File size: 3,462 Bytes
a40f768
 
 
 
 
 
 
 
308cc0f
a40f768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308cc0f
 
 
 
 
a40f768
 
 
 
 
5db9fd9
a40f768
 
 
 
 
 
5db9fd9
a40f768
 
 
 
 
 
5db9fd9
a40f768
 
 
 
 
 
 
 
b89b73b
a40f768
 
 
b89b73b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import json

import datasets

from pathlib import Path

import pandas as pd

BASE_DATA_PATH = Path("./data")


class CSCOMMConfig(datasets.BuilderConfig):
    """BuilderConfig for CSCOMM."""

    def __init__(self, key, pretraining=False, data_path="./data", **kwargs):
        """BuilderConfig for CSCOMM.
        Args:
          key: `string`
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 0.0.1: Initial version.
        super(CSCOMMConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
        self.key = key
        self.pretraining = pretraining


class CSCOMM(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CSCOMMConfig(
            name="AP",
            key="ap"
        ),
        CSCOMMConfig(
            name="AP+P",
            key="ap_p"
        ),
        CSCOMMConfig(
            name="AP+J",
            key="ap_j"
        ),
        CSCOMMConfig(
            name="AP+PJ",
            key="ap_pj"
        ),
        CSCOMMConfig(
            name="BA",
            key="ba"
        ),
        CSCOMMConfig(
            name="BA+P",
            key="ba_p"
        ),
        CSCOMMConfig(
            name="BA+J",
            key="ba_j"
        ),
        CSCOMMConfig(
            name="BA+PJ",
            key="ba_pj"
        ),
        CSCOMMConfig(
            name="pretrain-unlabeled",
            key="pt_un",
            pretraining=True
        ),
        CSCOMMConfig(
            name="pretrain-labeled",
            key="pt_la",
            pretraining=True
        ),
        CSCOMMConfig(
            name="pretrain-both",
            key="pt_unla",
            pretraining=True
        ),
    ]

    def _info(self):
        features = {
            "round_id": datasets.Value("string"),
            "source": datasets.Value("string")
        }
        if not self.config.pretraining:
            features["commentary"] = datasets.Value("string")

        return datasets.DatasetInfo(
            features=datasets.Features(features),
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract({
            "train": f"./data/{self.config.key}/train.csv",
            "valid": f"./data/{self.config.key}/valid.csv",
            "test": f"./data/{self.config.key}/test.csv"
        })

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": dl_dir["train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": dl_dir["valid"],
                    "split": datasets.Split.VALIDATION,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": dl_dir["test"],
                    "split": datasets.Split.TEST,
                },
            ),
        ]

    def _generate_examples(self, data_file, split):
        df = pd.read_csv(data_file)
        for i, row in enumerate(df.itertuples()):
            example = {"round_id": row.round_id, "source": row.source}
            if not self.config.pretraining:
                example["commentary"] = row.commentary

            yield i, example