. Returns ------- appended : DataFrame Examples -------- >>> df = ks.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df.append(df) A B 0 1 2 1 3 4 0 1 2 1 3 4 >>> df.append(df, ignore_index=True) A B 0 1 2 1 3 4 2 1 2 3 3 4 """ if isinstance(other, ks.Series): raise ValueError("DataFrames.append() does not support appending Series to DataFrames") if sort: raise ValueError("The 'sort' parameter is currently not supported") if not ignore_index: index_scols = self._internal.index_scols if len(index_scols) != len(other._internal.index_scols): raise ValueError("Both DataFrames have to have the same number of index levels") if verify_integrity and len(index_scols) > 0: if (self._sdf.select(index_scols) .intersect(other._sdf.select(other._internal.index_scols)) .count()) > 0: raise ValueError("Indices have overlapping values") # Lazy import to avoid circular dependency issues from databricks.koalas.namespace import concat return concat([self, other], ignore_index=ignore_index) # TODO: add 'filter_func' and 'errors' parameter def update(self, other: 'DataFrame', join: str = 'left', overwrite: bool = True): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or Series join : 'left', default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. Returns ------- None : method directly changes calling object See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, 5, 6], 'C': [7, 8, 9]}, columns=['B', 'C']) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}, columns=['B']) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_column = ks.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e If `other` contains None the corresponding values are not updated in the original dataframe. >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, None, 6]}, columns=['B']) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ if join != 'left': raise NotImplementedError("Only left join is supported") if isinstance(other, ks.Series): other = DataFrame(other) update_columns = list(set(self._internal.data_columns) .intersection(set(other._internal.data_columns))) update_sdf = self.join(other[update_columns], rsuffix='_new')._sdf for column_name in update_columns: old_col = scol_for(update_sdf, column_name) new_col = scol_for(update_sdf, column_name + '_new') if overwrite: update_sdf = update_sdf.withColumn(column_name, F.when(new_col.isNull(), old_col) .otherwise(new_col)) else: update_sdf = update_sdf.withColumn(column_name, F.when(old_col.isNull(), new_col) .otherwise(old_col)) internal = self._internal.copy(sdf=update_sdf.select([scol_for(update_sdf, col) for col in self._internal.columns])) self._internal = internal def sample(self, n: Optional[int] = None, frac: Optional[float] = None, replace: bool = False, random_state: Optional[int] = None) -> 'DataFrame': """ Return a random sample of items from an axis of object. Please call this function using named argument by specifying the ``frac`` argument. You can use `random_state` for reproducibility. However, note that different from pandas, specifying a seed in Koalas/Spark does not guarantee the sampled rows will be fixed. The result set depends on not only the seed, but also how the data is distributed across machines and to some extent network randomness when shuffle operations are involved. Even in the simplest case, the result set will depend on the system's CPU core count. Parameters ---------- n : int, optional Number of items to return. This is currently NOT supported. Use frac instead. frac : float, optional Fraction of axis items to return. replace : bool, default False Sample with or without replacement. random_state : int, optional Seed for the random number generator (if int). Returns ------- Series or DataFrame A new object of same type as caller containing the sampled items. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish'], ... columns=['num_legs', 'num_wings', 'num_specimen_seen']) >>> df # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 A random 25% sample of the ``DataFrame``. Note that we use `random_state` to ensure the reproducibility of the examples. >>> df.sample(frac=0.25, random_state=1) # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 Extract 25% random elements from the ``Series`` ``df['num_legs']``, with replacement, so the same items could appear more than once. >>> df['num_legs'].sample(frac=0.4, replace=True, random_state=1) # doctest: +SKIP falcon 2 spider 8 spider 8 Name: num_legs, dtype: int64 Specifying the exact number of items to return is not supported at the moment. >>> df.sample(n=5) # doctest: +ELLIPSIS Traceback (most recent call last): ... NotImplementedError: Function sample currently does not support specifying ... """ # Note: we don't run any of the doctests because the result can change depending on the # system's core count. if n is not None: raise NotImplementedError("Function sample currently does not support specifying " "exact number of items to return. Use frac instead.") if frac is None: raise ValueError("frac must be specified.") sdf = self._sdf.sample(withReplacement=replace, fraction=frac, seed=random_state) return DataFrame(self._internal.copy(sdf=sdf)) def astype(self, dtype) -> 'DataFrame': """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}, dtype='int64') >>> df a b 0 1 1 1 2 2 2 3 3 Convert to float type: >>> df.astype('float') a b 0 1.0 1.0 1 2.0 2.0 2 3.0 3.0 Convert to int64 type back: >>> df.astype('int64') a b 0 1 1 1 2 2 2 3 3 Convert column a to float type: >>> df.astype({'a': float}) a b 0 1.0 1 1 2.0 2 2 3.0 3 """ results = [] if is_dict_like(dtype): for col_name in dtype.keys(): if col_name not in self.columns: raise KeyError('Only a column name can be used for the ' 'key in a dtype mappings argument.') for col_name, col in self.items(): if col_name in dtype: results.append(col.astype(dtype=dtype[col_name])) else: results.append(col) else: for col_name, col in self.items(): results.append(col.astype(dtype=dtype)) sdf = self._sdf.select( self._internal.index_scols + list(map(lambda ser: ser._scol, results))) return DataFrame(self._internal.copy(sdf=sdf)) def add_prefix(self, prefix): """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(prefix, str) data_columns = [prefix + self._internal.column_name_for(idx) for idx in self._internal.column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) column_index = [tuple([prefix + i for i in idx]) for idx in self._internal.column_index] internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index) return DataFrame(internal) def add_suffix(self, suffix): """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(suffix, str) data_columns = [self._internal.column_name_for(idx) + suffix for idx in self._internal.column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) column_index = [tuple([i + suffix for i in idx]) for idx in self._internal.column_index] internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index) return DataFrame(internal) # TODO: include, and exclude should be implemented. def describe(self, percentiles: Optional[List[float]] = None) -> 'DataFrame': """ Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list of ``float`` in range [0.0, 1.0], default [0.25, 0.5, 0.75] A list of percentiles to be computed. Returns ------- Series or DataFrame Summary statistics of the Series or Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``25%``, ``50%``, ``75%``, ``max``. Currently only numeric data is supported. Examples -------- Describing a numeric ``Series``. >>> s = ks.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: 0, dtype: float64 Describing a ``DataFrame``. Only numeric fields are returned. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0], ... 'object': ['a', 'b', 'c'] ... }, ... columns=['numeric1', 'numeric2', 'object']) >>> df.describe() numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0 Describing a ``DataFrame`` and selecting custom percentiles. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0] ... }, ... columns=['numeric1', 'numeric2']) >>> df.describe(percentiles = [0.85, 0.15]) numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 15% 1.0 4.0 50% 2.0 5.0 85% 3.0 6.0 max 3.0 6.0 Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric1.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: numeric1, dtype: float64 Describing a column from a ``DataFrame`` by accessing it as an attribute and selecting custom percentiles. >>> df.numeric1.describe(percentiles = [0.85, 0.15]) count 3.0 mean 2.0 std 1.0 min 1.0 15% 1.0 50% 2.0 85% 3.0 max 3.0 Name: numeric1, dtype: float64 """ exprs = [] data_columns = [] for col in self.columns: kseries = self[col] spark_type = kseries.spark_type if isinstance(spark_type, DoubleType) or isinstance(spark_type, FloatType): exprs.append(F.nanvl(kseries._scol, F.lit(None)).alias(kseries.name)) data_columns.append(kseries.name) elif isinstance(spark_type, NumericType): exprs.append(kseries._scol) data_columns.append(kseries.name) if len(exprs) == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: if any((p < 0.0) or (p > 1.0) for p in percentiles): raise ValueError("Percentiles should all be in the interval [0, 1]") # appending 50% if not in percentiles already percentiles = (percentiles + [0.5]) if 0.5 not in percentiles else percentiles else: percentiles = [0.25, 0.5, 0.75] formatted_perc = ["{:.0%}".format(p) for p in sorted(percentiles)] stats = ["count", "mean", "stddev", "min", *formatted_perc, "max"] sdf = self._sdf.select(*exprs).summary(stats) internal = _InternalFrame(sdf=sdf.replace("stddev", "std", subset='summary'), data_columns=data_columns, index_map=[('summary', None)]) return DataFrame(internal).astype('float64') def _cum(self, func, skipna: bool): # This is used for cummin, cummax, cumxum, etc. if func == F.min: func = "cummin" elif func == F.max: func = "cummax" elif func == F.sum: func = "cumsum" elif func.__name__ == "cumprod": func = "cumprod" applied = [] for column in self.columns: applied.append(getattr(self[column], func)(skipna)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: implements 'keep' parameters def drop_duplicates(self, subset=None, inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- DataFrame >>> df = ks.DataFrame( ... {'a': [1, 2, 2, 2, 3], 'b': ['a', 'a', 'a', 'c', 'd']}, columns = ['a', 'b']) >>> df a b 0 1 a 1 2 a 2 2 a 3 2 c 4 3 d >>> df.drop_duplicates().sort_values(['a', 'b']) a b 0 1 a 1 2 a 3 2 c 4 3 d >>> df.drop_duplicates('a').sort_values(['a', 'b']) a b 0 1 a 1 2 a 4 3 d >>> df.drop_duplicates(['a', 'b']).sort_values(['a', 'b']) a b 0 1 a 1 2 a 3 2 c 4 3 d """ if subset is None: subset = self._internal.data_columns elif not isinstance(subset, list): subset = [subset] sdf = self._sdf.drop_duplicates(subset=subset) internal = self._internal.copy(sdf=sdf) if inplace: self._internal = internal else: return DataFrame(internal) def reindex(self, labels: Optional[Any] = None, index: Optional[Any] = None, columns: Optional[Any] = None, axis: Optional[Union[int, str]] = None, copy: Optional[bool] = True, fill_value: Optional[Any] = None) -> 'DataFrame': """ Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- labels: array-like, optional New labels / index to conform the axis specified by ‘axis’ to. index, columns: array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data axis: int or str, optional Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). copy : bool, default True Return a new object, even if the passed indexes are the same. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. Returns ------- DataFrame with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = ks.DataFrame({ ... 'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index, ... columns=['http_status', 'response_time']) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status response_time Chrome 200.0 0.02 Comodo Dragon NaN NaN IE10 404.0 0.08 Iceweasel NaN NaN Safari 404.0 0.07 We can fill in the missing values by passing a value to the keyword ``fill_value``. >>> df.reindex(new_index, fill_value=0, copy=False).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status response_time Chrome 200 0.02 Comodo Dragon 0 0.00 IE10 404 0.08 Iceweasel 0 0.00 Safari 404 0.07 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status user_agent Chrome 200 NaN Comodo Dragon 0 NaN IE10 404 NaN Iceweasel 0 NaN Safari 404 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns").sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status user_agent Chrome 200 NaN Comodo Dragon 0 NaN IE10 404 NaN Iceweasel 0 NaN Safari 404 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = ks.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2.sort_index() # doctest: +NORMALIZE_WHITESPACE prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2).sort_index() # doctest: +NORMALIZE_WHITESPACE prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN """ if axis is not None and (index is not None or columns is not None): raise TypeError("Cannot specify both 'axis' and any of 'index' or 'columns'.") if labels is not None: if axis in ('index', 0, None): index = labels elif axis in ('columns', 1): columns = labels else: raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) if index is not None and not is_list_like(index): raise TypeError("Index must be called with a collection of some kind, " "%s was passed" % type(index)) if columns is not None and not is_list_like(columns): raise TypeError("Columns must be called with a collection of some kind, " "%s was passed" % type(columns)) df = self.copy() if index is not None: df = DataFrame(df._reindex_index(index)) if columns is not None: df = DataFrame(df._reindex_columns(columns)) # Process missing values. if fill_value is not None: df = df.fillna(fill_value) # Copy if copy: return df.copy() else: self._internal = df._internal return self def _reindex_index(self, index): # When axis is index, we can mimic pandas' by a right outer join. index_column = self._internal.index_columns assert len(index_column) <= 1, "Index should be single column or not set." if len(index_column) == 1: kser = ks.Series(list(index)) index_column = index_column[0] labels = kser._kdf._sdf.select(kser._scol.alias(index_column)) else: index_column = None labels = ks.Series(index).to_frame()._sdf joined_df = self._sdf.join(labels, on=index_column, how="right") new_data_columns = filter(lambda x: x not in index_column, joined_df.columns) if index_column is not None: index_map = [(index_column, None)] # type: List[IndexMap] internal = self._internal.copy( sdf=joined_df, data_columns=list(new_data_columns), index_map=index_map) else: internal = self._internal.copy( sdf=joined_df, data_columns=list(new_data_columns)) return internal def _reindex_columns(self, columns): level = self._internal.column_index_level if level > 1: label_columns = list(columns) for col in label_columns: if not isinstance(col, tuple): raise TypeError('Expected tuple, got {}'.format(type(col))) else: label_columns = [(col,) for col in columns] for col in label_columns: if len(col) != level: raise ValueError("shape (1,{}) doesn't match the shape (1,{})" .format(len(col), level)) scols, columns, idx = [], [], [] null_columns = False for label in label_columns: if label in self._internal.column_index: scols.append(self._internal.scol_for(label)) columns.append(self._internal.column_name_for(label)) else: scols.append(F.lit(np.nan).alias(str(label))) columns.append(str(label)) null_columns = True idx.append(label) if null_columns: sdf = self._sdf.select(self._internal.index_scols + list(scols)) return self._internal.copy(sdf=sdf, data_columns=columns, column_index=idx) def melt(self, id_vars=None, value_vars=None, var_name='variable', value_name='value'): """ Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar, default 'variable' Name to use for the 'variable' column. value_name : scalar, default 'value' Name to use for the 'value' column. Returns ------- DataFrame Unpivoted DataFrame. Examples -------- >>> df = ks.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> ks.melt(df) variable value 0 A a 1 B 1 2 C 2 3 A b 4 B 3 5 C 4 6 A c 7 B 5 8 C 6 >>> df.melt(id_vars='A') A variable value 0 a B 1 1 a C 2 2 b B 3 3 b C 4 4 c B 5 5 c C 6 >>> ks.melt(df, id_vars=['A', 'B']) A B variable value 0 a 1 C 2 1 b 3 C 4 2 c 5 C 6 >>> df.melt(id_vars=['A'], value_vars=['C']) A variable value 0 a C 2 1 b C 4 2 c C 6 The names of 'variable' and 'value' columns can be customized: >>> ks.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 """ if id_vars is None: id_vars = [] if not isinstance(id_vars, (list, tuple, np.ndarray)): id_vars = list(id_vars) data_columns = self._internal.data_columns if value_vars is None: value_vars = [] if not isinstance(value_vars, (list, tuple, np.ndarray)): value_vars = list(value_vars) if len(value_vars) == 0: value_vars = data_columns data_columns = [data_column for data_column in data_columns if data_column not in id_vars] sdf = self._sdf pairs = F.explode(F.array(*[ F.struct(*( [F.lit(column).alias(var_name)] + [self._internal.scol_for(column).alias(value_name)]) ) for column in data_columns if column in value_vars])) columns = (id_vars + [F.col("pairs.%s" % var_name), F.col("pairs.%s" % value_name)]) exploded_df = sdf.withColumn("pairs", pairs).select(columns) return DataFrame(exploded_df) # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Union[int, str] = 0) -> bool: """ Return whether all elements are True. Returns True unless there is at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [True, True, True], ... 'col2': [True, False, False], ... 'col3': [0, 0, 0], ... 'col4': [1, 2, 3], ... 'col5': [True, True, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.all() col1 True col2 False col3 False col4 True col5 True col6 False Name: all, dtype: bool Returns ------- Series """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] column_index = self._internal.column_index for idx in column_index: col = self[idx]._scol all_col = F.min(F.coalesce(col.cast('boolean'), F.lit(True))) applied.append(F.when(all_col.isNull(), True).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.any, Series.quantile. Maybe we should deduplicate it. sdf = self._sdf internal_index_column = "__index_level_{}__".format value_column = "value" cols = [] for idx, applied_col in zip(column_index, applied): cols.append(F.struct( [F.lit(col).alias(internal_index_column(i)) for i, col in enumerate(idx)] + [applied_col.alias(value_column)])) sdf = sdf.select( F.array(*cols).alias("arrays") ).select(F.explode(F.col("arrays"))) sdf = sdf.selectExpr("col.*") index_column_name = lambda i: (None if self._internal.column_index_names is None else (self._internal.column_index_names[i],)) internal = self._internal.copy( sdf=sdf, data_columns=[value_column], index_map=[(internal_index_column(i), index_column_name(i)) for i in range(self._internal.column_index_level)], column_index=None, column_index_names=None) return DataFrame(internal)[value_column].rename("all") # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Union[int, str] = 0) -> bool: """ Return whether any element is True. Returns False unless there is at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [False, False, False], ... 'col2': [True, False, False], ... 'col3': [0, 0, 1], ... 'col4': [0, 1, 2], ... 'col5': [False, False, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.any() col1 False col2 True col3 True col4 True col5 False col6 True Name: any, dtype: bool Returns ------- Series """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] column_index = self._internal.column_index for idx in column_index: col = self[idx]._scol all_col = F.max(F.coalesce(col.cast('boolean'), F.lit(False))) applied.append(F.when(all_col.isNull(), False).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.all, Series.quantile. Maybe we should deduplicate it. sdf = self._sdf internal_index_column = "__index_level_{}__".format value_column = "value" cols = [] for idx, applied_col in zip(column_index, applied): cols.append(F.struct( [F.lit(col).alias(internal_index_column(i)) for i, col in enumerate(idx)] + [applied_col.alias(value_column)])) sdf = sdf.select( F.array(*cols).alias("arrays") ).select(F.explode(F.col("arrays"))) sdf = sdf.selectExpr("col.*") index_column_name = lambda i: (None if self._internal.column_index_names is None else (self._internal.column_index_names[i],)) internal = self._internal.copy( sdf=sdf, data_columns=[value_column], index_map=[(internal_index_column(i), index_column_name(i)) for i in range(self._internal.column_index_level)], column_index=None, column_index_names=None) return DataFrame(internal)[value_column].rename("any") # TODO: add axis, numeric_only, pct, na_option parameter def rank(self, method='average', ascending=True): """ Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values. .. note:: the current implementation of rank uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- method : {'average', 'min', 'max', 'first', 'dense'} * average: average rank of group * min: lowest rank in group * max: highest rank in group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups ascending : boolean, default True False for ranks by high (1) to low (N) Returns ------- ranks : same type as caller Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 2, 3], 'B': [4, 3, 2, 1]}, columns= ['A', 'B']) >>> df A B 0 1 4 1 2 3 2 2 2 3 3 1 >>> df.rank().sort_index() A B 0 1.0 4.0 1 2.5 3.0 2 2.5 2.0 3 4.0 1.0 If method is set to 'min', it use lowest rank in group. >>> df.rank(method='min').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 4.0 1.0 If method is set to 'max', it use highest rank in group. >>> df.rank(method='max').sort_index() A B 0 1.0 4.0 1 3.0 3.0 2 3.0 2.0 3 4.0 1.0 If method is set to 'dense', it leaves no gaps in group. >>> df.rank(method='dense').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 3.0 1.0 """ applied = [] for idx in self._internal.column_index: applied.append(self[idx].rank(method=method, ascending=ascending)) sdf = self._sdf.select(self._internal.index_columns + [column._scol for column in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def filter(self, items=None, like=None, regex=None, axis=None): """ Subset rows or columns of dataframe according to labels in the specified index. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : string Keep labels from axis for which "like in label == True". regex : string (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : int or string axis name The axis to filter on. By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = ks.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 """ if sum(x is not None for x in (items, like, regex)) > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive") if axis not in ('index', 0, 'columns', 1, None): raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) index_scols = self._internal.index_scols sdf = self._sdf if items is not None: if is_list_like(items): items = list(items) else: raise ValueError("items should be a list-like object.") if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") col = None for item in items: if col is None: col = index_scols[0] == F.lit(item) else: col = col | (index_scols[0] == F.lit(item)) sdf = sdf.filter(col) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): return self[items] elif like is not None: if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") sdf = sdf.filter(index_scols[0].contains(like)) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): data_columns = self._internal.data_columns output_columns = [c for c in data_columns if like in c] return self[output_columns] elif regex is not None: if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") sdf = sdf.filter(index_scols[0].rlike(regex)) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): data_columns = self._internal.data_columns matcher = re.compile(regex) output_columns = [c for c in data_columns if matcher.search(c) is not None] return self[output_columns] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def _get_from_multiindex_column(self, key): """ Select columns from multi-index columns. :param key: the multi-index column keys represented by tuple :return: DataFrame or Series """ from databricks.koalas.series import Series assert isinstance(key, tuple) indexes = [(idx, idx) for idx in self._internal.column_index] for k in key: indexes = [(index, idx[1:]) for index, idx in indexes if idx[0] == k] if len(indexes) == 0: raise KeyError(k) recursive = False if all(len(idx) > 0 and idx[0] == '' for _, idx in indexes): # If the head is '', drill down recursively. recursive = True for i, (col, idx) in enumerate(indexes): indexes[i] = (col, tuple([str(key), *idx[1:]])) column_index_names = None if self._internal.column_index_names is not None: # Manage column index names level = column_index_level([idx for _, idx in indexes]) column_index_names = self._internal.column_index_names[-level:] if all(len(idx) == 0 for _, idx in indexes): try: idxes = set(idx for idx, _ in indexes) assert len(idxes) == 1 index = list(idxes)[0] kdf_or_ser = \ Series(self._internal.copy(scol=self._internal.scol_for(index), column_index=[index]), anchor=self) except AnalysisException: raise KeyError(key) else: kdf_or_ser = DataFrame(self._internal.copy( data_columns=[self._internal.column_name_for(idx) for idx, _ in indexes], column_index=[idx for _, idx in indexes], column_index_names=column_index_names)) if recursive: kdf_or_ser = kdf_or_ser._get_from_multiindex_column((str(key),)) return kdf_or_ser def _pd_getitem(self, key): from databricks.koalas.series import Series if key is None: raise KeyError("none key") if isinstance(key, str): return self._get_from_multiindex_column((key,)) if isinstance(key, tuple): return self._get_from_multiindex_column(key) elif np.isscalar(key): raise NotImplementedError(key) elif isinstance(key, slice): return self.loc[key] if isinstance(key, (pd.Series, np.ndarray, pd.Index)): raise NotImplementedError(key) if isinstance(key, list): return self.loc[:, key] if isinstance(key, DataFrame): # TODO Should not implement alignment, too dangerous? return Series(self._internal.copy(scol=self._internal.scol_for(key)), anchor=self) if isinstance(key, Series): # TODO Should not implement alignment, too dangerous? # It is assumed to be only a filter, otherwise .loc should be used. bcol = key._scol.cast("boolean") return DataFrame(self._internal.copy(sdf=self._sdf.filter(bcol))) raise NotImplementedError(key) def _to_internal_pandas(self): """ Return a pandas DataFrame directly from _internal to avoid overhead of copy. This method is for internal use only. """ return self._internal.pandas_df def __repr__(self): max_display_count = get_option("display.max_rows") if max_display_count is None: return self._to_internal_pandas().to_string() pdf = self.head(max_display_count + 1)._to_internal_pandas() pdf_length = len(pdf) pdf = pdf.iloc[:max_display_count] if pdf_length > max_display_count: repr_string = pdf.to_string(show_dimensions=True) match = REPR_PATTERN.search(repr_string) if match is not None: nrows = match.group("rows") ncols = match.group("columns") footer = ("\n\n[Showing only the first {nrows} rows x {ncols} columns]" .format(nrows=nrows, ncols=ncols)) return REPR_PATTERN.sub(footer, repr_string) return pdf.to_string() def _repr_html_(self): max_display_count = get_option("display.max_rows") if max_display_count is None: return self._to_internal_pandas().to_html(notebook=True) pdf = self.head(max_display_count + 1)._to_internal_pandas() pdf_length = len(pdf) pdf = pdf[:max_display_count] if pdf_length > max_display_count: repr_html = pdf.to_html(show_dimensions=True, notebook=True) match = REPR_HTML_PATTERN.search(repr_html) if match is not None: nrows = match.group("rows") ncols = match.group("columns") by = chr(215) footer = ('\n<p>Showing only the first {rows} rows {by} {cols} columns</p>\n</div>' .format(rows=nrows, by=by, cols=ncols)) return REPR_HTML_PATTERN.sub(footer, repr_html) return pdf.to_html(notebook=True) def __getitem__(self, key): return self._pd_getitem(key) def __setitem__(self, key, value): from databricks.koalas.series import Series if (isinstance(value, Series) and value._kdf is not self) or \ (isinstance(value, DataFrame) and value is not self): # Different Series or DataFrames level = self._internal.column_index_level if isinstance(value, Series): value = value.to_frame() value.columns = pd.MultiIndex.from_tuples( [tuple(list(value._internal.column_index[0]) + ([''] * (level - 1)))]) else: assert isinstance(value, DataFrame) value_level = value._internal.column_index_level if value_level > level: value.columns = pd.MultiIndex.from_tuples( [idx[level:] for idx in value._internal.column_index]) elif value_level < level: value.columns = pd.MultiIndex.from_tuples( [tuple(list(idx) + ([''] * (level - value_level))) for idx in value._internal.column_index]) if isinstance(key, str): key = [(key,)] elif isinstance(key, tuple): key = [key] else: key = [k if isinstance(k, tuple) else (k,) for k in key] def assign_columns(kdf, this_column_index, that_column_index): assert len(key) == len(that_column_index) # Note that here intentionally uses `zip_longest` that combine # that_columns. for k, this_idx, that_idx \ in zip_longest(key, this_column_index, that_column_index): yield (kdf[that_idx], tuple(['that', *k])) if this_idx is not None and this_idx[1:] != k: yield (kdf[this_idx], this_idx) kdf = align_diff_frames(assign_columns, self, value, fillna=False, how="left") elif isinstance(key, (tuple, list)): assert isinstance(value, DataFrame) # Same DataFrames. field_names = value.columns kdf = self.assign(**{k: value[c] for k, c in zip(key, field_names)}) else: # Same Series. kdf = self.assign(**{key: value}) self._internal = kdf._internal def __getattr__(self, key: str) -> Any: if key.startswith("__") or key.startswith("_pandas_") or key.startswith("_spark_"): raise AttributeError(key) if hasattr(_MissingPandasLikeDataFrame, key): property_or_func = getattr(_MissingPandasLikeDataFrame, key) if isinstance(property_or_func, property): return property_or_func.fget(self) # type: ignore else: return partial(property_or_func, self) try: return self._get_from_multiindex_column((key,)) except KeyError: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, key)) def __len__(self): return self._sdf.count() def __dir__(self): fields = [f for f in self._sdf.schema.fieldNames() if ' ' not in f] return super(DataFrame, self).__dir__() + fields @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 1, 'index', 'columns', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0, 'columns': 1}.get(axis, axis) if sys.version_info >= (3, 7): def __class_getitem__(cls, params): # This is a workaround to support variadic generic in DataFrame in Python 3.7. # See https://github.com/python/typing/issues/193 # we always wraps the given type hints by a tuple to mimic the variadic generic. return super(cls, DataFrame).__class_getitem__(Tuple[params]) elif (3, 5) <= sys.version_info < (3, 7): # This is a workaround to support variadic generic in DataFrame in Python 3.5+ # The implementation is in its metaclass so this flag is needed to distinguish # Koalas DataFrame. is_dataframe = None def _reduce_spark_multi(sdf, aggs): """ Performs a reduction on a dataframe, the functions being known sql aggregate functions. """ assert isinstance(sdf, spark.DataFrame) sdf0 = sdf.agg(*aggs) l = sdf0.head(2) assert len(l) == 1, (sdf, l) row = l[0] l2 = list(row) assert len(l2) == len(aggs), (row, l2) return l2 class _CachedDataFrame(DataFrame): """ Cached Koalas DataFrame, which corresponds to Pandas DataFrame logically, but internally it caches the corresponding Spark DataFrame. """ def __init__(self, internal): self._cached = internal._sdf.cache() super(_CachedDataFrame, self).__init__(internal) def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.unpersist() def unpersist(self): """ The `unpersist` function is used to uncache the Koalas DataFrame when it is not used with `with` statement. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df = df.cache() To uncache the dataframe, use `unpersist` function >>> df.unpersist() """ if self._cached.is_cached: self._cached.unpersist()
1
11,716
We can just use `.stack()` here? Then I guess we can reuse when supporting multi-index columns.
databricks-koalas
py
@@ -14,8 +14,13 @@ namespace Datadog.Trace.ClrProfiler private static readonly Lazy<bool> _enabled = new Lazy<bool>( () => { +#if NETSTANDARD2_0 + // TODO: figure out configuration in .NET Standard 2.0 + return true; +#else string setting = ConfigurationManager.AppSettings["Datadog.Tracing:Enabled"]; return !string.Equals(setting, bool.FalseString, StringComparison.InvariantCultureIgnoreCase); +#endif }, LazyThreadSafetyMode.PublicationOnly);
1
using System; using System.Configuration; using System.Threading; // [assembly: System.Security.SecurityCritical] // [assembly: System.Security.AllowPartiallyTrustedCallers] namespace Datadog.Trace.ClrProfiler { /// <summary> /// Provides instrumentation probes that can be injected into profiled code. /// </summary> public static class Instrumentation { private static readonly Lazy<bool> _enabled = new Lazy<bool>( () => { string setting = ConfigurationManager.AppSettings["Datadog.Tracing:Enabled"]; return !string.Equals(setting, bool.FalseString, StringComparison.InvariantCultureIgnoreCase); }, LazyThreadSafetyMode.PublicationOnly); private static readonly Lazy<bool> _profilerAttached = new Lazy<bool>( () => { try { return NativeMethods.IsProfilerAttached(); } catch { return false; } }, LazyThreadSafetyMode.PublicationOnly); /// <summary> /// Gets a value indicating whether tracing with Datadog's profiler is enabled. /// </summary> /// <value> /// <c>true</c> if profiling is enabled; <c>false</c> otherwise. /// </value> public static bool Enabled => _enabled.Value; /// <summary> /// Gets a value indicating whether Datadog's profiler is currently attached. /// </summary> /// <value> /// <c>true</c> if the profiler is currentl attached; <c>false</c> otherwise. /// </value> public static bool ProfilerAttached => _profilerAttached.Value; } }
1
14,342
What are the possibilities here? Since we plan on supporting .net standard 2.0 from day 1, we might as well tackle that now.
DataDog-dd-trace-dotnet
.cs
@@ -28,9 +28,9 @@ namespace OpenTelemetry.Metrics /// <summary> /// Adds the given value to the bound counter metric. /// </summary> - /// <param name="context">the associated <see cref="SpanContext"/>.</param> + /// <param name="context">the associated <see cref="SpanReference"/>.</param> /// <param name="value">value by which the bound counter metric should be added.</param> - public abstract void Add(in SpanContext context, T value); + public abstract void Add(in SpanReference context, T value); /// <summary> /// Adds the given value to the bound counter metric.
1
// <copyright file="BoundCounterMetric.cs" company="OpenTelemetry Authors"> // Copyright The OpenTelemetry Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // </copyright> using OpenTelemetry.Trace; namespace OpenTelemetry.Metrics { /// <summary> /// Bound counter metric with the defined <see cref="LabelSet"/>. /// </summary> /// <typeparam name="T">The type of counter. Only long and double are supported now.</typeparam> public abstract class BoundCounterMetric<T> where T : struct { /// <summary> /// Adds the given value to the bound counter metric. /// </summary> /// <param name="context">the associated <see cref="SpanContext"/>.</param> /// <param name="value">value by which the bound counter metric should be added.</param> public abstract void Add(in SpanContext context, T value); /// <summary> /// Adds the given value to the bound counter metric. /// </summary> /// <param name="context">the associated <see cref="Baggage"/>.</param> /// <param name="value">value by which the bound counter metric should be added.</param> public abstract void Add(in Baggage context, T value); } }
1
17,556
should the parameters be called reference or context?
open-telemetry-opentelemetry-dotnet
.cs
@@ -184,7 +184,7 @@ module Bolt begin if writable && index < in_buffer.length - to_print = in_buffer[index..-1] + to_print = in_buffer.byteslice(index..-1) written = inp.write_nonblock to_print index += written
1
# frozen_string_literal: true require 'open3' require 'fileutils' require 'bolt/node/output' require 'bolt/util' module Bolt module Transport class Local < Sudoable class Shell < Sudoable::Connection attr_accessor :user, :logger, :target attr_writer :run_as CHUNK_SIZE = 4096 def initialize(target) @target = target # The familiar problem: Etc.getlogin is broken on osx @user = ENV['USER'] || Etc.getlogin @run_as = target.options['run-as'] @logger = Logging.logger[self] @sudo_id = SecureRandom.uuid end # If prompted for sudo password, send password to stdin and return an # empty string. Otherwise, check for sudo errors and raise Bolt error. # If sudo_id is detected, that means the task needs to have stdin written. # If error is not sudo-related, return the stderr string to be added to # node output def handle_sudo(stdin, err, pid, sudo_stdin) if err.include?(Sudoable.sudo_prompt) # A wild sudo prompt has appeared! if @target.options['sudo-password'] stdin.write("#{@target.options['sudo-password']}\n") '' else raise Bolt::Node::EscalateError.new( "Sudo password for user #{@user} was not provided for localhost", 'NO_PASSWORD' ) end elsif err =~ /^#{@sudo_id}/ if sudo_stdin stdin.write("#{sudo_stdin}\n") stdin.close end '' else handle_sudo_errors(err, pid) end end def handle_sudo_errors(err, pid) if err =~ /^#{@user} is not in the sudoers file\./ @logger.debug { err } raise Bolt::Node::EscalateError.new( "User #{@user} does not have sudo permission on localhost", 'SUDO_DENIED' ) elsif err =~ /^Sorry, try again\./ @logger.debug { err } # CODEREVIEW can we kill a sudo process without sudo password? Process.kill('TERM', pid) raise Bolt::Node::EscalateError.new( "Sudo password for user #{@user} not recognized on localhost", 'BAD_PASSWORD' ) else # No need to raise an error - just return the string err end end def copy_file(source, dest) @logger.debug { "Uploading #{source}, to #{dest}" } if source.is_a?(StringIO) File.open("tempfile", "w") { |f| f.write(source.read) } execute(['mv', 'tempfile', dest]) else # Mimic the behavior of `cp --remove-destination` # since the flag isn't supported on MacOS result = execute(['rm', '-rf', dest]) if result.exit_code != 0 message = "Could not remove existing file #{dest}: #{result.stderr.string}" raise Bolt::Node::FileError.new(message, 'REMOVE_ERROR') end result = execute(['cp', '-r', source, dest]) if result.exit_code != 0 message = "Could not copy file to #{dest}: #{result.stderr.string}" raise Bolt::Node::FileError.new(message, 'COPY_ERROR') end end end def with_tmpscript(script) with_tempdir do |dir| dest = File.join(dir.to_s, File.basename(script)) copy_file(script, dest) yield dest, dir end end # See if there's a sudo prompt in the output # If not, return the output def check_sudo(out, inp, pid, stdin) buffer = out.readpartial(CHUNK_SIZE) # Split on newlines, including the newline lines = buffer.split(/(?<=[\n])/) # handle_sudo will return the line if it is not a sudo prompt or error lines.map! { |line| handle_sudo(inp, line, pid, stdin) } lines.join("") # If stream has reached EOF, no password prompt is expected # return an empty string rescue EOFError '' end def execute(command, sudoable: true, **options) run_as = options[:run_as] || self.run_as escalate = sudoable && run_as && @user != run_as use_sudo = escalate && @target.options['run-as-command'].nil? command_str = inject_interpreter(options[:interpreter], command) if escalate if use_sudo sudo_exec = target.options['sudo-executable'] || "sudo" sudo_flags = [sudo_exec, "-k", "-S", "-u", run_as, "-p", Sudoable.sudo_prompt] sudo_flags += ["-E"] if options[:environment] sudo_str = Shellwords.shelljoin(sudo_flags) else sudo_str = Shellwords.shelljoin(@target.options['run-as-command'] + [run_as]) end command_str = build_sudoable_command_str(command_str, sudo_str, @sudo_id, options) end command_arr = options[:environment].nil? ? [command_str] : [options[:environment], command_str] # Prepare the variables! result_output = Bolt::Node::Output.new # Sudo handler will pass stdin if needed. in_buffer = !use_sudo && options[:stdin] ? options[:stdin] : '' # Chunks of this size will be read in one iteration index = 0 timeout = 0.1 inp, out, err, t = Open3.popen3(*command_arr) read_streams = { out => String.new, err => String.new } write_stream = in_buffer.empty? ? [] : [inp] # See if there's a sudo prompt if use_sudo ready_read = select([err], nil, nil, timeout * 5) read_streams[err] << check_sudo(err, inp, t.pid, options[:stdin]) if ready_read end # True while the process is running or waiting for IO input while t.alive? # See if we can read from out or err, or write to in ready_read, ready_write, = select(read_streams.keys, write_stream, nil, timeout) # Read from out and err ready_read&.each do |stream| # Check for sudo prompt read_streams[stream] << if use_sudo check_sudo(stream, inp, t.pid, options[:stdin]) else stream.readpartial(CHUNK_SIZE) end rescue EOFError end # select will either return an empty array if there are no # writable streams or nil if no IO object is available before the # timeout is reached. writable = if ready_write.respond_to?(:empty?) !ready_write.empty? else !ready_write.nil? end begin if writable && index < in_buffer.length to_print = in_buffer[index..-1] written = inp.write_nonblock to_print index += written if index >= in_buffer.length && !write_stream.empty? inp.close write_stream = [] end end # If a task has stdin as an input_method but doesn't actually # read from stdin, the task may return and close the input stream rescue Errno::EPIPE write_stream = [] end end # Read any remaining data in the pipe. Do not wait for # EOF in case the pipe is inherited by a child process. read_streams.each do |stream, _| loop { read_streams[stream] << stream.read_nonblock(CHUNK_SIZE) } rescue Errno::EAGAIN, EOFError end result_output.stdout << read_streams[out] result_output.stderr << read_streams[err] result_output.exit_code = t.value.exitstatus result_output end end end end end
1
14,393
Do we need to also change `length` here (and below) to `bytesize`? Perhaps we ought to make a copy of `in_buffer` encoded as binary and then the existing algorithm should work.
puppetlabs-bolt
rb
@@ -166,6 +166,7 @@ def get_filename_question(*, suggested_filename, url, parent=None): q.title = "Save file to:" q.text = "Please enter a location for <b>{}</b>".format( html.escape(url.toDisplayString())) + q.yank_text = url.toString() q.mode = usertypes.PromptMode.download q.completed.connect(q.deleteLater) q.default = _path_suggestion(suggested_filename)
1
# vim: ft=python fileencoding=utf-8 sts=4 sw=4 et: # Copyright 2014-2017 Florian Bruhin (The Compiler) <[email protected]> # # This file is part of qutebrowser. # # qutebrowser is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # qutebrowser is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with qutebrowser. If not, see <http://www.gnu.org/licenses/>. """Shared QtWebKit/QtWebEngine code for downloads.""" import re import sys import html import os.path import collections import functools import pathlib import tempfile import enum import sip from PyQt5.QtCore import (pyqtSlot, pyqtSignal, Qt, QObject, QModelIndex, QTimer, QAbstractListModel) from qutebrowser.commands import cmdexc, cmdutils from qutebrowser.config import config from qutebrowser.utils import (usertypes, standarddir, utils, message, log, qtutils) ModelRole = enum.IntEnum('ModelRole', ['item'], start=Qt.UserRole) # Remember the last used directory last_used_directory = None # All REFRESH_INTERVAL milliseconds, speeds will be recalculated and downloads # redrawn. _REFRESH_INTERVAL = 500 class UnsupportedAttribute: """Class which is used to create attributes which are not supported. This is used for attributes like "fileobj" for downloads which are not supported with QtWebengine. """ pass class UnsupportedOperationError(Exception): """Raised when an operation is not supported with the given backend.""" def download_dir(): """Get the download directory to use.""" directory = config.val.downloads.location.directory remember_dir = config.val.downloads.location.remember if remember_dir and last_used_directory is not None: ddir = last_used_directory elif directory is None: ddir = standarddir.download() else: ddir = directory try: os.makedirs(ddir) except FileExistsError: pass return ddir def immediate_download_path(prompt_download_directory=None): """Try to get an immediate download path without asking the user. If that's possible, we return a path immediately. If not, None is returned. Args: prompt_download_directory: If this is something else than None, it will overwrite the downloads.location.prompt setting. """ if prompt_download_directory is None: prompt_download_directory = config.val.downloads.location.prompt if not prompt_download_directory: return download_dir() return None def _path_suggestion(filename): """Get the suggested file path. Args: filename: The filename to use if included in the suggestion. """ suggestion = config.val.downloads.location.suggestion if suggestion == 'path': # add trailing '/' if not present return os.path.join(download_dir(), '') elif suggestion == 'filename': return filename elif suggestion == 'both': return os.path.join(download_dir(), filename) else: # pragma: no cover raise ValueError("Invalid suggestion value {}!".format(suggestion)) def create_full_filename(basename, filename): """Create a full filename based on the given basename and filename. Args: basename: The basename to use if filename is a directory. filename: The path to a folder or file where you want to save. Return: The full absolute path, or None if filename creation was not possible. """ # Remove chars which can't be encoded in the filename encoding. # See https://github.com/qutebrowser/qutebrowser/issues/427 encoding = sys.getfilesystemencoding() filename = utils.force_encoding(filename, encoding) basename = utils.force_encoding(basename, encoding) if os.path.isabs(filename) and (os.path.isdir(filename) or filename.endswith(os.sep)): # We got an absolute directory from the user, so we save it under # the default filename in that directory. return os.path.join(filename, basename) elif os.path.isabs(filename): # We got an absolute filename from the user, so we save it under # that filename. return filename return None def get_filename_question(*, suggested_filename, url, parent=None): """Get a Question object for a download-path. Args: suggested_filename: The "default"-name that is pre-entered as path. url: The URL the download originated from. parent: The parent of the question (a QObject). """ encoding = sys.getfilesystemencoding() suggested_filename = utils.force_encoding(suggested_filename, encoding) q = usertypes.Question(parent) q.title = "Save file to:" q.text = "Please enter a location for <b>{}</b>".format( html.escape(url.toDisplayString())) q.mode = usertypes.PromptMode.download q.completed.connect(q.deleteLater) q.default = _path_suggestion(suggested_filename) return q def transform_path(path): r"""Do platform-specific transformations, like changing E: to E:\. Returns None if the path is invalid on the current platform. """ if not utils.is_windows: return path path = utils.expand_windows_drive(path) # Drive dependent working directories are not supported, e.g. # E:filename is invalid if re.search(r'^[A-Z]:[^\\]', path, re.IGNORECASE): return None # Paths like COM1, ... # See https://github.com/qutebrowser/qutebrowser/issues/82 if pathlib.Path(path).is_reserved(): return None return path def suggested_fn_from_title(url_path, title=None): """Suggest a filename depending on the URL extension and page title. Args: url_path: a string with the URL path title: the page title string Return: The download filename based on the title, or None if the extension is not found in the whitelist (or if there is no page title). """ ext_whitelist = [".html", ".htm", ".php", ""] _, ext = os.path.splitext(url_path) if ext.lower() in ext_whitelist and title: suggested_fn = utils.sanitize_filename(title) if not suggested_fn.lower().endswith((".html", ".htm")): suggested_fn += ".html" else: suggested_fn = None return suggested_fn class NoFilenameError(Exception): """Raised when we can't find out a filename in DownloadTarget.""" # Where a download should be saved class _DownloadTarget: """Abstract base class for different download targets.""" def __init__(self): raise NotImplementedError def suggested_filename(self): """Get the suggested filename for this download target.""" raise NotImplementedError class FileDownloadTarget(_DownloadTarget): """Save the download to the given file. Attributes: filename: Filename where the download should be saved. """ def __init__(self, filename): # pylint: disable=super-init-not-called self.filename = filename def suggested_filename(self): return os.path.basename(self.filename) def __str__(self): return self.filename class FileObjDownloadTarget(_DownloadTarget): """Save the download to the given file-like object. Attributes: fileobj: File-like object where the download should be written to. """ def __init__(self, fileobj): # pylint: disable=super-init-not-called self.fileobj = fileobj def suggested_filename(self): try: return self.fileobj.name except AttributeError: raise NoFilenameError def __str__(self): try: return 'file object at {}'.format(self.fileobj.name) except AttributeError: return 'anonymous file object' class OpenFileDownloadTarget(_DownloadTarget): """Save the download in a temp dir and directly open it. Attributes: cmdline: The command to use as string. A `{}` is expanded to the filename. None means to use the system's default application. If no `{}` is found, the filename is appended to the cmdline. """ def __init__(self, cmdline=None): # pylint: disable=super-init-not-called self.cmdline = cmdline def suggested_filename(self): raise NoFilenameError def __str__(self): return 'temporary file' class DownloadItemStats(QObject): """Statistics (bytes done, total bytes, time, etc.) about a download. Class attributes: SPEED_AVG_WINDOW: How many seconds of speed data to average to estimate the remaining time. Attributes: done: How many bytes there are already downloaded. total: The total count of bytes. None if the total is unknown. speed: The current download speed, in bytes per second. _speed_avg: A rolling average of speeds. _last_done: The count of bytes which where downloaded when calculating the speed the last time. """ SPEED_AVG_WINDOW = 30 def __init__(self, parent=None): super().__init__(parent) self.total = None self.done = 0 self.speed = 0 self._last_done = 0 samples = int(self.SPEED_AVG_WINDOW * (1000 / _REFRESH_INTERVAL)) self._speed_avg = collections.deque(maxlen=samples) def update_speed(self): """Recalculate the current download speed. The caller needs to guarantee this is called all _REFRESH_INTERVAL ms. """ if self.done is None: # this can happen for very fast downloads, e.g. when actually # opening a file return delta = self.done - self._last_done self.speed = delta * 1000 / _REFRESH_INTERVAL self._speed_avg.append(self.speed) self._last_done = self.done def finish(self): """Set the download stats as finished.""" self.done = self.total def percentage(self): """The current download percentage, or None if unknown.""" if self.done == self.total: return 100 elif self.total == 0 or self.total is None: return None else: return 100 * self.done / self.total def remaining_time(self): """The remaining download time in seconds, or None.""" if self.total is None or not self._speed_avg: # No average yet or we don't know the total size. return None remaining_bytes = self.total - self.done avg = sum(self._speed_avg) / len(self._speed_avg) if avg == 0: # Download stalled return None else: return remaining_bytes / avg @pyqtSlot('qint64', 'qint64') def on_download_progress(self, bytes_done, bytes_total): """Update local variables when the download progress changed. Args: bytes_done: How many bytes are downloaded. bytes_total: How many bytes there are to download in total. """ if bytes_total in [0, -1]: # QtWebEngine, QtWebKit bytes_total = None self.done = bytes_done self.total = bytes_total class AbstractDownloadItem(QObject): """Shared QtNetwork/QtWebEngine part of a download item. Attributes: done: Whether the download is finished. stats: A DownloadItemStats object. index: The index of the download in the view. successful: Whether the download has completed successfully. error_msg: The current error message, or None fileobj: The file object to download the file to. raw_headers: The headers sent by the server. _filename: The filename of the download. _dead: Whether the Download has _die()'d. Signals: data_changed: The downloads metadata changed. finished: The download was finished. cancelled: The download was cancelled. error: An error with the download occurred. arg: The error message as string. remove_requested: Emitted when the removal of this download was requested. """ data_changed = pyqtSignal() finished = pyqtSignal() error = pyqtSignal(str) cancelled = pyqtSignal() remove_requested = pyqtSignal() def __init__(self, parent=None): super().__init__(parent) self.done = False self.stats = DownloadItemStats(self) self.index = 0 self.error_msg = None self.basename = '???' self.successful = False self.fileobj = UnsupportedAttribute() self.raw_headers = UnsupportedAttribute() self._filename = None self._dead = False def __repr__(self): return utils.get_repr(self, basename=self.basename) def __str__(self): """Get the download as a string. Example: foo.pdf [699.2kB/s|0.34|16%|4.253/25.124] """ speed = utils.format_size(self.stats.speed, suffix='B/s') down = utils.format_size(self.stats.done, suffix='B') perc = self.stats.percentage() remaining = self.stats.remaining_time() if self.error_msg is None: errmsg = "" else: errmsg = " - {}".format(self.error_msg) if all(e is None for e in [perc, remaining, self.stats.total]): return ('{index}: {name} [{speed:>10}|{down}]{errmsg}'.format( index=self.index, name=self.basename, speed=speed, down=down, errmsg=errmsg)) perc = round(perc) if remaining is None: remaining = '?' else: remaining = utils.format_seconds(remaining) total = utils.format_size(self.stats.total, suffix='B') if self.done: return ('{index}: {name} [{perc:>2}%|{total}]{errmsg}'.format( index=self.index, name=self.basename, perc=perc, total=total, errmsg=errmsg)) else: return ('{index}: {name} [{speed:>10}|{remaining:>5}|{perc:>2}%|' '{down}/{total}]{errmsg}'.format( index=self.index, name=self.basename, speed=speed, remaining=remaining, perc=perc, down=down, total=total, errmsg=errmsg)) def _do_die(self): """Do cleanup steps after a download has died.""" raise NotImplementedError def _die(self, msg): """Abort the download and emit an error.""" assert not self.successful # Prevent actions if calling _die() twice. # # For QtWebKit, this might happen if the error handler correctly # connects, and the error occurs in _init_reply between # reply.error.connect and the reply.error() check. In this case, the # connected error handlers will be called twice, once via the direct # error.emit() and once here in _die(). The stacks look like this then: # # <networkmanager error.emit> -> on_reply_error -> _die -> # self.error.emit() # # and # # [_init_reply -> <single shot timer> ->] <lambda in _init_reply> -> # self.error.emit() # # which may lead to duplicate error messages (and failing tests) if self._dead: return self._dead = True self._do_die() self.error_msg = msg self.stats.finish() self.error.emit(msg) self.done = True self.data_changed.emit() def get_status_color(self, position): """Choose an appropriate color for presenting the download's status. Args: position: The color type requested, can be 'fg' or 'bg'. """ assert position in ["fg", "bg"] # pylint: disable=bad-config-option start = getattr(config.val.colors.downloads.start, position) stop = getattr(config.val.colors.downloads.stop, position) system = getattr(config.val.colors.downloads.system, position) error = getattr(config.val.colors.downloads.error, position) # pylint: enable=bad-config-option if self.error_msg is not None: assert not self.successful return error elif self.stats.percentage() is None: return start else: return utils.interpolate_color(start, stop, self.stats.percentage(), system) def _do_cancel(self): """Actual cancel implementation.""" raise NotImplementedError @pyqtSlot() def cancel(self, *, remove_data=True): """Cancel the download. Args: remove_data: Whether to remove the downloaded data. """ self._do_cancel() log.downloads.debug("cancelled") if remove_data: self.delete() self.done = True self.finished.emit() self.data_changed.emit() @pyqtSlot() def remove(self): """Remove the download from the model.""" self.remove_requested.emit() def delete(self): """Delete the downloaded file.""" try: if self._filename is not None and os.path.exists(self._filename): os.remove(self._filename) log.downloads.debug("Deleted {}".format(self._filename)) else: log.downloads.debug("Not deleting {}".format(self._filename)) except OSError: log.downloads.exception("Failed to remove partial file") @pyqtSlot() def retry(self): """Retry a failed download.""" raise NotImplementedError @pyqtSlot() def try_retry(self): """Try to retry a download and show an error if it's unsupported.""" try: self.retry() except UnsupportedOperationError as e: message.error(str(e)) def _get_open_filename(self): """Get the filename to open a download. Returns None if no suitable filename was found. """ raise NotImplementedError @pyqtSlot() def open_file(self, cmdline=None): """Open the downloaded file. Args: cmdline: The command to use as string. A `{}` is expanded to the filename. None means to use the system's default application or `downloads.open_dispatcher` if set. If no `{}` is found, the filename is appended to the cmdline. """ assert self.successful filename = self._get_open_filename() if filename is None: # pragma: no cover log.downloads.error("No filename to open the download!") return # By using a singleshot timer, we ensure that we return fast. This # is important on systems where process creation takes long, as # otherwise the prompt might hang around and cause bugs # (see issue #2296) QTimer.singleShot(0, lambda: utils.open_file(filename, cmdline)) def _ensure_can_set_filename(self, filename): """Make sure we can still set a filename.""" raise NotImplementedError def _after_set_filename(self): """Finish initialization based on self._filename.""" raise NotImplementedError def _ask_confirm_question(self, title, msg): """Ask a confirmation question for the download.""" raise NotImplementedError def _ask_create_parent_question(self, title, msg, force_overwrite, remember_directory): """Ask a confirmation question for the parent directory.""" raise NotImplementedError def _set_fileobj(self, fileobj, *, autoclose=True): """Set a file object to save the download to. Not supported by QtWebEngine. Args: fileobj: The file object to download to. autoclose: Close the file object automatically when it's done. """ raise NotImplementedError def _set_tempfile(self, fileobj): """Set a temporary file when opening the download.""" raise NotImplementedError def _set_filename(self, filename, *, force_overwrite=False, remember_directory=True): """Set the filename to save the download to. Args: filename: The full filename to save the download to. None: special value to stop the download. force_overwrite: Force overwriting existing files. remember_directory: If True, remember the directory for future downloads. """ filename = os.path.expanduser(filename) self._ensure_can_set_filename(filename) self._filename = create_full_filename(self.basename, filename) if self._filename is None: # We only got a filename (without directory) or a relative path # from the user, so we append that to the default directory and # try again. self._filename = create_full_filename( self.basename, os.path.join(download_dir(), filename)) # At this point, we have a misconfigured XDG_DOWNLOAD_DIR, as # download_dir() + filename is still no absolute path. # The config value is checked for "absoluteness", but # ~/.config/user-dirs.dirs may be misconfigured and a non-absolute path # may be set for XDG_DOWNLOAD_DIR if self._filename is None: message.error( "XDG_DOWNLOAD_DIR points to a relative path - please check" " your ~/.config/user-dirs.dirs. The download is saved in" " your home directory.", ) # fall back to $HOME as download_dir self._filename = create_full_filename(self.basename, os.path.expanduser('~')) dirname = os.path.dirname(self._filename) if not os.path.exists(dirname): txt = ("<b>{}</b> does not exist. Create it?". format(html.escape( os.path.join(dirname, "")))) self._ask_create_parent_question("Create directory?", txt, force_overwrite, remember_directory) else: self._after_create_parent_question(force_overwrite, remember_directory) def _after_create_parent_question(self, force_overwrite, remember_directory): """After asking about parent directory. Args: force_overwrite: Force overwriting existing files. remember_directory: If True, remember the directory for future downloads. """ global last_used_directory try: os.makedirs(os.path.dirname(self._filename)) except FileExistsError: pass except OSError as e: self._die(e.strerror) self.basename = os.path.basename(self._filename) if remember_directory: last_used_directory = os.path.dirname(self._filename) log.downloads.debug("Setting filename to {}".format(self._filename)) if force_overwrite: self._after_set_filename() elif os.path.isfile(self._filename): # The file already exists, so ask the user if it should be # overwritten. txt = "<b>{}</b> already exists. Overwrite?".format( html.escape(self._filename)) self._ask_confirm_question("Overwrite existing file?", txt) # FIFO, device node, etc. Make sure we want to do this elif (os.path.exists(self._filename) and not os.path.isdir(self._filename)): txt = ("<b>{}</b> already exists and is a special file. Write to " "it anyways?".format(html.escape(self._filename))) self._ask_confirm_question("Overwrite special file?", txt) else: self._after_set_filename() def _open_if_successful(self, cmdline): """Open the downloaded file, but only if it was successful. Args: cmdline: Passed to DownloadItem.open_file(). """ if not self.successful: log.downloads.debug("{} finished but not successful, not opening!" .format(self)) return self.open_file(cmdline) def set_target(self, target): """Set the target for a given download. Args: target: The DownloadTarget for this download. """ if isinstance(target, FileObjDownloadTarget): self._set_fileobj(target.fileobj, autoclose=False) elif isinstance(target, FileDownloadTarget): self._set_filename(target.filename) elif isinstance(target, OpenFileDownloadTarget): try: fobj = temp_download_manager.get_tmpfile(self.basename) except OSError as exc: msg = "Download error: {}".format(exc) message.error(msg) self.cancel() return self.finished.connect( functools.partial(self._open_if_successful, target.cmdline)) self._set_tempfile(fobj) else: # pragma: no cover raise ValueError("Unsupported download target: {}".format(target)) class AbstractDownloadManager(QObject): """Backend-independent download manager code. Attributes: downloads: A list of active DownloadItems. _networkmanager: A NetworkManager for generic downloads. Signals: begin_remove_row: Emitted before downloads are removed. end_remove_row: Emitted after downloads are removed. begin_insert_row: Emitted before downloads are inserted. end_insert_row: Emitted after downloads are inserted. data_changed: Emitted when the data of the model changed. The argument is the index of the changed download """ begin_remove_row = pyqtSignal(int) end_remove_row = pyqtSignal() begin_insert_row = pyqtSignal(int) end_insert_row = pyqtSignal() data_changed = pyqtSignal(int) def __init__(self, parent=None): super().__init__(parent) self.downloads = [] self._update_timer = usertypes.Timer(self, 'download-update') self._update_timer.timeout.connect(self._update_gui) self._update_timer.setInterval(_REFRESH_INTERVAL) def __repr__(self): return utils.get_repr(self, downloads=len(self.downloads)) @pyqtSlot() def _update_gui(self): """Periodical GUI update of all items.""" assert self.downloads for dl in self.downloads: dl.stats.update_speed() self.data_changed.emit(-1) def _init_item(self, download, auto_remove, suggested_filename): """Initialize a newly created DownloadItem.""" download.cancelled.connect(download.remove) download.remove_requested.connect(functools.partial( self._remove_item, download)) delay = config.val.downloads.remove_finished if delay > -1: download.finished.connect( lambda: QTimer.singleShot(delay, download.remove)) elif auto_remove: download.finished.connect(download.remove) download.data_changed.connect( functools.partial(self._on_data_changed, download)) download.error.connect(self._on_error) download.basename = suggested_filename idx = len(self.downloads) download.index = idx + 1 # "Human readable" index self.begin_insert_row.emit(idx) self.downloads.append(download) self.end_insert_row.emit() if not self._update_timer.isActive(): self._update_timer.start() @pyqtSlot(AbstractDownloadItem) def _on_data_changed(self, download): """Emit data_changed signal when download data changed.""" try: idx = self.downloads.index(download) except ValueError: # download has been deleted in the meantime return self.data_changed.emit(idx) @pyqtSlot(str) def _on_error(self, msg): """Display error message on download errors.""" message.error("Download error: {}".format(msg)) @pyqtSlot(AbstractDownloadItem) def _remove_item(self, download): """Remove a given download.""" if sip.isdeleted(self): # https://github.com/qutebrowser/qutebrowser/issues/1242 return try: idx = self.downloads.index(download) except ValueError: # already removed return self.begin_remove_row.emit(idx) del self.downloads[idx] self.end_remove_row.emit() download.deleteLater() self._update_indexes() if not self.downloads: self._update_timer.stop() log.downloads.debug("Removed download {}".format(download)) def _update_indexes(self): """Update indexes of all DownloadItems.""" for i, d in enumerate(self.downloads, 1): d.index = i self.data_changed.emit(-1) def _init_filename_question(self, question, download): """Set up an existing filename question with a download.""" question.answered.connect(download.set_target) question.cancelled.connect(download.cancel) download.cancelled.connect(question.abort) download.error.connect(question.abort) class DownloadModel(QAbstractListModel): """A list model showing downloads.""" def __init__(self, qtnetwork_manager, webengine_manager=None, parent=None): super().__init__(parent) self._qtnetwork_manager = qtnetwork_manager self._webengine_manager = webengine_manager qtnetwork_manager.data_changed.connect( functools.partial(self._on_data_changed, webengine=False)) qtnetwork_manager.begin_insert_row.connect( functools.partial(self._on_begin_insert_row, webengine=False)) qtnetwork_manager.begin_remove_row.connect( functools.partial(self._on_begin_remove_row, webengine=False)) qtnetwork_manager.end_insert_row.connect(self.endInsertRows) qtnetwork_manager.end_remove_row.connect(self.endRemoveRows) if webengine_manager is not None: webengine_manager.data_changed.connect( functools.partial(self._on_data_changed, webengine=True)) webengine_manager.begin_insert_row.connect( functools.partial(self._on_begin_insert_row, webengine=True)) webengine_manager.begin_remove_row.connect( functools.partial(self._on_begin_remove_row, webengine=True)) webengine_manager.end_insert_row.connect(self.endInsertRows) webengine_manager.end_remove_row.connect(self.endRemoveRows) def _all_downloads(self): """Combine downloads from both downloaders.""" if self._webengine_manager is None: return self._qtnetwork_manager.downloads[:] else: return (self._qtnetwork_manager.downloads + self._webengine_manager.downloads) def __len__(self): return len(self._all_downloads()) def __iter__(self): return iter(self._all_downloads()) def __getitem__(self, idx): return self._all_downloads()[idx] def _on_begin_insert_row(self, idx, webengine=False): log.downloads.debug("_on_begin_insert_row with idx {}, " "webengine {}".format(idx, webengine)) if idx == -1: self.beginInsertRows(QModelIndex(), 0, -1) return assert idx >= 0, idx if webengine: idx += len(self._qtnetwork_manager.downloads) self.beginInsertRows(QModelIndex(), idx, idx) def _on_begin_remove_row(self, idx, webengine=False): log.downloads.debug("_on_begin_remove_row with idx {}, " "webengine {}".format(idx, webengine)) if idx == -1: self.beginRemoveRows(QModelIndex(), 0, -1) return assert idx >= 0, idx if webengine: idx += len(self._qtnetwork_manager.downloads) self.beginRemoveRows(QModelIndex(), idx, idx) def _on_data_changed(self, idx, *, webengine): """Called when a downloader's data changed. Args: start: The first changed index as int. end: The last changed index as int, or -1 for all indices. webengine: If given, the QtNetwork download length is added to the index. """ if idx == -1: start_index = self.index(0, 0) end_index = self.last_index() else: if webengine: idx += len(self._qtnetwork_manager.downloads) start_index = self.index(idx, 0) end_index = self.index(idx, 0) qtutils.ensure_valid(start_index) qtutils.ensure_valid(end_index) self.dataChanged.emit(start_index, end_index) def _raise_no_download(self, count): """Raise an exception that the download doesn't exist. Args: count: The index of the download """ if not count: raise cmdexc.CommandError("There's no download!") raise cmdexc.CommandError("There's no download {}!".format(count)) @cmdutils.register(instance='download-model', scope='window') @cmdutils.argument('count', count=True) def download_cancel(self, all_=False, count=0): """Cancel the last/[count]th download. Args: all_: Cancel all running downloads count: The index of the download to cancel. """ downloads = self._all_downloads() if all_: for download in downloads: if not download.done: download.cancel() else: try: download = downloads[count - 1] except IndexError: self._raise_no_download(count) if download.done: if not count: count = len(self) raise cmdexc.CommandError("Download {} is already done!" .format(count)) download.cancel() @cmdutils.register(instance='download-model', scope='window') @cmdutils.argument('count', count=True) def download_delete(self, count=0): """Delete the last/[count]th download from disk. Args: count: The index of the download to delete. """ try: download = self[count - 1] except IndexError: self._raise_no_download(count) if not download.successful: if not count: count = len(self) raise cmdexc.CommandError("Download {} is not done!".format(count)) download.delete() download.remove() log.downloads.debug("deleted download {}".format(download)) @cmdutils.register(instance='download-model', scope='window', maxsplit=0) @cmdutils.argument('count', count=True) def download_open(self, cmdline: str = None, count=0): """Open the last/[count]th download. If no specific command is given, this will use the system's default application to open the file. Args: cmdline: The command which should be used to open the file. A `{}` is expanded to the temporary file name. If no `{}` is present, the filename is automatically appended to the cmdline. count: The index of the download to open. """ try: download = self[count - 1] except IndexError: self._raise_no_download(count) if not download.successful: if not count: count = len(self) raise cmdexc.CommandError("Download {} is not done!".format(count)) download.open_file(cmdline) @cmdutils.register(instance='download-model', scope='window') @cmdutils.argument('count', count=True) def download_retry(self, count=0): """Retry the first failed/[count]th download. Args: count: The index of the download to retry. """ if count: try: download = self[count - 1] except IndexError: self._raise_no_download(count) if download.successful or not download.done: raise cmdexc.CommandError("Download {} did not fail!".format( count)) else: to_retry = [d for d in self if d.done and not d.successful] if not to_retry: raise cmdexc.CommandError("No failed downloads!") else: download = to_retry[0] download.try_retry() def can_clear(self): """Check if there are finished downloads to clear.""" return any(download.done for download in self) @cmdutils.register(instance='download-model', scope='window') def download_clear(self): """Remove all finished downloads from the list.""" for download in self: if download.done: download.remove() @cmdutils.register(instance='download-model', scope='window') @cmdutils.argument('count', count=True) def download_remove(self, all_=False, count=0): """Remove the last/[count]th download from the list. Args: all_: Remove all finished downloads. count: The index of the download to remove. """ if all_: self.download_clear() else: try: download = self[count - 1] except IndexError: self._raise_no_download(count) if not download.done: if not count: count = len(self) raise cmdexc.CommandError("Download {} is not done!" .format(count)) download.remove() def running_downloads(self): """Return the amount of still running downloads. Return: The number of unfinished downloads. """ return sum(1 for download in self if not download.done) def last_index(self): """Get the last index in the model. Return: A (possibly invalid) QModelIndex. """ idx = self.index(self.rowCount() - 1) return idx def headerData(self, section, orientation, role=Qt.DisplayRole): """Simple constant header.""" if (section == 0 and orientation == Qt.Horizontal and role == Qt.DisplayRole): return "Downloads" else: return "" def data(self, index, role): """Download data from DownloadManager.""" if not index.isValid(): return None if index.parent().isValid() or index.column() != 0: return None item = self[index.row()] if role == Qt.DisplayRole: data = str(item) elif role == Qt.ForegroundRole: data = item.get_status_color('fg') elif role == Qt.BackgroundRole: data = item.get_status_color('bg') elif role == ModelRole.item: data = item elif role == Qt.ToolTipRole: if item.error_msg is None: data = None else: return item.error_msg else: data = None return data def flags(self, index): """Override flags so items aren't selectable. The default would be Qt.ItemIsEnabled | Qt.ItemIsSelectable. """ if not index.isValid(): return Qt.ItemFlags() return Qt.ItemIsEnabled | Qt.ItemNeverHasChildren def rowCount(self, parent=QModelIndex()): """Get count of active downloads.""" if parent.isValid(): # We don't have children return 0 return len(self) class TempDownloadManager: """Manager to handle temporary download files. The downloads are downloaded to a temporary location and then openened with the system standard application. The temporary files are deleted when qutebrowser is shutdown. Attributes: files: A list of NamedTemporaryFiles of downloaded items. """ def __init__(self): self.files = [] self._tmpdir = None def cleanup(self): """Clean up any temporary files.""" if self._tmpdir is not None: try: self._tmpdir.cleanup() except OSError: log.misc.exception("Failed to clean up temporary download " "directory") self._tmpdir = None def _get_tmpdir(self): """Return the temporary directory that is used for downloads. The directory is created lazily on first access. Return: The tempfile.TemporaryDirectory that is used. """ if self._tmpdir is None: self._tmpdir = tempfile.TemporaryDirectory( prefix='qutebrowser-downloads-') return self._tmpdir def get_tmpfile(self, suggested_name): """Return a temporary file in the temporary downloads directory. The files are kept as long as qutebrowser is running and automatically cleaned up at program exit. Args: suggested_name: str of the "suggested"/original filename. Used as a suffix, so any file extenions are preserved. Return: A tempfile.NamedTemporaryFile that should be used to save the file. """ tmpdir = self._get_tmpdir() encoding = sys.getfilesystemencoding() suggested_name = utils.force_encoding(suggested_name, encoding) # Make sure that the filename is not too long suggested_name = utils.elide_filename(suggested_name, 50) fobj = tempfile.NamedTemporaryFile(dir=tmpdir.name, delete=False, suffix=suggested_name) self.files.append(fobj) return fobj temp_download_manager = TempDownloadManager()
1
20,585
This should be `toDisplayString()` to not contain e.g. passwords.
qutebrowser-qutebrowser
py
@@ -180,6 +180,10 @@ class <%= controller_name.classify %>Controller < ApplicationController # If there are more than this many search results, no spelling ("did you # mean") suggestion is offered. config.spell_max = 5 + + # Configuration for autocomplete suggestor + config.autocomplete_enabled = true + config.autocomplete_path = 'suggest' end end
1
# -*- encoding : utf-8 -*- class <%= controller_name.classify %>Controller < ApplicationController include Blacklight::Catalog configure_blacklight do |config| ## Default parameters to send to solr for all search-like requests. See also SearchBuilder#processed_parameters config.default_solr_params = { :rows => 10 } # solr path which will be added to solr base url before the other solr params. #config.solr_path = 'select' # items to show per page, each number in the array represent another option to choose from. #config.per_page = [10,20,50,100] ## Default parameters to send on single-document requests to Solr. These settings are the Blackligt defaults (see SearchHelper#solr_doc_params) or ## parameters included in the Blacklight-jetty document requestHandler. # #config.default_document_solr_params = { # :qt => 'document', # ## These are hard-coded in the blacklight 'document' requestHandler # # :fl => '*', # # :rows => 1 # # :q => '{!term f=id v=$id}' #} # solr field configuration for search results/index views config.index.title_field = 'title_display' config.index.display_type_field = 'format' # solr field configuration for document/show views #config.show.title_field = 'title_display' #config.show.display_type_field = 'format' # solr fields that will be treated as facets by the blacklight application # The ordering of the field names is the order of the display # # Setting a limit will trigger Blacklight's 'more' facet values link. # * If left unset, then all facet values returned by solr will be displayed. # * If set to an integer, then "f.somefield.facet.limit" will be added to # solr request, with actual solr request being +1 your configured limit -- # you configure the number of items you actually want _displayed_ in a page. # * If set to 'true', then no additional parameters will be sent to solr, # but any 'sniffed' request limit parameters will be used for paging, with # paging at requested limit -1. Can sniff from facet.limit or # f.specific_field.facet.limit solr request params. This 'true' config # can be used if you set limits in :default_solr_params, or as defaults # on the solr side in the request handler itself. Request handler defaults # sniffing requires solr requests to be made with "echoParams=all", for # app code to actually have it echo'd back to see it. # # :show may be set to false if you don't want the facet to be drawn in the # facet bar # # set :index_range to true if you want the facet pagination view to have facet prefix-based navigation # (useful when user clicks "more" on a large facet and wants to navigate alphabetically across a large set of results) # :index_range can be an array or range of prefixes that will be used to create the navigation (note: It is case sensitive when searching values) config.add_facet_field 'format', :label => 'Format' config.add_facet_field 'pub_date', :label => 'Publication Year', :single => true config.add_facet_field 'subject_topic_facet', :label => 'Topic', :limit => 20, :index_range => 'A'..'Z' config.add_facet_field 'language_facet', :label => 'Language', :limit => true config.add_facet_field 'lc_1letter_facet', :label => 'Call Number' config.add_facet_field 'subject_geo_facet', :label => 'Region' config.add_facet_field 'subject_era_facet', :label => 'Era' config.add_facet_field 'example_pivot_field', :label => 'Pivot Field', :pivot => ['format', 'language_facet'] config.add_facet_field 'example_query_facet_field', :label => 'Publish Date', :query => { :years_5 => { :label => 'within 5 Years', :fq => "pub_date:[#{Time.now.year - 5 } TO *]" }, :years_10 => { :label => 'within 10 Years', :fq => "pub_date:[#{Time.now.year - 10 } TO *]" }, :years_25 => { :label => 'within 25 Years', :fq => "pub_date:[#{Time.now.year - 25 } TO *]" } } # Have BL send all facet field names to Solr, which has been the default # previously. Simply remove these lines if you'd rather use Solr request # handler defaults, or have no facets. config.add_facet_fields_to_solr_request! # solr fields to be displayed in the index (search results) view # The ordering of the field names is the order of the display config.add_index_field 'title_display', :label => 'Title' config.add_index_field 'title_vern_display', :label => 'Title' config.add_index_field 'author_display', :label => 'Author' config.add_index_field 'author_vern_display', :label => 'Author' config.add_index_field 'format', :label => 'Format' config.add_index_field 'language_facet', :label => 'Language' config.add_index_field 'published_display', :label => 'Published' config.add_index_field 'published_vern_display', :label => 'Published' config.add_index_field 'lc_callnum_display', :label => 'Call number' # solr fields to be displayed in the show (single result) view # The ordering of the field names is the order of the display config.add_show_field 'title_display', :label => 'Title' config.add_show_field 'title_vern_display', :label => 'Title' config.add_show_field 'subtitle_display', :label => 'Subtitle' config.add_show_field 'subtitle_vern_display', :label => 'Subtitle' config.add_show_field 'author_display', :label => 'Author' config.add_show_field 'author_vern_display', :label => 'Author' config.add_show_field 'format', :label => 'Format' config.add_show_field 'url_fulltext_display', :label => 'URL' config.add_show_field 'url_suppl_display', :label => 'More Information' config.add_show_field 'language_facet', :label => 'Language' config.add_show_field 'published_display', :label => 'Published' config.add_show_field 'published_vern_display', :label => 'Published' config.add_show_field 'lc_callnum_display', :label => 'Call number' config.add_show_field 'isbn_t', :label => 'ISBN' # "fielded" search configuration. Used by pulldown among other places. # For supported keys in hash, see rdoc for Blacklight::SearchFields # # Search fields will inherit the :qt solr request handler from # config[:default_solr_parameters], OR can specify a different one # with a :qt key/value. Below examples inherit, except for subject # that specifies the same :qt as default for our own internal # testing purposes. # # The :key is what will be used to identify this BL search field internally, # as well as in URLs -- so changing it after deployment may break bookmarked # urls. A display label will be automatically calculated from the :key, # or can be specified manually to be different. # This one uses all the defaults set by the solr request handler. Which # solr request handler? The one set in config[:default_solr_parameters][:qt], # since we aren't specifying it otherwise. config.add_search_field 'all_fields', :label => 'All Fields' # Now we see how to over-ride Solr request handler defaults, in this # case for a BL "search field", which is really a dismax aggregate # of Solr search fields. config.add_search_field('title') do |field| # solr_parameters hash are sent to Solr as ordinary url query params. field.solr_parameters = { :'spellcheck.dictionary' => 'title' } # :solr_local_parameters will be sent using Solr LocalParams # syntax, as eg {! qf=$title_qf }. This is neccesary to use # Solr parameter de-referencing like $title_qf. # See: http://wiki.apache.org/solr/LocalParams field.solr_local_parameters = { :qf => '$title_qf', :pf => '$title_pf' } end config.add_search_field('author') do |field| field.solr_parameters = { :'spellcheck.dictionary' => 'author' } field.solr_local_parameters = { :qf => '$author_qf', :pf => '$author_pf' } end # Specifying a :qt only to show it's possible, and so our internal automated # tests can test it. In this case it's the same as # config[:default_solr_parameters][:qt], so isn't actually neccesary. config.add_search_field('subject') do |field| field.solr_parameters = { :'spellcheck.dictionary' => 'subject' } field.qt = 'search' field.solr_local_parameters = { :qf => '$subject_qf', :pf => '$subject_pf' } end # "sort results by" select (pulldown) # label in pulldown is followed by the name of the SOLR field to sort by and # whether the sort is ascending or descending (it must be asc or desc # except in the relevancy case). config.add_sort_field 'score desc, pub_date_sort desc, title_sort asc', :label => 'relevance' config.add_sort_field 'pub_date_sort desc, title_sort asc', :label => 'year' config.add_sort_field 'author_sort asc, title_sort asc', :label => 'author' config.add_sort_field 'title_sort asc, pub_date_sort desc', :label => 'title' # If there are more than this many search results, no spelling ("did you # mean") suggestion is offered. config.spell_max = 5 end end
1
6,209
Can we just say that having a non-nil `autocomplete_path` implies that autocomplete is enabled?
projectblacklight-blacklight
rb
@@ -25,7 +25,7 @@ import ( "github.com/caddyserver/caddy/v2" "github.com/caddyserver/caddy/v2/caddyconfig/caddyfile" - "github.com/gogo/protobuf/proto" + "github.com/golang/protobuf/proto" "github.com/golang/protobuf/ptypes/timestamp" "github.com/google/cel-go/cel" "github.com/google/cel-go/checker/decls"
1
// Copyright 2015 Matthew Holt and The Caddy Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package caddyhttp import ( "encoding/json" "fmt" "net/http" "reflect" "regexp" "strings" "time" "github.com/caddyserver/caddy/v2" "github.com/caddyserver/caddy/v2/caddyconfig/caddyfile" "github.com/gogo/protobuf/proto" "github.com/golang/protobuf/ptypes/timestamp" "github.com/google/cel-go/cel" "github.com/google/cel-go/checker/decls" "github.com/google/cel-go/common/types" "github.com/google/cel-go/common/types/ref" "github.com/google/cel-go/common/types/traits" "github.com/google/cel-go/ext" "github.com/google/cel-go/interpreter/functions" exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1" ) func init() { caddy.RegisterModule(MatchExpression{}) } // MatchExpression matches requests by evaluating a // [CEL](https://github.com/google/cel-spec) expression. // This enables complex logic to be expressed using a comfortable, // familiar syntax. Please refer to // [the standard definitions of CEL functions and operators](https://github.com/google/cel-spec/blob/master/doc/langdef.md#standard-definitions). // // This matcher's JSON interface is actually a string, not a struct. // The generated docs are not correct because this type has custom // marshaling logic. // // COMPATIBILITY NOTE: This module is still experimental and is not // subject to Caddy's compatibility guarantee. type MatchExpression struct { // The CEL expression to evaluate. Any Caddy placeholders // will be expanded and situated into proper CEL function // calls before evaluating. Expr string expandedExpr string prg cel.Program ta ref.TypeAdapter } // CaddyModule returns the Caddy module information. func (MatchExpression) CaddyModule() caddy.ModuleInfo { return caddy.ModuleInfo{ ID: "http.matchers.expression", New: func() caddy.Module { return new(MatchExpression) }, } } // MarshalJSON marshals m's expression. func (m MatchExpression) MarshalJSON() ([]byte, error) { return json.Marshal(m.Expr) } // UnmarshalJSON unmarshals m's expression. func (m *MatchExpression) UnmarshalJSON(data []byte) error { return json.Unmarshal(data, &m.Expr) } // Provision sets ups m. func (m *MatchExpression) Provision(_ caddy.Context) error { // replace placeholders with a function call - this is just some // light (and possibly naïve) syntactic sugar m.expandedExpr = placeholderRegexp.ReplaceAllString(m.Expr, placeholderExpansion) // our type adapter expands CEL's standard type support m.ta = celTypeAdapter{} // create the CEL environment env, err := cel.NewEnv( cel.Declarations( decls.NewVar("request", httpRequestObjectType), decls.NewFunction(placeholderFuncName, decls.NewOverload(placeholderFuncName+"_httpRequest_string", []*exprpb.Type{httpRequestObjectType, decls.String}, decls.Any)), ), cel.CustomTypeAdapter(m.ta), ext.Strings(), ) if err != nil { return fmt.Errorf("setting up CEL environment: %v", err) } // parse and type-check the expression checked, issues := env.Compile(m.expandedExpr) if issues != nil && issues.Err() != nil { return fmt.Errorf("compiling CEL program: %s", issues.Err()) } // request matching is a boolean operation, so we don't really know // what to do if the expression returns a non-boolean type if !proto.Equal(checked.ResultType(), decls.Bool) { return fmt.Errorf("CEL request matcher expects return type of bool, not %s", checked.ResultType()) } // compile the "program" m.prg, err = env.Program(checked, cel.Functions( &functions.Overload{ Operator: placeholderFuncName, Binary: m.caddyPlaceholderFunc, }, ), ) if err != nil { return fmt.Errorf("compiling CEL program: %s", err) } return nil } // Match returns true if r matches m. func (m MatchExpression) Match(r *http.Request) bool { out, _, _ := m.prg.Eval(map[string]interface{}{ "request": celHTTPRequest{r}, }) if outBool, ok := out.Value().(bool); ok { return outBool } return false } // UnmarshalCaddyfile implements caddyfile.Unmarshaler. func (m *MatchExpression) UnmarshalCaddyfile(d *caddyfile.Dispenser) error { for d.Next() { m.Expr = strings.Join(d.RemainingArgs(), " ") } return nil } // caddyPlaceholderFunc implements the custom CEL function that accesses the // Replacer on a request and gets values from it. func (m MatchExpression) caddyPlaceholderFunc(lhs, rhs ref.Val) ref.Val { celReq, ok := lhs.(celHTTPRequest) if !ok { return types.NewErr( "invalid request of type '%v' to "+placeholderFuncName+"(request, placeholderVarName)", lhs.Type()) } phStr, ok := rhs.(types.String) if !ok { return types.NewErr( "invalid placeholder variable name of type '%v' to "+placeholderFuncName+"(request, placeholderVarName)", rhs.Type()) } repl := celReq.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer) val, _ := repl.Get(string(phStr)) return m.ta.NativeToValue(val) } // httpRequestCELType is the type representation of a native HTTP request. var httpRequestCELType = types.NewTypeValue("http.Request", traits.ReceiverType) // cellHTTPRequest wraps an http.Request with // methods to satisfy the ref.Val interface. type celHTTPRequest struct{ *http.Request } func (cr celHTTPRequest) ConvertToNative(typeDesc reflect.Type) (interface{}, error) { return cr.Request, nil } func (celHTTPRequest) ConvertToType(typeVal ref.Type) ref.Val { panic("not implemented") } func (cr celHTTPRequest) Equal(other ref.Val) ref.Val { if o, ok := other.Value().(celHTTPRequest); ok { return types.Bool(o.Request == cr.Request) } return types.ValOrErr(other, "%v is not comparable type", other) } func (celHTTPRequest) Type() ref.Type { return httpRequestCELType } func (cr celHTTPRequest) Value() interface{} { return cr } // celTypeAdapter can adapt our custom types to a CEL value. type celTypeAdapter struct{} func (celTypeAdapter) NativeToValue(value interface{}) ref.Val { switch v := value.(type) { case celHTTPRequest: return v case time.Time: // TODO: eliminate direct protobuf dependency, sigh -- just wrap stdlib time.Time instead... return types.Timestamp{Timestamp: &timestamp.Timestamp{Seconds: v.Unix(), Nanos: int32(v.Nanosecond())}} case error: types.NewErr(v.Error()) } return types.DefaultTypeAdapter.NativeToValue(value) } // Variables used for replacing Caddy placeholders in CEL // expressions with a proper CEL function call; this is // just for syntactic sugar. var ( placeholderRegexp = regexp.MustCompile(`{([\w.-]+)}`) placeholderExpansion = `caddyPlaceholder(request, "${1}")` ) var httpRequestObjectType = decls.NewObjectType("http.Request") // The name of the CEL function which accesses Replacer values. const placeholderFuncName = "caddyPlaceholder" // Interface guards var ( _ caddy.Provisioner = (*MatchExpression)(nil) _ RequestMatcher = (*MatchExpression)(nil) _ caddyfile.Unmarshaler = (*MatchExpression)(nil) _ json.Marshaler = (*MatchExpression)(nil) _ json.Unmarshaler = (*MatchExpression)(nil) )
1
15,212
Note that the package github.com/golang/protobuf/proto is deprecated. We're instructed to use the "google.golang.org/protobuf/proto" package instead. I didn't want to change it now to avoid intrusive changes whose consequences are, currently, unknown.
caddyserver-caddy
go
@@ -4,14 +4,3 @@ get "/pages/*id" => "pages#show", format: false get "/subscribe" => "promoted_catalogs#show", as: 'subscribe' get "/privacy" => "pages#show", as: :privacy, id: 'privacy' get "/terms" => "pages#show", as: :terms, id: 'terms' - -get( - "/group-training" => "pages#show", - as: :group_training, - id: "group-training" -) -get( - "/rubyist-booster-shot" => "pages#show", - as: :rubyist_booster_shot, - id: "rubyist-booster-shot" -)
1
get "/purchases/:lookup" => "pages#show", id: "purchase-show" get "/pages/*id" => "pages#show", format: false get "/subscribe" => "promoted_catalogs#show", as: 'subscribe' get "/privacy" => "pages#show", as: :privacy, id: 'privacy' get "/terms" => "pages#show", as: :terms, id: 'terms' get( "/group-training" => "pages#show", as: :group_training, id: "group-training" ) get( "/rubyist-booster-shot" => "pages#show", as: :rubyist_booster_shot, id: "rubyist-booster-shot" )
1
12,268
Are these gone routes? Do we need to 301 them?
thoughtbot-upcase
rb
@@ -18,10 +18,13 @@ import ( "bytes" "encoding/json" "fmt" + "github.com/vmware-tanzu/antrea/pkg/apis/networking/v1beta1" + "github.com/vmware-tanzu/antrea/pkg/controller/networkpolicy" "io" "os" "reflect" "sort" + "strconv" "strings" "text/tabwriter"
1
// Copyright 2019 Antrea Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package antctl import ( "bytes" "encoding/json" "fmt" "io" "os" "reflect" "sort" "strings" "text/tabwriter" "github.com/spf13/cobra" "gopkg.in/yaml.v2" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/runtime/schema" "k8s.io/klog" "github.com/vmware-tanzu/antrea/pkg/antctl/runtime" "github.com/vmware-tanzu/antrea/pkg/antctl/transform/common" ) type formatterType string const ( jsonFormatter formatterType = "json" yamlFormatter formatterType = "yaml" tableFormatter formatterType = "table" ) const ( maxTableOutputColumnLength int = 50 ) // commandGroup is used to group commands, it could be specified in commandDefinition. // The default commandGroup of a commandDefinition is `flat` which means the command // is a direct sub-command of the root command. For any other commandGroup, the // antctl framework will generate a same name sub-command of the root command for // each of them, any commands specified as one of these group will need to be invoked // as: // antctl <commandGroup> <command> type commandGroup uint type OutputType uint // There are two output types: single item or list and the actual type is decided by // OutputType value here and command's arguments. const ( // defaultType represents the output type is single item if there is an argument // and its value is provided. If not, the output type is list. defaultType OutputType = iota // single represents the output type is always single item. single // multiple represents the output type is always list. multiple ) const ( flat commandGroup = iota get ) var groupCommands = map[commandGroup]*cobra.Command{ get: { Use: "get", Short: "Get the status or resource of a topic", Long: "Get the status or resource of a topic", }, } type endpointResponder interface { OutputType() OutputType flags() []flagInfo } type resourceEndpoint struct { groupVersionResource *schema.GroupVersionResource resourceName string namespaced bool } func (e *resourceEndpoint) OutputType() OutputType { if len(e.resourceName) != 0 { return single } return defaultType } func (e *resourceEndpoint) flags() []flagInfo { var flags []flagInfo if len(e.resourceName) == 0 { flags = append(flags, flagInfo{ name: "name", defaultValue: "", arg: true, usage: "Retrieve the resource by name", }) } if e.namespaced { flags = append(flags, flagInfo{ name: "namespace", shorthand: "n", defaultValue: metav1.NamespaceAll, usage: "Filter the resource by namespace", }) } return flags } type nonResourceEndpoint struct { path string params []flagInfo outputType OutputType } func (e *nonResourceEndpoint) flags() []flagInfo { return e.params } func (e *nonResourceEndpoint) OutputType() OutputType { return e.outputType } // endpoint is used to specified the API for an antctl running against antrea-controller. type endpoint struct { resourceEndpoint *resourceEndpoint nonResourceEndpoint *nonResourceEndpoint // addonTransform is used to transform or update the response data received // from the handler, it must returns an interface which has same type as // TransformedResponse. addonTransform func(reader io.Reader, single bool) (interface{}, error) } // flagInfo represents a command-line flag that can be provided when invoking an antctl command. type flagInfo struct { name string shorthand string defaultValue string arg bool usage string } // rawCommand defines a full function cobra.Command which lets developers // write complex client-side tasks. Only the global flags of the antctl framework will // be passed to the cobra.Command. type rawCommand struct { cobraCommand *cobra.Command supportAgent bool supportController bool } // commandDefinition defines options to create a cobra.Command for an antctl client. type commandDefinition struct { // Cobra related use string aliases []string short string long string example string // It will be filled with generated examples if it is not provided. // commandGroup represents the group of the command. commandGroup commandGroup controllerEndpoint *endpoint agentEndpoint *endpoint // transformedResponse is the final response struct of the command. If the // AddonTransform is set, TransformedResponse is not needed to be used as the // response struct of the handler, but it is still needed to guide the formatter. // It should always be filled. transformedResponse reflect.Type } func (cd *commandDefinition) namespaced() bool { if runtime.Mode == runtime.ModeAgent { return cd.agentEndpoint != nil && cd.agentEndpoint.resourceEndpoint != nil && cd.agentEndpoint.resourceEndpoint.namespaced } else if runtime.Mode == runtime.ModeController { return cd.controllerEndpoint != nil && cd.controllerEndpoint.resourceEndpoint != nil && cd.controllerEndpoint.resourceEndpoint.namespaced } return false } func (cd *commandDefinition) getAddonTransform() func(reader io.Reader, single bool) (interface{}, error) { if runtime.Mode == runtime.ModeAgent && cd.agentEndpoint != nil { return cd.agentEndpoint.addonTransform } else if runtime.Mode == runtime.ModeController && cd.controllerEndpoint != nil { return cd.controllerEndpoint.addonTransform } return nil } func (cd *commandDefinition) getEndpoint() endpointResponder { if runtime.Mode == runtime.ModeAgent { if cd.agentEndpoint != nil { if cd.agentEndpoint.resourceEndpoint != nil { return cd.agentEndpoint.resourceEndpoint } return cd.agentEndpoint.nonResourceEndpoint } } else if runtime.Mode == runtime.ModeController { if cd.controllerEndpoint != nil { if cd.controllerEndpoint.resourceEndpoint != nil { return cd.controllerEndpoint.resourceEndpoint } return cd.controllerEndpoint.nonResourceEndpoint } } return nil } // applySubCommandToRoot applies the commandDefinition to a cobra.Command with // the client. It populates basic fields of a cobra.Command and creates the // appropriate RunE function for it according to the commandDefinition. func (cd *commandDefinition) applySubCommandToRoot(root *cobra.Command, client *client) { cmd := &cobra.Command{ Use: cd.use, Aliases: cd.aliases, Short: cd.short, Long: cd.long, } renderDescription(cmd) cd.applyFlagsToCommand(cmd) if groupCommand, ok := groupCommands[cd.commandGroup]; ok { groupCommand.AddCommand(cmd) } else { root.AddCommand(cmd) } cd.applyExampleToCommand(cmd) cmd.RunE = cd.newCommandRunE(client) } // validate checks if the commandDefinition is valid. func (cd *commandDefinition) validate() []error { var errs []error if len(cd.use) == 0 { errs = append(errs, fmt.Errorf("the command does not have name")) } existingAliases := make(map[string]bool) for _, a := range cd.aliases { if a == cd.use { errs = append(errs, fmt.Errorf("%s: command alias is the same with use of the command", cd.use)) } if _, ok := existingAliases[a]; ok { errs = append(errs, fmt.Errorf("%s: command alias is provided twice: %s", cd.use, a)) } existingAliases[a] = true } if cd.transformedResponse == nil { errs = append(errs, fmt.Errorf("%s: command does not define output struct", cd.use)) } if cd.agentEndpoint == nil && cd.controllerEndpoint == nil { errs = append(errs, fmt.Errorf("%s: command does not define any supported component", cd.use)) } if cd.agentEndpoint != nil && cd.agentEndpoint.nonResourceEndpoint != nil && cd.agentEndpoint.resourceEndpoint != nil { errs = append(errs, fmt.Errorf("%s: command for agent can only define one endpoint", cd.use)) } if cd.agentEndpoint != nil && cd.agentEndpoint.nonResourceEndpoint == nil && cd.agentEndpoint.resourceEndpoint == nil { errs = append(errs, fmt.Errorf("%s: command for agent must define one endpoint", cd.use)) } if cd.controllerEndpoint != nil && cd.controllerEndpoint.nonResourceEndpoint != nil && cd.controllerEndpoint.resourceEndpoint != nil { errs = append(errs, fmt.Errorf("%s: command for controller can only define one endpoint", cd.use)) } if cd.controllerEndpoint != nil && cd.controllerEndpoint.nonResourceEndpoint == nil && cd.controllerEndpoint.resourceEndpoint == nil { errs = append(errs, fmt.Errorf("%s: command for controller must define one endpoint", cd.use)) } empty := struct{}{} existingFlags := map[string]struct{}{"output": empty, "help": empty, "kubeconfig": empty, "timeout": empty, "verbose": empty} if endpoint := cd.getEndpoint(); endpoint != nil { for _, f := range endpoint.flags() { if len(f.name) == 0 { errs = append(errs, fmt.Errorf("%s: flag name cannot be empty", cd.use)) } else { if _, ok := existingFlags[f.name]; ok { errs = append(errs, fmt.Errorf("%s: flag redefined: %s", cd.use, f.name)) } existingFlags[f.name] = empty } if len(f.shorthand) > 1 { errs = append(errs, fmt.Errorf("%s: length of a flag shorthand cannot be larger than 1: %s", cd.use, f.shorthand)) } } } return errs } // decode parses the data in reader and converts it to one or more // TransformedResponse objects. If single is false, the return type is // []TransformedResponse. Otherwise, the return type is TransformedResponse. func (cd *commandDefinition) decode(r io.Reader, single bool) (interface{}, error) { var refType reflect.Type if single { refType = cd.transformedResponse } else { refType = reflect.SliceOf(cd.transformedResponse) } ref := reflect.New(refType) err := json.NewDecoder(r).Decode(ref.Interface()) if err != nil { return nil, err } if single { return ref.Interface(), nil } return reflect.Indirect(ref).Interface(), nil } func jsonEncode(obj interface{}, output *bytes.Buffer) error { if err := json.NewEncoder(output).Encode(obj); err != nil { return fmt.Errorf("error when encoding data in json: %w", err) } return nil } func (cd *commandDefinition) jsonOutput(obj interface{}, writer io.Writer) error { var output bytes.Buffer if err := jsonEncode(obj, &output); err != nil { return fmt.Errorf("error when encoding data in json: %w", err) } var prettifiedBuf bytes.Buffer err := json.Indent(&prettifiedBuf, output.Bytes(), "", " ") if err != nil { return fmt.Errorf("error when formatting outputing in json: %w", err) } _, err = io.Copy(writer, &prettifiedBuf) if err != nil { return fmt.Errorf("error when outputing in json format: %w", err) } return nil } func (cd *commandDefinition) yamlOutput(obj interface{}, writer io.Writer) error { var jsonObj interface{} var buf bytes.Buffer if err := json.NewEncoder(&buf).Encode(obj); err != nil { return fmt.Errorf("error when outputing in yaml format: %w", err) } // Comment copied from: sigs.k8s.io/yaml // We are using yaml.Unmarshal here (instead of json.Unmarshal) because the // Go JSON library doesn't try to pick the right number type (int, float, // etc.) when unmarshalling to interface{}, it just picks float64 // universally. go-yaml does go through the effort of picking the right // number type, so we can preserve number type throughout this process. if err := yaml.Unmarshal(buf.Bytes(), &jsonObj); err != nil { return fmt.Errorf("error when outputing in yaml format: %w", err) } if err := yaml.NewEncoder(writer).Encode(jsonObj); err != nil { return fmt.Errorf("error when outputing in yaml format: %w", err) } return nil } // respTransformer collects output fields in original transformedResponse // and flattens them. respTransformer realizes this by turning obj into // JSON and unmarshalling it. // E.g. agent's transformedVersionResponse will only have two fields after // transforming: agentVersion and antctlVersion. func respTransformer(obj interface{}) (interface{}, error) { var jsonObj bytes.Buffer if err := json.NewEncoder(&jsonObj).Encode(obj); err != nil { return nil, fmt.Errorf("error when encoding data in json: %w", err) } jsonStr := jsonObj.String() var target interface{} if err := json.Unmarshal([]byte(jsonStr), &target); err != nil { return nil, fmt.Errorf("error when unmarshalling data in json: %w", err) } return target, nil } // tableOutputForGetCommands formats the table output for "get" commands. func (cd *commandDefinition) tableOutputForGetCommands(obj interface{}, writer io.Writer) error { var list []common.TableOutput if reflect.TypeOf(obj).Kind() == reflect.Slice { s := reflect.ValueOf(obj) if s.Len() == 0 || s.Index(0).Interface() == nil { var buffer bytes.Buffer buffer.WriteString("\n") if _, err := io.Copy(writer, &buffer); err != nil { return fmt.Errorf("error when copy output into writer: %w", err) } return nil } if _, ok := s.Index(0).Interface().(common.TableOutput); !ok { return cd.tableOutput(obj, writer) } for i := 0; i < s.Len(); i++ { ele := s.Index(i) list = append(list, ele.Interface().(common.TableOutput)) } } else { ele, ok := obj.(common.TableOutput) if !ok { return cd.tableOutput(obj, writer) } list = []common.TableOutput{ele} } // Get the elements and headers of table. args := list[0].GetTableHeader() rows := make([][]string, len(list)+1) rows[0] = list[0].GetTableHeader() for i, element := range list { rows[i+1] = element.GetTableRow(maxTableOutputColumnLength) } if list[0].SortRows() { // Sort the table rows according to columns in order. body := rows[1:] sort.Slice(body, func(i, j int) bool { for k := range body[i] { if body[i][k] != body[j][k] { return body[i][k] < body[j][k] } } return true }) } numColumns := len(args) widths := make([]int, numColumns) if numColumns == 1 { // Do not limit the column length for a single column table. // This is for the case a single column table can have long rows which cannot // fit into a single line (one example is the ovsflows outputs). widths[0] = 0 } else { // Get the width of every column. for j := 0; j < numColumns; j++ { width := len(rows[0][j]) for i := 1; i < len(list)+1; i++ { if len(rows[i][j]) == 0 { rows[i][j] = "<NONE>" } if width < len(rows[i][j]) { width = len(rows[i][j]) } } widths[j] = width if j != 0 { widths[j]++ } } } // Construct the table. var buffer bytes.Buffer for i := 0; i < len(list)+1; i++ { for j := 0; j < len(args); j++ { val := "" if j != 0 { val = " " + val } val += rows[i][j] if widths[j] > 0 { val += strings.Repeat(" ", widths[j]-len(val)) } buffer.WriteString(val) } buffer.WriteString("\n") } if _, err := io.Copy(writer, &buffer); err != nil { return fmt.Errorf("error when copy output into writer: %w", err) } return nil } func (cd *commandDefinition) tableOutput(obj interface{}, writer io.Writer) error { target, err := respTransformer(obj) if err != nil { return fmt.Errorf("error when transforming obj: %w", err) } list, multiple := target.([]interface{}) var args []string if multiple { for _, el := range list { m := el.(map[string]interface{}) for k := range m { args = append(args, k) } break } } else { m, _ := target.(map[string]interface{}) for k := range m { args = append(args, k) } } var buffer bytes.Buffer for _, arg := range args { buffer.WriteString(arg) buffer.WriteString("\t") } attrLine := buffer.String() var valLines []string if multiple { for _, el := range list { m := el.(map[string]interface{}) buffer.Reset() for _, k := range args { var output bytes.Buffer if err = jsonEncode(m[k], &output); err != nil { return fmt.Errorf("error when encoding data in json: %w", err) } buffer.WriteString(strings.Trim(output.String(), "\"\n")) buffer.WriteString("\t") } valLines = append(valLines, buffer.String()) } } else { buffer.Reset() m, _ := target.(map[string]interface{}) for _, k := range args { var output bytes.Buffer if err = jsonEncode(m[k], &output); err != nil { return fmt.Errorf("error when encoding: %w", err) } buffer.WriteString(strings.Trim(output.String(), "\"\n")) buffer.WriteString("\t") } valLines = append(valLines, buffer.String()) } var b bytes.Buffer w := tabwriter.NewWriter(&b, 15, 0, 1, ' ', 0) fmt.Fprintln(w, attrLine) for _, line := range valLines { fmt.Fprintln(w, line) } w.Flush() if _, err = io.Copy(writer, &b); err != nil { return fmt.Errorf("error when copy output into writer: %w", err) } return nil } // output reads bytes from the resp and outputs the data to the writer in desired // format. If the AddonTransform is set, it will use the function to transform // the data first. It will try to output the resp in the format ft specified after // doing transform. func (cd *commandDefinition) output(resp io.Reader, writer io.Writer, ft formatterType, single bool) (err error) { var obj interface{} addonTransform := cd.getAddonTransform() if addonTransform == nil { // Decode the data if there is no AddonTransform. obj, err = cd.decode(resp, single) if err != nil { return fmt.Errorf("error when decoding response: %w", err) } } else { obj, err = addonTransform(resp, single) if err != nil { return fmt.Errorf("error when doing local transform: %w", err) } klog.Infof("After transforming %v", obj) } // Output structure data in format switch ft { case jsonFormatter: return cd.jsonOutput(obj, writer) case yamlFormatter: return cd.yamlOutput(obj, writer) case tableFormatter: if cd.commandGroup == get { return cd.tableOutputForGetCommands(obj, writer) } else { return cd.tableOutput(obj, writer) } default: return fmt.Errorf("unsupport format type: %v", ft) } } func (cd *commandDefinition) collectFlags(cmd *cobra.Command, args []string) (map[string]string, error) { argMap := make(map[string]string) if len(args) > 0 { argMap["name"] = args[0] } if endpoint := cd.getEndpoint(); endpoint != nil { for _, f := range endpoint.flags() { vs, err := cmd.Flags().GetString(f.name) if err == nil && len(vs) != 0 { argMap[f.name] = vs continue } } } if cd.namespaced() { argMap["namespace"], _ = cmd.Flags().GetString("namespace") } return argMap, nil } // newCommandRunE creates the RunE function for the command. The RunE function // checks the args according to argOption and flags. func (cd *commandDefinition) newCommandRunE(c *client) func(*cobra.Command, []string) error { return func(cmd *cobra.Command, args []string) error { argMap, err := cd.collectFlags(cmd, args) if err != nil { return err } klog.Infof("Args: %v", argMap) var argGet bool for _, flag := range cd.getEndpoint().flags() { if _, ok := argMap[flag.name]; ok && flag.arg == true { argGet = true break } } kubeconfigPath, _ := cmd.Flags().GetString("kubeconfig") timeout, _ := cmd.Flags().GetDuration("timeout") server, _ := cmd.Flags().GetString("server") resp, err := c.request(&requestOption{ commandDefinition: cd, kubeconfig: kubeconfigPath, args: argMap, timeout: timeout, server: server, }) if err != nil { return err } outputFormat, err := cmd.Flags().GetString("output") if err != nil { return err } isSingle := cd.getEndpoint().OutputType() != multiple && (cd.getEndpoint().OutputType() == single || argGet) return cd.output(resp, os.Stdout, formatterType(outputFormat), isSingle) } } // applyFlagsToCommand sets up args and flags for the command. func (cd *commandDefinition) applyFlagsToCommand(cmd *cobra.Command) { var hasFlag bool for _, flag := range cd.getEndpoint().flags() { if flag.arg { cmd.Args = cobra.MaximumNArgs(1) cmd.Use += fmt.Sprintf(" [%s]", flag.name) cmd.Long += fmt.Sprintf("\n\nArgs:\n %s\t%s", flag.name, flag.usage) hasFlag = true } else { cmd.Flags().StringP(flag.name, flag.shorthand, flag.defaultValue, flag.usage) } } if !hasFlag { cmd.Args = cobra.NoArgs } if cd.commandGroup == get { cmd.Flags().StringP("output", "o", "table", "output format: json|table|yaml") } else { cmd.Flags().StringP("output", "o", "yaml", "output format: json|table|yaml") } } // applyExampleToCommand generates examples according to the commandDefinition. // It only creates for commands which specified TransformedResponse. If the singleObject // is specified, it only creates one example to retrieve the single object. Otherwise, // it will generates examples about retrieving single object according to the key // argOption and retrieving the object list. func (cd *commandDefinition) applyExampleToCommand(cmd *cobra.Command) { if len(cd.example) != 0 { cmd.Example = cd.example return } var commands []string for iter := cmd; iter != nil; iter = iter.Parent() { commands = append(commands, iter.Name()) } for i := 0; i < len(commands)/2; i++ { commands[i], commands[len(commands)-1-i] = commands[len(commands)-1-i], commands[i] } var buf bytes.Buffer dataName := strings.ToLower(cd.use) if cd.getEndpoint().OutputType() == single { fmt.Fprintf(&buf, " Get the %s\n", dataName) fmt.Fprintf(&buf, " $ %s\n", strings.Join(commands, " ")) } else { fmt.Fprintf(&buf, " Get a %s\n", dataName) fmt.Fprintf(&buf, " $ %s [name]\n", strings.Join(commands, " ")) fmt.Fprintf(&buf, " Get the list of %s\n", dataName) fmt.Fprintf(&buf, " $ %s\n", strings.Join(commands, " ")) } cmd.Example = buf.String() }
1
22,037
move them to internal group of imports
antrea-io-antrea
go
@@ -124,6 +124,7 @@ func (c *CStorPoolController) cStorPoolEventHandler(operation common.QueueOperat status, err := c.getPoolStatus(cStorPoolGot) return status, err } + glog.Errorf("Please handle cStorPool '%s' event on '%s'", string(operation), string(cStorPoolGot.ObjectMeta.Name)) return string(apis.CStorPoolStatusInvalid), nil }
1
/* Copyright 2018 The OpenEBS Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package poolcontroller import ( "fmt" "os" "reflect" "time" "github.com/golang/glog" "github.com/openebs/maya/cmd/cstor-pool-mgmt/controller/common" "github.com/openebs/maya/cmd/cstor-pool-mgmt/pool" "github.com/openebs/maya/cmd/cstor-pool-mgmt/volumereplica" apis "github.com/openebs/maya/pkg/apis/openebs.io/v1alpha1" "github.com/openebs/maya/pkg/lease/v1alpha1" "github.com/openebs/maya/pkg/util" corev1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/errors" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/client-go/tools/cache" ) // syncHandler compares the actual state with the desired, and attempts to // converge the two. It then updates the Status block of the cStorPoolUpdated resource // with the current status of the resource. func (c *CStorPoolController) syncHandler(key string, operation common.QueueOperation) error { cStorPoolGot, err := c.getPoolResource(key) if err != nil { return err } var newCspLease lease.Leaser newCspLease = &lease.Lease{cStorPoolGot, lease.CspLeaseKey, c.clientset, c.kubeclientset} csp, err := newCspLease.Hold() cspObject, ok := csp.(*apis.CStorPool) if !ok { fmt.Errorf("expected csp object but got %#v", cspObject) } if err != nil { glog.Errorf("Could not acquire lease on csp object:%v", err) return err } glog.Infof("Lease acquired successfully on csp %s ", cspObject.Name) status, err := c.cStorPoolEventHandler(operation, cspObject) if status == "" { glog.Warning("Empty status recieved for csp status in sync handler") return nil } cspObject.Status.Phase = apis.CStorPoolPhase(status) if err != nil { glog.Errorf(err.Error()) _, err := c.clientset.OpenebsV1alpha1().CStorPools().Update(cspObject) if err != nil { return err } glog.Infof("cStorPool:%v, %v; Status: %v", cspObject.Name, string(cspObject.GetUID()), cspObject.Status.Phase) return err } // Synchronize cstor pool used and free capacity fields on CSP object. // Any kind of sync activity should be done from here. // ToDo: Move status sync (of csp) here from cStorPoolEventHandler function. // ToDo: Instead of having statusSync, capacitySync we can make it generic resource sync which syncs all the // ToDo: requried fields on CSP ( Some code re-organization will be required) c.syncCsp(cspObject) _, err = c.clientset.OpenebsV1alpha1().CStorPools().Update(cspObject) if err != nil { c.recorder.Event(cspObject, corev1.EventTypeWarning, string(common.FailedSynced), string(common.MessageResourceSyncFailure)+err.Error()) return err } else { c.recorder.Event(cspObject, corev1.EventTypeNormal, string(common.SuccessSynced), string(common.MessageResourceSyncSuccess)) } glog.Infof("cStorPool:%v, %v; Status: %v", cspObject.Name, string(cspObject.GetUID()), cspObject.Status.Phase) return nil } // cStorPoolEventHandler is to handle cstor pool related events. func (c *CStorPoolController) cStorPoolEventHandler(operation common.QueueOperation, cStorPoolGot *apis.CStorPool) (string, error) { pool.RunnerVar = util.RealRunner{} switch operation { case common.QOpAdd: glog.Infof("Processing cStorPool added event: %v, %v", cStorPoolGot.ObjectMeta.Name, string(cStorPoolGot.GetUID())) // lock is to synchronize pool and volumereplica. Until certain pool related // operations are over, the volumereplica threads will be held. common.SyncResources.Mux.Lock() status, err := c.cStorPoolAddEventHandler(cStorPoolGot) common.SyncResources.Mux.Unlock() pool.PoolAddEventHandled = true return status, err case common.QOpDestroy: glog.Infof("Processing cStorPool Destroy event %v, %v", cStorPoolGot.ObjectMeta.Name, string(cStorPoolGot.GetUID())) status, err := c.cStorPoolDestroyEventHandler(cStorPoolGot) return status, err case common.QOpSync: // Check if pool is not imported/created earlier due to any failure or failure in getting lease // try to import/create pool gere as part of resync. if IsPendingStatus(cStorPoolGot) { common.SyncResources.Mux.Lock() status, err := c.cStorPoolAddEventHandler(cStorPoolGot) common.SyncResources.Mux.Unlock() pool.PoolAddEventHandled = true return status, err } glog.Infof("Synchronizing cStor pool status for pool %s", cStorPoolGot.ObjectMeta.Name) status, err := c.getPoolStatus(cStorPoolGot) return status, err } return string(apis.CStorPoolStatusInvalid), nil } func (c *CStorPoolController) cStorPoolAddEventHandler(cStorPoolGot *apis.CStorPool) (string, error) { // CheckValidPool is to check if pool attributes are correct. err := pool.CheckValidPool(cStorPoolGot) if err != nil { c.recorder.Event(cStorPoolGot, corev1.EventTypeWarning, string(common.FailureValidate), string(common.MessageResourceFailValidate)) return string(apis.CStorPoolStatusOffline), err } /* If pool is already present. Pool CR status is online. This means pool (main car) is running successfully, but watcher container got restarted. Pool CR status is init/online. If entire pod got restarted, both zrepl and watcher are started. a) Zrepl could have come up first, in this case, watcher will update after the specified interval of 120s. b) Watcher could have come up first, in this case, there is a possibility that zrepl goes down and comes up and the watcher sees that no pool is there, so it will break the loop and attempt to import the pool. */ // cnt is no of attempts to wait and handle in case of already present pool. cnt := common.NoOfPoolWaitAttempts existingPool, _ := pool.GetPoolName() isPoolExists := len(existingPool) != 0 for i := 0; isPoolExists && i < cnt; i++ { // GetVolumes is called because, while importing a pool, volumes corresponding // to the pool are also imported. This needs to be handled and made visible // to cvr controller. common.InitialImportedPoolVol, _ = volumereplica.GetVolumes() // GetPoolName is to get pool name for particular no. of attempts. existingPool, _ := pool.GetPoolName() if common.CheckIfPresent(existingPool, string(pool.PoolPrefix)+string(cStorPoolGot.GetUID())) { // In the last attempt, ignore and update the status. if i == cnt-1 { isPoolExists = false if IsPendingStatus(cStorPoolGot) || IsEmptyStatus(cStorPoolGot) { // Pool CR status is init. This means pool deployment was done // successfully, but before updating the CR to Online status, // the watcher container got restarted. glog.Infof("Pool %v is online", string(pool.PoolPrefix)+string(cStorPoolGot.GetUID())) c.recorder.Event(cStorPoolGot, corev1.EventTypeNormal, string(common.AlreadyPresent), string(common.MessageResourceAlreadyPresent)) common.SyncResources.IsImported = true return string(apis.CStorPoolStatusOnline), nil } glog.Infof("Pool %v already present", string(pool.PoolPrefix)+string(cStorPoolGot.GetUID())) c.recorder.Event(cStorPoolGot, corev1.EventTypeNormal, string(common.AlreadyPresent), string(common.MessageResourceAlreadyPresent)) common.SyncResources.IsImported = true return string(apis.CStorPoolStatusErrorDuplicate), fmt.Errorf("Duplicate resource request") } glog.Infof("Attempt %v: Waiting...", i+1) time.Sleep(common.PoolWaitInterval) } else { // If no pool is present while trying for getpoolname, set isPoolExists to false and // break the loop, to import the pool later. isPoolExists = false } } var importPoolErr error var status string cachfileFlags := []bool{true, false} for _, cachefileFlag := range cachfileFlags { status, importPoolErr = c.importPool(cStorPoolGot, cachefileFlag) if status == string(apis.CStorPoolStatusOnline) { c.recorder.Event(cStorPoolGot, corev1.EventTypeNormal, string(common.SuccessImported), string(common.MessageResourceImported)) common.SyncResources.IsImported = true return status, nil } } // make a check if initialImportedPoolVol is not empty, then notify cvr controller // through channel. if len(common.InitialImportedPoolVol) != 0 { common.SyncResources.IsImported = true } else { common.SyncResources.IsImported = false } // IsInitStatus is to check if initial status of cstorpool object is `init`. if IsEmptyStatus(cStorPoolGot) || IsPendingStatus(cStorPoolGot) { // LabelClear is to clear pool label err = pool.LabelClear(cStorPoolGot.Spec.Disks.DiskList) if err != nil { glog.Errorf(err.Error(), cStorPoolGot.GetUID()) } else { glog.Infof("Label clear successful: %v", string(cStorPoolGot.GetUID())) } // CreatePool is to create cstor pool. err = pool.CreatePool(cStorPoolGot) if err != nil { glog.Errorf("Pool creation failure: %v", string(cStorPoolGot.GetUID())) c.recorder.Event(cStorPoolGot, corev1.EventTypeWarning, string(common.FailureCreate), string(common.MessageResourceFailCreate)) return string(apis.CStorPoolStatusOffline), err } glog.Infof("Pool creation successful: %v", string(cStorPoolGot.GetUID())) c.recorder.Event(cStorPoolGot, corev1.EventTypeNormal, string(common.SuccessCreated), string(common.MessageResourceCreated)) return string(apis.CStorPoolStatusOnline), nil } glog.Infof("Not init status: %v, %v", cStorPoolGot.ObjectMeta.Name, string(cStorPoolGot.GetUID())) return string(apis.CStorPoolStatusOffline), importPoolErr } func (c *CStorPoolController) cStorPoolDestroyEventHandler(cStorPoolGot *apis.CStorPool) (string, error) { // DeletePool is to delete cstor pool. err := pool.DeletePool(string(pool.PoolPrefix) + string(cStorPoolGot.ObjectMeta.UID)) if err != nil { c.recorder.Event(cStorPoolGot, corev1.EventTypeWarning, string(common.FailureDestroy), string(common.MessageResourceFailDestroy)) return string(apis.CStorPoolStatusDeletionFailed), err } // LabelClear is to clear pool label err = pool.LabelClear(cStorPoolGot.Spec.Disks.DiskList) if err != nil { glog.Errorf(err.Error(), cStorPoolGot.GetUID()) } else { glog.Infof("Label clear successful: %v", string(cStorPoolGot.GetUID())) } // removeFinalizer is to remove finalizer of cStorPool resource. err = c.removeFinalizer(cStorPoolGot) if err != nil { return string(apis.CStorPoolStatusOffline), err } return "", nil } // getPoolStatus is a wrapper that fetches the status of cstor pool. func (c *CStorPoolController) getPoolStatus(cStorPoolGot *apis.CStorPool) (string, error) { poolStatus, err := pool.Status(string(pool.PoolPrefix) + string(cStorPoolGot.ObjectMeta.UID)) if err != nil { // ToDO : Put error in event recorder c.recorder.Event(cStorPoolGot, corev1.EventTypeWarning, string(common.FailureStatusSync), string(common.MessageResourceFailStatusSync)) return "", err } return poolStatus, nil } // getPoolResource returns object corresponding to the resource key func (c *CStorPoolController) getPoolResource(key string) (*apis.CStorPool, error) { // Convert the key(namespace/name) string into a distinct name _, name, err := cache.SplitMetaNamespaceKey(key) if err != nil { runtime.HandleError(fmt.Errorf("invalid resource key: %s", key)) return nil, nil } cStorPoolGot, err := c.clientset.OpenebsV1alpha1().CStorPools().Get(name, metav1.GetOptions{}) if err != nil { // The cStorPool resource may no longer exist, in which case we stop // processing. if errors.IsNotFound(err) { runtime.HandleError(fmt.Errorf("cStorPoolGot '%s' in work queue no longer exists", key)) return nil, nil } return nil, err } return cStorPoolGot, nil } // removeFinalizer is to remove finalizer of cstorpool resource. func (c *CStorPoolController) removeFinalizer(cStorPoolGot *apis.CStorPool) error { if len(cStorPoolGot.Finalizers) > 0 { cStorPoolGot.Finalizers = []string{} } _, err := c.clientset.OpenebsV1alpha1().CStorPools().Update(cStorPoolGot) if err != nil { return err } glog.Infof("Removed Finalizer: %v, %v", cStorPoolGot.Name, string(cStorPoolGot.GetUID())) return nil } func (c *CStorPoolController) importPool(cStorPoolGot *apis.CStorPool, cachefileFlag bool) (string, error) { err := pool.ImportPool(cStorPoolGot, cachefileFlag) if err == nil { err = pool.SetCachefile(cStorPoolGot) if err != nil { common.SyncResources.IsImported = false return string(apis.CStorPoolStatusOffline), err } glog.Infof("Set cachefile successful: %v", string(cStorPoolGot.GetUID())) // GetVolumes is called because, while importing a pool, volumes corresponding // to the pool are also imported. This needs to be handled and made visible // to cvr controller. common.InitialImportedPoolVol, err = volumereplica.GetVolumes() if err != nil { common.SyncResources.IsImported = false return string(apis.CStorPoolStatusOffline), err } glog.Infof("Import Pool with cachefile successful: %v", string(cStorPoolGot.GetUID())) return string(apis.CStorPoolStatusOnline), nil } return "", nil } // IsRightCStorPoolMgmt is to check if the pool request is for particular pod/application. func IsRightCStorPoolMgmt(cStorPool *apis.CStorPool) bool { if os.Getenv(string(common.OpenEBSIOCStorID)) == string(cStorPool.ObjectMeta.UID) { return true } return false } // IsDestroyEvent is to check if the call is for cStorPool destroy. func IsDestroyEvent(cStorPool *apis.CStorPool) bool { if cStorPool.ObjectMeta.DeletionTimestamp != nil { return true } return false } // IsOnlyStatusChange is to check only status change of cStorPool object. func IsOnlyStatusChange(oldCStorPool, newCStorPool *apis.CStorPool) bool { if reflect.DeepEqual(oldCStorPool.Spec, newCStorPool.Spec) && !reflect.DeepEqual(oldCStorPool.Status, newCStorPool.Status) { return true } return false } // IsEmptyStatus is to check if the status of cStorPool object is empty. func IsEmptyStatus(cStorPool *apis.CStorPool) bool { if string(cStorPool.Status.Phase) == string(apis.CStorPoolStatusEmpty) { glog.Infof("cStorPool empty status: %v", string(cStorPool.ObjectMeta.UID)) return true } glog.Infof("Not empty status: %v", string(cStorPool.ObjectMeta.UID)) return false } // IsPendingStatus is to check if the status of cStorPool object is pending. func IsPendingStatus(cStorPool *apis.CStorPool) bool { if string(cStorPool.Status.Phase) == string(apis.CStorPoolStatusPending) { glog.Infof("cStorPool pending: %v", string(cStorPool.ObjectMeta.UID)) return true } glog.V(4).Infof("Not pending status: %v", string(cStorPool.ObjectMeta.UID)) return false } // IsErrorDuplicate is to check if the status of cStorPool object is error-duplicate. func IsErrorDuplicate(cStorPool *apis.CStorPool) bool { if string(cStorPool.Status.Phase) == string(apis.CStorPoolStatusErrorDuplicate) { glog.Infof("cStorPool duplication error: %v", string(cStorPool.ObjectMeta.UID)) return true } glog.V(4).Infof("Not error duplicate status: %v", string(cStorPool.ObjectMeta.UID)) return false } // IsDeletionFailedBefore is to make sure no other operation should happen if the // status of cStorPool is deletion-failed. func IsDeletionFailedBefore(cStorPool *apis.CStorPool) bool { if cStorPool.Status.Phase == apis.CStorPoolStatusDeletionFailed { return true } return false } // syncCsp updates field on CSP object after fetching the values from zpool utility. func (c *CStorPoolController) syncCsp(cStorPool *apis.CStorPool) { // Get capacity of the pool. capacity, err := pool.Capacity(string(pool.PoolPrefix) + string(cStorPool.ObjectMeta.UID)) if err != nil { glog.Errorf("Unable to sync CSP capacity: %v", err) c.recorder.Event(cStorPool, corev1.EventTypeWarning, string(common.FailureCapacitySync), string(common.MessageResourceFailCapacitySync)) } else { cStorPool.Status.Capacity = *capacity } }
1
12,190
can we rewrite this as: `ignored event '%s' for cstor pool '%s'`
openebs-maya
go
@@ -4,6 +4,8 @@ module Test end class ClientRequest < ActiveRecord::Base + belongs_to :approving_official, class_name: User + def self.purchase_amount_column_name :amount end
1
module Test def self.table_name_prefix "test_" end class ClientRequest < ActiveRecord::Base def self.purchase_amount_column_name :amount end include ClientDataMixin include PurchaseCardMixin def editable? true end def name project_title end def self.expense_type_options [] end end def self.setup_models ClientRequest.connection.create_table :test_client_requests do |t| t.decimal :amount t.string :project_title t.datetime :created_at t.datetime :updated_at end end def self.teardown_models ClientRequest.connection.drop_table :test_client_requests end # we must defer loading the factory till after we have defined our namespace, # so call this explicitly to work around rails app load order. require Rails.root + "spec/factories/test/client_request.rb" end
1
16,677
not all client data types have an approving official (eg: 18F does not). do we still want to include the relation here?
18F-C2
rb
@@ -105,7 +105,7 @@ public interface WebDriver extends SearchContext { * @see org.openqa.selenium.WebDriver.Timeouts */ @Override - List<WebElement> findElements(By by); + <T extends WebElement> List<T> findElements(By by); /**
1
// Licensed to the Software Freedom Conservancy (SFC) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The SFC licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. package org.openqa.selenium; import org.openqa.selenium.logging.LoggingPreferences; import org.openqa.selenium.logging.Logs; import java.net.URL; import java.time.Duration; import java.util.List; import java.util.Set; import java.util.concurrent.TimeUnit; /** * WebDriver is a remote control interface that enables introspection and control of user agents * (browsers). The methods in this interface fall into three categories: * <ul> * <li>Control of the browser itself</li> * <li>Selection of {@link WebElement}s</li> * <li>Debugging aids</li> * </ul> * <p> * Key methods are {@link WebDriver#get(String)}, which is used to load a new web page, and the * various methods similar to {@link WebDriver#findElement(By)}, which is used to find * {@link WebElement}s. * <p> * Currently, you will need to instantiate implementations of this interface directly. It is hoped * that you write your tests against this interface so that you may "swap in" a more fully featured * browser when there is a requirement for one. * <p> * Most implementations of this interface follow * <a href="https://w3c.github.io/webdriver/">W3C WebDriver specification</a> */ public interface WebDriver extends SearchContext { // Navigation /** * Load a new web page in the current browser window. This is done using an HTTP POST operation, * and the method will block until the load is complete (with the default 'page load strategy'. * This will follow redirects issued either by the server or as a meta-redirect from within the * returned HTML. Should a meta-redirect "rest" for any duration of time, it is best to wait until * this timeout is over, since should the underlying page change whilst your test is executing the * results of future calls against this interface will be against the freshly loaded page. Synonym * for {@link org.openqa.selenium.WebDriver.Navigation#to(String)}. * <p> * See <a href="https://w3c.github.io/webdriver/#navigate-to">W3C WebDriver specification</a> * for more details. * * @param url The URL to load. Must be a fully qualified URL * @see org.openqa.selenium.PageLoadStrategy */ void get(String url); /** * Get a string representing the current URL that the browser is looking at. * <p> * See <a href="https://w3c.github.io/webdriver/#get-current-url">W3C WebDriver specification</a> * for more details. * * @return The URL of the page currently loaded in the browser */ String getCurrentUrl(); // General properties /** * Get the title of the current page. * <p> * See <a href="https://w3c.github.io/webdriver/#get-title">W3C WebDriver specification</a> * for more details. * * @return The title of the current page, with leading and trailing whitespace stripped, or null * if one is not already set */ String getTitle(); /** * Find all elements within the current page using the given mechanism. * This method is affected by the 'implicit wait' times in force at the time of execution. When * implicitly waiting, this method will return as soon as there are more than 0 items in the * found collection, or will return an empty list if the timeout is reached. * <p> * See <a href="https://w3c.github.io/webdriver/#find-elements">W3C WebDriver specification</a> * for more details. * * @param by The locating mechanism to use * @return A list of all matching {@link WebElement}s, or an empty list if nothing matches * @see org.openqa.selenium.By * @see org.openqa.selenium.WebDriver.Timeouts */ @Override List<WebElement> findElements(By by); /** * Find the first {@link WebElement} using the given method. * This method is affected by the 'implicit wait' times in force at the time of execution. * The findElement(..) invocation will return a matching row, or try again repeatedly until * the configured timeout is reached. * <p> * findElement should not be used to look for non-present elements, use {@link #findElements(By)} * and assert zero length response instead. * <p> * See <a href="https://w3c.github.io/webdriver/#find-element">W3C WebDriver specification</a> * for more details. * * @param by The locating mechanism to use * @return The first matching element on the current page * @throws NoSuchElementException If no matching elements are found * @see org.openqa.selenium.By * @see org.openqa.selenium.WebDriver.Timeouts */ @Override WebElement findElement(By by); // Misc /** * Get the source of the last loaded page. If the page has been modified after loading (for * example, by Javascript) there is no guarantee that the returned text is that of the modified * page. Please consult the documentation of the particular driver being used to determine whether * the returned text reflects the current state of the page or the text last sent by the web * server. The page source returned is a representation of the underlying DOM: do not expect it to * be formatted or escaped in the same way as the response sent from the web server. Think of it * as an artist's impression. * <p> * See <a href="https://w3c.github.io/webdriver/#get-page-source">W3C WebDriver specification</a> * for more details. * * @return The source of the current page */ String getPageSource(); /** * Close the current window, quitting the browser if it's the last window currently open. * <p> * See <a href="https://w3c.github.io/webdriver/#close-window">W3C WebDriver specification</a> * for more details. */ void close(); /** * Quits this driver, closing every associated window. */ void quit(); /** * Return a set of window handles which can be used to iterate over all open windows of this * WebDriver instance by passing them to {@link #switchTo()}.{@link Options#window()} * <p> * See <a href="https://w3c.github.io/webdriver/#get-window-handles">W3C WebDriver specification</a> * for more details. * * @return A set of window handles which can be used to iterate over all open windows. */ Set<String> getWindowHandles(); /** * Return an opaque handle to this window that uniquely identifies it within this driver instance. * This can be used to switch to this window at a later date * <p> * See <a href="https://w3c.github.io/webdriver/#get-window-handle">W3C WebDriver specification</a> * for more details. * * @return the current window handle */ String getWindowHandle(); /** * Send future commands to a different frame or window. * * @return A TargetLocator which can be used to select a frame or window * @see org.openqa.selenium.WebDriver.TargetLocator */ TargetLocator switchTo(); /** * An abstraction allowing the driver to access the browser's history and to navigate to a given * URL. * * @return A {@link org.openqa.selenium.WebDriver.Navigation} that allows the selection of what to * do next */ Navigation navigate(); /** * Gets the Option interface * * @return An option interface * @see org.openqa.selenium.WebDriver.Options */ Options manage(); /** * An interface for managing stuff you would do in a browser menu */ interface Options { /** * Add a specific cookie. If the cookie's domain name is left blank, it is assumed that the * cookie is meant for the domain of the current document. * <p> * See <a href="https://w3c.github.io/webdriver/#add-cookie">W3C WebDriver specification</a> * for more details. * * @param cookie The cookie to add. */ void addCookie(Cookie cookie); /** * Delete the named cookie from the current domain. This is equivalent to setting the named * cookie's expiry date to some time in the past. * <p> * See <a href="https://w3c.github.io/webdriver/#delete-cookie">W3C WebDriver specification</a> * for more details. * * @param name The name of the cookie to delete */ void deleteCookieNamed(String name); /** * Delete a cookie from the browser's "cookie jar". The domain of the cookie will be ignored. * * @param cookie nom nom nom */ void deleteCookie(Cookie cookie); /** * Delete all the cookies for the current domain. * <p> * See <a href="https://w3c.github.io/webdriver/#delete-all-cookies">W3C WebDriver specification</a> * for more details. */ void deleteAllCookies(); /** * Get all the cookies for the current domain. * <p> * See <a href="https://w3c.github.io/webdriver/#get-all-cookies">W3C WebDriver specification</a> * for more details. * * @return A Set of cookies for the current domain. */ Set<Cookie> getCookies(); /** * Get a cookie with a given name. * <p> * See <a href="https://w3c.github.io/webdriver/#get-named-cookie">W3C WebDriver specification</a> * for more details. * * @param name the name of the cookie * @return the cookie, or null if no cookie with the given name is present */ Cookie getCookieNamed(String name); /** * @return the interface for managing driver timeouts. */ Timeouts timeouts(); /** * @return the interface for controlling IME engines to generate complex-script input. */ ImeHandler ime(); /** * @return the interface for managing the current window. */ Window window(); /** * Gets the {@link Logs} interface used to fetch different types of logs. * <p> * To set the logging preferences {@link LoggingPreferences}. * * @return A Logs interface. */ @Beta Logs logs(); } /** * An interface for managing timeout behavior for WebDriver instances. * <p> * See <a href="https://w3c.github.io/webdriver/#set-timeouts">W3C WebDriver specification</a> * for more details. */ interface Timeouts { /** * @deprecated Use {@link #implicitlyWait(Duration)} * * Specifies the amount of time the driver should wait when searching for an element if it is * not immediately present. * <p> * When searching for a single element, the driver should poll the page until the element has * been found, or this timeout expires before throwing a {@link NoSuchElementException}. When * searching for multiple elements, the driver should poll the page until at least one element * has been found or this timeout has expired. * <p> * Increasing the implicit wait timeout should be used judiciously as it will have an adverse * effect on test run time, especially when used with slower location strategies like XPath. * <p> * If the timeout is negative, not null, or greater than 2e16 - 1, an error code with invalid * argument will be returned. * * @param time The amount of time to wait. * @param unit The unit of measure for {@code time}. * @return A self reference. */ @Deprecated Timeouts implicitlyWait(long time, TimeUnit unit); /** * Specifies the amount of time the driver should wait when searching for an element if it is * not immediately present. * <p> * When searching for a single element, the driver should poll the page until the element has * been found, or this timeout expires before throwing a {@link NoSuchElementException}. When * searching for multiple elements, the driver should poll the page until at least one element * has been found or this timeout has expired. * <p> * Increasing the implicit wait timeout should be used judiciously as it will have an adverse * effect on test run time, especially when used with slower location strategies like XPath. * <p> * If the timeout is negative, not null, or greater than 2e16 - 1, an error code with invalid * argument will be returned. * * @param duration The duration to wait. * @return A self reference. */ default Timeouts implicitlyWait(Duration duration) { return implicitlyWait(duration.toMillis(), TimeUnit.MILLISECONDS); } /** * Gets the amount of time the driver should wait when searching for an element if it is * not immediately present. * * @return The amount of time the driver should wait when searching for an element. * @see <a href="https://www.w3.org/TR/webdriver/#get-timeouts">W3C WebDriver</a> */ default Duration getImplicitWaitTimeout() { throw new UnsupportedCommandException(); } /** * @deprecated Use {@link #setScriptTimeout(Duration)} * * Sets the amount of time to wait for an asynchronous script to finish execution before * throwing an error. If the timeout is negative, not null, or greater than 2e16 - 1, an * error code with invalid argument will be returned. * * @param time The timeout value. * @param unit The unit of time. * @return A self reference. * @see JavascriptExecutor#executeAsyncScript(String, Object...) * @see <a href="https://www.w3.org/TR/webdriver/#set-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ @Deprecated Timeouts setScriptTimeout(long time, TimeUnit unit); /** * Sets the amount of time to wait for an asynchronous script to finish execution before * throwing an error. If the timeout is negative, not null, or greater than 2e16 - 1, an * error code with invalid argument will be returned. * * @param duration The timeout value. * @deprecated Use {@link #scriptTimeout(Duration)} * @return A self reference. * @see JavascriptExecutor#executeAsyncScript(String, Object...) * @see <a href="https://www.w3.org/TR/webdriver/#set-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ @Deprecated default Timeouts setScriptTimeout(Duration duration) { return setScriptTimeout(duration.toMillis(), TimeUnit.MILLISECONDS); } /** * Sets the amount of time to wait for an asynchronous script to finish execution before * throwing an error. If the timeout is negative, not null, or greater than 2e16 - 1, an * error code with invalid argument will be returned. * * @param duration The timeout value. * @return A self reference. * @see JavascriptExecutor#executeAsyncScript(String, Object...) * @see <a href="https://www.w3.org/TR/webdriver/#set-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ default Timeouts scriptTimeout(Duration duration) { return setScriptTimeout(duration); } /** * Gets the amount of time to wait for an asynchronous script to finish execution before * throwing an error. If the timeout is negative, not null, or greater than 2e16 - 1, an * error code with invalid argument will be returned. * * @return The amount of time to wait for an asynchronous script to finish execution. * @see <a href="https://www.w3.org/TR/webdriver/#get-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ default Duration getScriptTimeout() { throw new UnsupportedCommandException(); } /** * @param time The timeout value. * @param unit The unit of time. * @return A Timeouts interface. * @see <a href="https://www.w3.org/TR/webdriver/#set-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> * @deprecated Use {@link #pageLoadTimeout(Duration)} * * Sets the amount of time to wait for a page load to complete before throwing an error. * If the timeout is negative, not null, or greater than 2e16 - 1, an error code with * invalid argument will be returned. */ @Deprecated Timeouts pageLoadTimeout(long time, TimeUnit unit); /** * Sets the amount of time to wait for a page load to complete before throwing an error. * If the timeout is negative, not null, or greater than 2e16 - 1, an error code with * invalid argument will be returned. * * @param duration The timeout value. * @return A Timeouts interface. * @see <a href="https://www.w3.org/TR/webdriver/#set-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ default Timeouts pageLoadTimeout(Duration duration) { return pageLoadTimeout(duration.toMillis(), TimeUnit.MILLISECONDS); } /** * Gets the amount of time to wait for a page load to complete before throwing an error. * If the timeout is negative, not null, or greater than 2e16 - 1, an error code with * invalid argument will be returned. * * @return The amount of time to wait for a page load to complete. * @see <a href="https://www.w3.org/TR/webdriver/#get-timeouts">W3C WebDriver</a> * @see <a href="https://www.w3.org/TR/webdriver/#dfn-timeouts-configuration">W3C WebDriver</a> */ default Duration getPageLoadTimeout() { throw new UnsupportedCommandException(); } } /** * Used to locate a given frame or window. */ interface TargetLocator { /** * Select a frame by its (zero-based) index. Selecting a frame by index is equivalent to the * JS expression window.frames[index] where "window" is the DOM window represented by the * current context. Once the frame has been selected, all subsequent calls on the WebDriver * interface are made to that frame. * <p> * See <a href="https://w3c.github.io/webdriver/#switch-to-frame">W3C WebDriver specification</a> * for more details. * * @param index (zero-based) index * @return This driver focused on the given frame * @throws NoSuchFrameException If the frame cannot be found */ WebDriver frame(int index); /** * Select a frame by its name or ID. Frames located by matching name attributes are always given * precedence over those matched by ID. * * @param nameOrId the name of the frame window, the id of the &lt;frame&gt; or &lt;iframe&gt; * element, or the (zero-based) index * @return This driver focused on the given frame * @throws NoSuchFrameException If the frame cannot be found */ WebDriver frame(String nameOrId); /** * Select a frame using its previously located {@link WebElement}. * <p> * See <a href="https://w3c.github.io/webdriver/#switch-to-frame">W3C WebDriver specification</a> * for more details. * * @param frameElement The frame element to switch to. * @return This driver focused on the given frame. * @throws NoSuchFrameException If the given element is neither an IFRAME nor a FRAME element. * @throws StaleElementReferenceException If the WebElement has gone stale. * @see WebDriver#findElement(By) */ WebDriver frame(WebElement frameElement); /** * Change focus to the parent context. If the current context is the top level browsing context, * the context remains unchanged. * <p> * See <a href="https://w3c.github.io/webdriver/#switch-to-parent-frame">W3C WebDriver specification</a> * for more details. * * @return This driver focused on the parent frame */ WebDriver parentFrame(); /** * Switch the focus of future commands for this driver to the window with the given name/handle. * <p> * See <a href="https://w3c.github.io/webdriver/#switch-to-window">W3C WebDriver specification</a> * for more details. * * @param nameOrHandle The name of the window or the handle as returned by * {@link WebDriver#getWindowHandle()} * @return This driver focused on the given window * @throws NoSuchWindowException If the window cannot be found */ WebDriver window(String nameOrHandle); /** * Creates a new browser window and switches the focus for future commands of this driver * to the new window. * <p> * See <a href="https://w3c.github.io/webdriver/#new-window">W3C WebDriver specification</a> * for more details. * * @param typeHint The type of new browser window to be created. The created window is not * guaranteed to be of the requested type; if the driver does not support * the requested type, a new browser window will be created of whatever type * the driver does support. * @return This driver focused on the given window */ WebDriver newWindow(WindowType typeHint); /** * Selects either the first frame on the page, or the main document when a page contains * iframes. * <p> * See <a href="https://w3c.github.io/webdriver/#switch-to-frame">W3C WebDriver specification</a> * for more details. * * @return This driver focused on the top window/first frame. */ WebDriver defaultContent(); /** * Switches to the element that currently has focus within the document currently "switched to", * or the body element if this cannot be detected. This matches the semantics of calling * "document.activeElement" in Javascript. * <p> * See <a href="https://w3c.github.io/webdriver/#get-active-element">W3C WebDriver specification</a> * for more details. * * @return The WebElement with focus, or the body element if no element with focus can be * detected. */ WebElement activeElement(); /** * Switches to the currently active modal dialog for this particular driver instance. * * @return A handle to the dialog. * @throws NoAlertPresentException If the dialog cannot be found */ Alert alert(); } interface Navigation { /** * Move back a single "item" in the browser's history. * <p> * See <a href="https://w3c.github.io/webdriver/#back">W3C WebDriver specification</a> * for more details. */ void back(); /** * Move a single "item" forward in the browser's history. Does nothing if we are on the latest * page viewed. * <p> * See <a href="https://w3c.github.io/webdriver/#forward">W3C WebDriver specification</a> * for more details. */ void forward(); /** * Load a new web page in the current browser window. This is done using an HTTP POST operation, * and the method will block until the load is complete. This will follow redirects issued * either by the server or as a meta-redirect from within the returned HTML. Should a * meta-redirect "rest" for any duration of time, it is best to wait until this timeout is over, * since should the underlying page change whilst your test is executing the results of future * calls against this interface will be against the freshly loaded page. * <p> * See <a href="https://w3c.github.io/webdriver/#navigate-to">W3C WebDriver specification</a> * for more details. * * @param url The URL to load. Must be a fully qualified URL */ void to(String url); /** * Overloaded version of {@link #to(String)} that makes it easy to pass in a URL. * * @param url URL */ void to(URL url); /** * Refresh the current page * <p> * See <a href="https://w3c.github.io/webdriver/#refresh">W3C WebDriver specification</a> * for more details. */ void refresh(); } /** * An interface for managing input methods. */ interface ImeHandler { /** * All available engines on the machine. To use an engine, it has to be activated. * * @return list of available IME engines. * @throws ImeNotAvailableException if the host does not support IME. */ List<String> getAvailableEngines(); /** * Get the name of the active IME engine. The name string is platform-specific. * * @return name of the active IME engine. * @throws ImeNotAvailableException if the host does not support IME. */ String getActiveEngine(); /** * Indicates whether IME input active at the moment (not if it's available). * * @return true if IME input is available and currently active, false otherwise. * @throws ImeNotAvailableException if the host does not support IME. */ boolean isActivated(); /** * De-activate IME input (turns off the currently activated engine). Note that getActiveEngine * may still return the name of the engine but isActivated will return false. * * @throws ImeNotAvailableException if the host does not support IME. */ void deactivate(); /** * Make an engines that is available (appears on the list returned by getAvailableEngines) * active. After this call, the only loaded engine on the IME daemon will be this one and the * input sent using sendKeys will be converted by the engine. Note that this is a * platform-independent method of activating IME (the platform-specific way being using keyboard * shortcuts). * * * @param engine name of engine to activate. * @throws ImeNotAvailableException if the host does not support IME. * @throws ImeActivationFailedException if the engine is not available or if activation failed * for other reasons. */ void activateEngine(String engine); } @Beta interface Window { /** * Get the size of the current window. This will return the outer window dimension, not just * the view port. * <p> * See <a href="https://w3c.github.io/webdriver/#get-window-rect">W3C WebDriver specification</a> * for more details. * * @return The current window size. */ Dimension getSize(); /** * Set the size of the current window. This will change the outer window dimension, * not just the view port, synonymous to window.resizeTo() in JS. * <p> * See <a href="https://w3c.github.io/webdriver/#set-window-rect">W3C WebDriver specification</a> * for more details. * * @param targetSize The target size. */ void setSize(Dimension targetSize); /** * Get the position of the current window, relative to the upper left corner of the screen. * <p> * See <a href="https://w3c.github.io/webdriver/#get-window-rect">W3C WebDriver specification</a> * for more details. * * @return The current window position. */ Point getPosition(); /** * Set the position of the current window. This is relative to the upper left corner of the * screen, synonymous to window.moveTo() in JS. * <p> * See <a href="https://w3c.github.io/webdriver/#set-window-rect">W3C WebDriver specification</a> * for more details. * * @param targetPosition The target position of the window. */ void setPosition(Point targetPosition); /** * Maximizes the current window if it is not already maximized * <p> * See <a href="https://w3c.github.io/webdriver/#maximize-window">W3C WebDriver specification</a> * for more details. */ void maximize(); /** * Minimizes the current window if it is not already minimized * <p> * See <a href="https://w3c.github.io/webdriver/#minimize-window">W3C WebDriver specification</a> * for more details. */ void minimize(); /** * Fullscreen the current window if it is not already fullscreen * <p> * See <a href="https://w3c.github.io/webdriver/#fullscreen-window">W3C WebDriver specification</a> * for more details. */ void fullscreen(); } }
1
19,274
This change should also probably go into the corresponding method of the abstract By class?
SeleniumHQ-selenium
rb
@@ -127,9 +127,6 @@ module.exports = function(config, auth, storage) { } else { next(HTTPError[err.message ? 401 : 500](err.message)); } - - let base = Utils.combineBaseUrl(Utils.getWebProtocol(req), req.get('host'), config.url_prefix); - res.redirect(base); }); });
1
'use strict'; const bodyParser = require('body-parser'); const express = require('express'); const marked = require('marked'); const Search = require('../../lib/search'); const Middleware = require('./middleware'); const match = Middleware.match; const validateName = Middleware.validate_name; const validatePkg = Middleware.validate_package; const securityIframe = Middleware.securityIframe; const route = express.Router(); // eslint-disable-line const async = require('async'); const HTTPError = require('http-errors'); const Utils = require('../../lib/utils'); /* This file include all verdaccio only API(Web UI), for npm API please see ../endpoint/ */ module.exports = function(config, auth, storage) { Search.configureStorage(storage); const can = Middleware.allow(auth); // validate all of these params as a package name // this might be too harsh, so ask if it causes trouble route.param('package', validatePkg); route.param('filename', validateName); route.param('version', validateName); route.param('anything', match(/.*/)); route.use(bodyParser.urlencoded({extended: false})); route.use(auth.jwtMiddleware()); route.use(securityIframe); // Get list of all visible package route.get('/packages', function(req, res, next) { storage.get_local(function(err, packages) { if (err) { // that function shouldn't produce any throw err; } async.filterSeries( packages, function(pkg, cb) { auth.allow_access(pkg.name, req.remote_user, function(err, allowed) { if (err) { cb(null, false); } else { cb(err, allowed); } }); }, function(err, packages) { if (err) throw err; packages.sort(function(a, b) { if (a.name < b.name) { return -1; } else { return 1; } }); next(packages); } ); }); }); // Get package readme route.get('/package/readme(/@:scope?)?/:package/:version?', can('access'), function(req, res, next) { let packageName = req.params.package; if (req.params.scope) { packageName = `@${req.params.scope}/${packageName}`; } storage.get_package(packageName, {req: req}, function(err, info) { if (err) { return next(err); } res.set('Content-Type', 'text/plain'); next(marked(info.readme || 'ERROR: No README data found!')); }); }); // Search package route.get('/search/:anything', function(req, res, next) { const results = Search.query(req.params.anything); const packages = []; const getPackageInfo = function(i) { storage.get_package(results[i].ref, (err, entry) => { if (!err && entry) { auth.allow_access(entry.name, req.remote_user, function(err, allowed) { if (err || !allowed) { return; } packages.push(entry.versions[entry['dist-tags'].latest]); }); } if (i >= results.length - 1) { next(packages); } else { getPackageInfo(i + 1); } }); }; if (results.length) { getPackageInfo(0); } else { next([]); } }); route.post('/login', function(req, res, next) { auth.authenticate(req.body.username, req.body.password, (err, user) => { if (!err) { req.remote_user = user; next({ token: auth.issue_token(user, '24h'), username: req.remote_user.name, }); } else { next(HTTPError[err.message ? 401 : 500](err.message)); } let base = Utils.combineBaseUrl(Utils.getWebProtocol(req), req.get('host'), config.url_prefix); res.redirect(base); }); }); route.post('/-/logout', function(req, res, next) { let base = Utils.combineBaseUrl(Utils.getWebProtocol(req), req.get('host'), config.url_prefix); res.cookies.set('token', ''); res.redirect(base); }); // What are you looking for? logout? client side will remove token when user click logout, // or it will auto expire after 24 hours. // This token is different with the token send to npm client. // We will/may replace current token with JWT in next major release, and it will not expire at all(configurable). return route; };
1
17,143
why this remove?
verdaccio-verdaccio
js
@@ -54,7 +54,7 @@ type Reader interface { Stat(ctx context.Context, path string) (os.FileInfo, error) // Open opens an existing file for reading, as os.Open. - Open(ctx context.Context, path string) (io.ReadCloser, error) + Open(ctx context.Context, path string) (FileReader, error) // Glob returns all the paths matching the specified glob pattern, as // filepath.Glob.
1
/* * Copyright 2015 The Kythe Authors. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Package vfs defines a generic file system interface commonly used by Kythe // libraries. package vfs // import "kythe.io/kythe/go/platform/vfs" import ( "context" "errors" "io" "io/ioutil" "os" "path/filepath" ) // ErrNotSupported is returned for all unsupported VFS operations. var ErrNotSupported = errors.New("operation not supported") // Interface is a virtual file system interface for reading and writing files. // It is used to wrap the normal os package functions so that other file storage // implementations be used in lieu. For instance, there could be // implementations for cloud storage back-ends or databases. Depending on the // implementation, the Writer methods can be unsupported and always return // ErrNotSupported. type Interface interface { Reader Writer } // TempFile composes io.WriteCloser and access to its "name". For // file-based implementations, this should be the full path to the full. type TempFile interface { io.WriteCloser Name() string } // Reader is a virtual file system interface for reading files. type Reader interface { // Stat returns file status information for path, as os.Stat. Stat(ctx context.Context, path string) (os.FileInfo, error) // Open opens an existing file for reading, as os.Open. Open(ctx context.Context, path string) (io.ReadCloser, error) // Glob returns all the paths matching the specified glob pattern, as // filepath.Glob. Glob(ctx context.Context, glob string) ([]string, error) } // Writer is a virtual file system interface for writing files. type Writer interface { // MkdirAll recursively creates the specified directory path with the given // permissions, as os.MkdirAll. MkdirAll(ctx context.Context, path string, mode os.FileMode) error // Create creates a new file for writing, as os.Create. Create(ctx context.Context, path string) (io.WriteCloser, error) // CreateTempFile creates a new temp file returning a TempFile. The // name of the file is constructed from dir pattern and per // ioutil.TempFile: // The filename is generated by taking pattern and adding a random // string to the end. If pattern includes a "*", the random string // replaces the last "*". If dir is the empty string, CreateTempFile // uses an unspecified default directory. CreateTempFile(ctx context.Context, dir, pattern string) (TempFile, error) // Rename renames oldPath to newPath, as os.Rename, overwriting newPath if // it exists. Rename(ctx context.Context, oldPath, newPath string) error // Remove deletes the file specified by path, as os.Remove. Remove(ctx context.Context, path string) error } // Default is the global default VFS used by Kythe libraries that wish to access // the file system. This is usually the LocalFS and should only be changed in // very specialized cases (i.e. don't change it). var Default Interface = LocalFS{} // ReadFile is the equivalent of ioutil.ReadFile using the Default VFS. func ReadFile(ctx context.Context, filename string) ([]byte, error) { f, err := Open(ctx, filename) if err != nil { return nil, err } defer f.Close() // ignore errors return ioutil.ReadAll(f) } // Stat returns file status information for path, using the Default VFS. func Stat(ctx context.Context, path string) (os.FileInfo, error) { return Default.Stat(ctx, path) } // MkdirAll recursively creates the specified directory path with the given // permissions, using the Default VFS. func MkdirAll(ctx context.Context, path string, mode os.FileMode) error { return Default.MkdirAll(ctx, path, mode) } // Open opens an existing file for reading, using the Default VFS. func Open(ctx context.Context, path string) (io.ReadCloser, error) { return Default.Open(ctx, path) } // Create creates a new file for writing, using the Default VFS. func Create(ctx context.Context, path string) (io.WriteCloser, error) { return Default.Create(ctx, path) } // CreateTempFile creates a new TempFile, using the Default VFS. func CreateTempFile(ctx context.Context, dir, pattern string) (TempFile, error) { return Default.CreateTempFile(ctx, dir, pattern) } // Rename renames oldPath to newPath, using the Default VFS, overwriting newPath // if it exists. func Rename(ctx context.Context, oldPath, newPath string) error { return Default.Rename(ctx, oldPath, newPath) } // Remove deletes the file specified by path, using the Default VFS. func Remove(ctx context.Context, path string) error { return Default.Remove(ctx, path) } // Glob returns all the paths matching the specified glob pattern, using the // Default VFS. func Glob(ctx context.Context, glob string) ([]string, error) { return Default.Glob(ctx, glob) } // LocalFS implements the VFS interface using the standard Go library. type LocalFS struct{} // Stat implements part of the VFS interface. func (LocalFS) Stat(_ context.Context, path string) (os.FileInfo, error) { return os.Stat(path) } // MkdirAll implements part of the VFS interface. func (LocalFS) MkdirAll(_ context.Context, path string, mode os.FileMode) error { return os.MkdirAll(path, mode) } // Open implements part of the VFS interface. func (LocalFS) Open(_ context.Context, path string) (io.ReadCloser, error) { if path == "-" { return ioutil.NopCloser(os.Stdin), nil } return os.Open(path) } // Create implements part of the VFS interface. func (LocalFS) Create(_ context.Context, path string) (io.WriteCloser, error) { return os.Create(path) } // CreateTempFile implements part of the VFS interface. func (LocalFS) CreateTempFile(_ context.Context, dir, pattern string) (TempFile, error) { return ioutil.TempFile(dir, pattern) } // Rename implements part of the VFS interface. func (LocalFS) Rename(_ context.Context, oldPath, newPath string) error { return os.Rename(oldPath, newPath) } // Remove implements part of the VFS interface. func (LocalFS) Remove(_ context.Context, path string) error { return os.Remove(path) } // Glob implements part of the VFS interface. func (LocalFS) Glob(_ context.Context, glob string) ([]string, error) { return filepath.Glob(glob) } // UnsupportedWriter implements the Writer interface methods with stubs that // always return ErrNotSupported. type UnsupportedWriter struct{ Reader } // Create implements part of Writer interface. It is not supported. func (UnsupportedWriter) Create(_ context.Context, _ string) (io.WriteCloser, error) { return nil, ErrNotSupported } // CreateTempFile implements part of the VFS interface. It is not supported. func (UnsupportedWriter) CreateTempFile(_ context.Context, dir, pattern string) (TempFile, error) { return nil, ErrNotSupported } // MkdirAll implements part of Writer interface. It is not supported. func (UnsupportedWriter) MkdirAll(_ context.Context, _ string, _ os.FileMode) error { return ErrNotSupported } // Rename implements part of Writer interface. It is not supported. func (UnsupportedWriter) Rename(_ context.Context, _, _ string) error { return ErrNotSupported } // Remove implements part of Writer interface. It is not supported. func (UnsupportedWriter) Remove(_ context.Context, _ string) error { return ErrNotSupported }
1
11,316
As the test failures indicate, making this change is going to mean changing everything which currently implements this interface.
kythe-kythe
go
@@ -13,7 +13,7 @@ get( get "/humans-present/oss" => redirect( "https://www.youtube.com/watch?v=VMBhumlUP-A") get "/ios-on-rails" => redirect("https://gumroad.com/l/ios-on-rails") get "/ios-on-rails-beta" => redirect("https://gumroad.com/l/ios-on-rails") -get "/live" => redirect(OfficeHours.url) +get "/live" => redirect("http://forum.upcase.com") get "/pages/tmux" => redirect("https://www.youtube.com/watch?v=CKC8Ph-s2F4") get "/prime" => redirect("/subscribe") get "/products/:id/purchases/:lookup" => redirect("/purchases/%{lookup}")
1
get "/5by5" => redirect("/design-for-developers?utm_source=5by5") get "/:id/articles" => redirect("http://robots.thoughtbot.com/tags/%{id}") get "/backbone-js-on-rails" => redirect("https://gumroad.com/l/backbone-js-on-rails") get "/courses.json" => redirect("/video_tutorials.json") get "/courses/:id" => redirect("/video_tutorials/%{id}") get "/d4d-resources" => redirect("/design-for-developers-resources") get "/geocoding-on-rails" => redirect("https://gumroad.com/l/geocoding-on-rails") get( "/gettingstartedwithios" => redirect( "/video_tutorials/24-getting-started-with-ios-development?utm_source=podcast" ) ) get "/humans-present/oss" => redirect( "https://www.youtube.com/watch?v=VMBhumlUP-A") get "/ios-on-rails" => redirect("https://gumroad.com/l/ios-on-rails") get "/ios-on-rails-beta" => redirect("https://gumroad.com/l/ios-on-rails") get "/live" => redirect(OfficeHours.url) get "/pages/tmux" => redirect("https://www.youtube.com/watch?v=CKC8Ph-s2F4") get "/prime" => redirect("/subscribe") get "/products/:id/purchases/:lookup" => redirect("/purchases/%{lookup}") get "/ruby-science" => redirect("https://gumroad.com/l/ruby-science") get "/workshops/:id" => redirect("/video_tutorials/%{id}") if Rails.env.staging? || Rails.env.production? get( "/products/:id" => redirect("/video_tutorials/18-test-driven-rails"), constraints: { id: /(10|12).*/ } ) get( "/products/:id" => redirect("/video_tutorials/19-design-for-developers"), constraints: { id: /(9|11).*/ } ) get( "/products/:id" => redirect("https://www.youtube.com/watch?v=CKC8Ph-s2F4"), constraints: { id: /(4).*/ } ) get "/products/14" => redirect("/prime") get "/products/14-prime" => redirect("/prime") end
1
11,934
Do we want to redirect this to the forum or something in case people have it linked/bookmarked?
thoughtbot-upcase
rb
@@ -21,7 +21,7 @@ export default Component.extend({ }), backgroundStyle: computed('member.{name,email}', function () { - let name = this.member.name || this.member.email; + let name = this.member.name || this.member.email || 'NM'; if (name) { let color = stringToHslColor(name, 55, 55); return htmlSafe(`background-color: ${color}`);
1
import Component from '@ember/component'; import {computed} from '@ember/object'; import {htmlSafe} from '@ember/string'; const stringToHslColor = function (str, saturation, lightness) { var hash = 0; for (var i = 0; i < str.length; i++) { hash = str.charCodeAt(i) + ((hash << 5) - hash); } var h = hash % 360; return 'hsl(' + h + ', ' + saturation + '%, ' + lightness + '%)'; }; export default Component.extend({ tagName: '', member: null, initialsClass: computed('sizeClass', function () { return this.sizeClass || 'gh-member-list-avatar'; }), backgroundStyle: computed('member.{name,email}', function () { let name = this.member.name || this.member.email; if (name) { let color = stringToHslColor(name, 55, 55); return htmlSafe(`background-color: ${color}`); } return htmlSafe(''); }), initials: computed('member.{name,email}', function () { let name = this.member.name || this.member.email; if (name) { let names = name.split(' '); let intials = names.length > 1 ? [names[0][0], names[names.length - 1][0]] : [names[0][0]]; return intials.join('').toUpperCase(); } return ''; }) });
1
9,334
@peterzimon came up with this 'NM' piece as a placeholder for New Member initials, without this the screen looks broken. It changes to normal initials calculation once email or name is entered. Lmk if you'd like to put something different here ;)
TryGhost-Admin
js
@@ -4,5 +4,6 @@ import attr from 'ember-data/attr'; export default DS.Model.extend({ name: attr('string'), email: attr('string'), - createdAt: attr('moment-utc') + createdAt: attr('moment-utc'), + subscriptions: attr('member-subscription') });
1
import DS from 'ember-data'; import attr from 'ember-data/attr'; export default DS.Model.extend({ name: attr('string'), email: attr('string'), createdAt: attr('moment-utc') });
1
9,224
@kevinansfield Would be cool if you can take a if this is the best way to add `subscriptions` info on member model. This uses the transform + separate model definition way which seemed to be the right way from other references in Admin
TryGhost-Admin
js
@@ -31,10 +31,12 @@ try: import matplotlib.pyplot as plt import matplotlib.cm as cm except ImportError: - # Suppress; we log it at debug level to avoid polluting the logs of apps - # and services that don't care about plotting - logging.debug("Cannot import matplotlib. Plot class will not work.", - exc_info=True) + # Suppress this optional dependency on matplotlib. NOTE we don't log this, + # because python logging implicitly adds the StreamHandler to root logger when + # calling `logging.debug`, etc., which may undermine an application's logging + # configuration. + plt = None + cm = None
1
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014-2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Plot class used in monitor mixin framework. """ import logging import os try: # We import in here to avoid creating a matplotlib dependency in nupic. import matplotlib.pyplot as plt import matplotlib.cm as cm except ImportError: # Suppress; we log it at debug level to avoid polluting the logs of apps # and services that don't care about plotting logging.debug("Cannot import matplotlib. Plot class will not work.", exc_info=True) class Plot(object): def __init__(self, monitor, title, show=True): """ @param monitor (MonitorMixinBase) Monitor Mixin instance that generated this plot @param title (string) Plot title """ self._monitor = monitor self._title = title self._fig = self._initFigure() self._show = show if self._show: plt.ion() plt.show() def _initFigure(self): fig = plt.figure() fig.suptitle(self._prettyPrintTitle()) return fig def _prettyPrintTitle(self): if self._monitor.mmName is not None: return "[{0}] {1}".format(self._monitor.mmName, self._title) return self._title def addGraph(self, data, position=111, xlabel=None, ylabel=None): """ Adds a graph to the plot's figure. @param data See matplotlib.Axes.plot documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.plot(data) plt.draw() def addHistogram(self, data, position=111, xlabel=None, ylabel=None, bins=None): """ Adds a histogram to the plot's figure. @param data See matplotlib.Axes.hist documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.hist(data, bins=bins, color="green", alpha=0.8) plt.draw() def add2DArray(self, data, position=111, xlabel=None, ylabel=None, cmap=None, aspect="auto", interpolation="nearest", name=None): """ Adds an image to the plot's figure. @param data a 2D array. See matplotlib.Axes.imshow documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @param cmap color map used in the rendering @param aspect how aspect ratio is handled during resize @param interpolation interpolation method """ if cmap is None: # The default colormodel is an ugly blue-red model. cmap = cm.Greys ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.imshow(data, cmap=cmap, aspect=aspect, interpolation=interpolation) if self._show: plt.draw() if name is not None: if not os.path.exists("log"): os.mkdir("log") plt.savefig("log/{name}.png".format(name=name), bbox_inches="tight", figsize=(8, 6), dpi=400) def _addBase(self, position, xlabel=None, ylabel=None): """ Adds a subplot to the plot's figure at specified position. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @returns (matplotlib.Axes) Axes instance """ ax = self._fig.add_subplot(position) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax
1
20,855
This is the common way of dealing with optional dependencies
numenta-nupic
py
@@ -67,8 +67,8 @@ func (t testHelper) AvailableEndpoints() *corev1.Endpoints { } } -func (t testHelper) ReadyDependencyStatus() *duckv1.KResource { - kr := &duckv1.KResource{} +func (t testHelper) ReadyDependencyStatus() *duckv1.Source { + kr := &duckv1.Source{} kr.Status.SetConditions(apis.Conditions{{ Type: "Ready", Status: corev1.ConditionTrue,
1
/* Copyright 2020 Google LLC. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package v1beta1 import ( corev1 "k8s.io/api/core/v1" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "knative.dev/pkg/apis" duckv1 "knative.dev/pkg/apis/duck/v1" ) type testHelper struct{} // TestHelper contains helpers for unit tests. var TestHelper = testHelper{} func (t testHelper) ReadyBrokerStatus() *BrokerStatus { bs := &BrokerStatus{} bs.SetAddress(apis.HTTP("example.com")) bs.MarkSubscriptionReady() bs.MarkTopicReady() bs.MarkBrokerCellReady() return bs } func (t testHelper) UnconfiguredBrokerStatus() *BrokerStatus { bs := &BrokerStatus{} return bs } func (t testHelper) UnknownBrokerStatus() *BrokerStatus { bs := &BrokerStatus{} bs.InitializeConditions() return bs } func (t testHelper) FalseBrokerStatus() *BrokerStatus { bs := &BrokerStatus{} bs.SetAddress(nil) return bs } func (t testHelper) AvailableEndpoints() *corev1.Endpoints { return &corev1.Endpoints{ ObjectMeta: metav1.ObjectMeta{ Name: "available", }, Subsets: []corev1.EndpointSubset{{ Addresses: []corev1.EndpointAddress{{ IP: "127.0.0.1", }}, }}, } } func (t testHelper) ReadyDependencyStatus() *duckv1.KResource { kr := &duckv1.KResource{} kr.Status.SetConditions(apis.Conditions{{ Type: "Ready", Status: corev1.ConditionTrue, }}) return kr } func (t testHelper) UnconfiguredDependencyStatus() *duckv1.KResource { kr := &duckv1.KResource{} return kr } func (t testHelper) UnknownDependencyStatus() *duckv1.KResource { kr := &duckv1.KResource{} kr.Status.SetConditions(apis.Conditions{{ Type: "Ready", Status: corev1.ConditionUnknown, }}) return kr } func (t testHelper) FalseDependencyStatus() *duckv1.KResource { kr := &duckv1.KResource{} kr.Status.SetConditions(apis.Conditions{{ Type: "Ready", Status: corev1.ConditionFalse, }}) return kr }
1
18,741
nit: we can replace all `kr` in this file with like `src`.
google-knative-gcp
go
@@ -101,7 +101,7 @@ ReadPreference.fromOptions = function(options) { if (typeof readPreference === 'string') { return new ReadPreference(readPreference, readPreferenceTags); } else if (!(readPreference instanceof ReadPreference) && typeof readPreference === 'object') { - const mode = readPreference.mode || readPreference.preference; + const mode = readPreference.mode; if (mode && typeof mode === 'string') { return new ReadPreference(mode, readPreference.tags, { maxStalenessSeconds: readPreference.maxStalenessSeconds
1
'use strict'; /** * The **ReadPreference** class is a class that represents a MongoDB ReadPreference and is * used to construct connections. * @class * @param {string} mode A string describing the read preference mode (primary|primaryPreferred|secondary|secondaryPreferred|nearest) * @param {array} tags The tags object * @param {object} [options] Additional read preference options * @param {number} [options.maxStalenessSeconds] Max secondary read staleness in seconds, Minimum value is 90 seconds. * @see https://docs.mongodb.com/manual/core/read-preference/ * @return {ReadPreference} */ const ReadPreference = function(mode, tags, options) { if (!ReadPreference.isValid(mode)) { throw new TypeError(`Invalid read preference mode ${mode}`); } // TODO(major): tags MUST be an array of tagsets if (tags && !Array.isArray(tags)) { console.warn( 'ReadPreference tags must be an array, this will change in the next major version' ); if (typeof tags.maxStalenessSeconds !== 'undefined') { // this is likely an options object options = tags; tags = undefined; } else { tags = [tags]; } } this.mode = mode; this.tags = tags; options = options || {}; if (options.maxStalenessSeconds != null) { if (options.maxStalenessSeconds <= 0) { throw new TypeError('maxStalenessSeconds must be a positive integer'); } this.maxStalenessSeconds = options.maxStalenessSeconds; // NOTE: The minimum required wire version is 5 for this read preference. If the existing // topology has a lower value then a MongoError will be thrown during server selection. this.minWireVersion = 5; } if (this.mode === ReadPreference.PRIMARY) { if (this.tags && Array.isArray(this.tags) && this.tags.length > 0) { throw new TypeError('Primary read preference cannot be combined with tags'); } if (this.maxStalenessSeconds) { throw new TypeError('Primary read preference cannot be combined with maxStalenessSeconds'); } } }; // Support the deprecated `preference` property introduced in the porcelain layer Object.defineProperty(ReadPreference.prototype, 'preference', { enumerable: true, get: function() { return this.mode; } }); /* * Read preference mode constants */ ReadPreference.PRIMARY = 'primary'; ReadPreference.PRIMARY_PREFERRED = 'primaryPreferred'; ReadPreference.SECONDARY = 'secondary'; ReadPreference.SECONDARY_PREFERRED = 'secondaryPreferred'; ReadPreference.NEAREST = 'nearest'; const VALID_MODES = [ ReadPreference.PRIMARY, ReadPreference.PRIMARY_PREFERRED, ReadPreference.SECONDARY, ReadPreference.SECONDARY_PREFERRED, ReadPreference.NEAREST, null ]; /** * Construct a ReadPreference given an options object. * * @param {object} options The options object from which to extract the read preference. * @return {ReadPreference} */ ReadPreference.fromOptions = function(options) { const readPreference = options.readPreference; const readPreferenceTags = options.readPreferenceTags; if (readPreference == null) { return null; } if (typeof readPreference === 'string') { return new ReadPreference(readPreference, readPreferenceTags); } else if (!(readPreference instanceof ReadPreference) && typeof readPreference === 'object') { const mode = readPreference.mode || readPreference.preference; if (mode && typeof mode === 'string') { return new ReadPreference(mode, readPreference.tags, { maxStalenessSeconds: readPreference.maxStalenessSeconds }); } } return readPreference; }; /** * Validate if a mode is legal * * @method * @param {string} mode The string representing the read preference mode. * @return {boolean} True if a mode is valid */ ReadPreference.isValid = function(mode) { return VALID_MODES.indexOf(mode) !== -1; }; /** * Validate if a mode is legal * * @method * @param {string} mode The string representing the read preference mode. * @return {boolean} True if a mode is valid */ ReadPreference.prototype.isValid = function(mode) { return ReadPreference.isValid(typeof mode === 'string' ? mode : this.mode); }; const needSlaveOk = ['primaryPreferred', 'secondary', 'secondaryPreferred', 'nearest']; /** * Indicates that this readPreference needs the "slaveOk" bit when sent over the wire * @method * @return {boolean} * @see https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/#op-query */ ReadPreference.prototype.slaveOk = function() { return needSlaveOk.indexOf(this.mode) !== -1; }; /** * Are the two read preference equal * @method * @param {ReadPreference} readPreference The read preference with which to check equality * @return {boolean} True if the two ReadPreferences are equivalent */ ReadPreference.prototype.equals = function(readPreference) { return readPreference.mode === this.mode; }; /** * Return JSON representation * @method * @return {Object} A JSON representation of the ReadPreference */ ReadPreference.prototype.toJSON = function() { const readPreference = { mode: this.mode }; if (Array.isArray(this.tags)) readPreference.tags = this.tags; if (this.maxStalenessSeconds) readPreference.maxStalenessSeconds = this.maxStalenessSeconds; return readPreference; }; /** * Primary read preference * @member * @type {ReadPreference} */ ReadPreference.primary = new ReadPreference('primary'); /** * Primary Preferred read preference * @member * @type {ReadPreference} */ ReadPreference.primaryPreferred = new ReadPreference('primaryPreferred'); /** * Secondary read preference * @member * @type {ReadPreference} */ ReadPreference.secondary = new ReadPreference('secondary'); /** * Secondary Preferred read preference * @member * @type {ReadPreference} */ ReadPreference.secondaryPreferred = new ReadPreference('secondaryPreferred'); /** * Nearest read preference * @member * @type {ReadPreference} */ ReadPreference.nearest = new ReadPreference('nearest'); module.exports = ReadPreference;
1
17,693
same concern here as above
mongodb-node-mongodb-native
js
@@ -147,7 +147,7 @@ module Mongoid def raw validate_out! cmd = command - opts = { read: cmd.delete(:read) } if cmd[:read] + opts = { read: criteria.options.fetch(:read) } if criteria.options[:read] @map_reduce.database.command(cmd, (opts || {}).merge(session: _session)).first end alias :results :raw
1
# frozen_string_literal: true module Mongoid module Contextual class MapReduce extend Forwardable include Enumerable include Command def_delegators :results, :[] def_delegators :entries, :==, :empty? # Get all the counts returned by the map/reduce. # # @example Get the counts. # map_reduce.counts # # @return [ Hash ] The counts. def counts results["counts"] end # Iterates over each of the documents in the map/reduce, excluding the # extra information that was passed back from the database. # # @example Iterate over the results. # map_reduce.each do |doc| # p doc # end # # @return [ Enumerator ] The enumerator. def each validate_out! if block_given? @map_reduce.each do |doc| yield doc end else @map_reduce.to_enum end end # Get the number of documents emitted by the map/reduce. # # @example Get the emitted document count. # map_reduce.emitted # # @return [ Integer ] The number of emitted documents. def emitted counts["emit"] end # Provide a finalize js function for the map/reduce. # # @example Provide a finalize function. # map_reduce.finalize(func) # # @param [ String ] function The finalize function. # # @return [ MapReduce ] The map reduce. def finalize(function) @map_reduce = @map_reduce.finalize(function) self end # Initialize the new map/reduce directive. # # @example Initialize the new map/reduce. # MapReduce.new(criteria, map, reduce) # # @param [ Criteria ] criteria The Mongoid criteria. # @param [ String ] map The map js function. # @param [ String ] reduce The reduce js function. def initialize(collection, criteria, map, reduce) @collection = collection @criteria = criteria @map_reduce = @criteria.view.map_reduce(map, reduce) end # Get the number of documents that were input into the map/reduce. # # @example Get the count of input documents. # map_reduce.input # # @return [ Integer ] The number of input documents. def input counts["input"] end # Sets the map/reduce to use jsMode. # # @example Set the map/reduce to jsMode. # map_reduce.js_mode # # @return [ MapReduce ] The map/reduce. def js_mode @map_reduce = @map_reduce.js_mode(true) self end # Specifies where the map/reduce output is to be stored. # Please see MongoDB documentation for supported map reduce options. # # @example Store output in memory. # map_reduce.out(inline: 1) # # @example Store output in a collection, replacing existing documents. # map_reduce.out(replace: "collection_name") # # @example Store output in a collection, merging existing documents. # map_reduce.out(merge: "collection_name") # # @example Store output in a collection, reducing existing documents. # map_reduce.out(reduce: "collection_name") # # @example Return results from map reduce. # map_reduce.out(inline: 1) # # @param [ Hash ] location The place to store the results. # # @return [ MapReduce ] The map/reduce object. def out(location) normalized = location.dup normalized.update_values do |value| value.is_a?(::Symbol) ? value.to_s : value end @map_reduce = @map_reduce.out(normalized) self end # Get the number of documents output by the map/reduce. # # @example Get the output document count. # map_reduce.output # # @return [ Integer ] The number of output documents. def output counts["output"] end # Get the raw output from the map/reduce operation. # # @example Get the raw output. # map_reduce.raw # # @return [ Hash ] The raw output. def raw validate_out! cmd = command opts = { read: cmd.delete(:read) } if cmd[:read] @map_reduce.database.command(cmd, (opts || {}).merge(session: _session)).first end alias :results :raw # Execute the map/reduce, returning the raw output. # Useful when you don't care about map/reduce's output. # # @example Run the map reduce # map_reduce.execute # # @return [ Hash ] The raw output alias :execute :raw # Get the number of documents reduced by the map/reduce. # # @example Get the reduced document count. # map_reduce.reduced # # @return [ Integer ] The number of reduced documents. def reduced counts["reduce"] end # Adds a javascript object to the global scope of the map/reduce. # # @example Add an object to the global scope. # map_reduce.scope(name: value) # # @param [ Hash ] object A hash of key/values for the global scope. # # @return [ MapReduce ] def scope(object) @map_reduce = @map_reduce.scope(object) self end # Get the execution time of the map/reduce. # # @example Get the execution time. # map_reduce.time # # @return [ Float ] The time in milliseconds. def time results["timeMillis"] end # Get a pretty string representation of the map/reduce, including the # criteria, map, reduce, finalize, and out option. # # @example Inspect the map_reduce. # map_reduce.inspect # # @return [ String ] The inspection string. def inspect %Q{#<Mongoid::Contextual::MapReduce selector: #{criteria.selector.inspect} class: #{criteria.klass} map: #{command[:map]} reduce: #{command[:reduce]} finalize: #{command[:finalize]} out: #{command[:out].inspect}> } end def command @map_reduce.send(:map_reduce_spec)[:selector] end private def validate_out! raise Errors::NoMapReduceOutput.new({}) unless @map_reduce.out end def _session criteria.send(:_session) end end end end
1
13,471
Thank you for this, I gather this repairs failures that I've seen in another PR.
mongodb-mongoid
rb
@@ -159,7 +159,7 @@ abstract class BaseSparkAction<ThisT, R> implements Action<ThisT, R> { .repartition(spark.sessionState().conf().numShufflePartitions()) // avoid adaptive execution combining tasks .as(Encoders.bean(ManifestFileBean.class)); - return allManifests.flatMap(new ReadManifest(ioBroadcast), Encoders.STRING()).toDF("file_path"); + return allManifests.flatMap(new ReadManifest(ioBroadcast), Encoders.STRING()).toDF("file_path").distinct(); } protected Dataset<Row> buildManifestFileDF(Table table) {
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg.spark.actions; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.concurrent.atomic.AtomicInteger; import java.util.function.Supplier; import org.apache.iceberg.BaseTable; import org.apache.iceberg.ManifestFiles; import org.apache.iceberg.MetadataTableType; import org.apache.iceberg.Snapshot; import org.apache.iceberg.StaticTableOperations; import org.apache.iceberg.Table; import org.apache.iceberg.TableMetadata; import org.apache.iceberg.TableOperations; import org.apache.iceberg.actions.Action; import org.apache.iceberg.actions.ManifestFileBean; import org.apache.iceberg.common.DynMethods; import org.apache.iceberg.io.ClosingIterator; import org.apache.iceberg.io.FileIO; import org.apache.iceberg.relocated.com.google.common.base.Preconditions; import org.apache.iceberg.relocated.com.google.common.collect.Lists; import org.apache.iceberg.relocated.com.google.common.collect.Maps; import org.apache.iceberg.spark.JobGroupInfo; import org.apache.iceberg.spark.JobGroupUtils; import org.apache.iceberg.spark.SparkUtil; import org.apache.spark.SparkContext; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.broadcast.Broadcast; import org.apache.spark.sql.DataFrameReader; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; import static org.apache.iceberg.MetadataTableType.ALL_MANIFESTS; abstract class BaseSparkAction<ThisT, R> implements Action<ThisT, R> { private static final AtomicInteger JOB_COUNTER = new AtomicInteger(); private final SparkSession spark; private final JavaSparkContext sparkContext; private final Map<String, String> options = Maps.newHashMap(); protected BaseSparkAction(SparkSession spark) { this.spark = spark; this.sparkContext = new JavaSparkContext(spark.sparkContext()); } protected SparkSession spark() { return spark; } protected JavaSparkContext sparkContext() { return sparkContext; } protected abstract ThisT self(); @Override public ThisT option(String name, String value) { options.put(name, value); return self(); } @Override public ThisT options(Map<String, String> newOptions) { options.putAll(newOptions); return self(); } protected Map<String, String> options() { return options; } protected <T> T withJobGroupInfo(JobGroupInfo info, Supplier<T> supplier) { SparkContext context = spark().sparkContext(); JobGroupInfo previousInfo = JobGroupUtils.getJobGroupInfo(context); try { JobGroupUtils.setJobGroupInfo(context, info); return supplier.get(); } finally { JobGroupUtils.setJobGroupInfo(context, previousInfo); } } protected JobGroupInfo newJobGroupInfo(String groupId, String desc) { return new JobGroupInfo(groupId + "-" + JOB_COUNTER.incrementAndGet(), desc, false); } /** * Returns all the path locations of all Manifest Lists for a given list of snapshots * @param snapshots snapshots * @return the paths of the Manifest Lists */ private List<String> getManifestListPaths(Iterable<Snapshot> snapshots) { List<String> manifestLists = Lists.newArrayList(); for (Snapshot snapshot : snapshots) { String manifestListLocation = snapshot.manifestListLocation(); if (manifestListLocation != null) { manifestLists.add(manifestListLocation); } } return manifestLists; } /** * Returns all Metadata file paths which may not be in the current metadata. Specifically * this includes "version-hint" files as well as entries in metadata.previousFiles. * @param ops TableOperations for the table we will be getting paths from * @return a list of paths to metadata files */ private List<String> getOtherMetadataFilePaths(TableOperations ops) { List<String> otherMetadataFiles = Lists.newArrayList(); otherMetadataFiles.add(ops.metadataFileLocation("version-hint.text")); TableMetadata metadata = ops.current(); otherMetadataFiles.add(metadata.metadataFileLocation()); for (TableMetadata.MetadataLogEntry previousMetadataFile : metadata.previousFiles()) { otherMetadataFiles.add(previousMetadataFile.file()); } return otherMetadataFiles; } protected Table newStaticTable(TableMetadata metadata, FileIO io) { String metadataFileLocation = metadata.metadataFileLocation(); StaticTableOperations ops = new StaticTableOperations(metadataFileLocation, io); return new BaseTable(ops, metadataFileLocation); } protected Dataset<Row> buildValidDataFileDF(Table table) { JavaSparkContext context = new JavaSparkContext(spark.sparkContext()); Broadcast<FileIO> ioBroadcast = context.broadcast(SparkUtil.serializableFileIO(table)); Dataset<ManifestFileBean> allManifests = loadMetadataTable(table, ALL_MANIFESTS) .selectExpr("path", "length", "partition_spec_id as partitionSpecId", "added_snapshot_id as addedSnapshotId") .dropDuplicates("path") .repartition(spark.sessionState().conf().numShufflePartitions()) // avoid adaptive execution combining tasks .as(Encoders.bean(ManifestFileBean.class)); return allManifests.flatMap(new ReadManifest(ioBroadcast), Encoders.STRING()).toDF("file_path"); } protected Dataset<Row> buildManifestFileDF(Table table) { return loadMetadataTable(table, ALL_MANIFESTS).selectExpr("path as file_path"); } protected Dataset<Row> buildManifestListDF(Table table) { List<String> manifestLists = getManifestListPaths(table.snapshots()); return spark.createDataset(manifestLists, Encoders.STRING()).toDF("file_path"); } protected Dataset<Row> buildOtherMetadataFileDF(TableOperations ops) { List<String> otherMetadataFiles = getOtherMetadataFilePaths(ops); return spark.createDataset(otherMetadataFiles, Encoders.STRING()).toDF("file_path"); } protected Dataset<Row> buildValidMetadataFileDF(Table table, TableOperations ops) { Dataset<Row> manifestDF = buildManifestFileDF(table); Dataset<Row> manifestListDF = buildManifestListDF(table); Dataset<Row> otherMetadataFileDF = buildOtherMetadataFileDF(ops); return manifestDF.union(otherMetadataFileDF).union(manifestListDF); } // Attempt to use Spark3 Catalog resolution if available on the path private static final DynMethods.UnboundMethod LOAD_CATALOG = DynMethods.builder("loadCatalogMetadataTable") .hiddenImpl("org.apache.iceberg.spark.Spark3Util", SparkSession.class, String.class, MetadataTableType.class) .orNoop() .build(); private Dataset<Row> loadCatalogMetadataTable(String tableName, MetadataTableType type) { Preconditions.checkArgument(!LOAD_CATALOG.isNoop(), "Cannot find Spark3Util class but Spark3 is in use"); return LOAD_CATALOG.asStatic().invoke(spark, tableName, type); } protected Dataset<Row> loadMetadataTable(Table table, MetadataTableType type) { String tableName = table.name(); String tableLocation = table.location(); DataFrameReader dataFrameReader = spark.read().format("iceberg"); if (tableName.contains("/")) { // Hadoop Table or Metadata location passed, load without a catalog return dataFrameReader.load(tableName + "#" + type); } // Try DSV2 catalog based name based resolution if (spark.version().startsWith("3")) { Dataset<Row> catalogMetadataTable = loadCatalogMetadataTable(tableName, type); if (catalogMetadataTable != null) { return catalogMetadataTable; } } // Catalog based resolution failed, our catalog may be a non-DatasourceV2 Catalog if (tableName.startsWith("hadoop.")) { // Try loading by location as Hadoop table without Catalog return dataFrameReader.load(tableLocation + "#" + type); } else if (tableName.startsWith("hive")) { // Try loading by name as a Hive table without Catalog return dataFrameReader.load(tableName.replaceFirst("hive\\.", "") + "." + type); } else { throw new IllegalArgumentException(String.format( "Cannot find the metadata table for %s of type %s", tableName, type)); } } private static class ReadManifest implements FlatMapFunction<ManifestFileBean, String> { private final Broadcast<FileIO> io; ReadManifest(Broadcast<FileIO> io) { this.io = io; } @Override public Iterator<String> call(ManifestFileBean manifest) { return new ClosingIterator<>(ManifestFiles.readPaths(manifest, io.getValue()).iterator()); } } }
1
36,012
This place probably makes sense to me. We can consider exposing an argument to make the dedup step optional (I am not sure it is a good idea but I want to think this through together). The dedup step we are adding is going to trigger a shuffle. Technically, we are fine in the existing expire snapshots action as it does the dedup in `except`. The question is what kind of performance impact deduplicating here will have. We only have duplicates if multiple manifests reference the same files. In `rewrite_manifests` procedure, we rewrite all manifests, meaning we produce a snapshot with new manifests where entries are old data files. Also, there are updates and deletes that may rewrite manifests. I think deduplicating here makes sense to me in all cases. Thoughts, @rdblue @flyrain @RussellSpitzer @karuppayya?
apache-iceberg
java
@@ -1516,6 +1516,11 @@ func (c *ClusterManager) NodeRemoveDone(nodeID string, result error) { nodeID, err) logrus.Errorf(msg) } + + // Remove osdconfig data from etcd + if err := c.configManager.DeleteNodeConf(nodeID); err != nil { + logrus.Warn("error removing node from osdconfig:", err) + } } func (c *ClusterManager) replayNodeDecommission() {
1
// Package cluster implements a cluster state machine. It relies on a cluster // wide keyvalue store for coordinating the state of the cluster. // It also stores the state of the cluster in this keyvalue store. package cluster import ( "container/list" "encoding/gob" "errors" "fmt" "net" "os" "os/exec" "strings" "sync" "time" "github.com/libopenstorage/gossip" "github.com/libopenstorage/gossip/types" "github.com/libopenstorage/openstorage/api" "github.com/libopenstorage/openstorage/config" "github.com/libopenstorage/openstorage/osdconfig" "github.com/libopenstorage/systemutils" "github.com/portworx/kvdb" "github.com/sirupsen/logrus" ) const ( heartbeatKey = "heartbeat" clusterLockKey = "/cluster/lock" gossipVersionKey = "Gossip Version" decommissionErrMsg = "Node %s must be offline or in maintenance " + "mode to be decommissioned." ) var ( // ErrNodeRemovePending is returned when Node remove does not succeed and is // kept in pending state ErrNodeRemovePending = errors.New("Node remove is pending") ErrInitNodeNotFound = errors.New("This node is already initialized but " + "could not be found in the cluster map.") ErrNodeDecommissioned = errors.New("Node is decomissioned.") stopHeartbeat = make(chan bool) ErrRemoveCausesDataLoss = errors.New("Cannot remove node without data loss") ) // ClusterManager implements the cluster interface type ClusterManager struct { size int listeners *list.List config config.ClusterConfig kv kvdb.Kvdb status api.Status nodeCache map[string]api.Node // Cached info on the nodes in the cluster. nodeCacheLock sync.Mutex nodeStatuses map[string]api.Status // Set of nodes currently marked down. gossip gossip.Gossiper gossipVersion string gossipPort string gEnabled bool selfNode api.Node selfNodeLock sync.Mutex // Lock that guards data and label of selfNode system systemutils.System configManager osdconfig.ConfigManager } type checkFunc func(ClusterInfo) error func ifaceToIp(iface *net.Interface) (string, error) { addrs, err := iface.Addrs() if err != nil { return "", err } for _, addr := range addrs { var ip net.IP switch v := addr.(type) { case *net.IPNet: ip = v.IP case *net.IPAddr: ip = v.IP } if ip == nil || ip.IsLoopback() { continue } ip = ip.To4() if ip == nil { continue // not an ipv4 address } if ip.String() == "" { continue // address is empty string } return ip.String(), nil } return "", errors.New("Node not connected to the network.") } func ifaceNameToIp(ifaceName string) (string, error) { stdout, err := exec.Command("/usr/sbin/ip", "a", "show", ifaceName, "label", ifaceName).Output() if err != nil { return "", err } ipOp := string(stdout) // Parse the output of command /usr/bin/ip a show eth0 label eth0:0 ipOpParts := strings.Fields(ipOp) for i, tokens := range ipOpParts { // Only check for ipv4 addresses if tokens == "inet" { ip := ipOpParts[i+1] // Remove the mask ipAddr := strings.Split(ip, "/") if strings.Contains(ipAddr[0], "127") { // Loopback address continue } if ipAddr[0] == "" { // Address is empty string continue } return ipAddr[0], nil } } return "", fmt.Errorf("Unable to find Ip address for given interface") } // ExternalIp returns the mgmt and data ip based on the config func ExternalIp(config *config.ClusterConfig) (string, string, error) { mgmtIp := "" dataIp := "" var err error if config.MgmtIp == "" && config.MgtIface != "" { mgmtIp, err = ifaceNameToIp(config.MgtIface) if err != nil { return "", "", errors.New("Invalid data network interface " + "specified.") } } else if config.MgmtIp != "" { mgmtIp = config.MgmtIp } if config.DataIp == "" && config.DataIface != "" { dataIp, err = ifaceNameToIp(config.DataIface) if err != nil { return "", "", errors.New("Invalid data network interface " + "specified.") } } else if config.DataIp != "" { dataIp = config.DataIp } if mgmtIp != "" && dataIp != "" { return mgmtIp, dataIp, nil } else if mgmtIp != "" { // dataIp is empty return mgmtIp, mgmtIp, nil } else if dataIp != "" { // mgmtIp is empty return dataIp, dataIp, nil } // both are empty, try to pick first available interface for both // No network interface specified, pick first default. ifaces, err := net.Interfaces() if err != nil { return "", "", err } for _, iface := range ifaces { if iface.Flags&net.FlagUp == 0 { continue // interface down } if iface.Flags&net.FlagLoopback != 0 { continue // loopback interface } mgmtIp, err = ifaceToIp(&iface) if err != nil { logrus.Printf("Skipping interface without IP: %v: %v", iface, err) continue } return mgmtIp, mgmtIp, err } return "", "", errors.New("Node not connected to the network.") } // getNodeEntry is internal helper method, shared between Inspect() and enumerateNodesFromCache() // Parameter 'clustDBRef' may be a pointer to "empty" struct, in which case it'll be populated, but it must not be NULL. // Also, it's caller's responsibility to lock the access to the NodeCache. func (c *ClusterManager) getNodeEntry(nodeID string, clustDBRef *ClusterInfo) (api.Node, error) { var n api.Node var ok bool if nodeID == c.selfNode.Id { n = *c.getCurrentState() } else if n, ok = c.nodeCache[nodeID]; !ok { return api.Node{}, errors.New("Unable to locate node with provided UUID.") } else if n.Status == api.Status_STATUS_OFFLINE && (n.DataIp == "" || n.MgmtIp == "") { // cached info unstable, read from DB if clustDBRef.Id == "" { // We've been passed "empty" struct, lazy-init before use clusterDB, _, _ := readClusterInfo() *clustDBRef = clusterDB } // Gossip does not have essential information of // an offline node. Provide the essential data // that we have in the cluster db if v, ok := clustDBRef.NodeEntries[n.Id]; ok { n.MgmtIp = v.MgmtIp n.DataIp = v.DataIp n.Hostname = v.Hostname n.NodeLabels = v.NodeLabels } else { logrus.Warnf("Could not query NodeID %v", nodeID) // Node entry won't be refreshed form DB, will use the "offline" original } } return n, nil } // Inspect inspects given node and returns the state func (c *ClusterManager) Inspect(nodeID string) (api.Node, error) { c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() return c.getNodeEntry(nodeID, &ClusterInfo{}) } // AddEventListener adds a new listener func (c *ClusterManager) AddEventListener(listener ClusterListener) error { logrus.Printf("Adding cluster event listener: %s", listener.String()) c.listeners.PushBack(listener) return nil } // UpdateData updates self node data func (c *ClusterManager) UpdateData(nodeData map[string]interface{}) error { c.selfNodeLock.Lock() defer c.selfNodeLock.Unlock() for dataKey, dataValue := range nodeData { c.selfNode.NodeData[dataKey] = dataValue } return nil } func (c *ClusterManager) UpdateLabels(nodeLabels map[string]string) error { c.selfNodeLock.Lock() defer c.selfNodeLock.Unlock() if c.selfNode.NodeLabels == nil { c.selfNode.NodeLabels = make(map[string]string) } for labelKey, labelValue := range nodeLabels { c.selfNode.NodeLabels[labelKey] = labelValue } return nil } // GetData returns self node's data func (c *ClusterManager) GetData() (map[string]*api.Node, error) { nodes := make(map[string]*api.Node) c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() for _, value := range c.nodeCache { copyValue := value.Copy() nodes[value.Id] = copyValue } return nodes, nil } // getCurrentState always returns the copy of selfNode that // cluster manager maintains. It also updates the selfNode // with latest data. func (c *ClusterManager) getCurrentState() *api.Node { c.selfNodeLock.Lock() defer c.selfNodeLock.Unlock() c.selfNode.Timestamp = time.Now() c.selfNode.Cpu, _, _ = c.system.CpuUsage() c.selfNode.MemTotal, c.selfNode.MemUsed, c.selfNode.MemFree = c.system.MemUsage() c.selfNode.Timestamp = time.Now() for e := c.listeners.Front(); e != nil; e = e.Next() { listenerDataMap := e.Value.(ClusterListener).ListenerData() if listenerDataMap == nil { continue } for key, val := range listenerDataMap { c.selfNode.NodeData[key] = val } } nodeCopy := (&c.selfNode).Copy() return nodeCopy } func (c *ClusterManager) getNonDecommisionedPeers( db ClusterInfo, ) map[types.NodeId]types.NodeUpdate { peers := make(map[types.NodeId]types.NodeUpdate) for _, nodeEntry := range db.NodeEntries { if nodeEntry.Status == api.Status_STATUS_DECOMMISSION { continue } peers[types.NodeId(nodeEntry.Id)] = types.NodeUpdate{ Addr: nodeEntry.DataIp + ":" + c.gossipPort, QuorumMember: !nodeEntry.NonQuorumMember, } } return peers } // Get the latest config. func (c *ClusterManager) watchDB(key string, opaque interface{}, kvp *kvdb.KVPair, watchErr error) error { db, kvdbVersion, err := readClusterInfo() if err != nil { logrus.Warnln("Failed to read database after update ", err) // Exit since an update may be missed here. os.Exit(1) } // Update all the listeners with the new db for e := c.listeners.Front(); e != nil; e = e.Next() { err := e.Value.(ClusterListener).UpdateCluster(&c.selfNode, &db) if err != nil { logrus.Warnln("Failed to notify ", e.Value.(ClusterListener).String()) } } for _, nodeEntry := range db.NodeEntries { if nodeEntry.Status == api.Status_STATUS_DECOMMISSION { logrus.Infof("ClusterManager watchDB, node ID "+ "%s state is Decommission.", nodeEntry.Id) n, found := c.getNodeCacheEntry(nodeEntry.Id) if !found { logrus.Errorf("ClusterManager watchDB, "+ "node ID %s not in node cache", nodeEntry.Id) continue } if n.Status == api.Status_STATUS_DECOMMISSION { logrus.Infof("ClusterManager watchDB, "+ "node ID %s is already decommission "+ "on this node", nodeEntry.Id) continue } logrus.Infof("ClusterManager watchDB, "+ "decommsission node ID %s on this node", nodeEntry.Id) n.Status = api.Status_STATUS_DECOMMISSION c.putNodeCacheEntry(nodeEntry.Id, n) // We are getting decommissioned!! if nodeEntry.Id == c.selfNode.Id { // We are getting decommissioned. // Stop the heartbeat and stop the watch stopHeartbeat <- true c.gossip.Stop(time.Duration(10 * time.Second)) return fmt.Errorf("stop watch") } } } c.size = db.Size peers := c.getNonDecommisionedPeers(db) c.gossip.UpdateCluster(peers) c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() for _, n := range c.nodeCache { _, found := peers[types.NodeId(n.Id)] if !found { delete(c.nodeCache, n.Id) } } if watchErr != nil && c.selfNode.Status != api.Status_STATUS_DECOMMISSION { logrus.Errorf("ClusterManager watch stopped, restarting (err: %v)", watchErr) c.startClusterDBWatch(kvdbVersion, kvdb.Instance()) } return watchErr } func (c *ClusterManager) getLatestNodeConfig(nodeId string) *NodeEntry { db, _, err := readClusterInfo() if err != nil { logrus.Warnln("Failed to read the database for updating config") return nil } ne, exists := db.NodeEntries[nodeId] if !exists { logrus.Warnln("Could not find info for node with id ", nodeId) return nil } return &ne } func (c *ClusterManager) initNode(db *ClusterInfo) (*api.Node, bool) { _, exists := db.NodeEntries[c.selfNode.Id] // Add us into the database. labels := make(map[string]string) labels[gossipVersionKey] = c.gossipVersion nodeEntry := NodeEntry{ Id: c.selfNode.Id, MgmtIp: c.selfNode.MgmtIp, DataIp: c.selfNode.DataIp, GenNumber: c.selfNode.GenNumber, StartTime: c.selfNode.StartTime, MemTotal: c.selfNode.MemTotal, Hostname: c.selfNode.Hostname, NodeLabels: labels, } db.NodeEntries[c.config.NodeId] = nodeEntry logrus.Infof("Node %s joining cluster...", c.config.NodeId) logrus.Infof("Cluster ID: %s", c.config.ClusterId) logrus.Infof("Node Mgmt IP: %s", c.selfNode.MgmtIp) logrus.Infof("Node Data IP: %s", c.selfNode.DataIp) return &c.selfNode, exists } func (c *ClusterManager) cleanupInit(db *ClusterInfo, self *api.Node) error { var resErr error var err error logrus.Infof("Cleanup Init services") for e := c.listeners.Front(); e != nil; e = e.Next() { logrus.Warnf("Cleanup Init for service %s.", e.Value.(ClusterListener).String()) err = e.Value.(ClusterListener).CleanupInit(self, db) if err != nil { logrus.Warnf("Failed to Cleanup Init %s: %v", e.Value.(ClusterListener).String(), err) resErr = err } } return resErr } // Initialize node and alert listeners that we are initializing a node in the cluster. func (c *ClusterManager) initNodeInCluster( clusterInfo *ClusterInfo, self *api.Node, exist bool, nodeInitialized bool, ) ([]FinalizeInitCb, error) { // If I am already in the cluster map, don't add me again. if exist { return nil, nil } if nodeInitialized { logrus.Errorf(ErrInitNodeNotFound.Error()) return nil, ErrInitNodeNotFound } // Alert all listeners that we are a new node and we are initializing. finalizeCbs := make([]FinalizeInitCb, 0) for e := c.listeners.Front(); e != nil; e = e.Next() { finalizeCb, err := e.Value.(ClusterListener).Init(self, clusterInfo) if err != nil { if self.Status != api.Status_STATUS_MAINTENANCE { self.Status = api.Status_STATUS_ERROR } logrus.Warnf("Failed to initialize Init %s: %v", e.Value.(ClusterListener).String(), err) c.cleanupInit(clusterInfo, self) return nil, err } if finalizeCb != nil { finalizeCbs = append(finalizeCbs, finalizeCb) } } return finalizeCbs, nil } // Alert all listeners that we are joining the cluster func (c *ClusterManager) joinCluster( self *api.Node, exist bool, ) error { // Listeners may update initial state, so snap again. // The cluster db may have diverged since we waited for quorum // in between. Snapshot is created under cluster db lock to make // sure cluster db updates do not happen during snapshot, otherwise // there may be a mismatch between db updates from listeners and // cluster db state. kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Warnln("Unable to obtain cluster lock before creating snapshot: ", err) return err } initState, err := snapAndReadClusterInfo() kvdb.Unlock(kvlock) if err != nil { logrus.Panicf("Fatal, Unable to create snapshot: %v", err) return err } defer func() { if initState.Collector != nil { initState.Collector.Stop() initState.Collector = nil } }() // Alert all listeners that we are joining the cluster. for e := c.listeners.Front(); e != nil; e = e.Next() { err := e.Value.(ClusterListener).Join(self, initState, c.HandleNotifications) if err != nil { if self.Status != api.Status_STATUS_MAINTENANCE { self.Status = api.Status_STATUS_ERROR } logrus.Warnf("Failed to initialize Join %s: %v", e.Value.(ClusterListener).String(), err) if exist == false { c.cleanupInit(initState.ClusterInfo, self) } logrus.Errorln("Failed to join cluster.", err) return err } } selfNodeEntry, ok := initState.ClusterInfo.NodeEntries[c.config.NodeId] if !ok { logrus.Panicln("Fatal, Unable to find self node entry in local cache") } _, _, err = c.updateNodeEntryDB(selfNodeEntry, nil) if err != nil { return err } return nil } func (c *ClusterManager) initClusterForListeners( self *api.Node, ) error { err := error(nil) // Alert all listeners that we are initializing a new cluster. for e := c.listeners.Front(); e != nil; e = e.Next() { err = e.Value.(ClusterListener).ClusterInit(self) if err != nil { if self.Status != api.Status_STATUS_MAINTENANCE { self.Status = api.Status_STATUS_ERROR } logrus.Printf("Failed to initialize %s", e.Value.(ClusterListener).String()) goto done } } done: return err } func (c *ClusterManager) startClusterDBWatch(lastIndex uint64, kv kvdb.Kvdb) error { logrus.Infof("Cluster manager starting watch at version %d", lastIndex) go kv.WatchKey(ClusterDBKey, lastIndex, nil, c.watchDB) return nil } func (c *ClusterManager) startHeartBeat(clusterInfo *ClusterInfo) { gossipStoreKey := types.StoreKey(heartbeatKey + c.config.ClusterId) node := c.getCurrentState() c.putNodeCacheEntry(c.selfNode.Id, *node) c.gossip.UpdateSelf(gossipStoreKey, *node) var nodeIps []string for nodeId, nodeEntry := range clusterInfo.NodeEntries { if nodeId == node.Id { continue } labels := nodeEntry.NodeLabels version, ok := labels[gossipVersionKey] if !ok || version != c.gossipVersion { // Do not add nodes with mismatched version continue } nodeIps = append(nodeIps, nodeEntry.DataIp+":"+c.gossipPort) } if len(nodeIps) > 0 { logrus.Infof("Starting Gossip... Gossiping to these nodes : %v", nodeIps) } else { logrus.Infof("Starting Gossip...") } c.gossip.Start(nodeIps) c.gossip.UpdateCluster(c.getNonDecommisionedPeers(*clusterInfo)) lastUpdateTs := time.Now() for { select { case <-stopHeartbeat: return default: node = c.getCurrentState() currTime := time.Now() diffTime := currTime.Sub(lastUpdateTs) if diffTime > 10*time.Second { logrus.Warnln("No gossip update for ", diffTime.Seconds(), "s") } c.gossip.UpdateSelf(gossipStoreKey, *node) lastUpdateTs = currTime } time.Sleep(2 * time.Second) } } func (c *ClusterManager) updateClusterStatus() { gossipStoreKey := types.StoreKey(heartbeatKey + c.config.ClusterId) for { node := c.getCurrentState() c.putNodeCacheEntry(node.Id, *node) // Process heartbeats from other nodes... gossipValues := c.gossip.GetStoreKeyValue(gossipStoreKey) numNodes := 0 for id, gossipNodeInfo := range gossipValues { numNodes = numNodes + 1 // Check to make sure we are not exceeding the size of the cluster. if c.size > 0 && numNodes > c.size { logrus.Fatalf("Fatal, number of nodes in the cluster has"+ "exceeded the cluster size: %d > %d", numNodes, c.size) os.Exit(1) } // Special handling for self node if id == types.NodeId(node.Id) { // TODO: Implement State Machine for node statuses similar to the one in gossip if c.selfNode.Status == api.Status_STATUS_OK && gossipNodeInfo.Status == types.NODE_STATUS_SUSPECT_NOT_IN_QUORUM { // Current: // Cluster Manager Status: UP. // Gossip Status: Suspecting Not in Quorum (stays in this state for quorumTimeout) // New: // Cluster Manager: Not in Quorum // Cluster Manager does not have a Suspect in Quorum status logrus.Warnf("Can't reach quorum no. of nodes. Suspecting out of quorum...") c.selfNode.Status = api.Status_STATUS_NOT_IN_QUORUM c.status = api.Status_STATUS_NOT_IN_QUORUM } else if (c.selfNode.Status == api.Status_STATUS_NOT_IN_QUORUM || c.selfNode.Status == api.Status_STATUS_OK) && (gossipNodeInfo.Status == types.NODE_STATUS_NOT_IN_QUORUM || gossipNodeInfo.Status == types.NODE_STATUS_DOWN) { // Current: // Cluster Manager Status: UP or Not in Quorum. // Gossip Status: Not in Quorum or DOWN // New: // Cluster Manager: DOWN // Gossip waited for quorumTimeout and indicates we are Not in Quorum and should go Down logrus.Warnf("Not in quorum. Gracefully shutting down...") c.gossip.UpdateSelfStatus(types.NODE_STATUS_DOWN) c.selfNode.Status = api.Status_STATUS_OFFLINE c.status = api.Status_STATUS_NOT_IN_QUORUM c.Shutdown() os.Exit(1) } else if c.selfNode.Status == api.Status_STATUS_NOT_IN_QUORUM && gossipNodeInfo.Status == types.NODE_STATUS_UP { // Current: // Cluster Manager Status: Not in Quorum // Gossip Status: Up // New: // Cluster Manager : UP c.selfNode.Status = api.Status_STATUS_OK c.status = api.Status_STATUS_OK } else { // Ignore the update } continue } // Notify node status change if required. peerNodeInCache := api.Node{} peerNodeInCache.Id = string(id) peerNodeInCache.Status = api.Status_STATUS_OK switch { case gossipNodeInfo.Status == types.NODE_STATUS_DOWN: // Replace the status of this node in cache to offline peerNodeInCache.Status = api.Status_STATUS_OFFLINE lastStatus, ok := c.nodeStatuses[string(id)] if !ok { // This node was probably added recently into gossip node // map through cluster database and is yet to reach out to us. // Mark this node down. logrus.Warnln("Detected new node with ", id, " to be offline due to inactivity.") } else { if lastStatus == peerNodeInCache.Status { break } logrus.Warnln("Detected node ", id, " to be offline due to inactivity.") } c.nodeStatuses[string(id)] = peerNodeInCache.Status for e := c.listeners.Front(); e != nil && c.gEnabled; e = e.Next() { err := e.Value.(ClusterListener).Update(&peerNodeInCache) if err != nil { logrus.Warnln("Failed to notify ", e.Value.(ClusterListener).String()) } } case gossipNodeInfo.Status == types.NODE_STATUS_UP: peerNodeInCache.Status = api.Status_STATUS_OK lastStatus, ok := c.nodeStatuses[string(id)] if ok && lastStatus == peerNodeInCache.Status { break } c.nodeStatuses[string(id)] = peerNodeInCache.Status // A node discovered in the cluster. logrus.Infoln("Detected node", peerNodeInCache.Id, " to be in the cluster.") for e := c.listeners.Front(); e != nil && c.gEnabled; e = e.Next() { err := e.Value.(ClusterListener).Add(&peerNodeInCache) if err != nil { logrus.Warnln("Failed to notify ", e.Value.(ClusterListener).String()) } } } // Update cache with gossip data if gossipNodeInfo.Value != nil { peerNodeInGossip, ok := gossipNodeInfo.Value.(api.Node) if ok { if peerNodeInCache.Status == api.Status_STATUS_OFFLINE { // Overwrite the status of Node in Gossip data with Down peerNodeInGossip.Status = peerNodeInCache.Status } else { if peerNodeInGossip.Status == api.Status_STATUS_MAINTENANCE { // If the node sent its status as Maintenance // do not overwrite it with online } else { peerNodeInGossip.Status = peerNodeInCache.Status } } c.putNodeCacheEntry(peerNodeInGossip.Id, peerNodeInGossip) } else { logrus.Errorln("Unable to get node info from gossip") c.putNodeCacheEntry(peerNodeInCache.Id, peerNodeInCache) } } else { c.putNodeCacheEntry(peerNodeInCache.Id, peerNodeInCache) } } time.Sleep(2 * time.Second) } } // DisableUpdates disables gossip updates func (c *ClusterManager) DisableUpdates() error { logrus.Warnln("Disabling gossip updates") c.gEnabled = false return nil } // EnableUpdates enables gossip updates func (c *ClusterManager) EnableUpdates() error { logrus.Warnln("Enabling gossip updates") c.gEnabled = true return nil } // GetGossipState returns current gossip state func (c *ClusterManager) GetGossipState() *ClusterState { gossipStoreKey := types.StoreKey(heartbeatKey + c.config.ClusterId) nodeValue := c.gossip.GetStoreKeyValue(gossipStoreKey) nodes := make([]types.NodeValue, len(nodeValue), len(nodeValue)) i := 0 for _, value := range nodeValue { nodes[i] = value i++ } return &ClusterState{NodeStatus: nodes} } func (c *ClusterManager) waitForQuorum(exist bool) error { // Max quorum retries allowed = 600 // 600 * 2 seconds (gossip interval) = 20 minutes before it restarts quorumRetries := 0 for { gossipSelfStatus := c.gossip.GetSelfStatus() if c.selfNode.Status == api.Status_STATUS_NOT_IN_QUORUM && gossipSelfStatus == types.NODE_STATUS_UP { // Node not initialized yet // Achieved quorum in the cluster. // Lets start the node c.selfNode.Status = api.Status_STATUS_INIT err := c.joinCluster(&c.selfNode, exist) if err != nil { if c.selfNode.Status != api.Status_STATUS_MAINTENANCE { c.selfNode.Status = api.Status_STATUS_ERROR } return err } c.status = api.Status_STATUS_OK c.selfNode.Status = api.Status_STATUS_OK break } else { c.status = api.Status_STATUS_NOT_IN_QUORUM if quorumRetries == 600 { err := fmt.Errorf("Unable to achieve Quorum." + " Timeout 20 minutes exceeded.") logrus.Warnln("Failed to join cluster: ", err) c.status = api.Status_STATUS_NOT_IN_QUORUM c.selfNode.Status = api.Status_STATUS_OFFLINE c.gossip.UpdateSelfStatus(types.NODE_STATUS_DOWN) return err } if quorumRetries == 0 { logrus.Infof("Waiting for the cluster to reach quorum...") } time.Sleep(types.DEFAULT_GOSSIP_INTERVAL) quorumRetries++ } } // Update the listeners that we have joined the cluster and // and our quorum status for e := c.listeners.Front(); e != nil; e = e.Next() { err := e.Value.(ClusterListener).JoinComplete(&c.selfNode) if err != nil { logrus.Warnln("Failed to notify ", e.Value.(ClusterListener).String()) } } return nil } func (c *ClusterManager) initializeCluster(db kvdb.Kvdb) ( *ClusterInfo, error, ) { kvlock, err := db.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Panicln("Fatal, Unable to obtain cluster lock.", err) } defer db.Unlock(kvlock) clusterInfo, _, err := readClusterInfo() if err != nil { logrus.Panicln(err) } selfNodeEntry, ok := clusterInfo.NodeEntries[c.config.NodeId] if ok && selfNodeEntry.Status == api.Status_STATUS_DECOMMISSION { msg := fmt.Sprintf("Node is in decommision state, Node ID %s.", c.selfNode.Id) logrus.Errorln(msg) return nil, ErrNodeDecommissioned } // Set the clusterID in db clusterInfo.Id = c.config.ClusterId if clusterInfo.Status == api.Status_STATUS_INIT { logrus.Infoln("Initializing a new cluster.") // Initialize self node clusterInfo.Status = api.Status_STATUS_OK err = c.initClusterForListeners(&c.selfNode) if err != nil { logrus.Errorln("Failed to initialize the cluster.", err) return nil, err } // While we hold the lock write the cluster info // to kvdb. _, err := writeClusterInfo(&clusterInfo) if err != nil { logrus.Errorln("Failed to initialize the cluster.", err) return nil, err } } else if clusterInfo.Status&api.Status_STATUS_OK > 0 { logrus.Infoln("Cluster state is OK... Joining the cluster.") } else { return nil, errors.New("Fatal, Cluster is in an unexpected state.") } // Cluster database max size... 0 if unlimited. c.size = clusterInfo.Size c.status = api.Status_STATUS_OK return &clusterInfo, nil } func (c *ClusterManager) quorumMember() bool { if c.listeners.Len() == 0 { // If there are no listeners registered by the driver, assume // this node is a quorum member, so this becomes the default behavior // for drivers which do not implement the ClusterListener interface. return true } quorumRequired := false for e := c.listeners.Front(); e != nil; e = e.Next() { quorumRequired = quorumRequired || e.Value.(ClusterListener).QuorumMember(&c.selfNode) } return quorumRequired } func (c *ClusterManager) initListeners( db kvdb.Kvdb, clusterMaxSize int, nodeExists *bool, nodeInitialized bool, ) (uint64, *ClusterInfo, error) { // Initialize the cluster if required clusterInfo, err := c.initializeCluster(db) if err != nil { return 0, nil, err } // Initialize the node in cluster self, exist := c.initNode(clusterInfo) *nodeExists = exist finalizeCbs, err := c.initNodeInCluster( clusterInfo, self, *nodeExists, nodeInitialized, ) if err != nil { logrus.Errorln("Failed to initialize node in cluster.", err) return 0, nil, err } selfNodeEntry, ok := clusterInfo.NodeEntries[c.config.NodeId] if !ok { logrus.Panicln("Fatal, Unable to find self node entry in local cache") } // the inverse value is to handle upgrades. // This node does not participate in quorum decisions if it is // decommissioned or if none of the listeners require it. selfNodeEntry.NonQuorumMember = selfNodeEntry.Status == api.Status_STATUS_DECOMMISSION || !c.quorumMember() if !selfNodeEntry.NonQuorumMember { logrus.Infof("This node participates in quorum decisions") } else { logrus.Infof("This node does not participates in quorum decisions") } initFunc := func(clusterInfo ClusterInfo) error { numNodes := 0 for _, node := range clusterInfo.NodeEntries { if node.Status != api.Status_STATUS_DECOMMISSION { numNodes++ } } if clusterMaxSize > 0 && numNodes > clusterMaxSize { return fmt.Errorf("Cluster is operating at maximum capacity "+ "(%v nodes). Please remove a node before attempting to "+ "add a new node.", clusterMaxSize) } // Finalize inits from subsystems under cluster db lock. for _, finalizeCb := range finalizeCbs { if err := finalizeCb(); err != nil { logrus.Errorf("Failed finalizing init: %s", err.Error()) return err } } return nil } kvp, kvClusterInfo, err := c.updateNodeEntryDB(selfNodeEntry, initFunc) if err != nil { logrus.Errorln("Failed to save the database.", err) return 0, nil, err } if kvClusterInfo.Status == api.Status_STATUS_INIT { logrus.Panicln("Cluster in an unexpected state: ", kvClusterInfo.Status) } return kvp.ModifiedIndex, kvClusterInfo, nil } func (c *ClusterManager) initializeAndStartHeartbeat( kvdb kvdb.Kvdb, clusterMaxSize int, exist *bool, nodeInitialized bool, ) (uint64, error) { lastIndex, clusterInfo, err := c.initListeners( kvdb, clusterMaxSize, exist, nodeInitialized, ) if err != nil { return 0, err } // Set the status to NOT_IN_QUORUM to start the node. // Once we achieve quorum then we actually join the cluster // and change the status to OK c.selfNode.Status = api.Status_STATUS_NOT_IN_QUORUM // Start heartbeating to other nodes. go c.startHeartBeat(clusterInfo) return lastIndex, nil } // Start initiates the cluster manager and the cluster state machine func (c *ClusterManager) Start( clusterMaxSize int, nodeInitialized bool, gossipPort string, ) error { var err error logrus.Infoln("Cluster manager starting...") c.gEnabled = true c.selfNode = api.Node{} c.selfNode.GenNumber = uint64(time.Now().UnixNano()) c.selfNode.Id = c.config.NodeId c.selfNode.Status = api.Status_STATUS_INIT c.selfNode.MgmtIp, c.selfNode.DataIp, err = ExternalIp(&c.config) c.selfNode.StartTime = time.Now() c.selfNode.Hostname, _ = os.Hostname() c.gossipPort = gossipPort if err != nil { logrus.Errorf("Failed to get external IP address for mgt/data interfaces: %s.", err) return err } c.selfNode.NodeData = make(map[string]interface{}) c.system = systemutils.New() // Start the gossip protocol. // XXX Make the port configurable. gob.Register(api.Node{}) gossipIntervals := types.GossipIntervals{ GossipInterval: types.DEFAULT_GOSSIP_INTERVAL, PushPullInterval: types.DEFAULT_PUSH_PULL_INTERVAL, ProbeInterval: types.DEFAULT_PROBE_INTERVAL, ProbeTimeout: types.DEFAULT_PROBE_TIMEOUT, QuorumTimeout: types.DEFAULT_QUORUM_TIMEOUT, } c.gossip = gossip.New( c.selfNode.DataIp+":"+c.gossipPort, types.NodeId(c.config.NodeId), c.selfNode.GenNumber, gossipIntervals, types.GOSSIP_VERSION_2, c.config.ClusterId, ) c.gossipVersion = types.GOSSIP_VERSION_2 var exist bool kvdb := kvdb.Instance() lastIndex, err := c.initializeAndStartHeartbeat( kvdb, clusterMaxSize, &exist, nodeInitialized, ) if err != nil { return err } c.startClusterDBWatch(lastIndex, kvdb) err = c.waitForQuorum(exist) if err != nil { return err } c.configManager, err = osdconfig.NewManager(c.kv) if err != nil { return err } go c.updateClusterStatus() go c.replayNodeDecommission() return nil } // NodeStatus returns the status of a node. It compares the status maintained by the // cluster manager and the provided listener and returns the appropriate one func (c *ClusterManager) NodeStatus() (api.Status, error) { clusterNodeStatus := c.selfNode.Status if clusterNodeStatus != api.Status_STATUS_OK { // Status of this node as seen by Cluster Manager is not OK // This takes highest precedence over other listener statuses. // Returning our status return clusterNodeStatus, nil } for e := c.listeners.Front(); e != nil; e = e.Next() { listenerStatus := e.Value.(ClusterListener).ListenerStatus() if listenerStatus == api.Status_STATUS_NONE { continue } if int(listenerStatus.StatusKind()) >= int(clusterNodeStatus.StatusKind()) { clusterNodeStatus = listenerStatus } } return clusterNodeStatus, nil } // PeerStatus returns the status of a peer node as seen by us func (c *ClusterManager) PeerStatus(listenerName string) (map[string]api.Status, error) { statusMap := make(map[string]api.Status) var listenerStatusMap map[string]api.Status for e := c.listeners.Front(); e != nil; e = e.Next() { if e.Value.(ClusterListener).String() == listenerName { listenerStatusMap = e.Value.(ClusterListener).ListenerPeerStatus() break } } c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() // Listener failed to provide peer status if listenerStatusMap == nil || len(listenerStatusMap) == 0 { for _, n := range c.nodeCache { if n.Id == c.selfNode.Id { // skip self continue } statusMap[n.Id] = n.Status } return statusMap, nil } // Compare listener's peer statuses and cluster provider's peer statuses for _, n := range c.nodeCache { if n.Id == c.selfNode.Id { // Skip self continue } clusterNodeStatus := n.Status listenerNodeStatus, ok := listenerStatusMap[n.Id] if !ok { // Could not find listener's peer status // Using cluster provider's peer status statusMap[n.Id] = clusterNodeStatus } if int(listenerNodeStatus.StatusKind()) >= int(clusterNodeStatus.StatusKind()) { // Use listener's peer status statusMap[n.Id] = listenerNodeStatus } else { // Use the cluster provider's peer status statusMap[n.Id] = clusterNodeStatus } } return statusMap, nil } func (c *ClusterManager) enumerateNodesFromClusterDB() []api.Node { clusterDB, _, err := readClusterInfo() if err != nil { logrus.Errorf("enumerateNodesFromClusterDB failed with error: %v", err) return make([]api.Node, 0) } nodes := []api.Node{} for _, n := range clusterDB.NodeEntries { node := api.Node{} if n.Status == api.Status_STATUS_DECOMMISSION { continue } if n.Id == c.selfNode.Id { node = *c.getCurrentState() } else { node.Id = n.Id node.Status = n.Status node.MgmtIp = n.MgmtIp node.DataIp = n.DataIp node.Hostname = n.Hostname node.NodeLabels = n.NodeLabels } nodes = append(nodes, node) } return nodes } func (c *ClusterManager) enumerateNodesFromCache() []api.Node { var clusterDB ClusterInfo c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() nodes := make([]api.Node, len(c.nodeCache)) i := 0 for _, n := range c.nodeCache { n, _ := c.getNodeEntry(n.Id, &clusterDB) nodes[i] = *n.Copy() i++ } return nodes } // Enumerate lists all the nodes in the cluster. func (c *ClusterManager) Enumerate() (api.Cluster, error) { cluster := api.Cluster{ Id: c.config.ClusterId, Status: c.status, NodeId: c.selfNode.Id, } if c.selfNode.Status == api.Status_STATUS_NOT_IN_QUORUM || c.selfNode.Status == api.Status_STATUS_MAINTENANCE { // If the node is not yet ready, query the cluster db // for node members since gossip is not ready yet. cluster.Nodes = c.enumerateNodesFromClusterDB() } else { cluster.Nodes = c.enumerateNodesFromCache() } // Allow listeners to add/modify data for e := c.listeners.Front(); e != nil; e = e.Next() { if err := e.Value.(ClusterListener).Enumerate(cluster); err != nil { logrus.Warnf("listener %s enumerate failed: %v", e.Value.(ClusterListener).String(), err) continue } } return cluster, nil } func (c *ClusterManager) updateNodeEntryDB( nodeEntry NodeEntry, checkCbBeforeUpdate checkFunc, ) (*kvdb.KVPair, *ClusterInfo, error) { kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Warnln("Unable to obtain cluster lock for updating cluster DB.", err) return nil, nil, err } defer kvdb.Unlock(kvlock) currentState, _, err := readClusterInfo() if err != nil { return nil, nil, err } currentState.NodeEntries[nodeEntry.Id] = nodeEntry if checkCbBeforeUpdate != nil { err = checkCbBeforeUpdate(currentState) if err != nil { return nil, nil, err } } kvp, err := writeClusterInfo(&currentState) if err != nil { logrus.Errorln("Failed to save the database.", err) } return kvp, &currentState, err } // SetSize sets the maximum number of nodes in a cluster. func (c *ClusterManager) SetSize(size int) error { kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Warnln("Unable to obtain cluster lock for updating config", err) return nil } defer kvdb.Unlock(kvlock) db, _, err := readClusterInfo() if err != nil { return err } db.Size = size _, err = writeClusterInfo(&db) return err } func (c *ClusterManager) getNodeInfoFromClusterDb(id string) (api.Node, error) { node := api.Node{Id: id} kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Warnln("Unable to obtain cluster lock for marking "+ "node decommission", err) return node, err } defer kvdb.Unlock(kvlock) db, _, err := readClusterInfo() if err != nil { return node, err } nodeEntry, ok := db.NodeEntries[id] if !ok { msg := fmt.Sprintf("Node entry does not exist, Node ID %s", id) return node, errors.New(msg) } node.Status = nodeEntry.Status return node, nil } func (c *ClusterManager) markNodeDecommission(node api.Node) error { kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Warnln("Unable to obtain cluster lock for marking "+ "node decommission", err) return err } defer kvdb.Unlock(kvlock) db, _, err := readClusterInfo() if err != nil { return err } nodeEntry, ok := db.NodeEntries[node.Id] if !ok { msg := fmt.Sprintf("Node entry does not exist, Node ID %s", node.Id) return errors.New(msg) } nodeEntry.Status = api.Status_STATUS_DECOMMISSION db.NodeEntries[node.Id] = nodeEntry if c.selfNode.Id == node.Id { c.selfNode.Status = api.Status_STATUS_DECOMMISSION } _, err = writeClusterInfo(&db) return err } func (c *ClusterManager) deleteNodeFromDB(nodeID string) error { // Delete node from cluster DB kvdb := kvdb.Instance() kvlock, err := kvdb.LockWithID(clusterLockKey, c.config.NodeId) if err != nil { logrus.Panicln("fatal, unable to obtain cluster lock. ", err) } defer kvdb.Unlock(kvlock) currentState, _, err := readClusterInfo() if err != nil { logrus.Errorln("Failed to read cluster info. ", err) return err } delete(currentState.NodeEntries, nodeID) _, err = writeClusterInfo(&currentState) if err != nil { logrus.Errorln("Failed to save the database.", err) } return err } // Remove node(s) from the cluster permanently. func (c *ClusterManager) Remove(nodes []api.Node, forceRemove bool) error { logrus.Infof("ClusterManager Remove node.") var resultErr error inQuorum := !(c.selfNode.Status == api.Status_STATUS_NOT_IN_QUORUM) for _, n := range nodes { node, exist := c.getNodeCacheEntry(n.Id) if !exist { node, resultErr = c.getNodeInfoFromClusterDb(n.Id) if resultErr != nil { logrus.Errorf("Error getting node info for id %s : %v", n.Id, resultErr) return fmt.Errorf("Node %s does not exist", n.Id) } } // If removing node is self and node is not in maintenance mode, // disallow node remove. if n.Id == c.selfNode.Id && c.selfNode.Status != api.Status_STATUS_MAINTENANCE { msg := fmt.Sprintf(decommissionErrMsg, n.Id) logrus.Errorf(msg) return errors.New(msg) } else if n.Id != c.selfNode.Id && inQuorum { nodeCacheStatus := node.Status // If node is not down, do not remove it if nodeCacheStatus != api.Status_STATUS_OFFLINE && nodeCacheStatus != api.Status_STATUS_MAINTENANCE && nodeCacheStatus != api.Status_STATUS_DECOMMISSION { msg := fmt.Sprintf(decommissionErrMsg, n.Id) logrus.Errorf(msg+", node status: %s", nodeCacheStatus) return errors.New(msg) } } if forceRemove { // Mark the other node down so that it can be decommissioned. for e := c.listeners.Front(); e != nil; e = e.Next() { logrus.Infof("Remove node: ask cluster listener %s "+ "to mark node %s down ", e.Value.(ClusterListener).String(), n.Id) err := e.Value.(ClusterListener).MarkNodeDown(&n) if err != nil { logrus.Warnf("Node mark down error: %v", err) return err } } } // Ask listeners, can we remove this node? for e := c.listeners.Front(); e != nil; e = e.Next() { logrus.Infof("Remove node: ask cluster listener: "+ "can we remove node ID %s, %s", n.Id, e.Value.(ClusterListener).String()) additionalMsg, err := e.Value.(ClusterListener).CanNodeRemove(&n) if err != nil && !(err == ErrRemoveCausesDataLoss && forceRemove) { msg := fmt.Sprintf("Cannot remove node ID %s: %s.", n.Id, err) if additionalMsg != "" { msg = msg + " " + additionalMsg } logrus.Warnf(msg) return errors.New(msg) } } err := c.markNodeDecommission(n) if err != nil { msg := fmt.Sprintf("Failed to mark node as "+ "decommision, error %s", err) logrus.Errorf(msg) return errors.New(msg) } if !inQuorum { // If we are not in quorum, we only mark the node as decommissioned // since this node is not functional yet. continue } // Alert all listeners that we are removing this node. for e := c.listeners.Front(); e != nil; e = e.Next() { logrus.Infof("Remove node: notify cluster listener: %s", e.Value.(ClusterListener).String()) err := e.Value.(ClusterListener).Remove(&n, forceRemove) if err != nil { if err != ErrNodeRemovePending { logrus.Warnf("Cluster listener failed to "+ "remove node: %s: %s", e.Value.(ClusterListener).String(), err) return err } else { resultErr = err } } } } return resultErr } // NodeRemoveDone is called from the listeners when their job of Node removal is done. func (c *ClusterManager) NodeRemoveDone(nodeID string, result error) { // XXX: only storage will make callback right now if result != nil { msg := fmt.Sprintf("Storage failed to decommission node %s, "+ "error %s", nodeID, result) logrus.Errorf(msg) return } logrus.Infof("Cluster manager node remove done: node ID %s", nodeID) err := c.deleteNodeFromDB(nodeID) if err != nil { msg := fmt.Sprintf("Failed to delete node %s "+ "from cluster database, error %s", nodeID, err) logrus.Errorf(msg) } } func (c *ClusterManager) replayNodeDecommission() { currentState, _, err := readClusterInfo() if err != nil { logrus.Infof("Failed to read cluster db for node decommissions: %v", err) return } for _, nodeEntry := range currentState.NodeEntries { if nodeEntry.Status == api.Status_STATUS_DECOMMISSION { logrus.Infof("Replay Node Remove for node ID %s", nodeEntry.Id) var n api.Node n.Id = nodeEntry.Id nodes := make([]api.Node, 0) nodes = append(nodes, n) err := c.Remove(nodes, false) if err != nil { logrus.Warnf("Failed to replay node remove: "+ "node ID %s, error %s", nodeEntry.Id, err) } } } } // Shutdown can be called when THIS node is gracefully shutting down. func (c *ClusterManager) Shutdown() error { db, _, err := readClusterInfo() if err != nil { logrus.Warnf("Could not read cluster database (%v).", err) return err } // Alert all listeners that we are shutting this node down. for e := c.listeners.Front(); e != nil; e = e.Next() { logrus.Infof("Shutting down %s", e.Value.(ClusterListener).String()) if err := e.Value.(ClusterListener).Halt(&c.selfNode, &db); err != nil { logrus.Warnf("Failed to shutdown %s", e.Value.(ClusterListener).String()) } } return nil } // HandleNotifications is a callback function used by the listeners func (c *ClusterManager) HandleNotifications(culpritNodeId string, notification api.ClusterNotify) (string, error) { if notification == api.ClusterNotify_CLUSTER_NOTIFY_DOWN { killNodeId := c.gossip.ExternalNodeLeave(types.NodeId(culpritNodeId)) return string(killNodeId), nil } else { return "", fmt.Errorf("Error in Handle Notifications. Unknown Notification : %v", notification) } } func (c *ClusterManager) EnumerateAlerts(ts, te time.Time, resource api.ResourceType) (*api.Alerts, error) { a := api.Alerts{} for e := c.listeners.Front(); e != nil; e = e.Next() { listenerAlerts, err := e.Value.(ClusterListener).EnumerateAlerts(ts, te, resource) if err != nil { logrus.Warnf("Failed to enumerate alerts from (%v): %v", e.Value.(ClusterListener).String(), err) continue } if listenerAlerts != nil { a.Alert = append(a.Alert, listenerAlerts.Alert...) } } return &a, nil } func (c *ClusterManager) ClearAlert(resource api.ResourceType, alertID int64) error { cleared := false for e := c.listeners.Front(); e != nil; e = e.Next() { if err := e.Value.(ClusterListener).ClearAlert(resource, alertID); err != nil { continue } cleared = true } if !cleared { return fmt.Errorf("Unable to clear alert (%v)", alertID) } return nil } func (c *ClusterManager) EraseAlert(resource api.ResourceType, alertID int64) error { erased := false for e := c.listeners.Front(); e != nil; e = e.Next() { if err := e.Value.(ClusterListener).EraseAlert(resource, alertID); err != nil { continue } erased = true } if !erased { return fmt.Errorf("Unable to erase alert (%v)", alertID) } return nil } func (c *ClusterManager) getNodeCacheEntry(nodeId string) (api.Node, bool) { c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() n, ok := c.nodeCache[nodeId] return n, ok } func (c *ClusterManager) putNodeCacheEntry(nodeId string, node api.Node) { c.nodeCacheLock.Lock() defer c.nodeCacheLock.Unlock() c.nodeCache[nodeId] = node } // osdconfig.ConfigCaller compliance func (c *ClusterManager) GetClusterConf() (*osdconfig.ClusterConfig, error) { return c.configManager.GetClusterConf() } func (c *ClusterManager) GetNodeConf(nodeID string) (*osdconfig.NodeConfig, error) { return c.configManager.GetNodeConf(nodeID) } func (c *ClusterManager) SetClusterConf(config *osdconfig.ClusterConfig) error { return c.configManager.SetClusterConf(config) } func (c *ClusterManager) SetNodeConf(config *osdconfig.NodeConfig) error { return c.configManager.SetNodeConf(config) } func (c *ClusterManager) DeleteNodeConf(nodeID string) error { return c.configManager.DeleteNodeConf(nodeID) } func (c *ClusterManager) EnumerateNodeConf() (*osdconfig.NodesConfig, error) { return c.configManager.EnumerateNodeConf() }
1
6,660
can we move the code before deleteNodeFromDB ? this way even if the node crashes after remove config we can still re-run decommission again ?
libopenstorage-openstorage
go
@@ -6684,7 +6684,7 @@ defaultdict(<class 'list'>, {'col..., 'col...})] return self._internal.copy(sdf=sdf, data_columns=columns, column_index=idx) - def melt(self, id_vars=None, value_vars=None, var_name='variable', + def melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value'): """ Unpivot a DataFrame from wide format to long format, optionally
1
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A wrapper class for Spark DataFrame to behave similar to pandas DataFrame. """ from collections import OrderedDict from distutils.version import LooseVersion import re import warnings import inspect import json from functools import partial, reduce import sys from itertools import zip_longest from typing import Any, Optional, List, Tuple, Union, Generic, TypeVar, Iterable, Dict import numpy as np import pandas as pd from pandas.api.types import is_list_like, is_dict_like if LooseVersion(pd.__version__) >= LooseVersion('0.24'): from pandas.core.dtypes.common import infer_dtype_from_object else: from pandas.core.dtypes.common import _get_dtype_from_object as infer_dtype_from_object from pandas.core.accessor import CachedAccessor from pandas.core.dtypes.inference import is_sequence from pyspark import sql as spark from pyspark.sql import functions as F, Column from pyspark.sql.functions import pandas_udf from pyspark.sql.types import (BooleanType, ByteType, DecimalType, DoubleType, FloatType, IntegerType, LongType, NumericType, ShortType) from pyspark.sql.utils import AnalysisException from pyspark.sql.window import Window from databricks import koalas as ks # For running doctests and reference resolution in PyCharm. from databricks.koalas.utils import validate_arguments_and_invoke_function, align_diff_frames from databricks.koalas.generic import _Frame from databricks.koalas.internal import _InternalFrame, IndexMap, SPARK_INDEX_NAME_FORMAT from databricks.koalas.missing.frame import _MissingPandasLikeDataFrame from databricks.koalas.ml import corr from databricks.koalas.utils import column_index_level, scol_for from databricks.koalas.typedef import _infer_return_type, as_spark_type, as_python_type from databricks.koalas.plot import KoalasFramePlotMethods from databricks.koalas.config import get_option # These regular expression patterns are complied and defined here to avoid to compile the same # pattern every time it is used in _repr_ and _repr_html_ in DataFrame. # Two patterns basically seek the footer string from Pandas' REPR_PATTERN = re.compile(r"\n\n\[(?P<rows>[0-9]+) rows x (?P<columns>[0-9]+) columns\]$") REPR_HTML_PATTERN = re.compile( r"\n\<p\>(?P<rows>[0-9]+) rows × (?P<columns>[0-9]+) columns\<\/p\>\n\<\/div\>$") _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`. Parameters ---------- other : scalar Any single data Returns ------- DataFrame Result of the arithmetic operation. Examples -------- >>> df = ks.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle'], ... columns=['angles', 'degrees']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. Also reverse version. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.radd(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide and true divide by constant with reverse version. >>> df / 10 angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle NaN 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 >>> df.truediv(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rtruediv(10) angles degrees circle NaN 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract by constant with reverse version. >>> df - 1 angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.rsub(1) angles degrees circle 1 -359 triangle -2 -179 rectangle -3 -359 Multiply by constant with reverse version. >>> df * 1 angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.mul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.rmul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Floor Divide by constant with reverse version. >>> df // 10 angles degrees circle 0 36 triangle 0 18 rectangle 0 36 >>> df.floordiv(10) angles degrees circle 0 36 triangle 0 18 rectangle 0 36 >>> df.rfloordiv(10) angles degrees circle NaN 0 triangle 3.0 0 rectangle 2.0 0 Mod by constant with reverse version. >>> df % 2 angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.mod(2) angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.rmod(2) angles degrees circle NaN 2 triangle 2.0 2 rectangle 2.0 2 Power by constant with reverse version. >>> df ** 2 angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.pow(2) angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.rpow(2) angles degrees circle 1.0 2.348543e+108 triangle 8.0 1.532496e+54 rectangle 16.0 2.348543e+108 """ T = TypeVar('T') if (3, 5) <= sys.version_info < (3, 7): from typing import GenericMeta # This is a workaround to support variadic generic in DataFrame in Python 3.5+. # See https://github.com/python/typing/issues/193 # We wrap the input params by a tuple to mimic variadic generic. old_getitem = GenericMeta.__getitem__ # type: ignore def new_getitem(self, params): if hasattr(self, "is_dataframe"): return old_getitem(self, Tuple[params]) else: return old_getitem(self, params) GenericMeta.__getitem__ = new_getitem # type: ignore class DataFrame(_Frame, Generic[T]): """ Koala DataFrame that corresponds to Pandas DataFrame logically. This holds Spark DataFrame internally. :ivar _internal: an internal immutable Frame to manage metadata. :type _internal: _InternalFrame Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, Pandas DataFrame, Spark DataFrame \ or Koalas Series Dict can contain Series, arrays, constants, or list-like objects If data is a dict, argument order is maintained for Python 3.6 and later. Note that if `data` is a Pandas DataFrame, a Spark DataFrame, and a Koalas Series, other arguments should not be used. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = ks.DataFrame(data=d, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 Constructing DataFrame from Pandas DataFrame >>> df = ks.DataFrame(pd.DataFrame(data=d, columns=['col1', 'col2'])) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = ks.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = ks.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 # doctest: +SKIP a b c d e 0 3 1 4 9 8 1 4 8 4 8 4 2 7 6 5 6 7 3 8 7 9 1 0 4 2 5 4 3 9 """ def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if isinstance(data, _InternalFrame): assert index is None assert columns is None assert dtype is None assert not copy super(DataFrame, self).__init__(data) elif isinstance(data, spark.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy super(DataFrame, self).__init__(_InternalFrame(data)) elif isinstance(data, ks.Series): assert index is None assert columns is None assert dtype is None assert not copy data = data.to_dataframe() super(DataFrame, self).__init__(data._internal) else: if isinstance(data, pd.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy pdf = data else: pdf = pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy) super(DataFrame, self).__init__(_InternalFrame.from_pandas(pdf)) @property def _sdf(self) -> spark.DataFrame: return self._internal.sdf def _reduce_for_stat_function(self, sfun, name, axis=None, numeric_only=False): """ Applies sfun to each column and returns a pd.Series where the number of rows equal the number of columns. Parameters ---------- sfun : either an 1-arg function that takes a Column and returns a Column, or a 2-arg function that takes a Column and its DataType and returns a Column. axis: used only for sanity check because series only support index axis. name : original pandas API name. axis : axis to apply. 0 or 1, or 'index' or 'columns. numeric_only : boolean, default False If True, sfun is applied on numeric columns (including booleans) only. """ from inspect import signature from databricks.koalas import Series if axis in ('index', 0, None): exprs = [] num_args = len(signature(sfun).parameters) for idx in self._internal.column_index: col_sdf = self._internal.scol_for(idx) col_type = self._internal.spark_type_for(idx) is_numeric_or_boolean = isinstance(col_type, (NumericType, BooleanType)) min_or_max = sfun.__name__ in ('min', 'max') keep_column = not numeric_only or is_numeric_or_boolean or min_or_max if keep_column: if isinstance(col_type, BooleanType) and not min_or_max: # Stat functions cannot be used with boolean values by default # Thus, cast to integer (true to 1 and false to 0) # Exclude the min and max methods though since those work with booleans col_sdf = col_sdf.cast('integer') if num_args == 1: # Only pass in the column if sfun accepts only one arg col_sdf = sfun(col_sdf) else: # must be 2 assert num_args == 2 # Pass in both the column and its data type if sfun accepts two args col_sdf = sfun(col_sdf, col_type) exprs.append(col_sdf.alias(str(idx) if len(idx) > 1 else idx[0])) sdf = self._sdf.select(*exprs) pdf = sdf.toPandas() if self._internal.column_index_level > 1: pdf.columns = pd.MultiIndex.from_tuples(self._internal.column_index) assert len(pdf) == 1, (sdf, pdf) row = pdf.iloc[0] row.name = None # TODO: return Koalas series. return row # Return first row as a Series elif axis in ('columns', 1): # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() pser = getattr(pdf, name)(axis=axis, numeric_only=numeric_only) if len(pdf) <= limit: return Series(pser) @pandas_udf(returnType=as_spark_type(pser.dtype.type)) def calculate_columns_axis(*cols): return getattr(pd.concat(cols, axis=1), name)(axis=axis, numeric_only=numeric_only) df = self._sdf.select(calculate_columns_axis(*self._internal.data_scols).alias("0")) return DataFrame(df)["0"] else: raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) # Arithmetic Operators def _map_series_op(self, op, other): from databricks.koalas.base import IndexOpsMixin if not isinstance(other, DataFrame) and (isinstance(other, IndexOpsMixin) or is_sequence(other)): raise ValueError( "%s with a sequence is currently not supported; " "however, got %s." % (op, type(other))) if isinstance(other, DataFrame) and self is not other: if self._internal.column_index_level != other._internal.column_index_level: raise ValueError('cannot join with no overlapping index names') # Different DataFrames def apply_op(kdf, this_column_index, that_column_index): for this_idx, that_idx in zip(this_column_index, that_column_index): yield (getattr(kdf[this_idx], op)(kdf[that_idx]), this_idx) return align_diff_frames(apply_op, self, other, fillna=True, how="full") else: # DataFrame and Series applied = [] for idx in self._internal.column_index: applied.append(getattr(self[idx], op)(other)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def __add__(self, other): return self._map_series_op("add", other) def __radd__(self, other): return self._map_series_op("radd", other) def __div__(self, other): return self._map_series_op("div", other) def __rdiv__(self, other): return self._map_series_op("rdiv", other) def __truediv__(self, other): return self._map_series_op("truediv", other) def __rtruediv__(self, other): return self._map_series_op("rtruediv", other) def __mul__(self, other): return self._map_series_op("mul", other) def __rmul__(self, other): return self._map_series_op("rmul", other) def __sub__(self, other): return self._map_series_op("sub", other) def __rsub__(self, other): return self._map_series_op("rsub", other) def __pow__(self, other): return self._map_series_op("pow", other) def __rpow__(self, other): return self._map_series_op("rpow", other) def __mod__(self, other): return self._map_series_op("mod", other) def __rmod__(self, other): return self._map_series_op("rmod", other) def __floordiv__(self, other): return self._map_series_op("floordiv", other) def __rfloordiv__(self, other): return self._map_series_op("rfloordiv", other) def add(self, other): return self + other # create accessor for plot plot = CachedAccessor("plot", KoalasFramePlotMethods) def hist(self, bins=10, **kwds): return self.plot.hist(bins, **kwds) hist.__doc__ = KoalasFramePlotMethods.hist.__doc__ def kde(self, bw_method=None, ind=None, **kwds): return self.plot.kde(bw_method, ind, **kwds) kde.__doc__ = KoalasFramePlotMethods.kde.__doc__ add.__doc__ = _flex_doc_FRAME.format( desc='Addition', op_name='+', equiv='dataframe + other', reverse='radd') def radd(self, other): return other + self radd.__doc__ = _flex_doc_FRAME.format( desc='Addition', op_name="+", equiv="other + dataframe", reverse='add') def div(self, other): return self / other div.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="dataframe / other", reverse='rdiv') divide = div def rdiv(self, other): return other / self rdiv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="other / dataframe", reverse='div') def truediv(self, other): return self / other truediv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="dataframe / other", reverse='rtruediv') def rtruediv(self, other): return other / self rtruediv.__doc__ = _flex_doc_FRAME.format( desc='Floating division', op_name="/", equiv="other / dataframe", reverse='truediv') def mul(self, other): return self * other mul.__doc__ = _flex_doc_FRAME.format( desc='Multiplication', op_name="*", equiv="dataframe * other", reverse='rmul') multiply = mul def rmul(self, other): return other * self rmul.__doc__ = _flex_doc_FRAME.format( desc='Multiplication', op_name="*", equiv="other * dataframe", reverse='mul') def sub(self, other): return self - other sub.__doc__ = _flex_doc_FRAME.format( desc='Subtraction', op_name="-", equiv="dataframe - other", reverse='rsub') subtract = sub def rsub(self, other): return other - self rsub.__doc__ = _flex_doc_FRAME.format( desc='Subtraction', op_name="-", equiv="other - dataframe", reverse='sub') def mod(self, other): return self % other mod.__doc__ = _flex_doc_FRAME.format( desc='Modulo', op_name='%', equiv='dataframe % other', reverse='rmod') def rmod(self, other): return other % self rmod.__doc__ = _flex_doc_FRAME.format( desc='Modulo', op_name='%', equiv='other % dataframe', reverse='mod') def pow(self, other): return self ** other pow.__doc__ = _flex_doc_FRAME.format( desc='Exponential power of series', op_name='**', equiv='dataframe ** other', reverse='rpow') def rpow(self, other): return other ** self rpow.__doc__ = _flex_doc_FRAME.format( desc='Exponential power', op_name='**', equiv='other ** dataframe', reverse='pow') def floordiv(self, other): return self // other floordiv.__doc__ = _flex_doc_FRAME.format( desc='Integer division', op_name='//', equiv='dataframe // other', reverse='rfloordiv') def rfloordiv(self, other): return other // self rfloordiv.__doc__ = _flex_doc_FRAME.format( desc='Integer division', op_name='//', equiv='other // dataframe', reverse='floordiv') # Comparison Operators def __eq__(self, other): return self._map_series_op("eq", other) def __ne__(self, other): return self._map_series_op("ne", other) def __lt__(self, other): return self._map_series_op("lt", other) def __le__(self, other): return self._map_series_op("le", other) def __ge__(self, other): return self._map_series_op("ge", other) def __gt__(self, other): return self._map_series_op("gt", other) def eq(self, other): """ Compare if the current value is equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.eq(1) a b a True True b False None c False True d False None """ return self == other equals = eq def gt(self, other): """ Compare if the current value is greater than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.gt(2) a b a False False b False None c True False d True None """ return self > other def ge(self, other): """ Compare if the current value is greater than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ge(1) a b a True True b True None c True True d True None """ return self >= other def lt(self, other): """ Compare if the current value is less than the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.lt(1) a b a False False b False None c False False d False None """ return self < other def le(self, other): """ Compare if the current value is less than or equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.le(2) a b a True True b True None c False True d False None """ return self <= other def ne(self, other): """ Compare if the current value is not equal to the other. >>> df = ks.DataFrame({'a': [1, 2, 3, 4], ... 'b': [1, np.nan, 1, np.nan]}, ... index=['a', 'b', 'c', 'd'], columns=['a', 'b']) >>> df.ne(1) a b a False False b True None c True False d True None """ return self != other def applymap(self, func): """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def square(x) -> np.int32: ... return x ** 2 Koalas uses return type hint and does not try to infer the type. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. Examples -------- >>> df = ks.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> def str_len(x) -> int: ... return len(str(x)) >>> df.applymap(str_len) 0 1 0 3 4 1 5 5 >>> def power(x) -> float: ... return x ** 2 >>> df.applymap(power) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 You can omit the type hint and let Koalas infer its type. >>> df.applymap(lambda x: x ** 2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ applied = [] for idx in self._internal.column_index: # TODO: We can implement shortcut theoretically since it creates new DataFrame # anyway and we don't have to worry about operations on different DataFrames. applied.append(self[idx].apply(func)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: not all arguments are implemented comparing to Pandas' for now. def aggregate(self, func: Union[List[str], Dict[str, List[str]]]): """Aggregate using one or more operations over the specified axis. Parameters ---------- func : dict or a list a dict mapping from column name (string) to aggregate functions (list of strings). If a list is given, the aggregation is performed against all columns. Returns ------- DataFrame Notes ----- `agg` is an alias for `aggregate`. Use the alias. See Also -------- databricks.koalas.Series.groupby databricks.koalas.DataFrame.groupby Examples -------- >>> df = ks.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) >>> df A B C 0 1.0 2.0 3.0 1 4.0 5.0 6.0 2 7.0 8.0 9.0 3 NaN NaN NaN Aggregate these functions over the rows. >>> df.agg(['sum', 'min'])[['A', 'B', 'C']] A B C min 1.0 2.0 3.0 sum 12.0 15.0 18.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})[['A', 'B']] A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN """ from databricks.koalas.groupby import GroupBy if isinstance(func, list): if all((isinstance(f, str) for f in func)): func = dict([ (column, func) for column in self.columns]) else: raise ValueError("If the given function is a list, it " "should only contains function names as strings.") if not isinstance(func, dict) or \ not all(isinstance(key, str) and (isinstance(value, str) or isinstance(value, list) and all(isinstance(v, str) for v in value)) for key, value in func.items()): raise ValueError("aggs must be a dict mapping from column name (string) to aggregate " "functions (list of strings).") kdf = DataFrame(GroupBy._spark_groupby(self, func, ())) # type: DataFrame # The codes below basically converts: # # A B # sum min min max # 0 12.0 1.0 2.0 8.0 # # to: # A B # max NaN 8.0 # min 1.0 2.0 # sum 12.0 NaN # # Aggregated output is usually pretty much small. So it is fine to directly use pandas API. pdf = kdf.to_pandas().stack() pdf.index = pdf.index.droplevel() pdf.columns.names = [None] pdf.index.names = [None] return DataFrame(pdf[list(func.keys())]) agg = aggregate def corr(self, method='pearson'): """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'spearman'} * pearson : standard correlation coefficient * spearman : Spearman rank correlation Returns ------- y : pandas.DataFrame See Also -------- Series.corr Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr('pearson') dogs cats dogs 1.000000 -0.851064 cats -0.851064 1.000000 >>> df.corr('spearman') dogs cats dogs 1.000000 -0.948683 cats -0.948683 1.000000 Notes ----- There are behavior differences between Koalas and pandas. * the `method` argument only accepts 'pearson', 'spearman' * the data should not contain NaNs. Koalas will return an error. * Koalas doesn't support the following argument(s). * `min_periods` argument is not supported """ return corr(self, method) def iteritems(self) -> Iterable: """ Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Returns ------- label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. Examples -------- >>> df = ks.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala'], ... columns=['species', 'population']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.iteritems(): ... print('label:', label) ... print('content:', content.to_string()) ... label: species content: panda bear polar bear koala marsupial label: population content: panda 1864 polar 22000 koala 80000 """ cols = list(self.columns) return list((col_name, self[col_name]) for col_name in cols) def items(self) -> Iterable: """This is an alias of ``iteritems``.""" return self.iteritems() def to_clipboard(self, excel=True, sep=None, **kwargs): """ Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none See Also -------- read_clipboard : Read text from clipboard. Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = ks.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 This function also works for Series: >>> df = ks.Series([1, 2, 3, 4, 5, 6, 7], name='x') # doctest: +SKIP >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # 0, 1 ... # 1, 2 ... # 2, 3 ... # 3, 4 ... # 4, 5 ... # 5, 6 ... # 6, 7 """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_clipboard, pd.DataFrame.to_clipboard, args) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False): """ Render a DataFrame as an HTML table. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links (only works with Pandas 0.24+). Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_string : Convert DataFrame to a string. """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_html, pd.DataFrame.to_html, args) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', line_width=None): """ Render a DataFrame to a console-friendly tabular output. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. line_width : int, optional Width to wrap a line in characters. Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]}, columns=['col1', 'col2']) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 >>> print(df.to_string(max_rows=2)) col1 col2 0 1 4 1 2 5 """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_string, pd.DataFrame.to_string, args) def to_dict(self, orient='dict', into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2'], ... columns=['col1', 'col2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df_dict = df.to_dict() >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('col1', [('row1', 1), ('row2', 2)]), ('col2', [('row1', 0.5), ('row2', 0.75)])] You can specify the return orientation. >>> df_dict = df.to_dict('series') >>> sorted(df_dict.items()) [('col1', row1 1 row2 2 Name: col1, dtype: int64), ('col2', row1 0.50 row2 0.75 Name: col2, dtype: float64)] >>> df_dict = df.to_dict('split') >>> sorted(df_dict.items()) # doctest: +ELLIPSIS [('columns', ['col1', 'col2']), ('data', [[1..., 0.75]]), ('index', ['row1', 'row2'])] >>> df_dict = df.to_dict('records') >>> [sorted(values.items()) for values in df_dict] # doctest: +ELLIPSIS [[('col1', 1...), ('col2', 0.5)], [('col1', 2...), ('col2', 0.75)]] >>> df_dict = df.to_dict('index') >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('row1', [('col1', 1), ('col2', 0.5)]), ('row2', [('col1', 2), ('col2', 0.75)])] You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), \ ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) # doctest: +ELLIPSIS [defaultdict(<class 'list'>, {'col..., 'col...}), \ defaultdict(<class 'list'>, {'col..., 'col...})] """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_dict, pd.DataFrame.to_dict, args) def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None): r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, consider alternative formats. Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default ‘NaN’ Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in LaTeX table format e.g. ‘rcl’ for 3 columns. By default, ‘l’ will be used for all columns except columns of numbers, which default to ‘r’. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3. decimal : str, default ‘.’ Character recognized as decimal separator, e.g. ‘,’ in Europe. multicolumn : bool, default True Use multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default ‘l’ The alignment for multicolumns, similar to column_format The default will be read from the config module. multirow : bool, default False Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = ks.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}, ... columns=['name', 'mask', 'weapon']) >>> df.to_latex(index=False) # doctest: +NORMALIZE_WHITESPACE '\\begin{tabular}{lll}\n\\toprule\n name & mask & weapon \\\\\n\\midrule\n Raphael & red & sai \\\\\n Donatello & purple & bo staff \\\\\n\\bottomrule\n\\end{tabular}\n' """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_latex, pd.DataFrame.to_latex, args) # TODO: enable doctests once we drop Spark 2.3.x (due to type coercion logic # when creating arrays) def transpose(self): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. .. note:: This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misusage, this method has the 'compute.max_rows' default limit of input length, and raises a ValueError. >>> from databricks.koalas.config import get_option, set_option >>> set_option('compute.max_rows', 1000) >>> ks.DataFrame({'a': range(1001)}).transpose() # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Current DataFrame has more then the given limit 1000 rows. Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' to retrieve to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. Returns ------- DataFrame The transposed DataFrame. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the coerced dtype. For instance, if int and float have to be placed in same column, it becomes float. If type coercion is not possible, it fails. Also, note that the values in index should be unique because they become unique column names. In addition, if Spark 2.3 is used, the types should always be exactly same. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = ks.DataFrame(data=d1, columns=['col1', 'col2']) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T.sort_index() # doctest: +SKIP >>> df1_transposed # doctest: +SKIP 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes # doctest: +SKIP 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'score': [9.5, 8], ... 'kids': [0, 0], ... 'age': [12, 22]} >>> df2 = ks.DataFrame(data=d2, columns=['score', 'kids', 'age']) >>> df2 score kids age 0 9.5 0 12 1 8.0 0 22 >>> df2_transposed = df2.T.sort_index() # doctest: +SKIP >>> df2_transposed # doctest: +SKIP 0 1 age 12.0 22.0 kids 0.0 0.0 score 9.5 8.0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the coerced dtype: >>> df2.dtypes score float64 kids int64 age int64 dtype: object >>> df2_transposed.dtypes # doctest: +SKIP 0 float64 1 float64 dtype: object """ max_compute_count = get_option("compute.max_rows") if max_compute_count is not None: pdf = self.head(max_compute_count + 1)._to_internal_pandas() if len(pdf) > max_compute_count: raise ValueError( "Current DataFrame has more then the given limit {0} rows. " "Please set 'compute.max_rows' by using 'databricks.koalas.config.set_option' " "to retrieve to retrieve more than {0} rows. Note that, before changing the " "'compute.max_rows', this operation is considerably expensive." .format(max_compute_count)) return DataFrame(pdf.transpose()) # Explode the data to be pairs. # # For instance, if the current input DataFrame is as below: # # +------+------+------+------+------+ # |index1|index2|(a,x1)|(a,x2)|(b,x3)| # +------+------+------+------+------+ # | y1| z1| 1| 0| 0| # | y2| z2| 0| 50| 0| # | y3| z3| 3| 2| 1| # +------+------+------+------+------+ # # Output of `exploded_df` becomes as below: # # +-----------------+-----------------+-----------------+-----+ # | index|__index_level_0__|__index_level_1__|value| # +-----------------+-----------------+-----------------+-----+ # |{"a":["y1","z1"]}| a| x1| 1| # |{"a":["y1","z1"]}| a| x2| 0| # |{"a":["y1","z1"]}| b| x3| 0| # |{"a":["y2","z2"]}| a| x1| 0| # |{"a":["y2","z2"]}| a| x2| 50| # |{"a":["y2","z2"]}| b| x3| 0| # |{"a":["y3","z3"]}| a| x1| 3| # |{"a":["y3","z3"]}| a| x2| 2| # |{"a":["y3","z3"]}| b| x3| 1| # +-----------------+-----------------+-----------------+-----+ pairs = F.explode(F.array(*[ F.struct( [F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(idx)] + [self[idx]._scol.alias("value")] ) for idx in self._internal.column_index])) exploded_df = self._sdf.withColumn("pairs", pairs).select( [F.to_json(F.struct(F.array([scol.cast('string') for scol in self._internal.index_scols]) .alias('a'))).alias('index'), F.col("pairs.*")]) # After that, executes pivot with key and its index column. # Note that index column should contain unique values since column names # should be unique. internal_index_columns = [SPARK_INDEX_NAME_FORMAT(i) for i in range(self._internal.column_index_level)] pivoted_df = exploded_df.groupBy(internal_index_columns).pivot('index') transposed_df = pivoted_df.agg(F.first(F.col("value"))) new_data_columns = list(filter(lambda x: x not in internal_index_columns, transposed_df.columns)) internal = self._internal.copy( sdf=transposed_df, data_columns=new_data_columns, index_map=[(col, None) for col in internal_index_columns], column_index=[tuple(json.loads(col)['a']) for col in new_data_columns], column_index_names=None) return DataFrame(internal) T = property(transpose) def transform(self, func): """ Call ``func`` on self producing a Series with transformed values and that has the same length as its input. .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 Koalas uses return type hint and does not try to infer the type. .. note:: the series within ``func`` is actually a pandas series, and the length of each series is not guaranteed. Parameters ---------- func : function Function to use for transforming the data. It must work when pandas Series is passed. Returns ------- DataFrame A DataFrame that must have the same length as self. Raises ------ Exception : If the returned DataFrame has a different length than self. Examples -------- >>> df = ks.DataFrame({'A': range(3), 'B': range(1, 4)}, columns=['A', 'B']) >>> df A B 0 0 1 1 1 2 2 2 3 >>> def square(x) -> ks.Series[np.int32]: ... return x ** 2 >>> df.transform(square) A B 0 0 1 1 1 4 2 4 9 You can omit the type hint and let Koalas infer its type. >>> df.transform(lambda x: x ** 2) A B 0 0 1 1 1 4 2 4 9 For multi-index columns: >>> df.columns = [('X', 'A'), ('X', 'B')] >>> df.transform(square) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 4 2 4 9 >>> df.transform(lambda x: x ** 2) # doctest: +NORMALIZE_WHITESPACE X A B 0 0 1 1 1 4 2 4 9 """ assert callable(func), "the first argument should be a callable function." spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = get_option("compute.shortcut_limit") pdf = self.head(limit + 1)._to_internal_pandas() transformed = pdf.transform(func) kdf = DataFrame(transformed) if len(pdf) <= limit: return kdf applied = [] for input_idx, output_idx in zip( self._internal.column_index, kdf._internal.column_index): wrapped = ks.pandas_wraps( func, return_col=as_python_type(kdf[output_idx].spark_type)) applied.append(wrapped(self[input_idx]).rename(input_idx)) else: wrapped = ks.pandas_wraps(func) applied = [] for idx in self._internal.column_index: applied.append(wrapped(self[idx]).rename(idx)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN Also support for MultiIndex >>> df = ks.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> columns = [('a', 'name'), ('a', 'class'), ('b', 'max_speed')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df a b name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('a') name class 0 falcon bird 1 parrot bird 2 lion mammal 3 monkey mammal >>> df b max_speed 0 389.0 1 24.0 2 80.5 3 NaN """ result = self[item] self._internal = self.drop(item)._internal return result # TODO: add axis parameter can work when '1' or 'columns' def xs(self, key, axis=0, level=None): """ Return cross-section from the DataFrame. This method takes a `key` argument to select data at a particular level of a MultiIndex. Parameters ---------- key : label or tuple of label Label contained in the index, or partially in a MultiIndex. axis : 0 or 'index', default 0 Axis to retrieve cross-section on. currently only support 0 or 'index' level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. Returns ------- DataFrame Cross-section from the original DataFrame corresponding to the selected index levels. See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = ks.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df # doctest: +NORMALIZE_WHITESPACE num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') # doctest: +NORMALIZE_WHITESPACE num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) # doctest: +NORMALIZE_WHITESPACE num_legs num_wings locomotion walks 4 0 Get values at specified index and level >>> df.xs('cat', level=1) # doctest: +NORMALIZE_WHITESPACE num_legs num_wings class locomotion mammal walks 4 0 """ from databricks.koalas.series import _col if not isinstance(key, (str, tuple)): raise ValueError("'key' should be string or tuple that contains strings") if not all(isinstance(index, str) for index in key): raise ValueError("'key' should have index names as only strings " "or a tuple that contain index names as only strings") if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') if isinstance(key, str): key = (key,) if len(key) > len(self._internal.index_scols): raise KeyError("Key length ({}) exceeds index depth ({})" .format(len(key), len(self._internal.index_scols))) if level is None: level = 0 scols = self._internal.scols[:level] + self._internal.scols[level+len(key):] rows = [self._internal.scols[lvl] == index for lvl, index in enumerate(key, level)] sdf = self._sdf.select(scols) \ .where(reduce(lambda x, y: x & y, rows)) if len(key) == len(self._internal.index_scols): result = _col(DataFrame(_InternalFrame(sdf=sdf)).T) result.name = key else: internal = self._internal.copy( sdf=sdf, index_map=self._internal.index_map[:level] + self._internal.index_map[level+len(key):]) result = DataFrame(internal) return result @property def index(self): """The index (row labels) Column of the DataFrame. Currently not supported when the DataFrame has no index. See Also -------- Index """ from databricks.koalas.indexes import Index, MultiIndex if len(self._internal.index_map) == 1: return Index(self) else: return MultiIndex(self) @property def empty(self): """ Returns true if the current DataFrame is empty. Otherwise, returns false. Examples -------- >>> ks.range(10).empty False >>> ks.range(0).empty True >>> ks.DataFrame({}, index=list('abc')).empty True """ return len(self._internal.column_index) == 0 or self._sdf.rdd.isEmpty() @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. .. note:: currently it collects top 1000 rows and return its pandas `pandas.io.formats.style.Styler` instance. Examples -------- >>> ks.range(1001).style # doctest: +ELLIPSIS <pandas.io.formats.style.Styler object at ...> """ max_results = get_option('compute.max_rows') pdf = self.head(max_results + 1).to_pandas() if len(pdf) > max_results: warnings.warn( "'style' property will only use top %s rows." % max_results, UserWarning) return pdf.head(max_results).style def set_index(self, keys, drop=True, append=False, inplace=False): """Set the DataFrame index (row labels) using one or more existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index` and ``np.ndarray``. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. Examples -------- >>> df = ks.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}, ... columns=['month', 'year', 'sale']) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') # doctest: +NORMALIZE_WHITESPACE year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) # doctest: +NORMALIZE_WHITESPACE sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 """ if isinstance(keys, (str, tuple)): keys = [keys] else: keys = list(keys) columns = set(self.columns) for key in keys: if key not in columns: raise KeyError(key) keys = [key if isinstance(key, tuple) else (key,) for key in keys] if drop: column_index = [idx for idx in self._internal.column_index if idx not in keys] else: column_index = self._internal.column_index if append: index_map = self._internal.index_map + [(self._internal.column_name_for(idx), idx) for idx in keys] else: index_map = [(self._internal.column_name_for(idx), idx) for idx in keys] internal = self._internal.copy(index_map=index_map, column_index=column_index, data_columns=[self._internal.column_name_for(idx) for idx in column_index]) if inplace: self._internal = internal else: return DataFrame(internal) def reset_index(self, level=None, drop=False, inplace=False, col_level=0, col_fill=''): """Reset the index, or a level of it. For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame DataFrame with the new index. See Also -------- DataFrame.set_index : Opposite of reset_index. Examples -------- >>> df = ks.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column. Unlike pandas, Koalas does not automatically add a sequential index. The following 0, 1, 2, 3 are only there when we display the DataFrame. >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = ks.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df # doctest: +NORMALIZE_WHITESPACE speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') # doctest: +NORMALIZE_WHITESPACE class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) # doctest: +NORMALIZE_WHITESPACE speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, ... col_fill='species') # doctest: +NORMALIZE_WHITESPACE species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, ... col_fill='genus') # doctest: +NORMALIZE_WHITESPACE genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ multi_index = len(self._internal.index_map) > 1 def rename(index): if multi_index: return ('level_{}'.format(index),) else: if ('index',) not in self._internal.column_index: return ('index',) else: return ('level_{}'.format(index),) if level is None: new_index_map = [(column, name if name is not None else rename(i)) for i, (column, name) in enumerate(self._internal.index_map)] index_map = [] else: if isinstance(level, (int, str)): level = [level] level = list(level) if all(isinstance(l, int) for l in level): for lev in level: if lev >= len(self._internal.index_map): raise IndexError('Too many levels: Index has only {} level, not {}' .format(len(self._internal.index_map), lev + 1)) idx = level elif all(isinstance(lev, str) for lev in level): idx = [] for l in level: try: i = self._internal.index_columns.index(l) idx.append(i) except ValueError: if multi_index: raise KeyError('Level unknown not found') else: raise KeyError('Level unknown must be same as name ({})' .format(self._internal.index_columns[0])) else: raise ValueError('Level should be all int or all string.') idx.sort() new_index_map = [] index_map = self._internal.index_map.copy() for i in idx: info = self._internal.index_map[i] index_column, index_name = info new_index_map.append( (index_column, index_name if index_name is not None else rename(i))) index_map.remove(info) new_data_scols = [ self._internal.scol_for(column).alias(str(name)) for column, name in new_index_map] if len(index_map) > 0: index_scols = [scol_for(self._sdf, column) for column, _ in index_map] sdf = self._sdf.select( index_scols + new_data_scols + self._internal.data_scols) else: sdf = self._sdf.select(new_data_scols + self._internal.data_scols) # Now, new internal Spark columns are named as same as index name. new_index_map = [(column, name) for column, name in new_index_map] index_map = [(SPARK_INDEX_NAME_FORMAT(0), None)] sdf = _InternalFrame.attach_default_index(sdf) if drop: new_index_map = [] internal = self._internal.copy( sdf=sdf, data_columns=[str(name) for _, name in new_index_map] + self._internal.data_columns, index_map=index_map, column_index=None) if self._internal.column_index_level > 1: column_depth = len(self._internal.column_index[0]) if col_level >= column_depth: raise IndexError('Too many levels: Index has only {} levels, not {}' .format(column_depth, col_level + 1)) if any(col_level + len(name) > column_depth for _, name in new_index_map): raise ValueError('Item must have length equal to number of levels.') columns = pd.MultiIndex.from_tuples( [tuple(([col_fill] * col_level) + list(name) + ([col_fill] * (column_depth - (len(name) + col_level)))) for _, name in new_index_map] + self._internal.column_index) else: columns = [name for _, name in new_index_map] + self._internal.column_index if inplace: self._internal = internal self.columns = columns else: kdf = DataFrame(internal) kdf.columns = columns return kdf def isnull(self): """ Detects missing values for items in the current Dataframe. Return a boolean same-sized Dataframe indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. See Also -------- Dataframe.notnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.isnull() 0 1 0 False False 1 False True 2 False True 3 False False >>> df = ks.DataFrame([[None, 'bee', None], ['dog', None, 'fly']]) >>> df.isnull() 0 1 2 0 True False True 1 False True False """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.isnull() return kdf isna = isnull def notnull(self): """ Detects non-missing values for items in the current Dataframe. This function takes a dataframe and indicates whether it's values are valid (not missing, which is ``NaN`` in numeric datatypes, ``None`` or ``NaN`` in objects and ``NaT`` in datetimelike). See Also -------- Dataframe.isnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True >>> df = ks.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.notnull() return kdf notna = notnull # TODO: add frep and axis parameter def shift(self, periods=1, fill_value=None): """ Shift DataFrame by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input DataFrame, shifted. Examples -------- >>> df = ks.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27 """ applied = [] for idx in self._internal.column_index: applied.append(self[idx].shift(periods, fill_value)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: axis should support 1 or 'columns' either at this moment def diff(self, periods: int = 1, axis: Union[int, str] = 0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). .. note:: the current implementation of diff uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : int, default 0 or 'index' Can only be set to 0 at the moment. Returns ------- diffed : DataFrame Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}, columns=['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] for idx in self._internal.column_index: applied.append(self[idx].diff(periods)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: axis should support 1 or 'columns' either at this moment def nunique(self, axis: Union[int, str] = 0, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> pd.Series: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- axis : int, default 0 or 'index' Can only be set to 0 at the moment. dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to Koalas and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to Koalas. Returns ------- The number of unique values per column as a pandas Series. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [np.nan, 3, np.nan]}) >>> df.nunique() A 3 B 1 Name: 0, dtype: int64 >>> df.nunique(dropna=False) A 3 B 2 Name: 0, dtype: int64 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> df.nunique(approx=True) A 3 B 1 Name: 0, dtype: int64 """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') res = self._sdf.select([self[column]._nunique(dropna, approx, rsd) for column in self.columns]) return res.toPandas().T.iloc[:, 0] def round(self, decimals=0): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. Returns ------- DataFrame See Also -------- Series.round Examples -------- >>> df = ks.DataFrame({'A':[0.028208, 0.038683, 0.877076], ... 'B':[0.992815, 0.645646, 0.149370], ... 'C':[0.173891, 0.577595, 0.491027]}, ... columns=['A', 'B', 'C'], ... index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = ks.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1.0 0.17 second 0.0 1.0 0.58 third 0.9 0.0 0.49 """ if isinstance(decimals, ks.Series): decimals_list = [(k if isinstance(k, tuple) else (k,), v) for k, v in decimals._to_internal_pandas().items()] elif isinstance(decimals, dict): decimals_list = [(k if isinstance(k, tuple) else (k,), v) for k, v in decimals.items()] elif isinstance(decimals, int): decimals_list = [(k, decimals) for k in self._internal.column_index] else: raise ValueError("decimals must be an integer, a dict-like or a Series") sdf = self._sdf for idx, decimal in decimals_list: if idx in self._internal.column_index: col = self._internal.column_name_for(idx) sdf = sdf.withColumn(col, F.round(scol_for(sdf, col), decimal)) return DataFrame(self._internal.copy(sdf=sdf)) def duplicated(self, subset=None, keep='first'): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series Examples -------- >>> df = ks.DataFrame({'a': [1, 1, 1, 3], 'b': [1, 1, 1, 4], 'c': [1, 1, 1, 5]}, ... columns = ['a', 'b', 'c']) >>> df a b c 0 1 1 1 1 1 1 1 2 1 1 1 3 3 4 5 >>> df.duplicated().sort_index() 0 False 1 True 2 True 3 False Name: 0, dtype: bool Mark duplicates as ``True`` except for the last occurrence. >>> df.duplicated(keep='last').sort_index() 0 True 1 True 2 False 3 False Name: 0, dtype: bool Mark all duplicates as ``True``. >>> df.duplicated(keep=False).sort_index() 0 True 1 True 2 True 3 False Name: 0, dtype: bool """ from databricks.koalas.series import _col if len(self._internal.index_names) > 1: raise ValueError("Now we don't support multi-index Now.") if subset is None: subset = self._internal.column_index else: if isinstance(subset, str): subset = [(subset,)] elif isinstance(subset, tuple): subset = [subset] else: subset = [sub if isinstance(sub, tuple) else (sub,) for sub in subset] diff = set(subset).difference(set(self._internal.column_index)) if len(diff) > 0: raise KeyError(', '.join([str(d) if len(d) > 1 else d[0] for d in diff])) group_cols = [self._internal.column_name_for(idx) for idx in subset] index_column = self._internal.index_columns[0] if self._internal.index_names[0] is not None: name = self._internal.index_names[0] else: name = ('0',) column = str(name) if len(name) > 1 else name[0] sdf = self._sdf if column == index_column: index_column = SPARK_INDEX_NAME_FORMAT(0) sdf = sdf.select([self._internal.index_scols[0].alias(index_column)] + self._internal.data_scols) if keep == 'first' or keep == 'last': if keep == 'first': ord_func = spark.functions.asc else: ord_func = spark.functions.desc window = Window.partitionBy(group_cols).orderBy(ord_func(index_column)).rowsBetween( Window.unboundedPreceding, Window.currentRow) sdf = sdf.withColumn(column, F.row_number().over(window) > 1) elif not keep: window = Window.partitionBy(group_cols).orderBy(scol_for(sdf, index_column).desc())\ .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) sdf = sdf.withColumn(column, F.count(scol_for(sdf, index_column)).over(window) > 1) else: raise ValueError("'keep' only support 'first', 'last' and False") return _col(DataFrame(_InternalFrame(sdf=sdf.select(scol_for(sdf, index_column), scol_for(sdf, column)), data_columns=[column], column_index=[name], index_map=[(index_column, self._internal.index_names[0])]))) def to_koalas(self, index_col: Optional[Union[str, List[str]]] = None): """ Converts the existing DataFrame into a Koalas DataFrame. This method is monkey-patched into Spark's DataFrame and can be used to convert a Spark DataFrame into a Koalas DataFrame. If running on an existing Koalas DataFrame, the method returns itself. If a Koalas DataFrame is converted to a Spark DataFrame and then back to Koalas, it will lose the index information and the original index will be turned into a normal column. Parameters ---------- index_col: str or list of str, optional, default: None Index column of table in Spark. See Also -------- DataFrame.to_spark Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 >>> spark_df = df.to_spark() >>> spark_df DataFrame[col1: bigint, col2: bigint] >>> kdf = spark_df.to_koalas() >>> kdf col1 col2 0 1 3 1 2 4 We can specify the index columns. >>> kdf = spark_df.to_koalas(index_col='col1') >>> kdf # doctest: +NORMALIZE_WHITESPACE col2 col1 1 3 2 4 Calling to_koalas on a Koalas DataFrame simply returns itself. >>> df.to_koalas() col1 col2 0 1 3 1 2 4 """ if isinstance(self, DataFrame): return self else: assert isinstance(self, spark.DataFrame), type(self) from databricks.koalas.namespace import _get_index_map index_map = _get_index_map(self, index_col) internal = _InternalFrame(sdf=self, index_map=index_map) return DataFrame(internal) def cache(self): """ Yields and caches the current DataFrame. The Koalas DataFrame is yielded as a protected resource and its corresponding data is cached which gets uncached after execution goes of the context. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 >>> with df.cache() as cached_df: ... print(cached_df.count()) ... dogs 4 cats 4 dtype: int64 >>> df = df.cache() >>> df.to_pandas().mean(axis=1) 0 0.25 1 0.30 2 0.30 3 0.15 dtype: float64 To uncache the dataframe, use `unpersist` function >>> df.unpersist() """ return _CachedDataFrame(self._internal) def to_table(self, name: str, format: Optional[str] = None, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """ Write the DataFrame into a Spark table. Parameters ---------- name : str, required Table name in Spark. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the table exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns options Additional options passed directly to Spark. See Also -------- read_table DataFrame.to_spark_io DataFrame.to_parquet Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_table('%s.my_table' % db, partition_cols='date') """ self.to_spark().write.saveAsTable(name=name, format=format, mode=mode, partitionBy=partition_cols, options=options) def to_delta(self, path: str, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """ Write the DataFrame out as a Delta Lake table. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns options : dict All other options passed directly into Delta Lake. See Also -------- read_delta DataFrame.to_parquet DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 Create a new Delta Lake table, partitioned by one column: >>> df.to_delta('%s/to_delta/foo' % path, partition_cols='date') Partitioned by two columns: >>> df.to_delta('%s/to_delta/bar' % path, partition_cols=['date', 'country']) Overwrite an existing table's partitions, using the 'replaceWhere' capability in Delta: >>> df.to_delta('%s/to_delta/bar' % path, ... mode='overwrite', replaceWhere='date >= "2019-01-01"') """ self.to_spark_io( path=path, mode=mode, format="delta", partition_cols=partition_cols, options=options) def to_parquet(self, path: str, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, compression: Optional[str] = None): """ Write the DataFrame out as a Parquet file or directory. Parameters ---------- path : str, required Path to write to. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns compression : str {'none', 'uncompressed', 'snappy', 'gzip', 'lzo', 'brotli', 'lz4', 'zstd'} Compression codec to use when saving to file. If None is set, it uses the value specified in `spark.sql.parquet.compression.codec`. See Also -------- read_parquet DataFrame.to_delta DataFrame.to_table DataFrame.to_spark_io Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_parquet('%s/to_parquet/foo.parquet' % path, partition_cols='date') >>> df.to_parquet( ... '%s/to_parquet/foo.parquet' % path, ... mode = 'overwrite', ... partition_cols=['date', 'country']) """ self.to_spark().write.parquet( path=path, mode=mode, partitionBy=partition_cols, compression=compression) def to_spark_io(self, path: Optional[str] = None, format: Optional[str] = None, mode: str = 'error', partition_cols: Union[str, List[str], None] = None, **options): """Write the DataFrame out to a Spark data source. Parameters ---------- path : string, optional Path to the data source. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'error'. Specifies the behavior of the save operation when data already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional Names of partitioning columns options : dict All other options passed directly into Spark's data source. See Also -------- read_spark_io DataFrame.to_delta DataFrame.to_parquet DataFrame.to_table Examples -------- >>> df = ks.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 >>> df.to_spark_io(path='%s/to_spark_io/foo.json' % path, format='json') """ self.to_spark().write.save( path=path, format=format, mode=mode, partitionBy=partition_cols, options=options) def to_spark(self, index_col: Optional[Union[str, List[str]]] = None): """ Return the current DataFrame as a Spark DataFrame. Parameters ---------- index_col: str or list of str, optional, default: None Column names to be used in Spark to represent Koalas' index. The index name in Koalas is ignored. By default, the index is always lost. See Also -------- DataFrame.to_koalas Examples -------- By default, this method loses the index as below. >>> df = ks.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) >>> df.to_spark().show() # doctest: +NORMALIZE_WHITESPACE +---+---+---+ | a| b| c| +---+---+---+ | 1| 4| 7| | 2| 5| 8| | 3| 6| 9| +---+---+---+ If `index_col` is set, it keeps the index column as specified. >>> df.to_spark(index_col="index").show() # doctest: +NORMALIZE_WHITESPACE +-----+---+---+---+ |index| a| b| c| +-----+---+---+---+ | 0| 1| 4| 7| | 1| 2| 5| 8| | 2| 3| 6| 9| +-----+---+---+---+ Keeping index column is useful when you want to call some Spark APIs and convert it back to Koalas DataFrame without creating a default index, which can affect performance. >>> spark_df = df.to_spark(index_col="index") >>> spark_df = spark_df.filter("a == 2") >>> spark_df.to_koalas(index_col="index") # doctest: +NORMALIZE_WHITESPACE a b c index 1 2 5 8 In case of multi-index, specify a list to `index_col`. >>> new_df = df.set_index("a", append=True) >>> new_spark_df = new_df.to_spark(index_col=["index_1", "index_2"]) >>> new_spark_df.show() # doctest: +NORMALIZE_WHITESPACE +-------+-------+---+---+ |index_1|index_2| b| c| +-------+-------+---+---+ | 0| 1| 4| 7| | 1| 2| 5| 8| | 2| 3| 6| 9| +-------+-------+---+---+ Likewise, can be converted to back to Koalas DataFrame. >>> new_spark_df.to_koalas( ... index_col=["index_1", "index_2"]) # doctest: +NORMALIZE_WHITESPACE b c index_1 index_2 0 1 4 7 1 2 5 8 2 3 6 9 """ if index_col is None: return self._internal.spark_df else: if isinstance(index_col, str): index_col = [index_col] data_column_names = [] data_columns = [] data_columns_column_index = \ zip(self._internal._data_columns, self._internal.column_index) # TODO: this code is similar with _InternalFrame.spark_df. Might have to deduplicate. for i, (column, idx) in enumerate(data_columns_column_index): scol = self._internal.scol_for(idx) name = str(i) if idx is None else str(idx) if len(idx) > 1 else idx[0] data_column_names.append(name) if column != name: scol = scol.alias(name) data_columns.append(scol) old_index_scols = self._internal.index_scols if len(index_col) != len(old_index_scols): raise ValueError( "length of index columns is %s; however, the length of the given " "'index_col' is %s." % (len(old_index_scols), len(index_col))) if any(col in data_column_names for col in index_col): raise ValueError( "'index_col' cannot be overlapped with other columns.") sdf = self._internal.spark_internal_df new_index_scols = [ index_scol.alias(col) for index_scol, col in zip(old_index_scols, index_col)] return sdf.select(new_index_scols + data_columns) def to_pandas(self): """ Return a pandas DataFrame. .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.to_pandas() dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 """ return self._internal.pandas_df.copy() # Alias to maintain backward compatibility with Spark toPandas = to_pandas def assign(self, **kwargs): """ Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though Koalas doesn't check it). If the values are not callable, (e.g. a Series or a literal), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Examples -------- >>> df = ks.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence and you can also create multiple columns within the same assign. >>> assigned = df.assign(temp_f=df['temp_c'] * 9 / 5 + 32, ... temp_k=df['temp_c'] + 273.15) >>> assigned[['temp_c', 'temp_f', 'temp_k']] temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 Notes ----- Assigning multiple columns within the same ``assign`` is possible but you cannot refer to newly created or modified columns. This feature is supported in pandas for Python 3.6 and later but not in Koalas. In Koalas, all items are computed first, and then assigned. """ return self._assign(kwargs) def _assign(self, kwargs): assert isinstance(kwargs, dict) from databricks.koalas.series import Series for k, v in kwargs.items(): if not (isinstance(v, (Series, spark.Column)) or callable(v) or pd.api.types.is_scalar(v)): raise TypeError("Column assignment doesn't support type " "{0}".format(type(v).__name__)) if callable(v): kwargs[k] = v(self) pairs = {(k if isinstance(k, tuple) else (k,)): (v._scol if isinstance(v, Series) else v if isinstance(v, spark.Column) else F.lit(v)) for k, v in kwargs.items()} scols = [] for idx in self._internal.column_index: for i in range(len(idx)): if idx[:len(idx)-i] in pairs: name = self._internal.column_name_for(idx) scol = pairs[idx[:len(idx)-i]].alias(name) break else: scol = self._internal.scol_for(idx) scols.append(scol) adding_data_columns = [] adding_column_index = [] for idx, scol in pairs.items(): if idx not in set(i[:len(idx)] for i in self._internal.column_index): name = str(idx) if len(idx) > 1 else idx[0] scols.append(scol.alias(name)) adding_data_columns.append(name) adding_column_index.append(idx) sdf = self._sdf.select(self._internal.index_scols + scols) level = self._internal.column_index_level adding_column_index = [tuple(list(idx) + ([''] * (level - len(idx)))) for idx in adding_column_index] internal = self._internal.copy( sdf=sdf, data_columns=(self._internal.data_columns + adding_data_columns), column_index=(self._internal.column_index + adding_column_index)) return DataFrame(internal) @staticmethod def from_records(data: Union[np.array, List[tuple], dict, pd.DataFrame], index: Union[str, list, np.array] = None, exclude: list = None, columns: list = None, coerce_float: bool = False, nrows: int = None) \ -> 'DataFrame': """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- df : DataFrame Examples -------- Use dict as input >>> ks.DataFrame.from_records({'A': [1, 2, 3]}) A 0 1 1 2 2 3 Use list of tuples as input >>> ks.DataFrame.from_records([(1, 2), (3, 4)]) 0 1 0 1 2 1 3 4 Use NumPy array as input >>> ks.DataFrame.from_records(np.eye(3)) 0 1 2 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ return DataFrame(pd.DataFrame.from_records(data, index, exclude, columns, coerce_float, nrows)) def to_records(self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None): """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. convert_datetime64 : bool, default None Whether to convert the index to datetime.datetime if it is a DatetimeIndex. column_dtypes : str, type, dict, default None If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = ks.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) # doctest: +SKIP rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Specification of dtype for columns is new in Pandas 0.24.0. Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) # doctest: +SKIP rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i4'), ('B', '<f8')]) Specification of dtype for index is new in Pandas 0.24.0. Data types can also be specified for the index: >>> df.to_records(index_dtypes="<S2") # doctest: +SKIP rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('index', 'S2'), ('A', '<i8'), ('B', '<f8')]) """ args = locals() kdf = self return validate_arguments_and_invoke_function( kdf._to_internal_pandas(), self.to_records, pd.DataFrame.to_records, args) def copy(self) -> 'DataFrame': """ Make a copy of this object's indices and data. Returns ------- copy : DataFrame Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df_copy = df.copy() >>> df_copy x y z w 0 1 3 5 7 1 2 4 6 8 """ return DataFrame(self._internal.copy()) def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Remove missing values. Parameters ---------- axis : {0 or 'index'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.drop : Drop specified labels from columns. DataFrame.isnull: Indicate missing values. DataFrame.notnull : Indicate existing (non-missing) values. Examples -------- >>> df = ks.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [None, "1940-04-25", None]}, ... columns=['name', 'toy', 'born']) >>> df name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ if axis == 0 or axis == 'index': if subset is not None: if isinstance(subset, str): idxes = [(subset,)] elif isinstance(subset, tuple): idxes = [subset] else: idxes = [sub if isinstance(sub, tuple) else (sub,) for sub in subset] invalids = [idx for idx in idxes if idx not in self._internal.column_index] if len(invalids) > 0: raise KeyError(invalids) else: idxes = self._internal.column_index cnt = reduce(lambda x, y: x + y, [F.when(self[idx].notna()._scol, 1).otherwise(0) for idx in idxes], F.lit(0)) if thresh is not None: pred = cnt >= F.lit(int(thresh)) elif how == 'any': pred = cnt == F.lit(len(idxes)) elif how == 'all': pred = cnt > F.lit(0) else: if how is not None: raise ValueError('invalid how option: {h}'.format(h=how)) else: raise TypeError('must specify how or thresh') sdf = self._sdf.filter(pred) internal = self._internal.copy(sdf=sdf) if inplace: self._internal = internal else: return DataFrame(internal) else: raise NotImplementedError("dropna currently only works for axis=0 or axis='index'") # TODO: add 'limit' when value parameter exists def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None): """Fill NA/NaN values. .. note:: the current implementation of 'method' parameter in fillna uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- value : scalar, dict, Series Value to use to fill holes. alternately a dict/Series of values specifying which value to use for each column. DataFrame is not supported. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 1.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 1.0 4 """ sdf = self._sdf if value is not None: if axis is None: axis = 0 if not (axis == 0 or axis == "index"): raise NotImplementedError("fillna currently only works for axis=0 or axis='index'") if not isinstance(value, (float, int, str, bool, dict, pd.Series)): raise TypeError("Unsupported type %s" % type(value)) if isinstance(value, pd.Series): value = value.to_dict() if isinstance(value, dict): for v in value.values(): if not isinstance(v, (float, int, str, bool)): raise TypeError("Unsupported type %s" % type(v)) value = {self._internal.column_name_for(key): value for key, value in value.items()} if limit is not None: raise ValueError('limit parameter for value is not support now') sdf = sdf.fillna(value) internal = self._internal.copy(sdf=sdf) else: if method is None: raise ValueError("Must specify a fillna 'value' or 'method' parameter.") applied = [] for idx in self._internal.column_index: applied.append(self[idx].fillna(value=value, method=method, axis=axis, inplace=False, limit=limit)) sdf = self._sdf.select(self._internal.index_scols + [col._scol for col in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[col._internal.data_columns[0] for col in applied], column_index=[col._internal.column_index[0] for col in applied]) if inplace: self._internal = internal else: return DataFrame(internal) # TODO: add 'downcast' when value parameter exists def bfill(self, axis=None, inplace=False, limit=None): """ Synonym for `DataFrame.fillna()` with ``method=`bfill```. .. note:: the current implementation of 'bfiff' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values backward. >>> df.bfill() A B C D 0 3.0 2.0 1.0 0 1 3.0 4.0 1.0 1 2 NaN 3.0 1.0 5 3 NaN 3.0 1.0 4 """ return self.fillna(method='bfill', axis=axis, inplace=inplace, limit=limit) # TODO: add 'downcast' when value parameter exists def ffill(self, axis=None, inplace=False, limit=None): """ Synonym for `DataFrame.fillna()` with ``method=`ffill```. .. note:: the current implementation of 'ffiff' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame DataFrame with NA entries filled. Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values forward. >>> df.ffill() A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 """ return self.fillna(method='ffill', axis=axis, inplace=inplace, limit=limit) def replace(self, to_replace=None, value=None, subset=None, inplace=False, limit=None, regex=False, method='pad'): """ Returns a new DataFrame replacing a value with another value. Parameters ---------- to_replace : int, float, string, or list Value to be replaced. If the value is a dict, then value is ignored and to_replace must be a mapping from column name (string) to replacement value. The value to be replaced must be an int, float, or string. value : int, float, string, or list Value to use to replace holes. The replacement value must be an int, float, or string. If value is a list, value should be of the same length with to_replace. subset : string, list Optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if value is a string, and subset contains a non-string column, then the non-string column is simply ignored. inplace : boolean, default False Fill in place (do not create a new object) Returns ------- DataFrame Object after replacement. Examples -------- >>> df = ks.DataFrame({"name": ['Ironman', 'Captain America', 'Thor', 'Hulk'], ... "weapon": ['Mark-45', 'Shield', 'Mjolnir', 'Smash']}, ... columns=['name', 'weapon']) >>> df name weapon 0 Ironman Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash Scalar `to_replace` and `value` >>> df.replace('Ironman', 'War-Machine') name weapon 0 War-Machine Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash List like `to_replace` and `value` >>> df.replace(['Ironman', 'Captain America'], ['Rescue', 'Hawkeye'], inplace=True) >>> df name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Mjolnir 3 Hulk Smash Replacing value by specifying column >>> df.replace('Mjolnir', 'Stormbuster', subset='weapon') name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash Dict like `to_replace` >>> df = ks.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}, ... columns=['A', 'B', 'C']) >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e Notes ----- One difference between this implementation and pandas is that it is necessary to specify the column name when you are passing dictionary in `to_replace` parameter. Calling `replace` on its index such as `df.replace({0: 10, 1: 100})` will throw an error. Instead specify column-name like `df.replace({'A': {0: 10, 1: 100}})`. """ if method != 'pad': raise NotImplementedError("replace currently works only for method='pad") if limit is not None: raise NotImplementedError("replace currently works only when limit=None") if regex is not False: raise NotImplementedError("replace currently doesn't supports regex") if value is not None and not isinstance(value, (int, float, str, list, dict)): raise TypeError("Unsupported type {}".format(type(value))) if to_replace is not None and not isinstance(to_replace, (int, float, str, list, dict)): raise TypeError("Unsupported type {}".format(type(to_replace))) if isinstance(value, list) and isinstance(to_replace, list): if len(value) != len(to_replace): raise ValueError('Length of to_replace and value must be same') # TODO: Do we still need to support this argument? if subset is None: subset = self._internal.column_index elif isinstance(subset, str): subset = [(subset,)] elif isinstance(subset, tuple): subset = [subset] else: subset = [sub if isinstance(sub, tuple) else (sub,) for sub in subset] subset = [self._internal.column_name_for(idx) for idx in subset] sdf = self._sdf if isinstance(to_replace, dict) and value is None and \ (not any(isinstance(i, dict) for i in to_replace.values())): sdf = sdf.replace(to_replace, value, subset) elif isinstance(to_replace, dict): for name, replacement in to_replace.items(): if isinstance(name, str): name = (name,) df_column = self._internal.column_name_for(name) if isinstance(replacement, dict): sdf = sdf.replace(replacement, subset=df_column) else: sdf = sdf.withColumn(df_column, F.when(scol_for(sdf, df_column) == replacement, value) .otherwise(scol_for(sdf, df_column))) else: sdf = sdf.replace(to_replace, value, subset) internal = self._internal.copy(sdf=sdf) if inplace: self._internal = internal else: return DataFrame(internal) def clip(self, lower: Union[float, int] = None, upper: Union[float, int] = None) \ -> 'DataFrame': """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Parameters ---------- lower : float or int, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or int, default None Maximum threshold value. All values above this threshold will be set to it. Returns ------- DataFrame DataFrame with the values outside the clip boundaries replaced. Examples -------- >>> ks.DataFrame({'A': [0, 2, 4]}).clip(1, 3) A 0 1 1 2 2 3 Notes ----- One difference between this implementation and pandas is that running pd.DataFrame({'A': ['a', 'b']}).clip(0, 1) will crash with "TypeError: '<=' not supported between instances of 'str' and 'int'" while ks.DataFrame({'A': ['a', 'b']}).clip(0, 1) will output the original DataFrame, simply ignoring the incompatible types. """ if is_list_like(lower) or is_list_like(upper): raise ValueError("List-like value are not supported for 'lower' and 'upper' at the " + "moment") if lower is None and upper is None: return self numeric_types = (DecimalType, DoubleType, FloatType, ByteType, IntegerType, LongType, ShortType) numeric_columns = [(c, self._internal.scol_for(c)) for c in self.columns if isinstance(self._internal.spark_type_for(c), numeric_types)] if lower is not None: numeric_columns = [(c, F.when(scol < lower, lower).otherwise(scol).alias(c)) for c, scol in numeric_columns] if upper is not None: numeric_columns = [(c, F.when(scol > upper, upper).otherwise(scol).alias(c)) for c, scol in numeric_columns] nonnumeric_columns = [self._internal.scol_for(c) for c in self.columns if not isinstance(self._internal.spark_type_for(c), numeric_types)] sdf = self._sdf.select([scol for _, scol in numeric_columns] + nonnumeric_columns) return ks.DataFrame(sdf)[list(self.columns)] def head(self, n=5): """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- obj_head : same type as caller The first `n` rows of the caller object. Examples -------- >>> df = ks.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon """ return DataFrame(self._internal.copy(sdf=self._sdf.limit(n))) def pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None): """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ---------- values : column to aggregate. They should be either a list less than three or a string. index : column (string) or list of columns If an array is passed, it must be the same length as the data. The list should contain string. columns : column Columns used in the pivot operation. Only one column is supported and it should be a string. aggfunc : function (string), dict, default mean If dict is passed, the resulting pivot table will have columns concatenated by "_" where the first part is the value of columns and the second part is the column name in values If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. Returns ------- table : DataFrame Examples -------- >>> df = ks.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}, ... columns=['A', 'B', 'C', 'D', 'E']) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum') >>> table # doctest: +NORMALIZE_WHITESPACE C large small A B foo one 4.0 1 two NaN 6 bar two 7.0 6 one 4.0 5 We can also fill missing values using the `fill_value` parameter. >>> table = df.pivot_table(values='D', index=['A', 'B'], ... columns='C', aggfunc='sum', fill_value=0) >>> table # doctest: +NORMALIZE_WHITESPACE C large small A B foo one 4 1 two 0 6 bar two 7 6 one 4 5 We can also calculate multiple types of aggregations for any given value column. >>> table = df.pivot_table(values=['D'], index =['C'], ... columns="A", aggfunc={'D': 'mean'}) >>> table # doctest: +NORMALIZE_WHITESPACE D A bar foo C small 5.5 2.333333 large 5.5 2.000000 The next example aggregates on multiple values. >>> table = df.pivot_table(index=['C'], columns="A", values=['D', 'E'], ... aggfunc={'D': 'mean', 'E': 'sum'}) >>> table # doctest: +NORMALIZE_WHITESPACE D E A bar foo bar foo C small 5.5 2.333333 17 13 large 5.5 2.000000 15 9 """ if not isinstance(columns, (str, tuple)): raise ValueError("columns should be string or tuple.") if not isinstance(values, (str, tuple)) and not isinstance(values, list): raise ValueError('values should be string or list of one column.') if not isinstance(aggfunc, str) and \ (not isinstance(aggfunc, dict) or not all(isinstance(key, (str, tuple)) and isinstance(value, str) for key, value in aggfunc.items())): raise ValueError("aggfunc must be a dict mapping from column name (string or tuple) " "to aggregate functions (string).") if isinstance(aggfunc, dict) and index is None: raise NotImplementedError("pivot_table doesn't support aggfunc" " as dict and without index.") if isinstance(values, list) and index is None: raise NotImplementedError("values can't be a list without index.") if columns not in self.columns: raise ValueError("Wrong columns {}.".format(columns)) if isinstance(values, list): values = [col if isinstance(col, tuple) else (col,) for col in values] if not all(isinstance(self._internal.spark_type_for(col), NumericType) for col in values): raise TypeError('values should be a numeric type.') else: values = values if isinstance(values, tuple) else (values,) if not isinstance(self._internal.spark_type_for(values), NumericType): raise TypeError('values should be a numeric type.') if isinstance(aggfunc, str): if isinstance(values, list): agg_cols = [F.expr('{1}(`{0}`) as `{0}`' .format(self._internal.column_name_for(value), aggfunc)) for value in values] else: agg_cols = [F.expr('{1}(`{0}`) as `{0}`' .format(self._internal.column_name_for(values), aggfunc))] elif isinstance(aggfunc, dict): aggfunc = {key if isinstance(key, tuple) else (key,): value for key, value in aggfunc.items()} agg_cols = [F.expr('{1}(`{0}`) as `{0}`' .format(self._internal.column_name_for(key), value)) for key, value in aggfunc.items()] agg_columns = [key for key, _ in aggfunc.items()] if set(agg_columns) != set(values): raise ValueError("Columns in aggfunc must be the same as values.") if index is None: sdf = self._sdf.groupBy() \ .pivot(pivot_col=self._internal.column_name_for(columns)).agg(*agg_cols) elif isinstance(index, list): index = [idx if isinstance(idx, tuple) else (idx,) for idx in index] sdf = self._sdf.groupBy([self._internal.scol_for(idx) for idx in index]) \ .pivot(pivot_col=self._internal.column_name_for(columns)).agg(*agg_cols) else: raise ValueError("index should be a None or a list of columns.") if fill_value is not None and isinstance(fill_value, (int, float)): sdf = sdf.fillna(fill_value) if index is not None: if isinstance(values, list): index_columns = [self._internal.column_name_for(idx) for idx in index] data_columns = [column for column in sdf.columns if column not in index_columns] if len(values) > 1: # If we have two values, Spark will return column's name # in this format: column_values, where column contains # their values in the DataFrame and values is # the column list passed to the pivot_table(). # E.g. if column is b and values is ['b','e'], # then ['2_b', '2_e', '3_b', '3_e']. # We sort the columns of Spark DataFrame by values. data_columns.sort(key=lambda x: x.split('_', 1)[1]) sdf = sdf.select(index_columns + data_columns) column_name_to_index = dict(zip(self._internal.data_columns, self._internal.column_index)) column_index = [tuple(list(column_name_to_index[name.split('_')[1]]) + [name.split('_')[0]]) for name in data_columns] index_map = list(zip(index_columns, index)) column_index_names = (([None] * column_index_level(values)) + [str(columns) if len(columns) > 1 else columns[0]]) internal = _InternalFrame(sdf=sdf, index_map=index_map, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) kdf = DataFrame(internal) else: column_index = [tuple(list(values[0]) + [column]) for column in data_columns] index_map = list(zip(index_columns, index)) column_index_names = (([None] * len(values[0])) + [str(columns) if len(columns) > 1 else columns[0]]) internal = _InternalFrame(sdf=sdf, index_map=index_map, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) kdf = DataFrame(internal) return kdf else: index_columns = [self._internal.column_name_for(idx) for idx in index] index_map = list(zip(index_columns, index)) data_columns = [column for column in sdf.columns if column not in index_columns] column_index_names = [str(columns) if len(columns) > 1 else columns[0]] internal = _InternalFrame(sdf=sdf, index_map=index_map, data_columns=data_columns, column_index_names=column_index_names) return DataFrame(internal) else: if isinstance(values, list): index_values = values[-1] else: index_values = values index_map = [] for i, index_value in enumerate(index_values): colname = SPARK_INDEX_NAME_FORMAT(i) sdf = sdf.withColumn(colname, F.lit(index_value)) index_map.append((colname, None)) column_index_names = [str(columns) if len(columns) > 1 else columns[0]] internal = _InternalFrame(sdf=sdf, index_map=index_map, column_index_names=column_index_names) return DataFrame(internal) def pivot(self, index=None, columns=None, values=None): """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation. Parameters ---------- index : string, optional Column to use to make new frame's index. If None, uses existing index. columns : string Column to use to make new frame's columns. values : string, object or a list of the previous Column(s) to use for populating new frame's values. Returns ------- DataFrame Returns reshaped DataFrame. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. Examples -------- >>> df = ks.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}, ... columns=['foo', 'bar', 'baz', 'zoo']) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(columns='bar', values='baz').sort_index() # doctest: +NORMALIZE_WHITESPACE bar A B C 0 1.0 NaN NaN 1 NaN 2.0 NaN 2 NaN NaN 3.0 3 4.0 NaN NaN 4 NaN 5.0 NaN 5 NaN NaN 6.0 Notice that, unlike pandas raises an ValueError when duplicated values are found, Koalas' pivot still works with its first value it meets during operation because pivot is an expensive operation and it is preferred to permissively execute over failing fast when processing large data. >>> df = ks.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}, columns=['foo', 'bar', 'baz']) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 >>> df.pivot(index='foo', columns='bar', values='baz').sort_index() ... # doctest: +NORMALIZE_WHITESPACE bar A B C foo one 1.0 NaN NaN two NaN 3.0 4.0 """ if columns is None: raise ValueError("columns should be set.") if values is None: raise ValueError("values should be set.") should_use_existing_index = index is not None if should_use_existing_index: df = self index = [index] else: df = self.copy() df['__DUMMY__'] = F.monotonically_increasing_id() df.set_index('__DUMMY__', append=True, inplace=True) df.reset_index(level=range(len(df._internal.index_map) - 1), inplace=True) index = df._internal.column_index[:len(df._internal.index_map)] df = df.pivot_table( index=index, columns=columns, values=values, aggfunc='first') if should_use_existing_index: return df else: index_columns = df._internal.index_columns # Note that the existing indexing column won't exist in the pivoted DataFrame. internal = df._internal.copy( index_map=[(index_column, None) for index_column in index_columns]) return DataFrame(internal) @property def columns(self): """The column labels of the DataFrame.""" if self._internal.column_index_level > 1: columns = pd.MultiIndex.from_tuples(self._internal.column_index) else: columns = pd.Index([idx[0] for idx in self._internal.column_index]) if self._internal.column_index_names is not None: columns.names = self._internal.column_index_names return columns @columns.setter def columns(self, columns): if isinstance(columns, pd.MultiIndex): column_index = columns.tolist() old_names = self._internal.column_index if len(old_names) != len(column_index): raise ValueError( "Length mismatch: Expected axis has %d elements, new values have %d elements" % (len(old_names), len(column_index))) column_index_names = columns.names data_columns = [str(idx) if len(idx) > 1 else idx[0] for idx in column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) self._internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) else: old_names = self._internal.column_index if len(old_names) != len(columns): raise ValueError( "Length mismatch: Expected axis has %d elements, new values have %d elements" % (len(old_names), len(columns))) column_index = [col if isinstance(col, tuple) else (col,) for col in columns] if isinstance(columns, pd.Index): column_index_names = columns.names else: column_index_names = None data_columns = [str(idx) if len(idx) > 1 else idx[0] for idx in column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) self._internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index, column_index_names=column_index_names) @property def dtypes(self): """Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the object dtype. Returns ------- pd.Series The data type of each column. Examples -------- >>> df = ks.DataFrame({'a': list('abc'), ... 'b': list(range(1, 4)), ... 'c': np.arange(3, 6).astype('i1'), ... 'd': np.arange(4.0, 7.0, dtype='float64'), ... 'e': [True, False, True], ... 'f': pd.date_range('20130101', periods=3)}, ... columns=['a', 'b', 'c', 'd', 'e', 'f']) >>> df.dtypes a object b int64 c int8 d float64 e bool f datetime64[ns] dtype: object """ return pd.Series([self[idx].dtype for idx in self._internal.column_index], index=pd.Index([idx if len(idx) > 1 else idx[0] for idx in self._internal.column_index])) def select_dtypes(self, include=None, exclude=None): """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. It also takes Spark SQL DDL type strings, for instance, 'string' and 'date'. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes() Traceback (most recent call last): ... ValueError: at least one of include or exclude must be nonempty * If ``include`` and ``exclude`` have overlapping elements >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df.select_dtypes(include='a', exclude='a') Traceback (most recent call last): ... TypeError: string dtypes are not allowed, use 'object' instead Notes ----- * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` Examples -------- >>> df = ks.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3, ... 'd': ['a', 'b'] * 3}, columns=['a', 'b', 'c', 'd']) >>> df a b c d 0 1 True 1.0 a 1 2 False 2.0 b 2 1 True 1.0 a 3 2 False 2.0 b 4 1 True 1.0 a 5 2 False 2.0 b >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64'], exclude=['int']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c d 0 True 1.0 a 1 False 2.0 b 2 True 1.0 a 3 False 2.0 b 4 True 1.0 a 5 False 2.0 b Spark SQL DDL type strings can be used as well. >>> df.select_dtypes(exclude=['string']) a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 """ from pyspark.sql.types import _parse_datatype_string if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () if not any((include, exclude)): raise ValueError('at least one of include or exclude must be ' 'nonempty') # can't both include AND exclude! if set(include).intersection(set(exclude)): raise ValueError('include and exclude overlap on {inc_ex}'.format( inc_ex=set(include).intersection(set(exclude)))) # Handle Spark types include_spark_type = [] for inc in include: try: include_spark_type.append(_parse_datatype_string(inc)) except: pass exclude_spark_type = [] for exc in exclude: try: exclude_spark_type.append(_parse_datatype_string(exc)) except: pass # Handle Pandas types include_numpy_type = [] for inc in include: try: include_numpy_type.append(infer_dtype_from_object(inc)) except: pass exclude_numpy_type = [] for exc in exclude: try: exclude_numpy_type.append(infer_dtype_from_object(exc)) except: pass columns = [] column_index = [] for idx in self._internal.column_index: if len(include) > 0: should_include = ( infer_dtype_from_object(self[idx].dtype.name) in include_numpy_type or self._internal.spark_type_for(idx) in include_spark_type) else: should_include = not ( infer_dtype_from_object(self[idx].dtype.name) in exclude_numpy_type or self._internal.spark_type_for(idx) in exclude_spark_type) if should_include: columns.append(self._internal.column_name_for(idx)) column_index.append(idx) return DataFrame(self._internal.copy( sdf=self._sdf.select(self._internal.index_scols + [self._internal.scol_for(col) for col in columns]), data_columns=columns, column_index=column_index)) def count(self, axis=None): """ Count non-NA cells for each column. The values `None`, `NaN` are considered NA. Parameters ---------- axis : {0 or ‘index’, 1 or ‘columns’}, default 0 If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. Returns ------- pandas.Series See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = ks.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 >>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 Name: 0, dtype: int64 """ return self._reduce_for_stat_function( _Frame._count_expr, name="count", axis=axis, numeric_only=False) def drop(self, labels=None, axis=1, columns: Union[str, Tuple[str, ...], List[str], List[Tuple[str, ...]]] = None): """ Drop specified labels from columns. Remove columns by specifying label names and axis=1 or columns. When specifying both labels and columns, only labels will be dropped. Removing rows is yet to be implemented. Parameters ---------- labels : single label or list-like Column labels to drop. axis : {1 or 'columns'}, default 1 .. dropna currently only works for axis=1 'columns' axis=0 is yet to be implemented. columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). Returns ------- dropped : DataFrame See Also -------- Series.dropna Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('x', axis=1) y z w 0 3 5 7 1 4 6 8 >>> df.drop(['y', 'z'], axis=1) x w 0 1 7 1 2 8 >>> df.drop(columns=['y', 'z']) x w 0 1 7 1 2 8 Also support for MultiIndex >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> columns = [('a', 'x'), ('a', 'y'), ('b', 'z'), ('b', 'w')] >>> df.columns = pd.MultiIndex.from_tuples(columns) >>> df # doctest: +NORMALIZE_WHITESPACE a b x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('a') # doctest: +NORMALIZE_WHITESPACE b z w 0 5 7 1 6 8 Notes ----- Currently only axis = 1 is supported in this function, axis = 0 is yet to be implemented. """ if labels is not None: axis = self._validate_axis(axis) if axis == 1: return self.drop(columns=labels) raise NotImplementedError("Drop currently only works for axis=1") elif columns is not None: if isinstance(columns, str): columns = [(columns,)] # type: ignore elif isinstance(columns, tuple): columns = [columns] else: columns = [col if isinstance(col, tuple) else (col,) # type: ignore for col in columns] drop_column_index = set(idx for idx in self._internal.column_index for col in columns if idx[:len(col)] == col) if len(drop_column_index) == 0: raise KeyError(columns) cols, idxes = zip(*((column, idx) for column, idx in zip(self._internal.data_columns, self._internal.column_index) if idx not in drop_column_index)) internal = self._internal.copy( sdf=self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx) for idx in idxes]), data_columns=list(cols), column_index=list(idxes)) return DataFrame(internal) else: raise ValueError("Need to specify at least one of 'labels' or 'columns'") def get(self, key, default=None): """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object Examples -------- >>> df = ks.DataFrame({'x':range(3), 'y':['a','b','b'], 'z':['a','b','b']}, ... columns=['x', 'y', 'z']) >>> df x y z 0 0 a a 1 1 b b 2 2 b b >>> df.get('x') 0 0 1 1 2 2 Name: x, dtype: int64 >>> df.get(['x', 'y']) x y 0 0 a 1 1 b 2 2 b """ try: return self._pd_getitem(key) except (KeyError, ValueError, IndexError): return default def _sort(self, by: List[Column], ascending: Union[bool, List[bool]], inplace: bool, na_position: str): if isinstance(ascending, bool): ascending = [ascending] * len(by) if len(ascending) != len(by): raise ValueError('Length of ascending ({}) != length of by ({})' .format(len(ascending), len(by))) if na_position not in ('first', 'last'): raise ValueError("invalid na_position: '{}'".format(na_position)) # Mapper: Get a spark column function for (ascending, na_position) combination # Note that 'asc_nulls_first' and friends were added as of Spark 2.4, see SPARK-23847. mapper = { (True, 'first'): lambda x: Column(getattr(x._jc, "asc_nulls_first")()), (True, 'last'): lambda x: Column(getattr(x._jc, "asc_nulls_last")()), (False, 'first'): lambda x: Column(getattr(x._jc, "desc_nulls_first")()), (False, 'last'): lambda x: Column(getattr(x._jc, "desc_nulls_last")()), } by = [mapper[(asc, na_position)](scol) for scol, asc in zip(by, ascending)] kdf = DataFrame(self._internal.copy(sdf=self._sdf.sort(*by))) # type: ks.DataFrame if inplace: self._internal = kdf._internal return None else: return kdf def sort_values(self, by: Union[str, List[str]], ascending: Union[bool, List[bool]] = True, inplace: bool = False, na_position: str = 'last') -> Optional['DataFrame']: """ Sort by the values along either axis. Parameters ---------- by : str or list of str ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False if True, perform operation in-place na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({ ... 'col1': ['A', 'B', None, 'D', 'C'], ... 'col2': [2, 9, 8, 7, 4], ... 'col3': [0, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df col1 col2 col3 0 A 2 0 1 B 9 9 2 None 8 4 3 D 7 2 4 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 B 9 9 4 C 4 3 3 D 7 2 2 None 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 3 D 7 2 4 C 4 3 1 B 9 9 0 A 2 0 2 None 8 4 Sort by multiple columns >>> df = ks.DataFrame({ ... 'col1': ['A', 'A', 'B', None, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 None 8 4 """ if isinstance(by, str): by = [by] by = [self[colname]._scol for colname in by] return self._sort(by=by, ascending=ascending, inplace=inplace, na_position=na_position) def sort_index(self, axis: int = 0, level: Optional[Union[int, List[int]]] = None, ascending: bool = True, inplace: bool = False, kind: str = None, na_position: str = 'last') \ -> Optional['DataFrame']: """ Sort object by labels (along an axis) Parameters ---------- axis : index, columns to direct sorting. Currently, only axis = 0 is supported. level : int or level name or list of ints or list of level names if not None, sort on values in specified index level(s) ascending : boolean, default True Sort ascending vs. descending inplace : bool, default False if True, perform operation in-place kind : str, default None Koalas does not allow specifying the sorting algorithm at the moment, default None na_position : {‘first’, ‘last’}, default ‘last’ first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for MultiIndex. Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({'A': [2, 1, np.nan]}, index=['b', 'a', np.nan]) >>> df.sort_index() A a 1.0 b 2.0 NaN NaN >>> df.sort_index(ascending=False) A b 2.0 a 1.0 NaN NaN >>> df.sort_index(na_position='first') A NaN NaN a 1.0 b 2.0 >>> df.sort_index(inplace=True) >>> df A a 1.0 b 2.0 NaN NaN >>> df = ks.DataFrame({'A': range(4), 'B': range(4)[::-1]}, ... index=[['b', 'b', 'a', 'a'], [1, 0, 1, 0]], ... columns=['A', 'B']) >>> df.sort_index() A B a 0 3 0 1 2 1 b 0 1 2 1 0 3 >>> df.sort_index(level=1) # doctest: +SKIP A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 >>> df.sort_index(level=[1, 0]) A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3 """ if axis != 0: raise ValueError("No other axes than 0 are supported at the moment") if kind is not None: raise ValueError("Specifying the sorting algorithm is supported at the moment.") if level is None or (is_list_like(level) and len(level) == 0): # type: ignore by = self._internal.index_scols elif is_list_like(level): by = [self._internal.index_scols[l] for l in level] # type: ignore else: by = [self._internal.index_scols[level]] return self._sort(by=by, ascending=ascending, inplace=inplace, na_position=na_position) # TODO: add keep = First def nlargest(self, n: int, columns: 'Any') -> 'DataFrame': """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant in Pandas. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(n=3, columns='X') X Y 5 7.0 11 4 6.0 10 3 5.0 9 >>> df.nlargest(n=3, columns=['Y', 'X']) X Y 6 NaN 12 5 7.0 11 4 6.0 10 """ kdf = self.sort_values(by=columns, ascending=False) # type: Optional[DataFrame] assert kdf is not None return kdf.head(n=n) # TODO: add keep = First def nsmallest(self, n: int, columns: 'Any') -> 'DataFrame': """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. In Koalas, thanks to Spark's lazy execution and query optimizer, the two would have same performance. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = ks.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12 In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(n=3, columns='X') # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(n=3, columns=['Y', 'X']) # doctest: +NORMALIZE_WHITESPACE X Y 0 1.0 6 1 2.0 7 2 3.0 8 """ kdf = self.sort_values(by=columns, ascending=True) # type: Optional[DataFrame] assert kdf is not None return kdf.head(n=n) def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable or dict The sequence of values to test. If values is a dict, the keys must be the column names, which must match. Series and DataFrame are not supported. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog'], ... columns=['num_legs', 'num_wings']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True """ if isinstance(values, (pd.DataFrame, pd.Series)): raise NotImplementedError("DataFrame and Series are not supported") if isinstance(values, dict) and not set(values.keys()).issubset(self.columns): raise AttributeError( "'DataFrame' object has no attribute %s" % (set(values.keys()).difference(self.columns))) _select_columns = self._internal.index_columns.copy() if isinstance(values, dict): for col in self.columns: if col in values: _select_columns.append(self._internal.scol_for(col) .isin(values[col]).alias(col)) else: _select_columns.append(F.lit(False).alias(col)) elif is_list_like(values): _select_columns += [ self._internal.scol_for(col).isin(list(values)).alias(col) for col in self.columns] else: raise TypeError('Values should be iterable, Series, DataFrame or dict.') return DataFrame(self._internal.copy(sdf=self._sdf.select(_select_columns))) @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self), len(self.columns) def merge(self, right: 'DataFrame', how: str = 'inner', on: Union[str, List[str], Tuple[str, ...], List[Tuple[str, ...]]] = None, left_on: Union[str, List[str], Tuple[str, ...], List[Tuple[str, ...]]] = None, right_on: Union[str, List[str], Tuple[str, ...], List[Tuple[str, ...]]] = None, left_index: bool = False, right_index: bool = False, suffixes: Tuple[str, str] = ('_x', '_y')) -> 'DataFrame': """ Merge DataFrame objects with a database-style join. The index of the resulting DataFrame will be one of the following: - 0...n if no index is used for merging - Index of the left DataFrame if merged only on the index of the right DataFrame - Index of the right DataFrame if merged only on the index of the left DataFrame - All involved indices if merged using the indices of both DataFrames e.g. if `left` with indices (a, x) and `right` with indices (b, x), the result will be an index (x, a, b) Parameters ---------- right: Object to merge with. how: Type of merge to be performed. {'left', 'right', 'outer', 'inner'}, default 'inner' left: use only keys from left frame, similar to a SQL left outer join; preserve key order. right: use only keys from right frame, similar to a SQL right outer join; preserve key order. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on: Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on: Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on: Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index: Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index: Use the index from the right DataFrame as the join key. Same caveats as left_index. suffixes: Suffix to apply to overlapping column names in the left and right side, respectively. Returns ------- DataFrame A DataFrame of the two merged objects. Examples -------- >>> df1 = ks.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']) >>> df2 = ks.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> merged = df1.merge(df2, left_on='lkey', right_on='rkey') >>> merged.sort_values(by=['lkey', 'value_x', 'rkey', 'value_y']) lkey value_x rkey value_y 0 bar 2 bar 6 5 baz 3 baz 7 1 foo 1 foo 5 2 foo 1 foo 8 3 foo 5 foo 5 4 foo 5 foo 8 >>> left_kdf = ks.DataFrame({'A': [1, 2]}) >>> right_kdf = ks.DataFrame({'B': ['x', 'y']}, index=[1, 2]) >>> left_kdf.merge(right_kdf, left_index=True, right_index=True) A B 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='left') A B 0 1 None 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='right') A B 1 2.0 x 2 NaN y >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='outer') A B 0 1.0 None 1 2.0 x 2 NaN y Notes ----- As described in #263, joining string columns currently returns None for missing values instead of NaN. """ _to_list = lambda os: (os if os is None else [os] if isinstance(os, tuple) else [(os,)] if isinstance(os, str) else [o if isinstance(o, tuple) else (o,) # type: ignore for o in os]) if isinstance(right, ks.Series): right = right.to_frame() if on: if left_on or right_on: raise ValueError('Can only pass argument "on" OR "left_on" and "right_on", ' 'not a combination of both.') left_keys = _to_list(on) right_keys = _to_list(on) else: # TODO: need special handling for multi-index. if left_index: left_keys = self._internal.index_columns else: left_keys = _to_list(left_on) if right_index: right_keys = right._internal.index_columns else: right_keys = _to_list(right_on) if left_keys and not right_keys: raise ValueError('Must pass right_on or right_index=True') if right_keys and not left_keys: raise ValueError('Must pass left_on or left_index=True') if not left_keys and not right_keys: common = list(self.columns.intersection(right.columns)) if len(common) == 0: raise ValueError( 'No common columns to perform merge on. Merge options: ' 'left_on=None, right_on=None, left_index=False, right_index=False') left_keys = _to_list(common) right_keys = _to_list(common) if len(left_keys) != len(right_keys): # type: ignore raise ValueError('len(left_keys) must equal len(right_keys)') if how == 'full': warnings.warn("Warning: While Koalas will accept 'full', you should use 'outer' " + "instead to be compatible with the pandas merge API", UserWarning) if how == 'outer': # 'outer' in pandas equals 'full' in Spark how = 'full' if how not in ('inner', 'left', 'right', 'full'): raise ValueError("The 'how' parameter has to be amongst the following values: ", "['inner', 'left', 'right', 'outer']") left_table = self._sdf.alias('left_table') right_table = right._sdf.alias('right_table') left_scol_for = lambda idx: scol_for(left_table, self._internal.column_name_for(idx)) right_scol_for = lambda idx: scol_for(right_table, right._internal.column_name_for(idx)) left_key_columns = [left_scol_for(idx) for idx in left_keys] # type: ignore right_key_columns = [right_scol_for(idx) for idx in right_keys] # type: ignore join_condition = reduce(lambda x, y: x & y, [lkey == rkey for lkey, rkey in zip(left_key_columns, right_key_columns)]) joined_table = left_table.join(right_table, join_condition, how=how) # Unpack suffixes tuple for convenience left_suffix = suffixes[0] right_suffix = suffixes[1] # Append suffixes to columns with the same name to avoid conflicts later duplicate_columns = (set(self._internal.column_index) & set(right._internal.column_index)) exprs = [] data_columns = [] column_index = [] for idx in self._internal.column_index: col = self._internal.column_name_for(idx) scol = left_scol_for(idx) if idx in duplicate_columns: if idx in left_keys and idx in right_keys: # type: ignore right_scol = right_scol_for(idx) if how == 'right': scol = right_scol elif how == 'full': scol = F.when(scol.isNotNull(), scol).otherwise(right_scol).alias(col) else: pass else: col = col + left_suffix scol = scol.alias(col) idx = tuple([idx[0] + left_suffix] + list(idx[1:])) exprs.append(scol) data_columns.append(col) column_index.append(idx) for idx in right._internal.column_index: col = right._internal.column_name_for(idx) scol = right_scol_for(idx) if idx in duplicate_columns: if idx in left_keys and idx in right_keys: # type: ignore continue else: col = col + right_suffix scol = scol.alias(col) idx = tuple([idx[0] + right_suffix] + list(idx[1:])) exprs.append(scol) data_columns.append(col) column_index.append(idx) left_index_scols = self._internal.index_scols right_index_scols = right._internal.index_scols # Retain indices if they are used for joining if left_index: if right_index: if how in ('inner', 'left'): exprs.extend(left_index_scols) index_map = self._internal.index_map elif how == 'right': exprs.extend(right_index_scols) index_map = right._internal.index_map else: index_map = [] for (col, name), left_scol, right_scol in zip(self._internal.index_map, left_index_scols, right_index_scols): scol = F.when(left_scol.isNotNull(), left_scol).otherwise(right_scol) exprs.append(scol.alias(col)) index_map.append((col, name)) else: exprs.extend(right_index_scols) index_map = right._internal.index_map elif right_index: exprs.extend(left_index_scols) index_map = self._internal.index_map else: index_map = [] selected_columns = joined_table.select(*exprs) internal = _InternalFrame(sdf=selected_columns, index_map=index_map if index_map else None, data_columns=data_columns, column_index=column_index) return DataFrame(internal) def join(self, right: 'DataFrame', on: Optional[Union[str, List[str], Tuple[str, ...], List[Tuple[str, ...]]]] = None, how: str = 'left', lsuffix: str = '', rsuffix: str = '') -> 'DataFrame': """ Join columns of another DataFrame. Join columns with `right` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- right: DataFrame, Series on: str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `right`, otherwise joins index-on-index. If multiple values given, the `right` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how: {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use `left` frame’s index (or column if on is specified). * right: use `right`’s index. * outer: form union of `left` frame’s index (or column if on is specified) with right’s index, and sort it. lexicographically. * inner: form intersection of `left` frame’s index (or column if on is specified) with `right`’s index, preserving the order of the `left`’s one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from `right` frame's overlapping columns. Returns ------- DataFrame A dataframe containing columns from both the `left` and `right`. See Also -------- DataFrame.merge: For column(s)-on-columns(s) operations. Notes ----- Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects. Examples -------- >>> kdf1 = ks.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ... 'A': ['A0', 'A1', 'A2', 'A3']}, ... columns=['key', 'A']) >>> kdf2 = ks.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}, ... columns=['key', 'B']) >>> kdf1 key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 >>> kdf2 key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> join_kdf = kdf1.join(kdf2, lsuffix='_left', rsuffix='_right') >>> join_kdf.sort_values(by=join_kdf.columns) key_left A key_right B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 None None If we want to join using the key columns, we need to set key to be the index in both df and right. The joined DataFrame will have key as its index. >>> join_kdf = kdf1.set_index('key').join(kdf2.set_index('key')) >>> join_kdf.sort_values(by=join_kdf.columns) # doctest: +NORMALIZE_WHITESPACE A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 None Another option to join using the key columns is to use the on parameter. DataFrame.join always uses right’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result. >>> join_kdf = kdf1.join(kdf2.set_index('key'), on='key') >>> join_kdf.sort_index() key A B 0 K3 A3 None 1 K0 A0 B0 2 K1 A1 B1 3 K2 A2 B2 """ if isinstance(right, ks.Series): common = list(self.columns.intersection([right.name])) else: common = list(self.columns.intersection(right.columns)) if len(common) > 0 and not lsuffix and not rsuffix: raise ValueError( "columns overlap but no suffix specified: " "{rename}".format(rename=common)) if on: self = self.set_index(on) join_kdf = self.merge(right, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix)).reset_index() else: join_kdf = self.merge(right, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix)) return join_kdf def append(self, other: 'DataFrame', ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False) -> 'DataFrame': """ Append rows of other to the end of caller, returning a new object. Columns in other that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default False Currently not supported. Returns ------- appended : DataFrame Examples -------- >>> df = ks.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df.append(df) A B 0 1 2 1 3 4 0 1 2 1 3 4 >>> df.append(df, ignore_index=True) A B 0 1 2 1 3 4 2 1 2 3 3 4 """ if isinstance(other, ks.Series): raise ValueError("DataFrames.append() does not support appending Series to DataFrames") if sort: raise ValueError("The 'sort' parameter is currently not supported") if not ignore_index: index_scols = self._internal.index_scols if len(index_scols) != len(other._internal.index_scols): raise ValueError("Both DataFrames have to have the same number of index levels") if verify_integrity and len(index_scols) > 0: if (self._sdf.select(index_scols) .intersect(other._sdf.select(other._internal.index_scols)) .count()) > 0: raise ValueError("Indices have overlapping values") # Lazy import to avoid circular dependency issues from databricks.koalas.namespace import concat return concat([self, other], ignore_index=ignore_index) # TODO: add 'filter_func' and 'errors' parameter def update(self, other: 'DataFrame', join: str = 'left', overwrite: bool = True): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or Series join : 'left', default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. Returns ------- None : method directly changes calling object See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, 5, 6], 'C': [7, 8, 9]}, columns=['B', 'C']) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}, columns=['B']) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}, columns=['A', 'B']) >>> new_column = ks.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e If `other` contains None the corresponding values are not updated in the original dataframe. >>> df = ks.DataFrame({'A': [1, 2, 3], 'B': [400, 500, 600]}, columns=['A', 'B']) >>> new_df = ks.DataFrame({'B': [4, None, 6]}, columns=['B']) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ if join != 'left': raise NotImplementedError("Only left join is supported") if isinstance(other, ks.Series): other = DataFrame(other) update_columns = list(set(self._internal.column_index) .intersection(set(other._internal.column_index))) update_sdf = self.join(other[update_columns], rsuffix='_new')._sdf for column_index in update_columns: column_name = self._internal.column_name_for(column_index) old_col = scol_for(update_sdf, column_name) new_col = scol_for(update_sdf, other._internal.column_name_for(column_index) + '_new') if overwrite: update_sdf = update_sdf.withColumn(column_name, F.when(new_col.isNull(), old_col) .otherwise(new_col)) else: update_sdf = update_sdf.withColumn(column_name, F.when(old_col.isNull(), new_col) .otherwise(old_col)) internal = self._internal.copy(sdf=update_sdf.select([scol_for(update_sdf, col) for col in self._internal.columns])) self._internal = internal def sample(self, n: Optional[int] = None, frac: Optional[float] = None, replace: bool = False, random_state: Optional[int] = None) -> 'DataFrame': """ Return a random sample of items from an axis of object. Please call this function using named argument by specifying the ``frac`` argument. You can use `random_state` for reproducibility. However, note that different from pandas, specifying a seed in Koalas/Spark does not guarantee the sampled rows will be fixed. The result set depends on not only the seed, but also how the data is distributed across machines and to some extent network randomness when shuffle operations are involved. Even in the simplest case, the result set will depend on the system's CPU core count. Parameters ---------- n : int, optional Number of items to return. This is currently NOT supported. Use frac instead. frac : float, optional Fraction of axis items to return. replace : bool, default False Sample with or without replacement. random_state : int, optional Seed for the random number generator (if int). Returns ------- Series or DataFrame A new object of same type as caller containing the sampled items. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish'], ... columns=['num_legs', 'num_wings', 'num_specimen_seen']) >>> df # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 A random 25% sample of the ``DataFrame``. Note that we use `random_state` to ensure the reproducibility of the examples. >>> df.sample(frac=0.25, random_state=1) # doctest: +SKIP num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 Extract 25% random elements from the ``Series`` ``df['num_legs']``, with replacement, so the same items could appear more than once. >>> df['num_legs'].sample(frac=0.4, replace=True, random_state=1) # doctest: +SKIP falcon 2 spider 8 spider 8 Name: num_legs, dtype: int64 Specifying the exact number of items to return is not supported at the moment. >>> df.sample(n=5) # doctest: +ELLIPSIS Traceback (most recent call last): ... NotImplementedError: Function sample currently does not support specifying ... """ # Note: we don't run any of the doctests because the result can change depending on the # system's core count. if n is not None: raise NotImplementedError("Function sample currently does not support specifying " "exact number of items to return. Use frac instead.") if frac is None: raise ValueError("frac must be specified.") sdf = self._sdf.sample(withReplacement=replace, fraction=frac, seed=random_state) return DataFrame(self._internal.copy(sdf=sdf)) def astype(self, dtype) -> 'DataFrame': """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> df = ks.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}, dtype='int64') >>> df a b 0 1 1 1 2 2 2 3 3 Convert to float type: >>> df.astype('float') a b 0 1.0 1.0 1 2.0 2.0 2 3.0 3.0 Convert to int64 type back: >>> df.astype('int64') a b 0 1 1 1 2 2 2 3 3 Convert column a to float type: >>> df.astype({'a': float}) a b 0 1.0 1 1 2.0 2 2 3.0 3 """ results = [] if is_dict_like(dtype): for col_name in dtype.keys(): if col_name not in self.columns: raise KeyError('Only a column name can be used for the ' 'key in a dtype mappings argument.') for col_name, col in self.items(): if col_name in dtype: results.append(col.astype(dtype=dtype[col_name])) else: results.append(col) else: for col_name, col in self.items(): results.append(col.astype(dtype=dtype)) sdf = self._sdf.select( self._internal.index_scols + list(map(lambda ser: ser._scol, results))) return DataFrame(self._internal.copy(sdf=sdf)) def add_prefix(self, prefix): """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(prefix, str) data_columns = [prefix + self._internal.column_name_for(idx) for idx in self._internal.column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) column_index = [tuple([prefix + i for i in idx]) for idx in self._internal.column_index] internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index) return DataFrame(internal) def add_suffix(self, suffix): """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add before each label. Returns ------- DataFrame New DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}, columns=['A', 'B']) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ assert isinstance(suffix, str) data_columns = [self._internal.column_name_for(idx) + suffix for idx in self._internal.column_index] sdf = self._sdf.select( self._internal.index_scols + [self._internal.scol_for(idx).alias(name) for idx, name in zip(self._internal.column_index, data_columns)]) column_index = [tuple([i + suffix for i in idx]) for idx in self._internal.column_index] internal = self._internal.copy(sdf=sdf, data_columns=data_columns, column_index=column_index) return DataFrame(internal) # TODO: include, and exclude should be implemented. def describe(self, percentiles: Optional[List[float]] = None) -> 'DataFrame': """ Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list of ``float`` in range [0.0, 1.0], default [0.25, 0.5, 0.75] A list of percentiles to be computed. Returns ------- Series or DataFrame Summary statistics of the Series or Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``25%``, ``50%``, ``75%``, ``max``. Currently only numeric data is supported. Examples -------- Describing a numeric ``Series``. >>> s = ks.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: 0, dtype: float64 Describing a ``DataFrame``. Only numeric fields are returned. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0], ... 'object': ['a', 'b', 'c'] ... }, ... columns=['numeric1', 'numeric2', 'object']) >>> df.describe() numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0 Describing a ``DataFrame`` and selecting custom percentiles. >>> df = ks.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0] ... }, ... columns=['numeric1', 'numeric2']) >>> df.describe(percentiles = [0.85, 0.15]) numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 15% 1.0 4.0 50% 2.0 5.0 85% 3.0 6.0 max 3.0 6.0 Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric1.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: numeric1, dtype: float64 Describing a column from a ``DataFrame`` by accessing it as an attribute and selecting custom percentiles. >>> df.numeric1.describe(percentiles = [0.85, 0.15]) count 3.0 mean 2.0 std 1.0 min 1.0 15% 1.0 50% 2.0 85% 3.0 max 3.0 Name: numeric1, dtype: float64 """ exprs = [] data_columns = [] for col in self.columns: kseries = self[col] spark_type = kseries.spark_type if isinstance(spark_type, DoubleType) or isinstance(spark_type, FloatType): exprs.append(F.nanvl(kseries._scol, F.lit(None)).alias(kseries.name)) data_columns.append(kseries.name) elif isinstance(spark_type, NumericType): exprs.append(kseries._scol) data_columns.append(kseries.name) if len(exprs) == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: if any((p < 0.0) or (p > 1.0) for p in percentiles): raise ValueError("Percentiles should all be in the interval [0, 1]") # appending 50% if not in percentiles already percentiles = (percentiles + [0.5]) if 0.5 not in percentiles else percentiles else: percentiles = [0.25, 0.5, 0.75] formatted_perc = ["{:.0%}".format(p) for p in sorted(percentiles)] stats = ["count", "mean", "stddev", "min", *formatted_perc, "max"] sdf = self._sdf.select(*exprs).summary(stats) internal = _InternalFrame(sdf=sdf.replace("stddev", "std", subset='summary'), data_columns=data_columns, index_map=[('summary', None)]) return DataFrame(internal).astype('float64') def _cum(self, func, skipna: bool): # This is used for cummin, cummax, cumxum, etc. if func == F.min: func = "cummin" elif func == F.max: func = "cummax" elif func == F.sum: func = "cumsum" elif func.__name__ == "cumprod": func = "cumprod" applied = [] for column in self.columns: applied.append(getattr(self[column], func)(skipna)) sdf = self._sdf.select( self._internal.index_scols + [c._scol for c in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) # TODO: implements 'keep' parameters def drop_duplicates(self, subset=None, inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- DataFrame >>> df = ks.DataFrame( ... {'a': [1, 2, 2, 2, 3], 'b': ['a', 'a', 'a', 'c', 'd']}, columns = ['a', 'b']) >>> df a b 0 1 a 1 2 a 2 2 a 3 2 c 4 3 d >>> df.drop_duplicates().sort_values(['a', 'b']) a b 0 1 a 1 2 a 3 2 c 4 3 d >>> df.drop_duplicates('a').sort_values(['a', 'b']) a b 0 1 a 1 2 a 4 3 d >>> df.drop_duplicates(['a', 'b']).sort_values(['a', 'b']) a b 0 1 a 1 2 a 3 2 c 4 3 d """ if subset is None: subset = self._internal.column_index elif isinstance(subset, str): subset = [(subset,)] elif isinstance(subset, tuple): subset = [subset] else: subset = [sub if isinstance(sub, tuple) else (sub,) for sub in subset] sdf = self._sdf.drop_duplicates(subset=[self._internal.column_name_for(idx) for idx in subset]) internal = self._internal.copy(sdf=sdf) if inplace: self._internal = internal else: return DataFrame(internal) def reindex(self, labels: Optional[Any] = None, index: Optional[Any] = None, columns: Optional[Any] = None, axis: Optional[Union[int, str]] = None, copy: Optional[bool] = True, fill_value: Optional[Any] = None) -> 'DataFrame': """ Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- labels: array-like, optional New labels / index to conform the axis specified by ‘axis’ to. index, columns: array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data axis: int or str, optional Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). copy : bool, default True Return a new object, even if the passed indexes are the same. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. Returns ------- DataFrame with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = ks.DataFrame({ ... 'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index, ... columns=['http_status', 'response_time']) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status response_time Chrome 200.0 0.02 Comodo Dragon NaN NaN IE10 404.0 0.08 Iceweasel NaN NaN Safari 404.0 0.07 We can fill in the missing values by passing a value to the keyword ``fill_value``. >>> df.reindex(new_index, fill_value=0, copy=False).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status response_time Chrome 200 0.02 Comodo Dragon 0 0.00 IE10 404 0.08 Iceweasel 0 0.00 Safari 404 0.07 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']).sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status user_agent Chrome 200 NaN Comodo Dragon 0 NaN IE10 404 NaN Iceweasel 0 NaN Safari 404 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns").sort_index() ... # doctest: +NORMALIZE_WHITESPACE http_status user_agent Chrome 200 NaN Comodo Dragon 0 NaN IE10 404 NaN Iceweasel 0 NaN Safari 404 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = ks.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2.sort_index() # doctest: +NORMALIZE_WHITESPACE prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2).sort_index() # doctest: +NORMALIZE_WHITESPACE prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN """ if axis is not None and (index is not None or columns is not None): raise TypeError("Cannot specify both 'axis' and any of 'index' or 'columns'.") if labels is not None: if axis in ('index', 0, None): index = labels elif axis in ('columns', 1): columns = labels else: raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) if index is not None and not is_list_like(index): raise TypeError("Index must be called with a collection of some kind, " "%s was passed" % type(index)) if columns is not None and not is_list_like(columns): raise TypeError("Columns must be called with a collection of some kind, " "%s was passed" % type(columns)) df = self.copy() if index is not None: df = DataFrame(df._reindex_index(index)) if columns is not None: df = DataFrame(df._reindex_columns(columns)) # Process missing values. if fill_value is not None: df = df.fillna(fill_value) # Copy if copy: return df.copy() else: self._internal = df._internal return self def _reindex_index(self, index): # When axis is index, we can mimic pandas' by a right outer join. index_column = self._internal.index_columns assert len(index_column) <= 1, "Index should be single column or not set." if len(index_column) == 1: kser = ks.Series(list(index)) index_column = index_column[0] labels = kser._kdf._sdf.select(kser._scol.alias(index_column)) else: index_column = None labels = ks.Series(index).to_frame()._sdf joined_df = self._sdf.join(labels, on=index_column, how="right") new_data_columns = filter(lambda x: x not in index_column, joined_df.columns) if index_column is not None: index_map = [(index_column, None)] # type: List[IndexMap] internal = self._internal.copy( sdf=joined_df, data_columns=list(new_data_columns), index_map=index_map) else: internal = self._internal.copy( sdf=joined_df, data_columns=list(new_data_columns)) return internal def _reindex_columns(self, columns): level = self._internal.column_index_level if level > 1: label_columns = list(columns) for col in label_columns: if not isinstance(col, tuple): raise TypeError('Expected tuple, got {}'.format(type(col))) else: label_columns = [(col,) for col in columns] for col in label_columns: if len(col) != level: raise ValueError("shape (1,{}) doesn't match the shape (1,{})" .format(len(col), level)) scols, columns, idx = [], [], [] null_columns = False for label in label_columns: if label in self._internal.column_index: scols.append(self._internal.scol_for(label)) columns.append(self._internal.column_name_for(label)) else: scols.append(F.lit(np.nan).alias(str(label))) columns.append(str(label)) null_columns = True idx.append(label) if null_columns: sdf = self._sdf.select(self._internal.index_scols + list(scols)) return self._internal.copy(sdf=sdf, data_columns=columns, column_index=idx) def melt(self, id_vars=None, value_vars=None, var_name='variable', value_name='value'): """ Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar, default 'variable' Name to use for the 'variable' column. value_name : scalar, default 'value' Name to use for the 'value' column. Returns ------- DataFrame Unpivoted DataFrame. Examples -------- >>> df = ks.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> ks.melt(df) variable value 0 A a 1 B 1 2 C 2 3 A b 4 B 3 5 C 4 6 A c 7 B 5 8 C 6 >>> df.melt(id_vars='A') A variable value 0 a B 1 1 a C 2 2 b B 3 3 b C 4 4 c B 5 5 c C 6 >>> ks.melt(df, id_vars=['A', 'B']) A B variable value 0 a 1 C 2 1 b 3 C 4 2 c 5 C 6 >>> df.melt(id_vars=['A'], value_vars=['C']) A variable value 0 a C 2 1 b C 4 2 c C 6 The names of 'variable' and 'value' columns can be customized: >>> ks.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 """ if id_vars is None: id_vars = [] if not isinstance(id_vars, (list, tuple, np.ndarray)): id_vars = list(id_vars) data_columns = self._internal.data_columns if value_vars is None: value_vars = [] if not isinstance(value_vars, (list, tuple, np.ndarray)): value_vars = list(value_vars) if len(value_vars) == 0: value_vars = data_columns data_columns = [data_column for data_column in data_columns if data_column not in id_vars] sdf = self._sdf pairs = F.explode(F.array(*[ F.struct(*( [F.lit(column).alias(var_name)] + [self._internal.scol_for(column).alias(value_name)]) ) for column in data_columns if column in value_vars])) columns = (id_vars + [F.col("pairs.%s" % var_name), F.col("pairs.%s" % value_name)]) exploded_df = sdf.withColumn("pairs", pairs).select(columns) return DataFrame(exploded_df) # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Union[int, str] = 0) -> bool: """ Return whether all elements are True. Returns True unless there is at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [True, True, True], ... 'col2': [True, False, False], ... 'col3': [0, 0, 0], ... 'col4': [1, 2, 3], ... 'col5': [True, True, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.all() col1 True col2 False col3 False col4 True col5 True col6 False Name: all, dtype: bool Returns ------- Series """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] column_index = self._internal.column_index for idx in column_index: col = self[idx]._scol all_col = F.min(F.coalesce(col.cast('boolean'), F.lit(True))) applied.append(F.when(all_col.isNull(), True).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.any, Series.quantile. Maybe we should deduplicate it. sdf = self._sdf value_column = "value" cols = [] for idx, applied_col in zip(column_index, applied): cols.append(F.struct( [F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(idx)] + [applied_col.alias(value_column)])) sdf = sdf.select( F.array(*cols).alias("arrays") ).select(F.explode(F.col("arrays"))) sdf = sdf.selectExpr("col.*") index_column_name = lambda i: (None if self._internal.column_index_names is None else (self._internal.column_index_names[i],)) internal = self._internal.copy( sdf=sdf, data_columns=[value_column], index_map=[(SPARK_INDEX_NAME_FORMAT(i), index_column_name(i)) for i in range(self._internal.column_index_level)], column_index=None, column_index_names=None) return DataFrame(internal)[value_column].rename("all") # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Union[int, str] = 0) -> bool: """ Return whether any element is True. Returns False unless there is at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- Create a dataframe from a dictionary. >>> df = ks.DataFrame({ ... 'col1': [False, False, False], ... 'col2': [True, False, False], ... 'col3': [0, 0, 1], ... 'col4': [0, 1, 2], ... 'col5': [False, False, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) Default behaviour checks if column-wise values all return a boolean. >>> df.any() col1 False col2 True col3 True col4 True col5 False col6 True Name: any, dtype: bool Returns ------- Series """ if axis not in [0, 'index']: raise ValueError('axis should be either 0 or "index" currently.') applied = [] column_index = self._internal.column_index for idx in column_index: col = self[idx]._scol all_col = F.max(F.coalesce(col.cast('boolean'), F.lit(False))) applied.append(F.when(all_col.isNull(), False).otherwise(all_col)) # TODO: there is a similar logic to transpose in, for instance, # DataFrame.all, Series.quantile. Maybe we should deduplicate it. sdf = self._sdf value_column = "value" cols = [] for idx, applied_col in zip(column_index, applied): cols.append(F.struct( [F.lit(col).alias(SPARK_INDEX_NAME_FORMAT(i)) for i, col in enumerate(idx)] + [applied_col.alias(value_column)])) sdf = sdf.select( F.array(*cols).alias("arrays") ).select(F.explode(F.col("arrays"))) sdf = sdf.selectExpr("col.*") index_column_name = lambda i: (None if self._internal.column_index_names is None else (self._internal.column_index_names[i],)) internal = self._internal.copy( sdf=sdf, data_columns=[value_column], index_map=[(SPARK_INDEX_NAME_FORMAT(i), index_column_name(i)) for i in range(self._internal.column_index_level)], column_index=None, column_index_names=None) return DataFrame(internal)[value_column].rename("any") # TODO: add axis, numeric_only, pct, na_option parameter def rank(self, method='average', ascending=True): """ Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values. .. note:: the current implementation of rank uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- method : {'average', 'min', 'max', 'first', 'dense'} * average: average rank of group * min: lowest rank in group * max: highest rank in group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups ascending : boolean, default True False for ranks by high (1) to low (N) Returns ------- ranks : same type as caller Examples -------- >>> df = ks.DataFrame({'A': [1, 2, 2, 3], 'B': [4, 3, 2, 1]}, columns= ['A', 'B']) >>> df A B 0 1 4 1 2 3 2 2 2 3 3 1 >>> df.rank().sort_index() A B 0 1.0 4.0 1 2.5 3.0 2 2.5 2.0 3 4.0 1.0 If method is set to 'min', it use lowest rank in group. >>> df.rank(method='min').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 4.0 1.0 If method is set to 'max', it use highest rank in group. >>> df.rank(method='max').sort_index() A B 0 1.0 4.0 1 3.0 3.0 2 3.0 2.0 3 4.0 1.0 If method is set to 'dense', it leaves no gaps in group. >>> df.rank(method='dense').sort_index() A B 0 1.0 4.0 1 2.0 3.0 2 2.0 2.0 3 3.0 1.0 """ applied = [] for idx in self._internal.column_index: applied.append(self[idx].rank(method=method, ascending=ascending)) sdf = self._sdf.select(self._internal.index_columns + [column._scol for column in applied]) internal = self._internal.copy(sdf=sdf, data_columns=[c._internal.data_columns[0] for c in applied], column_index=[c._internal.column_index[0] for c in applied]) return DataFrame(internal) def filter(self, items=None, like=None, regex=None, axis=None): """ Subset rows or columns of dataframe according to labels in the specified index. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : string Keep labels from axis for which "like in label == True". regex : string (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : int or string axis name The axis to filter on. By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = ks.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 """ if sum(x is not None for x in (items, like, regex)) > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive") if axis not in ('index', 0, 'columns', 1, None): raise ValueError("No axis named %s for object type %s." % (axis, type(axis))) index_scols = self._internal.index_scols sdf = self._sdf if items is not None: if is_list_like(items): items = list(items) else: raise ValueError("items should be a list-like object.") if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") col = None for item in items: if col is None: col = index_scols[0] == F.lit(item) else: col = col | (index_scols[0] == F.lit(item)) sdf = sdf.filter(col) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): return self[items] elif like is not None: if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") sdf = sdf.filter(index_scols[0].contains(like)) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): column_index = self._internal.column_index output_idx = [idx for idx in column_index if any(like in i for i in idx)] return self[output_idx] elif regex is not None: if axis in ('index', 0): # TODO: support multi-index here if len(index_scols) != 1: raise ValueError("Single index must be specified.") sdf = sdf.filter(index_scols[0].rlike(regex)) return DataFrame(self._internal.copy(sdf=sdf)) elif axis in ('columns', 1, None): column_index = self._internal.column_index matcher = re.compile(regex) output_idx = [idx for idx in column_index if any(matcher.search(i) is not None for i in idx)] return self[output_idx] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def rename(self, mapper=None, index=None, columns=None, axis='index', inplace=False, level=None, errors='ignore'): """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis’ values. Use either `mapper` and `axis` to specify the axis to target with `mapper`, or `index` and `columns`. index : dict-like or function Alternative to specifying axis ("mapper, axis=0" is equivalent to "index=mapper"). columns : dict-like or function Alternative to specifying axis ("mapper, axis=1" is equivalent to "columns=mapper"). axis : int or str, default 'index' Axis to target with mapper. Can be either the axis name ('index', 'columns') or number (0, 1). inplace : bool, default False Whether to return a new DataFrame. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame with the renamed axis labels. Raises: ------- `KeyError` If any of the labels is not found in the selected axis and "errors='raise'". Examples -------- >>> kdf1 = ks.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> kdf1.rename(columns={"A": "a", "B": "c"}) # doctest: +NORMALIZE_WHITESPACE a c 0 1 4 1 2 5 2 3 6 >>> kdf1.rename(index={1: 10, 2: 20}) # doctest: +NORMALIZE_WHITESPACE A B 0 1 4 10 2 5 20 3 6 >>> def str_lower(s) -> str: ... return str.lower(s) >>> kdf1.rename(str_lower, axis='columns') # doctest: +NORMALIZE_WHITESPACE a b 0 1 4 1 2 5 2 3 6 >>> def mul10(x) -> int: ... return x * 10 >>> kdf1.rename(mul10, axis='index') # doctest: +NORMALIZE_WHITESPACE A B 0 1 4 10 2 5 20 3 6 >>> idx = pd.MultiIndex.from_tuples([('X', 'A'), ('X', 'B'), ('Y', 'C'), ('Y', 'D')]) >>> kdf2 = ks.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=idx) >>> kdf2.rename(columns=str_lower, level=0) # doctest: +NORMALIZE_WHITESPACE x y A B C D 0 1 2 3 4 1 5 6 7 8 >>> kdf3 = ks.DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=idx, columns=list('ab')) >>> kdf3.rename(index=str_lower) # doctest: +NORMALIZE_WHITESPACE a b x a 1 2 b 3 4 y c 5 6 d 7 8 """ def gen_mapper_fn(mapper): if isinstance(mapper, dict): if len(mapper) == 0: if errors == 'raise': raise KeyError('Index include label which is not in the `mapper`.') else: return DataFrame(self._internal) type_set = set(map(lambda x: type(x), mapper.values())) if len(type_set) > 1: raise ValueError("Mapper dict should have the same value type.") spark_return_type = as_spark_type(list(type_set)[0]) def mapper_fn(x): if x in mapper: return mapper[x] else: if errors == 'raise': raise KeyError('Index include value which is not in the `mapper`') return x elif callable(mapper): spark_return_type = _infer_return_type(mapper).tpe def mapper_fn(x): return mapper(x) else: raise ValueError("`mapper` or `index` or `columns` should be " "either dict-like or function type.") return mapper_fn, spark_return_type index_mapper_fn = None index_mapper_ret_stype = None columns_mapper_fn = None if mapper: if axis == 'index' or axis == 0: index_mapper_fn, index_mapper_ret_stype = gen_mapper_fn(mapper) elif axis == 'columns' or axis == 1: columns_mapper_fn, columns_mapper_ret_stype = gen_mapper_fn(mapper) else: raise ValueError("argument axis should be either the axis name " "(‘index’, ‘columns’) or number (0, 1)") else: if index: index_mapper_fn, index_mapper_ret_stype = gen_mapper_fn(index) if columns: columns_mapper_fn, _ = gen_mapper_fn(columns) if not index and not columns: raise ValueError("Either `index` or `columns` should be provided.") internal = self._internal if index_mapper_fn: # rename index labels, if `level` is None, rename all index columns, otherwise only # rename the corresponding level index. # implement this by transform the underlying spark dataframe, # Example: # suppose the kdf index column in underlying spark dataframe is "index_0", "index_1", # if rename level 0 index labels, will do: # ``kdf._sdf.withColumn("index_0", mapper_fn_udf(col("index_0"))`` # if rename all index labels (`level` is None), then will do: # ``` # kdf._sdf.withColumn("index_0", mapper_fn_udf(col("index_0")) # .withColumn("index_1", mapper_fn_udf(col("index_1")) # ``` index_columns = internal.index_columns num_indices = len(index_columns) if level: if level < 0 or level >= num_indices: raise ValueError("level should be an integer between [0, num_indices)") def gen_new_index_column(level): index_col_name = index_columns[level] index_mapper_udf = pandas_udf(lambda s: s.map(index_mapper_fn), returnType=index_mapper_ret_stype) return index_mapper_udf(scol_for(internal.sdf, index_col_name)) sdf = internal.sdf if level is None: for i in range(num_indices): sdf = sdf.withColumn(index_columns[i], gen_new_index_column(i)) else: sdf = sdf.withColumn(index_columns[level], gen_new_index_column(level)) internal = internal.copy(sdf=sdf) if columns_mapper_fn: # rename column name. # Will modify the `_internal._column_index` and transform underlying spark dataframe # to the same column name with `_internal._column_index`. if level: if level < 0 or level >= internal.column_index_level: raise ValueError("level should be an integer between [0, column_index_level)") def gen_new_column_index_entry(column_index_entry): if isinstance(column_index_entry, tuple): if level is None: # rename all level columns return tuple(map(columns_mapper_fn, column_index_entry)) else: # only rename specified level column entry_list = list(column_index_entry) entry_list[level] = columns_mapper_fn(entry_list[level]) return tuple(entry_list) else: return columns_mapper_fn(column_index_entry) new_column_index = list(map(gen_new_column_index_entry, internal.column_index)) if internal.column_index_level == 1: new_data_columns = [col[0] for col in new_column_index] else: new_data_columns = [str(col) for col in new_column_index] new_data_scols = [scol_for(internal.sdf, old_col_name).alias(new_col_name) for old_col_name, new_col_name in zip(internal.data_columns, new_data_columns)] sdf = internal.sdf.select(*(internal.index_scols + new_data_scols)) internal = internal.copy(sdf=sdf, column_index=new_column_index, data_columns=new_data_columns) if inplace: self._internal = internal return self else: return DataFrame(internal) def _get_from_multiindex_column(self, key): """ Select columns from multi-index columns. :param key: the multi-index column keys represented by tuple :return: DataFrame or Series """ from databricks.koalas.series import Series assert isinstance(key, tuple) indexes = [(idx, idx) for idx in self._internal.column_index] for k in key: indexes = [(index, idx[1:]) for index, idx in indexes if idx[0] == k] if len(indexes) == 0: raise KeyError(k) recursive = False if all(len(idx) > 0 and idx[0] == '' for _, idx in indexes): # If the head is '', drill down recursively. recursive = True for i, (col, idx) in enumerate(indexes): indexes[i] = (col, tuple([str(key), *idx[1:]])) column_index_names = None if self._internal.column_index_names is not None: # Manage column index names level = column_index_level([idx for _, idx in indexes]) column_index_names = self._internal.column_index_names[-level:] if all(len(idx) == 0 for _, idx in indexes): try: idxes = set(idx for idx, _ in indexes) assert len(idxes) == 1 index = list(idxes)[0] kdf_or_ser = \ Series(self._internal.copy(scol=self._internal.scol_for(index), column_index=[index]), anchor=self) except AnalysisException: raise KeyError(key) else: kdf_or_ser = DataFrame(self._internal.copy( data_columns=[self._internal.column_name_for(idx) for idx, _ in indexes], column_index=[idx for _, idx in indexes], column_index_names=column_index_names)) if recursive: kdf_or_ser = kdf_or_ser._get_from_multiindex_column((str(key),)) return kdf_or_ser def _pd_getitem(self, key): from databricks.koalas.series import Series if key is None: raise KeyError("none key") if isinstance(key, str): return self._get_from_multiindex_column((key,)) if isinstance(key, tuple): return self._get_from_multiindex_column(key) elif np.isscalar(key): raise NotImplementedError(key) elif isinstance(key, slice): return self.loc[key] if isinstance(key, (pd.Series, np.ndarray, pd.Index)): raise NotImplementedError(key) if isinstance(key, list): return self.loc[:, key] if isinstance(key, DataFrame): # TODO Should not implement alignment, too dangerous? return Series(self._internal.copy(scol=self._internal.scol_for(key)), anchor=self) if isinstance(key, Series): # TODO Should not implement alignment, too dangerous? # It is assumed to be only a filter, otherwise .loc should be used. bcol = key._scol.cast("boolean") return DataFrame(self._internal.copy(sdf=self._sdf.filter(bcol))) raise NotImplementedError(key) def _to_internal_pandas(self): """ Return a pandas DataFrame directly from _internal to avoid overhead of copy. This method is for internal use only. """ return self._internal.pandas_df def __repr__(self): max_display_count = get_option("display.max_rows") if max_display_count is None: return self._to_internal_pandas().to_string() pdf = self.head(max_display_count + 1)._to_internal_pandas() pdf_length = len(pdf) pdf = pdf.iloc[:max_display_count] if pdf_length > max_display_count: repr_string = pdf.to_string(show_dimensions=True) match = REPR_PATTERN.search(repr_string) if match is not None: nrows = match.group("rows") ncols = match.group("columns") footer = ("\n\n[Showing only the first {nrows} rows x {ncols} columns]" .format(nrows=nrows, ncols=ncols)) return REPR_PATTERN.sub(footer, repr_string) return pdf.to_string() def _repr_html_(self): max_display_count = get_option("display.max_rows") # pandas 0.25.1 has a regression about HTML representation so 'bold_rows' # has to be set as False explicitly. See https://github.com/pandas-dev/pandas/issues/28204 bold_rows = not (LooseVersion("0.25.1") == LooseVersion(pd.__version__)) if max_display_count is None: return self._to_internal_pandas().to_html(notebook=True, bold_rows=bold_rows) pdf = self.head(max_display_count + 1)._to_internal_pandas() pdf_length = len(pdf) pdf = pdf[:max_display_count] if pdf_length > max_display_count: repr_html = pdf.to_html(show_dimensions=True, notebook=True, bold_rows=bold_rows) match = REPR_HTML_PATTERN.search(repr_html) if match is not None: nrows = match.group("rows") ncols = match.group("columns") by = chr(215) footer = ('\n<p>Showing only the first {rows} rows {by} {cols} columns</p>\n</div>' .format(rows=nrows, by=by, cols=ncols)) return REPR_HTML_PATTERN.sub(footer, repr_html) return pdf.to_html(notebook=True, bold_rows=bold_rows) def __getitem__(self, key): return self._pd_getitem(key) def __setitem__(self, key, value): from databricks.koalas.series import Series if (isinstance(value, Series) and value._kdf is not self) or \ (isinstance(value, DataFrame) and value is not self): # Different Series or DataFrames level = self._internal.column_index_level if isinstance(value, Series): value = value.to_frame() value.columns = pd.MultiIndex.from_tuples( [tuple(list(value._internal.column_index[0]) + ([''] * (level - 1)))]) else: assert isinstance(value, DataFrame) value_level = value._internal.column_index_level if value_level > level: value.columns = pd.MultiIndex.from_tuples( [idx[level:] for idx in value._internal.column_index]) elif value_level < level: value.columns = pd.MultiIndex.from_tuples( [tuple(list(idx) + ([''] * (level - value_level))) for idx in value._internal.column_index]) if isinstance(key, str): key = [(key,)] elif isinstance(key, tuple): key = [key] else: key = [k if isinstance(k, tuple) else (k,) for k in key] def assign_columns(kdf, this_column_index, that_column_index): assert len(key) == len(that_column_index) # Note that here intentionally uses `zip_longest` that combine # that_columns. for k, this_idx, that_idx \ in zip_longest(key, this_column_index, that_column_index): yield (kdf[that_idx], tuple(['that', *k])) if this_idx is not None and this_idx[1:] != k: yield (kdf[this_idx], this_idx) kdf = align_diff_frames(assign_columns, self, value, fillna=False, how="left") elif isinstance(key, list): assert isinstance(value, DataFrame) # Same DataFrames. field_names = value.columns kdf = self._assign({k: value[c] for k, c in zip(key, field_names)}) else: # Same Series. kdf = self._assign({key: value}) self._internal = kdf._internal def __getattr__(self, key: str) -> Any: if key.startswith("__") or key.startswith("_pandas_") or key.startswith("_spark_"): raise AttributeError(key) if hasattr(_MissingPandasLikeDataFrame, key): property_or_func = getattr(_MissingPandasLikeDataFrame, key) if isinstance(property_or_func, property): return property_or_func.fget(self) # type: ignore else: return partial(property_or_func, self) try: return self._get_from_multiindex_column((key,)) except KeyError: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, key)) def __len__(self): return self._sdf.count() def __dir__(self): fields = [f for f in self._sdf.schema.fieldNames() if ' ' not in f] return super(DataFrame, self).__dir__() + fields def __iter__(self): return iter(self.columns) @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 1, 'index', 'columns', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0, 'columns': 1}.get(axis, axis) if sys.version_info >= (3, 7): def __class_getitem__(cls, params): # This is a workaround to support variadic generic in DataFrame in Python 3.7. # See https://github.com/python/typing/issues/193 # we always wraps the given type hints by a tuple to mimic the variadic generic. return super(cls, DataFrame).__class_getitem__(Tuple[params]) elif (3, 5) <= sys.version_info < (3, 7): # This is a workaround to support variadic generic in DataFrame in Python 3.5+ # The implementation is in its metaclass so this flag is needed to distinguish # Koalas DataFrame. is_dataframe = None def _reduce_spark_multi(sdf, aggs): """ Performs a reduction on a dataframe, the functions being known sql aggregate functions. """ assert isinstance(sdf, spark.DataFrame) sdf0 = sdf.agg(*aggs) l = sdf0.head(2) assert len(l) == 1, (sdf, l) row = l[0] l2 = list(row) assert len(l2) == len(aggs), (row, l2) return l2 class _CachedDataFrame(DataFrame): """ Cached Koalas DataFrame, which corresponds to Pandas DataFrame logically, but internally it caches the corresponding Spark DataFrame. """ def __init__(self, internal): self._cached = internal._sdf.cache() super(_CachedDataFrame, self).__init__(internal) def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.unpersist() def unpersist(self): """ The `unpersist` function is used to uncache the Koalas DataFrame when it is not used with `with` statement. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df = df.cache() To uncache the dataframe, use `unpersist` function >>> df.unpersist() """ if self._cached.is_cached: self._cached.unpersist()
1
12,221
Seems the default value of `melt`'s `var_name` at namespace.py should be changed as well.
databricks-koalas
py
@@ -608,6 +608,17 @@ def test_query_parser_path_params_with_slashes(): assert params == {"ResourceArn": resource_arn} +def test_parse_cloudtrail_with_botocore(): + _botocore_parser_integration_test( + service="cloudtrail", + action="DescribeTrails", + headers={ + "X-Amz-Target": "com.amazonaws.cloudtrail.v20131101.CloudTrail_20131101.DescribeTrails" + }, + trailNameList=["t1"], + ) + + # TODO Add additional tests (or even automate the creation) # - Go to the Boto3 Docs (https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/index.html) # - Look for boto3 request syntax definition for services that use the protocol you want to test
1
from datetime import datetime from urllib.parse import urlencode from botocore.serialize import create_serializer from localstack.aws.api import HttpRequest from localstack.aws.protocol.parser import QueryRequestParser, RestJSONRequestParser, create_parser from localstack.aws.spec import load_service from localstack.utils.common import to_bytes def test_query_parser(): """Basic test for the QueryParser with a simple example (SQS SendMessage request).""" parser = QueryRequestParser(load_service("sqs")) request = HttpRequest( body=to_bytes( "Action=SendMessage&Version=2012-11-05&" "QueueUrl=http%3A%2F%2Flocalhost%3A4566%2F000000000000%2Ftf-acc-test-queue&" "MessageBody=%7B%22foo%22%3A+%22bared%22%7D&" "DelaySeconds=2" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "SendMessage" assert params == { "QueueUrl": "http://localhost:4566/000000000000/tf-acc-test-queue", "MessageBody": '{"foo": "bared"}', "DelaySeconds": 2, } def test_query_parser_flattened_map(): """Simple test with a flattened map (SQS SetQueueAttributes request).""" parser = QueryRequestParser(load_service("sqs")) request = HttpRequest( body=to_bytes( "Action=SetQueueAttributes&Version=2012-11-05&" "QueueUrl=http%3A%2F%2Flocalhost%3A4566%2F000000000000%2Ftf-acc-test-queue&" "Attribute.1.Name=DelaySeconds&" "Attribute.1.Value=10&" "Attribute.2.Name=MaximumMessageSize&" "Attribute.2.Value=131072&" "Attribute.3.Name=MessageRetentionPeriod&" "Attribute.3.Value=259200&" "Attribute.4.Name=ReceiveMessageWaitTimeSeconds&" "Attribute.4.Value=20&" "Attribute.5.Name=RedrivePolicy&" "Attribute.5.Value=%7B%22deadLetterTargetArn%22%3A%22arn%3Aaws%3Asqs%3Aus-east-1%3A80398EXAMPLE%3AMyDeadLetterQueue%22%2C%22maxReceiveCount%22%3A%221000%22%7D&" "Attribute.6.Name=VisibilityTimeout&Attribute.6.Value=60" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "SetQueueAttributes" assert params == { "QueueUrl": "http://localhost:4566/000000000000/tf-acc-test-queue", "Attributes": { "DelaySeconds": "10", "MaximumMessageSize": "131072", "MessageRetentionPeriod": "259200", "ReceiveMessageWaitTimeSeconds": "20", "RedrivePolicy": '{"deadLetterTargetArn":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyDeadLetterQueue","maxReceiveCount":"1000"}', "VisibilityTimeout": "60", }, } def test_query_parser_non_flattened_map(): """Simple test with a flattened map (SQS SetQueueAttributes request).""" parser = QueryRequestParser(load_service("sns")) request = HttpRequest( body=to_bytes( "Action=SetEndpointAttributes&" "EndpointArn=arn%3Aaws%3Asns%3Aus-west-2%3A123456789012%3Aendpoint%2FGCM%2Fgcmpushapp%2F5e3e9847-3183-3f18-a7e8-671c3a57d4b3&" "Attributes.entry.1.key=CustomUserData&" "Attributes.entry.1.value=My+custom+userdata&" "Version=2010-03-31&" "AUTHPARAMS" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "SetEndpointAttributes" assert params == { "Attributes": {"CustomUserData": "My custom userdata"}, "EndpointArn": "arn:aws:sns:us-west-2:123456789012:endpoint/GCM/gcmpushapp/5e3e9847-3183-3f18-a7e8-671c3a57d4b3", } def test_query_parser_non_flattened_list_structure(): """Simple test with a non-flattened list structure (CloudFormation CreateChangeSet).""" parser = QueryRequestParser(load_service("cloudformation")) request = HttpRequest( body=to_bytes( "Action=CreateChangeSet&" "ChangeSetName=SampleChangeSet&" "Parameters.member.1.ParameterKey=KeyName&" "Parameters.member.1.UsePreviousValue=true&" "Parameters.member.2.ParameterKey=Purpose&" "Parameters.member.2.ParameterValue=production&" "StackName=arn:aws:cloudformation:us-east-1:123456789012:stack/SampleStack/1a2345b6-0000-00a0-a123-00abc0abc000&" "UsePreviousTemplate=true&" "Version=2010-05-15&" "X-Amz-Algorithm=AWS4-HMAC-SHA256&" "X-Amz-Credential=[Access-key-ID-and-scope]&" "X-Amz-Date=20160316T233349Z&" "X-Amz-SignedHeaders=content-type;host&" "X-Amz-Signature=[Signature]" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "CreateChangeSet" assert params == { "StackName": "arn:aws:cloudformation:us-east-1:123456789012:stack/SampleStack/1a2345b6-0000-00a0-a123-00abc0abc000", "UsePreviousTemplate": True, "Parameters": [ {"ParameterKey": "KeyName", "UsePreviousValue": True}, {"ParameterKey": "Purpose", "ParameterValue": "production"}, ], "ChangeSetName": "SampleChangeSet", } def test_query_parser_non_flattened_list_structure_changed_name(): """Simple test with a non-flattened list structure where the name of the list differs from the shape's name (CloudWatch PutMetricData).""" parser = QueryRequestParser(load_service("cloudwatch")) request = HttpRequest( body=to_bytes( "Action=PutMetricData&" "Version=2010-08-01&" "Namespace=TestNamespace&" "MetricData.member.1.MetricName=buffers&" "MetricData.member.1.Unit=Bytes&" "MetricData.member.1.Value=231434333&" "MetricData.member.1.Dimensions.member.1.Name=InstanceType&" "MetricData.member.1.Dimensions.member.1.Value=m1.small&" "AUTHPARAMS" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "PutMetricData" assert params == { "MetricData": [ { "Dimensions": [{"Name": "InstanceType", "Value": "m1.small"}], "MetricName": "buffers", "Unit": "Bytes", "Value": 231434333.0, } ], "Namespace": "TestNamespace", } def test_query_parser_flattened_list_structure(): """Simple test with a flattened list of structures.""" parser = QueryRequestParser(load_service("sqs")) request = HttpRequest( body=to_bytes( "Action=DeleteMessageBatch&" "Version=2012-11-05&" "QueueUrl=http%3A%2F%2Flocalhost%3A4566%2F000000000000%2Ftf-acc-test-queue&" "DeleteMessageBatchRequestEntry.1.Id=bar&" "DeleteMessageBatchRequestEntry.1.ReceiptHandle=foo&" "DeleteMessageBatchRequestEntry.2.Id=bar&" "DeleteMessageBatchRequestEntry.2.ReceiptHandle=foo" ), method="POST", headers={}, path="", ) operation, params = parser.parse(request) assert operation.name == "DeleteMessageBatch" assert params == { "QueueUrl": "http://localhost:4566/000000000000/tf-acc-test-queue", "Entries": [{"Id": "bar", "ReceiptHandle": "foo"}, {"Id": "bar", "ReceiptHandle": "foo"}], } def _botocore_parser_integration_test( service: str, action: str, headers: dict = None, expected: dict = None, **kwargs ): # Load the appropriate service service = load_service(service) # Use the serializer from botocore to serialize the request params serializer = create_serializer(service.protocol) serialized_request = serializer.serialize_to_request(kwargs, service.operation_model(action)) body = serialized_request["body"] query_string = urlencode(serialized_request.get("query_string") or "", doseq=False) if service.protocol in ["query", "ec2"]: # Serialize the body as query parameter body = urlencode(serialized_request["body"]) # Use our parser to parse the serialized body parser = create_parser(service) operation_model, parsed_request = parser.parse( HttpRequest( method=serialized_request.get("method") or "GET", path=serialized_request.get("url_path") or "", query_string=query_string, headers=headers, body=body, ) ) # Check if the result is equal to the given "expected" dict or the kwargs (if "expected" has not been set) assert parsed_request == (expected or kwargs) def test_query_parser_sqs_with_botocore(): _botocore_parser_integration_test( service="sqs", action="SendMessage", QueueUrl="string", MessageBody="string", DelaySeconds=123, MessageAttributes={ "string": { "StringValue": "string", "BinaryValue": b"bytes", "StringListValues": [ "string", ], "BinaryListValues": [ b"bytes", ], "DataType": "string", } }, MessageSystemAttributes={ "string": { "StringValue": "string", "BinaryValue": b"bytes", "StringListValues": [ "string", ], "BinaryListValues": [ b"bytes", ], "DataType": "string", } }, MessageDeduplicationId="string", MessageGroupId="string", ) def test_query_parser_empty_required_members_sqs_with_botocore(): _botocore_parser_integration_test( service="sqs", action="SendMessageBatch", QueueUrl="string", Entries=[], expected={"QueueUrl": "string", "Entries": None}, ) def test_query_parser_cloudformation_with_botocore(): _botocore_parser_integration_test( service="cloudformation", action="CreateStack", StackName="string", TemplateBody="string", TemplateURL="string", Parameters=[ { "ParameterKey": "string", "ParameterValue": "string", "UsePreviousValue": True, "ResolvedValue": "string", }, ], DisableRollback=False, RollbackConfiguration={ "RollbackTriggers": [ {"Arn": "string", "Type": "string"}, ], "MonitoringTimeInMinutes": 123, }, TimeoutInMinutes=123, NotificationARNs=[ "string", ], Capabilities=[ "CAPABILITY_IAM", ], ResourceTypes=[ "string", ], RoleARN="12345678901234567890", OnFailure="DO_NOTHING", StackPolicyBody="string", StackPolicyURL="string", Tags=[ {"Key": "string", "Value": "string"}, ], ClientRequestToken="string", EnableTerminationProtection=False, ) def test_restxml_parser_route53_with_botocore(): _botocore_parser_integration_test( service="route53", action="CreateHostedZone", Name="string", VPC={"VPCRegion": "us-east-1", "VPCId": "string"}, CallerReference="string", HostedZoneConfig={"Comment": "string", "PrivateZone": True}, DelegationSetId="string", ) def test_json_parser_cognito_with_botocore(): _botocore_parser_integration_test( service="cognito-idp", action="CreateUserPool", headers={"X-Amz-Target": "AWSCognitoIdentityProviderService.CreateUserPool"}, PoolName="string", Policies={ "PasswordPolicy": { "MinimumLength": 123, "RequireUppercase": True, "RequireLowercase": True, "RequireNumbers": True, "RequireSymbols": True, "TemporaryPasswordValidityDays": 123, } }, LambdaConfig={ "PreSignUp": "12345678901234567890", "CustomMessage": "12345678901234567890", "PostConfirmation": "12345678901234567890", "PreAuthentication": "12345678901234567890", "PostAuthentication": "12345678901234567890", "DefineAuthChallenge": "12345678901234567890", "CreateAuthChallenge": "12345678901234567890", "VerifyAuthChallengeResponse": "12345678901234567890", "PreTokenGeneration": "12345678901234567890", "UserMigration": "12345678901234567890", "CustomSMSSender": {"LambdaVersion": "V1_0", "LambdaArn": "12345678901234567890"}, "CustomEmailSender": {"LambdaVersion": "V1_0", "LambdaArn": "12345678901234567890"}, "KMSKeyID": "12345678901234567890", }, AutoVerifiedAttributes=[ "phone_number", ], AliasAttributes=[ "phone_number", ], UsernameAttributes=[ "phone_number", ], SmsVerificationMessage="string", EmailVerificationMessage="string", EmailVerificationSubject="string", VerificationMessageTemplate={ "SmsMessage": "string", "EmailMessage": "string", "EmailSubject": "string", "EmailMessageByLink": "string", "EmailSubjectByLink": "string", "DefaultEmailOption": "CONFIRM_WITH_LINK", }, SmsAuthenticationMessage="string", MfaConfiguration="OFF", DeviceConfiguration={ "ChallengeRequiredOnNewDevice": True, "DeviceOnlyRememberedOnUserPrompt": True, }, EmailConfiguration={ "SourceArn": "12345678901234567890", "ReplyToEmailAddress": "string", "EmailSendingAccount": "COGNITO_DEFAULT", "From": "string", "ConfigurationSet": "string", }, SmsConfiguration={"SnsCallerArn": "12345678901234567890", "ExternalId": "string"}, UserPoolTags={"string": "string"}, AdminCreateUserConfig={ "AllowAdminCreateUserOnly": True, "UnusedAccountValidityDays": 123, "InviteMessageTemplate": { "SMSMessage": "string", "EmailMessage": "string", "EmailSubject": "string", }, }, Schema=[ { "Name": "string", "AttributeDataType": "String", "DeveloperOnlyAttribute": True, "Mutable": True, "Required": True, "NumberAttributeConstraints": {"MinValue": "string", "MaxValue": "string"}, "StringAttributeConstraints": {"MinLength": "string", "MaxLength": "string"}, }, ], UserPoolAddOns={"AdvancedSecurityMode": "OFF"}, UsernameConfiguration={"CaseSensitive": True}, AccountRecoverySetting={ "RecoveryMechanisms": [ {"Priority": 123, "Name": "verified_email"}, ] }, ) def test_restjson_parser_xray_with_botocore(): _botocore_parser_integration_test( service="xray", action="PutTelemetryRecords", TelemetryRecords=[ { "Timestamp": datetime(2015, 1, 1), "SegmentsReceivedCount": 123, "SegmentsSentCount": 123, "SegmentsSpilloverCount": 123, "SegmentsRejectedCount": 123, "BackendConnectionErrors": { "TimeoutCount": 123, "ConnectionRefusedCount": 123, "HTTPCode4XXCount": 123, "HTTPCode5XXCount": 123, "UnknownHostCount": 123, "OtherCount": 123, }, }, ], EC2InstanceId="string", Hostname="string", ResourceARN="string", ) def test_restjson_path_location_opensearch_with_botocore(): _botocore_parser_integration_test( service="opensearch", action="DeleteDomain", DomainName="test-domain", ) def test_restjson_query_location_opensearch_with_botocore(): _botocore_parser_integration_test( service="opensearch", action="ListVersions", NextToken="test-token", ) def test_restjson_opensearch_with_botocore(): _botocore_parser_integration_test( service="opensearch", action="UpdateDomainConfig", DomainName="string", ClusterConfig={ "InstanceType": "m3.medium.search", "InstanceCount": 123, "DedicatedMasterEnabled": True, "ZoneAwarenessEnabled": True, "ZoneAwarenessConfig": {"AvailabilityZoneCount": 123}, "DedicatedMasterType": "m3.medium.search", "DedicatedMasterCount": 123, "WarmEnabled": True, "WarmType": "ultrawarm1.medium.search", "WarmCount": 123, "ColdStorageOptions": {"Enabled": True}, }, EBSOptions={"EBSEnabled": False, "VolumeType": "standard", "VolumeSize": 123, "Iops": 123}, SnapshotOptions={"AutomatedSnapshotStartHour": 123}, VPCOptions={ "SubnetIds": [ "string", ], "SecurityGroupIds": [ "string", ], }, CognitoOptions={ "Enabled": True, "UserPoolId": "string", "IdentityPoolId": "string", "RoleArn": "12345678901234567890", }, AdvancedOptions={"string": "string"}, AccessPolicies="string", LogPublishingOptions={ "string": {"CloudWatchLogsLogGroupArn": "12345678901234567890", "Enabled": True} }, EncryptionAtRestOptions={"Enabled": False, "KmsKeyId": "string"}, DomainEndpointOptions={ "EnforceHTTPS": True, "TLSSecurityPolicy": "Policy-Min-TLS-1-0-2019-07", "CustomEndpointEnabled": True, "CustomEndpoint": "string", "CustomEndpointCertificateArn": "12345678901234567890", }, NodeToNodeEncryptionOptions={"Enabled": True}, AdvancedSecurityOptions={ "Enabled": True, "InternalUserDatabaseEnabled": True, "MasterUserOptions": { "MasterUserARN": "12345678901234567890", "MasterUserName": "string", "MasterUserPassword": "12345678", }, "SAMLOptions": { "Enabled": True, "Idp": {"MetadataContent": "string", "EntityId": "12345678"}, "MasterUserName": "string", "MasterBackendRole": "string", "SubjectKey": "string", "RolesKey": "string", "SessionTimeoutMinutes": 123, }, }, AutoTuneOptions={ "DesiredState": "ENABLED", "RollbackOnDisable": "DEFAULT_ROLLBACK", "MaintenanceSchedules": [ { "StartAt": datetime(2015, 1, 1), "Duration": {"Value": 123, "Unit": "HOURS"}, "CronExpressionForRecurrence": "string", }, ], }, ) def test_restjson_awslambda_invoke_with_botocore(): _botocore_parser_integration_test( service="lambda", action="Invoke", headers={}, expected={"FunctionName": "test-function", "Payload": ""}, FunctionName="test-function", ) def test_ec2_parser_ec2_with_botocore(): _botocore_parser_integration_test( service="ec2", action="CreateImage", BlockDeviceMappings=[ { "DeviceName": "string", "VirtualName": "string", "Ebs": { "DeleteOnTermination": True, "Iops": 123, "SnapshotId": "string", "VolumeSize": 123, "VolumeType": "standard", "KmsKeyId": "string", "Throughput": 123, "OutpostArn": "string", "Encrypted": True, }, "NoDevice": "string", }, ], Description="string", DryRun=True | False, InstanceId="string", Name="string", NoReboot=True | False, TagSpecifications=[ { "ResourceType": "capacity-reservation", "Tags": [ {"Key": "string", "Value": "string"}, ], }, ], ) def test_query_parser_path_params_with_slashes(): parser = RestJSONRequestParser(load_service("qldb")) resource_arn = "arn:aws:qldb:eu-central-1:000000000000:ledger/c-c67c827a" request = HttpRequest( body=b"", method="GET", headers={}, path=f"/tags/{resource_arn}", ) operation, params = parser.parse(request) assert operation.name == "ListTagsForResource" assert params == {"ResourceArn": resource_arn} # TODO Add additional tests (or even automate the creation) # - Go to the Boto3 Docs (https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/index.html) # - Look for boto3 request syntax definition for services that use the protocol you want to test # - Take request syntax, remove the "or" ("|") and call the helper function with these named params
1
14,296
I think botocore's serializer should already create the correct headers. However, they are currently not used in `_botocore_parser_integration_test`(line #217). Maybe we could remove the headers here and just use a fallback in the `_botocore_parser_integration_test` (i.e. use the given headers if they are set, otherwise use the headers generated by botocore's serializer)?
localstack-localstack
py
@@ -83,7 +83,7 @@ export default AbstractEditController.extend(ChargeActions, PatientSubmodule, { closeModalOnConfirm: false, confirmAction: 'deleteCharge', title: this.get('i18n').t('procedures.titles.deleteMedicationUsed'), - message: this.get('i18n').t('procedures.messages.deleteMedication'), + message: this.get('i18n').t('messages.delete_singular', { name: 'medication' }), chargeToDelete: charge, updateButtonAction: 'confirm', updateButtonText: this.get('i18n').t('buttons.ok')
1
import AbstractEditController from 'hospitalrun/controllers/abstract-edit-controller'; import ChargeActions from 'hospitalrun/mixins/charge-actions'; import Ember from 'ember'; import PatientSubmodule from 'hospitalrun/mixins/patient-submodule'; export default AbstractEditController.extend(ChargeActions, PatientSubmodule, { visitsController: Ember.inject.controller('visits'), chargePricingCategory: 'Procedure', chargeRoute: 'procedures.charge', anesthesiaTypes: Ember.computed.alias('visitsController.anesthesiaTypes'), anesthesiologistList: Ember.computed.alias('visitsController.anesthesiologistList'), cptCodeList: Ember.computed.alias('visitsController.cptCodeList'), medicationList: null, physicianList: Ember.computed.alias('visitsController.physicianList'), procedureList: Ember.computed.alias('visitsController.procedureList'), procedureLocations: Ember.computed.alias('visitsController.procedureLocations'), lookupListsToUpdate: [{ name: 'anesthesiaTypes', property: 'model.anesthesiaType', id: 'anesthesia_types' }, { name: 'anesthesiologistList', property: 'model.anesthesiologist', id: 'anesthesiologists' }, { name: 'cptCodeList', property: 'model.cptCode', id: 'cpt_code_list' }, { name: 'physicianList', property: 'model.assistant', id: 'physician_list' }, { name: 'physicianList', property: 'model.physician', id: 'physician_list' }, { name: 'procedureList', property: 'model.description', id: 'procedure_list' }, { name: 'procedureLocations', property: 'model.location', id: 'procedure_locations' }], editController: Ember.inject.controller('visits/edit'), pricingList: null, // This gets filled in by the route pricingTypes: Ember.computed.alias('visitsController.procedurePricingTypes'), newProcedure: false, title: function() { let isNew = this.get('model.isNew'); if (isNew) { return this.get('i18n').t('procedures.titles.add'); } return this.get('i18n').t('procedures.titles.edit'); }.property('model.isNew'), updateCapability: 'add_procedure', actions: { showAddMedication() { let newCharge = this.get('store').createRecord('proc-charge', { dateCharged: new Date(), newMedicationCharge: true, quantity: 1 }); this.send('openModal', 'procedures.medication', newCharge); }, showEditMedication(charge) { let medicationList = this.get('medicationList'); let selectedMedication = medicationList.findBy('id', charge.get('medication.id')); charge.set('itemName', selectedMedication.name); this.send('openModal', 'procedures.medication', charge); }, showDeleteMedication(charge) { this.send('openModal', 'dialog', Ember.Object.create({ closeModalOnConfirm: false, confirmAction: 'deleteCharge', title: this.get('i18n').t('procedures.titles.deleteMedicationUsed'), message: this.get('i18n').t('procedures.messages.deleteMedication'), chargeToDelete: charge, updateButtonAction: 'confirm', updateButtonText: this.get('i18n').t('buttons.ok') })); } }, beforeUpdate() { return new Ember.RSVP.Promise(function(resolve, reject) { this.updateCharges().then(function() { if (this.get('model.isNew')) { this.addChildToVisit(this.get('model'), 'procedures').then(resolve, reject); } else { resolve(); } }.bind(this), reject); }.bind(this)); }, afterUpdate() { let alertTitle = this.get('i18n').t('procedures.titles.saved'); let alertMessage = this.get('i18n').t('procedures.messages.saved'); this.saveVisitIfNeeded(alertTitle, alertMessage); } });
1
13,485
This code is passing a non localized string when it should be passing in a localized string or it should use the name of the item being deleted.
HospitalRun-hospitalrun-frontend
js
@@ -8,12 +8,12 @@ export default class Provider { constructor (opts) { this.opts = opts this.provider = opts.provider - this.id = this.provider + this.id = opts.id || this.provider this.name = this.opts.name || _getName(this.id) } auth () { - return fetch(`${this.opts.host}/${this.provider}/authorize`, { + return fetch(`${this.opts.host}/${this.id}/auth`, { method: 'get', credentials: 'include', headers: {
1
'use strict' const _getName = (id) => { return id.split('-').map((s) => s.charAt(0).toUpperCase() + s.slice(1)).join(' ') } export default class Provider { constructor (opts) { this.opts = opts this.provider = opts.provider this.id = this.provider this.name = this.opts.name || _getName(this.id) } auth () { return fetch(`${this.opts.host}/${this.provider}/authorize`, { method: 'get', credentials: 'include', headers: { 'Accept': 'application/json', 'Content-Type': 'application.json' } }) .then((res) => { return res.json() .then((payload) => { return payload.isAuthenticated }) }) } list (directory = 'root') { return fetch(`${this.opts.host}/${this.provider}/list/${directory}`, { method: 'get', credentials: 'include', headers: { 'Accept': 'application/json', 'Content-Type': 'application/json' } }) .then((res) => res.json()) } logout (redirect = location.href) { return fetch(`${this.opts.host}/${this.provider}/logout?redirect=${redirect}`, { method: 'get', credentials: 'include', headers: { 'Accept': 'application/json', 'Content-Type': 'application/json' } }) } }
1
9,387
in case you want to rename one of the plugins when instantiating, from options?
transloadit-uppy
js
@@ -22,6 +22,7 @@ from libcodechecker.logger import add_verbose_arguments from libcodechecker.logger import LoggerFactory LOG = LoggerFactory.get_new_logger('ANALYZE') +CTU_FUNC_MAP_CMD = 'clang-func-mapping' class OrderedCheckersAction(argparse.Action):
1
# ------------------------------------------------------------------------- # The CodeChecker Infrastructure # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # ------------------------------------------------------------------------- """ Execute analysis over an already existing build.json compilation database. """ import argparse import json import os import shutil import sys from libcodechecker import generic_package_context from libcodechecker import util from libcodechecker.analyze import log_parser from libcodechecker.analyze import analyzer from libcodechecker.analyze.analyzers import analyzer_types from libcodechecker.logger import add_verbose_arguments from libcodechecker.logger import LoggerFactory LOG = LoggerFactory.get_new_logger('ANALYZE') class OrderedCheckersAction(argparse.Action): """ Action to store enabled and disabled checkers and keep ordering from command line. Create separate lists based on the checker names for each analyzer. """ # Users can supply invocation to 'codechecker-analyze' as follows: # -e core -d core.uninitialized -e core.uninitialized.Assign # We must support having multiple '-e' and '-d' options and the order # specified must be kept when the list of checkers are assembled for Clang. def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(OrderedCheckersAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, value, option_string=None): if 'ordered_checkers' not in namespace: namespace.ordered_checkers = [] ordered_checkers = namespace.ordered_checkers ordered_checkers.append((value, self.dest == 'enable')) namespace.ordered_checkers = ordered_checkers def get_argparser_ctor_args(): """ This method returns a dict containing the kwargs for constructing an argparse.ArgumentParser (either directly or as a subparser). """ return { 'prog': 'CodeChecker analyze', 'formatter_class': argparse.ArgumentDefaultsHelpFormatter, # Description is shown when the command's help is queried directly 'description': "Use the previously created JSON Compilation Database " "to perform an analysis on the project, outputting " "analysis results in a machine-readable format.", # Epilogue is shown after the arguments when the help is queried # directly. 'epilog': "Compilation databases can be created by instrumenting your " "project's build via 'codechecker-log'. To transform the " "results of the analysis to a human-friendly format, please " "see the commands 'codechecker-parse' or " "'codechecker-store'.", # Help is shown when the "parent" CodeChecker command lists the # individual subcommands. 'help': "Execute the supported code analyzers for the files " "recorded in a JSON Compilation Database." } def add_arguments_to_parser(parser): """ Add the subcommand's arguments to the given argparse.ArgumentParser. """ parser.add_argument('logfile', type=str, nargs='+', help="Path to the JSON compilation command database " "files which were created during the build. " "The analyzers will check only the files " "registered in these build databases.") parser.add_argument('-j', '--jobs', type=int, dest="jobs", required=False, default=1, help="Number of threads to use in analysis. More " "threads mean faster analysis at the cost of " "using more memory.") parser.add_argument('-i', '--ignore', '--skip', dest="skipfile", required=False, default=argparse.SUPPRESS, help="Path to the Skipfile dictating which project " "files should be omitted from analysis. Please " "consult the User guide on how a Skipfile " "should be laid out.") parser.add_argument('-o', '--output', dest="output_path", required=False, default=os.path.join(util.get_default_workspace(), 'reports'), help="Store the analysis output in the given folder.") parser.add_argument('-t', '--type', '--output-format', dest="output_format", required=False, choices=['plist'], default='plist', help="Specify the format the analysis results should " "use.") parser.add_argument('-n', '--name', dest="name", required=False, default=argparse.SUPPRESS, help="Annotate the ran analysis with a custom name in " "the created metadata file.") analyzer_opts = parser.add_argument_group("analyzer arguments") analyzer_opts.add_argument('--analyzers', nargs='+', dest='analyzers', metavar='ANALYZER', required=False, choices=analyzer_types.supported_analyzers, default=argparse.SUPPRESS, help="Run analysis only with the analyzers " "specified. Currently supported analyzers " "are: " + ', '.join(analyzer_types. supported_analyzers) + ".") analyzer_opts.add_argument('--add-compiler-defaults', action='store_true', default=False, required=False, help="Retrieve compiler-specific configuration " "from the compilers themselves, and use " "them with Clang. This is used when the " "compiler on the system is special, e.g. " "when doing cross-compilation.") analyzer_opts.add_argument('--saargs', dest="clangsa_args_cfg_file", required=False, default=argparse.SUPPRESS, help="File containing argument which will be " "forwarded verbatim for the Clang Static " "Analyzer.") analyzer_opts.add_argument('--tidyargs', dest="tidy_args_cfg_file", required=False, default=argparse.SUPPRESS, help="File containing argument which will be " "forwarded verbatim for Clang-Tidy.") checkers_opts = parser.add_argument_group( "checker configuration", "See 'codechecker-checkers' for the list of available checkers. " "You can fine-tune which checkers to use in the analysis by setting " "the enabled and disabled flags starting from the bigger groups " "and going inwards, e.g. '-e core -d core.uninitialized -e " "core.uninitialized.Assign' will enable every 'core' checker, but " "only 'core.uninitialized.Assign' from the 'core.uninitialized' " "group. Please consult the manual for details. Disabling certain " "checkers - such as the 'core' group - is unsupported by the LLVM/" "Clang community, and thus discouraged.") checkers_opts.add_argument('-e', '--enable', dest="enable", metavar='checker/checker-group', default=argparse.SUPPRESS, action=OrderedCheckersAction, help="Set a checker (or checker group) " "to BE USED in the analysis.") checkers_opts.add_argument('-d', '--disable', dest="disable", metavar='checker/checker-group', default=argparse.SUPPRESS, action=OrderedCheckersAction, help="Set a checker (or checker group) " "to BE PROHIBITED from use in the " "analysis.") checkers_opts.add_argument('--enable-all', dest="enable_all", action='store_true', required=False, default=argparse.SUPPRESS, help="Force the running analyzers to use " "almost every checker available. The " "checker groups 'alpha.', 'debug.' and " "'osx.' (on Linux) are NOT enabled " "automatically and must be EXPLICITLY " "specified. WARNING! Enabling all " "checkers might result in the analysis " "losing precision and stability, and " "could even result in a total failure of " "the analysis. USE WISELY AND AT YOUR " "OWN RISK!") add_verbose_arguments(parser) parser.set_defaults(func=main) def main(args): """ Perform analysis on the given logfiles and store the results in a machine- readable format. """ context = generic_package_context.get_context() # Parse the JSON CCDBs and retrieve the compile commands. actions = [] if len(args.logfile) != 1: LOG.warning("Only one log file can be processed right now!") sys.exit(1) for log_file in args.logfile: if not os.path.exists(log_file): LOG.error("The specified logfile '" + log_file + "' does not " "exist!") continue actions += log_parser.parse_log(log_file, args.add_compiler_defaults) if len(actions) == 0: LOG.info("None of the specified build log files contained " "valid compilation commands. No analysis needed...") return if 'enable_all' in args: LOG.info("'--enable-all' was supplied for this analysis.") # Run the analysis. args.output_path = os.path.abspath(args.output_path) if os.path.isdir(args.output_path): LOG.info("Previous analysis results in '{0}' have been " "removed, overwriting with current result". format(args.output_path)) shutil.rmtree(args.output_path) os.makedirs(args.output_path) LOG.debug("Output will be stored to: '" + args.output_path + "'") metadata = {'action_num': len(actions), 'command': sys.argv, 'versions': { 'codechecker': "{0} ({1})".format( context.package_git_tag, context.package_git_hash)}, 'working_directory': os.getcwd(), 'output_path': args.output_path} if 'name' in args: metadata['name'] = args.name if 'skipfile' in args: # Skip information needs to be saved because reports in a header # can only be skipped by the report-server used in 'store' later # on if this information is persisted. with open(args.skipfile, 'r') as skipfile: metadata['skip_data'] = [l.strip() for l in skipfile.readlines()] analyzer.perform_analysis(args, context, actions, metadata) metadata_path = os.path.join(args.output_path, 'metadata.json') LOG.debug("Analysis metadata write to '" + metadata_path + "'") with open(metadata_path, 'w') as metafile: json.dump(metadata, metafile) # WARN: store command will search for this file!!!! compile_cmd_json = os.path.join(args.output_path, 'compile_cmd.json') try: source = os.path.abspath(args.logfile[0]) target = os.path.abspath(compile_cmd_json) shutil.copyfile(source, target) except shutil.Error as serr: LOG.debug("Compile command json file is the same") except Exception as ex: LOG.debug("Copying compile command json file failed.") LOG.info("Analysis finished.") LOG.info("To view results in the terminal use the " "\"CodeChecker parse\" command.") LOG.info("To store results use the \"CodeChecker store\" command.") LOG.info("See --help and the user guide for further options about" " parsing and storing the reports.") LOG.info("----=================----")
1
7,099
This default variable should be moved into a config variable, created by `package_context`, and read from `config\package_layout.json`.
Ericsson-codechecker
c
@@ -202,4 +202,16 @@ describe('Walkontable.ViewportColumnsCalculator', () => { expect(calc.stretchAllColumnsWidth.length).toBe(0); expect(calc.needVerifyLastColumnWidth).toBe(true); }); + + it('should calculate the number of columns based on a default width, ' + + 'when the width returned from the function is not a number', () => { + const calc = new Walkontable.ViewportColumnsCalculator(200, 0, 1000, () => (void 0 + 1)); + expect(calc.startColumn).toBe(0); + expect(calc.startPosition).toBe(0); + expect(calc.endColumn).toBe(3); + + const visibleCalc = new Walkontable.ViewportColumnsCalculator(200, 0, 1000, () => (void 0 + 1), null, true); + expect(visibleCalc.startColumn).toBe(0); + expect(visibleCalc.endColumn).toBe(3); + }); });
1
describe('Walkontable.ViewportColumnsCalculator', () => { function allColumns20() { return 20; } it('should render first 5 columns in unscrolled container', () => { const calc = new Walkontable.ViewportColumnsCalculator(100, 0, 1000, allColumns20); expect(calc.startColumn).toBe(0); expect(calc.startPosition).toBe(0); expect(calc.endColumn).toBe(4); const visibleCalc = new Walkontable.ViewportColumnsCalculator(100, 0, 1000, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(0); expect(visibleCalc.endColumn).toBe(4); }); it('should render 6 columns, starting from 3 in container scrolled to half of fourth column', () => { const calc = new Walkontable.ViewportColumnsCalculator(100, 70, 1000, allColumns20); expect(calc.startColumn).toBe(3); expect(calc.startPosition).toBe(60); expect(calc.endColumn).toBe(8); const visibleCalc = new Walkontable.ViewportColumnsCalculator(100, 70, 1000, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(4); expect(visibleCalc.endColumn).toBe(7); }); it('should render 10 columns, starting from 1 in container scrolled to half of fourth column (with render overrides)', () => { const overrideFn = function(calc) { calc.startColumn -= 2; calc.endColumn += 2; }; const calc = new Walkontable.ViewportColumnsCalculator(100, 70, 1000, allColumns20, overrideFn); expect(calc.startColumn).toBe(1); expect(calc.startPosition).toBe(20); expect(calc.endColumn).toBe(10); const visibleCalc = new Walkontable.ViewportColumnsCalculator(100, 70, 1000, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(4); expect(visibleCalc.endColumn).toBe(7); }); it('should return number of rendered columns', () => { const calc = new Walkontable.ViewportColumnsCalculator(100, 50, 1000, allColumns20); expect(calc.count).toBe(6); const visibleCalc = new Walkontable.ViewportColumnsCalculator(100, 50, 1000, allColumns20, null, true); expect(visibleCalc.count).toBe(4); }); it('should render all columns if their size is smaller than viewport', () => { const calc = new Walkontable.ViewportColumnsCalculator(200, 0, 8, allColumns20); expect(calc.startColumn).toBe(0); expect(calc.endColumn).toBe(7); expect(calc.count).toBe(8); const visibleCalc = new Walkontable.ViewportColumnsCalculator(200, 0, 8, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(0); expect(visibleCalc.endColumn).toBe(7); expect(visibleCalc.count).toBe(8); }); it('should render all columns if their size is exactly the viewport', () => { const calc = new Walkontable.ViewportColumnsCalculator(200, 0, 10, allColumns20); expect(calc.startColumn).toBe(0); expect(calc.endColumn).toBe(9); expect(calc.count).toBe(10); const visibleCalc = new Walkontable.ViewportColumnsCalculator(200, 0, 10, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(0); expect(visibleCalc.endColumn).toBe(9); expect(visibleCalc.count).toBe(10); }); it('should render all columns if their size is slightly larger than viewport', () => { const calc = new Walkontable.ViewportColumnsCalculator(199, 0, 10, allColumns20); expect(calc.startColumn).toBe(0); expect(calc.endColumn).toBe(9); expect(calc.count).toBe(10); const visibleCalc = new Walkontable.ViewportColumnsCalculator(199, 0, 10, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(0); expect(visibleCalc.endColumn).toBe(8); expect(visibleCalc.count).toBe(9); }); it('should set null values if total columns is 0', () => { const calc = new Walkontable.ViewportColumnsCalculator(200, 0, 0, allColumns20); expect(calc.startColumn).toBe(null); expect(calc.startPosition).toBe(null); expect(calc.endColumn).toBe(null); expect(calc.count).toBe(0); const visibleCalc = new Walkontable.ViewportColumnsCalculator(200, 0, 0, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(null); expect(visibleCalc.endColumn).toBe(null); }); it('should set null values if total columns is 0 (with overrideFn provided)', () => { const overrideFn = function(myCalc) { myCalc.startColumn = 0; myCalc.endColumn = 0; }; const calc = new Walkontable.ViewportColumnsCalculator(200, 0, 0, allColumns20, overrideFn); expect(calc.startColumn).toBe(null); expect(calc.startPosition).toBe(null); expect(calc.endColumn).toBe(null); expect(calc.count).toBe(0); const visibleCalc = new Walkontable.ViewportColumnsCalculator(200, 0, 0, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(null); expect(visibleCalc.endColumn).toBe(null); }); it('should scroll backwards if total columns is reached', () => { const calc = new Walkontable.ViewportColumnsCalculator(190, 350, 20, allColumns20); expect(calc.startColumn).toBe(10); expect(calc.startPosition).toBe(200); expect(calc.endColumn).toBe(19); expect(calc.count).toBe(10); const visibleCalc = new Walkontable.ViewportColumnsCalculator(190, 350, 20, allColumns20, null, true); expect(visibleCalc.startColumn).toBe(11); expect(visibleCalc.endColumn).toBe(19); }); it('should update stretchAllRatio after refreshStretching call (stretch: all)', () => { const calc = new Walkontable.ViewportColumnsCalculator(250, 0, 20, allColumns20, null, true, 'all'); expect(calc.stretchAllRatio).toBe(0); expect(calc.stretchLastWidth).toBe(0); calc.refreshStretching(414); expect(calc.stretchAllRatio).toBe(1.035); expect(calc.stretchLastWidth).toBe(0); }); it('should update stretchAllRatio after refreshStretching call (stretch: last)', () => { const calc = new Walkontable.ViewportColumnsCalculator(250, 0, 5, allColumns20, null, true, 'last'); expect(calc.stretchAllRatio).toBe(0); expect(calc.stretchLastWidth).toBe(0); calc.refreshStretching(414); expect(calc.stretchAllRatio).toBe(0); expect(calc.stretchLastWidth).toBe(334); }); it('should return valid stretched column width (stretch: all)', () => { const calc = new Walkontable.ViewportColumnsCalculator(250, 0, 5, allColumns20, null, true, 'all'); expect(calc.getStretchedColumnWidth(0, 50)).toBe(null); expect(calc.needVerifyLastColumnWidth).toBe(true); calc.refreshStretching(417); expect(calc.getStretchedColumnWidth(0, allColumns20())).toBe(83); expect(calc.getStretchedColumnWidth(1, allColumns20())).toBe(83); expect(calc.getStretchedColumnWidth(2, allColumns20())).toBe(83); expect(calc.getStretchedColumnWidth(3, allColumns20())).toBe(83); expect(calc.needVerifyLastColumnWidth).toBe(true); expect(calc.getStretchedColumnWidth(4, allColumns20())).toBe(85); expect(calc.needVerifyLastColumnWidth).toBe(false); }); it('should return valid stretched column width (stretch: last)', () => { const calc = new Walkontable.ViewportColumnsCalculator(250, 0, 5, allColumns20, null, true, 'last'); expect(calc.getStretchedColumnWidth(0, 50)).toBe(null); calc.refreshStretching(417); expect(calc.getStretchedColumnWidth(0, allColumns20())).toBe(null); expect(calc.getStretchedColumnWidth(1, allColumns20())).toBe(null); expect(calc.getStretchedColumnWidth(2, allColumns20())).toBe(null); expect(calc.getStretchedColumnWidth(3, allColumns20())).toBe(null); expect(calc.getStretchedColumnWidth(4, allColumns20())).toBe(337); }); it('call refreshStretching should clear stretchAllColumnsWidth and needVerifyLastColumnWidth property', () => { const calc = new Walkontable.ViewportColumnsCalculator(250, 0, 5, allColumns20, null, true, 'all'); expect(calc.stretchAllColumnsWidth.length).toBe(0); expect(calc.needVerifyLastColumnWidth).toBe(true); calc.refreshStretching(417); calc.getStretchedColumnWidth(0, allColumns20()); calc.getStretchedColumnWidth(1, allColumns20()); calc.getStretchedColumnWidth(2, allColumns20()); calc.getStretchedColumnWidth(3, allColumns20()); calc.getStretchedColumnWidth(4, allColumns20()); expect(calc.stretchAllColumnsWidth.length).toBe(5); expect(calc.needVerifyLastColumnWidth).toBe(false); calc.refreshStretching(201); expect(calc.stretchAllColumnsWidth.length).toBe(0); expect(calc.needVerifyLastColumnWidth).toBe(true); }); });
1
14,921
Can I ask you to add a new line after `const` assignment? I believe that this increases the code readability by encapsulating assignment and logic (expecting) blocks.
handsontable-handsontable
js
@@ -313,6 +313,7 @@ void CudaInternal::initialize(int cuda_device_id, cudaStream_t stream) { enum { WordSize = sizeof(size_type) }; +#ifndef KOKKOS_IMPL_TURN_OFF_CUDA_HOST_INIT_CHECK #ifdef KOKKOS_ENABLE_DEPRECATED_CODE if (!HostSpace::execution_space::is_initialized()) { #else
1
/* //@HEADER // ************************************************************************ // // Kokkos v. 3.0 // Copyright (2020) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott ([email protected]) // // ************************************************************************ //@HEADER */ /*--------------------------------------------------------------------------*/ /* Kokkos interfaces */ #include <Kokkos_Macros.hpp> #ifdef KOKKOS_ENABLE_CUDA #include <Kokkos_Core.hpp> #include <Cuda/Kokkos_Cuda_Error.hpp> #include <Cuda/Kokkos_Cuda_BlockSize_Deduction.hpp> #include <Cuda/Kokkos_Cuda_Instance.hpp> #include <Cuda/Kokkos_Cuda_Locks.hpp> #include <impl/Kokkos_Error.hpp> #include <impl/Kokkos_Profiling_Interface.hpp> /*--------------------------------------------------------------------------*/ /* Standard 'C' libraries */ #include <cstdlib> /* Standard 'C++' libraries */ #include <vector> #include <iostream> #include <sstream> #include <string> #ifdef KOKKOS_IMPL_DEBUG_CUDA_SERIAL_EXECUTION namespace Kokkos { namespace Impl { bool CudaInternal::kokkos_impl_cuda_use_serial_execution_v = false; void CudaInternal::cuda_set_serial_execution(bool val) { CudaInternal::kokkos_impl_cuda_use_serial_execution_v = val; } bool CudaInternal::cuda_use_serial_execution() { return CudaInternal::kokkos_impl_cuda_use_serial_execution_v; } } // namespace Impl } // namespace Kokkos void kokkos_impl_cuda_set_serial_execution(bool val) { Kokkos::Impl::CudaInternal::cuda_set_serial_execution(val); } bool kokkos_impl_cuda_use_serial_execution() { return Kokkos::Impl::CudaInternal::cuda_use_serial_execution(); } #endif #ifdef KOKKOS_ENABLE_CUDA_RELOCATABLE_DEVICE_CODE __device__ __constant__ unsigned long kokkos_impl_cuda_constant_memory_buffer [Kokkos::Impl::CudaTraits::ConstantMemoryUsage / sizeof(unsigned long)]; #endif /*--------------------------------------------------------------------------*/ namespace Kokkos { namespace Impl { namespace { __global__ void query_cuda_kernel_arch(int *d_arch) { #if defined(__CUDA_ARCH__) *d_arch = __CUDA_ARCH__; #else *d_arch = 0; #endif } /** Query what compute capability is actually launched to the device: */ int cuda_kernel_arch() { int *d_arch = 0; cudaMalloc((void **)&d_arch, sizeof(int)); query_cuda_kernel_arch<<<1, 1>>>(d_arch); int arch = 0; cudaMemcpy(&arch, d_arch, sizeof(int), cudaMemcpyDefault); cudaFree(d_arch); return arch; } #ifdef KOKKOS_ENABLE_CUDA_UVM bool cuda_launch_blocking() { const char *env = getenv("CUDA_LAUNCH_BLOCKING"); if (env == 0) return false; return atoi(env); } #endif } // namespace void cuda_device_synchronize() { CUDA_SAFE_CALL(cudaDeviceSynchronize()); } void cuda_internal_error_throw(cudaError e, const char *name, const char *file, const int line) { std::ostringstream out; out << name << " error( " << cudaGetErrorName(e) << "): " << cudaGetErrorString(e); if (file) { out << " " << file << ":" << line; } throw_runtime_exception(out.str()); } //---------------------------------------------------------------------------- // Some significant cuda device properties: // // cudaDeviceProp::name : Text label for device // cudaDeviceProp::major : Device major number // cudaDeviceProp::minor : Device minor number // cudaDeviceProp::warpSize : number of threads per warp // cudaDeviceProp::multiProcessorCount : number of multiprocessors // cudaDeviceProp::sharedMemPerBlock : capacity of shared memory per block // cudaDeviceProp::totalConstMem : capacity of constant memory // cudaDeviceProp::totalGlobalMem : capacity of global memory // cudaDeviceProp::maxGridSize[3] : maximum grid size // // Section 4.4.2.4 of the CUDA Toolkit Reference Manual // // struct cudaDeviceProp { // char name[256]; // size_t totalGlobalMem; // size_t sharedMemPerBlock; // int regsPerBlock; // int warpSize; // size_t memPitch; // int maxThreadsPerBlock; // int maxThreadsDim[3]; // int maxGridSize[3]; // size_t totalConstMem; // int major; // int minor; // int clockRate; // size_t textureAlignment; // int deviceOverlap; // int multiProcessorCount; // int kernelExecTimeoutEnabled; // int integrated; // int canMapHostMemory; // int computeMode; // int concurrentKernels; // int ECCEnabled; // int pciBusID; // int pciDeviceID; // int tccDriver; // int asyncEngineCount; // int unifiedAddressing; // int memoryClockRate; // int memoryBusWidth; // int l2CacheSize; // int maxThreadsPerMultiProcessor; // }; namespace { class CudaInternalDevices { public: enum { MAXIMUM_DEVICE_COUNT = 64 }; struct cudaDeviceProp m_cudaProp[MAXIMUM_DEVICE_COUNT]; int m_cudaDevCount; CudaInternalDevices(); static const CudaInternalDevices &singleton(); }; CudaInternalDevices::CudaInternalDevices() { // See 'cudaSetDeviceFlags' for host-device thread interaction // Section 4.4.2.6 of the CUDA Toolkit Reference Manual CUDA_SAFE_CALL(cudaGetDeviceCount(&m_cudaDevCount)); if (m_cudaDevCount > MAXIMUM_DEVICE_COUNT) { Kokkos::abort( "Sorry, you have more GPUs per node than we thought anybody would ever " "have. Please report this to github.com/kokkos/kokkos."); } for (int i = 0; i < m_cudaDevCount; ++i) { CUDA_SAFE_CALL(cudaGetDeviceProperties(m_cudaProp + i, i)); } } const CudaInternalDevices &CudaInternalDevices::singleton() { static CudaInternalDevices self; return self; } } // namespace int CudaInternal::was_initialized = 0; int CudaInternal::was_finalized = 0; //---------------------------------------------------------------------------- void CudaInternal::print_configuration(std::ostream &s) const { const CudaInternalDevices &dev_info = CudaInternalDevices::singleton(); #if defined(KOKKOS_ENABLE_CUDA) s << "macro KOKKOS_ENABLE_CUDA : defined" << std::endl; #endif #if defined(CUDA_VERSION) s << "macro CUDA_VERSION = " << CUDA_VERSION << " = version " << CUDA_VERSION / 1000 << "." << (CUDA_VERSION % 1000) / 10 << std::endl; #endif for (int i = 0; i < dev_info.m_cudaDevCount; ++i) { s << "Kokkos::Cuda[ " << i << " ] " << dev_info.m_cudaProp[i].name << " capability " << dev_info.m_cudaProp[i].major << "." << dev_info.m_cudaProp[i].minor << ", Total Global Memory: " << human_memory_size(dev_info.m_cudaProp[i].totalGlobalMem) << ", Shared Memory per Block: " << human_memory_size(dev_info.m_cudaProp[i].sharedMemPerBlock); if (m_cudaDev == i) s << " : Selected"; s << std::endl; } } //---------------------------------------------------------------------------- CudaInternal::~CudaInternal() { if (m_stream || m_scratchSpace || m_scratchFlags || m_scratchUnified || m_scratchConcurrentBitset) { std::cerr << "Kokkos::Cuda ERROR: Failed to call Kokkos::Cuda::finalize()" << std::endl; std::cerr.flush(); } m_cudaDev = -1; m_cudaArch = -1; m_multiProcCount = 0; m_maxWarpCount = 0; m_maxBlock = 0; m_maxSharedWords = 0; m_maxConcurrency = 0; m_scratchSpaceCount = 0; m_scratchFlagsCount = 0; m_scratchUnifiedCount = 0; m_scratchUnifiedSupported = 0; m_streamCount = 0; m_scratchSpace = 0; m_scratchFlags = 0; m_scratchUnified = 0; m_scratchConcurrentBitset = 0; m_stream = 0; } int CudaInternal::verify_is_initialized(const char *const label) const { if (m_cudaDev < 0) { std::cerr << "Kokkos::Cuda::" << label << " : ERROR device not initialized" << std::endl; } return 0 <= m_cudaDev; } CudaInternal &CudaInternal::singleton() { static CudaInternal self; return self; } void CudaInternal::fence() const { cudaStreamSynchronize(m_stream); } void CudaInternal::initialize(int cuda_device_id, cudaStream_t stream) { if (was_finalized) Kokkos::abort("Calling Cuda::initialize after Cuda::finalize is illegal\n"); was_initialized = 1; if (is_initialized()) return; enum { WordSize = sizeof(size_type) }; #ifdef KOKKOS_ENABLE_DEPRECATED_CODE if (!HostSpace::execution_space::is_initialized()) { #else if (!HostSpace::execution_space::impl_is_initialized()) { #endif const std::string msg( "Cuda::initialize ERROR : HostSpace::execution_space is not " "initialized"); throw_runtime_exception(msg); } const CudaInternalDevices &dev_info = CudaInternalDevices::singleton(); const bool ok_init = 0 == m_scratchSpace || 0 == m_scratchFlags; const bool ok_id = 0 <= cuda_device_id && cuda_device_id < dev_info.m_cudaDevCount; // Need device capability 3.0 or better const bool ok_dev = ok_id && (3 <= dev_info.m_cudaProp[cuda_device_id].major && 0 <= dev_info.m_cudaProp[cuda_device_id].minor); if (ok_init && ok_dev) { const struct cudaDeviceProp &cudaProp = dev_info.m_cudaProp[cuda_device_id]; m_cudaDev = cuda_device_id; CUDA_SAFE_CALL(cudaSetDevice(m_cudaDev)); Kokkos::Impl::cuda_device_synchronize(); // Query what compute capability architecture a kernel executes: m_cudaArch = cuda_kernel_arch(); int compiled_major = m_cudaArch / 100; int compiled_minor = (m_cudaArch % 100) / 10; if (compiled_major < 5 && cudaProp.major >= 5) { std::stringstream ss; ss << "Kokkos::Cuda::initialize ERROR: running kernels compiled for " "compute capability " << compiled_major << "." << compiled_minor << " (< 5.0) on device with compute capability " << cudaProp.major << "." << cudaProp.minor << " (>=5.0), this would give incorrect results!" << std::endl; std::string msg = ss.str(); Kokkos::abort(msg.c_str()); } if (Kokkos::show_warnings() && (compiled_major != cudaProp.major || compiled_minor != cudaProp.minor)) { std::cerr << "Kokkos::Cuda::initialize WARNING: running kernels compiled " "for compute capability " << compiled_major << "." << compiled_minor << " on device with compute capability " << cudaProp.major << "." << cudaProp.minor << " , this will likely reduce potential performance." << std::endl; } // number of multiprocessors m_multiProcCount = cudaProp.multiProcessorCount; //---------------------------------- // Maximum number of warps, // at most one warp per thread in a warp for reduction. m_maxWarpCount = cudaProp.maxThreadsPerBlock / Impl::CudaTraits::WarpSize; if (Impl::CudaTraits::WarpSize < m_maxWarpCount) { m_maxWarpCount = Impl::CudaTraits::WarpSize; } m_maxSharedWords = cudaProp.sharedMemPerBlock / WordSize; //---------------------------------- // Maximum number of blocks: m_maxBlock = cudaProp.maxGridSize[0]; m_shmemPerSM = cudaProp.sharedMemPerMultiprocessor; m_maxShmemPerBlock = cudaProp.sharedMemPerBlock; m_regsPerSM = cudaProp.regsPerMultiprocessor; m_maxBlocksPerSM = m_cudaArch < 500 ? 16 : (m_cudaArch < 750 ? 32 : (m_cudaArch == 750 ? 16 : 32)); m_maxThreadsPerSM = cudaProp.maxThreadsPerMultiProcessor; m_maxThreadsPerBlock = cudaProp.maxThreadsPerBlock; //---------------------------------- m_scratchUnifiedSupported = cudaProp.unifiedAddressing; if (Kokkos::show_warnings() && !m_scratchUnifiedSupported) { std::cerr << "Kokkos::Cuda device " << cudaProp.name << " capability " << cudaProp.major << "." << cudaProp.minor << " does not support unified virtual address space" << std::endl; } //---------------------------------- // Multiblock reduction uses scratch flags for counters // and scratch space for partial reduction values. // Allocate some initial space. This will grow as needed. { const unsigned reduce_block_count = m_maxWarpCount * Impl::CudaTraits::WarpSize; (void)scratch_unified(16 * sizeof(size_type)); (void)scratch_flags(reduce_block_count * 2 * sizeof(size_type)); (void)scratch_space(reduce_block_count * 16 * sizeof(size_type)); } //---------------------------------- // Concurrent bitset for obtaining unique tokens from within // an executing kernel. { m_maxConcurrency = m_maxThreadsPerSM * cudaProp.multiProcessorCount; const int32_t buffer_bound = Kokkos::Impl::concurrent_bitset::buffer_bound(m_maxConcurrency); // Allocate and initialize uint32_t[ buffer_bound ] typedef Kokkos::Impl::SharedAllocationRecord<Kokkos::CudaSpace, void> Record; Record *const r = Record::allocate(Kokkos::CudaSpace(), "InternalScratchBitset", sizeof(uint32_t) * buffer_bound); Record::increment(r); m_scratchConcurrentBitset = reinterpret_cast<uint32_t *>(r->data()); CUDA_SAFE_CALL(cudaMemset(m_scratchConcurrentBitset, 0, sizeof(uint32_t) * buffer_bound)); } //---------------------------------- } else { std::ostringstream msg; msg << "Kokkos::Cuda::initialize(" << cuda_device_id << ") FAILED"; if (!ok_init) { msg << " : Already initialized"; } if (!ok_id) { msg << " : Device identifier out of range " << "[0.." << dev_info.m_cudaDevCount << "]"; } else if (!ok_dev) { msg << " : Device "; msg << dev_info.m_cudaProp[cuda_device_id].major; msg << "."; msg << dev_info.m_cudaProp[cuda_device_id].minor; msg << " has insufficient capability, required 3.0 or better"; } Kokkos::Impl::throw_runtime_exception(msg.str()); } #ifdef KOKKOS_ENABLE_CUDA_UVM if (Kokkos::show_warnings() && !cuda_launch_blocking()) { std::cerr << "Kokkos::Cuda::initialize WARNING: Cuda is allocating into " "UVMSpace by default" << std::endl; std::cerr << " without setting " "CUDA_LAUNCH_BLOCKING=1." << std::endl; std::cerr << " The code must call " "Cuda().fence() after each kernel" << std::endl; std::cerr << " or will likely crash when " "accessing data on the host." << std::endl; } const char *env_force_device_alloc = getenv("CUDA_MANAGED_FORCE_DEVICE_ALLOC"); bool force_device_alloc; if (env_force_device_alloc == 0) force_device_alloc = false; else force_device_alloc = atoi(env_force_device_alloc) != 0; const char *env_visible_devices = getenv("CUDA_VISIBLE_DEVICES"); bool visible_devices_one = true; if (env_visible_devices == 0) visible_devices_one = false; if (Kokkos::show_warnings() && (!visible_devices_one && !force_device_alloc)) { std::cerr << "Kokkos::Cuda::initialize WARNING: Cuda is allocating into " "UVMSpace by default" << std::endl; std::cerr << " without setting " "CUDA_MANAGED_FORCE_DEVICE_ALLOC=1 or " << std::endl; std::cerr << " setting CUDA_VISIBLE_DEVICES." << std::endl; std::cerr << " This could on multi GPU " "systems lead to severe performance" << std::endl; std::cerr << " penalties." << std::endl; } #endif #ifdef KOKKOS_ENABLE_PRE_CUDA_10_DEPRECATION_API cudaThreadSetCacheConfig(cudaFuncCachePreferShared); #else cudaDeviceSetCacheConfig(cudaFuncCachePreferShared); #endif // Init the array for used for arbitrarily sized atomics if (stream == 0) Impl::initialize_host_cuda_lock_arrays(); m_stream = stream; } //---------------------------------------------------------------------------- typedef Cuda::size_type ScratchGrain[Impl::CudaTraits::WarpSize]; enum { sizeScratchGrain = sizeof(ScratchGrain) }; Cuda::size_type *CudaInternal::scratch_flags(const Cuda::size_type size) const { if (verify_is_initialized("scratch_flags") && m_scratchFlagsCount * sizeScratchGrain < size) { m_scratchFlagsCount = (size + sizeScratchGrain - 1) / sizeScratchGrain; typedef Kokkos::Impl::SharedAllocationRecord<Kokkos::CudaSpace, void> Record; if (m_scratchFlags) Record::decrement(Record::get_record(m_scratchFlags)); Record *const r = Record::allocate(Kokkos::CudaSpace(), "InternalScratchFlags", (sizeof(ScratchGrain) * m_scratchFlagsCount)); Record::increment(r); m_scratchFlags = reinterpret_cast<size_type *>(r->data()); CUDA_SAFE_CALL( cudaMemset(m_scratchFlags, 0, m_scratchFlagsCount * sizeScratchGrain)); } return m_scratchFlags; } Cuda::size_type *CudaInternal::scratch_space(const Cuda::size_type size) const { if (verify_is_initialized("scratch_space") && m_scratchSpaceCount * sizeScratchGrain < size) { m_scratchSpaceCount = (size + sizeScratchGrain - 1) / sizeScratchGrain; typedef Kokkos::Impl::SharedAllocationRecord<Kokkos::CudaSpace, void> Record; if (m_scratchSpace) Record::decrement(Record::get_record(m_scratchSpace)); Record *const r = Record::allocate(Kokkos::CudaSpace(), "InternalScratchSpace", (sizeof(ScratchGrain) * m_scratchSpaceCount)); Record::increment(r); m_scratchSpace = reinterpret_cast<size_type *>(r->data()); } return m_scratchSpace; } Cuda::size_type *CudaInternal::scratch_unified( const Cuda::size_type size) const { if (verify_is_initialized("scratch_unified") && m_scratchUnifiedSupported && m_scratchUnifiedCount * sizeScratchGrain < size) { m_scratchUnifiedCount = (size + sizeScratchGrain - 1) / sizeScratchGrain; typedef Kokkos::Impl::SharedAllocationRecord<Kokkos::CudaHostPinnedSpace, void> Record; if (m_scratchUnified) Record::decrement(Record::get_record(m_scratchUnified)); Record *const r = Record::allocate( Kokkos::CudaHostPinnedSpace(), "InternalScratchUnified", (sizeof(ScratchGrain) * m_scratchUnifiedCount)); Record::increment(r); m_scratchUnified = reinterpret_cast<size_type *>(r->data()); } return m_scratchUnified; } Cuda::size_type *CudaInternal::scratch_functor( const Cuda::size_type size) const { if (verify_is_initialized("scratch_functor") && m_scratchFunctorSize < size) { m_scratchFunctorSize = size; typedef Kokkos::Impl::SharedAllocationRecord<Kokkos::CudaSpace, void> Record; if (m_scratchFunctor) Record::decrement(Record::get_record(m_scratchFunctor)); Record *const r = Record::allocate( Kokkos::CudaSpace(), "InternalScratchFunctor", m_scratchFunctorSize); Record::increment(r); m_scratchFunctor = reinterpret_cast<size_type *>(r->data()); } return m_scratchFunctor; } //---------------------------------------------------------------------------- void CudaInternal::finalize() { was_finalized = 1; if (0 != m_scratchSpace || 0 != m_scratchFlags) { Impl::finalize_host_cuda_lock_arrays(); if (m_stream != 0) cudaStreamDestroy(m_stream); typedef Kokkos::Impl::SharedAllocationRecord<CudaSpace> RecordCuda; typedef Kokkos::Impl::SharedAllocationRecord<CudaHostPinnedSpace> RecordHost; RecordCuda::decrement(RecordCuda::get_record(m_scratchFlags)); RecordCuda::decrement(RecordCuda::get_record(m_scratchSpace)); RecordHost::decrement(RecordHost::get_record(m_scratchUnified)); RecordCuda::decrement(RecordCuda::get_record(m_scratchConcurrentBitset)); if (m_scratchFunctorSize > 0) RecordCuda::decrement(RecordCuda::get_record(m_scratchFunctor)); m_cudaDev = -1; m_multiProcCount = 0; m_maxWarpCount = 0; m_maxBlock = 0; m_maxSharedWords = 0; m_scratchSpaceCount = 0; m_scratchFlagsCount = 0; m_scratchUnifiedCount = 0; m_streamCount = 0; m_scratchSpace = 0; m_scratchFlags = 0; m_scratchUnified = 0; m_scratchConcurrentBitset = 0; m_stream = 0; } } //---------------------------------------------------------------------------- Cuda::size_type cuda_internal_multiprocessor_count() { return CudaInternal::singleton().m_multiProcCount; } CudaSpace::size_type cuda_internal_maximum_concurrent_block_count() { #if defined(KOKKOS_ARCH_KEPLER) // Compute capability 3.0 through 3.7 enum : int { max_resident_blocks_per_multiprocessor = 16 }; #else // Compute capability 5.0 through 6.2 enum : int { max_resident_blocks_per_multiprocessor = 32 }; #endif return CudaInternal::singleton().m_multiProcCount * max_resident_blocks_per_multiprocessor; }; Cuda::size_type cuda_internal_maximum_warp_count() { return CudaInternal::singleton().m_maxWarpCount; } Cuda::size_type cuda_internal_maximum_grid_count() { return CudaInternal::singleton().m_maxBlock; } Cuda::size_type cuda_internal_maximum_shared_words() { return CudaInternal::singleton().m_maxSharedWords; } Cuda::size_type *cuda_internal_scratch_space(const Cuda &instance, const Cuda::size_type size) { return instance.impl_internal_space_instance()->scratch_space(size); } Cuda::size_type *cuda_internal_scratch_flags(const Cuda &instance, const Cuda::size_type size) { return instance.impl_internal_space_instance()->scratch_flags(size); } Cuda::size_type *cuda_internal_scratch_unified(const Cuda &instance, const Cuda::size_type size) { return instance.impl_internal_space_instance()->scratch_unified(size); } } // namespace Impl } // namespace Kokkos //---------------------------------------------------------------------------- namespace Kokkos { Cuda::size_type Cuda::detect_device_count() { return Impl::CudaInternalDevices::singleton().m_cudaDevCount; } int Cuda::concurrency() { return Impl::CudaInternal::singleton().m_maxConcurrency; } #ifdef KOKKOS_ENABLE_DEPRECATED_CODE int Cuda::is_initialized() #else int Cuda::impl_is_initialized() #endif { return Impl::CudaInternal::singleton().is_initialized(); } #ifdef KOKKOS_ENABLE_DEPRECATED_CODE void Cuda::initialize(const Cuda::SelectDevice config, size_t num_instances) #else void Cuda::impl_initialize(const Cuda::SelectDevice config, size_t num_instances) #endif { Impl::CudaInternal::singleton().initialize(config.cuda_device_id, 0); #if defined(KOKKOS_ENABLE_PROFILING) Kokkos::Profiling::initialize(); #endif } std::vector<unsigned> Cuda::detect_device_arch() { const Impl::CudaInternalDevices &s = Impl::CudaInternalDevices::singleton(); std::vector<unsigned> output(s.m_cudaDevCount); for (int i = 0; i < s.m_cudaDevCount; ++i) { output[i] = s.m_cudaProp[i].major * 100 + s.m_cudaProp[i].minor; } return output; } Cuda::size_type Cuda::device_arch() { const int dev_id = Impl::CudaInternal::singleton().m_cudaDev; int dev_arch = 0; if (0 <= dev_id) { const struct cudaDeviceProp &cudaProp = Impl::CudaInternalDevices::singleton().m_cudaProp[dev_id]; dev_arch = cudaProp.major * 100 + cudaProp.minor; } return dev_arch; } #ifdef KOKKOS_ENABLE_DEPRECATED_CODE void Cuda::finalize() #else void Cuda::impl_finalize() #endif { Impl::CudaInternal::singleton().finalize(); #if defined(KOKKOS_ENABLE_PROFILING) Kokkos::Profiling::finalize(); #endif } Cuda::Cuda() : m_space_instance(&Impl::CudaInternal::singleton()) { Impl::CudaInternal::singleton().verify_is_initialized( "Cuda instance constructor"); } Cuda::Cuda(cudaStream_t stream) : m_space_instance(new Impl::CudaInternal) { Impl::CudaInternal::singleton().verify_is_initialized( "Cuda instance constructor"); m_space_instance->initialize(Impl::CudaInternal::singleton().m_cudaDev, stream); } void Cuda::print_configuration(std::ostream &s, const bool) { Impl::CudaInternal::singleton().print_configuration(s); } #ifdef KOKKOS_ENABLE_DEPRECATED_CODE bool Cuda::sleep() { return false; } bool Cuda::wake() { return true; } #endif void Cuda::impl_static_fence() { Kokkos::Impl::cuda_device_synchronize(); } #ifdef KOKKOS_ENABLE_DEPRECATED_CODE void Cuda::fence() { impl_static_fence(); } #else void Cuda::fence() const { m_space_instance->fence(); } #endif const char *Cuda::name() { return "Cuda"; } cudaStream_t Cuda::cuda_stream() const { return m_space_instance->m_stream; } int Cuda::cuda_device() const { return m_space_instance->m_cudaDev; } } // namespace Kokkos namespace Kokkos { namespace Experimental { UniqueToken<Kokkos::Cuda, Kokkos::Experimental::UniqueTokenScope::Global>:: UniqueToken(Kokkos::Cuda const &) : m_buffer( Kokkos::Impl::CudaInternal::singleton().m_scratchConcurrentBitset), m_count(Kokkos::Impl::CudaInternal::singleton().m_maxConcurrency) {} } // namespace Experimental } // namespace Kokkos #else void KOKKOS_CORE_SRC_CUDA_IMPL_PREVENT_LINK_ERROR() {} #endif // KOKKOS_ENABLE_CUDA
1
22,043
So the intention is you configure with `-CMAKE_CXX_FLAGS="-D KOKKOS_IMPL_TURN_OFF_CUDA_HOST_INIT_CHECK"`?
kokkos-kokkos
cpp
@@ -396,7 +396,7 @@ void AssignHsResidueInfo(RWMol &mol) { h_label = h_label.substr(3, 1) + h_label.substr(0, 3); AtomPDBResidueInfo *newInfo = new AtomPDBResidueInfo( h_label, max_serial, "", info->getResidueName(), - info->getResidueNumber(), info->getChainId(), "", + info->getResidueNumber(), info->getChainId(), "", 1.0, 0.0, info->getIsHeteroAtom()); mol.getAtomWithIdx(*begin)->setMonomerInfo(newInfo);
1
// // Copyright (C) 2003-2019 Greg Landrum and Rational Discovery LLC // // @@ All Rights Reserved @@ // This file is part of the RDKit. // The contents are covered by the terms of the BSD license // which is included in the file license.txt, found at the root // of the RDKit source tree. // #include "RDKitBase.h" #include <list> #include "QueryAtom.h" #include "QueryOps.h" #include "MonomerInfo.h" #include <Geometry/Transform3D.h> #include <Geometry/point.h> #include <boost/foreach.hpp> #include <boost/lexical_cast.hpp> namespace RDKit { // Local utility functionality: namespace { Atom *getAtomNeighborNot(ROMol *mol, const Atom *atom, const Atom *other) { PRECONDITION(mol, "bad molecule"); PRECONDITION(atom, "bad atom"); PRECONDITION(atom->getDegree() > 1, "bad degree"); PRECONDITION(other, "bad atom"); Atom *res = nullptr; ROMol::ADJ_ITER nbrIdx, endNbrs; boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(atom); while (nbrIdx != endNbrs) { if (*nbrIdx != other->getIdx()) { res = mol->getAtomWithIdx(*nbrIdx); break; } ++nbrIdx; } POSTCONDITION(res, "no neighbor found"); return res; } void setHydrogenCoords(ROMol *mol, unsigned int hydIdx, unsigned int heavyIdx) { // we will loop over all the coordinates PRECONDITION(mol, "bad molecule"); PRECONDITION(heavyIdx != hydIdx, "degenerate atoms"); Atom *hydAtom = mol->getAtomWithIdx(hydIdx); PRECONDITION(mol->getAtomDegree(hydAtom) == 1, "bad atom degree"); const Bond *bond = mol->getBondBetweenAtoms(heavyIdx, hydIdx); PRECONDITION(bond, "no bond between atoms"); const Atom *heavyAtom = mol->getAtomWithIdx(heavyIdx); double bondLength = PeriodicTable::getTable()->getRb0(1) + PeriodicTable::getTable()->getRb0(heavyAtom->getAtomicNum()); RDGeom::Point3D dirVect(0, 0, 0); RDGeom::Point3D perpVect, rotnAxis, nbrPerp; RDGeom::Point3D nbr1Vect, nbr2Vect, nbr3Vect; RDGeom::Transform3D tform; RDGeom::Point3D heavyPos, hydPos; const Atom *nbr1 = nullptr, *nbr2 = nullptr, *nbr3 = nullptr; const Bond *nbrBond; ROMol::ADJ_ITER nbrIdx, endNbrs; switch (heavyAtom->getDegree()) { case 1: // -------------------------------------------------------------------------- // No other atoms present: // -------------------------------------------------------------------------- // loop over the conformations and set the coordinates for (auto cfi = mol->beginConformers(); cfi != mol->endConformers(); cfi++) { if ((*cfi)->is3D()) { dirVect.z = 1; } else { dirVect.x = 1; } heavyPos = (*cfi)->getAtomPos(heavyIdx); hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); } break; case 2: // -------------------------------------------------------------------------- // One other neighbor: // -------------------------------------------------------------------------- nbr1 = getAtomNeighborNot(mol, heavyAtom, hydAtom); for (auto cfi = mol->beginConformers(); cfi != mol->endConformers(); ++cfi) { heavyPos = (*cfi)->getAtomPos(heavyIdx); RDGeom::Point3D nbr1Pos = (*cfi)->getAtomPos(nbr1->getIdx()); // get a normalized vector pointing away from the neighbor: nbr1Vect = nbr1Pos - heavyPos; if (fabs(nbr1Vect.lengthSq()) < 1e-4) { // no difference, which likely indicates that we have redundant atoms. // just put it on top of the heavy atom. This was #678 (*cfi)->setAtomPos(hydIdx, heavyPos); continue; } nbr1Vect.normalize(); nbr1Vect *= -1; // ok, nbr1Vect points away from the other atom, figure out where // this H goes: switch (heavyAtom->getHybridization()) { case Atom::SP3: // get a perpendicular to nbr1Vect: if ((*cfi)->is3D()) perpVect = nbr1Vect.getPerpendicular(); else perpVect.z = 1.0; // and move off it: tform.SetRotation((180 - 109.471) * M_PI / 180., perpVect); dirVect = tform * nbr1Vect; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; case Atom::SP2: // default position is to just take an arbitrary perpendicular: perpVect = nbr1Vect.getPerpendicular(); if (nbr1->getDegree() > 1) { // can we use the neighboring atom to establish a perpendicular? nbrBond = mol->getBondBetweenAtoms(heavyIdx, nbr1->getIdx()); if (nbrBond->getIsAromatic() || nbrBond->getBondType() == Bond::DOUBLE) { nbr2 = getAtomNeighborNot(mol, nbr1, heavyAtom); nbr2Vect = nbr1Pos.directionVector((*cfi)->getAtomPos(nbr2->getIdx())); perpVect = nbr2Vect.crossProduct(nbr1Vect); } } perpVect.normalize(); // rotate the nbr1Vect 60 degrees about perpVect and we're done: tform.SetRotation(60. * M_PI / 180., perpVect); dirVect = tform * nbr1Vect; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; case Atom::SP: // just lay the H along the vector: dirVect = nbr1Vect; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; default: // FIX: handle other hybridizations // for now, just lay the H along the vector: dirVect = nbr1Vect; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); } } break; case 3: // -------------------------------------------------------------------------- // Two other neighbors: // -------------------------------------------------------------------------- boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(heavyAtom); while (nbrIdx != endNbrs) { if (*nbrIdx != hydIdx) { if (!nbr1) nbr1 = mol->getAtomWithIdx(*nbrIdx); else nbr2 = mol->getAtomWithIdx(*nbrIdx); } ++nbrIdx; } TEST_ASSERT(nbr1); TEST_ASSERT(nbr2); for (auto cfi = mol->beginConformers(); cfi != mol->endConformers(); ++cfi) { // start along the average of the two vectors: heavyPos = (*cfi)->getAtomPos(heavyIdx); nbr1Vect = heavyPos - (*cfi)->getAtomPos(nbr1->getIdx()); nbr2Vect = heavyPos - (*cfi)->getAtomPos(nbr2->getIdx()); if (fabs(nbr1Vect.lengthSq()) < 1e-4 || fabs(nbr2Vect.lengthSq()) < 1e-4) { // no difference, which likely indicates that we have redundant atoms. // just put it on top of the heavy atom. This was #678 (*cfi)->setAtomPos(hydIdx, heavyPos); continue; } nbr1Vect.normalize(); nbr2Vect.normalize(); dirVect = nbr1Vect + nbr2Vect; dirVect.normalize(); if ((*cfi)->is3D()) { switch (heavyAtom->getHybridization()) { case Atom::SP3: // get the perpendicular to the neighbors: nbrPerp = nbr1Vect.crossProduct(nbr2Vect); // and the perpendicular to that: rotnAxis = nbrPerp.crossProduct(dirVect); // and then rotate about that: rotnAxis.normalize(); tform.SetRotation((109.471 / 2) * M_PI / 180., rotnAxis); dirVect = tform * dirVect; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; case Atom::SP2: // don't need to do anything here, the H atom goes right on the // direction vector hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; default: // FIX: handle other hybridizations // for now, just lay the H along the neighbor vector; hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); break; } } else { // don't need to do anything here, the H atom goes right on the // direction vector hydPos = heavyPos + dirVect; (*cfi)->setAtomPos(hydIdx, hydPos); } } break; case 4: // -------------------------------------------------------------------------- // Three other neighbors: // -------------------------------------------------------------------------- boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(heavyAtom); if (heavyAtom->hasProp(common_properties::_CIPCode)) { // if the central atom is chiral, we'll order the neighbors // by CIP rank: std::vector<std::pair<unsigned int, int>> nbrs; while (nbrIdx != endNbrs) { if (*nbrIdx != hydIdx) { const Atom *tAtom = mol->getAtomWithIdx(*nbrIdx); unsigned int cip = 0; tAtom->getPropIfPresent<unsigned int>(common_properties::_CIPRank, cip); nbrs.push_back(std::make_pair(cip, rdcast<int>(*nbrIdx))); } ++nbrIdx; } std::sort(nbrs.begin(), nbrs.end()); nbr1 = mol->getAtomWithIdx(nbrs[0].second); nbr2 = mol->getAtomWithIdx(nbrs[1].second); nbr3 = mol->getAtomWithIdx(nbrs[2].second); } else { // central atom isn't chiral, so the neighbor ordering isn't important: while (nbrIdx != endNbrs) { if (*nbrIdx != hydIdx) { if (!nbr1) { nbr1 = mol->getAtomWithIdx(*nbrIdx); } else if (!nbr2) { nbr2 = mol->getAtomWithIdx(*nbrIdx); } else { nbr3 = mol->getAtomWithIdx(*nbrIdx); } } ++nbrIdx; } } TEST_ASSERT(nbr1); TEST_ASSERT(nbr2); TEST_ASSERT(nbr3); for (auto cfi = mol->beginConformers(); cfi != mol->endConformers(); ++cfi) { // use the average of the three vectors: heavyPos = (*cfi)->getAtomPos(heavyIdx); nbr1Vect = heavyPos - (*cfi)->getAtomPos(nbr1->getIdx()); nbr2Vect = heavyPos - (*cfi)->getAtomPos(nbr2->getIdx()); nbr3Vect = heavyPos - (*cfi)->getAtomPos(nbr3->getIdx()); if (fabs(nbr1Vect.lengthSq()) < 1e-4 || fabs(nbr2Vect.lengthSq()) < 1e-4 || fabs(nbr3Vect.lengthSq()) < 1e-4) { // no difference, which likely indicates that we have redundant atoms. // just put it on top of the heavy atom. This was #678 (*cfi)->setAtomPos(hydIdx, heavyPos); continue; } nbr1Vect.normalize(); nbr2Vect.normalize(); nbr3Vect.normalize(); // if three neighboring atoms are more or less planar, this // is going to be in a quasi-random (but almost definitely bad) // direction... // correct for this (issue 2951221): if ((*cfi)->is3D()) { if (fabs(nbr3Vect.dotProduct(nbr1Vect.crossProduct(nbr2Vect))) < 0.1) { // compute the normal: dirVect = nbr1Vect.crossProduct(nbr2Vect); std::string cipCode; if (heavyAtom->getPropIfPresent(common_properties::_CIPCode, cipCode)) { // the heavy atom is a chiral center, make sure // that we went go the right direction to preserve // its chirality. We use the chiral volume for this: RDGeom::Point3D v1 = dirVect - nbr3Vect; RDGeom::Point3D v2 = nbr1Vect - nbr3Vect; RDGeom::Point3D v3 = nbr2Vect - nbr3Vect; double vol = v1.dotProduct(v2.crossProduct(v3)); // FIX: this is almost certainly wrong and should use the chiral // tag if ((cipCode == "S" && vol < 0) || (cipCode == "R" && vol > 0)) { dirVect *= -1; } } } else { dirVect = nbr1Vect + nbr2Vect + nbr3Vect; } } else { // we're in flatland // this was github #908 // We're in a 2D conformation, put the H between the two neighbors // that have the widest angle between them: double minDot = nbr1Vect.dotProduct(nbr2Vect); dirVect = nbr1Vect + nbr2Vect; if (nbr2Vect.dotProduct(nbr3Vect) < minDot) { minDot = nbr2Vect.dotProduct(nbr3Vect); dirVect = nbr2Vect + nbr3Vect; } if (nbr1Vect.dotProduct(nbr3Vect) < minDot) { minDot = nbr1Vect.dotProduct(nbr3Vect); dirVect = nbr1Vect + nbr3Vect; } dirVect *= -1; } dirVect.normalize(); hydPos = heavyPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0); (*cfi)->setAtomPos(hydIdx, hydPos); } break; default: // -------------------------------------------------------------------------- // FIX: figure out what to do here // -------------------------------------------------------------------------- hydPos = heavyPos + dirVect * bondLength; for (auto cfi = mol->beginConformers(); cfi != mol->endConformers(); ++cfi) { (*cfi)->setAtomPos(hydIdx, hydPos); } break; } } void AssignHsResidueInfo(RWMol &mol) { int max_serial = 0; unsigned int stopIdx = mol.getNumAtoms(); for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) { AtomPDBResidueInfo *info = (AtomPDBResidueInfo *)(mol.getAtomWithIdx(aidx)->getMonomerInfo()); if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE && info->getSerialNumber() > max_serial) { max_serial = info->getSerialNumber(); } } AtomPDBResidueInfo *current_info = 0; int current_h_id = 0; for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) { Atom *newAt = mol.getAtomWithIdx(aidx); AtomPDBResidueInfo *info = (AtomPDBResidueInfo *)(newAt->getMonomerInfo()); if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE) { ROMol::ADJ_ITER begin, end; boost::tie(begin, end) = mol.getAtomNeighbors(newAt); while (begin != end) { if (mol.getAtomWithIdx(*begin)->getAtomicNum() == 1) { // Make all Hs unique - increment id even for existing ++current_h_id; // skip if hyrogen already has PDB info AtomPDBResidueInfo *h_info = (AtomPDBResidueInfo *)mol.getAtomWithIdx(*begin) ->getMonomerInfo(); if (h_info && h_info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE) continue; // the hydrogens have unique names on residue basis (H1, H2, ...) if (!current_info || current_info->getResidueNumber() != info->getResidueNumber() || current_info->getChainId() != info->getChainId()) { current_h_id = 1; current_info = info; } std::string h_label = boost::lexical_cast<std::string>(current_h_id); if (h_label.length() > 3) h_label = h_label.substr(h_label.length() - 3, 3); while (h_label.length() < 3) h_label = h_label + " "; h_label = "H" + h_label; // wrap around id to '3H12' h_label = h_label.substr(3, 1) + h_label.substr(0, 3); AtomPDBResidueInfo *newInfo = new AtomPDBResidueInfo( h_label, max_serial, "", info->getResidueName(), info->getResidueNumber(), info->getChainId(), "", info->getIsHeteroAtom()); mol.getAtomWithIdx(*begin)->setMonomerInfo(newInfo); ++max_serial; } ++begin; } } } } } // end of unnamed namespace namespace MolOps { void addHs(RWMol &mol, bool explicitOnly, bool addCoords, const UINT_VECT *onlyOnAtoms, bool addResidueInfo) { // when we hit each atom, clear its computed properties // NOTE: it is essential that we not clear the ring info in the // molecule's computed properties. We don't want to have to // regenerate that. This caused Issue210 and Issue212: mol.clearComputedProps(false); // precompute the number of hydrogens we are going to add so that we can // pre-allocate the necessary space on the conformations of the molecule // for their coordinates unsigned int numAddHyds = 0; for (auto at : mol.atoms()) { if (!onlyOnAtoms || std::find(onlyOnAtoms->begin(), onlyOnAtoms->end(), at->getIdx()) != onlyOnAtoms->end()) { numAddHyds += at->getNumExplicitHs(); if (!explicitOnly) { numAddHyds += at->getNumImplicitHs(); } } } unsigned int nSize = mol.getNumAtoms() + numAddHyds; // loop over the conformations of the molecule and allocate new space // for the H locations (need to do this even if we aren't adding coords so // that the conformers have the correct number of atoms). for (auto cfi = mol.beginConformers(); cfi != mol.endConformers(); ++cfi) { (*cfi)->reserve(nSize); } unsigned int stopIdx = mol.getNumAtoms(); for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) { if (onlyOnAtoms && std::find(onlyOnAtoms->begin(), onlyOnAtoms->end(), aidx) == onlyOnAtoms->end()) { continue; } Atom *newAt = mol.getAtomWithIdx(aidx); unsigned int newIdx; newAt->clearComputedProps(); // always convert explicit Hs unsigned int onumexpl = newAt->getNumExplicitHs(); for (unsigned int i = 0; i < onumexpl; i++) { newIdx = mol.addAtom(new Atom(1), false, true); mol.addBond(aidx, newIdx, Bond::SINGLE); mol.getAtomWithIdx(newIdx)->updatePropertyCache(); if (addCoords) setHydrogenCoords(&mol, newIdx, aidx); } // clear the local property newAt->setNumExplicitHs(0); if (!explicitOnly) { // take care of implicits for (unsigned int i = 0; i < mol.getAtomWithIdx(aidx)->getNumImplicitHs(); i++) { newIdx = mol.addAtom(new Atom(1), false, true); mol.addBond(aidx, newIdx, Bond::SINGLE); // set the isImplicit label so that we can strip these back // off later if need be. mol.getAtomWithIdx(newIdx)->setProp(common_properties::isImplicit, 1); mol.getAtomWithIdx(newIdx)->updatePropertyCache(); if (addCoords) setHydrogenCoords(&mol, newIdx, aidx); } // be very clear about implicits not being allowed in this representation newAt->setProp(common_properties::origNoImplicit, newAt->getNoImplicit(), true); newAt->setNoImplicit(true); } // update the atom's derived properties (valence count, etc.) newAt->updatePropertyCache(); } // take care of AtomPDBResidueInfo for Hs if root atom has it if (addResidueInfo) AssignHsResidueInfo(mol); } ROMol *addHs(const ROMol &mol, bool explicitOnly, bool addCoords, const UINT_VECT *onlyOnAtoms, bool addResidueInfo) { auto *res = new RWMol(mol); addHs(*res, explicitOnly, addCoords, onlyOnAtoms, addResidueInfo); return static_cast<ROMol *>(res); }; namespace { // returns whether or not an adjustment was made, in case we want that info bool adjustStereoAtomsIfRequired(RWMol &mol, const Atom *atom, const Atom *heavyAtom) { PRECONDITION(atom != nullptr, "bad atom"); PRECONDITION(heavyAtom != nullptr, "bad heavy atom"); // nothing we can do if the degree is only 2 (and we should have covered // that earlier anyway) if (heavyAtom->getDegree() == 2) return false; const auto &cbnd = mol.getBondBetweenAtoms(atom->getIdx(), heavyAtom->getIdx()); if (!cbnd) return false; for (const auto &nbri : boost::make_iterator_range(mol.getAtomBonds(heavyAtom))) { Bond *bnd = mol[nbri]; if (bnd->getBondType() == Bond::DOUBLE && bnd->getStereo() > Bond::STEREOANY) { auto sAtomIt = std::find(bnd->getStereoAtoms().begin(), bnd->getStereoAtoms().end(), atom->getIdx()); if (sAtomIt != bnd->getStereoAtoms().end()) { // sAtomIt points to the position of this atom's index in the list. // find the index of another atom attached to the heavy atom and // use it to update sAtomIt unsigned int dblNbrIdx = bnd->getOtherAtomIdx(heavyAtom->getIdx()); for (const auto &nbri : boost::make_iterator_range(mol.getAtomNeighbors(heavyAtom))) { const auto &nbr = mol[nbri]; if (nbr->getIdx() == dblNbrIdx || nbr->getIdx() == atom->getIdx()) continue; *sAtomIt = nbr->getIdx(); bool madeAdjustment = true; switch (bnd->getStereo()) { case Bond::STEREOCIS: bnd->setStereo(Bond::STEREOTRANS); break; case Bond::STEREOTRANS: bnd->setStereo(Bond::STEREOCIS); break; default: // I think we shouldn't need to do anything with E and Z... madeAdjustment = false; break; } return madeAdjustment; } } } } return false; } } // end of anonymous namespace // // This routine removes hydrogens (and bonds to them) from the molecular graph. // Other Atom and bond indices may be affected by the removal. // // NOTES: // - Hydrogens which aren't connected to a heavy atom will not be // removed. This prevents molecules like "[H][H]" from having // all atoms removed. // - Labelled hydrogen (e.g. atoms with atomic number=1, but isotope > 1), // will not be removed. // - two coordinate Hs, like the central H in C[H-]C, will not be removed // - Hs connected to dummy atoms will not be removed // - Hs that are part of the definition of double bond Stereochemistry // will not be removed // - Hs that are not connected to anything else will not be removed // void removeHs(RWMol &mol, bool implicitOnly, bool updateExplicitCount, bool sanitize) { unsigned int currIdx = 0, origIdx = 0; std::map<unsigned int, unsigned int> idxMap; for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms(); ++atIt) { if ((*atIt)->getAtomicNum() == 1) continue; (*atIt)->updatePropertyCache(false); } while (currIdx < mol.getNumAtoms()) { Atom *atom = mol.getAtomWithIdx(currIdx); idxMap[origIdx] = currIdx; ++origIdx; if (atom->getAtomicNum() == 1) { bool removeIt = false; if (!atom->getDegree()) { BOOST_LOG(rdWarningLog) << "WARNING: not removing hydrogen atom without neighbors" << std::endl; } else if (!atom->hasQuery()) { if (atom->hasProp(common_properties::isImplicit)) { removeIt = true; if (atom->getDegree() == 1) { // by default we remove implicit Hs, but not if they are // attached to dummy atoms. This was Github #1439 ROMol::ADJ_ITER begin, end; boost::tie(begin, end) = mol.getAtomNeighbors(atom); if (mol.getAtomWithIdx(*begin)->getAtomicNum() < 1) { removeIt = false; BOOST_LOG(rdWarningLog) << "WARNING: not removing hydrogen atom " "with only dummy atom neighbors" << std::endl; } } } else if (!implicitOnly && !atom->getIsotope() && atom->getDegree() == 1) { ROMol::ADJ_ITER begin, end; boost::tie(begin, end) = mol.getAtomNeighbors(atom); auto nbr = mol.getAtomWithIdx(*begin); if (nbr->getAtomicNum() > 1) { removeIt = true; // we're connected to a non-dummy, non H atom. Check to see // if the neighbor has a double bond and we're the only neighbor // at this end. This was part of github #1810 if (nbr->getDegree() == 2) { for (const auto &nbri : boost::make_iterator_range(mol.getAtomBonds(nbr))) { const Bond *bnd = mol[nbri]; if (bnd->getBondType() == Bond::DOUBLE && (bnd->getStereo() > Bond::STEREOANY || mol.getBondBetweenAtoms(atom->getIdx(), nbr->getIdx()) ->getBondDir() > Bond::NONE)) { removeIt = false; break; } } } } } } if (removeIt) { ROMol::OEDGE_ITER beg, end; boost::tie(beg, end) = mol.getAtomBonds(atom); // part of the fix for github #2086: CHECK_INVARIANT(beg != end, "H has no neighbors!"); // note the assumption that the H only has one neighbor... I // feel no need to handle the case of hypervalent hydrogen! // :-) const Bond *bond = mol[*beg]; Atom *heavyAtom = bond->getOtherAtom(atom); int heavyAtomNum = heavyAtom->getAtomicNum(); const INT_VECT &defaultVs = PeriodicTable::getTable()->getValenceList(heavyAtomNum); // we'll update the atom's explicit H count if we were told to // *or* if the atom is chiral, in which case the H is needed // in order to complete the coordination // *or* if the atom has the noImplicit flag set: if (updateExplicitCount || heavyAtom->getNoImplicit() || heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) { heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1); } else { // this is a special case related to Issue 228 and the // "disappearing Hydrogen" problem discussed in MolOps::adjustHs // // If we remove a hydrogen from an aromatic N or P, or if // the heavy atom it is connected to is not in its default // valence state, we need to be *sure* to increment the // explicit count, even if the H itself isn't marked as explicit if (((heavyAtomNum == 7 || heavyAtomNum == 15) && heavyAtom->getIsAromatic()) || (std::find(defaultVs.begin() + 1, defaultVs.end(), heavyAtom->getTotalValence()) != defaultVs.end())) { heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1); } } // One other consequence of removing the H from the graph is // that we may change the ordering of the bonds about a // chiral center. This may change the chiral label at that // atom. We deal with that by explicitly checking here: if (heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) { INT_LIST neighborIndices; boost::tie(beg, end) = mol.getAtomBonds(heavyAtom); while (beg != end) { if (mol[*beg]->getIdx() != bond->getIdx()) { neighborIndices.push_back(mol[*beg]->getIdx()); } ++beg; } neighborIndices.push_back(bond->getIdx()); int nSwaps = heavyAtom->getPerturbationOrder(neighborIndices); // std::cerr << "H: "<<atom->getIdx()<<" hvy: // "<<heavyAtom->getIdx()<<" swaps: " << nSwaps<<std::endl; if (nSwaps % 2) { heavyAtom->invertChirality(); } } // if it's a wavy bond, then we need to // mark the beginning atom with the _UnknownStereo tag. // so that we know later that something was affecting its // stereochem if (bond->getBondDir() == Bond::UNKNOWN && bond->getBeginAtomIdx() == heavyAtom->getIdx()) { heavyAtom->setProp(common_properties::_UnknownStereo, 1); } else if (bond->getBondDir() == Bond::ENDDOWNRIGHT || bond->getBondDir() == Bond::ENDUPRIGHT) { // if the direction is set on this bond and the atom it's connected to // has no other single bonds with directions set, then we need to set // direction on one of the other neighbors in order to avoid double // bond stereochemistry possibly being lost. This was github #754 bool foundADir = false; Bond *oBond = nullptr; boost::tie(beg, end) = mol.getAtomBonds(heavyAtom); while (beg != end) { if (mol[*beg]->getIdx() != bond->getIdx() && mol[*beg]->getBondType() == Bond::SINGLE) { if (mol[*beg]->getBondDir() == Bond::NONE) { oBond = mol[*beg]; } else { foundADir = true; } } ++beg; } if (!foundADir && oBond != nullptr) { bool flipIt = (oBond->getBeginAtom() == heavyAtom) && (bond->getBeginAtom() == heavyAtom); if (flipIt) { oBond->setBondDir(bond->getBondDir() == Bond::ENDDOWNRIGHT ? Bond::ENDUPRIGHT : Bond::ENDDOWNRIGHT); } else { oBond->setBondDir(bond->getBondDir()); } } } else { // if this atom is one of the stereoatoms for a double bond we need // to switch the stereo atom on this end to be the other neighbor // This was part of github #1810 adjustStereoAtomsIfRequired(mol, atom, heavyAtom); } mol.removeAtom(atom); } else { // only increment the atom idx if we don't remove the atom currIdx++; } } else { // only increment the atom idx if we don't remove the atom currIdx++; bool origNoImplicit; if (atom->getPropIfPresent(common_properties::origNoImplicit, origNoImplicit)) { // we'll get in here if we haven't already processed the atom's implicit // hydrogens. (this is protection for the case that removeHs() is // called // multiple times on a single molecule without intervening addHs() // calls) atom->setNoImplicit(origNoImplicit); atom->clearProp(common_properties::origNoImplicit); } } } // // If we didn't only remove implicit Hs, which are guaranteed to // be the highest numbered atoms, we may have altered atom indices. // This can screw up derived properties (such as ring members), so // do some checks: // if (!implicitOnly) { if (sanitize) { sanitizeMol(mol); } } }; ROMol *removeHs(const ROMol &mol, bool implicitOnly, bool updateExplicitCount, bool sanitize) { auto *res = new RWMol(mol); try { removeHs(*res, implicitOnly, updateExplicitCount, sanitize); } catch (MolSanitizeException &se) { delete res; throw se; } return static_cast<ROMol *>(res); } namespace { bool isQueryH(const Atom *atom) { PRECONDITION(atom, "bogus atom"); if (atom->getAtomicNum() == 1) { // the simple case: the atom is flagged as being an H and // has no query if (!atom->hasQuery() || (!atom->getQuery()->getNegation() && atom->getQuery()->getDescription() == "AtomAtomicNum")) { return true; } } if (atom->getDegree() != 1) { // only degree 1 return false; } if (atom->hasQuery() && atom->getQuery()->getNegation()) { // we will not merge negated queries return false; } bool hasHQuery = false, hasOr = false; if (atom->hasQuery()) { if (atom->getQuery()->getDescription() == "AtomOr") { hasOr = true; } std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack( atom->getQuery()->beginChildren(), atom->getQuery()->endChildren()); // the logic gets too complicated if there's an OR in the children, so just // punt on those (with a warning) while (!(hasHQuery && hasOr) && childStack.size()) { QueryAtom::QUERYATOM_QUERY::CHILD_TYPE query = childStack.front(); childStack.pop_front(); if (query->getDescription() == "AtomOr") { hasOr = true; } else if (query->getDescription() == "AtomAtomicNum") { if (static_cast<ATOM_EQUALS_QUERY *>(query.get())->getVal() == 1 && !query->getNegation()) { hasHQuery = true; } } else { QueryAtom::QUERYATOM_QUERY::CHILD_VECT_CI child1; for (child1 = query->beginChildren(); child1 != query->endChildren(); ++child1) { childStack.push_back(*child1); } } } // std::cerr<<" !!!1 "<<atom->getIdx()<<" "<<hasHQuery<<" // "<<hasOr<<std::endl; if (hasHQuery && hasOr) { BOOST_LOG(rdWarningLog) << "WARNING: merging explicit H queries involved " "in ORs is not supported. This query will not " "be merged" << std::endl; return false; } } return hasHQuery; } } // namespace // // This routine removes explicit hydrogens (and bonds to them) from // the molecular graph and adds them as queries to the heavy atoms // to which they are bound. If the heavy atoms (or atom queries) // already have hydrogen-count queries, they will be updated. // // NOTE: // - Hydrogens which aren't connected to a heavy atom will not be // removed. This prevents molecules like "[H][H]" from having // all atoms removed. // // - By default all hydrogens are removed, however if // merge_unmapped_only is true, any hydrogen participating // in an atom map will be retained void mergeQueryHs(RWMol &mol, bool mergeUnmappedOnly) { std::vector<unsigned int> atomsToRemove; boost::dynamic_bitset<> hatoms(mol.getNumAtoms()); for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) { hatoms[i] = isQueryH(mol.getAtomWithIdx(i)); } unsigned int currIdx = 0, stopIdx = mol.getNumAtoms(); while (currIdx < stopIdx) { Atom *atom = mol.getAtomWithIdx(currIdx); if (!hatoms[currIdx]) { unsigned int numHsToRemove = 0; ROMol::ADJ_ITER begin, end; boost::tie(begin, end) = mol.getAtomNeighbors(atom); while (begin != end) { if (hatoms[*begin]) { Atom &bgn = *mol.getAtomWithIdx(*begin); if (!mergeUnmappedOnly || !bgn.hasProp(common_properties::molAtomMapNumber)) { atomsToRemove.push_back(rdcast<unsigned int>(*begin)); ++numHsToRemove; } } ++begin; } if (numHsToRemove) { // // We have H neighbors: // If we have no H query already: // - add a generic H query // else: // - do nothing // // Examples: // C[H] -> [C;!H0] // [C;H1][H] -> [C;H1] // [C;H2][H] -> [C;H2] // // FIX: this is going to behave oddly in the case of a contradictory // SMARTS like: [C;H0][H], where it will give the equivalent of: // [C;H0] I think this is actually correct, but I can be persuaded // otherwise. // // First we'll search for an H query: bool hasHQuery = false; if (!atom->hasQuery()) { // it wasn't a query atom, we need to replace it so that we can add a // query: ATOM_EQUALS_QUERY *tmp = makeAtomNumQuery(atom->getAtomicNum()); auto *newAt = new QueryAtom; newAt->setQuery(tmp); newAt->updateProps(*atom); mol.replaceAtom(atom->getIdx(), newAt); delete newAt; atom = mol.getAtomWithIdx(currIdx); } if (!hasHQuery) { for (unsigned int i = 0; i < numHsToRemove; ++i) { ATOM_EQUALS_QUERY *tmp = makeAtomHCountQuery(i); tmp->setNegation(true); atom->expandQuery(tmp); } } } // end of numHsToRemove test // recurse if needed (was github isusue 544) if (atom->hasQuery()) { // std::cerr<<" q: "<<atom->getQuery()->getDescription()<<std::endl; if (atom->getQuery()->getDescription() == "RecursiveStructure") { RWMol *rqm = static_cast<RWMol *>(const_cast<ROMol *>( static_cast<RecursiveStructureQuery *>(atom->getQuery()) ->getQueryMol())); mergeQueryHs(*rqm, mergeUnmappedOnly); } // FIX: shouldn't be repeating this code here std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack( atom->getQuery()->beginChildren(), atom->getQuery()->endChildren()); while (childStack.size()) { QueryAtom::QUERYATOM_QUERY::CHILD_TYPE qry = childStack.front(); childStack.pop_front(); // std::cerr<<" child: "<<qry->getDescription()<<std::endl; if (qry->getDescription() == "RecursiveStructure") { // std::cerr<<" recurse"<<std::endl; RWMol *rqm = static_cast<RWMol *>(const_cast<ROMol *>( static_cast<RecursiveStructureQuery *>(qry.get()) ->getQueryMol())); mergeQueryHs(*rqm, mergeUnmappedOnly); // std::cerr<<" back"<<std::endl; } else if (qry->beginChildren() != qry->endChildren()) { childStack.insert(childStack.end(), qry->beginChildren(), qry->endChildren()); } } } // end of recursion loop } ++currIdx; } std::sort(atomsToRemove.begin(), atomsToRemove.end()); for (std::vector<unsigned int>::const_reverse_iterator aiter = atomsToRemove.rbegin(); aiter != atomsToRemove.rend(); ++aiter) { Atom *atom = mol.getAtomWithIdx(*aiter); mol.removeAtom(atom); } }; ROMol *mergeQueryHs(const ROMol &mol, bool mergeUnmappedOnly) { auto *res = new RWMol(mol); mergeQueryHs(*res, mergeUnmappedOnly); return static_cast<ROMol *>(res); }; }; // end of namespace MolOps }; // end of namespace RDKit
1
19,423
This was a bug.
rdkit-rdkit
cpp
@@ -210,6 +210,19 @@ class ImageExtension extends Twig_Extension $htmlAttributes = $attributes; unset($htmlAttributes['type'], $htmlAttributes['size']); + $useLazyLoading = array_key_exists('lazy', $attributes) ? (bool)$attributes['lazy'] : true; + $isAttributeClassExistsAndNotEmpty = array_key_exists('class', $attributes) && $attributes['class'] !== ''; + $htmlAttributes['class'] = sprintf( + '%s%s', + $useLazyLoading ? 'lazy' : '', + $isAttributeClassExistsAndNotEmpty ? ' ' . $attributes['class'] : '' + ); + + if ($useLazyLoading) { + $htmlAttributes['data-src'] = $htmlAttributes['src']; + $htmlAttributes['src'] = ''; + } + return $this->templating->render('@ShopsysFramework/Common/image.html.twig', [ 'attr' => $htmlAttributes, 'additionalImagesData' => $additionalImagesData,
1
<?php declare(strict_types=1); namespace Shopsys\FrameworkBundle\Twig; use Shopsys\FrameworkBundle\Component\Domain\Domain; use Shopsys\FrameworkBundle\Component\Image\ImageFacade; use Shopsys\FrameworkBundle\Component\Image\ImageLocator; use Shopsys\FrameworkBundle\Component\Utils\Utils; use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface; use Twig_Extension; use Twig_SimpleFunction; class ImageExtension extends Twig_Extension { protected const NOIMAGE_FILENAME = 'noimage.png'; /** * @var string */ protected $frontDesignImageUrlPrefix; /** * @var \Shopsys\FrameworkBundle\Component\Domain\Domain */ protected $domain; /** * @var \Shopsys\FrameworkBundle\Component\Image\ImageLocator */ protected $imageLocator; /** * @var \Shopsys\FrameworkBundle\Component\Image\ImageFacade */ protected $imageFacade; /** * @var \Symfony\Component\Templating\EngineInterface */ protected $templating; /** * @param string $frontDesignImageUrlPrefix * @param \Shopsys\FrameworkBundle\Component\Domain\Domain $domain * @param \Shopsys\FrameworkBundle\Component\Image\ImageLocator $imageLocator * @param \Shopsys\FrameworkBundle\Component\Image\ImageFacade $imageFacade * @param \Symfony\Bundle\FrameworkBundle\Templating\EngineInterface $templating */ public function __construct( $frontDesignImageUrlPrefix, Domain $domain, ImageLocator $imageLocator, ImageFacade $imageFacade, EngineInterface $templating ) { $this->frontDesignImageUrlPrefix = rtrim($frontDesignImageUrlPrefix, '/'); $this->domain = $domain; $this->imageLocator = $imageLocator; $this->imageFacade = $imageFacade; $this->templating = $templating; } /** * @return array */ public function getFunctions() { return [ new Twig_SimpleFunction('imageExists', [$this, 'imageExists']), new Twig_SimpleFunction('imageUrl', [$this, 'getImageUrl']), new Twig_SimpleFunction('image', [$this, 'getImageHtml'], ['is_safe' => ['html']]), new Twig_SimpleFunction('noimage', [$this, 'getNoimageHtml'], ['is_safe' => ['html']]), new Twig_SimpleFunction('getImages', [$this, 'getImages']), ]; } /** * @param \Shopsys\FrameworkBundle\Component\Image\Image|object $imageOrEntity * @param string|null $type * @return bool */ public function imageExists($imageOrEntity, $type = null) { try { $image = $this->imageFacade->getImageByObject($imageOrEntity, $type); } catch (\Shopsys\FrameworkBundle\Component\Image\Exception\ImageNotFoundException $e) { return false; } return $this->imageLocator->imageExists($image); } /** * @param \Shopsys\FrameworkBundle\Component\Image\Image|Object $imageOrEntity * @param string|null $sizeName * @param string|null $type * @return string */ public function getImageUrl($imageOrEntity, $sizeName = null, $type = null) { try { return $this->imageFacade->getImageUrl($this->domain->getCurrentDomainConfig(), $imageOrEntity, $sizeName, $type); } catch (\Shopsys\FrameworkBundle\Component\Image\Exception\ImageNotFoundException $e) { return $this->getEmptyImageUrl(); } } /** * @param Object $entity * @param string|null $type * @return \Shopsys\FrameworkBundle\Component\Image\Image[] */ public function getImages($entity, $type = null) { return $this->imageFacade->getImagesByEntityIndexedById($entity, $type); } /** * @param \Shopsys\FrameworkBundle\Component\Image\Image|Object $imageOrEntity * @param array $attributes * @return string */ public function getImageHtml($imageOrEntity, array $attributes = []) { $this->preventDefault($attributes); try { $image = $this->imageFacade->getImageByObject($imageOrEntity, $attributes['type']); $entityName = $image->getEntityName(); $attributes['src'] = $this->getImageUrl($image, $attributes['size'], $attributes['type']); $additionalImagesData = $this->imageFacade->getAdditionalImagesData($this->domain->getCurrentDomainConfig(), $image, $attributes['size'], $attributes['type']); return $this->getImageHtmlByEntityName($attributes, $entityName, $additionalImagesData); } catch (\Shopsys\FrameworkBundle\Component\Image\Exception\ImageNotFoundException $e) { return $this->getNoimageHtml($attributes); } } /** * @param array $attributes * @return string */ public function getNoimageHtml(array $attributes = []) { $this->preventDefault($attributes); $entityName = 'noimage'; $attributes['src'] = $this->getEmptyImageUrl(); $additionalImagesData = []; return $this->getImageHtmlByEntityName($attributes, $entityName, $additionalImagesData); } /** * @return string */ protected function getEmptyImageUrl(): string { return $this->domain->getUrl() . $this->frontDesignImageUrlPrefix . '/' . static::NOIMAGE_FILENAME; } /** * @param string $entityName * @param string|null $type * @param string|null $sizeName * @return string */ protected function getImageCssClass($entityName, $type, $sizeName) { $allClassParts = [ 'image', $entityName, $type, $sizeName, ]; $classParts = array_filter($allClassParts); return implode('-', $classParts); } /** * @return string */ public function getName() { return 'image_extension'; } /** * @param array $attributes */ protected function preventDefault(array &$attributes): void { Utils::setArrayDefaultValue($attributes, 'type'); Utils::setArrayDefaultValue($attributes, 'size'); Utils::setArrayDefaultValue($attributes, 'alt', ''); Utils::setArrayDefaultValue($attributes, 'title', $attributes['alt']); } /** * @param array $attributes * @param string $entityName * @param \Shopsys\FrameworkBundle\Component\Image\AdditionalImageData[] $additionalImagesData * @return string */ protected function getImageHtmlByEntityName(array $attributes, $entityName, $additionalImagesData = []): string { $htmlAttributes = $attributes; unset($htmlAttributes['type'], $htmlAttributes['size']); return $this->templating->render('@ShopsysFramework/Common/image.html.twig', [ 'attr' => $htmlAttributes, 'additionalImagesData' => $additionalImagesData, 'imageCssClass' => $this->getImageCssClass($entityName, $attributes['type'], $attributes['size']), ]); } }
1
19,661
Is OK that we don't have some placeholder?
shopsys-shopsys
php
@@ -447,11 +447,11 @@ func (node *Node) setupStorageMining(ctx context.Context) error { PoStProofType: postProofType, SealProofType: sealProofType, Miner: minerAddr, - WorkerThreads: 1, + WorkerThreads: 2, Paths: []fs.PathConfig{ { Path: sectorDir, - Cache: false, + Cache: true, Weight: 1, }, },
1
package node import ( "context" "fmt" "os" "reflect" "runtime" "github.com/filecoin-project/go-address" "github.com/filecoin-project/go-sectorbuilder" "github.com/filecoin-project/go-sectorbuilder/fs" "github.com/filecoin-project/specs-actors/actors/abi" fbig "github.com/filecoin-project/specs-actors/actors/abi/big" bserv "github.com/ipfs/go-blockservice" "github.com/ipfs/go-cid" ds "github.com/ipfs/go-datastore" "github.com/ipfs/go-datastore/namespace" logging "github.com/ipfs/go-log" "github.com/libp2p/go-libp2p-core/host" "github.com/pkg/errors" "github.com/filecoin-project/go-filecoin/internal/app/go-filecoin/internal/submodule" "github.com/filecoin-project/go-filecoin/internal/app/go-filecoin/paths" "github.com/filecoin-project/go-filecoin/internal/app/go-filecoin/plumbing/msg" "github.com/filecoin-project/go-filecoin/internal/app/go-filecoin/porcelain" "github.com/filecoin-project/go-filecoin/internal/pkg/block" "github.com/filecoin-project/go-filecoin/internal/pkg/cborutil" "github.com/filecoin-project/go-filecoin/internal/pkg/chain" "github.com/filecoin-project/go-filecoin/internal/pkg/clock" "github.com/filecoin-project/go-filecoin/internal/pkg/config" "github.com/filecoin-project/go-filecoin/internal/pkg/consensus" "github.com/filecoin-project/go-filecoin/internal/pkg/constants" "github.com/filecoin-project/go-filecoin/internal/pkg/message" "github.com/filecoin-project/go-filecoin/internal/pkg/metrics" "github.com/filecoin-project/go-filecoin/internal/pkg/mining" "github.com/filecoin-project/go-filecoin/internal/pkg/net/pubsub" "github.com/filecoin-project/go-filecoin/internal/pkg/piecemanager" mining_protocol "github.com/filecoin-project/go-filecoin/internal/pkg/protocol/mining" "github.com/filecoin-project/go-filecoin/internal/pkg/repo" "github.com/filecoin-project/go-filecoin/internal/pkg/state" "github.com/filecoin-project/go-filecoin/internal/pkg/version" ) var log = logging.Logger("node") // nolint: deadcode var ( // ErrNoMinerAddress is returned when the node is not configured to have any miner addresses. ErrNoMinerAddress = errors.New("no miner addresses configured") ) // Node represents a full Filecoin node. type Node struct { // OfflineMode, when true, disables libp2p. OfflineMode bool // ChainClock is a chainClock used by the node for chain epoch. ChainClock clock.ChainEpochClock // Repo is the repo this node was created with. // // It contains all persistent artifacts of the filecoin node. Repo repo.Repo PorcelainAPI *porcelain.API // // Core services // Blockstore submodule.BlockstoreSubmodule network submodule.NetworkSubmodule Blockservice submodule.BlockServiceSubmodule Discovery submodule.DiscoverySubmodule // // Subsystems // chain submodule.ChainSubmodule syncer submodule.SyncerSubmodule BlockMining submodule.BlockMiningSubmodule StorageMining *submodule.StorageMiningSubmodule // // Supporting services // Wallet submodule.WalletSubmodule Messaging submodule.MessagingSubmodule StorageNetworking submodule.StorageNetworkingSubmodule ProofVerification submodule.ProofVerificationSubmodule // // Protocols // VersionTable *version.ProtocolVersionTable StorageProtocol *submodule.StorageProtocolSubmodule RetrievalProtocol *submodule.RetrievalProtocolSubmodule } // Start boots up the node. func (node *Node) Start(ctx context.Context) error { if err := metrics.RegisterPrometheusEndpoint(node.Repo.Config().Observability.Metrics); err != nil { return errors.Wrap(err, "failed to setup metrics") } if err := metrics.RegisterJaeger(node.network.Host.ID().Pretty(), node.Repo.Config().Observability.Tracing); err != nil { return errors.Wrap(err, "failed to setup tracing") } err := node.chain.Start(ctx, node) if err != nil { return err } // Only set these up if there is a miner configured. if _, err := node.MiningAddress(); err == nil { if err := node.setupStorageMining(ctx); err != nil { log.Errorf("setup mining failed: %v", err) return err } } // TODO: defer establishing these API endpoints until the chain is synced when the commands // can handle their absence: https://github.com/filecoin-project/go-filecoin/issues/3137 err = node.setupProtocols() if err != nil { return errors.Wrap(err, "failed to set up protocols:") } // DRAGONS: uncomment when we have retrieval market integration //node.RetrievalProtocol.RetrievalProvider = retrieval.NewMiner() var syncCtx context.Context syncCtx, node.syncer.CancelChainSync = context.WithCancel(context.Background()) // Wire up propagation of new chain heads from the chain store to other components. head, err := node.PorcelainAPI.ChainHead() if err != nil { return errors.Wrap(err, "failed to get chain head") } go node.handleNewChainHeads(syncCtx, head) if !node.OfflineMode { // Subscribe to block pubsub topic to learn about new chain heads. node.syncer.BlockSub, err = node.pubsubscribe(syncCtx, node.syncer.BlockTopic, node.handleBlockSub) if err != nil { log.Error(err) } // Subscribe to the message pubsub topic to learn about messages to mine into blocks. // TODO: defer this subscription until after mining (block production) is started: // https://github.com/filecoin-project/go-filecoin/issues/2145. // This is blocked by https://github.com/filecoin-project/go-filecoin/issues/2959, which // is necessary for message_propagate_test to start mining before testing this behaviour. node.Messaging.MessageSub, err = node.pubsubscribe(syncCtx, node.Messaging.MessageTopic, node.processMessage) if err != nil { return err } if err := node.setupHeartbeatServices(ctx); err != nil { return errors.Wrap(err, "failed to start heartbeat services") } // Start node discovery if err := node.Discovery.Start(node); err != nil { return err } if err := node.syncer.Start(syncCtx, node); err != nil { return err } // Wire up syncing and possible mining go node.doMiningPause(syncCtx) } return nil } // Subscribes a handler function to a pubsub topic. func (node *Node) pubsubscribe(ctx context.Context, topic *pubsub.Topic, handler pubSubHandler) (pubsub.Subscription, error) { sub, err := topic.Subscribe() if err != nil { return nil, errors.Wrapf(err, "failed to subscribe") } go node.handleSubscription(ctx, sub, handler) return sub, nil } func (node *Node) setupHeartbeatServices(ctx context.Context) error { mag := func() address.Address { addr, err := node.MiningAddress() // the only error MiningAddress() returns is ErrNoMinerAddress. // if there is no configured miner address, simply send a zero // address across the wire. if err != nil { return address.Undef } return addr } // start the primary heartbeat service if len(node.Repo.Config().Heartbeat.BeatTarget) > 0 { hbs := metrics.NewHeartbeatService(node.Host(), node.chain.ChainReader.GenesisCid(), node.Repo.Config().Heartbeat, node.PorcelainAPI.ChainHead, metrics.WithMinerAddressGetter(mag)) go hbs.Start(ctx) } // check if we want to connect to an alert service. An alerting service is a heartbeat // service that can trigger alerts based on the contents of heatbeats. if alertTarget := os.Getenv("FIL_HEARTBEAT_ALERTS"); len(alertTarget) > 0 { ahbs := metrics.NewHeartbeatService(node.Host(), node.chain.ChainReader.GenesisCid(), &config.HeartbeatConfig{ BeatTarget: alertTarget, BeatPeriod: "10s", ReconnectPeriod: "10s", Nickname: node.Repo.Config().Heartbeat.Nickname, }, node.PorcelainAPI.ChainHead, metrics.WithMinerAddressGetter(mag)) go ahbs.Start(ctx) } return nil } func (node *Node) setIsMining(isMining bool) { node.BlockMining.Mining.Lock() defer node.BlockMining.Mining.Unlock() node.BlockMining.Mining.IsMining = isMining } func (node *Node) handleNewMiningOutput(ctx context.Context, miningOutCh <-chan mining.Output) { defer func() { node.BlockMining.MiningDoneWg.Done() }() for { select { case <-ctx.Done(): return case output, ok := <-miningOutCh: if !ok { return } if output.Err != nil { log.Errorf("stopping mining. error: %s", output.Err.Error()) node.StopMining(context.Background()) } else { node.BlockMining.MiningDoneWg.Add(1) go func() { if node.IsMining() { node.BlockMining.AddNewlyMinedBlock(ctx, output) } node.BlockMining.MiningDoneWg.Done() }() } } } } func (node *Node) handleNewChainHeads(ctx context.Context, prevHead block.TipSet) { node.chain.HeaviestTipSetCh = node.chain.ChainReader.HeadEvents().Sub(chain.NewHeadTopic) handler := message.NewHeadHandler(node.Messaging.Inbox, node.Messaging.Outbox, node.chain.ChainReader, prevHead) for { select { case ts, ok := <-node.chain.HeaviestTipSetCh: if !ok { return } newHead, ok := ts.(block.TipSet) if !ok { log.Warn("non-tipset published on heaviest tipset channel") continue } if node.StorageMining != nil { if err := node.StorageMining.HandleNewHead(ctx, newHead); err != nil { log.Error(err) } } if err := handler.HandleNewHead(ctx, newHead); err != nil { log.Error(err) } case <-ctx.Done(): return } } } func (node *Node) cancelSubscriptions() { if node.syncer.CancelChainSync != nil { node.syncer.CancelChainSync() } if node.syncer.BlockSub != nil { node.syncer.BlockSub.Cancel() node.syncer.BlockSub = nil } if node.Messaging.MessageSub != nil { node.Messaging.MessageSub.Cancel() node.Messaging.MessageSub = nil } } // Stop initiates the shutdown of the node. func (node *Node) Stop(ctx context.Context) { node.chain.ChainReader.HeadEvents().Unsub(node.chain.HeaviestTipSetCh) node.StopMining(ctx) node.cancelSubscriptions() node.chain.ChainReader.Stop() if node.StorageMining != nil { if err := node.StorageMining.Stop(ctx); err != nil { fmt.Printf("error stopping storage miner: %s\n", err) } node.StorageMining = nil } if err := node.Host().Close(); err != nil { fmt.Printf("error closing host: %s\n", err) } if err := node.Repo.Close(); err != nil { fmt.Printf("error closing repo: %s\n", err) } node.Discovery.Stop() fmt.Println("stopping filecoin :(") } func (node *Node) addNewlyMinedBlock(ctx context.Context, o mining.Output) { log.Debugf("Got a newly mined block from the mining worker: %s", o.Header) if err := node.AddNewBlock(ctx, o); err != nil { log.Warnf("error adding new mined block: %s. err: %s", o.Header.Cid().String(), err.Error()) } } func (node *Node) addMinedBlockSynchronous(ctx context.Context, o mining.Output) error { wait := node.syncer.ChainSyncManager.BlockProposer().WaiterForTarget(block.NewTipSetKey(o.Header.Cid())) err := node.AddNewBlock(ctx, o) if err != nil { return err } err = wait() return err } // MiningAddress returns the address of the mining actor mining on behalf of // the node. func (node *Node) MiningAddress() (address.Address, error) { addr := node.Repo.Config().Mining.MinerAddress if addr.Empty() { return address.Undef, ErrNoMinerAddress } return addr, nil } // SetupMining initializes all the functionality the node needs to start mining. // This method is idempotent. func (node *Node) SetupMining(ctx context.Context) error { // ensure we have a miner actor before we even consider mining minerAddr, err := node.MiningAddress() if err != nil { return errors.Wrap(err, "failed to get mining address") } head := node.PorcelainAPI.ChainHeadKey() _, err = node.PorcelainAPI.MinerGetStatus(ctx, minerAddr, head) if err != nil { return errors.Wrap(err, "failed to get miner actor") } // ensure we've got our storage mining submodule configured if node.StorageMining == nil { if err := node.setupStorageMining(ctx); err != nil { return err } } if node.RetrievalProtocol == nil { if err := node.setupRetrievalMining(ctx); err != nil { return err } } // ensure we have a mining worker if node.BlockMining.MiningWorker == nil { if node.BlockMining.MiningWorker, err = node.CreateMiningWorker(ctx); err != nil { return err } } return nil } func registeredProofsFromSectorSize(ss abi.SectorSize) (registeredSealProof abi.RegisteredProof, registeredPoStProof abi.RegisteredProof, err error) { switch ss { case constants.DevSectorSize: return constants.DevRegisteredPoStProof, constants.DevRegisteredSealProof, nil case constants.ThirtyTwoGiBSectorSize: return abi.RegisteredProof_StackedDRG32GiBPoSt, abi.RegisteredProof_StackedDRG32GiBSeal, nil case constants.EightMiBSectorSize: return abi.RegisteredProof_StackedDRG8MiBPoSt, abi.RegisteredProof_StackedDRG8MiBSeal, nil case constants.FiveHundredTwelveMiBSectorSize: return abi.RegisteredProof_StackedDRG512MiBPoSt, abi.RegisteredProof_StackedDRG512MiBSeal, nil default: return 0, 0, errors.Errorf("unsupported sector size %d", ss) } } func (node *Node) setupStorageMining(ctx context.Context) error { if node.StorageMining != nil { return errors.New("storage mining submodule has already been initialized") } minerAddr, err := node.MiningAddress() if err != nil { return err } head := node.Chain().ChainReader.GetHead() status, err := node.PorcelainAPI.MinerGetStatus(ctx, minerAddr, head) if err != nil { return err } repoPath, err := node.Repo.Path() if err != nil { return err } sectorDir, err := paths.GetSectorPath(node.Repo.Config().SectorBase.RootDir, repoPath) if err != nil { return err } postProofType, sealProofType, err := registeredProofsFromSectorSize(status.SectorSize) if err != nil { return err } sectorBuilder, err := sectorbuilder.New(&sectorbuilder.Config{ PoStProofType: postProofType, SealProofType: sealProofType, Miner: minerAddr, WorkerThreads: 1, Paths: []fs.PathConfig{ { Path: sectorDir, Cache: false, Weight: 1, }, }, }, namespace.Wrap(node.Repo.Datastore(), ds.NewKey("/sectorbuilder"))) if err != nil { return err } cborStore := node.Blockstore.CborStore waiter := msg.NewWaiter(node.chain.ChainReader, node.chain.MessageStore, node.Blockstore.Blockstore, cborStore) // TODO: rework these modules so they can be at least partially constructed during the building phase #3738 stateViewer := state.NewViewer(cborStore) node.StorageMining, err = submodule.NewStorageMiningSubmodule(minerAddr, node.Repo.Datastore(), sectorBuilder, &node.chain, &node.Messaging, waiter, &node.Wallet, stateViewer, node.BlockMining.PoStGenerator) if err != nil { return err } node.StorageProtocol, err = submodule.NewStorageProtocolSubmodule( ctx, minerAddr, address.Undef, // TODO: This is for setting up mining, we need to pass the client address in if this is going to be a storage client also &node.chain, &node.Messaging, waiter, node.StorageMining.PieceManager, node.Wallet.Signer, node.Host(), node.Repo.Datastore(), node.Blockstore.Blockstore, node.network.GraphExchange, repoPath, sectorBuilder.SealProofType(), stateViewer, ) if err != nil { return errors.Wrap(err, "error initializing storage protocol") } return nil } func (node *Node) setupRetrievalMining(ctx context.Context) error { providerAddr, err := node.MiningAddress() if err != nil { return errors.Wrap(err, "failed to get mining address") } rp, err := submodule.NewRetrievalProtocolSubmodule( node.Blockstore.Blockstore, node.Repo.Datastore(), node.chain.State, node.Host(), providerAddr, node.Wallet.Signer, nil, // TODO: payment channel manager API, in follow-up node.PieceManager(), ) if err != nil { return errors.Wrap(err, "failed to build node.RetrievalProtocol") } node.RetrievalProtocol = rp return nil } func (node *Node) doMiningPause(ctx context.Context) { // doMiningPause receives state transition signals from the syncer // dispatcher allowing syncing to make progress. // // When mining, the node passes these signals along to the scheduler // pausing and continuing mining based on syncer state. catchupCh := node.Syncer().ChainSyncManager.TransitionChannel() for { select { case <-ctx.Done(): return case toCatchup, ok := <-catchupCh: if !ok { return } if node.BlockMining.MiningScheduler == nil { // drop syncer transition signals if not mining continue } if toCatchup { node.BlockMining.MiningScheduler.Pause() } else { node.BlockMining.MiningScheduler.Continue() } } } } // StartMining causes the node to start feeding blocks to the mining worker and initializes // the StorageMining for the mining address. func (node *Node) StartMining(ctx context.Context) error { if node.IsMining() { return errors.New("Node is already mining") } err := node.SetupMining(ctx) if err != nil { return errors.Wrap(err, "failed to setup mining") } if node.BlockMining.MiningScheduler == nil { node.BlockMining.MiningScheduler = mining.NewScheduler(node.BlockMining.MiningWorker, node.PorcelainAPI.ChainHead, node.ChainClock) } else if node.BlockMining.MiningScheduler.IsStarted() { return fmt.Errorf("miner scheduler already started") } var miningCtx context.Context miningCtx, node.BlockMining.CancelMining = context.WithCancel(context.Background()) outCh, doneWg := node.BlockMining.MiningScheduler.Start(miningCtx) node.BlockMining.MiningDoneWg = doneWg node.BlockMining.AddNewlyMinedBlock = node.addNewlyMinedBlock node.BlockMining.MiningDoneWg.Add(1) go node.handleNewMiningOutput(miningCtx, outCh) if err := node.StorageMining.Start(ctx); err != nil { fmt.Printf("error starting storage miner: %s\n", err) } if err := node.StorageProtocol.StorageProvider.Start(ctx); err != nil { fmt.Printf("error starting storage provider: %s\n", err) } // TODO: Retrieval Market Integration //if err := node.RetrievalProtocol.RetrievalProvider.Start(); err != nil { // fmt.Printf("error starting retrieval provider: %s\n", err) //} node.setIsMining(true) return nil } // StopMining stops mining on new blocks. func (node *Node) StopMining(ctx context.Context) { node.setIsMining(false) if node.BlockMining.CancelMining != nil { node.BlockMining.CancelMining() } if node.BlockMining.MiningDoneWg != nil { node.BlockMining.MiningDoneWg.Wait() } if node.StorageMining != nil { err := node.StorageMining.Stop(ctx) if err != nil { log.Warn("Error stopping storage miner", err) } } } func (node *Node) handleSubscription(ctx context.Context, sub pubsub.Subscription, handler pubSubHandler) { for { received, err := sub.Next(ctx) if err != nil { if ctx.Err() != context.Canceled { log.Errorf("error reading message from topic %s: %s", sub.Topic(), err) } return } if err := handler(ctx, received); err != nil { handlerName := runtime.FuncForPC(reflect.ValueOf(handler).Pointer()).Name() if err != context.Canceled { log.Errorf("error in handler %s for topic %s: %s", handlerName, sub.Topic(), err) } } } } // setupProtocols creates protocol clients and miners, then sets the node's APIs // for each func (node *Node) setupProtocols() error { blockMiningAPI := mining_protocol.New( node.MiningAddress, node.addMinedBlockSynchronous, node.chain.ChainReader, node.IsMining, node.SetupMining, node.StartMining, node.StopMining, node.GetMiningWorker, node.ChainClock, ) node.BlockMining.BlockMiningAPI = &blockMiningAPI return nil } // GetMiningWorker ensures mining is setup and then returns the worker func (node *Node) GetMiningWorker(ctx context.Context) (*mining.DefaultWorker, error) { if err := node.SetupMining(ctx); err != nil { return nil, err } return node.BlockMining.MiningWorker, nil } // CreateMiningWorker creates a mining.Worker for the node using the configured // getStateTree, getWeight, and getAncestors functions for the node func (node *Node) CreateMiningWorker(ctx context.Context) (*mining.DefaultWorker, error) { minerAddr, err := node.MiningAddress() if err != nil { return nil, errors.Wrap(err, "failed to get mining address") } head := node.PorcelainAPI.ChainHeadKey() minerStatus, err := node.PorcelainAPI.MinerGetStatus(ctx, minerAddr, head) if err != nil { log.Errorf("could not get owner address of miner actor") return nil, err } return mining.NewDefaultWorker(mining.WorkerParameters{ API: node.PorcelainAPI, MinerAddr: minerAddr, MinerOwnerAddr: minerStatus.OwnerAddress, WorkerSigner: node.Wallet.Signer, GetStateTree: node.chain.ChainReader.GetTipSetState, GetWeight: node.getWeight, Election: consensus.NewElectionMachine(node.PorcelainAPI), TicketGen: consensus.NewTicketMachine(node.PorcelainAPI), TipSetMetadata: node.chain.ChainReader, MessageSource: node.Messaging.Inbox.Pool(), MessageStore: node.chain.MessageStore, MessageQualifier: consensus.NewMessagePenaltyChecker(node.Chain().State), Blockstore: node.Blockstore.Blockstore, Clock: node.ChainClock, Poster: node.StorageMining.PoStGenerator, }), nil } // getWeight is the default GetWeight function for the mining worker. func (node *Node) getWeight(ctx context.Context, ts block.TipSet) (fbig.Int, error) { parent, err := ts.Parents() if err != nil { return fbig.Zero(), err } var baseStRoot cid.Cid if parent.Empty() { // use genesis state as parent state of genesis block baseStRoot, err = node.chain.ChainReader.GetTipSetStateRoot(ts.Key()) } else { baseStRoot, err = node.chain.ChainReader.GetTipSetStateRoot(parent) } if err != nil { return fbig.Zero(), err } return node.syncer.ChainSelector.Weight(ctx, ts, baseStRoot) } // -- Accessors // Host returns the nodes host. func (node *Node) Host() host.Host { return node.network.Host } // PieceManager returns the node's PieceManager. func (node *Node) PieceManager() piecemanager.PieceManager { return node.StorageMining.PieceManager } // BlockService returns the nodes blockservice. func (node *Node) BlockService() bserv.BlockService { return node.Blockservice.Blockservice } // CborStore returns the nodes cborStore. func (node *Node) CborStore() *cborutil.IpldStore { return node.Blockstore.CborStore } // IsMining returns a boolean indicating whether the node is mining blocks. func (node *Node) IsMining() bool { node.BlockMining.Mining.Lock() defer node.BlockMining.Mining.Unlock() return node.BlockMining.Mining.IsMining } // Chain returns the chain submodule. func (node *Node) Chain() submodule.ChainSubmodule { return node.chain } // Syncer returns the syncer submodule. func (node *Node) Syncer() submodule.SyncerSubmodule { return node.syncer } // Network returns the network submodule. func (node *Node) Network() submodule.NetworkSubmodule { return node.network }
1
23,422
Sectorbuilder behaves differently depending on whether it's given 1 or more threads. It won't seal if only given 1.
filecoin-project-venus
go
@@ -16,8 +16,11 @@ package azkaban.metrics; +import static azkaban.ServiceProvider.SERVICE_PROVIDER; + import com.codahale.metrics.Meter; import com.codahale.metrics.MetricRegistry; +import com.google.inject.Inject; import java.util.concurrent.atomic.AtomicLong; /**
1
/* * Copyright 2017 LinkedIn Corp. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package azkaban.metrics; import com.codahale.metrics.Meter; import com.codahale.metrics.MetricRegistry; import java.util.concurrent.atomic.AtomicLong; /** * This singleton class CommonMetrics is in charge of collecting varieties of metrics * which are accessed in both web and exec modules. That said, these metrics will be * exposed in both Web server and executor. */ public enum CommonMetrics { INSTANCE; private final AtomicLong dbConnectionTime = new AtomicLong(0L); private final AtomicLong OOMWaitingJobCount = new AtomicLong(0L); private final MetricRegistry registry; private Meter dbConnectionMeter; private Meter flowFailMeter; CommonMetrics() { this.registry = MetricsManager.INSTANCE.getRegistry(); setupAllMetrics(); } private void setupAllMetrics() { this.dbConnectionMeter = MetricsUtility.addMeter("DB-Connection-meter", this.registry); this.flowFailMeter = MetricsUtility.addMeter("flow-fail-meter", this.registry); MetricsUtility.addGauge("OOM-waiting-job-count", this.registry, this.OOMWaitingJobCount::get); MetricsUtility.addGauge("dbConnectionTime", this.registry, this.dbConnectionTime::get); } /** * Mark the occurrence of an DB query event. */ public void markDBConnection() { /* * This method should be Thread Safe. * Two reasons that we don't make this function call synchronized: * 1). drop wizard metrics deals with concurrency internally; * 2). mark is basically a math addition operation, which should not cause race condition issue. */ this.dbConnectionMeter.mark(); } /** * Mark flowFailMeter when a flow is considered as FAILED. * This method could be called by Web Server or Executor, as they both detect flow failure. */ public void markFlowFail() { this.flowFailMeter.mark(); } public void setDBConnectionTime(final long milliseconds) { this.dbConnectionTime.set(milliseconds); } /** * Mark the occurrence of an job waiting event due to OOM */ public void incrementOOMJobWaitCount() { this.OOMWaitingJobCount.incrementAndGet(); } /** * Unmark the occurrence of an job waiting event due to OOM */ public void decrementOOMJobWaitCount() { this.OOMWaitingJobCount.decrementAndGet(); } }
1
13,692
Sort of believe We should put MetricManager in constructor parameter given this case.
azkaban-azkaban
java
@@ -28,11 +28,13 @@ import org.apache.iceberg.transforms.Transform; */ public class PartitionField implements Serializable { private final int sourceId; + private final int fieldId; private final String name; private final Transform<?, ?> transform; - PartitionField(int sourceId, String name, Transform<?, ?> transform) { + PartitionField(int sourceId, int fieldId, String name, Transform<?, ?> transform) { this.sourceId = sourceId; + this.fieldId = fieldId; this.name = name; this.transform = transform; }
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg; import com.google.common.base.Objects; import java.io.Serializable; import org.apache.iceberg.transforms.Transform; /** * Represents a single field in a {@link PartitionSpec}. */ public class PartitionField implements Serializable { private final int sourceId; private final String name; private final Transform<?, ?> transform; PartitionField(int sourceId, String name, Transform<?, ?> transform) { this.sourceId = sourceId; this.name = name; this.transform = transform; } /** * @return the field id of the source field in the {@link PartitionSpec spec's} table schema */ public int sourceId() { return sourceId; } /** * @return the name of this partition field */ public String name() { return name; } /** * @return the transform used to produce partition values from source values */ public Transform<?, ?> transform() { return transform; } @Override public String toString() { return name + ": " + transform + "(" + sourceId + ")"; } @Override public boolean equals(Object other) { if (this == other) { return true; } else if (!(other instanceof PartitionField)) { return false; } PartitionField that = (PartitionField) other; return sourceId == that.sourceId && name.equals(that.name) && transform.equals(that.transform); } @Override public int hashCode() { return Objects.hashCode(sourceId, name, transform); } }
1
18,692
Do we need to check `fieldId` is larger than 1000?
apache-iceberg
java
@@ -356,10 +356,7 @@ void StatefulWriter::unsent_change_added_to_history( periodic_hb_event_->restart_timer(max_blocking_time); } - if ( (mp_listener != nullptr) && this->is_acked_by_all(change) ) - { - mp_listener->onWriterChangeReceivedByAll(this, change); - } + check_acked_status(); if (disable_positive_acks_ && last_sequence_number_ == SequenceNumber_t()) {
1
// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima). // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file StatefulWriter.cpp * */ #include <fastdds/rtps/writer/StatefulWriter.h> #include <fastdds/rtps/writer/WriterListener.h> #include <fastdds/rtps/writer/ReaderProxy.h> #include <fastdds/rtps/resources/AsyncWriterThread.h> #include <rtps/participant/RTPSParticipantImpl.h> #include <rtps/flowcontrol/FlowController.h> #include <fastdds/rtps/messages/RTPSMessageCreator.h> #include <fastdds/rtps/messages/RTPSMessageGroup.h> #include <fastdds/rtps/participant/RTPSParticipant.h> #include <fastdds/rtps/resources/ResourceEvent.h> #include <fastdds/rtps/resources/TimedEvent.h> #include <fastdds/rtps/history/WriterHistory.h> #include <fastdds/dds/log/Log.hpp> #include <fastrtps/utils/TimeConversion.h> #include <fastdds/rtps/builtin/BuiltinProtocols.h> #include <fastdds/rtps/builtin/liveliness/WLP.h> #include <rtps/writer/RTPSWriterCollector.h> #include "rtps/RTPSDomainImpl.hpp" #include "rtps/messages/RTPSGapBuilder.hpp" #include <mutex> #include <vector> #include <stdexcept> namespace eprosima { namespace fastrtps { namespace rtps { template<typename UnaryFun> bool send_data_or_fragments( RTPSMessageGroup& group, CacheChange_t* change, bool inline_qos, UnaryFun sent_fun) { bool sent_ok = true; if (change->getFragmentSize() > 0) { for (FragmentNumber_t frag = 1; frag <= change->getFragmentCount(); frag++) { sent_ok &= group.add_data_frag(*change, frag, inline_qos); if (sent_ok) { sent_fun(frag); } else { logError(RTPS_WRITER, "Error sending fragment (" << change->sequenceNumber << ", " << frag << ")"); break; } } } else { sent_ok = group.add_data(*change, inline_qos); if (sent_ok) { sent_fun(0); } else { logError(RTPS_WRITER, "Error sending change " << change->sequenceNumber); } } return sent_ok; } static void null_sent_fun( FragmentNumber_t /*frag*/) { } using namespace std::chrono; StatefulWriter::StatefulWriter( RTPSParticipantImpl* pimpl, const GUID_t& guid, const WriterAttributes& att, WriterHistory* hist, WriterListener* listen) : RTPSWriter(pimpl, guid, att, hist, listen) , periodic_hb_event_(nullptr) , nack_response_event_(nullptr) , ack_event_(nullptr) , m_heartbeatCount(0) , m_times(att.times) , matched_readers_(att.matched_readers_allocation) , matched_readers_pool_(att.matched_readers_allocation) , next_all_acked_notify_sequence_(0, 1) , all_acked_(false) , may_remove_change_cond_() , may_remove_change_(0) , disable_heartbeat_piggyback_(att.disable_heartbeat_piggyback) , disable_positive_acks_(att.disable_positive_acks) , keep_duration_us_(att.keep_duration.to_ns() * 1e-3) , last_sequence_number_() , biggest_removed_sequence_number_() , sendBufferSize_(pimpl->get_min_network_send_buffer_size()) , currentUsageSendBufferSize_(static_cast<int32_t>(pimpl->get_min_network_send_buffer_size())) , m_controllers() { m_heartbeatCount = 0; const RTPSParticipantAttributes& part_att = pimpl->getRTPSParticipantAttributes(); periodic_hb_event_ = new TimedEvent(pimpl->getEventResource(), [&]() -> bool { return send_periodic_heartbeat(); }, TimeConv::Time_t2MilliSecondsDouble(m_times.heartbeatPeriod)); nack_response_event_ = new TimedEvent(pimpl->getEventResource(), [&]() -> bool { perform_nack_response(); return false; }, TimeConv::Time_t2MilliSecondsDouble(m_times.nackResponseDelay)); if (disable_positive_acks_) { ack_event_ = new TimedEvent(pimpl->getEventResource(), [&]() -> bool { return ack_timer_expired(); }, att.keep_duration.to_ns() * 1e-6); // in milliseconds } for (size_t n = 0; n < att.matched_readers_allocation.initial; ++n) { matched_readers_pool_.push_back(new ReaderProxy(m_times, part_att.allocation.locators, this)); } } StatefulWriter::~StatefulWriter() { logInfo(RTPS_WRITER, "StatefulWriter destructor"); for (std::unique_ptr<FlowController>& controller : m_controllers) { controller->disable(); } if (disable_positive_acks_) { delete(ack_event_); ack_event_ = nullptr; } if (nack_response_event_ != nullptr) { delete(nack_response_event_); nack_response_event_ = nullptr; } mp_RTPSParticipant->async_thread().unregister_writer(this); // After unregistering writer from AsyncWriterThread, delete all flow_controllers because they register the writer in // the AsyncWriterThread. m_controllers.clear(); // Stop all active proxies and pass them to the pool { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); while (!matched_readers_.empty()) { ReaderProxy* remote_reader = matched_readers_.back(); matched_readers_.pop_back(); remote_reader->stop(); matched_readers_pool_.push_back(remote_reader); } } // Destroy heartbeat event if (periodic_hb_event_ != nullptr) { delete(periodic_hb_event_); periodic_hb_event_ = nullptr; } // Delete all proxies in the pool for (ReaderProxy* remote_reader : matched_readers_pool_) { delete(remote_reader); } } /* * CHANGE-RELATED METHODS */ void StatefulWriter::unsent_change_added_to_history( CacheChange_t* change, const std::chrono::time_point<std::chrono::steady_clock>& max_blocking_time) { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); if (liveliness_lease_duration_ < c_TimeInfinite) { mp_RTPSParticipant->wlp()->assert_liveliness( getGuid(), liveliness_kind_, liveliness_lease_duration_); } #if HAVE_SECURITY encrypt_cachechange(change); #endif // if HAVE_SECURITY if (!matched_readers_.empty()) { if (!isAsync()) { //TODO(Ricardo) Temporal. bool expectsInlineQos = false; // First step is to add the new CacheChange_t to all reader proxies. // It has to be done before sending, because if a timeout is catched, we will not include the // CacheChange_t in some reader proxies. for (ReaderProxy* it : matched_readers_) { ChangeForReader_t changeForReader(change); if (m_pushMode) { if (it->is_reliable()) { changeForReader.setStatus(UNDERWAY); } else { changeForReader.setStatus(ACKNOWLEDGED); } } else { changeForReader.setStatus(UNACKNOWLEDGED); } changeForReader.setRelevance(it->rtps_is_relevant(change)); it->add_change(changeForReader, true, max_blocking_time); expectsInlineQos |= it->expects_inline_qos(); } try { //At this point we are sure all information was stored. We now can send data. if (!m_separateSendingEnabled) { if (locator_selector_.selected_size() > 0) { RTPSMessageGroup group(mp_RTPSParticipant, this, *this, max_blocking_time); auto sent_fun = [this, change]( FragmentNumber_t frag) { if (frag > 0) { for (ReaderProxy* it : matched_readers_) { if (!it->is_local_reader()) { bool allFragmentsSent = false; it->mark_fragment_as_sent_for_change( change->sequenceNumber, frag, allFragmentsSent); } } } }; send_data_or_fragments(group, change, expectsInlineQos, sent_fun); send_heartbeat_nts_(all_remote_readers_.size(), group, disable_positive_acks_); } for (ReaderProxy* it : matched_readers_) { if (it->is_local_reader()) { intraprocess_heartbeat(it, false); bool delivered = intraprocess_delivery(change, it); it->set_change_to_status( change->sequenceNumber, delivered ? ACKNOWLEDGED : UNDERWAY, false); } } } else { for (ReaderProxy* it : matched_readers_) { if (it->is_local_reader()) { intraprocess_heartbeat(it, false); bool delivered = intraprocess_delivery(change, it); it->set_change_to_status( change->sequenceNumber, delivered ? ACKNOWLEDGED : UNDERWAY, false); } else { RTPSMessageGroup group(mp_RTPSParticipant, this, it->message_sender(), max_blocking_time); if (change->getFragmentCount() > 0) { logError(RTPS_WRITER, "Cannot send large messages on separate sending mode"); } else { if (!group.add_data(*change, it->expects_inline_qos())) { logError(RTPS_WRITER, "Error sending change " << change->sequenceNumber); } } uint32_t last_processed = 0; send_heartbeat_piggyback_nts_(it, group, last_processed); } } } if (there_are_remote_readers_) { periodic_hb_event_->restart_timer(max_blocking_time); } if ( (mp_listener != nullptr) && this->is_acked_by_all(change) ) { mp_listener->onWriterChangeReceivedByAll(this, change); } if (disable_positive_acks_ && last_sequence_number_ == SequenceNumber_t()) { last_sequence_number_ = change->sequenceNumber; } } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } else { for (ReaderProxy* it : matched_readers_) { ChangeForReader_t changeForReader(change); if (m_pushMode) { changeForReader.setStatus(UNSENT); } else { changeForReader.setStatus(UNACKNOWLEDGED); } changeForReader.setRelevance(it->rtps_is_relevant(change)); it->add_change(changeForReader, false, max_blocking_time); } if (m_pushMode) { mp_RTPSParticipant->async_thread().wake_up(this, max_blocking_time); } } if (disable_positive_acks_) { auto source_timestamp = system_clock::time_point() + nanoseconds(change->sourceTimestamp.to_ns()); auto now = system_clock::now(); auto interval = source_timestamp - now + keep_duration_us_; assert(interval.count() >= 0); ack_event_->update_interval_millisec((double)duration_cast<milliseconds>(interval).count()); ack_event_->restart_timer(max_blocking_time); } } else { logInfo(RTPS_WRITER, "No reader proxy to add change."); if (mp_listener != nullptr) { mp_listener->onWriterChangeReceivedByAll(this, change); } } } bool StatefulWriter::intraprocess_delivery( CacheChange_t* change, ReaderProxy* reader_proxy) { RTPSReader* reader = reader_proxy->local_reader(); if (reader) { if (change->write_params.related_sample_identity() != SampleIdentity::unknown()) { change->write_params.sample_identity(change->write_params.related_sample_identity()); } return reader->processDataMsg(change); } return false; } bool StatefulWriter::intraprocess_gap( ReaderProxy* reader_proxy, const SequenceNumber_t& seq_num) { RTPSReader* reader = reader_proxy->local_reader(); if (reader) { return reader->processGapMsg(m_guid, seq_num, SequenceNumberSet_t(seq_num + 1)); } return false; } bool StatefulWriter::intraprocess_heartbeat( ReaderProxy* reader_proxy, bool liveliness) { bool returned_value = false; std::lock_guard<RecursiveTimedMutex> guardW(mp_mutex); RTPSReader* reader = RTPSDomainImpl::find_local_reader(reader_proxy->guid()); if (reader) { SequenceNumber_t first_seq = get_seq_num_min(); SequenceNumber_t last_seq = get_seq_num_max(); if (first_seq == c_SequenceNumber_Unknown || last_seq == c_SequenceNumber_Unknown) { if (liveliness) { first_seq = next_sequence_number(); last_seq = first_seq - 1; } } if (first_seq != c_SequenceNumber_Unknown && last_seq != c_SequenceNumber_Unknown) { incrementHBCount(); if (true == (returned_value = reader->processHeartbeatMsg(m_guid, m_heartbeatCount, first_seq, last_seq, true, liveliness))) { if (reader_proxy->durability_kind() < TRANSIENT_LOCAL || this->getAttributes().durabilityKind < TRANSIENT_LOCAL) { SequenceNumber_t last_irrelevance = reader_proxy->changes_low_mark(); if (first_seq <= last_irrelevance) { reader->processGapMsg(m_guid, first_seq, SequenceNumberSet_t(last_irrelevance + 1)); } } } } } return returned_value; } bool StatefulWriter::change_removed_by_history( CacheChange_t* a_change) { SequenceNumber_t sequence_number = a_change->sequenceNumber; std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); logInfo(RTPS_WRITER, "Change " << sequence_number << " to be removed."); // Take note of biggest removed sequence number to improve sending of gaps if (sequence_number > biggest_removed_sequence_number_) { biggest_removed_sequence_number_ = sequence_number; } // Invalidate CacheChange pointer in ReaderProxies. for (ReaderProxy* it : matched_readers_) { it->change_has_been_removed(sequence_number); } may_remove_change_ = 2; may_remove_change_cond_.notify_one(); return true; } void StatefulWriter::send_any_unsent_changes() { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); bool activateHeartbeatPeriod = false; SequenceNumber_t max_sequence = mp_history->next_sequence_number(); if (!m_pushMode || mp_history->getHistorySize() == 0 || matched_readers_.empty()) { send_heartbeat_to_all_readers(); } else if (m_separateSendingEnabled) { send_changes_separatedly(max_sequence, activateHeartbeatPeriod); } else { bool no_flow_controllers = m_controllers.empty() && mp_RTPSParticipant->getFlowControllers().empty(); if (no_flow_controllers || !there_are_remote_readers_) { send_all_unsent_changes(max_sequence, activateHeartbeatPeriod); } else { send_unsent_changes_with_flow_control(max_sequence, activateHeartbeatPeriod); } } if (activateHeartbeatPeriod) { periodic_hb_event_->restart_timer(); } // On VOLATILE writers, remove auto-acked (best effort readers) changes check_acked_status(); logInfo(RTPS_WRITER, "Finish sending unsent changes"); } void StatefulWriter::send_heartbeat_to_all_readers() { // This version is called when any of the following conditions is satisfied: // a) push mode is false // b) history is empty // c) there are no matched readers if (m_separateSendingEnabled) { for (ReaderProxy* reader : matched_readers_) { if (reader->is_local_reader()) { intraprocess_heartbeat(reader); } else { send_heartbeat_to_nts(*reader); } } } else { for (ReaderProxy* reader : matched_readers_) { if (reader->is_local_reader()) { intraprocess_heartbeat(reader); } } if (there_are_remote_readers_) { RTPSMessageGroup group(mp_RTPSParticipant, this, *this); send_heartbeat_nts_(all_remote_readers_.size(), group, disable_positive_acks_); } } } void StatefulWriter::send_changes_separatedly( SequenceNumber_t max_sequence, bool& activateHeartbeatPeriod) { // This version is called when all of the following conditions are satisfied: // a) push mode is true // b) history is not empty // c) there is at least one matched reader // d) separate sending is enabled for (ReaderProxy* remoteReader : matched_readers_) { if (remoteReader->is_local_reader()) { SequenceNumber_t max_ack_seq = SequenceNumber_t::unknown(); auto unsent_change_process = [&](const SequenceNumber_t& seqNum, const ChangeForReader_t* unsentChange) { if (unsentChange != nullptr && unsentChange->isRelevant() && unsentChange->isValid()) { if (intraprocess_delivery(unsentChange->getChange(), remoteReader)) { max_ack_seq = seqNum; } else { remoteReader->set_change_to_status(seqNum, UNDERWAY, false); } } else { if (intraprocess_gap(remoteReader, seqNum)) { max_ack_seq = seqNum; } else { remoteReader->set_change_to_status(seqNum, UNDERWAY, true); } } }; remoteReader->for_each_unsent_change(max_sequence, unsent_change_process); if (max_ack_seq != SequenceNumber_t::unknown()) { remoteReader->acked_changes_set(max_ack_seq + 1); } } else { // Specific destination message group RTPSMessageGroup group(mp_RTPSParticipant, this, remoteReader->message_sender()); SequenceNumber_t min_history_seq = get_seq_num_min(); if (remoteReader->is_reliable()) { if (remoteReader->are_there_gaps()) { send_heartbeat_nts_(1u, group, true); } RTPSGapBuilder gaps(group); uint32_t lastBytesProcessed = 0; auto sent_fun = [this, remoteReader, &lastBytesProcessed, &group]( FragmentNumber_t /*frag*/) { // Heartbeat piggyback. send_heartbeat_piggyback_nts_(remoteReader, group, lastBytesProcessed); }; auto unsent_change_process = [&](const SequenceNumber_t& seqNum, const ChangeForReader_t* unsentChange) { if (unsentChange != nullptr && unsentChange->isRelevant() && unsentChange->isValid()) { bool sent_ok = send_data_or_fragments( group, unsentChange->getChange(), remoteReader->expects_inline_qos(), sent_fun); if (sent_ok) { remoteReader->set_change_to_status(seqNum, UNDERWAY, true); activateHeartbeatPeriod = true; } } else { if (seqNum >= min_history_seq) { gaps.add(seqNum); } remoteReader->set_change_to_status(seqNum, UNDERWAY, true); } }; remoteReader->for_each_unsent_change(max_sequence, unsent_change_process); } else { SequenceNumber_t max_ack_seq = SequenceNumber_t::unknown(); auto unsent_change_process = [&](const SequenceNumber_t& seqNum, const ChangeForReader_t* unsentChange) { if (unsentChange != nullptr && unsentChange->isRelevant() && unsentChange->isValid()) { bool sent_ok = send_data_or_fragments( group, unsentChange->getChange(), remoteReader->expects_inline_qos(), null_sent_fun); if (sent_ok) { max_ack_seq = seqNum; } } else { max_ack_seq = seqNum; } }; remoteReader->for_each_unsent_change(max_sequence, unsent_change_process); if (max_ack_seq != SequenceNumber_t::unknown()) { remoteReader->acked_changes_set(max_ack_seq + 1); } } } } // Readers loop } void StatefulWriter::send_all_intraprocess_changes( SequenceNumber_t max_sequence) { for (ReaderProxy* remoteReader : matched_readers_) { if (remoteReader->is_local_reader()) { intraprocess_heartbeat(remoteReader, false); SequenceNumber_t max_ack_seq = SequenceNumber_t::unknown(); auto unsent_change_process = [&](const SequenceNumber_t& seq_num, const ChangeForReader_t* unsentChange) { if (unsentChange != nullptr && unsentChange->isRelevant() && unsentChange->isValid()) { if (intraprocess_delivery(unsentChange->getChange(), remoteReader)) { max_ack_seq = seq_num; } else { remoteReader->set_change_to_status(seq_num, UNDERWAY, false); } } else { if (intraprocess_gap(remoteReader, seq_num)) { max_ack_seq = seq_num; } else { remoteReader->set_change_to_status(seq_num, UNDERWAY, true); } } }; remoteReader->for_each_unsent_change(max_sequence, unsent_change_process); if (max_ack_seq != SequenceNumber_t::unknown()) { remoteReader->acked_changes_set(max_ack_seq + 1); } } } } void StatefulWriter::send_all_unsent_changes( SequenceNumber_t max_sequence, bool& activateHeartbeatPeriod) { // This version is called when all of the following conditions are satisfied: // a) push mode is true // b) history is not empty // c) there is at least one matched reader // d) separate sending is disabled // e) either all matched readers are local or no flow controllers are configured // Process intraprocess first if (there_are_local_readers_) { send_all_intraprocess_changes(max_sequence); } if (there_are_remote_readers_) { static constexpr uint32_t implicit_flow_controller_size = RTPSMessageGroup::get_max_fragment_payload_size(); NetworkFactory& network = mp_RTPSParticipant->network_factory(); locator_selector_.reset(true); network.select_locators(locator_selector_); compute_selected_guids(); bool acknack_required = next_all_acked_notify_sequence_ < get_seq_num_min(); RTPSMessageGroup group(mp_RTPSParticipant, this, *this); acknack_required |= send_hole_gaps_to_group(group); uint32_t lastBytesProcessed = 0; auto sent_fun = [this, &lastBytesProcessed, &group]( FragmentNumber_t /*frag*/) { // Heartbeat piggyback. send_heartbeat_piggyback_nts_(nullptr, group, lastBytesProcessed); }; RTPSGapBuilder gap_builder(group); uint32_t total_sent_size = 0; History::iterator cit; for (cit = mp_history->changesBegin(); cit != mp_history->changesEnd() && (total_sent_size < implicit_flow_controller_size); cit++) { SequenceNumber_t seq = (*cit)->sequenceNumber; // Deselect all entries on the locator selector (we will only activate the // readers for which this sequence number is pending) locator_selector_.reset(false); bool is_irrelevant = true; // Will turn to false if change is relevant for at least one reader bool should_be_sent = false; bool inline_qos = false; for (ReaderProxy* remoteReader : matched_readers_) { if (!remoteReader->is_local_reader()) { if (remoteReader->change_is_unsent(seq, is_irrelevant)) { should_be_sent = true; locator_selector_.enable(remoteReader->guid()); inline_qos |= remoteReader->expects_inline_qos(); if (is_irrelevant) { remoteReader->set_change_to_status(seq, UNDERWAY, true); } } } } if (locator_selector_.state_has_changed()) { gap_builder.flush(); group.flush_and_reset(); network.select_locators(locator_selector_); compute_selected_guids(); } if (should_be_sent) { if (is_irrelevant) { gap_builder.add(seq); } else { bool sent_ok = send_data_or_fragments(group, *cit, inline_qos, sent_fun); if (sent_ok) { total_sent_size += (*cit)->serializedPayload.length; bool tmp_bool = false; for (ReaderProxy* remoteReader : matched_readers_) { if (!remoteReader->is_local_reader()) { if (remoteReader->change_is_unsent(seq, tmp_bool)) { remoteReader->set_change_to_status(seq, UNDERWAY, true); if (remoteReader->is_reliable()) { activateHeartbeatPeriod = true; } } } } } } } } // Heartbeat piggyback. if (acknack_required) { send_heartbeat_nts_(all_remote_readers_.size(), group, disable_positive_acks_); } group.flush_and_reset(); locator_selector_.reset(true); network.select_locators(locator_selector_); compute_selected_guids(); if (cit != mp_history->changesEnd()) { mp_RTPSParticipant->async_thread().wake_up(this); } } } void StatefulWriter::send_unsent_changes_with_flow_control( SequenceNumber_t max_sequence, bool& activateHeartbeatPeriod) { // This version is called when all of the following conditions are satisfied: // a) push mode is true // b) history is not empty // c) there is at least one matched reader // d) separate sending is disabled // e) there is at least one remote matched reader and flow controllers are configured // Process intraprocess first if (there_are_local_readers_) { send_all_intraprocess_changes(max_sequence); } // From here onwards, only remote readers should be accessed RTPSWriterCollector<ReaderProxy*> relevantChanges; bool heartbeat_has_been_sent = false; NetworkFactory& network = mp_RTPSParticipant->network_factory(); locator_selector_.reset(true); network.select_locators(locator_selector_); compute_selected_guids(); RTPSMessageGroup group(mp_RTPSParticipant, this, *this); // GAP for holes in history sent to the readers that need it send_hole_gaps_to_group(group); // Reset the state of locator_selector to select all readers group.flush_and_reset(); locator_selector_.reset(true); network.select_locators(locator_selector_); compute_selected_guids(); for (ReaderProxy* remoteReader : matched_readers_) { // Skip local readers (were processed before) if (remoteReader->is_local_reader()) { continue; } if (!heartbeat_has_been_sent && remoteReader->are_there_gaps()) { send_heartbeat_nts_(all_remote_readers_.size(), group, true); heartbeat_has_been_sent = true; } RTPSGapBuilder gaps(group, remoteReader->guid()); auto unsent_change_process = [&](const SequenceNumber_t& seq_num, const ChangeForReader_t* unsentChange) { if (unsentChange != nullptr && unsentChange->isRelevant() && unsentChange->isValid()) { relevantChanges.add_change( unsentChange->getChange(), remoteReader, unsentChange->getUnsentFragments()); } else { // Skip holes in history, as they were added before if (unsentChange != nullptr && remoteReader->is_reliable()) { gaps.add(seq_num); } remoteReader->set_change_to_status(seq_num, UNDERWAY, true); } }; remoteReader->for_each_unsent_change(max_sequence, unsent_change_process); } // Clear all relevant changes through the local controllers first for (std::unique_ptr<FlowController>& controller : m_controllers) { (*controller)(relevantChanges); } // Clear all relevant changes through the parent controllers for (std::unique_ptr<FlowController>& controller : mp_RTPSParticipant->getFlowControllers()) { (*controller)(relevantChanges); } try { uint32_t lastBytesProcessed = 0; while (!relevantChanges.empty()) { RTPSWriterCollector<ReaderProxy*>::Item changeToSend = relevantChanges.pop(); bool expectsInlineQos = false; locator_selector_.reset(false); for (const ReaderProxy* remoteReader : changeToSend.remoteReaders) { locator_selector_.enable(remoteReader->guid()); expectsInlineQos |= remoteReader->expects_inline_qos(); } if (locator_selector_.state_has_changed()) { group.flush_and_reset(); network.select_locators(locator_selector_); compute_selected_guids(); } // TODO(Ricardo) Flowcontroller has to be used in RTPSMessageGroup. Study. // And controllers are notified about the changes being sent FlowController::NotifyControllersChangeSent(changeToSend.cacheChange); if (changeToSend.fragmentNumber != 0) { if (group.add_data_frag(*changeToSend.cacheChange, changeToSend.fragmentNumber, expectsInlineQos)) { bool must_wake_up_async_thread = false; for (ReaderProxy* remoteReader : changeToSend.remoteReaders) { bool allFragmentsSent = false; if (remoteReader->mark_fragment_as_sent_for_change( changeToSend.sequenceNumber, changeToSend.fragmentNumber, allFragmentsSent)) { must_wake_up_async_thread |= !allFragmentsSent; if (remoteReader->is_remote_and_reliable()) { activateHeartbeatPeriod = true; if (allFragmentsSent) { remoteReader->set_change_to_status(changeToSend.sequenceNumber, UNDERWAY, true); } } else { if (allFragmentsSent) { remoteReader->set_change_to_status(changeToSend.sequenceNumber, ACKNOWLEDGED, false); } } } } if (must_wake_up_async_thread) { mp_RTPSParticipant->async_thread().wake_up(this); } } else { logError(RTPS_WRITER, "Error sending fragment (" << changeToSend.sequenceNumber << ", " << changeToSend.fragmentNumber << ")"); } } else { if (group.add_data(*changeToSend.cacheChange, expectsInlineQos)) { for (ReaderProxy* remoteReader : changeToSend.remoteReaders) { remoteReader->set_change_to_status(changeToSend.sequenceNumber, UNDERWAY, true); if (remoteReader->is_remote_and_reliable()) { activateHeartbeatPeriod = true; } } } else { logError(RTPS_WRITER, "Error sending change " << changeToSend.sequenceNumber); } } // Heartbeat piggyback. send_heartbeat_piggyback_nts_(nullptr, group, lastBytesProcessed); } group.flush_and_reset(); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } locator_selector_.reset(true); network.select_locators(locator_selector_); compute_selected_guids(); } bool StatefulWriter::send_hole_gaps_to_group( RTPSMessageGroup& group) { bool ret_val = false; // Add holes in history and send them to all readers in group SequenceNumber_t max_removed = biggest_removed_sequence_number_; SequenceNumber_t last_sequence = mp_history->next_sequence_number(); SequenceNumber_t min_history_seq = get_seq_num_min(); uint32_t history_size = static_cast<uint32_t>(mp_history->getHistorySize()); if ( (min_readers_low_mark_ < max_removed) && // some holes pending acknowledgement (min_history_seq + history_size != last_sequence)) // There is a hole in the history { try { // Only send gaps to readers requiring it select_all_readers_with_lowmark_below(max_removed, group); send_heartbeat_nts_(all_remote_readers_.size(), group, true); ret_val = true; // Find holes in history from min_history_seq to last_sequence - 1 RTPSGapBuilder gap_builder(group); // Algorithm starts in min_history_seq SequenceNumber_t seq = min_history_seq; // Loop all history for (auto cit = mp_history->changesBegin(); cit != mp_history->changesEnd(); cit++) { // Add all sequence numbers until the change's sequence number while (seq < (*cit)->sequenceNumber) { gap_builder.add(seq); seq++; } // Skip change's sequence number seq++; } // Add all sequence numbers above last change while (seq < last_sequence) { gap_builder.add(seq); seq++; } } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } return ret_val; } void StatefulWriter::select_all_readers_with_lowmark_below( SequenceNumber_t seq, RTPSMessageGroup& group) { // Deselect all entries on the locator selector (we will only activate the // readers for which this sequence number is pending) locator_selector_.reset(false); for (ReaderProxy* remoteReader : matched_readers_) { if (remoteReader->changes_low_mark() < seq) { locator_selector_.enable(remoteReader->guid()); } } if (locator_selector_.state_has_changed()) { group.flush_and_reset(); getRTPSParticipant()->network_factory().select_locators(locator_selector_); compute_selected_guids(); } } /* * MATCHED_READER-RELATED METHODS */ void StatefulWriter::update_reader_info( bool create_sender_resources) { update_cached_info_nts(); compute_selected_guids(); if (create_sender_resources) { RTPSParticipantImpl* part = getRTPSParticipant(); locator_selector_.for_each([part](const Locator_t& loc) { part->createSenderResources(loc); }); } // Check if we have local or remote readers size_t n_readers = matched_readers_.size(); there_are_remote_readers_ = false; there_are_local_readers_ = false; size_t i = 0; for (; i < n_readers && !there_are_remote_readers_; ++i) { bool is_local = matched_readers_.at(i)->is_local_reader(); there_are_remote_readers_ |= !is_local; there_are_local_readers_ |= is_local; } for (; i < n_readers && !there_are_local_readers_; ++i) { bool is_local = matched_readers_.at(i)->is_local_reader(); there_are_local_readers_ |= is_local; } } bool StatefulWriter::matched_reader_add( const ReaderProxyData& rdata) { if (rdata.guid() == c_Guid_Unknown) { logError(RTPS_WRITER, "Reliable Writer need GUID_t of matched readers"); return false; } std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); // Check if it is already matched. for (ReaderProxy* it : matched_readers_) { if (it->guid() == rdata.guid()) { logInfo(RTPS_WRITER, "Attempting to add existing reader, updating information."); if (it->update(rdata)) { update_reader_info(true); } return false; } } // Get a reader proxy from the inactive pool (or create a new one if necessary and allowed) ReaderProxy* rp = nullptr; if (matched_readers_pool_.empty()) { size_t max_readers = matched_readers_pool_.max_size(); if (matched_readers_.size() + matched_readers_pool_.size() < max_readers) { const RTPSParticipantAttributes& part_att = mp_RTPSParticipant->getRTPSParticipantAttributes(); rp = new ReaderProxy(m_times, part_att.allocation.locators, this); } else { logWarning(RTPS_WRITER, "Maximum number of reader proxies (" << max_readers << \ ") reached for writer " << m_guid); return false; } } else { rp = matched_readers_pool_.back(); matched_readers_pool_.pop_back(); } // Add info of new datareader. rp->start(rdata); locator_selector_.add_entry(rp->locator_selector_entry()); matched_readers_.push_back(rp); update_reader_info(true); RTPSMessageGroup group(mp_RTPSParticipant, this, rp->message_sender()); // Add initial heartbeat to message group send_heartbeat_nts_(1u, group, disable_positive_acks_); SequenceNumber_t current_seq = get_seq_num_min(); SequenceNumber_t last_seq = get_seq_num_max(); if (current_seq != SequenceNumber_t::unknown()) { (void)last_seq; assert(last_seq != SequenceNumber_t::unknown()); assert(current_seq <= last_seq); RTPSGapBuilder gap_builder(group); bool is_reliable = rp->is_reliable(); for (History::iterator cit = mp_history->changesBegin(); cit != mp_history->changesEnd(); ++cit) { // This is to cover the case when there are holes in the history if (is_reliable) { while (current_seq != (*cit)->sequenceNumber) { if (rp->is_local_reader()) { intraprocess_gap(rp, current_seq); } else { try { gap_builder.add(current_seq); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } ++current_seq; } } else { current_seq = (*cit)->sequenceNumber; } ChangeForReader_t changeForReader(*cit); bool relevance = rp->durability_kind() >= TRANSIENT_LOCAL && m_att.durabilityKind >= TRANSIENT_LOCAL && rp->rtps_is_relevant(*cit); changeForReader.setRelevance(relevance); if (!relevance && is_reliable) { if (rp->is_local_reader()) { intraprocess_gap(rp, current_seq); } else { try { gap_builder.add(current_seq); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } } // The ChangeForReader_t status has to be UNACKNOWLEDGED if (!rp->is_local_reader() || !changeForReader.isRelevant()) { changeForReader.setStatus(UNACKNOWLEDGED); } rp->add_change(changeForReader, false); ++current_seq; } // This is to cover the case where the last changes have been removed from the history if (is_reliable) { while (current_seq < next_sequence_number()) { if (rp->is_local_reader()) { intraprocess_gap(rp, current_seq); } else { try { gap_builder.add(current_seq); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } ++current_seq; } } try { if (rp->is_local_reader()) { mp_RTPSParticipant->async_thread().wake_up(this); } else if (is_reliable) { // Send Gap gap_builder.flush(); } } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } // Always activate heartbeat period. We need a confirmation of the reader. // The state has to be updated. periodic_hb_event_->restart_timer(); } try { // Send all messages group.flush_and_reset(); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } logInfo(RTPS_WRITER, "Reader Proxy " << rp->guid() << " added to " << this->m_guid.entityId << " with " << rdata.remote_locators().unicast.size() << "(u)-" << rdata.remote_locators().multicast.size() << "(m) locators"); return true; } bool StatefulWriter::matched_reader_remove( const GUID_t& reader_guid) { ReaderProxy* rproxy = nullptr; std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); ReaderProxyIterator it = matched_readers_.begin(); while (it != matched_readers_.end()) { if ((*it)->guid() == reader_guid) { logInfo(RTPS_WRITER, "Reader Proxy removed: " << reader_guid); rproxy = std::move(*it); it = matched_readers_.erase(it); continue; } ++it; } locator_selector_.remove_entry(reader_guid); update_reader_info(false); if (matched_readers_.size() == 0) { periodic_hb_event_->cancel_timer(); } if (rproxy != nullptr) { rproxy->stop(); matched_readers_pool_.push_back(rproxy); lock.unlock(); check_acked_status(); return true; } logInfo(RTPS_HISTORY, "Reader Proxy doesn't exist in this writer"); return false; } bool StatefulWriter::matched_reader_is_matched( const GUID_t& reader_guid) { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); for (ReaderProxy* it : matched_readers_) { if (it->guid() == reader_guid) { return true; } } return false; } bool StatefulWriter::matched_reader_lookup( GUID_t& readerGuid, ReaderProxy** RP) { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); for (ReaderProxy* it : matched_readers_) { if (it->guid() == readerGuid) { *RP = it; return true; } } return false; } bool StatefulWriter::is_acked_by_all( const CacheChange_t* change) const { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); if (change->writerGUID != this->getGuid()) { logWarning(RTPS_WRITER, "The given change is not from this Writer"); return false; } assert(mp_history->next_sequence_number() > change->sequenceNumber); return std::all_of(matched_readers_.begin(), matched_readers_.end(), [change](const ReaderProxy* reader) { return reader->change_is_acked(change->sequenceNumber); }); } bool StatefulWriter::all_readers_updated() { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); for (auto it = matched_readers_.begin(); it != matched_readers_.end(); ++it) { if ((*it)->has_changes()) { return false; } } return true; } bool StatefulWriter::wait_for_all_acked( const Duration_t& max_wait) { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); std::unique_lock<std::mutex> all_acked_lock(all_acked_mutex_); all_acked_ = std::none_of(matched_readers_.begin(), matched_readers_.end(), [](const ReaderProxy* reader) { return reader->has_changes(); }); lock.unlock(); if (!all_acked_) { std::chrono::microseconds max_w(TimeConv::Duration_t2MicroSecondsInt64(max_wait)); all_acked_cond_.wait_for(all_acked_lock, max_w, [&]() { return all_acked_; }); } return all_acked_; } void StatefulWriter::check_acked_status() { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); bool all_acked = true; bool has_min_low_mark = false; SequenceNumber_t min_low_mark; for (const ReaderProxy* it : matched_readers_) { SequenceNumber_t reader_low_mark = it->changes_low_mark(); if (reader_low_mark < min_low_mark || !has_min_low_mark) { has_min_low_mark = true; min_low_mark = reader_low_mark; } if (it->has_changes()) { all_acked = false; } } SequenceNumber_t min_seq = get_seq_num_min(); if (min_seq != SequenceNumber_t::unknown()) { // In the case where we haven't received an acknack from a recently matched reader, // min_low_mark will be zero, and no change will be notified as received by all if (next_all_acked_notify_sequence_ <= min_low_mark) { if ( (mp_listener != nullptr) && (min_low_mark >= get_seq_num_min())) { // We will inform backwards about the changes received by all readers, starting // on min_low_mark down until next_all_acked_notify_sequence_. This way we can // safely proceed with the traversal, in case a change is removed from the history // inside the callback History::iterator history_end = mp_history->changesEnd(); History::iterator cit = std::lower_bound(mp_history->changesBegin(), history_end, min_low_mark, []( const CacheChange_t* change, const SequenceNumber_t& seq) { return change->sequenceNumber < seq; }); if (cit != history_end && (*cit)->sequenceNumber == min_low_mark) { ++cit; } SequenceNumber_t seq{}; SequenceNumber_t end_seq = min_seq > next_all_acked_notify_sequence_ ? min_seq : next_all_acked_notify_sequence_; // The iterator starts pointing to the change inmediately after min_low_mark --cit; do { // Avoid notifying changes before next_all_acked_notify_sequence_ CacheChange_t* change = *cit; seq = change->sequenceNumber; if (seq < next_all_acked_notify_sequence_) { break; } // Change iterator before it possibly becomes invalidated if (cit != mp_history->changesBegin()) { --cit; } // Notify reception of change (may remove that change on VOLATILE writers) mp_listener->onWriterChangeReceivedByAll(this, change); // Stop if we got to either next_all_acked_notify_sequence_ or the first change } while (seq > end_seq); } next_all_acked_notify_sequence_ = min_low_mark + 1; } if (min_low_mark >= get_seq_num_min()) { may_remove_change_ = 1; may_remove_change_cond_.notify_one(); } min_readers_low_mark_ = min_low_mark; } if (all_acked) { std::unique_lock<std::mutex> all_acked_lock(all_acked_mutex_); all_acked_ = true; all_acked_cond_.notify_all(); } } bool StatefulWriter::try_remove_change( const std::chrono::steady_clock::time_point& max_blocking_time_point, std::unique_lock<RecursiveTimedMutex>& lock) { logInfo(RTPS_WRITER, "Starting process try remove change for writer " << getGuid()); SequenceNumber_t min_low_mark; { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); for (ReaderProxy* it : matched_readers_) { SequenceNumber_t reader_low_mark = it->changes_low_mark(); if (min_low_mark == SequenceNumber_t() || reader_low_mark < min_low_mark) { min_low_mark = reader_low_mark; } } } SequenceNumber_t calc = min_low_mark < get_seq_num_min() ? SequenceNumber_t() : (min_low_mark - get_seq_num_min()) + 1; unsigned int may_remove_change = 1; if (calc <= SequenceNumber_t()) { may_remove_change_ = 0; may_remove_change_cond_.wait_until(lock, max_blocking_time_point, [&]() { return may_remove_change_ > 0; }); may_remove_change = may_remove_change_; } // Some changes acked if (may_remove_change == 1) { return mp_history->remove_min_change(); } // Waiting a change was removed. else if (may_remove_change == 2) { return true; } return false; } /* * PARAMETER_RELATED METHODS */ void StatefulWriter::updateAttributes( const WriterAttributes& att) { this->updateTimes(att.times); } void StatefulWriter::updateTimes( const WriterTimes& times) { std::lock_guard<RecursiveTimedMutex> guard(mp_mutex); if (m_times.heartbeatPeriod != times.heartbeatPeriod) { periodic_hb_event_->update_interval(times.heartbeatPeriod); } if (m_times.nackResponseDelay != times.nackResponseDelay) { if (nack_response_event_ != nullptr) { nack_response_event_->update_interval(times.nackResponseDelay); } } if (m_times.nackSupressionDuration != times.nackSupressionDuration) { for (ReaderProxy* it : matched_readers_) { it->update_nack_supression_interval(times.nackSupressionDuration); } for (ReaderProxy* it : matched_readers_pool_) { it->update_nack_supression_interval(times.nackSupressionDuration); } } m_times = times; } void StatefulWriter::add_flow_controller( std::unique_ptr<FlowController> controller) { m_controllers.push_back(std::move(controller)); } SequenceNumber_t StatefulWriter::next_sequence_number() const { return mp_history->next_sequence_number(); } bool StatefulWriter::send_periodic_heartbeat( bool final, bool liveliness) { std::lock_guard<RecursiveTimedMutex> guardW(mp_mutex); bool unacked_changes = false; if (m_separateSendingEnabled) { for (ReaderProxy* it : matched_readers_) { if (it->has_unacknowledged() && !it->is_local_reader()) { send_heartbeat_to_nts(*it, liveliness); unacked_changes = true; } } } else if (!liveliness) { SequenceNumber_t firstSeq, lastSeq; firstSeq = get_seq_num_min(); lastSeq = get_seq_num_max(); if (firstSeq == c_SequenceNumber_Unknown || lastSeq == c_SequenceNumber_Unknown) { return false; } else { assert(firstSeq <= lastSeq); unacked_changes = std::any_of(matched_readers_.begin(), matched_readers_.end(), [](const ReaderProxy* reader) { return reader->has_unacknowledged(); }); if (unacked_changes) { try { RTPSMessageGroup group(mp_RTPSParticipant, this, *this); send_heartbeat_nts_(all_remote_readers_.size(), group, disable_positive_acks_, liveliness); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } } } else { // This is a liveliness heartbeat, we don't care about checking sequence numbers try { for (ReaderProxy* it : matched_readers_) { if (it->is_local_reader()) { intraprocess_heartbeat(it, true); } } RTPSMessageGroup group(mp_RTPSParticipant, this, *this); send_heartbeat_nts_(all_remote_readers_.size(), group, final, liveliness); } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } return unacked_changes; } void StatefulWriter::send_heartbeat_to_nts( ReaderProxy& remoteReaderProxy, bool liveliness) { if (remoteReaderProxy.is_remote_and_reliable()) { try { RTPSMessageGroup group(mp_RTPSParticipant, this, remoteReaderProxy.message_sender()); send_heartbeat_nts_(1u, group, disable_positive_acks_, liveliness); SequenceNumber_t first_seq = get_seq_num_min(); if (first_seq != c_SequenceNumber_Unknown) { SequenceNumber_t low_mark = remoteReaderProxy.changes_low_mark(); if (remoteReaderProxy.durability_kind() == VOLATILE && first_seq <= low_mark) { group.add_gap(first_seq, SequenceNumberSet_t(low_mark + 1)); } remoteReaderProxy.send_gaps(group, mp_history->next_sequence_number()); } } catch (const RTPSMessageGroup::timeout&) { logError(RTPS_WRITER, "Max blocking time reached"); } } } void StatefulWriter::send_heartbeat_nts_( size_t number_of_readers, RTPSMessageGroup& message_group, bool final, bool liveliness) { SequenceNumber_t firstSeq = get_seq_num_min(); SequenceNumber_t lastSeq = get_seq_num_max(); if (firstSeq == c_SequenceNumber_Unknown || lastSeq == c_SequenceNumber_Unknown) { assert(firstSeq == c_SequenceNumber_Unknown && lastSeq == c_SequenceNumber_Unknown); if (number_of_readers == 1 || liveliness) { firstSeq = next_sequence_number(); lastSeq = firstSeq - 1; } else { return; } } else { assert(firstSeq <= lastSeq); } incrementHBCount(); message_group.add_heartbeat(firstSeq, lastSeq, m_heartbeatCount, final, liveliness); // Update calculate of heartbeat piggyback. currentUsageSendBufferSize_ = static_cast<int32_t>(sendBufferSize_); logInfo(RTPS_WRITER, getGuid().entityId << " Sending Heartbeat (" << firstSeq << " - " << lastSeq << ")" ); } void StatefulWriter::send_heartbeat_piggyback_nts_( ReaderProxy* reader, RTPSMessageGroup& message_group, uint32_t& last_bytes_processed) { if (!disable_heartbeat_piggyback_) { size_t number_of_readers = reader == nullptr ? all_remote_readers_.size() : 1u; if (mp_history->isFull()) { if (reader == nullptr) { locator_selector_.reset(true); if (locator_selector_.state_has_changed()) { message_group.flush_and_reset(); getRTPSParticipant()->network_factory().select_locators(locator_selector_); compute_selected_guids(); } } send_heartbeat_nts_(number_of_readers, message_group, disable_positive_acks_); } else { uint32_t current_bytes = message_group.get_current_bytes_processed(); currentUsageSendBufferSize_ -= current_bytes - last_bytes_processed; last_bytes_processed = current_bytes; if (currentUsageSendBufferSize_ < 0) { send_heartbeat_nts_(number_of_readers, message_group, disable_positive_acks_); } } } } void StatefulWriter::perform_nack_response() { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); bool must_wake_up_async_thread = false; for (ReaderProxy* remote_reader : matched_readers_) { if (remote_reader->perform_acknack_response() || remote_reader->are_there_gaps()) { must_wake_up_async_thread = true; } } if (must_wake_up_async_thread) { mp_RTPSParticipant->async_thread().wake_up(this); } } void StatefulWriter::perform_nack_supression( const GUID_t& reader_guid) { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); for (ReaderProxy* remote_reader : matched_readers_) { if (remote_reader->guid() == reader_guid) { remote_reader->perform_nack_supression(); periodic_hb_event_->restart_timer(); return; } } } bool StatefulWriter::process_acknack( const GUID_t& writer_guid, const GUID_t& reader_guid, uint32_t ack_count, const SequenceNumberSet_t& sn_set, bool final_flag, bool& result) { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); result = (m_guid == writer_guid); if (result) { for (ReaderProxy* remote_reader : matched_readers_) { if (remote_reader->guid() == reader_guid) { if (remote_reader->check_and_set_acknack_count(ack_count)) { // Sequence numbers before Base are set as Acknowledged. remote_reader->acked_changes_set(sn_set.base()); if (sn_set.base() > SequenceNumber_t(0, 0)) { if (remote_reader->requested_changes_set(sn_set) || remote_reader->are_there_gaps()) { nack_response_event_->restart_timer(); } else if (!final_flag) { periodic_hb_event_->restart_timer(); } } else if (sn_set.empty() && !final_flag) { // This is the preemptive acknack. if (remote_reader->process_initial_acknack()) { if (remote_reader->is_local_reader()) { mp_RTPSParticipant->async_thread().wake_up(this); } else { // Send heartbeat if requested send_heartbeat_to_nts(*remote_reader); } } if (remote_reader->is_local_reader()) { intraprocess_heartbeat(remote_reader); } } // Check if all CacheChange are acknowledge, because a user could be waiting // for this, of if VOLATILE should be removed CacheChanges check_acked_status(); } break; } } } return result; } bool StatefulWriter::process_nack_frag( const GUID_t& writer_guid, const GUID_t& reader_guid, uint32_t ack_count, const SequenceNumber_t& seq_num, const FragmentNumberSet_t fragments_state, bool& result) { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); result = false; if (m_guid == writer_guid) { result = true; for (ReaderProxy* remote_reader : matched_readers_) { if (remote_reader->guid() == reader_guid) { if (remote_reader->process_nack_frag(reader_guid, ack_count, seq_num, fragments_state)) { nack_response_event_->restart_timer(); } break; } } } return result; } bool StatefulWriter::ack_timer_expired() { std::unique_lock<RecursiveTimedMutex> lock(mp_mutex); // The timer has expired so the earliest non-acked change must be marked as acknowledged // This will be done in the first while iteration, as we start with a negative interval auto interval = -keep_duration_us_; // On the other hand, we've seen in the tests that if samples are sent very quickly with little // time between consecutive samples, the timer interval could end up being negative // In this case, we keep marking changes as acknowledged until the timer is able to keep up, hence the while // loop while (interval.count() < 0) { for (ReaderProxy* remote_reader : matched_readers_) { if (remote_reader->disable_positive_acks()) { remote_reader->acked_changes_set(last_sequence_number_ + 1); } } last_sequence_number_++; // Get the next cache change from the history CacheChange_t* change; if (!mp_history->get_change( last_sequence_number_, getGuid(), &change)) { return false; } auto source_timestamp = system_clock::time_point() + nanoseconds(change->sourceTimestamp.to_ns()); auto now = system_clock::now(); interval = source_timestamp - now + keep_duration_us_; } assert(interval.count() >= 0); ack_event_->update_interval_millisec((double)duration_cast<milliseconds>(interval).count()); return true; } } // namespace rtps } // namespace fastrtps } // namespace eprosima
1
19,333
I think this should be called after the if below (the one for disable positive acks)
eProsima-Fast-DDS
cpp
@@ -271,7 +271,7 @@ public class SparkTableUtil { * @param metricsConfig a metrics conf * @return a List of DataFile */ - public static List<DataFile> listPartition(Map<String, String> partition, String uri, String format, + public static List<DataFile> listPartition(Map<String, String> partition, URI uri, String format, PartitionSpec spec, Configuration conf, MetricsConfig metricsConfig) { if (format.contains("avro")) { return listAvroPartition(partition, uri, spec, conf);
1
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.iceberg.spark; import java.io.IOException; import java.io.Serializable; import java.net.URI; import java.util.Arrays; import java.util.Collections; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.stream.Collectors; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.PathFilter; import org.apache.iceberg.AppendFiles; import org.apache.iceberg.DataFile; import org.apache.iceberg.DataFiles; import org.apache.iceberg.FileFormat; import org.apache.iceberg.ManifestFile; import org.apache.iceberg.ManifestFiles; import org.apache.iceberg.ManifestWriter; import org.apache.iceberg.Metrics; import org.apache.iceberg.MetricsConfig; import org.apache.iceberg.PartitionField; import org.apache.iceberg.PartitionSpec; import org.apache.iceberg.Table; import org.apache.iceberg.TableProperties; import org.apache.iceberg.hadoop.HadoopFileIO; import org.apache.iceberg.hadoop.HadoopInputFile; import org.apache.iceberg.hadoop.SerializableConfiguration; import org.apache.iceberg.io.FileIO; import org.apache.iceberg.io.OutputFile; import org.apache.iceberg.orc.OrcMetrics; import org.apache.iceberg.parquet.ParquetUtil; import org.apache.iceberg.relocated.com.google.common.base.MoreObjects; import org.apache.iceberg.relocated.com.google.common.base.Objects; import org.apache.iceberg.relocated.com.google.common.base.Preconditions; import org.apache.iceberg.relocated.com.google.common.collect.ImmutableList; import org.apache.iceberg.relocated.com.google.common.collect.ImmutableMap; import org.apache.iceberg.util.PropertyUtil; import org.apache.iceberg.util.Tasks; import org.apache.parquet.hadoop.ParquetFileReader; import org.apache.spark.TaskContext; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.api.java.function.MapPartitionsFunction; import org.apache.spark.sql.AnalysisException; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.catalyst.TableIdentifier; import org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException; import org.apache.spark.sql.catalyst.analysis.NoSuchTableException; import org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute; import org.apache.spark.sql.catalyst.catalog.CatalogTable; import org.apache.spark.sql.catalyst.catalog.CatalogTablePartition; import org.apache.spark.sql.catalyst.catalog.SessionCatalog; import org.apache.spark.sql.catalyst.expressions.Expression; import org.apache.spark.sql.catalyst.expressions.NamedExpression; import org.apache.spark.sql.catalyst.parser.ParseException; import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan; import scala.Function2; import scala.Option; import scala.Some; import scala.Tuple2; import scala.collection.JavaConverters; import scala.collection.Seq; import scala.runtime.AbstractPartialFunction; import static org.apache.spark.sql.functions.col; /** * Java version of the original SparkTableUtil.scala * https://github.com/apache/iceberg/blob/apache-iceberg-0.8.0-incubating/spark/src/main/scala/org/apache/iceberg/spark/SparkTableUtil.scala */ public class SparkTableUtil { private static final PathFilter HIDDEN_PATH_FILTER = p -> !p.getName().startsWith("_") && !p.getName().startsWith("."); private SparkTableUtil() { } /** * Returns a DataFrame with a row for each partition in the table. * * The DataFrame has 3 columns, partition key (a=1/b=2), partition location, and format * (avro or parquet). * * @param spark a Spark session * @param table a table name and (optional) database * @return a DataFrame of the table's partitions */ public static Dataset<Row> partitionDF(SparkSession spark, String table) { List<SparkPartition> partitions = getPartitions(spark, table); return spark.createDataFrame(partitions, SparkPartition.class).toDF("partition", "uri", "format"); } /** * Returns a DataFrame with a row for each partition that matches the specified 'expression'. * * @param spark a Spark session. * @param table name of the table. * @param expression The expression whose matching partitions are returned. * @return a DataFrame of the table partitions. */ public static Dataset<Row> partitionDFByFilter(SparkSession spark, String table, String expression) { List<SparkPartition> partitions = getPartitionsByFilter(spark, table, expression); return spark.createDataFrame(partitions, SparkPartition.class).toDF("partition", "uri", "format"); } /** * Returns all partitions in the table. * * @param spark a Spark session * @param table a table name and (optional) database * @return all table's partitions */ public static List<SparkPartition> getPartitions(SparkSession spark, String table) { try { TableIdentifier tableIdent = spark.sessionState().sqlParser().parseTableIdentifier(table); return getPartitions(spark, tableIdent); } catch (ParseException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to parse table identifier: %s", table); } } /** * Returns all partitions in the table. * * @param spark a Spark session * @param tableIdent a table identifier * @return all table's partitions */ public static List<SparkPartition> getPartitions(SparkSession spark, TableIdentifier tableIdent) { try { SessionCatalog catalog = spark.sessionState().catalog(); CatalogTable catalogTable = catalog.getTableMetadata(tableIdent); Seq<CatalogTablePartition> partitions = catalog.listPartitions(tableIdent, Option.empty()); return JavaConverters .seqAsJavaListConverter(partitions) .asJava() .stream() .map(catalogPartition -> toSparkPartition(catalogPartition, catalogTable)) .collect(Collectors.toList()); } catch (NoSuchDatabaseException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unknown table: %s. Database not found in catalog.", tableIdent); } catch (NoSuchTableException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unknown table: %s. Table not found in catalog.", tableIdent); } } /** * Returns partitions that match the specified 'predicate'. * * @param spark a Spark session * @param table a table name and (optional) database * @param predicate a predicate on partition columns * @return matching table's partitions */ public static List<SparkPartition> getPartitionsByFilter(SparkSession spark, String table, String predicate) { TableIdentifier tableIdent; try { tableIdent = spark.sessionState().sqlParser().parseTableIdentifier(table); } catch (ParseException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to parse the table identifier: %s", table); } Expression unresolvedPredicateExpr; try { unresolvedPredicateExpr = spark.sessionState().sqlParser().parseExpression(predicate); } catch (ParseException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to parse the predicate expression: %s", predicate); } Expression resolvedPredicateExpr = resolveAttrs(spark, table, unresolvedPredicateExpr); return getPartitionsByFilter(spark, tableIdent, resolvedPredicateExpr); } /** * Returns partitions that match the specified 'predicate'. * * @param spark a Spark session * @param tableIdent a table identifier * @param predicateExpr a predicate expression on partition columns * @return matching table's partitions */ public static List<SparkPartition> getPartitionsByFilter(SparkSession spark, TableIdentifier tableIdent, Expression predicateExpr) { try { SessionCatalog catalog = spark.sessionState().catalog(); CatalogTable catalogTable = catalog.getTableMetadata(tableIdent); Expression resolvedPredicateExpr; if (!predicateExpr.resolved()) { resolvedPredicateExpr = resolveAttrs(spark, tableIdent.quotedString(), predicateExpr); } else { resolvedPredicateExpr = predicateExpr; } Seq<Expression> predicates = JavaConverters .collectionAsScalaIterableConverter(ImmutableList.of(resolvedPredicateExpr)) .asScala().toSeq(); Seq<CatalogTablePartition> partitions = catalog.listPartitionsByFilter(tableIdent, predicates); return JavaConverters .seqAsJavaListConverter(partitions) .asJava() .stream() .map(catalogPartition -> toSparkPartition(catalogPartition, catalogTable)) .collect(Collectors.toList()); } catch (NoSuchDatabaseException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unknown table: %s. Database not found in catalog.", tableIdent); } catch (NoSuchTableException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unknown table: %s. Table not found in catalog.", tableIdent); } } /** * Returns the data files in a partition by listing the partition location. * * For Parquet and ORC partitions, this will read metrics from the file footer. For Avro partitions, * metrics are set to null. * * @param partition a partition * @param conf a serializable Hadoop conf * @param metricsConfig a metrics conf * @return a List of DataFile */ public static List<DataFile> listPartition(SparkPartition partition, PartitionSpec spec, SerializableConfiguration conf, MetricsConfig metricsConfig) { return listPartition(partition.values, partition.uri, partition.format, spec, conf.get(), metricsConfig); } /** * Returns the data files in a partition by listing the partition location. * * For Parquet and ORC partitions, this will read metrics from the file footer. For Avro partitions, * metrics are set to null. * * @param partition partition key, e.g., "a=1/b=2" * @param uri partition location URI * @param format partition format, avro or parquet * @param conf a Hadoop conf * @param metricsConfig a metrics conf * @return a List of DataFile */ public static List<DataFile> listPartition(Map<String, String> partition, String uri, String format, PartitionSpec spec, Configuration conf, MetricsConfig metricsConfig) { if (format.contains("avro")) { return listAvroPartition(partition, uri, spec, conf); } else if (format.contains("parquet")) { return listParquetPartition(partition, uri, spec, conf, metricsConfig); } else if (format.contains("orc")) { // TODO: use MetricsConfig in listOrcPartition return listOrcPartition(partition, uri, spec, conf); } else { throw new UnsupportedOperationException("Unknown partition format: " + format); } } private static List<DataFile> listAvroPartition( Map<String, String> partitionPath, String partitionUri, PartitionSpec spec, Configuration conf) { try { Path partition = new Path(partitionUri); FileSystem fs = partition.getFileSystem(conf); return Arrays.stream(fs.listStatus(partition, HIDDEN_PATH_FILTER)) .filter(FileStatus::isFile) .map(stat -> { Metrics metrics = new Metrics(-1L, null, null, null); String partitionKey = spec.fields().stream() .map(PartitionField::name) .map(name -> String.format("%s=%s", name, partitionPath.get(name))) .collect(Collectors.joining("/")); return DataFiles.builder(spec) .withPath(stat.getPath().toString()) .withFormat("avro") .withFileSizeInBytes(stat.getLen()) .withMetrics(metrics) .withPartitionPath(partitionKey) .build(); }).collect(Collectors.toList()); } catch (IOException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to list files in partition: %s", partitionUri); } } private static List<DataFile> listParquetPartition(Map<String, String> partitionPath, String partitionUri, PartitionSpec spec, Configuration conf, MetricsConfig metricsSpec) { try { Path partition = new Path(partitionUri); FileSystem fs = partition.getFileSystem(conf); return Arrays.stream(fs.listStatus(partition, HIDDEN_PATH_FILTER)) .filter(FileStatus::isFile) .map(stat -> { Metrics metrics; try { metrics = ParquetUtil.footerMetrics(ParquetFileReader.readFooter(conf, stat), metricsSpec); } catch (IOException e) { throw SparkExceptionUtil.toUncheckedException( e, "Unable to read the footer of the parquet file: %s", stat.getPath()); } String partitionKey = spec.fields().stream() .map(PartitionField::name) .map(name -> String.format("%s=%s", name, partitionPath.get(name))) .collect(Collectors.joining("/")); return DataFiles.builder(spec) .withPath(stat.getPath().toString()) .withFormat("parquet") .withFileSizeInBytes(stat.getLen()) .withMetrics(metrics) .withPartitionPath(partitionKey) .build(); }).collect(Collectors.toList()); } catch (IOException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to list files in partition: %s", partitionUri); } } private static List<DataFile> listOrcPartition( Map<String, String> partitionPath, String partitionUri, PartitionSpec spec, Configuration conf) { try { Path partition = new Path(partitionUri); FileSystem fs = partition.getFileSystem(conf); return Arrays.stream(fs.listStatus(partition, HIDDEN_PATH_FILTER)) .filter(FileStatus::isFile) .map(stat -> { Metrics metrics = OrcMetrics.fromInputFile(HadoopInputFile.fromPath(stat.getPath(), conf)); String partitionKey = spec.fields().stream() .map(PartitionField::name) .map(name -> String.format("%s=%s", name, partitionPath.get(name))) .collect(Collectors.joining("/")); return DataFiles.builder(spec) .withPath(stat.getPath().toString()) .withFormat("orc") .withFileSizeInBytes(stat.getLen()) .withMetrics(metrics) .withPartitionPath(partitionKey) .build(); }).collect(Collectors.toList()); } catch (IOException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to list files in partition: %s", partitionUri); } } private static SparkPartition toSparkPartition(CatalogTablePartition partition, CatalogTable table) { Option<URI> locationUri = partition.storage().locationUri(); Option<String> serde = partition.storage().serde(); Preconditions.checkArgument(locationUri.nonEmpty(), "Partition URI should be defined"); Preconditions.checkArgument(serde.nonEmpty() || table.provider().nonEmpty(), "Partition format should be defined"); String uri = String.valueOf(locationUri.get()); String format = serde.nonEmpty() ? serde.get() : table.provider().get(); Map<String, String> partitionSpec = JavaConverters.mapAsJavaMapConverter(partition.spec()).asJava(); return new SparkPartition(partitionSpec, uri, format); } private static Expression resolveAttrs(SparkSession spark, String table, Expression expr) { Function2<String, String, Object> resolver = spark.sessionState().analyzer().resolver(); LogicalPlan plan = spark.table(table).queryExecution().analyzed(); return expr.transform(new AbstractPartialFunction<Expression, Expression>() { @Override public Expression apply(Expression attr) { UnresolvedAttribute unresolvedAttribute = (UnresolvedAttribute) attr; Option<NamedExpression> namedExpressionOption = plan.resolve(unresolvedAttribute.nameParts(), resolver); if (namedExpressionOption.isDefined()) { return (Expression) namedExpressionOption.get(); } else { throw new IllegalArgumentException( String.format("Could not resolve %s using columns: %s", attr, plan.output())); } } @Override public boolean isDefinedAt(Expression attr) { return attr instanceof UnresolvedAttribute; } }); } private static Iterator<ManifestFile> buildManifest(SerializableConfiguration conf, PartitionSpec spec, String basePath, Iterator<Tuple2<String, DataFile>> fileTuples) { if (fileTuples.hasNext()) { FileIO io = new HadoopFileIO(conf.get()); TaskContext ctx = TaskContext.get(); String suffix = String.format("stage-%d-task-%d-manifest", ctx.stageId(), ctx.taskAttemptId()); Path location = new Path(basePath, suffix); String outputPath = FileFormat.AVRO.addExtension(location.toString()); OutputFile outputFile = io.newOutputFile(outputPath); ManifestWriter<DataFile> writer = ManifestFiles.write(spec, outputFile); try (ManifestWriter<DataFile> writerRef = writer) { fileTuples.forEachRemaining(fileTuple -> writerRef.add(fileTuple._2)); } catch (IOException e) { throw SparkExceptionUtil.toUncheckedException(e, "Unable to close the manifest writer: %s", outputPath); } ManifestFile manifestFile = writer.toManifestFile(); return ImmutableList.of(manifestFile).iterator(); } else { return Collections.emptyIterator(); } } /** * Import files from an existing Spark table to an Iceberg table. * * The import uses the Spark session to get table metadata. It assumes no * operation is going on the original and target table and thus is not * thread-safe. * * @param spark a Spark session * @param sourceTableIdent an identifier of the source Spark table * @param targetTable an Iceberg table where to import the data * @param stagingDir a staging directory to store temporary manifest files */ public static void importSparkTable( SparkSession spark, TableIdentifier sourceTableIdent, Table targetTable, String stagingDir) { SessionCatalog catalog = spark.sessionState().catalog(); String db = sourceTableIdent.database().nonEmpty() ? sourceTableIdent.database().get() : catalog.getCurrentDatabase(); TableIdentifier sourceTableIdentWithDB = new TableIdentifier(sourceTableIdent.table(), Some.apply(db)); if (!catalog.tableExists(sourceTableIdentWithDB)) { throw new org.apache.iceberg.exceptions.NoSuchTableException( String.format("Table %s does not exist", sourceTableIdentWithDB)); } try { PartitionSpec spec = SparkSchemaUtil.specForTable(spark, sourceTableIdentWithDB.unquotedString()); if (spec == PartitionSpec.unpartitioned()) { importUnpartitionedSparkTable(spark, sourceTableIdentWithDB, targetTable); } else { List<SparkPartition> sourceTablePartitions = getPartitions(spark, sourceTableIdent); importSparkPartitions(spark, sourceTablePartitions, targetTable, spec, stagingDir); } } catch (AnalysisException e) { throw SparkExceptionUtil.toUncheckedException( e, "Unable to get partition spec for table: %s", sourceTableIdentWithDB); } } private static void importUnpartitionedSparkTable( SparkSession spark, TableIdentifier sourceTableIdent, Table targetTable) { try { CatalogTable sourceTable = spark.sessionState().catalog().getTableMetadata(sourceTableIdent); Option<String> format = sourceTable.storage().serde().nonEmpty() ? sourceTable.storage().serde() : sourceTable.provider(); Preconditions.checkArgument(format.nonEmpty(), "Could not determine table format"); Map<String, String> partition = Collections.emptyMap(); PartitionSpec spec = PartitionSpec.unpartitioned(); Configuration conf = spark.sessionState().newHadoopConf(); MetricsConfig metricsConfig = MetricsConfig.fromProperties(targetTable.properties()); List<DataFile> files = listPartition( partition, sourceTable.location().toString(), format.get(), spec, conf, metricsConfig); AppendFiles append = targetTable.newAppend(); files.forEach(append::appendFile); append.commit(); } catch (NoSuchDatabaseException e) { throw SparkExceptionUtil.toUncheckedException( e, "Unknown table: %s. Database not found in catalog.", sourceTableIdent); } catch (NoSuchTableException e) { throw SparkExceptionUtil.toUncheckedException( e, "Unknown table: %s. Table not found in catalog.", sourceTableIdent); } } /** * Import files from given partitions to an Iceberg table. * * @param spark a Spark session * @param partitions partitions to import * @param targetTable an Iceberg table where to import the data * @param spec a partition spec * @param stagingDir a staging directory to store temporary manifest files */ public static void importSparkPartitions( SparkSession spark, List<SparkPartition> partitions, Table targetTable, PartitionSpec spec, String stagingDir) { Configuration conf = spark.sessionState().newHadoopConf(); SerializableConfiguration serializableConf = new SerializableConfiguration(conf); int parallelism = Math.min(partitions.size(), spark.sessionState().conf().parallelPartitionDiscoveryParallelism()); int numShufflePartitions = spark.sessionState().conf().numShufflePartitions(); MetricsConfig metricsConfig = MetricsConfig.fromProperties(targetTable.properties()); JavaSparkContext sparkContext = JavaSparkContext.fromSparkContext(spark.sparkContext()); JavaRDD<SparkPartition> partitionRDD = sparkContext.parallelize(partitions, parallelism); Dataset<SparkPartition> partitionDS = spark.createDataset( partitionRDD.rdd(), Encoders.javaSerialization(SparkPartition.class)); List<ManifestFile> manifests = partitionDS .flatMap((FlatMapFunction<SparkPartition, DataFile>) sparkPartition -> listPartition(sparkPartition, spec, serializableConf, metricsConfig).iterator(), Encoders.javaSerialization(DataFile.class)) .repartition(numShufflePartitions) .map((MapFunction<DataFile, Tuple2<String, DataFile>>) file -> Tuple2.apply(file.path().toString(), file), Encoders.tuple(Encoders.STRING(), Encoders.javaSerialization(DataFile.class))) .orderBy(col("_1")) .mapPartitions( (MapPartitionsFunction<Tuple2<String, DataFile>, ManifestFile>) fileTuple -> buildManifest(serializableConf, spec, stagingDir, fileTuple), Encoders.javaSerialization(ManifestFile.class)) .collectAsList(); try { boolean snapshotIdInheritanceEnabled = PropertyUtil.propertyAsBoolean( targetTable.properties(), TableProperties.SNAPSHOT_ID_INHERITANCE_ENABLED, TableProperties.SNAPSHOT_ID_INHERITANCE_ENABLED_DEFAULT); AppendFiles append = targetTable.newAppend(); manifests.forEach(append::appendManifest); append.commit(); if (!snapshotIdInheritanceEnabled) { // delete original manifests as they were rewritten before the commit deleteManifests(targetTable.io(), manifests); } } catch (Throwable e) { deleteManifests(targetTable.io(), manifests); throw e; } } private static void deleteManifests(FileIO io, List<ManifestFile> manifests) { Tasks.foreach(manifests) .noRetry() .suppressFailureWhenFinished() .run(item -> io.deleteFile(item.path())); } /** * Class representing a table partition. */ public static class SparkPartition implements Serializable { private final Map<String, String> values; private final String uri; private final String format; public SparkPartition(Map<String, String> values, String uri, String format) { this.values = ImmutableMap.copyOf(values); this.uri = uri; this.format = format; } public Map<String, String> getValues() { return values; } public String getUri() { return uri; } public String getFormat() { return format; } @Override public String toString() { return MoreObjects.toStringHelper(this) .add("values", values) .add("uri", uri) .add("format", format) .toString(); } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } SparkPartition that = (SparkPartition) o; return Objects.equal(values, that.values) && Objects.equal(uri, that.uri) && Objects.equal(format, that.format); } @Override public int hashCode() { return Objects.hashCode(values, uri, format); } } }
1
21,995
I'd like to avoid changing this method since it is public and using a URI will probably change behavior for users passing strings (String -> URI -> Path instead of String -> Path).
apache-iceberg
java
@@ -5,11 +5,13 @@ import ( "path/filepath" "testing" + "github.com/aws/aws-sdk-go/internal/sdktesting" "github.com/aws/aws-sdk-go/internal/shareddefaults" ) func TestSharedCredentialsProvider(t *testing.T) { - os.Clearenv() + + sdktesting.StashEnv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: ""} creds, err := p.Retrieve()
1
package credentials import ( "os" "path/filepath" "testing" "github.com/aws/aws-sdk-go/internal/shareddefaults" ) func TestSharedCredentialsProvider(t *testing.T) { os.Clearenv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: ""} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "token", creds.SessionToken; e != a { t.Errorf("expect %v, got %v", e, a) } } func TestSharedCredentialsProviderIsExpired(t *testing.T) { os.Clearenv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: ""} if !p.IsExpired() { t.Errorf("Expect creds to be expired before retrieve") } _, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if p.IsExpired() { t.Errorf("Expect creds to not be expired after retrieve") } } func TestSharedCredentialsProviderWithAWS_SHARED_CREDENTIALS_FILE(t *testing.T) { os.Clearenv() os.Setenv("AWS_SHARED_CREDENTIALS_FILE", "example.ini") p := SharedCredentialsProvider{} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "token", creds.SessionToken; e != a { t.Errorf("expect %v, got %v", e, a) } } func TestSharedCredentialsProviderWithAWS_SHARED_CREDENTIALS_FILEAbsPath(t *testing.T) { os.Clearenv() wd, err := os.Getwd() if err != nil { t.Errorf("expect no error, got %v", err) } os.Setenv("AWS_SHARED_CREDENTIALS_FILE", filepath.Join(wd, "example.ini")) p := SharedCredentialsProvider{} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "token", creds.SessionToken; e != a { t.Errorf("expect %v, got %v", e, a) } } func TestSharedCredentialsProviderWithAWS_PROFILE(t *testing.T) { os.Clearenv() os.Setenv("AWS_PROFILE", "no_token") p := SharedCredentialsProvider{Filename: "example.ini", Profile: ""} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if v := creds.SessionToken; len(v) != 0 { t.Errorf("Expect no token, %v", v) } } func TestSharedCredentialsProviderWithoutTokenFromProfile(t *testing.T) { os.Clearenv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: "no_token"} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if v := creds.SessionToken; len(v) != 0 { t.Errorf("Expect no token, %v", v) } } func TestSharedCredentialsProviderColonInCredFile(t *testing.T) { os.Clearenv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: "with_colon"} creds, err := p.Retrieve() if err != nil { t.Errorf("expect nil, got %v", err) } if e, a := "accessKey", creds.AccessKeyID; e != a { t.Errorf("expect %v, got %v", e, a) } if e, a := "secret", creds.SecretAccessKey; e != a { t.Errorf("expect %v, got %v", e, a) } if v := creds.SessionToken; len(v) != 0 { t.Errorf("Expect no token, %v", v) } } func TestSharedCredentialsProvider_DefaultFilename(t *testing.T) { os.Clearenv() os.Setenv("USERPROFILE", "profile_dir") os.Setenv("HOME", "home_dir") // default filename and profile p := SharedCredentialsProvider{} filename, err := p.filename() if err != nil { t.Fatalf("expect no error, got %v", err) } if e, a := shareddefaults.SharedCredentialsFilename(), filename; e != a { t.Errorf("expect %q filename, got %q", e, a) } } func BenchmarkSharedCredentialsProvider(b *testing.B) { os.Clearenv() p := SharedCredentialsProvider{Filename: "example.ini", Profile: ""} _, err := p.Retrieve() if err != nil { b.Fatal(err) } b.ResetTimer() for i := 0; i < b.N; i++ { _, err := p.Retrieve() if err != nil { b.Fatal(err) } } }
1
9,757
Should these restore the stashed env after the test runs?
aws-aws-sdk-go
go
@@ -402,7 +402,10 @@ def is_default_argument( if not scope: scope = node.scope() if isinstance(scope, (nodes.FunctionDef, nodes.Lambda)): - for default_node in scope.args.defaults: + all_defaults = scope.args.defaults + [ + d for d in scope.args.kw_defaults if d is not None + ] + for default_node in all_defaults: for default_name_node in default_node.nodes_of_class(nodes.Name): if default_name_node is node: return True
1
# Copyright (c) 2006-2007, 2009-2014 LOGILAB S.A. (Paris, FRANCE) <[email protected]> # Copyright (c) 2009 Mads Kiilerich <[email protected]> # Copyright (c) 2010 Daniel Harding <[email protected]> # Copyright (c) 2012-2014 Google, Inc. # Copyright (c) 2012 FELD Boris <[email protected]> # Copyright (c) 2013-2020 Claudiu Popa <[email protected]> # Copyright (c) 2014 Brett Cannon <[email protected]> # Copyright (c) 2014 Ricardo Gemignani <[email protected]> # Copyright (c) 2014 Arun Persaud <[email protected]> # Copyright (c) 2015 Dmitry Pribysh <[email protected]> # Copyright (c) 2015 Florian Bruhin <[email protected]> # Copyright (c) 2015 Radu Ciorba <[email protected]> # Copyright (c) 2015 Ionel Cristian Maries <[email protected]> # Copyright (c) 2016, 2018-2019 Ashley Whetter <[email protected]> # Copyright (c) 2016-2017 Łukasz Rogalski <[email protected]> # Copyright (c) 2016-2017 Moises Lopez <[email protected]> # Copyright (c) 2016 Brian C. Lane <[email protected]> # Copyright (c) 2017-2018, 2020 hippo91 <[email protected]> # Copyright (c) 2017 ttenhoeve-aa <[email protected]> # Copyright (c) 2018 Alan Chan <[email protected]> # Copyright (c) 2018 Sushobhit <[email protected]> # Copyright (c) 2018 Yury Gribov <[email protected]> # Copyright (c) 2018 Caio Carrara <[email protected]> # Copyright (c) 2018 ssolanki <[email protected]> # Copyright (c) 2018 Bryce Guinta <[email protected]> # Copyright (c) 2018 Bryce Guinta <[email protected]> # Copyright (c) 2018 Ville Skyttä <[email protected]> # Copyright (c) 2018 Brian Shaginaw <[email protected]> # Copyright (c) 2019-2021 Pierre Sassoulas <[email protected]> # Copyright (c) 2019 Matthijs Blom <[email protected]> # Copyright (c) 2019 Djailla <[email protected]> # Copyright (c) 2019 Hugo van Kemenade <[email protected]> # Copyright (c) 2019 Nathan Marrow <[email protected]> # Copyright (c) 2019 Svet <[email protected]> # Copyright (c) 2019 Pascal Corpet <[email protected]> # Copyright (c) 2020 Batuhan Taskaya <[email protected]> # Copyright (c) 2020 Luigi <[email protected]> # Copyright (c) 2020 ethan-leba <[email protected]> # Copyright (c) 2020 Damien Baty <[email protected]> # Copyright (c) 2020 Andrew Simmons <[email protected]> # Copyright (c) 2020 Ram Rachum <[email protected]> # Copyright (c) 2020 Slavfox <[email protected]> # Copyright (c) 2020 Anthony Sottile <[email protected]> # Copyright (c) 2021 Daniël van Noord <[email protected]> # Copyright (c) 2021 Marc Mueller <[email protected]> # Copyright (c) 2021 Nick Drozd <[email protected]> # Copyright (c) 2021 David Liu <[email protected]> # Copyright (c) 2021 Matus Valo <[email protected]> # Copyright (c) 2021 Lorena B <[email protected]> # Copyright (c) 2021 yushao2 <[email protected]> # Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/main/LICENSE """some functions that may be useful for various checkers """ import builtins import itertools import numbers import re import string from functools import lru_cache, partial from typing import Callable, Dict, Iterable, List, Match, Optional, Set, Tuple, Union import _string import astroid import astroid.objects from astroid import TooManyLevelsError, nodes from astroid.context import InferenceContext COMP_NODE_TYPES = ( nodes.ListComp, nodes.SetComp, nodes.DictComp, nodes.GeneratorExp, ) EXCEPTIONS_MODULE = "builtins" ABC_MODULES = {"abc", "_py_abc"} ABC_METHODS = { "abc.abstractproperty", "abc.abstractmethod", "abc.abstractclassmethod", "abc.abstractstaticmethod", } TYPING_PROTOCOLS = frozenset( {"typing.Protocol", "typing_extensions.Protocol", ".Protocol"} ) ITER_METHOD = "__iter__" AITER_METHOD = "__aiter__" NEXT_METHOD = "__next__" GETITEM_METHOD = "__getitem__" CLASS_GETITEM_METHOD = "__class_getitem__" SETITEM_METHOD = "__setitem__" DELITEM_METHOD = "__delitem__" CONTAINS_METHOD = "__contains__" KEYS_METHOD = "keys" # Dictionary which maps the number of expected parameters a # special method can have to a set of special methods. # The following keys are used to denote the parameters restrictions: # # * None: variable number of parameters # * number: exactly that number of parameters # * tuple: this are the odd ones. Basically it means that the function # can work with any number of arguments from that tuple, # although it's best to implement it in order to accept # all of them. _SPECIAL_METHODS_PARAMS = { None: ("__new__", "__init__", "__call__"), 0: ( "__del__", "__repr__", "__str__", "__bytes__", "__hash__", "__bool__", "__dir__", "__len__", "__length_hint__", "__iter__", "__reversed__", "__neg__", "__pos__", "__abs__", "__invert__", "__complex__", "__int__", "__float__", "__index__", "__trunc__", "__floor__", "__ceil__", "__enter__", "__aenter__", "__getnewargs_ex__", "__getnewargs__", "__getstate__", "__reduce__", "__copy__", "__unicode__", "__nonzero__", "__await__", "__aiter__", "__anext__", "__fspath__", ), 1: ( "__format__", "__lt__", "__le__", "__eq__", "__ne__", "__gt__", "__ge__", "__getattr__", "__getattribute__", "__delattr__", "__delete__", "__instancecheck__", "__subclasscheck__", "__getitem__", "__missing__", "__delitem__", "__contains__", "__add__", "__sub__", "__mul__", "__truediv__", "__floordiv__", "__rfloordiv__", "__mod__", "__divmod__", "__lshift__", "__rshift__", "__and__", "__xor__", "__or__", "__radd__", "__rsub__", "__rmul__", "__rtruediv__", "__rmod__", "__rdivmod__", "__rpow__", "__rlshift__", "__rrshift__", "__rand__", "__rxor__", "__ror__", "__iadd__", "__isub__", "__imul__", "__itruediv__", "__ifloordiv__", "__imod__", "__ilshift__", "__irshift__", "__iand__", "__ixor__", "__ior__", "__ipow__", "__setstate__", "__reduce_ex__", "__deepcopy__", "__cmp__", "__matmul__", "__rmatmul__", "__imatmul__", "__div__", ), 2: ("__setattr__", "__get__", "__set__", "__setitem__", "__set_name__"), 3: ("__exit__", "__aexit__"), (0, 1): ("__round__",), (1, 2): ("__pow__",), } SPECIAL_METHODS_PARAMS = { name: params for params, methods in _SPECIAL_METHODS_PARAMS.items() for name in methods } PYMETHODS = set(SPECIAL_METHODS_PARAMS) SUBSCRIPTABLE_CLASSES_PEP585 = frozenset( ( "builtins.tuple", "builtins.list", "builtins.dict", "builtins.set", "builtins.frozenset", "builtins.type", "collections.deque", "collections.defaultdict", "collections.OrderedDict", "collections.Counter", "collections.ChainMap", "_collections_abc.Awaitable", "_collections_abc.Coroutine", "_collections_abc.AsyncIterable", "_collections_abc.AsyncIterator", "_collections_abc.AsyncGenerator", "_collections_abc.Iterable", "_collections_abc.Iterator", "_collections_abc.Generator", "_collections_abc.Reversible", "_collections_abc.Container", "_collections_abc.Collection", "_collections_abc.Callable", "_collections_abc.Set", "_collections_abc.MutableSet", "_collections_abc.Mapping", "_collections_abc.MutableMapping", "_collections_abc.Sequence", "_collections_abc.MutableSequence", "_collections_abc.ByteString", "_collections_abc.MappingView", "_collections_abc.KeysView", "_collections_abc.ItemsView", "_collections_abc.ValuesView", "contextlib.AbstractContextManager", "contextlib.AbstractAsyncContextManager", "re.Pattern", "re.Match", ) ) class NoSuchArgumentError(Exception): pass class InferredTypeError(Exception): pass def is_inside_lambda(node: nodes.NodeNG) -> bool: """Return true if given node is inside lambda""" for parent in node.node_ancestors(): if isinstance(parent, nodes.Lambda): return True return False def get_all_elements( node: nodes.NodeNG, ) -> Iterable[nodes.NodeNG]: """Recursively returns all atoms in nested lists and tuples.""" if isinstance(node, (nodes.Tuple, nodes.List)): for child in node.elts: yield from get_all_elements(child) else: yield node def is_super(node: nodes.NodeNG) -> bool: """return True if the node is referencing the "super" builtin function""" if getattr(node, "name", None) == "super" and node.root().name == "builtins": return True return False def is_error(node: nodes.FunctionDef) -> bool: """Return true if the given function node only raises an exception""" return len(node.body) == 1 and isinstance(node.body[0], nodes.Raise) builtins = builtins.__dict__.copy() # type: ignore SPECIAL_BUILTINS = ("__builtins__",) # '__path__', '__file__') def is_builtin_object(node: nodes.NodeNG) -> bool: """Returns True if the given node is an object from the __builtin__ module.""" return node and node.root().name == "builtins" def is_builtin(name: str) -> bool: """return true if <name> could be considered as a builtin defined by python""" return name in builtins or name in SPECIAL_BUILTINS # type: ignore def is_defined_in_scope( var_node: nodes.NodeNG, varname: str, scope: nodes.NodeNG, ) -> bool: if isinstance(scope, nodes.If): for node in scope.body: if ( isinstance(node, nodes.Assign) and any( isinstance(target, nodes.AssignName) and target.name == varname for target in node.targets ) ) or (isinstance(node, nodes.Nonlocal) and varname in node.names): return True elif isinstance(scope, (COMP_NODE_TYPES, nodes.For)): for ass_node in scope.nodes_of_class(nodes.AssignName): if ass_node.name == varname: return True elif isinstance(scope, nodes.With): for expr, ids in scope.items: if expr.parent_of(var_node): break if ids and isinstance(ids, nodes.AssignName) and ids.name == varname: return True elif isinstance(scope, (nodes.Lambda, nodes.FunctionDef)): if scope.args.is_argument(varname): # If the name is found inside a default value # of a function, then let the search continue # in the parent's tree. if scope.args.parent_of(var_node): try: scope.args.default_value(varname) scope = scope.parent is_defined_in_scope(var_node, varname, scope) except astroid.NoDefault: pass return True if getattr(scope, "name", None) == varname: return True elif isinstance(scope, nodes.ExceptHandler): if isinstance(scope.name, nodes.AssignName): ass_node = scope.name if ass_node.name == varname: return True return False def is_defined_before(var_node: nodes.Name) -> bool: """Check if the given variable node is defined before Verify that the variable node is defined by a parent node (list, set, dict, or generator comprehension, lambda) or in a previous sibling node on the same line (statement_defining ; statement_using). """ varname = var_node.name for parent in var_node.node_ancestors(): if is_defined_in_scope(var_node, varname, parent): return True # possibly multiple statements on the same line using semi colon separator stmt = var_node.statement() _node = stmt.previous_sibling() lineno = stmt.fromlineno while _node and _node.fromlineno == lineno: for assign_node in _node.nodes_of_class(nodes.AssignName): if assign_node.name == varname: return True for imp_node in _node.nodes_of_class((nodes.ImportFrom, nodes.Import)): if varname in [name[1] or name[0] for name in imp_node.names]: return True _node = _node.previous_sibling() return False def is_default_argument( node: nodes.NodeNG, scope: Optional[nodes.NodeNG] = None ) -> bool: """return true if the given Name node is used in function or lambda default argument's value """ if not scope: scope = node.scope() if isinstance(scope, (nodes.FunctionDef, nodes.Lambda)): for default_node in scope.args.defaults: for default_name_node in default_node.nodes_of_class(nodes.Name): if default_name_node is node: return True return False def is_func_decorator(node: nodes.NodeNG) -> bool: """return true if the name is used in function decorator""" for parent in node.node_ancestors(): if isinstance(parent, nodes.Decorators): return True if parent.is_statement or isinstance( parent, ( nodes.Lambda, nodes.ComprehensionScope, nodes.ListComp, ), ): break return False def is_ancestor_name(frame: nodes.ClassDef, node: nodes.NodeNG) -> bool: """return True if `frame` is an astroid.Class node with `node` in the subtree of its bases attribute """ if not isinstance(frame, nodes.ClassDef): return False for base in frame.bases: if node in base.nodes_of_class(nodes.Name): return True return False def is_being_called(node: nodes.NodeNG) -> bool: """return True if node is the function being called in a Call node""" return isinstance(node.parent, nodes.Call) and node.parent.func is node def assign_parent(node: nodes.NodeNG) -> nodes.NodeNG: """return the higher parent which is not an AssignName, Tuple or List node""" while node and isinstance(node, (nodes.AssignName, nodes.Tuple, nodes.List)): node = node.parent return node def overrides_a_method(class_node: nodes.ClassDef, name: str) -> bool: """return True if <name> is a method overridden from an ancestor""" for ancestor in class_node.ancestors(): if name in ancestor and isinstance(ancestor[name], nodes.FunctionDef): return True return False def check_messages(*messages: str) -> Callable: """decorator to store messages that are handled by a checker method""" def store_messages(func): func.checks_msgs = messages return func return store_messages class IncompleteFormatString(Exception): """A format string ended in the middle of a format specifier.""" class UnsupportedFormatCharacter(Exception): """A format character in a format string is not one of the supported format characters.""" def __init__(self, index): Exception.__init__(self, index) self.index = index def parse_format_string( format_string: str, ) -> Tuple[Set[str], int, Dict[str, str], List[str]]: """Parses a format string, returning a tuple of (keys, num_args), where keys is the set of mapping keys in the format string, and num_args is the number of arguments required by the format string. Raises IncompleteFormatString or UnsupportedFormatCharacter if a parse error occurs.""" keys = set() key_types = {} pos_types = [] num_args = 0 def next_char(i): i += 1 if i == len(format_string): raise IncompleteFormatString return (i, format_string[i]) i = 0 while i < len(format_string): char = format_string[i] if char == "%": i, char = next_char(i) # Parse the mapping key (optional). key = None if char == "(": depth = 1 i, char = next_char(i) key_start = i while depth != 0: if char == "(": depth += 1 elif char == ")": depth -= 1 i, char = next_char(i) key_end = i - 1 key = format_string[key_start:key_end] # Parse the conversion flags (optional). while char in "#0- +": i, char = next_char(i) # Parse the minimum field width (optional). if char == "*": num_args += 1 i, char = next_char(i) else: while char in string.digits: i, char = next_char(i) # Parse the precision (optional). if char == ".": i, char = next_char(i) if char == "*": num_args += 1 i, char = next_char(i) else: while char in string.digits: i, char = next_char(i) # Parse the length modifier (optional). if char in "hlL": i, char = next_char(i) # Parse the conversion type (mandatory). flags = "diouxXeEfFgGcrs%a" if char not in flags: raise UnsupportedFormatCharacter(i) if key: keys.add(key) key_types[key] = char elif char != "%": num_args += 1 pos_types.append(char) i += 1 return keys, num_args, key_types, pos_types def split_format_field_names(format_string) -> Tuple[str, Iterable[Tuple[bool, str]]]: try: return _string.formatter_field_name_split(format_string) except ValueError as e: raise IncompleteFormatString() from e def collect_string_fields(format_string) -> Iterable[Optional[str]]: """Given a format string, return an iterator of all the valid format fields. It handles nested fields as well. """ formatter = string.Formatter() try: parseiterator = formatter.parse(format_string) for result in parseiterator: if all(item is None for item in result[1:]): # not a replacement format continue name = result[1] nested = result[2] yield name if nested: yield from collect_string_fields(nested) except ValueError as exc: # Probably the format string is invalid. if exc.args[0].startswith("cannot switch from manual"): # On Jython, parsing a string with both manual # and automatic positions will fail with a ValueError, # while on CPython it will simply return the fields, # the validation being done in the interpreter (?). # We're just returning two mixed fields in order # to trigger the format-combined-specification check. yield "" yield "1" return raise IncompleteFormatString(format_string) from exc def parse_format_method_string( format_string: str, ) -> Tuple[List[Tuple[str, List[Tuple[bool, str]]]], int, int]: """ Parses a PEP 3101 format string, returning a tuple of (keyword_arguments, implicit_pos_args_cnt, explicit_pos_args), where keyword_arguments is the set of mapping keys in the format string, implicit_pos_args_cnt is the number of arguments required by the format string and explicit_pos_args is the number of arguments passed with the position. """ keyword_arguments = [] implicit_pos_args_cnt = 0 explicit_pos_args = set() for name in collect_string_fields(format_string): if name and str(name).isdigit(): explicit_pos_args.add(str(name)) elif name: keyname, fielditerator = split_format_field_names(name) if isinstance(keyname, numbers.Number): explicit_pos_args.add(str(keyname)) try: keyword_arguments.append((keyname, list(fielditerator))) except ValueError as e: raise IncompleteFormatString() from e else: implicit_pos_args_cnt += 1 return keyword_arguments, implicit_pos_args_cnt, len(explicit_pos_args) def is_attr_protected(attrname: str) -> bool: """return True if attribute name is protected (start with _ and some other details), False otherwise. """ return ( attrname[0] == "_" and attrname != "_" and not (attrname.startswith("__") and attrname.endswith("__")) ) def node_frame_class(node: nodes.NodeNG) -> Optional[nodes.ClassDef]: """Return the class that is wrapping the given node The function returns a class for a method node (or a staticmethod or a classmethod), otherwise it returns `None`. """ klass = node.frame() nodes_to_check = ( nodes.NodeNG, astroid.UnboundMethod, astroid.BaseInstance, ) while ( klass and isinstance(klass, nodes_to_check) and not isinstance(klass, nodes.ClassDef) ): if klass.parent is None: return None klass = klass.parent.frame() return klass def is_attr_private(attrname: str) -> Optional[Match[str]]: """Check that attribute name is private (at least two leading underscores, at most one trailing underscore) """ regex = re.compile("^_{2,}.*[^_]+_?$") return regex.match(attrname) def get_argument_from_call( call_node: nodes.Call, position: int = None, keyword: str = None ) -> nodes.Name: """Returns the specified argument from a function call. :param nodes.Call call_node: Node representing a function call to check. :param int position: position of the argument. :param str keyword: the keyword of the argument. :returns: The node representing the argument, None if the argument is not found. :rtype: nodes.Name :raises ValueError: if both position and keyword are None. :raises NoSuchArgumentError: if no argument at the provided position or with the provided keyword. """ if position is None and keyword is None: raise ValueError("Must specify at least one of: position or keyword.") if position is not None: try: return call_node.args[position] except IndexError: pass if keyword and call_node.keywords: for arg in call_node.keywords: if arg.arg == keyword: return arg.value raise NoSuchArgumentError def inherit_from_std_ex(node: nodes.NodeNG) -> bool: """ Return true if the given class node is subclass of exceptions.Exception. """ ancestors = node.ancestors() if hasattr(node, "ancestors") else [] for ancestor in itertools.chain([node], ancestors): if ( ancestor.name in ("Exception", "BaseException") and ancestor.root().name == EXCEPTIONS_MODULE ): return True return False def error_of_type(handler: nodes.ExceptHandler, error_type) -> bool: """ Check if the given exception handler catches the given error_type. The *handler* parameter is a node, representing an ExceptHandler node. The *error_type* can be an exception, such as AttributeError, the name of an exception, or it can be a tuple of errors. The function will return True if the handler catches any of the given errors. """ def stringify_error(error): if not isinstance(error, str): return error.__name__ return error if not isinstance(error_type, tuple): error_type = (error_type,) expected_errors = {stringify_error(error) for error in error_type} if not handler.type: return False return handler.catch(expected_errors) def decorated_with_property(node: nodes.FunctionDef) -> bool: """Detect if the given function node is decorated with a property.""" if not node.decorators: return False for decorator in node.decorators.nodes: try: if _is_property_decorator(decorator): return True except astroid.InferenceError: pass return False def _is_property_kind(node, *kinds): if not isinstance(node, (astroid.UnboundMethod, nodes.FunctionDef)): return False if node.decorators: for decorator in node.decorators.nodes: if isinstance(decorator, nodes.Attribute) and decorator.attrname in kinds: return True return False def is_property_setter(node: nodes.FunctionDef) -> bool: """Check if the given node is a property setter""" return _is_property_kind(node, "setter") def is_property_deleter(node: nodes.FunctionDef) -> bool: """Check if the given node is a property deleter""" return _is_property_kind(node, "deleter") def is_property_setter_or_deleter(node: nodes.FunctionDef) -> bool: """Check if the given node is either a property setter or a deleter""" return _is_property_kind(node, "setter", "deleter") def _is_property_decorator(decorator: nodes.Name) -> bool: for inferred in decorator.infer(): if isinstance(inferred, nodes.ClassDef): if inferred.qname() in ("builtins.property", "functools.cached_property"): return True for ancestor in inferred.ancestors(): if ancestor.name == "property" and ancestor.root().name == "builtins": return True elif isinstance(inferred, nodes.FunctionDef): # If decorator is function, check if it has exactly one return # and the return is itself a function decorated with property returns: List[nodes.Return] = list( inferred._get_return_nodes_skip_functions() ) if len(returns) == 1 and isinstance( returns[0].value, (nodes.Name, nodes.Attribute) ): inferred = safe_infer(returns[0].value) if ( inferred and isinstance(inferred, astroid.objects.Property) and isinstance(inferred.function, nodes.FunctionDef) ): return decorated_with_property(inferred.function) return False def decorated_with( func: Union[nodes.FunctionDef, astroid.BoundMethod, astroid.UnboundMethod], qnames: Iterable[str], ) -> bool: """Determine if the `func` node has a decorator with the qualified name `qname`.""" decorators = func.decorators.nodes if func.decorators else [] for decorator_node in decorators: if isinstance(decorator_node, nodes.Call): # We only want to infer the function name decorator_node = decorator_node.func try: if any( i.name in qnames or i.qname() in qnames for i in decorator_node.infer() if i is not None and i != astroid.Uninferable ): return True except astroid.InferenceError: continue return False @lru_cache(maxsize=1024) def unimplemented_abstract_methods( node: nodes.ClassDef, is_abstract_cb: nodes.FunctionDef = None ) -> Dict[str, nodes.NodeNG]: """ Get the unimplemented abstract methods for the given *node*. A method can be considered abstract if the callback *is_abstract_cb* returns a ``True`` value. The check defaults to verifying that a method is decorated with abstract methods. The function will work only for new-style classes. For old-style classes, it will simply return an empty dictionary. For the rest of them, it will return a dictionary of abstract method names and their inferred objects. """ if is_abstract_cb is None: is_abstract_cb = partial(decorated_with, qnames=ABC_METHODS) visited: Dict[str, nodes.NodeNG] = {} try: mro = reversed(node.mro()) except NotImplementedError: # Old style class, it will not have a mro. return {} except astroid.ResolveError: # Probably inconsistent hierarchy, don'try # to figure this out here. return {} for ancestor in mro: for obj in ancestor.values(): inferred = obj if isinstance(obj, nodes.AssignName): inferred = safe_infer(obj) if not inferred: # Might be an abstract function, # but since we don't have enough information # in order to take this decision, we're taking # the *safe* decision instead. if obj.name in visited: del visited[obj.name] continue if not isinstance(inferred, nodes.FunctionDef): if obj.name in visited: del visited[obj.name] if isinstance(inferred, nodes.FunctionDef): # It's critical to use the original name, # since after inferring, an object can be something # else than expected, as in the case of the # following assignment. # # class A: # def keys(self): pass # __iter__ = keys abstract = is_abstract_cb(inferred) if abstract: visited[obj.name] = inferred elif not abstract and obj.name in visited: del visited[obj.name] return visited def find_try_except_wrapper_node( node: nodes.NodeNG, ) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]: """Return the ExceptHandler or the TryExcept node in which the node is.""" current = node ignores = (nodes.ExceptHandler, nodes.TryExcept) while current and not isinstance(current.parent, ignores): current = current.parent if current and isinstance(current.parent, ignores): return current.parent return None def find_except_wrapper_node_in_scope( node: nodes.NodeNG, ) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]: """Return the ExceptHandler in which the node is, without going out of scope.""" for current in node.node_ancestors(): if isinstance(current, astroid.scoped_nodes.LocalsDictNodeNG): # If we're inside a function/class definition, we don't want to keep checking # higher ancestors for `except` clauses, because if these exist, it means our # function/class was defined in an `except` clause, rather than the current code # actually running in an `except` clause. return None if isinstance(current, nodes.ExceptHandler): return current return None def is_from_fallback_block(node: nodes.NodeNG) -> bool: """Check if the given node is from a fallback import block.""" context = find_try_except_wrapper_node(node) if not context: return False if isinstance(context, nodes.ExceptHandler): other_body = context.parent.body handlers = context.parent.handlers else: other_body = itertools.chain.from_iterable( handler.body for handler in context.handlers ) handlers = context.handlers has_fallback_imports = any( isinstance(import_node, (nodes.ImportFrom, nodes.Import)) for import_node in other_body ) ignores_import_error = _except_handlers_ignores_exception(handlers, ImportError) return ignores_import_error or has_fallback_imports def _except_handlers_ignores_exception( handlers: nodes.ExceptHandler, exception ) -> bool: func = partial(error_of_type, error_type=(exception,)) return any(func(handler) for handler in handlers) def get_exception_handlers( node: nodes.NodeNG, exception=Exception ) -> Optional[List[nodes.ExceptHandler]]: """Return the collections of handlers handling the exception in arguments. Args: node (nodes.NodeNG): A node that is potentially wrapped in a try except. exception (builtin.Exception or str): exception or name of the exception. Returns: list: the collection of handlers that are handling the exception or None. """ context = find_try_except_wrapper_node(node) if isinstance(context, nodes.TryExcept): return [ handler for handler in context.handlers if error_of_type(handler, exception) ] return [] def is_node_inside_try_except(node: nodes.Raise) -> bool: """Check if the node is directly under a Try/Except statement. (but not under an ExceptHandler!) Args: node (nodes.Raise): the node raising the exception. Returns: bool: True if the node is inside a try/except statement, False otherwise. """ context = find_try_except_wrapper_node(node) return isinstance(context, nodes.TryExcept) def node_ignores_exception(node: nodes.NodeNG, exception=Exception) -> bool: """Check if the node is in a TryExcept which handles the given exception. If the exception is not given, the function is going to look for bare excepts. """ managing_handlers = get_exception_handlers(node, exception) if not managing_handlers: return False return any(managing_handlers) def class_is_abstract(node: nodes.ClassDef) -> bool: """return true if the given class node should be considered as an abstract class """ # Only check for explicit metaclass=ABCMeta on this specific class meta = node.declared_metaclass() if meta is not None: if meta.name == "ABCMeta" and meta.root().name in ABC_MODULES: return True for ancestor in node.ancestors(): if ancestor.name == "ABC" and ancestor.root().name in ABC_MODULES: # abc.ABC inheritance return True for method in node.methods(): if method.parent.frame() is node: if method.is_abstract(pass_is_abstract=False): return True return False def _supports_protocol_method(value: nodes.NodeNG, attr: str) -> bool: try: attributes = value.getattr(attr) except astroid.NotFoundError: return False first = attributes[0] if isinstance(first, nodes.AssignName): if isinstance(first.parent.value, nodes.Const): return False return True def is_comprehension(node: nodes.NodeNG) -> bool: comprehensions = ( nodes.ListComp, nodes.SetComp, nodes.DictComp, nodes.GeneratorExp, ) return isinstance(node, comprehensions) def _supports_mapping_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method( value, GETITEM_METHOD ) and _supports_protocol_method(value, KEYS_METHOD) def _supports_membership_test_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, CONTAINS_METHOD) def _supports_iteration_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, ITER_METHOD) or _supports_protocol_method( value, GETITEM_METHOD ) def _supports_async_iteration_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, AITER_METHOD) def _supports_getitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, GETITEM_METHOD) def _supports_setitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, SETITEM_METHOD) def _supports_delitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, DELITEM_METHOD) def _is_abstract_class_name(name: str) -> bool: lname = name.lower() is_mixin = lname.endswith("mixin") is_abstract = lname.startswith("abstract") is_base = lname.startswith("base") or lname.endswith("base") return is_mixin or is_abstract or is_base def is_inside_abstract_class(node: nodes.NodeNG) -> bool: while node is not None: if isinstance(node, nodes.ClassDef): if class_is_abstract(node): return True name = getattr(node, "name", None) if name is not None and _is_abstract_class_name(name): return True node = node.parent return False def _supports_protocol( value: nodes.NodeNG, protocol_callback: nodes.FunctionDef ) -> bool: if isinstance(value, nodes.ClassDef): if not has_known_bases(value): return True # classobj can only be iterable if it has an iterable metaclass meta = value.metaclass() if meta is not None: if protocol_callback(meta): return True if isinstance(value, astroid.BaseInstance): if not has_known_bases(value): return True if value.has_dynamic_getattr(): return True if protocol_callback(value): return True if ( isinstance(value, astroid.bases.Proxy) and isinstance(value._proxied, astroid.BaseInstance) and has_known_bases(value._proxied) ): value = value._proxied return protocol_callback(value) return False def is_iterable(value: nodes.NodeNG, check_async: bool = False) -> bool: if check_async: protocol_check = _supports_async_iteration_protocol else: protocol_check = _supports_iteration_protocol return _supports_protocol(value, protocol_check) def is_mapping(value: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_mapping_protocol) def supports_membership_test(value: nodes.NodeNG) -> bool: supported = _supports_protocol(value, _supports_membership_test_protocol) return supported or is_iterable(value) def supports_getitem(value: nodes.NodeNG, node: nodes.NodeNG) -> bool: if isinstance(value, nodes.ClassDef): if _supports_protocol_method(value, CLASS_GETITEM_METHOD): return True if is_class_subscriptable_pep585_with_postponed_evaluation_enabled(value, node): return True return _supports_protocol(value, _supports_getitem_protocol) def supports_setitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_setitem_protocol) def supports_delitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_delitem_protocol) def _get_python_type_of_node(node): pytype = getattr(node, "pytype", None) if callable(pytype): return pytype() return None @lru_cache(maxsize=1024) def safe_infer(node: nodes.NodeNG, context=None) -> Optional[nodes.NodeNG]: """Return the inferred value for the given node. Return None if inference failed or if there is some ambiguity (more than one node has been inferred of different types). """ inferred_types = set() try: infer_gen = node.infer(context=context) value = next(infer_gen) except astroid.InferenceError: return None if value is not astroid.Uninferable: inferred_types.add(_get_python_type_of_node(value)) try: for inferred in infer_gen: inferred_type = _get_python_type_of_node(inferred) if inferred_type not in inferred_types: return None # If there is ambiguity on the inferred node. except astroid.InferenceError: return None # There is some kind of ambiguity except StopIteration: return value return value if len(inferred_types) <= 1 else None @lru_cache(maxsize=512) def infer_all( node: nodes.NodeNG, context: InferenceContext = None ) -> List[nodes.NodeNG]: try: return list(node.infer(context=context)) except astroid.InferenceError: return [] def has_known_bases(klass: nodes.ClassDef, context=None) -> bool: """Return true if all base classes of a class could be inferred.""" try: return klass._all_bases_known except AttributeError: pass for base in klass.bases: result = safe_infer(base, context=context) if ( not isinstance(result, nodes.ClassDef) or result is klass or not has_known_bases(result, context=context) ): klass._all_bases_known = False return False klass._all_bases_known = True return True def is_none(node: nodes.NodeNG) -> bool: return ( node is None or (isinstance(node, nodes.Const) and node.value is None) or (isinstance(node, nodes.Name) and node.name == "None") ) def node_type(node: nodes.NodeNG) -> Optional[nodes.NodeNG]: """Return the inferred type for `node` If there is more than one possible type, or if inferred type is Uninferable or None, return None """ # check there is only one possible type for the assign node. Else we # don't handle it for now types: Set[nodes.NodeNG] = set() try: for var_type in node.infer(): if var_type == astroid.Uninferable or is_none(var_type): continue types.add(var_type) if len(types) > 1: return None except astroid.InferenceError: return None return types.pop() if types else None def is_registered_in_singledispatch_function(node: nodes.FunctionDef) -> bool: """Check if the given function node is a singledispatch function.""" singledispatch_qnames = ( "functools.singledispatch", "singledispatch.singledispatch", ) if not isinstance(node, nodes.FunctionDef): return False decorators = node.decorators.nodes if node.decorators else [] for decorator in decorators: # func.register are function calls if not isinstance(decorator, nodes.Call): continue func = decorator.func if not isinstance(func, nodes.Attribute) or func.attrname != "register": continue try: func_def = next(func.expr.infer()) except astroid.InferenceError: continue if isinstance(func_def, nodes.FunctionDef): # pylint: disable=redundant-keyword-arg; some flow inference goes wrong here return decorated_with(func_def, singledispatch_qnames) return False def get_node_last_lineno(node: nodes.NodeNG) -> int: """ Get the last lineno of the given node. For a simple statement this will just be node.lineno, but for a node that has child statements (e.g. a method) this will be the lineno of the last child statement recursively. """ # 'finalbody' is always the last clause in a try statement, if present if getattr(node, "finalbody", False): return get_node_last_lineno(node.finalbody[-1]) # For if, while, and for statements 'orelse' is always the last clause. # For try statements 'orelse' is the last in the absence of a 'finalbody' if getattr(node, "orelse", False): return get_node_last_lineno(node.orelse[-1]) # try statements have the 'handlers' last if there is no 'orelse' or 'finalbody' if getattr(node, "handlers", False): return get_node_last_lineno(node.handlers[-1]) # All compound statements have a 'body' if getattr(node, "body", False): return get_node_last_lineno(node.body[-1]) # Not a compound statement return node.lineno def is_postponed_evaluation_enabled(node: nodes.NodeNG) -> bool: """Check if the postponed evaluation of annotations is enabled""" module = node.root() return "annotations" in module.future_imports def is_class_subscriptable_pep585_with_postponed_evaluation_enabled( value: nodes.ClassDef, node: nodes.NodeNG ) -> bool: """Check if class is subscriptable with PEP 585 and postponed evaluation enabled. """ return ( is_postponed_evaluation_enabled(node) and value.qname() in SUBSCRIPTABLE_CLASSES_PEP585 and is_node_in_type_annotation_context(node) ) def is_node_in_type_annotation_context(node: nodes.NodeNG) -> bool: """Check if node is in type annotation context. Check for 'AnnAssign', function 'Arguments', or part of function return type anntation. """ # pylint: disable=too-many-boolean-expressions current_node, parent_node = node, node.parent while True: if ( isinstance(parent_node, nodes.AnnAssign) and parent_node.annotation == current_node or isinstance(parent_node, nodes.Arguments) and current_node in ( *parent_node.annotations, *parent_node.posonlyargs_annotations, *parent_node.kwonlyargs_annotations, parent_node.varargannotation, parent_node.kwargannotation, ) or isinstance(parent_node, nodes.FunctionDef) and parent_node.returns == current_node ): return True current_node, parent_node = parent_node, parent_node.parent if isinstance(parent_node, nodes.Module): return False def is_subclass_of(child: nodes.ClassDef, parent: nodes.ClassDef) -> bool: """ Check if first node is a subclass of second node. :param child: Node to check for subclass. :param parent: Node to check for superclass. :returns: True if child is derived from parent. False otherwise. """ if not all(isinstance(node, nodes.ClassDef) for node in (child, parent)): return False for ancestor in child.ancestors(): try: if astroid.helpers.is_subtype(ancestor, parent): return True except astroid.exceptions._NonDeducibleTypeHierarchy: continue return False @lru_cache(maxsize=1024) def is_overload_stub(node: nodes.NodeNG) -> bool: """Check if a node if is a function stub decorated with typing.overload. :param node: Node to check. :returns: True if node is an overload function stub. False otherwise. """ decorators = getattr(node, "decorators", None) return bool(decorators and decorated_with(node, ["typing.overload", "overload"])) def is_protocol_class(cls: nodes.NodeNG) -> bool: """Check if the given node represents a protocol class :param cls: The node to check :returns: True if the node is a typing protocol class, false otherwise. """ if not isinstance(cls, nodes.ClassDef): return False # Use .ancestors() since not all protocol classes can have # their mro deduced. return any(parent.qname() in TYPING_PROTOCOLS for parent in cls.ancestors()) def is_call_of_name(node: nodes.NodeNG, name: str) -> bool: """Checks if node is a function call with the given name""" return ( isinstance(node, nodes.Call) and isinstance(node.func, nodes.Name) and node.func.name == name ) def is_test_condition( node: nodes.NodeNG, parent: Optional[nodes.NodeNG] = None, ) -> bool: """Returns true if the given node is being tested for truthiness""" parent = parent or node.parent if isinstance(parent, (nodes.While, nodes.If, nodes.IfExp, nodes.Assert)): return node is parent.test or parent.test.parent_of(node) if isinstance(parent, nodes.Comprehension): return node in parent.ifs return is_call_of_name(parent, "bool") and parent.parent_of(node) def is_classdef_type(node: nodes.ClassDef) -> bool: """Test if ClassDef node is Type.""" if node.name == "type": return True for base in node.bases: if isinstance(base, nodes.Name) and base.name == "type": return True return False def is_attribute_typed_annotation( node: Union[nodes.ClassDef, astroid.Instance], attr_name: str ) -> bool: """Test if attribute is typed annotation in current node or any base nodes. """ attribute = node.locals.get(attr_name, [None])[0] if ( attribute and isinstance(attribute, nodes.AssignName) and isinstance(attribute.parent, nodes.AnnAssign) ): return True for base in node.bases: inferred = safe_infer(base) if ( inferred and isinstance(inferred, nodes.ClassDef) and is_attribute_typed_annotation(inferred, attr_name) ): return True return False def is_assign_name_annotated_with(node: nodes.AssignName, typing_name: str) -> bool: """Test if AssignName node has `typing_name` annotation. Especially useful to check for `typing._SpecialForm` instances like: `Union`, `Optional`, `Literal`, `ClassVar`, `Final`. """ if not isinstance(node.parent, nodes.AnnAssign): return False annotation = node.parent.annotation if isinstance(annotation, nodes.Subscript): annotation = annotation.value if ( isinstance(annotation, nodes.Name) and annotation.name == typing_name or isinstance(annotation, nodes.Attribute) and annotation.attrname == typing_name ): return True return False def get_iterating_dictionary_name( node: Union[nodes.For, nodes.Comprehension] ) -> Optional[str]: """Get the name of the dictionary which keys are being iterated over on a ``nodes.For`` or ``nodes.Comprehension`` node. If the iterating object is not either the keys method of a dictionary or a dictionary itself, this returns None. """ # Is it a proper keys call? if ( isinstance(node.iter, nodes.Call) and isinstance(node.iter.func, nodes.Attribute) and node.iter.func.attrname == "keys" ): inferred = safe_infer(node.iter.func) if not isinstance(inferred, astroid.BoundMethod): return None return node.iter.as_string().rpartition(".keys")[0] # Is it a dictionary? if isinstance(node.iter, (nodes.Name, nodes.Attribute)): inferred = safe_infer(node.iter) if not isinstance(inferred, nodes.Dict): return None return node.iter.as_string() return None def get_subscript_const_value(node: nodes.Subscript) -> nodes.Const: """ Returns the value 'subscript.slice' of a Subscript node. :param node: Subscript Node to extract value from :returns: Const Node containing subscript value :raises InferredTypeError: if the subscript node cannot be inferred as a Const """ inferred = safe_infer(node.slice) if not isinstance(inferred, nodes.Const): raise InferredTypeError("Subscript.slice cannot be inferred as a nodes.Const") return inferred def get_import_name( importnode: Union[nodes.Import, nodes.ImportFrom], modname: str ) -> str: """Get a prepared module name from the given import node In the case of relative imports, this will return the absolute qualified module name, which might be useful for debugging. Otherwise, the initial module name is returned unchanged. :param importnode: node representing import statement. :param modname: module name from import statement. :returns: absolute qualified module name of the module used in import. """ if isinstance(importnode, nodes.ImportFrom) and importnode.level: root = importnode.root() if isinstance(root, nodes.Module): try: return root.relative_to_absolute_name(modname, level=importnode.level) except TooManyLevelsError: return modname return modname def is_node_in_guarded_import_block(node: nodes.NodeNG) -> bool: """Return True if node is part for guarded if block. I.e. `sys.version_info` or `typing.TYPE_CHECKING` """ return isinstance(node.parent, nodes.If) and ( node.parent.is_sys_guard() or node.parent.is_typing_guard() ) def is_reassigned_after_current(node: nodes.NodeNG, varname: str) -> bool: """Check if the given variable name is reassigned in the same scope after the current node""" return any( a.name == varname and a.lineno > node.lineno for a in node.scope().nodes_of_class((nodes.AssignName, nodes.FunctionDef)) )
1
16,050
We're calculating the full list of kwargs here (even if the first element of the list would return True) so we could improve performance by using a generator line 408 in ``for default_node in all_defaults:``.
PyCQA-pylint
py
@@ -119,6 +119,14 @@ type accountDelta struct { new basics.AccountData } +// accountDeltaCount is an extention to accountDelta that is being used by the commitRound function for counting the +// number of changes we've made per account. The ndeltas is used execlusively for consistency checking - making sure that +// all the pending changes were written and that there are no outstanding writes missing. +type accountDeltaCount struct { + accountDelta + ndeltas int +} + // catchpointState is used to store catchpoint related variables into the catchpointstate table. type catchpointState string
1
// Copyright (C) 2019-2020 Algorand, Inc. // This file is part of go-algorand // // go-algorand is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // go-algorand is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with go-algorand. If not, see <https://www.gnu.org/licenses/>. package ledger import ( "bytes" "context" "database/sql" "fmt" "time" "github.com/mattn/go-sqlite3" "github.com/algorand/go-algorand/config" "github.com/algorand/go-algorand/data/basics" "github.com/algorand/go-algorand/protocol" "github.com/algorand/go-algorand/util/db" ) // accountsDbQueries is used to cache a prepared SQL statement to look up // the state of a single account. type accountsDbQueries struct { listCreatablesStmt *sql.Stmt lookupStmt *sql.Stmt lookupCreatorStmt *sql.Stmt deleteStoredCatchpoint *sql.Stmt insertStoredCatchpoint *sql.Stmt selectOldestsCatchpointFiles *sql.Stmt selectCatchpointStateUint64 *sql.Stmt deleteCatchpointState *sql.Stmt insertCatchpointStateUint64 *sql.Stmt selectCatchpointStateString *sql.Stmt insertCatchpointStateString *sql.Stmt } var accountsSchema = []string{ `CREATE TABLE IF NOT EXISTS acctrounds ( id string primary key, rnd integer)`, `CREATE TABLE IF NOT EXISTS accounttotals ( id string primary key, online integer, onlinerewardunits integer, offline integer, offlinerewardunits integer, notparticipating integer, notparticipatingrewardunits integer, rewardslevel integer)`, `CREATE TABLE IF NOT EXISTS accountbase ( address blob primary key, data blob)`, `CREATE TABLE IF NOT EXISTS assetcreators ( asset integer primary key, creator blob)`, `CREATE TABLE IF NOT EXISTS storedcatchpoints ( round integer primary key, filename text NOT NULL, catchpoint text NOT NULL, filesize size NOT NULL, pinned integer NOT NULL)`, `CREATE TABLE IF NOT EXISTS accounthashes ( id integer primary key, data blob)`, `CREATE TABLE IF NOT EXISTS catchpointstate ( id string primary key, intval integer, strval text)`, } // TODO: Post applications, rename assetcreators -> creatables and rename // 'asset' column -> 'creatable' var creatablesMigration = []string{ `ALTER TABLE assetcreators ADD COLUMN ctype INTEGER DEFAULT 0`, } func createNormalizedOnlineBalanceIndex(idxname string, tablename string) string { return fmt.Sprintf(`CREATE INDEX IF NOT EXISTS %s ON %s ( normalizedonlinebalance, address, data ) WHERE normalizedonlinebalance>0`, idxname, tablename) } var createOnlineAccountIndex = []string{ `ALTER TABLE accountbase ADD COLUMN normalizedonlinebalance INTEGER`, createNormalizedOnlineBalanceIndex("onlineaccountbals", "accountbase"), } var accountsResetExprs = []string{ `DROP TABLE IF EXISTS acctrounds`, `DROP TABLE IF EXISTS accounttotals`, `DROP TABLE IF EXISTS accountbase`, `DROP TABLE IF EXISTS assetcreators`, `DROP TABLE IF EXISTS storedcatchpoints`, `DROP TABLE IF EXISTS catchpointstate`, `DROP TABLE IF EXISTS accounthashes`, } // accountDBVersion is the database version that this binary would know how to support and how to upgrade to. // details about the content of each of the versions can be found in the upgrade functions upgradeDatabaseSchemaXXXX // and their descriptions. var accountDBVersion = int32(4) type accountDelta struct { old basics.AccountData new basics.AccountData } // catchpointState is used to store catchpoint related variables into the catchpointstate table. type catchpointState string const ( // catchpointStateLastCatchpoint is written by a node once a catchpoint label is created for a round catchpointStateLastCatchpoint = catchpointState("lastCatchpoint") // catchpointStateWritingCatchpoint is written by a node while a catchpoint file is being created. It gets deleted once the file // creation is complete, and used as a way to record the fact that we've started generating the catchpoint file for that particular // round. catchpointStateWritingCatchpoint = catchpointState("writingCatchpoint") // catchpointCatchupState is the state of the catchup process. The variable is stored only during the catchpoint catchup process, and removed afterward. catchpointStateCatchupState = catchpointState("catchpointCatchupState") // catchpointStateCatchupLabel is the label to which the currently catchpoint catchup process is trying to catchup to. catchpointStateCatchupLabel = catchpointState("catchpointCatchupLabel") // catchpointCatchupBlockRound is the block round that is associated with the current running catchpoint catchup. catchpointStateCatchupBlockRound = catchpointState("catchpointCatchupBlockRound") // catchpointStateCatchupBalancesRound is the balance round that is associated with the current running catchpoint catchup. Typically it would be // equal to catchpointStateCatchupBlockRound - 320. catchpointStateCatchupBalancesRound = catchpointState("catchpointCatchupBalancesRound") ) // normalizedAccountBalance is a staging area for a catchpoint file account information before it's being added to the catchpoint staging tables. type normalizedAccountBalance struct { address basics.Address accountData basics.AccountData encodedAccountData []byte accountHash []byte normalizedBalance uint64 } // prepareNormalizedBalances converts an array of encodedBalanceRecord into an equal size array of normalizedAccountBalances. func prepareNormalizedBalances(bals []encodedBalanceRecord, proto config.ConsensusParams) (normalizedAccountBalances []normalizedAccountBalance, err error) { normalizedAccountBalances = make([]normalizedAccountBalance, len(bals), len(bals)) for i, balance := range bals { normalizedAccountBalances[i].address = balance.Address err = protocol.Decode(balance.AccountData, &(normalizedAccountBalances[i].accountData)) if err != nil { return nil, err } normalizedAccountBalances[i].normalizedBalance = normalizedAccountBalances[i].accountData.NormalizedOnlineBalance(proto) normalizedAccountBalances[i].encodedAccountData = balance.AccountData normalizedAccountBalances[i].accountHash = accountHashBuilder(balance.Address, normalizedAccountBalances[i].accountData, balance.AccountData) } return } // writeCatchpointStagingBalances inserts all the account balances in the provided array into the catchpoint balance staging table catchpointbalances. func writeCatchpointStagingBalances(ctx context.Context, tx *sql.Tx, bals []normalizedAccountBalance) error { insertStmt, err := tx.PrepareContext(ctx, "INSERT INTO catchpointbalances(address, normalizedonlinebalance, data) VALUES(?, ?, ?)") if err != nil { return err } for _, balance := range bals { result, err := insertStmt.ExecContext(ctx, balance.address[:], balance.normalizedBalance, balance.encodedAccountData) if err != nil { return err } aff, err := result.RowsAffected() if err != nil { return err } if aff != 1 { return fmt.Errorf("number of affected record in insert was expected to be one, but was %d", aff) } } return nil } // writeCatchpointStagingBalances inserts all the account hashes in the provided array into the catchpoint pending hashes table catchpointpendinghashes. func writeCatchpointStagingHashes(ctx context.Context, tx *sql.Tx, bals []normalizedAccountBalance) error { insertStmt, err := tx.PrepareContext(ctx, "INSERT INTO catchpointpendinghashes(data) VALUES(?)") if err != nil { return err } for _, balance := range bals { result, err := insertStmt.ExecContext(ctx, balance.accountHash[:]) if err != nil { return err } aff, err := result.RowsAffected() if err != nil { return err } if aff != 1 { return fmt.Errorf("number of affected record in insert was expected to be one, but was %d", aff) } } return nil } // createCatchpointStagingHashesIndex creates an index on catchpointpendinghashes to allow faster scanning according to the hash order func createCatchpointStagingHashesIndex(ctx context.Context, tx *sql.Tx) (err error) { _, err = tx.ExecContext(ctx, "CREATE INDEX IF NOT EXISTS catchpointpendinghashesidx ON catchpointpendinghashes(data)") if err != nil { return } return } // writeCatchpointStagingCreatable inserts all the creatables in the provided array into the catchpoint asset creator staging table catchpointassetcreators. func writeCatchpointStagingCreatable(ctx context.Context, tx *sql.Tx, bals []normalizedAccountBalance) error { insertStmt, err := tx.PrepareContext(ctx, "INSERT INTO catchpointassetcreators(asset, creator, ctype) VALUES(?, ?, ?)") if err != nil { return err } for _, balance := range bals { // if the account has any asset params, it means that it's the creator of an asset. if len(balance.accountData.AssetParams) > 0 { for aidx := range balance.accountData.AssetParams { _, err := insertStmt.ExecContext(ctx, basics.CreatableIndex(aidx), balance.address[:], basics.AssetCreatable) if err != nil { return err } } } if len(balance.accountData.AppParams) > 0 { for aidx := range balance.accountData.AppParams { _, err := insertStmt.ExecContext(ctx, basics.CreatableIndex(aidx), balance.address[:], basics.AppCreatable) if err != nil { return err } } } } return nil } func resetCatchpointStagingBalances(ctx context.Context, tx *sql.Tx, newCatchup bool) (err error) { s := []string{ "DROP TABLE IF EXISTS catchpointbalances", "DROP TABLE IF EXISTS catchpointassetcreators", "DROP TABLE IF EXISTS catchpointaccounthashes", "DROP TABLE IF EXISTS catchpointpendinghashes", "DELETE FROM accounttotals where id='catchpointStaging'", } if newCatchup { // SQLite has no way to rename an existing index. So, we need // to cook up a fresh name for the index, which will be kept // around after we rename the table from "catchpointbalances" // to "accountbase". To construct a unique index name, we // use the current time. idxname := fmt.Sprintf("onlineaccountbals%d", time.Now().UnixNano()) s = append(s, "CREATE TABLE IF NOT EXISTS catchpointassetcreators (asset integer primary key, creator blob, ctype integer)", "CREATE TABLE IF NOT EXISTS catchpointbalances (address blob primary key, data blob, normalizedonlinebalance integer)", "CREATE TABLE IF NOT EXISTS catchpointpendinghashes (data blob)", "CREATE TABLE IF NOT EXISTS catchpointaccounthashes (id integer primary key, data blob)", createNormalizedOnlineBalanceIndex(idxname, "catchpointbalances"), ) } for _, stmt := range s { _, err = tx.Exec(stmt) if err != nil { return err } } return nil } // applyCatchpointStagingBalances switches the staged catchpoint catchup tables onto the actual // tables and update the correct balance round. This is the final step in switching onto the new catchpoint round. func applyCatchpointStagingBalances(ctx context.Context, tx *sql.Tx, balancesRound basics.Round) (err error) { stmts := []string{ "ALTER TABLE accountbase RENAME TO accountbase_old", "ALTER TABLE assetcreators RENAME TO assetcreators_old", "ALTER TABLE accounthashes RENAME TO accounthashes_old", "ALTER TABLE catchpointbalances RENAME TO accountbase", "ALTER TABLE catchpointassetcreators RENAME TO assetcreators", "ALTER TABLE catchpointaccounthashes RENAME TO accounthashes", "DROP TABLE IF EXISTS accountbase_old", "DROP TABLE IF EXISTS assetcreators_old", "DROP TABLE IF EXISTS accounthashes_old", } for _, stmt := range stmts { _, err = tx.Exec(stmt) if err != nil { return err } } _, err = tx.Exec("INSERT OR REPLACE INTO acctrounds(id, rnd) VALUES('acctbase', ?)", balancesRound) if err != nil { return err } _, err = tx.Exec("INSERT OR REPLACE INTO acctrounds(id, rnd) VALUES('hashbase', ?)", balancesRound) if err != nil { return err } return } func getCatchpoint(tx *sql.Tx, round basics.Round) (fileName string, catchpoint string, fileSize int64, err error) { err = tx.QueryRow("SELECT filename, catchpoint, filesize FROM storedcatchpoints WHERE round=?", int64(round)).Scan(&fileName, &catchpoint, &fileSize) return } // accountsInit fills the database using tx with initAccounts if the // database has not been initialized yet. // // accountsInit returns nil if either it has initialized the database // correctly, or if the database has already been initialized. func accountsInit(tx *sql.Tx, initAccounts map[basics.Address]basics.AccountData, proto config.ConsensusParams) error { for _, tableCreate := range accountsSchema { _, err := tx.Exec(tableCreate) if err != nil { return err } } // Run creatables migration if it hasn't run yet var creatableMigrated bool err := tx.QueryRow("SELECT 1 FROM pragma_table_info('assetcreators') WHERE name='ctype'").Scan(&creatableMigrated) if err == sql.ErrNoRows { // Run migration for _, migrateCmd := range creatablesMigration { _, err = tx.Exec(migrateCmd) if err != nil { return err } } } else if err != nil { return err } _, err = tx.Exec("INSERT INTO acctrounds (id, rnd) VALUES ('acctbase', 0)") if err == nil { var ot basics.OverflowTracker var totals AccountTotals for addr, data := range initAccounts { _, err = tx.Exec("INSERT INTO accountbase (address, data) VALUES (?, ?)", addr[:], protocol.Encode(&data)) if err != nil { return err } totals.addAccount(proto, data, &ot) } if ot.Overflowed { return fmt.Errorf("overflow computing totals") } err = accountsPutTotals(tx, totals, false) if err != nil { return err } } else { serr, ok := err.(sqlite3.Error) // serr.Code is sqlite.ErrConstraint if the database has already been initialized; // in that case, ignore the error and return nil. if !ok || serr.Code != sqlite3.ErrConstraint { return err } } return nil } // accountsAddNormalizedBalance adds the normalizedonlinebalance column // to the accountbase table. func accountsAddNormalizedBalance(tx *sql.Tx, proto config.ConsensusParams) error { var exists bool err := tx.QueryRow("SELECT 1 FROM pragma_table_info('accountbase') WHERE name='normalizedonlinebalance'").Scan(&exists) if err == nil { // Already exists. return nil } if err != sql.ErrNoRows { return err } for _, stmt := range createOnlineAccountIndex { _, err := tx.Exec(stmt) if err != nil { return err } } rows, err := tx.Query("SELECT address, data FROM accountbase") if err != nil { return err } defer rows.Close() for rows.Next() { var addrbuf []byte var buf []byte err = rows.Scan(&addrbuf, &buf) if err != nil { return err } var data basics.AccountData err = protocol.Decode(buf, &data) if err != nil { return err } normBalance := data.NormalizedOnlineBalance(proto) if normBalance > 0 { _, err = tx.Exec("UPDATE accountbase SET normalizedonlinebalance=? WHERE address=?", normBalance, addrbuf) if err != nil { return err } } } return rows.Err() } // accountDataToOnline returns the part of the AccountData that matters // for online accounts (to answer top-N queries). We store a subset of // the full AccountData because we need to store a large number of these // in memory (say, 1M), and storing that many AccountData could easily // cause us to run out of memory. func accountDataToOnline(address basics.Address, ad *basics.AccountData, proto config.ConsensusParams) *onlineAccount { return &onlineAccount{ Address: address, MicroAlgos: ad.MicroAlgos, RewardsBase: ad.RewardsBase, NormalizedOnlineBalance: ad.NormalizedOnlineBalance(proto), VoteID: ad.VoteID, VoteFirstValid: ad.VoteFirstValid, VoteLastValid: ad.VoteLastValid, VoteKeyDilution: ad.VoteKeyDilution, } } func resetAccountHashes(tx *sql.Tx) (err error) { _, err = tx.Exec(`DELETE FROM accounthashes`) return } func accountsReset(tx *sql.Tx) error { for _, stmt := range accountsResetExprs { _, err := tx.Exec(stmt) if err != nil { return err } } _, err := db.SetUserVersion(context.Background(), tx, 0) return err } // accountsRound returns the tracker balances round number, and the round of the hash tree // if the hash of the tree doesn't exists, it returns zero. func accountsRound(tx *sql.Tx) (rnd basics.Round, hashrnd basics.Round, err error) { err = tx.QueryRow("SELECT rnd FROM acctrounds WHERE id='acctbase'").Scan(&rnd) if err != nil { return } err = tx.QueryRow("SELECT rnd FROM acctrounds WHERE id='hashbase'").Scan(&hashrnd) if err == sql.ErrNoRows { hashrnd = basics.Round(0) err = nil } return } func accountsDbInit(r db.Queryable, w db.Queryable) (*accountsDbQueries, error) { var err error qs := &accountsDbQueries{} qs.listCreatablesStmt, err = r.Prepare("SELECT rnd, asset, creator FROM acctrounds LEFT JOIN assetcreators ON assetcreators.asset <= ? AND assetcreators.ctype = ? WHERE acctrounds.id='acctbase' ORDER BY assetcreators.asset desc LIMIT ?") if err != nil { return nil, err } qs.lookupStmt, err = r.Prepare("SELECT rnd, data FROM acctrounds LEFT JOIN accountbase ON address=? WHERE id='acctbase'") if err != nil { return nil, err } qs.lookupCreatorStmt, err = r.Prepare("SELECT rnd, creator FROM acctrounds LEFT JOIN assetcreators ON asset = ? AND ctype = ? WHERE id='acctbase'") if err != nil { return nil, err } qs.deleteStoredCatchpoint, err = w.Prepare("DELETE FROM storedcatchpoints WHERE round=?") if err != nil { return nil, err } qs.insertStoredCatchpoint, err = w.Prepare("INSERT INTO storedcatchpoints(round, filename, catchpoint, filesize, pinned) VALUES(?, ?, ?, ?, 0)") if err != nil { return nil, err } qs.selectOldestsCatchpointFiles, err = r.Prepare("SELECT round, filename FROM storedcatchpoints WHERE pinned = 0 and round <= COALESCE((SELECT round FROM storedcatchpoints WHERE pinned = 0 ORDER BY round DESC LIMIT ?, 1),0) ORDER BY round ASC LIMIT ?") if err != nil { return nil, err } qs.selectCatchpointStateUint64, err = r.Prepare("SELECT intval FROM catchpointstate WHERE id=?") if err != nil { return nil, err } qs.deleteCatchpointState, err = r.Prepare("DELETE FROM catchpointstate WHERE id=?") if err != nil { return nil, err } qs.insertCatchpointStateUint64, err = r.Prepare("INSERT OR REPLACE INTO catchpointstate(id, intval) VALUES(?, ?)") if err != nil { return nil, err } qs.insertCatchpointStateString, err = r.Prepare("INSERT OR REPLACE INTO catchpointstate(id, strval) VALUES(?, ?)") if err != nil { return nil, err } qs.selectCatchpointStateString, err = r.Prepare("SELECT strval FROM catchpointstate WHERE id=?") if err != nil { return nil, err } return qs, nil } // listCreatables returns an array of CreatableLocator which have CreatableIndex smaller or equal to maxIdx and are of the provided CreatableType. func (qs *accountsDbQueries) listCreatables(maxIdx basics.CreatableIndex, maxResults uint64, ctype basics.CreatableType) (results []basics.CreatableLocator, dbRound basics.Round, err error) { err = db.Retry(func() error { // Query for assets in range rows, err := qs.listCreatablesStmt.Query(maxIdx, ctype, maxResults) if err != nil { return err } defer rows.Close() // For each row, copy into a new CreatableLocator and append to results var buf []byte var cl basics.CreatableLocator var creatableIndex sql.NullInt64 for rows.Next() { err = rows.Scan(&dbRound, &creatableIndex, &buf) if err != nil { return err } if !creatableIndex.Valid { // we received an entry without any index. This would happen only on the first entry when there are no creatables of the requested type. break } cl.Index = basics.CreatableIndex(creatableIndex.Int64) copy(cl.Creator[:], buf) cl.Type = ctype results = append(results, cl) } return nil }) return } func (qs *accountsDbQueries) lookupCreator(cidx basics.CreatableIndex, ctype basics.CreatableType) (addr basics.Address, ok bool, dbRound basics.Round, err error) { err = db.Retry(func() error { var buf []byte err := qs.lookupCreatorStmt.QueryRow(cidx, ctype).Scan(&dbRound, &buf) // this shouldn't happen unless we can't figure the round number. if err == sql.ErrNoRows { return fmt.Errorf("lookupCreator was unable to retrieve round number") } // Some other database error if err != nil { return err } if len(buf) > 0 { ok = true copy(addr[:], buf) } return nil }) return } // lookup looks up for a the account data given it's address. It returns the current database round and the matching // account data, if such was found. If no matching account data could be found for the given address, an empty account data would // be retrieved. func (qs *accountsDbQueries) lookup(addr basics.Address) (data basics.AccountData, dbRound basics.Round, err error) { err = db.Retry(func() error { var buf []byte err := qs.lookupStmt.QueryRow(addr[:]).Scan(&dbRound, &buf) if err == nil { if len(buf) > 0 { return protocol.Decode(buf, &data) } // we don't have that account, just return the database round. return nil } // this should never happen; it indicates that we don't have a current round in the acctrounds table. if err == sql.ErrNoRows { // Return the zero value of data return fmt.Errorf("unable to query account data for address %v : %w", addr, err) } return err }) return } func (qs *accountsDbQueries) storeCatchpoint(ctx context.Context, round basics.Round, fileName string, catchpoint string, fileSize int64) (err error) { err = db.Retry(func() (err error) { _, err = qs.deleteStoredCatchpoint.ExecContext(ctx, round) if err != nil || (fileName == "" && catchpoint == "" && fileSize == 0) { return } _, err = qs.insertStoredCatchpoint.ExecContext(ctx, round, fileName, catchpoint, fileSize) return }) return } func (qs *accountsDbQueries) getOldestCatchpointFiles(ctx context.Context, fileCount int, filesToKeep int) (fileNames map[basics.Round]string, err error) { err = db.Retry(func() (err error) { var rows *sql.Rows rows, err = qs.selectOldestsCatchpointFiles.QueryContext(ctx, filesToKeep, fileCount) if err != nil { return } defer rows.Close() fileNames = make(map[basics.Round]string) for rows.Next() { var fileName string var round basics.Round err = rows.Scan(&round, &fileName) if err != nil { return } fileNames[round] = fileName } err = rows.Err() return }) return } func (qs *accountsDbQueries) readCatchpointStateUint64(ctx context.Context, stateName catchpointState) (rnd uint64, def bool, err error) { var val sql.NullInt64 err = db.Retry(func() (err error) { err = qs.selectCatchpointStateUint64.QueryRowContext(ctx, stateName).Scan(&val) if err == sql.ErrNoRows || (err == nil && false == val.Valid) { val.Int64 = 0 // default to zero. err = nil def = true return } return err }) return uint64(val.Int64), def, err } func (qs *accountsDbQueries) writeCatchpointStateUint64(ctx context.Context, stateName catchpointState, setValue uint64) (cleared bool, err error) { err = db.Retry(func() (err error) { if setValue == 0 { _, err = qs.deleteCatchpointState.ExecContext(ctx, stateName) cleared = true return err } // we don't know if there is an entry in the table for this state, so we'll insert/replace it just in case. _, err = qs.insertCatchpointStateUint64.ExecContext(ctx, stateName, setValue) cleared = false return err }) return cleared, err } func (qs *accountsDbQueries) readCatchpointStateString(ctx context.Context, stateName catchpointState) (str string, def bool, err error) { var val sql.NullString err = db.Retry(func() (err error) { err = qs.selectCatchpointStateString.QueryRowContext(ctx, stateName).Scan(&val) if err == sql.ErrNoRows || (err == nil && false == val.Valid) { val.String = "" // default to empty string err = nil def = true return } return err }) return val.String, def, err } func (qs *accountsDbQueries) writeCatchpointStateString(ctx context.Context, stateName catchpointState, setValue string) (cleared bool, err error) { err = db.Retry(func() (err error) { if setValue == "" { _, err = qs.deleteCatchpointState.ExecContext(ctx, stateName) cleared = true return err } // we don't know if there is an entry in the table for this state, so we'll insert/replace it just in case. _, err = qs.insertCatchpointStateString.ExecContext(ctx, stateName, setValue) cleared = false return err }) return cleared, err } func (qs *accountsDbQueries) close() { preparedQueries := []**sql.Stmt{ &qs.listCreatablesStmt, &qs.lookupStmt, &qs.lookupCreatorStmt, &qs.deleteStoredCatchpoint, &qs.insertStoredCatchpoint, &qs.selectOldestsCatchpointFiles, &qs.selectCatchpointStateUint64, &qs.deleteCatchpointState, &qs.insertCatchpointStateUint64, &qs.selectCatchpointStateString, &qs.insertCatchpointStateString, } for _, preparedQuery := range preparedQueries { if (*preparedQuery) != nil { (*preparedQuery).Close() *preparedQuery = nil } } } // accountsOnlineTop returns the top n online accounts starting at position offset // (that is, the top offset'th account through the top offset+n-1'th account). // // The accounts are sorted by their normalized balance and address. The normalized // balance has to do with the reward parts of online account balances. See the // normalization procedure in AccountData.NormalizedOnlineBalance(). // // Note that this does not check if the accounts have a vote key valid for any // particular round (past, present, or future). func accountsOnlineTop(tx *sql.Tx, offset, n uint64, proto config.ConsensusParams) (map[basics.Address]*onlineAccount, error) { rows, err := tx.Query("SELECT address, data FROM accountbase WHERE normalizedonlinebalance>0 ORDER BY normalizedonlinebalance DESC, address DESC LIMIT ? OFFSET ?", n, offset) if err != nil { return nil, err } defer rows.Close() res := make(map[basics.Address]*onlineAccount, n) for rows.Next() { var addrbuf []byte var buf []byte err = rows.Scan(&addrbuf, &buf) if err != nil { return nil, err } var data basics.AccountData err = protocol.Decode(buf, &data) if err != nil { return nil, err } var addr basics.Address if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) return nil, err } copy(addr[:], addrbuf) res[addr] = accountDataToOnline(addr, &data, proto) } return res, rows.Err() } func accountsAll(tx *sql.Tx) (bals map[basics.Address]basics.AccountData, err error) { rows, err := tx.Query("SELECT address, data FROM accountbase") if err != nil { return } defer rows.Close() bals = make(map[basics.Address]basics.AccountData) for rows.Next() { var addrbuf []byte var buf []byte err = rows.Scan(&addrbuf, &buf) if err != nil { return } var data basics.AccountData err = protocol.Decode(buf, &data) if err != nil { return } var addr basics.Address if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) return } copy(addr[:], addrbuf) bals[addr] = data } err = rows.Err() return } func accountsTotals(tx *sql.Tx, catchpointStaging bool) (totals AccountTotals, err error) { id := "" if catchpointStaging { id = "catchpointStaging" } row := tx.QueryRow("SELECT online, onlinerewardunits, offline, offlinerewardunits, notparticipating, notparticipatingrewardunits, rewardslevel FROM accounttotals WHERE id=?", id) err = row.Scan(&totals.Online.Money.Raw, &totals.Online.RewardUnits, &totals.Offline.Money.Raw, &totals.Offline.RewardUnits, &totals.NotParticipating.Money.Raw, &totals.NotParticipating.RewardUnits, &totals.RewardsLevel) return } func accountsPutTotals(tx *sql.Tx, totals AccountTotals, catchpointStaging bool) error { id := "" if catchpointStaging { id = "catchpointStaging" } _, err := tx.Exec("REPLACE INTO accounttotals (id, online, onlinerewardunits, offline, offlinerewardunits, notparticipating, notparticipatingrewardunits, rewardslevel) VALUES (?, ?, ?, ?, ?, ?, ?, ?)", id, totals.Online.Money.Raw, totals.Online.RewardUnits, totals.Offline.Money.Raw, totals.Offline.RewardUnits, totals.NotParticipating.Money.Raw, totals.NotParticipating.RewardUnits, totals.RewardsLevel) return err } // accountsNewRound updates the accountbase and assetcreators by applying the provided deltas to the accounts / creatables. func accountsNewRound(tx *sql.Tx, updates map[basics.Address]accountDelta, creatables map[basics.CreatableIndex]modifiedCreatable, proto config.ConsensusParams) (err error) { var insertCreatableIdxStmt, deleteCreatableIdxStmt, deleteStmt, replaceStmt *sql.Stmt deleteStmt, err = tx.Prepare("DELETE FROM accountbase WHERE address=?") if err != nil { return } defer deleteStmt.Close() replaceStmt, err = tx.Prepare("REPLACE INTO accountbase (address, normalizedonlinebalance, data) VALUES (?, ?, ?)") if err != nil { return } defer replaceStmt.Close() for addr, data := range updates { if data.new.IsZero() { // prune empty accounts _, err = deleteStmt.Exec(addr[:]) } else { normBalance := data.new.NormalizedOnlineBalance(proto) _, err = replaceStmt.Exec(addr[:], normBalance, protocol.Encode(&data.new)) } if err != nil { return } } if len(creatables) > 0 { insertCreatableIdxStmt, err = tx.Prepare("INSERT INTO assetcreators (asset, creator, ctype) VALUES (?, ?, ?)") if err != nil { return } defer insertCreatableIdxStmt.Close() deleteCreatableIdxStmt, err = tx.Prepare("DELETE FROM assetcreators WHERE asset=? AND ctype=?") if err != nil { return } defer deleteCreatableIdxStmt.Close() for cidx, cdelta := range creatables { if cdelta.created { _, err = insertCreatableIdxStmt.Exec(cidx, cdelta.creator[:], cdelta.ctype) } else { _, err = deleteCreatableIdxStmt.Exec(cidx, cdelta.ctype) } if err != nil { return } } } return } // totalsNewRounds updates the accountsTotals by applying series of round changes func totalsNewRounds(tx *sql.Tx, updates []map[basics.Address]accountDelta, accountTotals []AccountTotals, protos []config.ConsensusParams) (err error) { var ot basics.OverflowTracker totals, err := accountsTotals(tx, false) if err != nil { return } for i := 0; i < len(updates); i++ { totals.applyRewards(accountTotals[i].RewardsLevel, &ot) for _, data := range updates[i] { totals.delAccount(protos[i], data.old, &ot) totals.addAccount(protos[i], data.new, &ot) } } if ot.Overflowed { err = fmt.Errorf("overflow computing totals") return } err = accountsPutTotals(tx, totals, false) if err != nil { return } return } // updates the round number associated with the current account data. func updateAccountsRound(tx *sql.Tx, rnd basics.Round, hashRound basics.Round) (err error) { res, err := tx.Exec("UPDATE acctrounds SET rnd=? WHERE id='acctbase' AND rnd<?", rnd, rnd) if err != nil { return } aff, err := res.RowsAffected() if err != nil { return } if aff != 1 { // try to figure out why we couldn't update the round number. var base basics.Round err = tx.QueryRow("SELECT rnd FROM acctrounds WHERE id='acctbase'").Scan(&base) if err != nil { return } if base > rnd { err = fmt.Errorf("newRound %d is not after base %d", rnd, base) return } else if base != rnd { err = fmt.Errorf("updateAccountsRound(acctbase, %d): expected to update 1 row but got %d", rnd, aff) return } } res, err = tx.Exec("INSERT OR REPLACE INTO acctrounds(id,rnd) VALUES('hashbase',?)", hashRound) if err != nil { return } aff, err = res.RowsAffected() if err != nil { return } if aff != 1 { err = fmt.Errorf("updateAccountsRound(hashbase,%d): expected to update 1 row but got %d", hashRound, aff) return } return } // totalAccounts returns the total number of accounts func totalAccounts(ctx context.Context, tx *sql.Tx) (total uint64, err error) { err = tx.QueryRowContext(ctx, "SELECT count(*) FROM accountbase").Scan(&total) if err == sql.ErrNoRows { total = 0 err = nil return } return } // reencodeAccounts reads all the accounts in the accountbase table, decode and reencode the account data. // if the account data is found to have a different encoding, it would update the encoded account on disk. // on return, it returns the number of modified accounts as well as an error ( if we had any ) func reencodeAccounts(ctx context.Context, tx *sql.Tx) (modifiedAccounts uint, err error) { modifiedAccounts = 0 scannedAccounts := 0 updateStmt, err := tx.PrepareContext(ctx, "UPDATE accountbase SET data = ? WHERE address = ?") if err != nil { return 0, err } rows, err := tx.QueryContext(ctx, "SELECT address, data FROM accountbase") if err != nil { return } defer rows.Close() var addr basics.Address for rows.Next() { // once every 1000 accounts we scan through, update the warning deadline. // as long as the last "chunk" takes less than one second, we should be good to go. // note that we should be quite liberal on timing here, since it might perform much slower // on low-power devices. if scannedAccounts%1000 == 0 { // The return value from ResetTransactionWarnDeadline can be safely ignored here since it would only default to writing the warning // message, which would let us know that it failed anyway. db.ResetTransactionWarnDeadline(ctx, tx, time.Now().Add(time.Second)) } var addrbuf []byte var preencodedAccountData []byte err = rows.Scan(&addrbuf, &preencodedAccountData) if err != nil { return } if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) return } copy(addr[:], addrbuf[:]) scannedAccounts++ // decode and re-encode: var decodedAccountData basics.AccountData err = protocol.Decode(preencodedAccountData, &decodedAccountData) if err != nil { return } reencodedAccountData := protocol.Encode(&decodedAccountData) if bytes.Compare(preencodedAccountData, reencodedAccountData) == 0 { // these are identical, no need to store re-encoded account data continue } // we need to update the encoded data. result, err := updateStmt.ExecContext(ctx, reencodedAccountData, addrbuf) if err != nil { return 0, err } rowsUpdated, err := result.RowsAffected() if err != nil { return 0, err } if rowsUpdated != 1 { return 0, fmt.Errorf("failed to update account %v, number of rows updated was %d instead of 1", addr, rowsUpdated) } modifiedAccounts++ } err = rows.Err() updateStmt.Close() return } type merkleCommitter struct { tx *sql.Tx deleteStmt *sql.Stmt insertStmt *sql.Stmt selectStmt *sql.Stmt } func makeMerkleCommitter(tx *sql.Tx, staging bool) (mc *merkleCommitter, err error) { mc = &merkleCommitter{tx: tx} accountHashesTable := "accounthashes" if staging { accountHashesTable = "catchpointaccounthashes" } mc.deleteStmt, err = tx.Prepare("DELETE FROM " + accountHashesTable + " WHERE id=?") if err != nil { return nil, err } mc.insertStmt, err = tx.Prepare("INSERT OR REPLACE INTO " + accountHashesTable + "(id, data) VALUES(?, ?)") if err != nil { return nil, err } mc.selectStmt, err = tx.Prepare("SELECT data FROM " + accountHashesTable + " WHERE id = ?") if err != nil { return nil, err } return mc, nil } // StorePage stores a single page in an in-memory persistence. func (mc *merkleCommitter) StorePage(page uint64, content []byte) error { if len(content) == 0 { _, err := mc.deleteStmt.Exec(page) return err } _, err := mc.insertStmt.Exec(page, content) return err } // LoadPage load a single page from an in-memory persistence. func (mc *merkleCommitter) LoadPage(page uint64) (content []byte, err error) { err = mc.selectStmt.QueryRow(page).Scan(&content) if err == sql.ErrNoRows { content = nil err = nil return } else if err != nil { return nil, err } return content, nil } // encodedAccountsBatchIter allows us to iterate over the accounts data stored in the accountbase table. type encodedAccountsBatchIter struct { rows *sql.Rows } // Next returns an array containing the account data, in the same way it appear in the database // returning accountCount accounts data at a time. func (iterator *encodedAccountsBatchIter) Next(ctx context.Context, tx *sql.Tx, accountCount int) (bals []encodedBalanceRecord, err error) { if iterator.rows == nil { iterator.rows, err = tx.QueryContext(ctx, "SELECT address, data FROM accountbase ORDER BY address") if err != nil { return } } // gather up to accountCount encoded accounts. bals = make([]encodedBalanceRecord, 0, accountCount) var addr basics.Address for iterator.rows.Next() { var addrbuf []byte var buf []byte err = iterator.rows.Scan(&addrbuf, &buf) if err != nil { iterator.Close() return } if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) return } copy(addr[:], addrbuf) bals = append(bals, encodedBalanceRecord{Address: addr, AccountData: buf}) if len(bals) == accountCount { // we're done with this iteration. return } } err = iterator.rows.Err() if err != nil { iterator.Close() return } // we just finished reading the table. iterator.Close() return } // Close shuts down the encodedAccountsBatchIter, releasing database resources. func (iterator *encodedAccountsBatchIter) Close() { if iterator.rows != nil { iterator.rows.Close() iterator.rows = nil } } // orderedAccountsIterStep is used by orderedAccountsIter to define the current step //msgp:ignore orderedAccountsIterStep type orderedAccountsIterStep int const ( // startup step oaiStepStartup = orderedAccountsIterStep(0) // delete old ordering table if we have any leftover from previous invocation oaiStepDeleteOldOrderingTable = orderedAccountsIterStep(0) // create new ordering table oaiStepCreateOrderingTable = orderedAccountsIterStep(1) // query the existing accounts oaiStepQueryAccounts = orderedAccountsIterStep(2) // iterate over the existing accounts and insert their hash & address into the staging ordering table oaiStepInsertAccountData = orderedAccountsIterStep(3) // create an index on the ordering table so that we can efficiently scan it. oaiStepCreateOrderingAccountIndex = orderedAccountsIterStep(4) // query the ordering table oaiStepSelectFromOrderedTable = orderedAccountsIterStep(5) // iterate over the ordering table oaiStepIterateOverOrderedTable = orderedAccountsIterStep(6) // cleanup and delete ordering table oaiStepShutdown = orderedAccountsIterStep(7) // do nothing as we're done. oaiStepDone = orderedAccountsIterStep(8) ) // orderedAccountsIter allows us to iterate over the accounts addresses in the order of the account hashes. type orderedAccountsIter struct { step orderedAccountsIterStep rows *sql.Rows tx *sql.Tx accountCount int insertStmt *sql.Stmt } // makeOrderedAccountsIter creates an ordered account iterator. Note that due to implementation reasons, // only a single iterator can be active at a time. func makeOrderedAccountsIter(tx *sql.Tx, accountCount int) *orderedAccountsIter { return &orderedAccountsIter{ tx: tx, accountCount: accountCount, step: oaiStepStartup, } } // accountAddressHash is used by Next to return a single account address and the associated hash. type accountAddressHash struct { address basics.Address digest []byte } // Next returns an array containing the account address and hash // the Next function works in multiple processing stages, where it first processs the current accounts and order them // followed by returning the ordered accounts. In the first phase, it would return empty accountAddressHash array // and sets the processedRecords to the number of accounts that were processed. On the second phase, the acct // would contain valid data ( and optionally the account data as well, if was asked in makeOrderedAccountsIter) and // the processedRecords would be zero. If err is sql.ErrNoRows it means that the iterator have completed it's work and no further // accounts exists. Otherwise, the caller is expected to keep calling "Next" to retrieve the next set of accounts // ( or let the Next function make some progress toward that goal ) func (iterator *orderedAccountsIter) Next(ctx context.Context) (acct []accountAddressHash, processedRecords int, err error) { if iterator.step == oaiStepDeleteOldOrderingTable { // although we're going to delete this table anyway when completing the iterator execution, we'll try to // clean up any intermediate table. _, err = iterator.tx.ExecContext(ctx, "DROP TABLE IF EXISTS accountsiteratorhashes") if err != nil { return } iterator.step = oaiStepCreateOrderingTable return } if iterator.step == oaiStepCreateOrderingTable { // create the temporary table _, err = iterator.tx.ExecContext(ctx, "CREATE TABLE accountsiteratorhashes(address blob, hash blob)") if err != nil { return } iterator.step = oaiStepQueryAccounts return } if iterator.step == oaiStepQueryAccounts { // iterate over the existing accounts iterator.rows, err = iterator.tx.QueryContext(ctx, "SELECT address, data FROM accountbase") if err != nil { return } // prepare the insert statement into the temporary table iterator.insertStmt, err = iterator.tx.PrepareContext(ctx, "INSERT INTO accountsiteratorhashes(address, hash) VALUES(?, ?)") if err != nil { return } iterator.step = oaiStepInsertAccountData return } if iterator.step == oaiStepInsertAccountData { var addr basics.Address count := 0 for iterator.rows.Next() { var addrbuf []byte var buf []byte err = iterator.rows.Scan(&addrbuf, &buf) if err != nil { iterator.Close(ctx) return } if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) iterator.Close(ctx) return } copy(addr[:], addrbuf) var accountData basics.AccountData err = protocol.Decode(buf, &accountData) if err != nil { iterator.Close(ctx) return } hash := accountHashBuilder(addr, accountData, buf) _, err = iterator.insertStmt.ExecContext(ctx, addrbuf, hash) if err != nil { iterator.Close(ctx) return } count++ if count == iterator.accountCount { // we're done with this iteration. processedRecords = count return } } processedRecords = count iterator.rows.Close() iterator.rows = nil iterator.insertStmt.Close() iterator.insertStmt = nil iterator.step = oaiStepCreateOrderingAccountIndex return } if iterator.step == oaiStepCreateOrderingAccountIndex { // create an index. It shown that even when we're making a single select statement in step 5, it would be better to have this index vs. not having it at all. // note that this index is using the rowid of the accountsiteratorhashes table. _, err = iterator.tx.ExecContext(ctx, "CREATE INDEX accountsiteratorhashesidx ON accountsiteratorhashes(hash)") if err != nil { iterator.Close(ctx) return } iterator.step = oaiStepSelectFromOrderedTable return } if iterator.step == oaiStepSelectFromOrderedTable { // select the data from the ordered table iterator.rows, err = iterator.tx.QueryContext(ctx, "SELECT address, hash FROM accountsiteratorhashes ORDER BY hash") if err != nil { iterator.Close(ctx) return } iterator.step = oaiStepIterateOverOrderedTable return } if iterator.step == oaiStepIterateOverOrderedTable { acct = make([]accountAddressHash, 0, iterator.accountCount) var addr basics.Address for iterator.rows.Next() { var addrbuf []byte var hash []byte err = iterator.rows.Scan(&addrbuf, &hash) if err != nil { iterator.Close(ctx) return } if len(addrbuf) != len(addr) { err = fmt.Errorf("Account DB address length mismatch: %d != %d", len(addrbuf), len(addr)) iterator.Close(ctx) return } copy(addr[:], addrbuf) acct = append(acct, accountAddressHash{address: addr, digest: hash}) if len(acct) == iterator.accountCount { // we're done with this iteration. return } } iterator.step = oaiStepShutdown iterator.rows.Close() iterator.rows = nil return } if iterator.step == oaiStepShutdown { err = iterator.Close(ctx) if err != nil { return } iterator.step = oaiStepDone // fallthrough } return nil, 0, sql.ErrNoRows } // Close shuts down the orderedAccountsBuilderIter, releasing database resources. func (iterator *orderedAccountsIter) Close(ctx context.Context) (err error) { if iterator.rows != nil { iterator.rows.Close() iterator.rows = nil } if iterator.insertStmt != nil { iterator.insertStmt.Close() iterator.insertStmt = nil } _, err = iterator.tx.ExecContext(ctx, "DROP TABLE IF EXISTS accountsiteratorhashes") return } // catchpointPendingHashesIterator allows us to iterate over the hashes in the catchpointpendinghashes table in their order. type catchpointPendingHashesIterator struct { hashCount int tx *sql.Tx rows *sql.Rows } // makeCatchpointPendingHashesIterator create a pending hashes iterator that retrieves the hashes in the catchpointpendinghashes table. func makeCatchpointPendingHashesIterator(hashCount int, tx *sql.Tx) *catchpointPendingHashesIterator { return &catchpointPendingHashesIterator{ hashCount: hashCount, tx: tx, } } // Next returns an array containing the hashes, returning HashCount hashes at a time. func (iterator *catchpointPendingHashesIterator) Next(ctx context.Context) (hashes [][]byte, err error) { if iterator.rows == nil { iterator.rows, err = iterator.tx.QueryContext(ctx, "SELECT data FROM catchpointpendinghashes ORDER BY data") if err != nil { return } } // gather up to accountCount encoded accounts. hashes = make([][]byte, 0, iterator.hashCount) for iterator.rows.Next() { var hash []byte err = iterator.rows.Scan(&hash) if err != nil { iterator.Close() return } hashes = append(hashes, hash) if len(hashes) == iterator.hashCount { // we're done with this iteration. return } } err = iterator.rows.Err() if err != nil { iterator.Close() return } // we just finished reading the table. iterator.Close() return } // Close shuts down the catchpointPendingHashesIterator, releasing database resources. func (iterator *catchpointPendingHashesIterator) Close() { if iterator.rows != nil { iterator.rows.Close() iterator.rows = nil } }
1
41,221
Can ndelta differ depending on when the deltas are compacted? That is, when intermediate updates are dropped?
algorand-go-algorand
go
@@ -21,13 +21,12 @@ import net.sourceforge.pmd.lang.rule.xpath.JaxenXPathRuleQuery; import net.sourceforge.pmd.lang.rule.xpath.SaxonXPathRuleQuery; import net.sourceforge.pmd.lang.rule.xpath.XPathRuleQuery; import net.sourceforge.pmd.properties.EnumeratedProperty; -import net.sourceforge.pmd.properties.PropertySource; import net.sourceforge.pmd.properties.StringProperty; /** * Rule that tries to match an XPath expression against a DOM view of an AST. - * - * <p>This rule needs a "xpath" property value in order to function. + * <p> + * <p>This rule needs a "xpath" property value in order to function.</p> */ public class XPathRule extends AbstractRule {
1
/** * BSD-style license; for more info see http://pmd.sourceforge.net/license.html */ package net.sourceforge.pmd.lang.rule; import static net.sourceforge.pmd.lang.rule.xpath.XPathRuleQuery.XPATH_1_0; import static net.sourceforge.pmd.lang.rule.xpath.XPathRuleQuery.XPATH_1_0_COMPATIBILITY; import static net.sourceforge.pmd.lang.rule.xpath.XPathRuleQuery.XPATH_2_0; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.commons.lang3.StringUtils; import net.sourceforge.pmd.RuleContext; import net.sourceforge.pmd.lang.ast.Node; import net.sourceforge.pmd.lang.rule.xpath.JaxenXPathRuleQuery; import net.sourceforge.pmd.lang.rule.xpath.SaxonXPathRuleQuery; import net.sourceforge.pmd.lang.rule.xpath.XPathRuleQuery; import net.sourceforge.pmd.properties.EnumeratedProperty; import net.sourceforge.pmd.properties.PropertySource; import net.sourceforge.pmd.properties.StringProperty; /** * Rule that tries to match an XPath expression against a DOM view of an AST. * * <p>This rule needs a "xpath" property value in order to function. */ public class XPathRule extends AbstractRule { public static final StringProperty XPATH_DESCRIPTOR = new StringProperty("xpath", "XPath expression", "", 1.0f); private static final Map<String, String> XPATH_VERSIONS; static { Map<String, String> tmp = new HashMap<>(); tmp.put(XPATH_1_0, XPATH_1_0); tmp.put(XPATH_1_0_COMPATIBILITY, XPATH_1_0_COMPATIBILITY); tmp.put(XPATH_2_0, XPATH_2_0); XPATH_VERSIONS = Collections.unmodifiableMap(tmp); } public static final EnumeratedProperty<String> VERSION_DESCRIPTOR = new EnumeratedProperty<>("version", "XPath specification version", XPATH_VERSIONS, XPATH_1_0, String.class, 2.0f); private XPathRuleQuery xpathRuleQuery; public XPathRule() { definePropertyDescriptor(XPATH_DESCRIPTOR); definePropertyDescriptor(VERSION_DESCRIPTOR); } public XPathRule(String xPath) { this(); setXPath(xPath); } public void setXPath(String xPath) { setProperty(XPathRule.XPATH_DESCRIPTOR, xPath); } public void setVersion(String version) { setProperty(XPathRule.VERSION_DESCRIPTOR, version); } /** * Apply the rule to all nodes. */ @Override public void apply(List<? extends Node> nodes, RuleContext ctx) { for (Node node : nodes) { evaluate(node, ctx); } } /** * Evaluate the XPath query with the AST node. All matches are reported as * violations. * * @param node * The Node that to be checked. * @param data * The RuleContext. */ public void evaluate(Node node, RuleContext data) { init(); List<Node> nodes = xpathRuleQuery.evaluate(node, data); if (nodes != null) { for (Node n : nodes) { addViolation(data, n, n.getImage()); } } } @Override public List<String> getRuleChainVisits() { if (init()) { for (String nodeName : xpathRuleQuery.getRuleChainVisits()) { super.addRuleChainVisit(nodeName); } } return super.getRuleChainVisits(); } private boolean init() { if (xpathRuleQuery == null) { String xpath = getProperty(XPATH_DESCRIPTOR); String version = getProperty(VERSION_DESCRIPTOR); if (XPATH_1_0.equals(version)) { xpathRuleQuery = new JaxenXPathRuleQuery(); } else { xpathRuleQuery = new SaxonXPathRuleQuery(); } xpathRuleQuery.setXPath(xpath); xpathRuleQuery.setVersion(version); xpathRuleQuery.setProperties(this.getPropertiesByPropertyDescriptor()); return true; } return false; } public boolean hasXPathExpression() { return StringUtils.isNotBlank(getProperty(XPATH_DESCRIPTOR)); } /** * @see PropertySource#dysfunctionReason() */ @Override public String dysfunctionReason() { return hasXPathExpression() ? null : "Missing xPath expression"; } }
1
13,487
Our checkstyle config likes it better when the `<p>` is before the first word of the next paragraph, and not on a blank line
pmd-pmd
java
@@ -1498,6 +1498,8 @@ func (c *linuxContainer) criuSwrk(process *Process, req *criurpc.CriuReq, opts * if err := cmd.Start(); err != nil { return err } + // we close criuServer so that even if CRIU crashes or unexpectedly exits, runc will not hang. + criuServer.Close() // cmd.Process will be replaced by a restored init. criuProcess := cmd.Process
1
// +build linux package libcontainer import ( "bytes" "encoding/json" "errors" "fmt" "io" "io/ioutil" "net" "os" "os/exec" "path/filepath" "reflect" "strings" "sync" "syscall" // only for SysProcAttr and Signal "time" securejoin "github.com/cyphar/filepath-securejoin" "github.com/opencontainers/runc/libcontainer/cgroups" "github.com/opencontainers/runc/libcontainer/configs" "github.com/opencontainers/runc/libcontainer/intelrdt" "github.com/opencontainers/runc/libcontainer/system" "github.com/opencontainers/runc/libcontainer/utils" "github.com/opencontainers/runtime-spec/specs-go" criurpc "github.com/checkpoint-restore/go-criu/rpc" "github.com/golang/protobuf/proto" "github.com/sirupsen/logrus" "github.com/vishvananda/netlink/nl" "golang.org/x/sys/unix" ) const stdioFdCount = 3 type linuxContainer struct { id string root string config *configs.Config cgroupManager cgroups.Manager intelRdtManager intelrdt.Manager initPath string initArgs []string initProcess parentProcess initProcessStartTime uint64 criuPath string newuidmapPath string newgidmapPath string m sync.Mutex criuVersion int state containerState created time.Time } // State represents a running container's state type State struct { BaseState // Platform specific fields below here // Specified if the container was started under the rootless mode. // Set to true if BaseState.Config.RootlessEUID && BaseState.Config.RootlessCgroups Rootless bool `json:"rootless"` // Path to all the cgroups setup for a container. Key is cgroup subsystem name // with the value as the path. CgroupPaths map[string]string `json:"cgroup_paths"` // NamespacePaths are filepaths to the container's namespaces. Key is the namespace type // with the value as the path. NamespacePaths map[configs.NamespaceType]string `json:"namespace_paths"` // Container's standard descriptors (std{in,out,err}), needed for checkpoint and restore ExternalDescriptors []string `json:"external_descriptors,omitempty"` // Intel RDT "resource control" filesystem path IntelRdtPath string `json:"intel_rdt_path"` } // Container is a libcontainer container object. // // Each container is thread-safe within the same process. Since a container can // be destroyed by a separate process, any function may return that the container // was not found. type Container interface { BaseContainer // Methods below here are platform specific // Checkpoint checkpoints the running container's state to disk using the criu(8) utility. // // errors: // Systemerror - System error. Checkpoint(criuOpts *CriuOpts) error // Restore restores the checkpointed container to a running state using the criu(8) utility. // // errors: // Systemerror - System error. Restore(process *Process, criuOpts *CriuOpts) error // If the Container state is RUNNING or CREATED, sets the Container state to PAUSING and pauses // the execution of any user processes. Asynchronously, when the container finished being paused the // state is changed to PAUSED. // If the Container state is PAUSED, do nothing. // // errors: // ContainerNotExists - Container no longer exists, // ContainerNotRunning - Container not running or created, // Systemerror - System error. Pause() error // If the Container state is PAUSED, resumes the execution of any user processes in the // Container before setting the Container state to RUNNING. // If the Container state is RUNNING, do nothing. // // errors: // ContainerNotExists - Container no longer exists, // ContainerNotPaused - Container is not paused, // Systemerror - System error. Resume() error // NotifyOOM returns a read-only channel signaling when the container receives an OOM notification. // // errors: // Systemerror - System error. NotifyOOM() (<-chan struct{}, error) // NotifyMemoryPressure returns a read-only channel signaling when the container reaches a given pressure level // // errors: // Systemerror - System error. NotifyMemoryPressure(level PressureLevel) (<-chan struct{}, error) } // ID returns the container's unique ID func (c *linuxContainer) ID() string { return c.id } // Config returns the container's configuration func (c *linuxContainer) Config() configs.Config { return *c.config } func (c *linuxContainer) Status() (Status, error) { c.m.Lock() defer c.m.Unlock() return c.currentStatus() } func (c *linuxContainer) State() (*State, error) { c.m.Lock() defer c.m.Unlock() return c.currentState() } func (c *linuxContainer) OCIState() (*specs.State, error) { c.m.Lock() defer c.m.Unlock() return c.currentOCIState() } func (c *linuxContainer) Processes() ([]int, error) { pids, err := c.cgroupManager.GetAllPids() if err != nil { return nil, newSystemErrorWithCause(err, "getting all container pids from cgroups") } return pids, nil } func (c *linuxContainer) Stats() (*Stats, error) { var ( err error stats = &Stats{} ) if stats.CgroupStats, err = c.cgroupManager.GetStats(); err != nil { return stats, newSystemErrorWithCause(err, "getting container stats from cgroups") } if c.intelRdtManager != nil { if stats.IntelRdtStats, err = c.intelRdtManager.GetStats(); err != nil { return stats, newSystemErrorWithCause(err, "getting container's Intel RDT stats") } } for _, iface := range c.config.Networks { switch iface.Type { case "veth": istats, err := getNetworkInterfaceStats(iface.HostInterfaceName) if err != nil { return stats, newSystemErrorWithCausef(err, "getting network stats for interface %q", iface.HostInterfaceName) } stats.Interfaces = append(stats.Interfaces, istats) } } return stats, nil } func (c *linuxContainer) Set(config configs.Config) error { c.m.Lock() defer c.m.Unlock() status, err := c.currentStatus() if err != nil { return err } if status == Stopped { return newGenericError(fmt.Errorf("container not running"), ContainerNotRunning) } if err := c.cgroupManager.Set(&config); err != nil { // Set configs back if err2 := c.cgroupManager.Set(c.config); err2 != nil { logrus.Warnf("Setting back cgroup configs failed due to error: %v, your state.json and actual configs might be inconsistent.", err2) } return err } if c.intelRdtManager != nil { if err := c.intelRdtManager.Set(&config); err != nil { // Set configs back if err2 := c.intelRdtManager.Set(c.config); err2 != nil { logrus.Warnf("Setting back intelrdt configs failed due to error: %v, your state.json and actual configs might be inconsistent.", err2) } return err } } // After config setting succeed, update config and states c.config = &config _, err = c.updateState(nil) return err } func (c *linuxContainer) Start(process *Process) error { c.m.Lock() defer c.m.Unlock() if process.Init { if err := c.createExecFifo(); err != nil { return err } } if err := c.start(process); err != nil { if process.Init { c.deleteExecFifo() } return err } return nil } func (c *linuxContainer) Run(process *Process) error { if err := c.Start(process); err != nil { return err } if process.Init { return c.exec() } return nil } func (c *linuxContainer) Exec() error { c.m.Lock() defer c.m.Unlock() return c.exec() } func (c *linuxContainer) exec() error { path := filepath.Join(c.root, execFifoFilename) pid := c.initProcess.pid() blockingFifoOpenCh := awaitFifoOpen(path) for { select { case result := <-blockingFifoOpenCh: return handleFifoResult(result) case <-time.After(time.Millisecond * 100): stat, err := system.Stat(pid) if err != nil || stat.State == system.Zombie { // could be because process started, ran, and completed between our 100ms timeout and our system.Stat() check. // see if the fifo exists and has data (with a non-blocking open, which will succeed if the writing process is complete). if err := handleFifoResult(fifoOpen(path, false)); err != nil { return errors.New("container process is already dead") } return nil } } } } func readFromExecFifo(execFifo io.Reader) error { data, err := ioutil.ReadAll(execFifo) if err != nil { return err } if len(data) <= 0 { return fmt.Errorf("cannot start an already running container") } return nil } func awaitFifoOpen(path string) <-chan openResult { fifoOpened := make(chan openResult) go func() { result := fifoOpen(path, true) fifoOpened <- result }() return fifoOpened } func fifoOpen(path string, block bool) openResult { flags := os.O_RDONLY if !block { flags |= syscall.O_NONBLOCK } f, err := os.OpenFile(path, flags, 0) if err != nil { return openResult{err: newSystemErrorWithCause(err, "open exec fifo for reading")} } return openResult{file: f} } func handleFifoResult(result openResult) error { if result.err != nil { return result.err } f := result.file defer f.Close() if err := readFromExecFifo(f); err != nil { return err } return os.Remove(f.Name()) } type openResult struct { file *os.File err error } func (c *linuxContainer) start(process *Process) error { parent, err := c.newParentProcess(process) if err != nil { return newSystemErrorWithCause(err, "creating new parent process") } parent.forwardChildLogs() if err := parent.start(); err != nil { // terminate the process to ensure that it properly is reaped. if err := ignoreTerminateErrors(parent.terminate()); err != nil { logrus.Warn(err) } return newSystemErrorWithCause(err, "starting container process") } // generate a timestamp indicating when the container was started c.created = time.Now().UTC() if process.Init { c.state = &createdState{ c: c, } state, err := c.updateState(parent) if err != nil { return err } c.initProcessStartTime = state.InitProcessStartTime if c.config.Hooks != nil { s, err := c.currentOCIState() if err != nil { return err } for i, hook := range c.config.Hooks.Poststart { if err := hook.Run(s); err != nil { if err := ignoreTerminateErrors(parent.terminate()); err != nil { logrus.Warn(err) } return newSystemErrorWithCausef(err, "running poststart hook %d", i) } } } } return nil } func (c *linuxContainer) Signal(s os.Signal, all bool) error { c.m.Lock() defer c.m.Unlock() if all { return signalAllProcesses(c.cgroupManager, s) } status, err := c.currentStatus() if err != nil { return err } // to avoid a PID reuse attack if status == Running || status == Created || status == Paused { if err := c.initProcess.signal(s); err != nil { return newSystemErrorWithCause(err, "signaling init process") } return nil } return newGenericError(fmt.Errorf("container not running"), ContainerNotRunning) } func (c *linuxContainer) createExecFifo() error { rootuid, err := c.Config().HostRootUID() if err != nil { return err } rootgid, err := c.Config().HostRootGID() if err != nil { return err } fifoName := filepath.Join(c.root, execFifoFilename) if _, err := os.Stat(fifoName); err == nil { return fmt.Errorf("exec fifo %s already exists", fifoName) } oldMask := unix.Umask(0000) if err := unix.Mkfifo(fifoName, 0622); err != nil { unix.Umask(oldMask) return err } unix.Umask(oldMask) return os.Chown(fifoName, rootuid, rootgid) } func (c *linuxContainer) deleteExecFifo() { fifoName := filepath.Join(c.root, execFifoFilename) os.Remove(fifoName) } // includeExecFifo opens the container's execfifo as a pathfd, so that the // container cannot access the statedir (and the FIFO itself remains // un-opened). It then adds the FifoFd to the given exec.Cmd as an inherited // fd, with _LIBCONTAINER_FIFOFD set to its fd number. func (c *linuxContainer) includeExecFifo(cmd *exec.Cmd) error { fifoName := filepath.Join(c.root, execFifoFilename) fifoFd, err := unix.Open(fifoName, unix.O_PATH|unix.O_CLOEXEC, 0) if err != nil { return err } cmd.ExtraFiles = append(cmd.ExtraFiles, os.NewFile(uintptr(fifoFd), fifoName)) cmd.Env = append(cmd.Env, fmt.Sprintf("_LIBCONTAINER_FIFOFD=%d", stdioFdCount+len(cmd.ExtraFiles)-1)) return nil } func (c *linuxContainer) newParentProcess(p *Process) (parentProcess, error) { parentInitPipe, childInitPipe, err := utils.NewSockPair("init") if err != nil { return nil, newSystemErrorWithCause(err, "creating new init pipe") } messageSockPair := filePair{parentInitPipe, childInitPipe} parentLogPipe, childLogPipe, err := os.Pipe() if err != nil { return nil, fmt.Errorf("Unable to create the log pipe: %s", err) } logFilePair := filePair{parentLogPipe, childLogPipe} cmd := c.commandTemplate(p, childInitPipe, childLogPipe) if !p.Init { return c.newSetnsProcess(p, cmd, messageSockPair, logFilePair) } // We only set up fifoFd if we're not doing a `runc exec`. The historic // reason for this is that previously we would pass a dirfd that allowed // for container rootfs escape (and not doing it in `runc exec` avoided // that problem), but we no longer do that. However, there's no need to do // this for `runc exec` so we just keep it this way to be safe. if err := c.includeExecFifo(cmd); err != nil { return nil, newSystemErrorWithCause(err, "including execfifo in cmd.Exec setup") } return c.newInitProcess(p, cmd, messageSockPair, logFilePair) } func (c *linuxContainer) commandTemplate(p *Process, childInitPipe *os.File, childLogPipe *os.File) *exec.Cmd { cmd := exec.Command(c.initPath, c.initArgs[1:]...) cmd.Args[0] = c.initArgs[0] cmd.Stdin = p.Stdin cmd.Stdout = p.Stdout cmd.Stderr = p.Stderr cmd.Dir = c.config.Rootfs if cmd.SysProcAttr == nil { cmd.SysProcAttr = &syscall.SysProcAttr{} } cmd.Env = append(cmd.Env, fmt.Sprintf("GOMAXPROCS=%s", os.Getenv("GOMAXPROCS"))) cmd.ExtraFiles = append(cmd.ExtraFiles, p.ExtraFiles...) if p.ConsoleSocket != nil { cmd.ExtraFiles = append(cmd.ExtraFiles, p.ConsoleSocket) cmd.Env = append(cmd.Env, fmt.Sprintf("_LIBCONTAINER_CONSOLE=%d", stdioFdCount+len(cmd.ExtraFiles)-1), ) } cmd.ExtraFiles = append(cmd.ExtraFiles, childInitPipe) cmd.Env = append(cmd.Env, fmt.Sprintf("_LIBCONTAINER_INITPIPE=%d", stdioFdCount+len(cmd.ExtraFiles)-1), fmt.Sprintf("_LIBCONTAINER_STATEDIR=%s", c.root), ) cmd.ExtraFiles = append(cmd.ExtraFiles, childLogPipe) cmd.Env = append(cmd.Env, fmt.Sprintf("_LIBCONTAINER_LOGPIPE=%d", stdioFdCount+len(cmd.ExtraFiles)-1), fmt.Sprintf("_LIBCONTAINER_LOGLEVEL=%s", p.LogLevel), ) // NOTE: when running a container with no PID namespace and the parent process spawning the container is // PID1 the pdeathsig is being delivered to the container's init process by the kernel for some reason // even with the parent still running. if c.config.ParentDeathSignal > 0 { cmd.SysProcAttr.Pdeathsig = syscall.Signal(c.config.ParentDeathSignal) } return cmd } func (c *linuxContainer) newInitProcess(p *Process, cmd *exec.Cmd, messageSockPair, logFilePair filePair) (*initProcess, error) { cmd.Env = append(cmd.Env, "_LIBCONTAINER_INITTYPE="+string(initStandard)) nsMaps := make(map[configs.NamespaceType]string) for _, ns := range c.config.Namespaces { if ns.Path != "" { nsMaps[ns.Type] = ns.Path } } _, sharePidns := nsMaps[configs.NEWPID] data, err := c.bootstrapData(c.config.Namespaces.CloneFlags(), nsMaps) if err != nil { return nil, err } init := &initProcess{ cmd: cmd, messageSockPair: messageSockPair, logFilePair: logFilePair, manager: c.cgroupManager, intelRdtManager: c.intelRdtManager, config: c.newInitConfig(p), container: c, process: p, bootstrapData: data, sharePidns: sharePidns, } c.initProcess = init return init, nil } func (c *linuxContainer) newSetnsProcess(p *Process, cmd *exec.Cmd, messageSockPair, logFilePair filePair) (*setnsProcess, error) { cmd.Env = append(cmd.Env, "_LIBCONTAINER_INITTYPE="+string(initSetns)) state, err := c.currentState() if err != nil { return nil, newSystemErrorWithCause(err, "getting container's current state") } // for setns process, we don't have to set cloneflags as the process namespaces // will only be set via setns syscall data, err := c.bootstrapData(0, state.NamespacePaths) if err != nil { return nil, err } return &setnsProcess{ cmd: cmd, cgroupPaths: c.cgroupManager.GetPaths(), rootlessCgroups: c.config.RootlessCgroups, intelRdtPath: state.IntelRdtPath, messageSockPair: messageSockPair, logFilePair: logFilePair, config: c.newInitConfig(p), process: p, bootstrapData: data, }, nil } func (c *linuxContainer) newInitConfig(process *Process) *initConfig { cfg := &initConfig{ Config: c.config, Args: process.Args, Env: process.Env, User: process.User, AdditionalGroups: process.AdditionalGroups, Cwd: process.Cwd, Capabilities: process.Capabilities, PassedFilesCount: len(process.ExtraFiles), ContainerId: c.ID(), NoNewPrivileges: c.config.NoNewPrivileges, RootlessEUID: c.config.RootlessEUID, RootlessCgroups: c.config.RootlessCgroups, AppArmorProfile: c.config.AppArmorProfile, ProcessLabel: c.config.ProcessLabel, Rlimits: c.config.Rlimits, } if process.NoNewPrivileges != nil { cfg.NoNewPrivileges = *process.NoNewPrivileges } if process.AppArmorProfile != "" { cfg.AppArmorProfile = process.AppArmorProfile } if process.Label != "" { cfg.ProcessLabel = process.Label } if len(process.Rlimits) > 0 { cfg.Rlimits = process.Rlimits } cfg.CreateConsole = process.ConsoleSocket != nil cfg.ConsoleWidth = process.ConsoleWidth cfg.ConsoleHeight = process.ConsoleHeight return cfg } func (c *linuxContainer) Destroy() error { c.m.Lock() defer c.m.Unlock() return c.state.destroy() } func (c *linuxContainer) Pause() error { c.m.Lock() defer c.m.Unlock() status, err := c.currentStatus() if err != nil { return err } switch status { case Running, Created: if err := c.cgroupManager.Freeze(configs.Frozen); err != nil { return err } return c.state.transition(&pausedState{ c: c, }) } return newGenericError(fmt.Errorf("container not running or created: %s", status), ContainerNotRunning) } func (c *linuxContainer) Resume() error { c.m.Lock() defer c.m.Unlock() status, err := c.currentStatus() if err != nil { return err } if status != Paused { return newGenericError(fmt.Errorf("container not paused"), ContainerNotPaused) } if err := c.cgroupManager.Freeze(configs.Thawed); err != nil { return err } return c.state.transition(&runningState{ c: c, }) } func (c *linuxContainer) NotifyOOM() (<-chan struct{}, error) { // XXX(cyphar): This requires cgroups. if c.config.RootlessCgroups { logrus.Warn("getting OOM notifications may fail if you don't have the full access to cgroups") } return notifyOnOOM(c.cgroupManager.GetPaths()) } func (c *linuxContainer) NotifyMemoryPressure(level PressureLevel) (<-chan struct{}, error) { // XXX(cyphar): This requires cgroups. if c.config.RootlessCgroups { logrus.Warn("getting memory pressure notifications may fail if you don't have the full access to cgroups") } return notifyMemoryPressure(c.cgroupManager.GetPaths(), level) } var criuFeatures *criurpc.CriuFeatures func (c *linuxContainer) checkCriuFeatures(criuOpts *CriuOpts, rpcOpts *criurpc.CriuOpts, criuFeat *criurpc.CriuFeatures) error { var t criurpc.CriuReqType t = criurpc.CriuReqType_FEATURE_CHECK // criu 1.8 => 10800 if err := c.checkCriuVersion(10800); err != nil { // Feature checking was introduced with CRIU 1.8. // Ignore the feature check if an older CRIU version is used // and just act as before. // As all automated PR testing is done using CRIU 1.7 this // code will not be tested by automated PR testing. return nil } // make sure the features we are looking for are really not from // some previous check criuFeatures = nil req := &criurpc.CriuReq{ Type: &t, // Theoretically this should not be necessary but CRIU // segfaults if Opts is empty. // Fixed in CRIU 2.12 Opts: rpcOpts, Features: criuFeat, } err := c.criuSwrk(nil, req, criuOpts, false, nil) if err != nil { logrus.Debugf("%s", err) return fmt.Errorf("CRIU feature check failed") } logrus.Debugf("Feature check says: %s", criuFeatures) missingFeatures := false // The outer if checks if the fields actually exist if (criuFeat.MemTrack != nil) && (criuFeatures.MemTrack != nil) { // The inner if checks if they are set to true if *criuFeat.MemTrack && !*criuFeatures.MemTrack { missingFeatures = true logrus.Debugf("CRIU does not support MemTrack") } } // This needs to be repeated for every new feature check. // Is there a way to put this in a function. Reflection? if (criuFeat.LazyPages != nil) && (criuFeatures.LazyPages != nil) { if *criuFeat.LazyPages && !*criuFeatures.LazyPages { missingFeatures = true logrus.Debugf("CRIU does not support LazyPages") } } if missingFeatures { return fmt.Errorf("CRIU is missing features") } return nil } func parseCriuVersion(path string) (int, error) { var x, y, z int out, err := exec.Command(path, "-V").Output() if err != nil { return 0, fmt.Errorf("Unable to execute CRIU command: %s", path) } x = 0 y = 0 z = 0 if ep := strings.Index(string(out), "-"); ep >= 0 { // criu Git version format var version string if sp := strings.Index(string(out), "GitID"); sp > 0 { version = string(out)[sp:ep] } else { return 0, fmt.Errorf("Unable to parse the CRIU version: %s", path) } n, err := fmt.Sscanf(version, "GitID: v%d.%d.%d", &x, &y, &z) // 1.5.2 if err != nil { n, err = fmt.Sscanf(version, "GitID: v%d.%d", &x, &y) // 1.6 y++ } else { z++ } if n < 2 || err != nil { return 0, fmt.Errorf("Unable to parse the CRIU version: %s %d %s", version, n, err) } } else { // criu release version format n, err := fmt.Sscanf(string(out), "Version: %d.%d.%d\n", &x, &y, &z) // 1.5.2 if err != nil { n, err = fmt.Sscanf(string(out), "Version: %d.%d\n", &x, &y) // 1.6 } if n < 2 || err != nil { return 0, fmt.Errorf("Unable to parse the CRIU version: %s %d %s", out, n, err) } } return x*10000 + y*100 + z, nil } func compareCriuVersion(criuVersion int, minVersion int) error { // simple function to perform the actual version compare if criuVersion < minVersion { return fmt.Errorf("CRIU version %d must be %d or higher", criuVersion, minVersion) } return nil } // This is used to store the result of criu version RPC var criuVersionRPC *criurpc.CriuVersion // checkCriuVersion checks Criu version greater than or equal to minVersion func (c *linuxContainer) checkCriuVersion(minVersion int) error { // If the version of criu has already been determined there is no need // to ask criu for the version again. Use the value from c.criuVersion. if c.criuVersion != 0 { return compareCriuVersion(c.criuVersion, minVersion) } // First try if this version of CRIU support the version RPC. // The CRIU version RPC was introduced with CRIU 3.0. // First, reset the variable for the RPC answer to nil criuVersionRPC = nil var t criurpc.CriuReqType t = criurpc.CriuReqType_VERSION req := &criurpc.CriuReq{ Type: &t, } err := c.criuSwrk(nil, req, nil, false, nil) if err != nil { return fmt.Errorf("CRIU version check failed: %s", err) } if criuVersionRPC != nil { logrus.Debugf("CRIU version: %s", criuVersionRPC) // major and minor are always set c.criuVersion = int(*criuVersionRPC.Major) * 10000 c.criuVersion += int(*criuVersionRPC.Minor) * 100 if criuVersionRPC.Sublevel != nil { c.criuVersion += int(*criuVersionRPC.Sublevel) } if criuVersionRPC.Gitid != nil { // runc's convention is that a CRIU git release is // always the same as increasing the minor by 1 c.criuVersion -= (c.criuVersion % 100) c.criuVersion += 100 } return compareCriuVersion(c.criuVersion, minVersion) } // This is CRIU without the version RPC and therefore // older than 3.0. Parsing the output is required. // This can be remove once runc does not work with criu older than 3.0 c.criuVersion, err = parseCriuVersion(c.criuPath) if err != nil { return err } return compareCriuVersion(c.criuVersion, minVersion) } const descriptorsFilename = "descriptors.json" func (c *linuxContainer) addCriuDumpMount(req *criurpc.CriuReq, m *configs.Mount) { mountDest := m.Destination if strings.HasPrefix(mountDest, c.config.Rootfs) { mountDest = mountDest[len(c.config.Rootfs):] } extMnt := &criurpc.ExtMountMap{ Key: proto.String(mountDest), Val: proto.String(mountDest), } req.Opts.ExtMnt = append(req.Opts.ExtMnt, extMnt) } func (c *linuxContainer) addMaskPaths(req *criurpc.CriuReq) error { for _, path := range c.config.MaskPaths { fi, err := os.Stat(fmt.Sprintf("/proc/%d/root/%s", c.initProcess.pid(), path)) if err != nil { if os.IsNotExist(err) { continue } return err } if fi.IsDir() { continue } extMnt := &criurpc.ExtMountMap{ Key: proto.String(path), Val: proto.String("/dev/null"), } req.Opts.ExtMnt = append(req.Opts.ExtMnt, extMnt) } return nil } func waitForCriuLazyServer(r *os.File, status string) error { data := make([]byte, 1) _, err := r.Read(data) if err != nil { return err } fd, err := os.OpenFile(status, os.O_TRUNC|os.O_WRONLY, os.ModeAppend) if err != nil { return err } _, err = fd.Write(data) if err != nil { return err } fd.Close() return nil } func (c *linuxContainer) handleCriuConfigurationFile(rpcOpts *criurpc.CriuOpts) { // CRIU will evaluate a configuration starting with release 3.11. // Settings in the configuration file will overwrite RPC settings. // Look for annotations. The annotation 'org.criu.config' // specifies if CRIU should use a different, container specific // configuration file. _, annotations := utils.Annotations(c.config.Labels) configFile, exists := annotations["org.criu.config"] if exists { // If the annotation 'org.criu.config' exists and is set // to a non-empty string, tell CRIU to use that as a // configuration file. If the file does not exist, CRIU // will just ignore it. if configFile != "" { rpcOpts.ConfigFile = proto.String(configFile) } // If 'org.criu.config' exists and is set to an empty // string, a runc specific CRIU configuration file will // be not set at all. } else { // If the mentioned annotation has not been found, specify // a default CRIU configuration file. rpcOpts.ConfigFile = proto.String("/etc/criu/runc.conf") } } func (c *linuxContainer) Checkpoint(criuOpts *CriuOpts) error { c.m.Lock() defer c.m.Unlock() // Checkpoint is unlikely to work if os.Geteuid() != 0 || system.RunningInUserNS(). // (CLI prints a warning) // TODO(avagin): Figure out how to make this work nicely. CRIU 2.0 has // support for doing unprivileged dumps, but the setup of // rootless containers might make this complicated. // criu 1.5.2 => 10502 if err := c.checkCriuVersion(10502); err != nil { return err } if criuOpts.ImagesDirectory == "" { return fmt.Errorf("invalid directory to save checkpoint") } // Since a container can be C/R'ed multiple times, // the checkpoint directory may already exist. if err := os.Mkdir(criuOpts.ImagesDirectory, 0700); err != nil && !os.IsExist(err) { return err } if criuOpts.WorkDirectory == "" { criuOpts.WorkDirectory = filepath.Join(c.root, "criu.work") } if err := os.Mkdir(criuOpts.WorkDirectory, 0700); err != nil && !os.IsExist(err) { return err } workDir, err := os.Open(criuOpts.WorkDirectory) if err != nil { return err } defer workDir.Close() imageDir, err := os.Open(criuOpts.ImagesDirectory) if err != nil { return err } defer imageDir.Close() rpcOpts := criurpc.CriuOpts{ ImagesDirFd: proto.Int32(int32(imageDir.Fd())), WorkDirFd: proto.Int32(int32(workDir.Fd())), LogLevel: proto.Int32(4), LogFile: proto.String("dump.log"), Root: proto.String(c.config.Rootfs), ManageCgroups: proto.Bool(true), NotifyScripts: proto.Bool(true), Pid: proto.Int32(int32(c.initProcess.pid())), ShellJob: proto.Bool(criuOpts.ShellJob), LeaveRunning: proto.Bool(criuOpts.LeaveRunning), TcpEstablished: proto.Bool(criuOpts.TcpEstablished), ExtUnixSk: proto.Bool(criuOpts.ExternalUnixConnections), FileLocks: proto.Bool(criuOpts.FileLocks), EmptyNs: proto.Uint32(criuOpts.EmptyNs), OrphanPtsMaster: proto.Bool(true), AutoDedup: proto.Bool(criuOpts.AutoDedup), LazyPages: proto.Bool(criuOpts.LazyPages), } c.handleCriuConfigurationFile(&rpcOpts) // If the container is running in a network namespace and has // a path to the network namespace configured, we will dump // that network namespace as an external namespace and we // will expect that the namespace exists during restore. // This basically means that CRIU will ignore the namespace // and expect to be setup correctly. nsPath := c.config.Namespaces.PathOf(configs.NEWNET) if nsPath != "" { // For this to work we need at least criu 3.11.0 => 31100. // As there was already a successful version check we will // not error out if it fails. runc will just behave as it used // to do and ignore external network namespaces. err := c.checkCriuVersion(31100) if err == nil { // CRIU expects the information about an external namespace // like this: --external net[<inode>]:<key> // This <key> is always 'extRootNetNS'. var netns syscall.Stat_t err = syscall.Stat(nsPath, &netns) if err != nil { return err } criuExternal := fmt.Sprintf("net[%d]:extRootNetNS", netns.Ino) rpcOpts.External = append(rpcOpts.External, criuExternal) } } if !cgroups.IsCgroup2UnifiedMode() && c.checkCriuVersion(31400) == nil { // CRIU currently cannot handle the v2 freezer correctly // before release 3.14. For older releases we are telling // CRIU to not use the cgroup v2 freezer. CRIU will pause // each process manually using ptrace(). if fcg := c.cgroupManager.GetPaths()["freezer"]; fcg != "" { rpcOpts.FreezeCgroup = proto.String(fcg) } } // append optional criu opts, e.g., page-server and port if criuOpts.PageServer.Address != "" && criuOpts.PageServer.Port != 0 { rpcOpts.Ps = &criurpc.CriuPageServerInfo{ Address: proto.String(criuOpts.PageServer.Address), Port: proto.Int32(criuOpts.PageServer.Port), } } //pre-dump may need parentImage param to complete iterative migration if criuOpts.ParentImage != "" { rpcOpts.ParentImg = proto.String(criuOpts.ParentImage) rpcOpts.TrackMem = proto.Bool(true) } // append optional manage cgroups mode if criuOpts.ManageCgroupsMode != 0 { // criu 1.7 => 10700 if err := c.checkCriuVersion(10700); err != nil { return err } mode := criurpc.CriuCgMode(criuOpts.ManageCgroupsMode) rpcOpts.ManageCgroupsMode = &mode } var t criurpc.CriuReqType if criuOpts.PreDump { feat := criurpc.CriuFeatures{ MemTrack: proto.Bool(true), } if err := c.checkCriuFeatures(criuOpts, &rpcOpts, &feat); err != nil { return err } t = criurpc.CriuReqType_PRE_DUMP } else { t = criurpc.CriuReqType_DUMP } req := &criurpc.CriuReq{ Type: &t, Opts: &rpcOpts, } if criuOpts.LazyPages { // lazy migration requested; check if criu supports it feat := criurpc.CriuFeatures{ LazyPages: proto.Bool(true), } if err := c.checkCriuFeatures(criuOpts, &rpcOpts, &feat); err != nil { return err } statusRead, statusWrite, err := os.Pipe() if err != nil { return err } rpcOpts.StatusFd = proto.Int32(int32(statusWrite.Fd())) go waitForCriuLazyServer(statusRead, criuOpts.StatusFd) } //no need to dump these information in pre-dump if !criuOpts.PreDump { for _, m := range c.config.Mounts { switch m.Device { case "bind": c.addCriuDumpMount(req, m) case "cgroup": if cgroups.IsCgroup2UnifiedMode() { c.addCriuDumpMount(req, m) continue } // cgroup v1 binds, err := getCgroupMounts(m) if err != nil { return err } for _, b := range binds { c.addCriuDumpMount(req, b) } } } if err := c.addMaskPaths(req); err != nil { return err } for _, node := range c.config.Devices { m := &configs.Mount{Destination: node.Path, Source: node.Path} c.addCriuDumpMount(req, m) } // Write the FD info to a file in the image directory fdsJSON, err := json.Marshal(c.initProcess.externalDescriptors()) if err != nil { return err } err = ioutil.WriteFile(filepath.Join(criuOpts.ImagesDirectory, descriptorsFilename), fdsJSON, 0600) if err != nil { return err } } err = c.criuSwrk(nil, req, criuOpts, false, nil) if err != nil { return err } return nil } func (c *linuxContainer) addCriuRestoreMount(req *criurpc.CriuReq, m *configs.Mount) { mountDest := m.Destination if strings.HasPrefix(mountDest, c.config.Rootfs) { mountDest = mountDest[len(c.config.Rootfs):] } extMnt := &criurpc.ExtMountMap{ Key: proto.String(mountDest), Val: proto.String(m.Source), } req.Opts.ExtMnt = append(req.Opts.ExtMnt, extMnt) } func (c *linuxContainer) restoreNetwork(req *criurpc.CriuReq, criuOpts *CriuOpts) { for _, iface := range c.config.Networks { switch iface.Type { case "veth": veth := new(criurpc.CriuVethPair) veth.IfOut = proto.String(iface.HostInterfaceName) veth.IfIn = proto.String(iface.Name) req.Opts.Veths = append(req.Opts.Veths, veth) case "loopback": // Do nothing } } for _, i := range criuOpts.VethPairs { veth := new(criurpc.CriuVethPair) veth.IfOut = proto.String(i.HostInterfaceName) veth.IfIn = proto.String(i.ContainerInterfaceName) req.Opts.Veths = append(req.Opts.Veths, veth) } } // makeCriuRestoreMountpoints makes the actual mountpoints for the // restore using CRIU. This function is inspired from the code in // rootfs_linux.go func (c *linuxContainer) makeCriuRestoreMountpoints(m *configs.Mount) error { switch m.Device { case "cgroup": // Do nothing for cgroup, CRIU should handle it case "bind": // The prepareBindMount() function checks if source // exists. So it cannot be used for other filesystem types. if err := prepareBindMount(m, c.config.Rootfs); err != nil { return err } default: // for all other file-systems just create the mountpoints dest, err := securejoin.SecureJoin(c.config.Rootfs, m.Destination) if err != nil { return err } if err := checkProcMount(c.config.Rootfs, dest, ""); err != nil { return err } m.Destination = dest if err := os.MkdirAll(dest, 0755); err != nil { return err } } return nil } // isPathInPrefixList is a small function for CRIU restore to make sure // mountpoints, which are on a tmpfs, are not created in the roofs func isPathInPrefixList(path string, prefix []string) bool { for _, p := range prefix { if strings.HasPrefix(path, p+"/") { return true } } return false } // prepareCriuRestoreMounts tries to set up the rootfs of the // container to be restored in the same way runc does it for // initial container creation. Even for a read-only rootfs container // runc modifies the rootfs to add mountpoints which do not exist. // This function also creates missing mountpoints as long as they // are not on top of a tmpfs, as CRIU will restore tmpfs content anyway. func (c *linuxContainer) prepareCriuRestoreMounts(mounts []*configs.Mount) error { // First get a list of a all tmpfs mounts tmpfs := []string{} for _, m := range mounts { switch m.Device { case "tmpfs": tmpfs = append(tmpfs, m.Destination) } } // Now go through all mounts and create the mountpoints // if the mountpoints are not on a tmpfs, as CRIU will // restore the complete tmpfs content from its checkpoint. for _, m := range mounts { if !isPathInPrefixList(m.Destination, tmpfs) { if err := c.makeCriuRestoreMountpoints(m); err != nil { return err } } } return nil } func (c *linuxContainer) Restore(process *Process, criuOpts *CriuOpts) error { c.m.Lock() defer c.m.Unlock() var extraFiles []*os.File // Restore is unlikely to work if os.Geteuid() != 0 || system.RunningInUserNS(). // (CLI prints a warning) // TODO(avagin): Figure out how to make this work nicely. CRIU doesn't have // support for unprivileged restore at the moment. // criu 1.5.2 => 10502 if err := c.checkCriuVersion(10502); err != nil { return err } if criuOpts.WorkDirectory == "" { criuOpts.WorkDirectory = filepath.Join(c.root, "criu.work") } // Since a container can be C/R'ed multiple times, // the work directory may already exist. if err := os.Mkdir(criuOpts.WorkDirectory, 0700); err != nil && !os.IsExist(err) { return err } workDir, err := os.Open(criuOpts.WorkDirectory) if err != nil { return err } defer workDir.Close() if criuOpts.ImagesDirectory == "" { return fmt.Errorf("invalid directory to restore checkpoint") } imageDir, err := os.Open(criuOpts.ImagesDirectory) if err != nil { return err } defer imageDir.Close() // CRIU has a few requirements for a root directory: // * it must be a mount point // * its parent must not be overmounted // c.config.Rootfs is bind-mounted to a temporary directory // to satisfy these requirements. root := filepath.Join(c.root, "criu-root") if err := os.Mkdir(root, 0755); err != nil { return err } defer os.Remove(root) root, err = filepath.EvalSymlinks(root) if err != nil { return err } err = unix.Mount(c.config.Rootfs, root, "", unix.MS_BIND|unix.MS_REC, "") if err != nil { return err } defer unix.Unmount(root, unix.MNT_DETACH) t := criurpc.CriuReqType_RESTORE req := &criurpc.CriuReq{ Type: &t, Opts: &criurpc.CriuOpts{ ImagesDirFd: proto.Int32(int32(imageDir.Fd())), WorkDirFd: proto.Int32(int32(workDir.Fd())), EvasiveDevices: proto.Bool(true), LogLevel: proto.Int32(4), LogFile: proto.String("restore.log"), RstSibling: proto.Bool(true), Root: proto.String(root), ManageCgroups: proto.Bool(true), NotifyScripts: proto.Bool(true), ShellJob: proto.Bool(criuOpts.ShellJob), ExtUnixSk: proto.Bool(criuOpts.ExternalUnixConnections), TcpEstablished: proto.Bool(criuOpts.TcpEstablished), FileLocks: proto.Bool(criuOpts.FileLocks), EmptyNs: proto.Uint32(criuOpts.EmptyNs), OrphanPtsMaster: proto.Bool(true), AutoDedup: proto.Bool(criuOpts.AutoDedup), LazyPages: proto.Bool(criuOpts.LazyPages), }, } c.handleCriuConfigurationFile(req.Opts) // Same as during checkpointing. If the container has a specific network namespace // assigned to it, this now expects that the checkpoint will be restored in a // already created network namespace. nsPath := c.config.Namespaces.PathOf(configs.NEWNET) if nsPath != "" { // For this to work we need at least criu 3.11.0 => 31100. // As there was already a successful version check we will // not error out if it fails. runc will just behave as it used // to do and ignore external network namespaces. err := c.checkCriuVersion(31100) if err == nil { // CRIU wants the information about an existing network namespace // like this: --inherit-fd fd[<fd>]:<key> // The <key> needs to be the same as during checkpointing. // We are always using 'extRootNetNS' as the key in this. netns, err := os.Open(nsPath) defer netns.Close() if err != nil { logrus.Errorf("If a specific network namespace is defined it must exist: %s", err) return fmt.Errorf("Requested network namespace %v does not exist", nsPath) } inheritFd := new(criurpc.InheritFd) inheritFd.Key = proto.String("extRootNetNS") // The offset of four is necessary because 0, 1, 2 and 3 is already // used by stdin, stdout, stderr, 'criu swrk' socket. inheritFd.Fd = proto.Int32(int32(4 + len(extraFiles))) req.Opts.InheritFd = append(req.Opts.InheritFd, inheritFd) // All open FDs need to be transferred to CRIU via extraFiles extraFiles = append(extraFiles, netns) } } // This will modify the rootfs of the container in the same way runc // modifies the container during initial creation. if err := c.prepareCriuRestoreMounts(c.config.Mounts); err != nil { return err } for _, m := range c.config.Mounts { switch m.Device { case "bind": c.addCriuRestoreMount(req, m) case "cgroup": if cgroups.IsCgroup2UnifiedMode() { c.addCriuRestoreMount(req, m) continue } // cgroup v1 binds, err := getCgroupMounts(m) if err != nil { return err } for _, b := range binds { c.addCriuRestoreMount(req, b) } } } if len(c.config.MaskPaths) > 0 { m := &configs.Mount{Destination: "/dev/null", Source: "/dev/null"} c.addCriuRestoreMount(req, m) } for _, node := range c.config.Devices { m := &configs.Mount{Destination: node.Path, Source: node.Path} c.addCriuRestoreMount(req, m) } if criuOpts.EmptyNs&unix.CLONE_NEWNET == 0 { c.restoreNetwork(req, criuOpts) } // append optional manage cgroups mode if criuOpts.ManageCgroupsMode != 0 { // criu 1.7 => 10700 if err := c.checkCriuVersion(10700); err != nil { return err } mode := criurpc.CriuCgMode(criuOpts.ManageCgroupsMode) req.Opts.ManageCgroupsMode = &mode } var ( fds []string fdJSON []byte ) if fdJSON, err = ioutil.ReadFile(filepath.Join(criuOpts.ImagesDirectory, descriptorsFilename)); err != nil { return err } if err := json.Unmarshal(fdJSON, &fds); err != nil { return err } for i := range fds { if s := fds[i]; strings.Contains(s, "pipe:") { inheritFd := new(criurpc.InheritFd) inheritFd.Key = proto.String(s) inheritFd.Fd = proto.Int32(int32(i)) req.Opts.InheritFd = append(req.Opts.InheritFd, inheritFd) } } return c.criuSwrk(process, req, criuOpts, true, extraFiles) } func (c *linuxContainer) criuApplyCgroups(pid int, req *criurpc.CriuReq) error { // XXX: Do we need to deal with this case? AFAIK criu still requires root. if err := c.cgroupManager.Apply(pid); err != nil { return err } if err := c.cgroupManager.Set(c.config); err != nil { return newSystemError(err) } path := fmt.Sprintf("/proc/%d/cgroup", pid) cgroupsPaths, err := cgroups.ParseCgroupFile(path) if err != nil { return err } for c, p := range cgroupsPaths { cgroupRoot := &criurpc.CgroupRoot{ Ctrl: proto.String(c), Path: proto.String(p), } req.Opts.CgRoot = append(req.Opts.CgRoot, cgroupRoot) } return nil } func (c *linuxContainer) criuSwrk(process *Process, req *criurpc.CriuReq, opts *CriuOpts, applyCgroups bool, extraFiles []*os.File) error { fds, err := unix.Socketpair(unix.AF_LOCAL, unix.SOCK_SEQPACKET|unix.SOCK_CLOEXEC, 0) if err != nil { return err } var logPath string if opts != nil { logPath = filepath.Join(opts.WorkDirectory, req.GetOpts().GetLogFile()) } else { // For the VERSION RPC 'opts' is set to 'nil' and therefore // opts.WorkDirectory does not exist. Set logPath to "". logPath = "" } criuClient := os.NewFile(uintptr(fds[0]), "criu-transport-client") criuClientFileCon, err := net.FileConn(criuClient) criuClient.Close() if err != nil { return err } criuClientCon := criuClientFileCon.(*net.UnixConn) defer criuClientCon.Close() criuServer := os.NewFile(uintptr(fds[1]), "criu-transport-server") defer criuServer.Close() args := []string{"swrk", "3"} if c.criuVersion != 0 { // If the CRIU Version is still '0' then this is probably // the initial CRIU run to detect the version. Skip it. logrus.Debugf("Using CRIU %d at: %s", c.criuVersion, c.criuPath) } logrus.Debugf("Using CRIU with following args: %s", args) cmd := exec.Command(c.criuPath, args...) if process != nil { cmd.Stdin = process.Stdin cmd.Stdout = process.Stdout cmd.Stderr = process.Stderr } cmd.ExtraFiles = append(cmd.ExtraFiles, criuServer) if extraFiles != nil { cmd.ExtraFiles = append(cmd.ExtraFiles, extraFiles...) } if err := cmd.Start(); err != nil { return err } // cmd.Process will be replaced by a restored init. criuProcess := cmd.Process defer func() { criuClientCon.Close() _, err := criuProcess.Wait() if err != nil { return } }() if applyCgroups { err := c.criuApplyCgroups(criuProcess.Pid, req) if err != nil { return err } } var extFds []string if process != nil { extFds, err = getPipeFds(criuProcess.Pid) if err != nil { return err } } logrus.Debugf("Using CRIU in %s mode", req.GetType().String()) // In the case of criurpc.CriuReqType_FEATURE_CHECK req.GetOpts() // should be empty. For older CRIU versions it still will be // available but empty. criurpc.CriuReqType_VERSION actually // has no req.GetOpts(). if !(req.GetType() == criurpc.CriuReqType_FEATURE_CHECK || req.GetType() == criurpc.CriuReqType_VERSION) { val := reflect.ValueOf(req.GetOpts()) v := reflect.Indirect(val) for i := 0; i < v.NumField(); i++ { st := v.Type() name := st.Field(i).Name if strings.HasPrefix(name, "XXX_") { continue } value := val.MethodByName("Get" + name).Call([]reflect.Value{}) logrus.Debugf("CRIU option %s with value %v", name, value[0]) } } data, err := proto.Marshal(req) if err != nil { return err } _, err = criuClientCon.Write(data) if err != nil { return err } buf := make([]byte, 10*4096) oob := make([]byte, 4096) for true { n, oobn, _, _, err := criuClientCon.ReadMsgUnix(buf, oob) if err != nil { return err } if n == 0 { return fmt.Errorf("unexpected EOF") } if n == len(buf) { return fmt.Errorf("buffer is too small") } resp := new(criurpc.CriuResp) err = proto.Unmarshal(buf[:n], resp) if err != nil { return err } if !resp.GetSuccess() { typeString := req.GetType().String() if typeString == "VERSION" { // If the VERSION RPC fails this probably means that the CRIU // version is too old for this RPC. Just return 'nil'. return nil } return fmt.Errorf("criu failed: type %s errno %d\nlog file: %s", typeString, resp.GetCrErrno(), logPath) } t := resp.GetType() switch { case t == criurpc.CriuReqType_VERSION: logrus.Debugf("CRIU version: %s", resp) criuVersionRPC = resp.GetVersion() break case t == criurpc.CriuReqType_FEATURE_CHECK: logrus.Debugf("Feature check says: %s", resp) criuFeatures = resp.GetFeatures() case t == criurpc.CriuReqType_NOTIFY: if err := c.criuNotifications(resp, process, cmd, opts, extFds, oob[:oobn]); err != nil { return err } t = criurpc.CriuReqType_NOTIFY req = &criurpc.CriuReq{ Type: &t, NotifySuccess: proto.Bool(true), } data, err = proto.Marshal(req) if err != nil { return err } _, err = criuClientCon.Write(data) if err != nil { return err } continue case t == criurpc.CriuReqType_RESTORE: case t == criurpc.CriuReqType_DUMP: case t == criurpc.CriuReqType_PRE_DUMP: default: return fmt.Errorf("unable to parse the response %s", resp.String()) } break } criuClientCon.CloseWrite() // cmd.Wait() waits cmd.goroutines which are used for proxying file descriptors. // Here we want to wait only the CRIU process. st, err := criuProcess.Wait() if err != nil { return err } // In pre-dump mode CRIU is in a loop and waits for // the final DUMP command. // The current runc pre-dump approach, however, is // start criu in PRE_DUMP once for a single pre-dump // and not the whole series of pre-dump, pre-dump, ...m, dump // If we got the message CriuReqType_PRE_DUMP it means // CRIU was successful and we need to forcefully stop CRIU if !st.Success() && *req.Type != criurpc.CriuReqType_PRE_DUMP { return fmt.Errorf("criu failed: %s\nlog file: %s", st.String(), logPath) } return nil } // block any external network activity func lockNetwork(config *configs.Config) error { for _, config := range config.Networks { strategy, err := getStrategy(config.Type) if err != nil { return err } if err := strategy.detach(config); err != nil { return err } } return nil } func unlockNetwork(config *configs.Config) error { for _, config := range config.Networks { strategy, err := getStrategy(config.Type) if err != nil { return err } if err = strategy.attach(config); err != nil { return err } } return nil } func (c *linuxContainer) criuNotifications(resp *criurpc.CriuResp, process *Process, cmd *exec.Cmd, opts *CriuOpts, fds []string, oob []byte) error { notify := resp.GetNotify() if notify == nil { return fmt.Errorf("invalid response: %s", resp.String()) } logrus.Debugf("notify: %s\n", notify.GetScript()) switch { case notify.GetScript() == "post-dump": f, err := os.Create(filepath.Join(c.root, "checkpoint")) if err != nil { return err } f.Close() case notify.GetScript() == "network-unlock": if err := unlockNetwork(c.config); err != nil { return err } case notify.GetScript() == "network-lock": if err := lockNetwork(c.config); err != nil { return err } case notify.GetScript() == "setup-namespaces": if c.config.Hooks != nil { s, err := c.currentOCIState() if err != nil { return nil } s.Pid = int(notify.GetPid()) for i, hook := range c.config.Hooks.Prestart { if err := hook.Run(s); err != nil { return newSystemErrorWithCausef(err, "running prestart hook %d", i) } } } case notify.GetScript() == "post-restore": pid := notify.GetPid() p, err := os.FindProcess(int(pid)) if err != nil { return err } cmd.Process = p r, err := newRestoredProcess(cmd, fds) if err != nil { return err } process.ops = r if err := c.state.transition(&restoredState{ imageDir: opts.ImagesDirectory, c: c, }); err != nil { return err } // create a timestamp indicating when the restored checkpoint was started c.created = time.Now().UTC() if _, err := c.updateState(r); err != nil { return err } if err := os.Remove(filepath.Join(c.root, "checkpoint")); err != nil { if !os.IsNotExist(err) { logrus.Error(err) } } case notify.GetScript() == "orphan-pts-master": scm, err := unix.ParseSocketControlMessage(oob) if err != nil { return err } fds, err := unix.ParseUnixRights(&scm[0]) if err != nil { return err } master := os.NewFile(uintptr(fds[0]), "orphan-pts-master") defer master.Close() // While we can access console.master, using the API is a good idea. if err := utils.SendFd(process.ConsoleSocket, master.Name(), master.Fd()); err != nil { return err } } return nil } func (c *linuxContainer) updateState(process parentProcess) (*State, error) { if process != nil { c.initProcess = process } state, err := c.currentState() if err != nil { return nil, err } err = c.saveState(state) if err != nil { return nil, err } return state, nil } func (c *linuxContainer) saveState(s *State) error { f, err := os.Create(filepath.Join(c.root, stateFilename)) if err != nil { return err } defer f.Close() return utils.WriteJSON(f, s) } func (c *linuxContainer) deleteState() error { return os.Remove(filepath.Join(c.root, stateFilename)) } func (c *linuxContainer) currentStatus() (Status, error) { if err := c.refreshState(); err != nil { return -1, err } return c.state.status(), nil } // refreshState needs to be called to verify that the current state on the // container is what is true. Because consumers of libcontainer can use it // out of process we need to verify the container's status based on runtime // information and not rely on our in process info. func (c *linuxContainer) refreshState() error { paused, err := c.isPaused() if err != nil { return err } if paused { return c.state.transition(&pausedState{c: c}) } t := c.runType() switch t { case Created: return c.state.transition(&createdState{c: c}) case Running: return c.state.transition(&runningState{c: c}) } return c.state.transition(&stoppedState{c: c}) } func (c *linuxContainer) runType() Status { if c.initProcess == nil { return Stopped } pid := c.initProcess.pid() stat, err := system.Stat(pid) if err != nil { return Stopped } if stat.StartTime != c.initProcessStartTime || stat.State == system.Zombie || stat.State == system.Dead { return Stopped } // We'll create exec fifo and blocking on it after container is created, // and delete it after start container. if _, err := os.Stat(filepath.Join(c.root, execFifoFilename)); err == nil { return Created } return Running } func (c *linuxContainer) isPaused() (bool, error) { var fcg, filename, pausedState string if !cgroups.IsCgroup2UnifiedMode() { fcg = c.cgroupManager.GetPaths()["freezer"] if fcg == "" { // A container doesn't have a freezer cgroup return false, nil } filename = "freezer.state" pausedState = "FROZEN" } else { var err error fcg, err = c.cgroupManager.GetUnifiedPath() if err != nil { // should not happen return false, err } filename = "cgroup.freeze" pausedState = "1" } data, err := ioutil.ReadFile(filepath.Join(fcg, filename)) if err != nil { // If freezer cgroup is not mounted, the container would just be not paused. if os.IsNotExist(err) || errors.Is(err, syscall.ENODEV) { return false, nil } return false, newSystemErrorWithCause(err, "checking if container is paused") } return bytes.Equal(bytes.TrimSpace(data), []byte(pausedState)), nil } func (c *linuxContainer) currentState() (*State, error) { var ( startTime uint64 externalDescriptors []string pid = -1 ) if c.initProcess != nil { pid = c.initProcess.pid() startTime, _ = c.initProcess.startTime() externalDescriptors = c.initProcess.externalDescriptors() } intelRdtPath, err := intelrdt.GetIntelRdtPath(c.ID()) if err != nil { intelRdtPath = "" } state := &State{ BaseState: BaseState{ ID: c.ID(), Config: *c.config, InitProcessPid: pid, InitProcessStartTime: startTime, Created: c.created, }, Rootless: c.config.RootlessEUID && c.config.RootlessCgroups, CgroupPaths: c.cgroupManager.GetPaths(), IntelRdtPath: intelRdtPath, NamespacePaths: make(map[configs.NamespaceType]string), ExternalDescriptors: externalDescriptors, } if pid > 0 { for _, ns := range c.config.Namespaces { state.NamespacePaths[ns.Type] = ns.GetPath(pid) } for _, nsType := range configs.NamespaceTypes() { if !configs.IsNamespaceSupported(nsType) { continue } if _, ok := state.NamespacePaths[nsType]; !ok { ns := configs.Namespace{Type: nsType} state.NamespacePaths[ns.Type] = ns.GetPath(pid) } } } return state, nil } func (c *linuxContainer) currentOCIState() (*specs.State, error) { bundle, annotations := utils.Annotations(c.config.Labels) state := &specs.State{ Version: specs.Version, ID: c.ID(), Bundle: bundle, Annotations: annotations, } status, err := c.currentStatus() if err != nil { return nil, err } state.Status = status.String() if status != Stopped { if c.initProcess != nil { state.Pid = c.initProcess.pid() } } return state, nil } // orderNamespacePaths sorts namespace paths into a list of paths that we // can setns in order. func (c *linuxContainer) orderNamespacePaths(namespaces map[configs.NamespaceType]string) ([]string, error) { paths := []string{} for _, ns := range configs.NamespaceTypes() { // Remove namespaces that we don't need to join. if !c.config.Namespaces.Contains(ns) { continue } if p, ok := namespaces[ns]; ok && p != "" { // check if the requested namespace is supported if !configs.IsNamespaceSupported(ns) { return nil, newSystemError(fmt.Errorf("namespace %s is not supported", ns)) } // only set to join this namespace if it exists if _, err := os.Lstat(p); err != nil { return nil, newSystemErrorWithCausef(err, "running lstat on namespace path %q", p) } // do not allow namespace path with comma as we use it to separate // the namespace paths if strings.ContainsRune(p, ',') { return nil, newSystemError(fmt.Errorf("invalid path %s", p)) } paths = append(paths, fmt.Sprintf("%s:%s", configs.NsName(ns), p)) } } return paths, nil } func encodeIDMapping(idMap []configs.IDMap) ([]byte, error) { data := bytes.NewBuffer(nil) for _, im := range idMap { line := fmt.Sprintf("%d %d %d\n", im.ContainerID, im.HostID, im.Size) if _, err := data.WriteString(line); err != nil { return nil, err } } return data.Bytes(), nil } // bootstrapData encodes the necessary data in netlink binary format // as a io.Reader. // Consumer can write the data to a bootstrap program // such as one that uses nsenter package to bootstrap the container's // init process correctly, i.e. with correct namespaces, uid/gid // mapping etc. func (c *linuxContainer) bootstrapData(cloneFlags uintptr, nsMaps map[configs.NamespaceType]string) (io.Reader, error) { // create the netlink message r := nl.NewNetlinkRequest(int(InitMsg), 0) // write cloneFlags r.AddData(&Int32msg{ Type: CloneFlagsAttr, Value: uint32(cloneFlags), }) // write custom namespace paths if len(nsMaps) > 0 { nsPaths, err := c.orderNamespacePaths(nsMaps) if err != nil { return nil, err } r.AddData(&Bytemsg{ Type: NsPathsAttr, Value: []byte(strings.Join(nsPaths, ",")), }) } // write namespace paths only when we are not joining an existing user ns _, joinExistingUser := nsMaps[configs.NEWUSER] if !joinExistingUser { // write uid mappings if len(c.config.UidMappings) > 0 { if c.config.RootlessEUID && c.newuidmapPath != "" { r.AddData(&Bytemsg{ Type: UidmapPathAttr, Value: []byte(c.newuidmapPath), }) } b, err := encodeIDMapping(c.config.UidMappings) if err != nil { return nil, err } r.AddData(&Bytemsg{ Type: UidmapAttr, Value: b, }) } // write gid mappings if len(c.config.GidMappings) > 0 { b, err := encodeIDMapping(c.config.GidMappings) if err != nil { return nil, err } r.AddData(&Bytemsg{ Type: GidmapAttr, Value: b, }) if c.config.RootlessEUID && c.newgidmapPath != "" { r.AddData(&Bytemsg{ Type: GidmapPathAttr, Value: []byte(c.newgidmapPath), }) } if requiresRootOrMappingTool(c.config) { r.AddData(&Boolmsg{ Type: SetgroupAttr, Value: true, }) } } } if c.config.OomScoreAdj != nil { // write oom_score_adj r.AddData(&Bytemsg{ Type: OomScoreAdjAttr, Value: []byte(fmt.Sprintf("%d", *c.config.OomScoreAdj)), }) } // write rootless r.AddData(&Boolmsg{ Type: RootlessEUIDAttr, Value: c.config.RootlessEUID, }) return bytes.NewReader(r.Serialize()), nil } // ignoreTerminateErrors returns nil if the given err matches an error known // to indicate that the terminate occurred successfully or err was nil, otherwise // err is returned unaltered. func ignoreTerminateErrors(err error) error { if err == nil { return nil } s := err.Error() switch { case strings.Contains(s, "process already finished"), strings.Contains(s, "Wait was already called"): return nil } return err } func requiresRootOrMappingTool(c *configs.Config) bool { gidMap := []configs.IDMap{ {ContainerID: 0, HostID: os.Getegid(), Size: 1}, } return !reflect.DeepEqual(c.GidMappings, gidMap) }
1
19,029
This looks to be the only place where we return early before the close below, so if the "double close" is bothering people, closing manually here (and removing the `defer`) could be an option
opencontainers-runc
go
@@ -91,8 +91,8 @@ gulp.task( 'default', () => { ); } ); -gulp.task( 'qunit', function() { - execSync( 'node-qunit-phantomjs ./tests/qunit/index.html', { stdio: [ 0, 1, 2 ] } ); +gulp.task( 'jest', function() { + execSync( 'npm run test:js', { stdio: [ 0, 1, 2 ] } ); } ); gulp.task( 'phpunit', function() {
1
/** * Gulp config. * * Site Kit by Google, Copyright 2019 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * External dependencies */ import gulp from 'gulp'; import requireDir from 'require-dir'; import runSequence from 'run-sequence'; import livereload from 'gulp-livereload'; import { execSync } from 'child_process'; const phpunit = require( 'gulp-phpunit' ); requireDir( './gulp-tasks' ); /** * Gulp task to run all SVG processes in a sequential order. */ gulp.task( 'build', () => { runSequence( 'webpack', 'svg', 'imagemin', 'copy-vendor' ); } ); /** * Gulp task to watch for file changes and run the associated processes. */ gulp.task( 'watch', () => { livereload.listen( { basePath: 'dist' } ); gulp.watch( './assets/sass/**/*.scss', [ 'build' ] ); gulp.watch( './assets/svg/**/*.svg', [ 'build' ] ); gulp.watch( './assets/js/*.js', [ 'build' ] ); gulp.watch( './assets/js/modules/**/*.js', [ 'build' ] ); } ); /** * Gulp task to livereload file changes in browser. */ gulp.task( 'local', () => { runSequence( 'build', 'browser-sync' ); } ); /** * Gulp task to minify and combine svg's. */ gulp.task( 'svg', () => { runSequence( 'svgstore' ); runSequence( 'svgmin' ); } ); /** * Gulp task to run the default release processes in a sequential order. */ gulp.task( 'release', () => { runSequence( 'svg', 'imagemin', 'copy-vendor' ); } ); /** * Gulp task to run the default build processes in a sequential order. */ gulp.task( 'default', () => { runSequence( 'webpack', 'phpcs', 'copy-vendor' ); } ); gulp.task( 'qunit', function() { execSync( 'node-qunit-phantomjs ./tests/qunit/index.html', { stdio: [ 0, 1, 2 ] } ); } ); gulp.task( 'phpunit', function() { gulp.src( '' ) .pipe( phpunit( './vendor/bin/phpunit' ) ); } ); /** * Gulp task to run the default tests. */ gulp.task( 'test', () => { runSequence( 'qunit', 'phpunit' ); } );
1
24,765
This task can probably be deleted since we don't need gulp to run Jest.
google-site-kit-wp
js
@@ -23,6 +23,9 @@ require 'socket' module Selenium module WebDriver class SocketPoller + NOT_CONNECTED_ERRORS = [Errno::ECONNREFUSED, Errno::ENOTCONN, SocketError] + NOT_CONNECTED_ERRORS << Errno::EPERM if Platform.cygwin? + def initialize(host, port, timeout = 0, interval = 0.25) @host = host @port = Integer(port)
1
# encoding: utf-8 # # Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. require 'selenium/webdriver/common/platform' require 'socket' module Selenium module WebDriver class SocketPoller def initialize(host, port, timeout = 0, interval = 0.25) @host = host @port = Integer(port) @timeout = Float(timeout) @interval = interval end # # Returns true if the server is listening within the given timeout, # false otherwise. # # @return [Boolean] # def connected? with_timeout { listening? } end # # Returns true if the server has stopped listening within the given timeout, # false otherwise. # # @return [Boolean] # def closed? with_timeout { !listening? } end private CONNECT_TIMEOUT = 5 NOT_CONNECTED_ERRORS = [Errno::ECONNREFUSED, Errno::ENOTCONN, SocketError] NOT_CONNECTED_ERRORS << Errno::EPERM if Platform.cygwin? CONNECTED_ERRORS = [Errno::EISCONN] CONNECTED_ERRORS << Errno::EINVAL if Platform.windows? if Platform.jruby? # we use a plain TCPSocket here since JRuby has issues select()ing on a connecting socket # see http://jira.codehaus.org/browse/JRUBY-5165 def listening? TCPSocket.new(@host, @port).close true rescue *NOT_CONNECTED_ERRORS false end else def listening? addr = Socket.getaddrinfo(@host, @port, Socket::AF_INET, Socket::SOCK_STREAM) sock = Socket.new(Socket::AF_INET, Socket::SOCK_STREAM, 0) sockaddr = Socket.pack_sockaddr_in(@port, addr[0][3]) begin sock.connect_nonblock sockaddr rescue Errno::EINPROGRESS retry if IO.select(nil, [sock], nil, CONNECT_TIMEOUT) raise Errno::ECONNREFUSED rescue *CONNECTED_ERRORS # yay! end sock.close true rescue *NOT_CONNECTED_ERRORS sock.close if sock $stderr.puts [@host, @port].inspect if $DEBUG false end end def with_timeout max_time = time_now + @timeout ( return true if yield wait ) until time_now > max_time false end def wait sleep @interval end # for testability def time_now Time.now end end # SocketPoller end # WebDriver end # Selenium
1
13,776
Doesn't this need to include `Errno::ECONNRESET` to fix the issue?
SeleniumHQ-selenium
js
@@ -28,6 +28,19 @@ module Faker def quote fetch('movie.quote') end + + ## + # Produces a qirector from a movie. + # + # @return [String] + # + # @example + # Faker::Movie.qirector #=> "Quentin Tarantino" + # + # @faker.version next + def director + fetch('movie.director') + end end end end
1
# frozen_string_literal: true module Faker class Movie < Base class << self ## # Produces a title from a movie. # # @return [String] # # @example # Faker::Movie.title #=> "The Lord of the Rings: The Two Towers" # # @faker.version 2.13.0 def title fetch('movie.title') end ## # Produces a quote from a movie. # # @return [String] # # @example # Faker::Movie.quote #=> "Bumble bee tuna" # # @faker.version 1.8.1 def quote fetch('movie.quote') end end end end
1
10,228
never heard of a qirector... what's their role again? (also should be 'for a movie')
faker-ruby-faker
rb
@@ -86,6 +86,14 @@ kvstore::ResultCode QueryBoundProcessor::processVertex(PartitionID partId, Verte } } vResp.set_tag_data(std::move(td)); + } else if (tagContexts_.empty() && onlyVertexProps_) { + std::vector<cpp2::TagData> td; + auto ret = collectVertexProps(partId, vId, td); + if (ret != kvstore::ResultCode::ERR_KEY_NOT_FOUND + && ret != kvstore::ResultCode::SUCCEEDED) { + return ret; + } + vResp.set_tag_data(std::move(td)); } if (onlyVertexProps_) {
1
/* Copyright (c) 2018 vesoft inc. All rights reserved. * * This source code is licensed under Apache 2.0 License, * attached with Common Clause Condition 1.0, found in the LICENSES directory. */ #include "storage/query/QueryBoundProcessor.h" #include <algorithm> #include "time/Duration.h" #include "dataman/RowReader.h" #include "dataman/RowWriter.h" namespace nebula { namespace storage { kvstore::ResultCode QueryBoundProcessor::processEdgeImpl(const PartitionID partId, const VertexID vId, const EdgeType edgeType, const std::vector<PropContext>& props, FilterContext& fcontext, cpp2::VertexData& vdata) { RowSetWriter rsWriter; auto ret = collectEdgeProps( partId, vId, edgeType, props, &fcontext, [&, this](RowReader* reader, folly::StringPiece k, const std::vector<PropContext>& p) { RowWriter writer(rsWriter.schema()); PropsCollector collector(&writer); this->collectProps(reader, k, p, &fcontext, &collector); rsWriter.addRow(writer); }); if (ret != kvstore::ResultCode::SUCCEEDED) { return ret; } if (!rsWriter.data().empty()) { vdata.edge_data.emplace_back(apache::thrift::FragileConstructor::FRAGILE, edgeType, std::move(rsWriter.data())); } return ret; } kvstore::ResultCode QueryBoundProcessor::processEdge(PartitionID partId, VertexID vId, FilterContext& fcontext, cpp2::VertexData& vdata) { for (const auto& ec : edgeContexts_) { RowSetWriter rsWriter; auto edgeType = ec.first; auto& props = ec.second; if (!props.empty()) { CHECK(!onlyVertexProps_); auto ret = processEdgeImpl(partId, vId, edgeType, props, fcontext, vdata); if (ret != kvstore::ResultCode::SUCCEEDED) { return ret; } } } return kvstore::ResultCode::SUCCEEDED; } kvstore::ResultCode QueryBoundProcessor::processVertex(PartitionID partId, VertexID vId) { cpp2::VertexData vResp; vResp.set_vertex_id(vId); FilterContext fcontext; if (!tagContexts_.empty()) { std::vector<cpp2::TagData> td; for (auto& tc : tagContexts_) { RowWriter writer; PropsCollector collector(&writer); VLOG(3) << "partId " << partId << ", vId " << vId << ", tagId " << tc.tagId_ << ", prop size " << tc.props_.size(); auto ret = collectVertexProps(partId, vId, tc.tagId_, tc.props_, &fcontext, &collector); if (ret == kvstore::ResultCode::ERR_KEY_NOT_FOUND) { continue; } if (ret != kvstore::ResultCode::SUCCEEDED) { return ret; } if (writer.size() > 1) { td.emplace_back(apache::thrift::FragileConstructor::FRAGILE, tc.tagId_, writer.encode()); } } vResp.set_tag_data(std::move(td)); } if (onlyVertexProps_) { std::lock_guard<std::mutex> lg(this->lock_); vertices_.emplace_back(std::move(vResp)); return kvstore::ResultCode::SUCCEEDED; } kvstore::ResultCode ret; ret = processEdge(partId, vId, fcontext, vResp); if (ret != kvstore::ResultCode::SUCCEEDED) { return ret; } if (!vResp.edge_data.empty()) { // Only return the vertex if edges existed. std::lock_guard<std::mutex> lg(this->lock_); vertices_.emplace_back(std::move(vResp)); } return kvstore::ResultCode::SUCCEEDED; } void QueryBoundProcessor::onProcessFinished(int32_t retNum) { (void)retNum; resp_.set_vertices(std::move(vertices_)); std::unordered_map<TagID, nebula::cpp2::Schema> vertexSchema; if (!this->tagContexts_.empty()) { for (auto& tc : this->tagContexts_) { nebula::cpp2::Schema respTag; for (auto& prop : tc.props_) { if (prop.returned_) { respTag.columns.emplace_back( columnDef(std::move(prop.prop_.name), prop.type_.type)); } } if (!respTag.columns.empty()) { auto it = vertexSchema.find(tc.tagId_); if (it == vertexSchema.end()) { vertexSchema.emplace(tc.tagId_, respTag); } } } if (!vertexSchema.empty()) { resp_.set_vertex_schema(std::move(vertexSchema)); } } std::unordered_map<EdgeType, nebula::cpp2::Schema> edgeSchema; if (!edgeContexts_.empty()) { for (const auto& ec : edgeContexts_) { nebula::cpp2::Schema respEdge; RowSetWriter rsWriter; auto& props = ec.second; for (auto& p : props) { respEdge.columns.emplace_back(columnDef(std::move(p.prop_.name), p.type_.type)); } if (!respEdge.columns.empty()) { auto it = edgeSchema.find(ec.first); if (it == edgeSchema.end()) { edgeSchema.emplace(ec.first, std::move(respEdge)); } } } if (!edgeSchema.empty()) { resp_.set_edge_schema(std::move(edgeSchema)); } } } } // namespace storage } // namespace nebula
1
26,502
Implement the "collect all props for one vertex" logic inside QueryVertexPropsProcessor
vesoft-inc-nebula
cpp