Upload folder using huggingface_hub
#1
by
Siddharth-74
- opened
- .DS_Store +0 -0
- agent.py +313 -0
- aws_bedrock.py +135 -0
- dataset/Restaurant_Childrens_Menu.pdf +0 -0
- dataset/Restaurant_Dinner_Menu.pdf +0 -0
- dataset/Restaurant_week_specials.pdf +0 -0
- knowledge_base.py +632 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
agent.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import boto3
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
import zipfile
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
|
| 7 |
+
iam_client = boto3.client('iam')
|
| 8 |
+
sts_client = boto3.client('sts')
|
| 9 |
+
session = boto3.session.Session()
|
| 10 |
+
region = session.region_name
|
| 11 |
+
account_id = sts_client.get_caller_identity()["Account"]
|
| 12 |
+
dynamodb_client = boto3.client('dynamodb')
|
| 13 |
+
dynamodb_resource = boto3.resource('dynamodb')
|
| 14 |
+
lambda_client = boto3.client('lambda')
|
| 15 |
+
bedrock_agent_client = boto3.client('bedrock-agent')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def create_dynamodb(table_name):
|
| 19 |
+
table = dynamodb_resource.create_table(
|
| 20 |
+
TableName=table_name,
|
| 21 |
+
KeySchema=[
|
| 22 |
+
{
|
| 23 |
+
'AttributeName': 'booking_id',
|
| 24 |
+
'KeyType': 'HASH'
|
| 25 |
+
}
|
| 26 |
+
],
|
| 27 |
+
AttributeDefinitions=[
|
| 28 |
+
{
|
| 29 |
+
'AttributeName': 'booking_id',
|
| 30 |
+
'AttributeType': 'S'
|
| 31 |
+
}
|
| 32 |
+
],
|
| 33 |
+
BillingMode='PAY_PER_REQUEST' # Use on-demand capacity mode
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Wait for the table to be created
|
| 37 |
+
print(f'Creating table {table_name}...')
|
| 38 |
+
table.wait_until_exists()
|
| 39 |
+
print(f'Table {table_name} created successfully!')
|
| 40 |
+
return
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def create_lambda(lambda_function_name, lambda_iam_role):
|
| 44 |
+
# add to function
|
| 45 |
+
|
| 46 |
+
# Package up the lambda function code
|
| 47 |
+
s = BytesIO()
|
| 48 |
+
z = zipfile.ZipFile(s, 'w')
|
| 49 |
+
z.write("lambda_function.py")
|
| 50 |
+
z.close()
|
| 51 |
+
zip_content = s.getvalue()
|
| 52 |
+
|
| 53 |
+
# Create Lambda Function
|
| 54 |
+
lambda_function = lambda_client.create_function(
|
| 55 |
+
FunctionName=lambda_function_name,
|
| 56 |
+
Runtime='python3.12',
|
| 57 |
+
Timeout=60,
|
| 58 |
+
Role=lambda_iam_role['Role']['Arn'],
|
| 59 |
+
Code={'ZipFile': zip_content},
|
| 60 |
+
Handler='lambda_function.lambda_handler'
|
| 61 |
+
)
|
| 62 |
+
return lambda_function
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def create_lambda_role(agent_name, dynamodb_table_name):
|
| 66 |
+
lambda_function_role = f'{agent_name}-lambda-role'
|
| 67 |
+
dynamodb_access_policy_name = f'{agent_name}-dynamodb-policy'
|
| 68 |
+
# Create IAM Role for the Lambda function
|
| 69 |
+
try:
|
| 70 |
+
assume_role_policy_document = {
|
| 71 |
+
"Version": "2012-10-17",
|
| 72 |
+
"Statement": [
|
| 73 |
+
{
|
| 74 |
+
"Effect": "Allow",
|
| 75 |
+
"Principal": {
|
| 76 |
+
"Service": "lambda.amazonaws.com"
|
| 77 |
+
},
|
| 78 |
+
"Action": "sts:AssumeRole"
|
| 79 |
+
}
|
| 80 |
+
]
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
assume_role_policy_document_json = json.dumps(assume_role_policy_document)
|
| 84 |
+
|
| 85 |
+
lambda_iam_role = iam_client.create_role(
|
| 86 |
+
RoleName=lambda_function_role,
|
| 87 |
+
AssumeRolePolicyDocument=assume_role_policy_document_json
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Pause to make sure role is created
|
| 91 |
+
time.sleep(10)
|
| 92 |
+
except iam_client.exceptions.EntityAlreadyExistsException:
|
| 93 |
+
lambda_iam_role = iam_client.get_role(RoleName=lambda_function_role)
|
| 94 |
+
|
| 95 |
+
# Attach the AWSLambdaBasicExecutionRole policy
|
| 96 |
+
iam_client.attach_role_policy(
|
| 97 |
+
RoleName=lambda_function_role,
|
| 98 |
+
PolicyArn='arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Create a policy to grant access to the DynamoDB table
|
| 102 |
+
dynamodb_access_policy = {
|
| 103 |
+
"Version": "2012-10-17",
|
| 104 |
+
"Statement": [
|
| 105 |
+
{
|
| 106 |
+
"Effect": "Allow",
|
| 107 |
+
"Action": [
|
| 108 |
+
"dynamodb:GetItem",
|
| 109 |
+
"dynamodb:PutItem",
|
| 110 |
+
"dynamodb:DeleteItem"
|
| 111 |
+
],
|
| 112 |
+
"Resource": "arn:aws:dynamodb:{}:{}:table/{}".format(
|
| 113 |
+
region, account_id, dynamodb_table_name
|
| 114 |
+
)
|
| 115 |
+
}
|
| 116 |
+
]
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
# Create the policy
|
| 120 |
+
dynamodb_access_policy_json = json.dumps(dynamodb_access_policy)
|
| 121 |
+
dynamodb_access_policy_response = iam_client.create_policy(
|
| 122 |
+
PolicyName=dynamodb_access_policy_name,
|
| 123 |
+
PolicyDocument=dynamodb_access_policy_json
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Attach the policy to the Lambda function's role
|
| 127 |
+
iam_client.attach_role_policy(
|
| 128 |
+
RoleName=lambda_function_role,
|
| 129 |
+
PolicyArn=dynamodb_access_policy_response['Policy']['Arn']
|
| 130 |
+
)
|
| 131 |
+
return lambda_iam_role
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def create_agent_role_and_policies(agent_name, agent_foundation_model, kb_id=None):
|
| 135 |
+
agent_bedrock_allow_policy_name = f"{agent_name}-ba"
|
| 136 |
+
agent_role_name = f'AmazonBedrockExecutionRoleForAgents_{agent_name}'
|
| 137 |
+
# Create IAM policies for agent
|
| 138 |
+
statements = [
|
| 139 |
+
{
|
| 140 |
+
"Sid": "AmazonBedrockAgentBedrockFoundationModelPolicy",
|
| 141 |
+
"Effect": "Allow",
|
| 142 |
+
"Action": "bedrock:InvokeModel",
|
| 143 |
+
"Resource": [
|
| 144 |
+
f"arn:aws:bedrock:{region}::foundation-model/{agent_foundation_model}"
|
| 145 |
+
]
|
| 146 |
+
}
|
| 147 |
+
]
|
| 148 |
+
# add Knowledge Base retrieve and retrieve and generate permissions if agent has KB attached to it
|
| 149 |
+
if kb_id:
|
| 150 |
+
statements.append(
|
| 151 |
+
{
|
| 152 |
+
"Sid": "QueryKB",
|
| 153 |
+
"Effect": "Allow",
|
| 154 |
+
"Action": [
|
| 155 |
+
"bedrock:Retrieve",
|
| 156 |
+
"bedrock:RetrieveAndGenerate"
|
| 157 |
+
],
|
| 158 |
+
"Resource": [
|
| 159 |
+
f"arn:aws:bedrock:{region}:{account_id}:knowledge-base/{kb_id}"
|
| 160 |
+
]
|
| 161 |
+
}
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
bedrock_agent_bedrock_allow_policy_statement = {
|
| 165 |
+
"Version": "2012-10-17",
|
| 166 |
+
"Statement": statements
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
bedrock_policy_json = json.dumps(bedrock_agent_bedrock_allow_policy_statement)
|
| 170 |
+
|
| 171 |
+
agent_bedrock_policy = iam_client.create_policy(
|
| 172 |
+
PolicyName=agent_bedrock_allow_policy_name,
|
| 173 |
+
PolicyDocument=bedrock_policy_json
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Create IAM Role for the agent and attach IAM policies
|
| 177 |
+
assume_role_policy_document = {
|
| 178 |
+
"Version": "2012-10-17",
|
| 179 |
+
"Statement": [{
|
| 180 |
+
"Effect": "Allow",
|
| 181 |
+
"Principal": {
|
| 182 |
+
"Service": "bedrock.amazonaws.com"
|
| 183 |
+
},
|
| 184 |
+
"Action": "sts:AssumeRole"
|
| 185 |
+
}]
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
assume_role_policy_document_json = json.dumps(assume_role_policy_document)
|
| 189 |
+
agent_role = iam_client.create_role(
|
| 190 |
+
RoleName=agent_role_name,
|
| 191 |
+
AssumeRolePolicyDocument=assume_role_policy_document_json
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Pause to make sure role is created
|
| 195 |
+
time.sleep(10)
|
| 196 |
+
|
| 197 |
+
iam_client.attach_role_policy(
|
| 198 |
+
RoleName=agent_role_name,
|
| 199 |
+
PolicyArn=agent_bedrock_policy['Policy']['Arn']
|
| 200 |
+
)
|
| 201 |
+
return agent_role
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def delete_agent_roles_and_policies(agent_name):
|
| 205 |
+
agent_bedrock_allow_policy_name = f"{agent_name}-ba"
|
| 206 |
+
agent_role_name = f'AmazonBedrockExecutionRoleForAgents_{agent_name}'
|
| 207 |
+
dynamodb_access_policy_name = f'{agent_name}-dynamodb-policy'
|
| 208 |
+
lambda_function_role = f'{agent_name}-lambda-role'
|
| 209 |
+
|
| 210 |
+
for policy in [agent_bedrock_allow_policy_name]:
|
| 211 |
+
try:
|
| 212 |
+
iam_client.detach_role_policy(
|
| 213 |
+
RoleName=agent_role_name,
|
| 214 |
+
PolicyArn=f'arn:aws:iam::{account_id}:policy/{policy}'
|
| 215 |
+
)
|
| 216 |
+
except Exception as e:
|
| 217 |
+
print(f"Could not detach {policy} from {agent_role_name}")
|
| 218 |
+
print(e)
|
| 219 |
+
|
| 220 |
+
for policy in [dynamodb_access_policy_name]:
|
| 221 |
+
try:
|
| 222 |
+
iam_client.detach_role_policy(
|
| 223 |
+
RoleName=lambda_function_role,
|
| 224 |
+
PolicyArn=f'arn:aws:iam::{account_id}:policy/{policy}'
|
| 225 |
+
)
|
| 226 |
+
except Exception as e:
|
| 227 |
+
print(f"Could not detach {policy} from {lambda_function_role}")
|
| 228 |
+
print(e)
|
| 229 |
+
|
| 230 |
+
try:
|
| 231 |
+
iam_client.detach_role_policy(
|
| 232 |
+
RoleName=lambda_function_role,
|
| 233 |
+
PolicyArn='arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
|
| 234 |
+
)
|
| 235 |
+
except Exception as e:
|
| 236 |
+
print(f"Could not detach AWSLambdaBasicExecutionRole from {lambda_function_role}")
|
| 237 |
+
print(e)
|
| 238 |
+
|
| 239 |
+
for role_name in [agent_role_name, lambda_function_role]:
|
| 240 |
+
try:
|
| 241 |
+
iam_client.delete_role(
|
| 242 |
+
RoleName=role_name
|
| 243 |
+
)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
print(f"Could not delete role {role_name}")
|
| 246 |
+
print(e)
|
| 247 |
+
|
| 248 |
+
for policy in [agent_bedrock_allow_policy_name, dynamodb_access_policy_name]:
|
| 249 |
+
try:
|
| 250 |
+
iam_client.delete_policy(
|
| 251 |
+
PolicyArn=f'arn:aws:iam::{account_id}:policy/{policy}'
|
| 252 |
+
)
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Could not delete policy {policy}")
|
| 255 |
+
print(e)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def clean_up_resources(
|
| 259 |
+
table_name, lambda_function, lambda_function_name, agent_action_group_response, agent_functions,
|
| 260 |
+
agent_id, kb_id, alias_id
|
| 261 |
+
):
|
| 262 |
+
action_group_id = agent_action_group_response['agentActionGroup']['actionGroupId']
|
| 263 |
+
action_group_name = agent_action_group_response['agentActionGroup']['actionGroupName']
|
| 264 |
+
# Delete Agent Action Group, Agent Alias, and Agent
|
| 265 |
+
try:
|
| 266 |
+
bedrock_agent_client.update_agent_action_group(
|
| 267 |
+
agentId=agent_id,
|
| 268 |
+
agentVersion='DRAFT',
|
| 269 |
+
actionGroupId= action_group_id,
|
| 270 |
+
actionGroupName=action_group_name,
|
| 271 |
+
actionGroupExecutor={
|
| 272 |
+
'lambda': lambda_function['FunctionArn']
|
| 273 |
+
},
|
| 274 |
+
functionSchema={
|
| 275 |
+
'functions': agent_functions
|
| 276 |
+
},
|
| 277 |
+
actionGroupState='DISABLED',
|
| 278 |
+
)
|
| 279 |
+
bedrock_agent_client.disassociate_agent_knowledge_base(
|
| 280 |
+
agentId=agent_id,
|
| 281 |
+
agentVersion='DRAFT',
|
| 282 |
+
knowledgeBaseId=kb_id
|
| 283 |
+
)
|
| 284 |
+
bedrock_agent_client.delete_agent_action_group(
|
| 285 |
+
agentId=agent_id,
|
| 286 |
+
agentVersion='DRAFT',
|
| 287 |
+
actionGroupId=action_group_id
|
| 288 |
+
)
|
| 289 |
+
bedrock_agent_client.delete_agent_alias(
|
| 290 |
+
agentAliasId=alias_id,
|
| 291 |
+
agentId=agent_id
|
| 292 |
+
)
|
| 293 |
+
bedrock_agent_client.delete_agent(agentId=agent_id)
|
| 294 |
+
print(f"Agent {agent_id}, Agent Alias {alias_id}, and Action Group have been deleted.")
|
| 295 |
+
except Exception as e:
|
| 296 |
+
print(f"Error deleting Agent resources: {e}")
|
| 297 |
+
|
| 298 |
+
# Delete Lambda function
|
| 299 |
+
try:
|
| 300 |
+
lambda_client.delete_function(FunctionName=lambda_function_name)
|
| 301 |
+
print(f"Lambda function {lambda_function_name} has been deleted.")
|
| 302 |
+
except Exception as e:
|
| 303 |
+
print(f"Error deleting Lambda function {lambda_function_name}: {e}")
|
| 304 |
+
|
| 305 |
+
# Delete DynamoDB table
|
| 306 |
+
try:
|
| 307 |
+
dynamodb_client.delete_table(TableName=table_name)
|
| 308 |
+
print(f"Table {table_name} is being deleted...")
|
| 309 |
+
waiter = dynamodb_client.get_waiter('table_not_exists')
|
| 310 |
+
waiter.wait(TableName=table_name)
|
| 311 |
+
print(f"Table {table_name} has been deleted.")
|
| 312 |
+
except Exception as e:
|
| 313 |
+
print(f"Error deleting table {table_name}: {e}")
|
aws_bedrock.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import typing as t
|
| 3 |
+
|
| 4 |
+
from ragas.messages import AIMessage, HumanMessage
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_last_orchestration_value(traces: t.List[t.Dict[str, t.Any]], key: str):
|
| 8 |
+
"""
|
| 9 |
+
Iterates through the traces to find the last occurrence of a specified key
|
| 10 |
+
within the orchestrationTrace.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
(index, value): Tuple where index is the last index at which the key was found, and value is the corresponding value, or (None, None) if not found.
|
| 14 |
+
"""
|
| 15 |
+
last_index = -1
|
| 16 |
+
last_value = None
|
| 17 |
+
for i, trace in enumerate(traces):
|
| 18 |
+
orchestration = trace.get("trace", {}).get("orchestrationTrace", {})
|
| 19 |
+
if key in orchestration:
|
| 20 |
+
last_index = i
|
| 21 |
+
last_value = orchestration[key]
|
| 22 |
+
return last_index, last_value
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def extract_messages_from_model_invocation(model_inv):
|
| 26 |
+
"""
|
| 27 |
+
Extracts messages from the 'text' field of the modelInvocationInput.
|
| 28 |
+
Ensures that each message's content is cast to a string.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
List of messages as HumanMessage or AIMessage objects.
|
| 32 |
+
"""
|
| 33 |
+
messages = []
|
| 34 |
+
text_json = json.loads(model_inv.get("text", "{}"))
|
| 35 |
+
for msg in text_json.get("messages", []):
|
| 36 |
+
content_str = str(msg.get("content", ""))
|
| 37 |
+
role = msg.get("role")
|
| 38 |
+
if role == "user":
|
| 39 |
+
messages.append(HumanMessage(content=content_str))
|
| 40 |
+
elif role == "assistant":
|
| 41 |
+
messages.append(AIMessage(content=content_str))
|
| 42 |
+
return messages[:-1]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def convert_to_ragas_messages(traces: t.List):
|
| 46 |
+
"""
|
| 47 |
+
Converts a list of trace dictionaries into a list of messages.
|
| 48 |
+
It extracts messages from the last modelInvocationInput and appends
|
| 49 |
+
the finalResponse from the observation (if it occurs after the model invocation).
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
List of HumanMessage and AIMessage objects.
|
| 53 |
+
"""
|
| 54 |
+
result = []
|
| 55 |
+
|
| 56 |
+
# Get the last modelInvocationInput from the traces.
|
| 57 |
+
last_model_inv_index, last_model_inv = get_last_orchestration_value(
|
| 58 |
+
traces, "modelInvocationInput"
|
| 59 |
+
)
|
| 60 |
+
if last_model_inv is not None:
|
| 61 |
+
result.extend(extract_messages_from_model_invocation(last_model_inv))
|
| 62 |
+
|
| 63 |
+
# Get the last observation from the traces.
|
| 64 |
+
last_obs_index, last_observation = get_last_orchestration_value(
|
| 65 |
+
traces, "observation"
|
| 66 |
+
)
|
| 67 |
+
if last_observation is not None and last_obs_index > last_model_inv_index:
|
| 68 |
+
final_text = str(last_observation.get("finalResponse", {}).get("text", ""))
|
| 69 |
+
result.append(AIMessage(content=final_text))
|
| 70 |
+
|
| 71 |
+
return result
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def extract_kb_trace(traces):
|
| 75 |
+
"""
|
| 76 |
+
Extracts groups of traces that follow the specific order:
|
| 77 |
+
1. An element with 'trace' -> 'orchestrationTrace' containing an 'invocationInput'
|
| 78 |
+
with invocationType == "KNOWLEDGE_BASE"
|
| 79 |
+
2. Followed (later in the list or within the same trace) by an element with an 'observation'
|
| 80 |
+
that contains 'knowledgeBaseLookupOutput'
|
| 81 |
+
3. Followed by an element with an 'observation' that contains 'finalResponse'
|
| 82 |
+
|
| 83 |
+
Returns a list of dictionaries each with keys:
|
| 84 |
+
'user_input', 'retrieved_contexts', and 'response'
|
| 85 |
+
|
| 86 |
+
This version supports multiple knowledge base invocation groups.
|
| 87 |
+
"""
|
| 88 |
+
results = []
|
| 89 |
+
groups_in_progress = [] # list to keep track of groups in progress
|
| 90 |
+
|
| 91 |
+
for trace in traces:
|
| 92 |
+
orchestration = trace.get("trace", {}).get("orchestrationTrace", {})
|
| 93 |
+
|
| 94 |
+
# 1. Look for a KB invocation input.
|
| 95 |
+
inv_input = orchestration.get("invocationInput")
|
| 96 |
+
if inv_input and inv_input.get("invocationType") == "KNOWLEDGE_BASE":
|
| 97 |
+
kb_input = inv_input.get("knowledgeBaseLookupInput", {})
|
| 98 |
+
# Start a new group with the user's input text.
|
| 99 |
+
groups_in_progress.append({"user_input": kb_input.get("text")})
|
| 100 |
+
|
| 101 |
+
# 2. Process observations.
|
| 102 |
+
obs = orchestration.get("observation", {})
|
| 103 |
+
if obs:
|
| 104 |
+
# If the observation contains a KB output, assign it to the earliest group
|
| 105 |
+
# that does not yet have a 'retrieved_contexts' key.
|
| 106 |
+
if "knowledgeBaseLookupOutput" in obs:
|
| 107 |
+
for group in groups_in_progress:
|
| 108 |
+
if "user_input" in group and "retrieved_contexts" not in group:
|
| 109 |
+
kb_output = obs["knowledgeBaseLookupOutput"]
|
| 110 |
+
group["retrieved_contexts"] = [
|
| 111 |
+
retrieved.get("content", {}).get("text")
|
| 112 |
+
for retrieved in kb_output.get("retrievedReferences", [])
|
| 113 |
+
]
|
| 114 |
+
break
|
| 115 |
+
|
| 116 |
+
# 3. When we see a final response, assign it to all groups that have already
|
| 117 |
+
# received their KB output but still lack a response.
|
| 118 |
+
if "finalResponse" in obs:
|
| 119 |
+
final_text = obs["finalResponse"].get("text")
|
| 120 |
+
completed_groups = []
|
| 121 |
+
for group in groups_in_progress:
|
| 122 |
+
if (
|
| 123 |
+
"user_input" in group
|
| 124 |
+
and "retrieved_contexts" in group
|
| 125 |
+
and "response" not in group
|
| 126 |
+
):
|
| 127 |
+
group["response"] = final_text
|
| 128 |
+
completed_groups.append(group)
|
| 129 |
+
# Remove completed groups from the in-progress list and add to the final results.
|
| 130 |
+
groups_in_progress = [
|
| 131 |
+
g for g in groups_in_progress if g not in completed_groups
|
| 132 |
+
]
|
| 133 |
+
results.extend(completed_groups)
|
| 134 |
+
|
| 135 |
+
return results
|
dataset/Restaurant_Childrens_Menu.pdf
ADDED
|
Binary file (31 kB). View file
|
|
|
dataset/Restaurant_Dinner_Menu.pdf
ADDED
|
Binary file (31.1 kB). View file
|
|
|
dataset/Restaurant_week_specials.pdf
ADDED
|
Binary file (75.1 kB). View file
|
|
|
knowledge_base.py
ADDED
|
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import boto3
|
| 3 |
+
import time
|
| 4 |
+
from botocore.exceptions import ClientError
|
| 5 |
+
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, RequestError
|
| 6 |
+
import pprint
|
| 7 |
+
from retrying import retry
|
| 8 |
+
|
| 9 |
+
valid_embedding_models = ["cohere.embed-multilingual-v3", "cohere.embed-english-v3", "amazon.titan-embed-text-v1"]
|
| 10 |
+
pp = pprint.PrettyPrinter(indent=2)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def interactive_sleep(seconds: int):
|
| 14 |
+
"""
|
| 15 |
+
Support functionality to induce an artificial 'sleep' to the code in order to wait for resources to be available
|
| 16 |
+
Args:
|
| 17 |
+
seconds (int): number of seconds to sleep for
|
| 18 |
+
"""
|
| 19 |
+
dots = ''
|
| 20 |
+
for i in range(seconds):
|
| 21 |
+
dots += '.'
|
| 22 |
+
print(dots, end='\r')
|
| 23 |
+
time.sleep(1)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BedrockKnowledgeBase:
|
| 27 |
+
"""
|
| 28 |
+
Support class that allows for:
|
| 29 |
+
- creation (or retrieval) of a Knowledge Base for Amazon Bedrock with all its pre-requisites
|
| 30 |
+
(including OSS, IAM roles and Permissions and S3 bucket)
|
| 31 |
+
- Ingestion of data into the Knowledge Base
|
| 32 |
+
- Deletion of all resources created
|
| 33 |
+
"""
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
kb_name,
|
| 37 |
+
kb_description=None,
|
| 38 |
+
data_bucket_name=None,
|
| 39 |
+
embedding_model="amazon.titan-embed-text-v1"
|
| 40 |
+
):
|
| 41 |
+
"""
|
| 42 |
+
Class initializer
|
| 43 |
+
Args:
|
| 44 |
+
kb_name (str): the knowledge base name
|
| 45 |
+
kb_description (str): knowledge base description
|
| 46 |
+
data_bucket_name (str): name of s3 bucket to connect with knowledge base
|
| 47 |
+
embedding_model (str): embedding model to use
|
| 48 |
+
"""
|
| 49 |
+
boto3_session = boto3.session.Session()
|
| 50 |
+
self.region_name = boto3_session.region_name
|
| 51 |
+
self.iam_client = boto3_session.client('iam')
|
| 52 |
+
self.account_number = boto3.client('sts').get_caller_identity().get('Account')
|
| 53 |
+
self.suffix = str(self.account_number)[:4]
|
| 54 |
+
self.identity = boto3.client('sts').get_caller_identity()['Arn']
|
| 55 |
+
self.aoss_client = boto3_session.client('opensearchserverless')
|
| 56 |
+
self.s3_client = boto3.client('s3')
|
| 57 |
+
self.bedrock_agent_client = boto3.client('bedrock-agent')
|
| 58 |
+
credentials = boto3.Session().get_credentials()
|
| 59 |
+
self.awsauth = AWSV4SignerAuth(credentials, self.region_name, 'aoss')
|
| 60 |
+
|
| 61 |
+
self.kb_name = kb_name
|
| 62 |
+
self.kb_description = kb_description
|
| 63 |
+
if data_bucket_name is not None:
|
| 64 |
+
self.bucket_name = data_bucket_name
|
| 65 |
+
else:
|
| 66 |
+
self.bucket_name = f"{self.kb_name}-{self.suffix}"
|
| 67 |
+
if embedding_model not in valid_embedding_models:
|
| 68 |
+
valid_embeddings_str = str(valid_embedding_models)
|
| 69 |
+
raise ValueError(f"Invalid embedding model. Your embedding model should be one of {valid_embeddings_str}")
|
| 70 |
+
self.embedding_model = embedding_model
|
| 71 |
+
self.encryption_policy_name = f"bedrock-sample-rag-sp-{self.suffix}"
|
| 72 |
+
self.network_policy_name = f"bedrock-sample-rag-np-{self.suffix}"
|
| 73 |
+
self.access_policy_name = f'bedrock-sample-rag-ap-{self.suffix}'
|
| 74 |
+
self.kb_execution_role_name = f'AmazonBedrockExecutionRoleForKnowledgeBase_{self.suffix}'
|
| 75 |
+
self.fm_policy_name = f'AmazonBedrockFoundationModelPolicyForKnowledgeBase_{self.suffix}'
|
| 76 |
+
self.s3_policy_name = f'AmazonBedrockS3PolicyForKnowledgeBase_{self.suffix}'
|
| 77 |
+
self.oss_policy_name = f'AmazonBedrockOSSPolicyForKnowledgeBase_{self.suffix}'
|
| 78 |
+
|
| 79 |
+
self.vector_store_name = f'bedrock-sample-rag-{self.suffix}'
|
| 80 |
+
self.index_name = f"bedrock-sample-rag-index-{self.suffix}"
|
| 81 |
+
print("========================================================================================")
|
| 82 |
+
print(f"Step 1 - Creating or retrieving {self.bucket_name} S3 bucket for Knowledge Base documents")
|
| 83 |
+
self.create_s3_bucket()
|
| 84 |
+
print("========================================================================================")
|
| 85 |
+
print(f"Step 2 - Creating Knowledge Base Execution Role ({self.kb_execution_role_name}) and Policies")
|
| 86 |
+
self.bedrock_kb_execution_role = self.create_bedrock_kb_execution_role()
|
| 87 |
+
print("========================================================================================")
|
| 88 |
+
print(f"Step 3 - Creating OSS encryption, network and data access policies")
|
| 89 |
+
self.encryption_policy, self.network_policy, self.access_policy = self.create_policies_in_oss()
|
| 90 |
+
print("========================================================================================")
|
| 91 |
+
print(f"Step 4 - Creating OSS Collection (this step takes a couple of minutes to complete)")
|
| 92 |
+
self.host, self.collection, self.collection_id, self.collection_arn = self.create_oss()
|
| 93 |
+
# Build the OpenSearch client
|
| 94 |
+
self.oss_client = OpenSearch(
|
| 95 |
+
hosts=[{'host': self.host, 'port': 443}],
|
| 96 |
+
http_auth=self.awsauth,
|
| 97 |
+
use_ssl=True,
|
| 98 |
+
verify_certs=True,
|
| 99 |
+
connection_class=RequestsHttpConnection,
|
| 100 |
+
timeout=300
|
| 101 |
+
)
|
| 102 |
+
print("========================================================================================")
|
| 103 |
+
print(f"Step 5 - Creating OSS Vector Index")
|
| 104 |
+
self.create_vector_index()
|
| 105 |
+
print("========================================================================================")
|
| 106 |
+
print(f"Step 6 - Creating Knowledge Base")
|
| 107 |
+
self.knowledge_base, self.data_source = self.create_knowledge_base()
|
| 108 |
+
print("========================================================================================")
|
| 109 |
+
|
| 110 |
+
def create_s3_bucket(self):
|
| 111 |
+
"""
|
| 112 |
+
Check if bucket exists, and if not create S3 bucket for knowledge base data source
|
| 113 |
+
"""
|
| 114 |
+
try:
|
| 115 |
+
self.s3_client.head_bucket(Bucket=self.bucket_name)
|
| 116 |
+
print(f'Bucket {self.bucket_name} already exists - retrieving it!')
|
| 117 |
+
except ClientError as e:
|
| 118 |
+
print(f'Creating bucket {self.bucket_name}')
|
| 119 |
+
if self.region_name == "us-east-1":
|
| 120 |
+
self.s3_client.create_bucket(
|
| 121 |
+
Bucket=self.bucket_name
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
self.s3_client.create_bucket(
|
| 125 |
+
Bucket=self.bucket_name,
|
| 126 |
+
CreateBucketConfiguration={'LocationConstraint': self.region_name}
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def create_bedrock_kb_execution_role(self):
|
| 130 |
+
"""
|
| 131 |
+
Create Knowledge Base Execution IAM Role and its required policies.
|
| 132 |
+
If role and/or policies already exist, retrieve them
|
| 133 |
+
Returns:
|
| 134 |
+
IAM role
|
| 135 |
+
"""
|
| 136 |
+
foundation_model_policy_document = {
|
| 137 |
+
"Version": "2012-10-17",
|
| 138 |
+
"Statement": [
|
| 139 |
+
{
|
| 140 |
+
"Effect": "Allow",
|
| 141 |
+
"Action": [
|
| 142 |
+
"bedrock:InvokeModel",
|
| 143 |
+
],
|
| 144 |
+
"Resource": [
|
| 145 |
+
f"arn:aws:bedrock:{self.region_name}::foundation-model/{self.embedding_model}"
|
| 146 |
+
]
|
| 147 |
+
}
|
| 148 |
+
]
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
s3_policy_document = {
|
| 152 |
+
"Version": "2012-10-17",
|
| 153 |
+
"Statement": [
|
| 154 |
+
{
|
| 155 |
+
"Effect": "Allow",
|
| 156 |
+
"Action": [
|
| 157 |
+
"s3:GetObject",
|
| 158 |
+
"s3:ListBucket"
|
| 159 |
+
],
|
| 160 |
+
"Resource": [
|
| 161 |
+
f"arn:aws:s3:::{self.bucket_name}",
|
| 162 |
+
f"arn:aws:s3:::{self.bucket_name}/*"
|
| 163 |
+
],
|
| 164 |
+
"Condition": {
|
| 165 |
+
"StringEquals": {
|
| 166 |
+
"aws:ResourceAccount": f"{self.account_number}"
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
}
|
| 170 |
+
]
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
assume_role_policy_document = {
|
| 174 |
+
"Version": "2012-10-17",
|
| 175 |
+
"Statement": [
|
| 176 |
+
{
|
| 177 |
+
"Effect": "Allow",
|
| 178 |
+
"Principal": {
|
| 179 |
+
"Service": "bedrock.amazonaws.com"
|
| 180 |
+
},
|
| 181 |
+
"Action": "sts:AssumeRole"
|
| 182 |
+
}
|
| 183 |
+
]
|
| 184 |
+
}
|
| 185 |
+
try:
|
| 186 |
+
# create policies based on the policy documents
|
| 187 |
+
fm_policy = self.iam_client.create_policy(
|
| 188 |
+
PolicyName=self.fm_policy_name,
|
| 189 |
+
PolicyDocument=json.dumps(foundation_model_policy_document),
|
| 190 |
+
Description='Policy for accessing foundation model',
|
| 191 |
+
)
|
| 192 |
+
except self.iam_client.exceptions.EntityAlreadyExistsException:
|
| 193 |
+
fm_policy = self.iam_client.get_policy(
|
| 194 |
+
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{self.fm_policy_name}"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
try:
|
| 198 |
+
s3_policy = self.iam_client.create_policy(
|
| 199 |
+
PolicyName=self.s3_policy_name,
|
| 200 |
+
PolicyDocument=json.dumps(s3_policy_document),
|
| 201 |
+
Description='Policy for reading documents from s3')
|
| 202 |
+
except self.iam_client.exceptions.EntityAlreadyExistsException:
|
| 203 |
+
s3_policy = self.iam_client.get_policy(
|
| 204 |
+
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{self.s3_policy_name}"
|
| 205 |
+
)
|
| 206 |
+
# create bedrock execution role
|
| 207 |
+
try:
|
| 208 |
+
bedrock_kb_execution_role = self.iam_client.create_role(
|
| 209 |
+
RoleName=self.kb_execution_role_name,
|
| 210 |
+
AssumeRolePolicyDocument=json.dumps(assume_role_policy_document),
|
| 211 |
+
Description='Amazon Bedrock Knowledge Base Execution Role for accessing OSS and S3',
|
| 212 |
+
MaxSessionDuration=3600
|
| 213 |
+
)
|
| 214 |
+
except self.iam_client.exceptions.EntityAlreadyExistsException:
|
| 215 |
+
bedrock_kb_execution_role = self.iam_client.get_role(
|
| 216 |
+
RoleName=self.kb_execution_role_name
|
| 217 |
+
)
|
| 218 |
+
# fetch arn of the policies and role created above
|
| 219 |
+
s3_policy_arn = s3_policy["Policy"]["Arn"]
|
| 220 |
+
fm_policy_arn = fm_policy["Policy"]["Arn"]
|
| 221 |
+
|
| 222 |
+
# attach policies to Amazon Bedrock execution role
|
| 223 |
+
self.iam_client.attach_role_policy(
|
| 224 |
+
RoleName=bedrock_kb_execution_role["Role"]["RoleName"],
|
| 225 |
+
PolicyArn=fm_policy_arn
|
| 226 |
+
)
|
| 227 |
+
self.iam_client.attach_role_policy(
|
| 228 |
+
RoleName=bedrock_kb_execution_role["Role"]["RoleName"],
|
| 229 |
+
PolicyArn=s3_policy_arn
|
| 230 |
+
)
|
| 231 |
+
return bedrock_kb_execution_role
|
| 232 |
+
|
| 233 |
+
def create_oss_policy_attach_bedrock_execution_role(self, collection_id):
|
| 234 |
+
"""
|
| 235 |
+
Create OpenSearch Serverless policy and attach it to the Knowledge Base Execution role.
|
| 236 |
+
If policy already exists, attaches it
|
| 237 |
+
"""
|
| 238 |
+
# define oss policy document
|
| 239 |
+
oss_policy_document = {
|
| 240 |
+
"Version": "2012-10-17",
|
| 241 |
+
"Statement": [
|
| 242 |
+
{
|
| 243 |
+
"Effect": "Allow",
|
| 244 |
+
"Action": [
|
| 245 |
+
"aoss:APIAccessAll"
|
| 246 |
+
],
|
| 247 |
+
"Resource": [
|
| 248 |
+
f"arn:aws:aoss:{self.region_name}:{self.account_number}:collection/{collection_id}"
|
| 249 |
+
]
|
| 250 |
+
}
|
| 251 |
+
]
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
oss_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.oss_policy_name}"
|
| 255 |
+
created = False
|
| 256 |
+
try:
|
| 257 |
+
self.iam_client.create_policy(
|
| 258 |
+
PolicyName=self.oss_policy_name,
|
| 259 |
+
PolicyDocument=json.dumps(oss_policy_document),
|
| 260 |
+
Description='Policy for accessing opensearch serverless',
|
| 261 |
+
)
|
| 262 |
+
created = True
|
| 263 |
+
except self.iam_client.exceptions.EntityAlreadyExistsException:
|
| 264 |
+
print(f"Policy {oss_policy_arn} already exists, skipping creation")
|
| 265 |
+
print("Opensearch serverless arn: ", oss_policy_arn)
|
| 266 |
+
|
| 267 |
+
self.iam_client.attach_role_policy(
|
| 268 |
+
RoleName=self.bedrock_kb_execution_role["Role"]["RoleName"],
|
| 269 |
+
PolicyArn=oss_policy_arn
|
| 270 |
+
)
|
| 271 |
+
return created
|
| 272 |
+
|
| 273 |
+
def create_policies_in_oss(self):
|
| 274 |
+
"""
|
| 275 |
+
Create OpenSearch Serverless encryption, network and data access policies.
|
| 276 |
+
If policies already exist, retrieve them
|
| 277 |
+
"""
|
| 278 |
+
try:
|
| 279 |
+
encryption_policy = self.aoss_client.create_security_policy(
|
| 280 |
+
name=self.encryption_policy_name,
|
| 281 |
+
policy=json.dumps(
|
| 282 |
+
{
|
| 283 |
+
'Rules': [{'Resource': ['collection/' + self.vector_store_name],
|
| 284 |
+
'ResourceType': 'collection'}],
|
| 285 |
+
'AWSOwnedKey': True
|
| 286 |
+
}),
|
| 287 |
+
type='encryption'
|
| 288 |
+
)
|
| 289 |
+
except self.aoss_client.exceptions.ConflictException:
|
| 290 |
+
encryption_policy = self.aoss_client.get_security_policy(
|
| 291 |
+
name=self.encryption_policy_name,
|
| 292 |
+
type='encryption'
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
try:
|
| 296 |
+
network_policy = self.aoss_client.create_security_policy(
|
| 297 |
+
name=self.network_policy_name,
|
| 298 |
+
policy=json.dumps(
|
| 299 |
+
[
|
| 300 |
+
{'Rules': [{'Resource': ['collection/' + self.vector_store_name],
|
| 301 |
+
'ResourceType': 'collection'}],
|
| 302 |
+
'AllowFromPublic': True}
|
| 303 |
+
]),
|
| 304 |
+
type='network'
|
| 305 |
+
)
|
| 306 |
+
except self.aoss_client.exceptions.ConflictException:
|
| 307 |
+
network_policy = self.aoss_client.get_security_policy(
|
| 308 |
+
name=self.network_policy_name,
|
| 309 |
+
type='network'
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
try:
|
| 313 |
+
access_policy = self.aoss_client.create_access_policy(
|
| 314 |
+
name=self.access_policy_name,
|
| 315 |
+
policy=json.dumps(
|
| 316 |
+
[
|
| 317 |
+
{
|
| 318 |
+
'Rules': [
|
| 319 |
+
{
|
| 320 |
+
'Resource': ['collection/' + self.vector_store_name],
|
| 321 |
+
'Permission': [
|
| 322 |
+
'aoss:CreateCollectionItems',
|
| 323 |
+
'aoss:DeleteCollectionItems',
|
| 324 |
+
'aoss:UpdateCollectionItems',
|
| 325 |
+
'aoss:DescribeCollectionItems'],
|
| 326 |
+
'ResourceType': 'collection'
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
'Resource': ['index/' + self.vector_store_name + '/*'],
|
| 330 |
+
'Permission': [
|
| 331 |
+
'aoss:CreateIndex',
|
| 332 |
+
'aoss:DeleteIndex',
|
| 333 |
+
'aoss:UpdateIndex',
|
| 334 |
+
'aoss:DescribeIndex',
|
| 335 |
+
'aoss:ReadDocument',
|
| 336 |
+
'aoss:WriteDocument'],
|
| 337 |
+
'ResourceType': 'index'
|
| 338 |
+
}],
|
| 339 |
+
'Principal': [self.identity, self.bedrock_kb_execution_role['Role']['Arn']],
|
| 340 |
+
'Description': 'Easy data policy'}
|
| 341 |
+
]),
|
| 342 |
+
type='data'
|
| 343 |
+
)
|
| 344 |
+
except self.aoss_client.exceptions.ConflictException:
|
| 345 |
+
access_policy = self.aoss_client.get_access_policy(
|
| 346 |
+
name=self.access_policy_name,
|
| 347 |
+
type='data'
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
return encryption_policy, network_policy, access_policy
|
| 351 |
+
|
| 352 |
+
def create_oss(self):
|
| 353 |
+
"""
|
| 354 |
+
Create OpenSearch Serverless Collection. If already existent, retrieve
|
| 355 |
+
"""
|
| 356 |
+
try:
|
| 357 |
+
collection = self.aoss_client.create_collection(name=self.vector_store_name, type='VECTORSEARCH')
|
| 358 |
+
collection_id = collection['createCollectionDetail']['id']
|
| 359 |
+
collection_arn = collection['createCollectionDetail']['arn']
|
| 360 |
+
except self.aoss_client.exceptions.ConflictException:
|
| 361 |
+
collection = self.aoss_client.batch_get_collection(names=[self.vector_store_name])['collectionDetails'][0]
|
| 362 |
+
pp.pprint(collection)
|
| 363 |
+
collection_id = collection['id']
|
| 364 |
+
collection_arn = collection['arn']
|
| 365 |
+
pp.pprint(collection)
|
| 366 |
+
|
| 367 |
+
# Get the OpenSearch serverless collection URL
|
| 368 |
+
host = collection_id + '.' + self.region_name + '.aoss.amazonaws.com'
|
| 369 |
+
print(host)
|
| 370 |
+
# wait for collection creation
|
| 371 |
+
# This can take couple of minutes to finish
|
| 372 |
+
response = self.aoss_client.batch_get_collection(names=[self.vector_store_name])
|
| 373 |
+
# Periodically check collection status
|
| 374 |
+
while (response['collectionDetails'][0]['status']) == 'CREATING':
|
| 375 |
+
print('Creating collection...')
|
| 376 |
+
interactive_sleep(30)
|
| 377 |
+
response = self.aoss_client.batch_get_collection(names=[self.vector_store_name])
|
| 378 |
+
print('\nCollection successfully created:')
|
| 379 |
+
pp.pprint(response["collectionDetails"])
|
| 380 |
+
# create opensearch serverless access policy and attach it to Bedrock execution role
|
| 381 |
+
try:
|
| 382 |
+
created = self.create_oss_policy_attach_bedrock_execution_role(collection_id)
|
| 383 |
+
if created:
|
| 384 |
+
# It can take up to a minute for data access rules to be enforced
|
| 385 |
+
print("Sleeping for a minute to ensure data access rules have been enforced")
|
| 386 |
+
interactive_sleep(60)
|
| 387 |
+
return host, collection, collection_id, collection_arn
|
| 388 |
+
except Exception as e:
|
| 389 |
+
print("Policy already exists")
|
| 390 |
+
pp.pprint(e)
|
| 391 |
+
|
| 392 |
+
def create_vector_index(self):
|
| 393 |
+
"""
|
| 394 |
+
Create OpenSearch Serverless vector index. If existent, ignore
|
| 395 |
+
"""
|
| 396 |
+
body_json = {
|
| 397 |
+
"settings": {
|
| 398 |
+
"index.knn": "true",
|
| 399 |
+
"number_of_shards": 1,
|
| 400 |
+
"knn.algo_param.ef_search": 512,
|
| 401 |
+
"number_of_replicas": 0,
|
| 402 |
+
},
|
| 403 |
+
"mappings": {
|
| 404 |
+
"properties": {
|
| 405 |
+
"vector": {
|
| 406 |
+
"type": "knn_vector",
|
| 407 |
+
"dimension": 1536,
|
| 408 |
+
"method": {
|
| 409 |
+
"name": "hnsw",
|
| 410 |
+
"engine": "faiss",
|
| 411 |
+
"space_type": "l2"
|
| 412 |
+
},
|
| 413 |
+
},
|
| 414 |
+
"text": {
|
| 415 |
+
"type": "text"
|
| 416 |
+
},
|
| 417 |
+
"text-metadata": {
|
| 418 |
+
"type": "text"}
|
| 419 |
+
}
|
| 420 |
+
}
|
| 421 |
+
}
|
| 422 |
+
|
| 423 |
+
# Create index
|
| 424 |
+
try:
|
| 425 |
+
response = self.oss_client.indices.create(index=self.index_name, body=json.dumps(body_json))
|
| 426 |
+
print('\nCreating index:')
|
| 427 |
+
pp.pprint(response)
|
| 428 |
+
|
| 429 |
+
# index creation can take up to a minute
|
| 430 |
+
interactive_sleep(60)
|
| 431 |
+
except RequestError as e:
|
| 432 |
+
# you can delete the index if its already exists
|
| 433 |
+
# oss_client.indices.delete(index=index_name)
|
| 434 |
+
print(
|
| 435 |
+
f'Error while trying to create the index, with error {e.error}\nyou may unmark the delete above to '
|
| 436 |
+
f'delete, and recreate the index')
|
| 437 |
+
|
| 438 |
+
@retry(wait_random_min=1000, wait_random_max=2000, stop_max_attempt_number=7)
|
| 439 |
+
def create_knowledge_base(self):
|
| 440 |
+
"""
|
| 441 |
+
Create Knowledge Base and its Data Source. If existent, retrieve
|
| 442 |
+
"""
|
| 443 |
+
opensearch_serverless_configuration = {
|
| 444 |
+
"collectionArn": self.collection_arn,
|
| 445 |
+
"vectorIndexName": self.index_name,
|
| 446 |
+
"fieldMapping": {
|
| 447 |
+
"vectorField": "vector",
|
| 448 |
+
"textField": "text",
|
| 449 |
+
"metadataField": "text-metadata"
|
| 450 |
+
}
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
# Ingest strategy - How to ingest data from the data source
|
| 454 |
+
chunking_strategy_configuration = {
|
| 455 |
+
"chunkingStrategy": "FIXED_SIZE",
|
| 456 |
+
"fixedSizeChunkingConfiguration": {
|
| 457 |
+
"maxTokens": 512,
|
| 458 |
+
"overlapPercentage": 20
|
| 459 |
+
}
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
+
# The data source to ingest documents from, into the OpenSearch serverless knowledge base index
|
| 463 |
+
s3_configuration = {
|
| 464 |
+
"bucketArn": f"arn:aws:s3:::{self.bucket_name}",
|
| 465 |
+
# "inclusionPrefixes":["*.*"] # you can use this if you want to create a KB using data within s3 prefixes.
|
| 466 |
+
}
|
| 467 |
+
|
| 468 |
+
# The embedding model used by Bedrock to embed ingested documents, and realtime prompts
|
| 469 |
+
embedding_model_arn = f"arn:aws:bedrock:{self.region_name}::foundation-model/{self.embedding_model}"
|
| 470 |
+
try:
|
| 471 |
+
create_kb_response = self.bedrock_agent_client.create_knowledge_base(
|
| 472 |
+
name=self.kb_name,
|
| 473 |
+
description=self.kb_description,
|
| 474 |
+
roleArn=self.bedrock_kb_execution_role['Role']['Arn'],
|
| 475 |
+
knowledgeBaseConfiguration={
|
| 476 |
+
"type": "VECTOR",
|
| 477 |
+
"vectorKnowledgeBaseConfiguration": {
|
| 478 |
+
"embeddingModelArn": embedding_model_arn
|
| 479 |
+
}
|
| 480 |
+
},
|
| 481 |
+
storageConfiguration={
|
| 482 |
+
"type": "OPENSEARCH_SERVERLESS",
|
| 483 |
+
"opensearchServerlessConfiguration": opensearch_serverless_configuration
|
| 484 |
+
}
|
| 485 |
+
)
|
| 486 |
+
kb = create_kb_response["knowledgeBase"]
|
| 487 |
+
pp.pprint(kb)
|
| 488 |
+
except self.bedrock_agent_client.exceptions.ConflictException:
|
| 489 |
+
kbs = self.bedrock_agent_client.list_knowledge_bases(
|
| 490 |
+
maxResults=100
|
| 491 |
+
)
|
| 492 |
+
kb_id = None
|
| 493 |
+
for kb in kbs['knowledgeBaseSummaries']:
|
| 494 |
+
if kb['name'] == self.kb_name:
|
| 495 |
+
kb_id = kb['knowledgeBaseId']
|
| 496 |
+
response = self.bedrock_agent_client.get_knowledge_base(knowledgeBaseId=kb_id)
|
| 497 |
+
kb = response['knowledgeBase']
|
| 498 |
+
pp.pprint(kb)
|
| 499 |
+
|
| 500 |
+
# Create a DataSource in KnowledgeBase
|
| 501 |
+
try:
|
| 502 |
+
create_ds_response = self.bedrock_agent_client.create_data_source(
|
| 503 |
+
name=self.kb_name,
|
| 504 |
+
description=self.kb_description,
|
| 505 |
+
knowledgeBaseId=kb['knowledgeBaseId'],
|
| 506 |
+
dataSourceConfiguration={
|
| 507 |
+
"type": "S3",
|
| 508 |
+
"s3Configuration": s3_configuration
|
| 509 |
+
},
|
| 510 |
+
vectorIngestionConfiguration={
|
| 511 |
+
"chunkingConfiguration": chunking_strategy_configuration
|
| 512 |
+
}
|
| 513 |
+
)
|
| 514 |
+
ds = create_ds_response["dataSource"]
|
| 515 |
+
pp.pprint(ds)
|
| 516 |
+
except self.bedrock_agent_client.exceptions.ConflictException:
|
| 517 |
+
ds_id = self.bedrock_agent_client.list_data_sources(
|
| 518 |
+
knowledgeBaseId=kb['knowledgeBaseId'],
|
| 519 |
+
maxResults=100
|
| 520 |
+
)['dataSourceSummaries'][0]['dataSourceId']
|
| 521 |
+
get_ds_response = self.bedrock_agent_client.get_data_source(
|
| 522 |
+
dataSourceId=ds_id,
|
| 523 |
+
knowledgeBaseId=kb['knowledgeBaseId']
|
| 524 |
+
)
|
| 525 |
+
ds = get_ds_response["dataSource"]
|
| 526 |
+
pp.pprint(ds)
|
| 527 |
+
return kb, ds
|
| 528 |
+
|
| 529 |
+
def start_ingestion_job(self):
|
| 530 |
+
"""
|
| 531 |
+
Start an ingestion job to synchronize data from an S3 bucket to the Knowledge Base
|
| 532 |
+
"""
|
| 533 |
+
# Start an ingestion job
|
| 534 |
+
start_job_response = self.bedrock_agent_client.start_ingestion_job(
|
| 535 |
+
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'],
|
| 536 |
+
dataSourceId=self.data_source["dataSourceId"]
|
| 537 |
+
)
|
| 538 |
+
job = start_job_response["ingestionJob"]
|
| 539 |
+
pp.pprint(job)
|
| 540 |
+
# Get job
|
| 541 |
+
while job['status'] != 'COMPLETE':
|
| 542 |
+
get_job_response = self.bedrock_agent_client.get_ingestion_job(
|
| 543 |
+
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'],
|
| 544 |
+
dataSourceId=self.data_source["dataSourceId"],
|
| 545 |
+
ingestionJobId=job["ingestionJobId"]
|
| 546 |
+
)
|
| 547 |
+
job = get_job_response["ingestionJob"]
|
| 548 |
+
pp.pprint(job)
|
| 549 |
+
interactive_sleep(40)
|
| 550 |
+
|
| 551 |
+
def get_knowledge_base_id(self):
|
| 552 |
+
"""
|
| 553 |
+
Get Knowledge Base Id
|
| 554 |
+
"""
|
| 555 |
+
pp.pprint(self.knowledge_base["knowledgeBaseId"])
|
| 556 |
+
return self.knowledge_base["knowledgeBaseId"]
|
| 557 |
+
|
| 558 |
+
def get_bucket_name(self):
|
| 559 |
+
"""
|
| 560 |
+
Get the name of the bucket connected with the Knowledge Base Data Source
|
| 561 |
+
"""
|
| 562 |
+
pp.pprint(f"Bucket connected with KB: {self.bucket_name}")
|
| 563 |
+
return self.bucket_name
|
| 564 |
+
|
| 565 |
+
def delete_kb(self, delete_s3_bucket=False, delete_iam_roles_and_policies=True):
|
| 566 |
+
"""
|
| 567 |
+
Delete the Knowledge Base resources
|
| 568 |
+
Args:
|
| 569 |
+
delete_s3_bucket (bool): boolean to indicate if s3 bucket should also be deleted
|
| 570 |
+
delete_iam_roles_and_policies (bool): boolean to indicate if IAM roles and Policies should also be deleted
|
| 571 |
+
"""
|
| 572 |
+
self.bedrock_agent_client.delete_data_source(
|
| 573 |
+
dataSourceId=self.data_source["dataSourceId"],
|
| 574 |
+
knowledgeBaseId=self.knowledge_base['knowledgeBaseId']
|
| 575 |
+
)
|
| 576 |
+
self.bedrock_agent_client.delete_knowledge_base(
|
| 577 |
+
knowledgeBaseId=self.knowledge_base['knowledgeBaseId']
|
| 578 |
+
)
|
| 579 |
+
self.oss_client.indices.delete(index=self.index_name)
|
| 580 |
+
self.aoss_client.delete_collection(id=self.collection_id)
|
| 581 |
+
self.aoss_client.delete_access_policy(
|
| 582 |
+
type="data",
|
| 583 |
+
name=self.access_policy_name
|
| 584 |
+
)
|
| 585 |
+
self.aoss_client.delete_security_policy(
|
| 586 |
+
type="network",
|
| 587 |
+
name=self.network_policy_name
|
| 588 |
+
)
|
| 589 |
+
self.aoss_client.delete_security_policy(
|
| 590 |
+
type="encryption",
|
| 591 |
+
name=self.encryption_policy_name
|
| 592 |
+
)
|
| 593 |
+
if delete_s3_bucket:
|
| 594 |
+
self.delete_s3()
|
| 595 |
+
if delete_iam_roles_and_policies:
|
| 596 |
+
self.delete_iam_roles_and_policies()
|
| 597 |
+
|
| 598 |
+
def delete_iam_roles_and_policies(self):
|
| 599 |
+
"""
|
| 600 |
+
Delete IAM Roles and policies used by the Knowledge Base
|
| 601 |
+
"""
|
| 602 |
+
fm_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.fm_policy_name}"
|
| 603 |
+
s3_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.s3_policy_name}"
|
| 604 |
+
oss_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.oss_policy_name}"
|
| 605 |
+
self.iam_client.detach_role_policy(
|
| 606 |
+
RoleName=self.kb_execution_role_name,
|
| 607 |
+
PolicyArn=s3_policy_arn
|
| 608 |
+
)
|
| 609 |
+
self.iam_client.detach_role_policy(
|
| 610 |
+
RoleName=self.kb_execution_role_name,
|
| 611 |
+
PolicyArn=fm_policy_arn
|
| 612 |
+
)
|
| 613 |
+
self.iam_client.detach_role_policy(
|
| 614 |
+
RoleName=self.kb_execution_role_name,
|
| 615 |
+
PolicyArn=oss_policy_arn
|
| 616 |
+
)
|
| 617 |
+
self.iam_client.delete_role(RoleName=self.kb_execution_role_name)
|
| 618 |
+
self.iam_client.delete_policy(PolicyArn=s3_policy_arn)
|
| 619 |
+
self.iam_client.delete_policy(PolicyArn=fm_policy_arn)
|
| 620 |
+
self.iam_client.delete_policy(PolicyArn=oss_policy_arn)
|
| 621 |
+
return 0
|
| 622 |
+
|
| 623 |
+
def delete_s3(self):
|
| 624 |
+
"""
|
| 625 |
+
Delete the objects contained in the Knowledge Base S3 bucket.
|
| 626 |
+
Once the bucket is empty, delete the bucket
|
| 627 |
+
"""
|
| 628 |
+
objects = self.s3_client.list_objects(Bucket=self.bucket_name)
|
| 629 |
+
if 'Contents' in objects:
|
| 630 |
+
for obj in objects['Contents']:
|
| 631 |
+
self.s3_client.delete_object(Bucket=self.bucket_name, Key=obj['Key'])
|
| 632 |
+
self.s3_client.delete_bucket(Bucket=self.bucket_name)
|