|
import json |
|
|
|
import datasets |
|
|
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
|
|
BASE_DATA_PATH = Path("./data") |
|
|
|
|
|
class CSCOMMConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CSCOMM.""" |
|
|
|
def __init__(self, key, pretraining=False, data_path="./data", **kwargs): |
|
"""BuilderConfig for CSCOMM. |
|
Args: |
|
key: `string` |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super(CSCOMMConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs) |
|
self.key = key |
|
self.pretraining = pretraining |
|
|
|
|
|
class CSCOMM(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
CSCOMMConfig( |
|
name="AP", |
|
key="ap" |
|
), |
|
CSCOMMConfig( |
|
name="AP+P", |
|
key="ap_p" |
|
), |
|
CSCOMMConfig( |
|
name="AP+J", |
|
key="ap_j" |
|
), |
|
CSCOMMConfig( |
|
name="AP+PJ", |
|
key="ap_pj" |
|
), |
|
CSCOMMConfig( |
|
name="BA", |
|
key="ba" |
|
), |
|
CSCOMMConfig( |
|
name="BA+P", |
|
key="ba_p" |
|
), |
|
CSCOMMConfig( |
|
name="BA+J", |
|
key="ba_j" |
|
), |
|
CSCOMMConfig( |
|
name="BA+PJ", |
|
key="ba_pj" |
|
), |
|
CSCOMMConfig( |
|
name="pretrain-unlabeled", |
|
key="pt_un", |
|
pretraining=True |
|
), |
|
CSCOMMConfig( |
|
name="pretrain-labeled", |
|
key="pt_la", |
|
pretraining=True |
|
), |
|
CSCOMMConfig( |
|
name="pretrain-both", |
|
key="pt_unla", |
|
pretraining=True |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = { |
|
"round_id": datasets.Value("string"), |
|
"source": datasets.Value("string") |
|
} |
|
if not self.config.pretraining: |
|
features["commentary"] = datasets.Value("string") |
|
|
|
return datasets.DatasetInfo( |
|
features=datasets.Features(features), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract({ |
|
"train": f"./data/{self.config.key}/train.csv", |
|
"valid": f"./data/{self.config.key}/valid.csv", |
|
"test": f"./data/{self.config.key}/test.csv" |
|
}) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": dl_dir["train"], |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": dl_dir["valid"], |
|
"split": datasets.Split.VALIDATION, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": dl_dir["test"], |
|
"split": datasets.Split.TEST, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
df = pd.read_csv(data_file) |
|
for i, row in enumerate(df.itertuples()): |
|
example = {"round_id": row.round_id, "source": row.source} |
|
if not self.config.pretraining: |
|
example["commentary"] = row.commentary |
|
|
|
yield i, example |
|
|