Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
JSONSchemaBench / README.md
Saibo-creator's picture
Update README.md
7f2f107 verified
|
raw
history blame
3.88 kB
---
dataset_info:
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: WashingtonPost
num_bytes: 2710348
num_examples: 125
- name: Snowplow
num_bytes: 1613804
num_examples: 403
- name: Kubernetes
num_bytes: 25623424
num_examples: 1064
- name: Github_trivial
num_bytes: 780060
num_examples: 444
- name: Github_easy
num_bytes: 1980784
num_examples: 1943
- name: Github_medium
num_bytes: 7994298
num_examples: 1976
- name: Github_hard
num_bytes: 20240875
num_examples: 1240
- name: Github_ultra
num_bytes: 12235981
num_examples: 164
- name: JsonSchemaStore
num_bytes: 22195651
num_examples: 492
- name: Glaiveai2K
num_bytes: 1440707
num_examples: 1707
download_size: 19019152
dataset_size: 96815932
configs:
- config_name: default
data_files:
- split: WashingtonPost
path: data/WashingtonPost-*
- split: Snowplow
path: data/Snowplow-*
- split: Kubernetes
path: data/Kubernetes-*
- split: Github_trivial
path: data/Github_trivial-*
- split: Github_easy
path: data/Github_easy-*
- split: Github_medium
path: data/Github_medium-*
- split: Github_hard
path: data/Github_hard-*
- split: Github_ultra
path: data/Github_ultra-*
- split: JsonSchemaStore
path: data/JsonSchemaStore-*
- split: Glaiveai2K
path: data/Glaiveai2K-*
pretty_name: J
---
# JSONSchemaBench
[![Paper](https://img.shields.io/badge/Paper-arXiv-blue)](https://arxiv.org/abs/2501.10868)
JSONSchemaBench is a benchmark of **real-world JSON schemas** designed to evaluate **structured output generation** for Large Language Models (LLMs). It contains approximately **10,000 JSON schemas**, capturing diverse constraints and complexities.
## πŸ“Œ Dataset Overview
- **Purpose:** Evaluate the **efficiency** and **coverage** of structured output generation.
- **Sources:** GitHub, Kubernetes, API specifications, curated collections.
- **Schemas:** Categorized based on complexity and domain.
### πŸ“Š Dataset Breakdown
| Dataset | Category | Count |
| --------------- | ------------------- | ----- |
| GlaiveAI-2K | Function Call | 1707 |
| Github-Trivial | Misc | 444 |
| Github-Easy | Misc | 1943 |
| Snowplow | Operational API | 403 |
| Github-Medium | Misc | 1976 |
| Kubernetes | Kubernetes API | 1064 |
| Washington Post | Resource Access API | 125 |
| Github-Hard | Misc | 1240 |
| JSONSchemaStore | Misc | 492 |
| Github-Ultra | Misc | 164 |
| **Total** | | 9558 |
## πŸ“₯ Loading the Dataset
```python
from datasets import load_dataset
dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)
```
## πŸ” Data Structure
Each dataset split contains:
- `"json_schema"`: The schema definition.
- `"unique_id"`: A unique identifier for the schema.
πŸš€ **For more details, check out the [paper](https://arxiv.org/abs/2501.10868).**
## πŸ“š Citation
If you use this dataset, please cite:
```bibtex
@misc{geng2025jsonschemabench,
title={Generating Structured Outputs from Language Models: Benchmark and Studies},
author={Saibo Geng et al.},
year={2025},
eprint={2501.10868},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.10868}
}
```
## License
This dataset is provided under the [MIT License](https://opensource.org/licenses/MIT). Please ensure that you comply with the license terms when using or distributing this dataset.
## Acknowledgements
We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.