response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Update a particular user. Args: user_id (int): ID of the user. user (UserIn): Updated user data. Returns: User: The updated user details. Raises: HTTPException (status_code=404): If the user with the specified ID is not found.
def update_user(user_id: int, user: UserBase, Authorize: AuthJWT = Depends(check_auth)): """ Update a particular user. Args: user_id (int): ID of the user. user (UserIn): Updated user data. Returns: User: The updated user details. Raises: HTTPException (status_code=404): If the user with the specified ID is not found. """ db_user = db.session.query(User).filter(User.id == user_id).first() if not db_user: raise HTTPException(status_code=404, detail="User not found") db_user.name = user.name db_user.email = user.email db_user.password = user.password db.session.commit() return db_user
Update first login source of the user
def update_first_login_source(source: str, Authorize: AuthJWT = Depends(check_auth)): """ Update first login source of the user """ user = get_current_user(Authorize) # valid_sources = ['google', 'github', 'email'] if user.first_login_source is None or user.first_login_source == '': user.first_login_source = source db.session.commit() db.session.flush() logger.info("User : ",user) return user
Creates a new webhook Args: Returns: Agent: An object of Agent representing the created Agent. Raises: HTTPException (Status Code=404): If the associated project is not found.
def create_webhook(webhook: WebHookIn, Authorize: AuthJWT = Depends(check_auth), organisation=Depends(get_user_organisation)): """ Creates a new webhook Args: Returns: Agent: An object of Agent representing the created Agent. Raises: HTTPException (Status Code=404): If the associated project is not found. """ db_webhook = Webhooks(name=webhook.name, url=webhook.url, headers=webhook.headers, org_id=organisation.id, is_deleted=False, filters=webhook.filters) db.session.add(db_webhook) db.session.commit() db.session.flush() return db_webhook
Retrieves a single webhook for the authenticated user's organisation. Returns: JSONResponse: A JSON response containing the retrieved webhook. Raises:
def get_all_webhooks( Authorize: AuthJWT = Depends(check_auth), organisation=Depends(get_user_organisation), ): """ Retrieves a single webhook for the authenticated user's organisation. Returns: JSONResponse: A JSON response containing the retrieved webhook. Raises: """ webhook = db.session.query(Webhooks).filter(Webhooks.org_id == organisation.id, Webhooks.is_deleted == False).first() return webhook
Soft-deletes a webhook by setting the value of is_deleted to True. Args: webhook_id (int): The ID of the webhook to delete. Returns: WebHookOut: The deleted webhook. Raises: HTTPException (Status Code=404): If the webhook is not found.
def edit_webhook( updated_webhook: WebHookEdit, webhook_id: int, Authorize: AuthJWT = Depends(check_auth), organisation=Depends(get_user_organisation), ): """ Soft-deletes a webhook by setting the value of is_deleted to True. Args: webhook_id (int): The ID of the webhook to delete. Returns: WebHookOut: The deleted webhook. Raises: HTTPException (Status Code=404): If the webhook is not found. """ webhook = db.session.query(Webhooks).filter(Webhooks.org_id == organisation.id, Webhooks.id == webhook_id, Webhooks.is_deleted == False).first() if webhook is None: raise HTTPException(status_code=404, detail="Webhook not found") webhook.url = updated_webhook.url webhook.filters = updated_webhook.filters db.session.commit() return webhook
Function to check if the user is authenticated or not based on the environment. Args: Authorize (AuthJWT, optional): Instance of AuthJWT class to authorize the user. Defaults to Depends(). Returns: AuthJWT: Instance of AuthJWT class if the user is authenticated.
def check_auth(Authorize: AuthJWT = Depends()): """ Function to check if the user is authenticated or not based on the environment. Args: Authorize (AuthJWT, optional): Instance of AuthJWT class to authorize the user. Defaults to Depends(). Returns: AuthJWT: Instance of AuthJWT class if the user is authenticated. """ env = get_config("ENV", "DEV") if env == "PROD": Authorize.jwt_required() return Authorize
Function to get the organisation of the authenticated user based on the environment. Args: Authorize (AuthJWT, optional): Instance of AuthJWT class to authorize the user. Defaults to Depends on check_auth(). Returns: Organisation: Instance of Organisation class to which the authenticated user belongs.
def get_user_organisation(Authorize: AuthJWT = Depends(check_auth)): """ Function to get the organisation of the authenticated user based on the environment. Args: Authorize (AuthJWT, optional): Instance of AuthJWT class to authorize the user. Defaults to Depends on check_auth(). Returns: Organisation: Instance of Organisation class to which the authenticated user belongs. """ user = get_current_user(Authorize) if user is None: raise HTTPException(status_code=401, detail="Unauthenticated") organisation = db.session.query(Organisation).filter(Organisation.id == user.organisation_id).first() return organisation
Encrypts the given data using the Fernet cipher suite. Args: data (str): The data to be encrypted. Returns: str: The encrypted data, decoded as a string.
def encrypt_data(data): """ Encrypts the given data using the Fernet cipher suite. Args: data (str): The data to be encrypted. Returns: str: The encrypted data, decoded as a string. """ encrypted_data = cipher_suite.encrypt(data.encode()) return encrypted_data.decode()
Decrypts the given encrypted data using the Fernet cipher suite. Args: encrypted_data (str): The encrypted data to be decrypted. Returns: str: The decrypted data, decoded as a string.
def decrypt_data(encrypted_data): """ Decrypts the given encrypted data using the Fernet cipher suite. Args: encrypted_data (str): The encrypted data to be decrypted. Returns: str: The decrypted data, decoded as a string. """ decrypted_data = cipher_suite.decrypt(encrypted_data.encode()) return decrypted_data.decode()
Helper function to parse the feed. Args: feed (AgentExecutionFeed): The feed to be parsed. Returns: dict: Parsed feed information with role, feed content, and updated timestamp. If parsing fails, the original feed is returned.
def parse_feed(feed): """ Helper function to parse the feed. Args: feed (AgentExecutionFeed): The feed to be parsed. Returns: dict: Parsed feed information with role, feed content, and updated timestamp. If parsing fails, the original feed is returned. """ # Get the current time feed.time_difference = get_time_difference(feed.updated_at, str(datetime.now())) # Check if the feed belongs to an assistant role if feed.role == "assistant": try: # Parse the feed as JSON parsed = json.loads(feed.feed, strict=False) final_output = "" if "reasoning" in parsed["thoughts"]: final_output = "Thoughts: " + parsed["thoughts"]["reasoning"] + "\n" if "plan" in parsed["thoughts"]: final_output += "Plan: " + str(parsed["thoughts"]["plan"]) + "\n" if "criticism" in parsed["thoughts"]: final_output += "Criticism: " + parsed["thoughts"]["criticism"] + "\n" if "tool" in parsed: final_output += "Tool: " + parsed["tool"]["name"] + "\n" if "command" in parsed: final_output += "Tool: " + parsed["command"]["name"] + "\n" return {"role": "assistant", "feed": final_output, "updated_at": feed.updated_at, "time_difference": feed.time_difference} except Exception: return {"role": "assistant", "feed": feed.feed, "updated_at": feed.updated_at, "time_difference": feed.time_difference} if feed.role == "system": final_output = feed.feed if "json-schema.org" in feed.feed: final_output = feed.feed.split("TOOLS:")[0] return {"role": "system", "feed": final_output, "updated_at": feed.updated_at, "time_difference": feed.time_difference} if feed.role == "user": return {"role": "user", "feed": feed.feed, "updated_at": feed.updated_at, "time_difference": feed.time_difference} return feed
Get tool information from an object.
def get_tool_info(class_dict, classes, obj): """ Get tool information from an object. """ class_dict['tool_name'] = obj.name class_dict['tool_description'] = obj.description classes.append(class_dict)
Get toolkit information from an object.
def get_toolkit_info(class_dict, classes, obj): """ Get toolkit information from an object. """ class_dict['toolkit_name'] = obj.name class_dict['toolkit_description'] = obj.description class_dict['toolkit_tools'] = obj.get_tools() class_dict['toolkit_keys'] = obj.get_env_keys() classes.append(class_dict)
Connects to the PostgreSQL database using SQLAlchemy. Returns: engine: The SQLAlchemy engine object representing the database connection.
def connect_db(): """ Connects to the PostgreSQL database using SQLAlchemy. Returns: engine: The SQLAlchemy engine object representing the database connection. """ global engine if engine is not None: return engine # Create the connection URL db_host = get_config('DB_HOST', 'super__postgres') db_username = get_config('DB_USERNAME') db_password = get_config('DB_PASSWORD') db_name = get_config('DB_NAME') db_url = get_config('DB_URL', None) if db_url is None: if db_username is None: db_url = f'postgresql://{db_host}/{db_name}' else: db_url = f'postgresql://{db_username}:{db_password}@{db_host}/{db_name}' else: db_url = urlparse(db_url) db_url = db_url.scheme + "://" + db_url.netloc + db_url.path # Create the SQLAlchemy engine engine = create_engine(db_url, pool_size=20, # Maximum number of database connections in the pool max_overflow=50, # Maximum number of connections that can be created beyond the pool_size pool_timeout=30, # Timeout value in seconds for acquiring a connection from the pool pool_recycle=1800, # Recycle connections after this number of seconds (optional) pool_pre_ping=False, # Enable connection health checks (optional) ) # Test the connection try: connection = engine.connect() logger.info("Connected to the database! @ " + db_url) connection.close() except Exception as e: logger.error(f"Unable to connect to the database:{e}") return engine
Get the arguments from a function's signature.
def extract_valid_parameters( inferred_type: Type[BaseModel], function: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_type.schema()["properties"] valid_params = signature(function).parameters return {param: schema[param] for param in valid_params if param != "run_manager"}
Create a pydantic model with only a subset of model's fields.
def _construct_model_subset( model_name: str, original_model: BaseModel, required_fields: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = { field: ( original_model.__fields__[field].type_, original_model.__fields__[field].default, ) for field in required_fields if field in original_model.__fields__ } return create_model(model_name, **fields)
Create a pydantic schema from a function's signature.
def create_function_schema( schema_name: str, function: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature.""" validated = validate_arguments(function, config=SchemaSettings) # type: ignore inferred_type = validated.model # type: ignore if "run_manager" in inferred_type.__fields__: del inferred_type.__fields__["run_manager"] valid_parameters = extract_valid_parameters(inferred_type, function) return _construct_model_subset( f"{schema_name}Schema", inferred_type, list(valid_parameters) )
Gets the raw HTML of a searx search result page Args: query : The query to search for.
def search(query): """ Gets the raw HTML of a searx search result page Args: query : The query to search for. """ # TODO: use a better strategy for choosing hosts. Could use this list: https://searx.space/data/instances.json searx_url = random.choice(searx_hosts) res = httpx.get( searx_url + "/search", params={"q": query}, headers={"User-Agent": "Mozilla/5.0 (X11; Linux i686; rv:109.0) Gecko/20100101 Firefox/114.0"} ) if res.status_code != 200: logger.info(res.status_code, searx_url) raise Exception(f"Searx returned {res.status_code} status code") return res.text
Cleans up whitespace in a string Args: s : The string to clean up. Returns: The cleaned up string.
def clean_whitespace(s: str): """ Cleans up whitespace in a string Args: s : The string to clean up. Returns: The cleaned up string. """ return " ".join(s.split())
Converts raw HTML into a list of SearchResult objects Args: html : The raw HTML to convert. Returns: A list of SearchResult objects.
def scrape_results(html): """ Converts raw HTML into a list of SearchResult objects Args: html : The raw HTML to convert. Returns: A list of SearchResult objects. """ soup = BeautifulSoup(html, "html.parser") result_divs = soup.find_all(attrs={"class": "result"}) result_list = [] n = 1 for result_div in result_divs: if result_div is None: continue # Needed to work on multiple versions of Searx header = result_div.find(["h4", "h3"]) if header is None: continue link = header.find("a")["href"] title = header.text.strip() description = clean_whitespace(result_div.find("p").text) # Needed to work on multiple versions of Searx sources_container = result_div.find( attrs={"class": "pull-right"} ) or result_div.find(attrs={"class": "engines"}) source_spans = sources_container.find_all("span") sources = [] for s in source_spans: sources.append(s.text.strip()) result = SearchResult( id=n, title=title, link=link, description=description, sources=sources ) result_list.append(result) n += 1 return result_list
Returns a text summary of the search results via the SearchResult.__str__ method
def search_results(query): '''Returns a text summary of the search results via the SearchResult.__str__ method''' return "\n\n".join(list(map(lambda x: str(x), scrape_results(search(query)))))
Creates a Weaviate client instance. Args: use_embedded: Whether to use the embedded Weaviate instance. Defaults to True. url: The URL of the Weaviate instance to connect to. Required if `use_embedded` is False. api_key: The API key to use for authentication if using Weaviate Cloud Services. Optional. Returns: A Weaviate client instance. Raises: ValueError: If invalid argument combination are passed.
def create_weaviate_client( url: Optional[str] = None, api_key: Optional[str] = None, ) -> weaviate.Client: """ Creates a Weaviate client instance. Args: use_embedded: Whether to use the embedded Weaviate instance. Defaults to True. url: The URL of the Weaviate instance to connect to. Required if `use_embedded` is False. api_key: The API key to use for authentication if using Weaviate Cloud Services. Optional. Returns: A Weaviate client instance. Raises: ValueError: If invalid argument combination are passed. """ if url: if api_key: auth_config = weaviate.AuthApiKey(api_key=api_key) else: auth_config = None client = weaviate.Client(url=url, auth_client_secret=auth_config) else: raise ValueError("Invalid arguments passed to create_weaviate_client") return client
init. Initialize DDP using the given rendezvous file.
def init(args): """init. Initialize DDP using the given rendezvous file. """ global rank, world_size if args.ddp: assert args.rank is not None and args.world_size is not None rank = args.rank world_size = args.world_size if world_size == 1: return torch.cuda.set_device(rank) torch.distributed.init_process_group( backend=args.ddp_backend, init_method='file://' + os.path.abspath(args.rendezvous_file), world_size=world_size, rank=rank) logger.debug("Distributed rendezvous went well, rank %d/%d", rank, world_size)
average. Average all the relevant metrices across processes `metrics`should be a 1D float32 fector. Returns the average of `metrics` over all hosts. You can use `count` to control the weight of each worker.
def average(metrics, count=1.): """average. Average all the relevant metrices across processes `metrics`should be a 1D float32 fector. Returns the average of `metrics` over all hosts. You can use `count` to control the weight of each worker. """ if world_size == 1: return metrics tensor = torch.tensor(list(metrics) + [1], device='cuda', dtype=torch.float32) tensor *= count torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.SUM) return (tensor[:-1] / tensor[-1]).cpu().numpy().tolist()
wrap. Wrap a model with DDP if distributed training is enabled.
def wrap(model): """wrap. Wrap a model with DDP if distributed training is enabled. """ if world_size == 1: return model else: return DistributedDataParallel( model, device_ids=[torch.cuda.current_device()], output_device=torch.cuda.current_device())
loader. Create a dataloader properly in case of distributed training. If a gradient is going to be computed you must set `shuffle=True`. :param dataset: the dataset to be parallelized :param args: relevant args for the loader :param shuffle: shuffle examples :param klass: loader class :param kwargs: relevant args
def loader(dataset, *args, shuffle=False, klass=DataLoader, **kwargs): """loader. Create a dataloader properly in case of distributed training. If a gradient is going to be computed you must set `shuffle=True`. :param dataset: the dataset to be parallelized :param args: relevant args for the loader :param shuffle: shuffle examples :param klass: loader class :param kwargs: relevant args """ if world_size == 1: return klass(dataset, *args, shuffle=shuffle, **kwargs) if shuffle: # train means we will compute backward, we use DistributedSampler sampler = DistributedSampler(dataset) # We ignore shuffle, DistributedSampler already shuffles return klass(dataset, *args, **kwargs, sampler=sampler) else: # We make a manual shard, as DistributedSampler otherwise replicate some examples dataset = Subset(dataset, list(range(rank, len(dataset), world_size))) return klass(dataset, *args, shuffle=shuffle)
Calcuate Scale-Invariant Source-to-Noise Ratio (SI-SNR) Args: ref_sig: numpy.ndarray, [B, T] out_sig: numpy.ndarray, [B, T] Returns: SISNR
def cal_SISNR(ref_sig, out_sig, eps=1e-8): """Calcuate Scale-Invariant Source-to-Noise Ratio (SI-SNR) Args: ref_sig: numpy.ndarray, [B, T] out_sig: numpy.ndarray, [B, T] Returns: SISNR """ assert len(ref_sig) == len(out_sig) B, T = ref_sig.shape ref_sig = ref_sig - np.mean(ref_sig, axis=1).reshape(B, 1) out_sig = out_sig - np.mean(out_sig, axis=1).reshape(B, 1) ref_energy = (np.sum(ref_sig ** 2, axis=1) + eps).reshape(B, 1) proj = (np.sum(ref_sig * out_sig, axis=1).reshape(B, 1)) * \ ref_sig / ref_energy noise = out_sig - proj ratio = np.sum(proj ** 2, axis=1) / (np.sum(noise ** 2, axis=1) + eps) sisnr = 10 * np.log(ratio + eps) / np.log(10.0) return sisnr.mean()
Calculate PESQ. Args: ref_sig: numpy.ndarray, [B, C, T] out_sig: numpy.ndarray, [B, C, T] Returns PESQ
def cal_PESQ(ref_sig, out_sig, sr): """Calculate PESQ. Args: ref_sig: numpy.ndarray, [B, C, T] out_sig: numpy.ndarray, [B, C, T] Returns PESQ """ B, C, T = ref_sig.shape ref_sig = ref_sig.reshape(B*C, T) out_sig = out_sig.reshape(B*C, T) pesq_val = 0 for i in range(len(ref_sig)): pesq_val += pesq(sr, ref_sig[i], out_sig[i], 'nb') return pesq_val / (B*C)
Calculate STOI. Args: ref_sig: numpy.ndarray, [B, C, T] out_sig: numpy.ndarray, [B, C, T] Returns: STOI
def cal_STOI(ref_sig, out_sig, sr): """Calculate STOI. Args: ref_sig: numpy.ndarray, [B, C, T] out_sig: numpy.ndarray, [B, C, T] Returns: STOI """ B, C, T = ref_sig.shape ref_sig = ref_sig.reshape(B*C, T) out_sig = out_sig.reshape(B*C, T) try: stoi_val = 0 for i in range(len(ref_sig)): stoi_val += stoi(ref_sig[i], out_sig[i], sr, extended=False) return stoi_val / (B*C) except: return 0
Calculate Scale-Invariant Source-to-Noise Ratio improvement (SI-SNRi) Args: src_ref: numpy.ndarray, [B, C, T] src_est: numpy.ndarray, [B, C, T], reordered by best PIT permutation mix: numpy.ndarray, [T] Returns: average_SISNRi
def cal_SISNRi(src_ref, src_est, mix): """Calculate Scale-Invariant Source-to-Noise Ratio improvement (SI-SNRi) Args: src_ref: numpy.ndarray, [B, C, T] src_est: numpy.ndarray, [B, C, T], reordered by best PIT permutation mix: numpy.ndarray, [T] Returns: average_SISNRi """ avg_SISNRi = 0.0 B, C, T = src_ref.shape for c in range(C): sisnr = cal_SISNR(src_ref[:, c], src_est[:, c]) sisnrb = cal_SISNR(src_ref[:, c], mix) avg_SISNRi += (sisnr - sisnrb) avg_SISNRi /= C return avg_SISNRi
Decorate `__init__` with this, and you can then recover the *args and **kwargs passed to it in `self._init_args_kwargs`
def capture_init(init): """ Decorate `__init__` with this, and you can then recover the *args and **kwargs passed to it in `self._init_args_kwargs` """ @functools.wraps(init) def __init__(self, *args, **kwargs): self._init_args_kwargs = (args, kwargs) init(self, *args, **kwargs) return __init__
Args: inputs: torch.Tensor, [B, C, T] or [B, T], B is batch size inputs_lengths: torch.Tensor, [B] Returns: results: a list containing B items, each item is [C, T], T varies
def remove_pad(inputs, inputs_lengths): """ Args: inputs: torch.Tensor, [B, C, T] or [B, T], B is batch size inputs_lengths: torch.Tensor, [B] Returns: results: a list containing B items, each item is [C, T], T varies """ results = [] dim = inputs.dim() if dim == 3: C = inputs.size(1) for input, length in zip(inputs, inputs_lengths): if dim == 3: # [B, C, T] results.append(input[:, :length].view(C, -1).cpu().numpy()) elif dim == 2: # [B, T] results.append(input[:length].view(-1).cpu().numpy()) return results
Reconstructs a signal from a framed representation. Adds potentially overlapping frames of a signal with shape `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`. The resulting tensor has shape `[..., output_size]` where output_size = (frames - 1) * frame_step + frame_length Args: signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2. frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length. Returns: A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions. output_size = (frames - 1) * frame_step + frame_length Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
def overlap_and_add(signal, frame_step): """Reconstructs a signal from a framed representation. Adds potentially overlapping frames of a signal with shape `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`. The resulting tensor has shape `[..., output_size]` where output_size = (frames - 1) * frame_step + frame_length Args: signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2. frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length. Returns: A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions. output_size = (frames - 1) * frame_step + frame_length Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py """ outer_dimensions = signal.size()[:-2] frames, frame_length = signal.size()[-2:] # gcd=Greatest Common Divisor subframe_length = math.gcd(frame_length, frame_step) subframe_step = frame_step // subframe_length subframes_per_frame = frame_length // subframe_length output_size = frame_step * (frames - 1) + frame_length output_subframes = output_size // subframe_length subframe_signal = signal.view(*outer_dimensions, -1, subframe_length) frame = torch.arange(0, output_subframes).unfold( 0, subframes_per_frame, subframe_step) frame = frame.clone().detach().long().to(signal.device) # frame = signal.new_tensor(frame).clone().long() # signal may in GPU or CPU frame = frame.contiguous().view(-1) result = signal.new_zeros( *outer_dimensions, output_subframes, subframe_length) result.index_add_(-2, frame, subframe_signal) result = result.view(*outer_dimensions, -1) return result
Args: batch: list, len(batch) = 1. See AudioDataset.__getitem__() Returns: mixtures_pad: B x T, torch.Tensor ilens : B, torch.Tentor filenames: a list contain B strings
def _collate_fn_eval(batch): """ Args: batch: list, len(batch) = 1. See AudioDataset.__getitem__() Returns: mixtures_pad: B x T, torch.Tensor ilens : B, torch.Tentor filenames: a list contain B strings """ # batch should be located in list assert len(batch) == 1 mixtures, filenames = load_mixtures(batch[0]) # get batch of lengths of input sequences ilens = np.array([mix.shape[0] for mix in mixtures]) # perform padding and convert to tensor pad_value = 0 mixtures_pad = pad_list([torch.from_numpy(mix).float() for mix in mixtures], pad_value) ilens = torch.from_numpy(ilens) return mixtures_pad, ilens, filenames
Returns: mixtures: a list containing B items, each item is T np.ndarray filenames: a list containing B strings T varies from item to item.
def load_mixtures(batch): """ Returns: mixtures: a list containing B items, each item is T np.ndarray filenames: a list containing B strings T varies from item to item. """ mixtures, filenames = [], [] mix_infos, sample_rate = batch # for each utterance for mix_info in mix_infos: mix_path = mix_info[0] # read wav file mix, _ = librosa.load(mix_path, sr=sample_rate) mixtures.append(mix) filenames.append(mix_path) return mixtures, filenames
Args: source: [B, C, T], B is batch size estimate_source: [B, C, T] source_lengths: [B]
def cal_loss(source, estimate_source, source_lengths): """ Args: source: [B, C, T], B is batch size estimate_source: [B, C, T] source_lengths: [B] """ max_snr, perms, max_snr_idx, snr_set = cal_si_snr_with_pit(source, estimate_source, source_lengths) B, C, T = estimate_source.shape loss = 0 - torch.mean(max_snr) reorder_estimate_source = reorder_source( estimate_source, perms, max_snr_idx) return loss, max_snr, estimate_source, reorder_estimate_source
Calculate SI-SNR with PIT training. Args: source: [B, C, T], B is batch size estimate_source: [B, C, T] source_lengths: [B], each item is between [0, T]
def cal_si_snr_with_pit(source, estimate_source, source_lengths): """Calculate SI-SNR with PIT training. Args: source: [B, C, T], B is batch size estimate_source: [B, C, T] source_lengths: [B], each item is between [0, T] """ assert source.size() == estimate_source.size() B, C, T = source.size() # mask padding position along T mask = get_mask(source, source_lengths) estimate_source *= mask # Step 1. Zero-mean norm num_samples = source_lengths.view(-1, 1, 1).float() # [B, 1, 1] mean_target = torch.sum(source, dim=2, keepdim=True) / num_samples mean_estimate = torch.sum(estimate_source, dim=2, keepdim=True) / num_samples zero_mean_target = source - mean_target zero_mean_estimate = estimate_source - mean_estimate # mask padding position along T zero_mean_target *= mask zero_mean_estimate *= mask # Step 2. SI-SNR with PIT # reshape to use broadcast s_target = torch.unsqueeze(zero_mean_target, dim=1) # [B, 1, C, T] s_estimate = torch.unsqueeze(zero_mean_estimate, dim=2) # [B, C, 1, T] # s_target = <s', s>s / ||s||^2 pair_wise_dot = torch.sum(s_estimate * s_target, dim=3, keepdim=True) # [B, C, C, 1] s_target_energy = torch.sum( s_target ** 2, dim=3, keepdim=True) + EPS # [B, 1, C, 1] pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, C, C, T] # e_noise = s' - s_target e_noise = s_estimate - pair_wise_proj # [B, C, C, T] # SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2) pair_wise_si_snr = torch.sum( pair_wise_proj ** 2, dim=3) / (torch.sum(e_noise ** 2, dim=3) + EPS) pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B, C, C] pair_wise_si_snr = torch.transpose(pair_wise_si_snr, 1, 2) # Get max_snr of each utterance # permutations, [C!, C] perms = source.new_tensor(list(permutations(range(C))), dtype=torch.long) # one-hot, [C!, C, C] index = torch.unsqueeze(perms, 2) perms_one_hot = source.new_zeros((*perms.size(), C)).scatter_(2, index, 1) # [B, C!] <- [B, C, C] einsum [C!, C, C], SI-SNR sum of each permutation snr_set = torch.einsum('bij,pij->bp', [pair_wise_si_snr, perms_one_hot]) max_snr_idx = torch.argmax(snr_set, dim=1) # [B] # max_snr = torch.gather(snr_set, 1, max_snr_idx.view(-1, 1)) # [B, 1] max_snr, _ = torch.max(snr_set, dim=1, keepdim=True) max_snr /= C return max_snr, perms, max_snr_idx, snr_set / C
Args: source: [B, C, T] perms: [C!, C], permutations max_snr_idx: [B], each item is between [0, C!) Returns: reorder_source: [B, C, T]
def reorder_source(source, perms, max_snr_idx): """ Args: source: [B, C, T] perms: [C!, C], permutations max_snr_idx: [B], each item is between [0, C!) Returns: reorder_source: [B, C, T] """ B, C, *_ = source.size() # [B, C], permutation whose SI-SNR is max of each utterance # for each utterance, reorder estimate source according this permutation max_snr_perm = torch.index_select(perms, dim=0, index=max_snr_idx) # print('max_snr_perm', max_snr_perm) # maybe use torch.gather()/index_select()/scatter() to impl this? reorder_source = torch.zeros_like(source) for b in range(B): for c in range(C): reorder_source[b, c] = source[b, max_snr_perm[b][c]] return reorder_source
Args: source: [B, C, T] source_lengths: [B] Returns: mask: [B, 1, T]
def get_mask(source, source_lengths): """ Args: source: [B, C, T] source_lengths: [B] Returns: mask: [B, 1, T] """ B, _, T = source.size() mask = source.new_ones((B, 1, T)) for i in range(B): mask[i, :, source_lengths[i]:] = 0 return mask
Parse command line arguments and return a ScriptArguments object. Args: args: Optional list of arguments to parse. If not provided, uses sys.argv.
def get_args(args=None) -> ScriptArguments: """Parse command line arguments and return a ScriptArguments object. Args: args: Optional list of arguments to parse. If not provided, uses sys.argv. """ defaults = ScriptArguments( suffix="", environment=EnvironmentArguments( image_name="sweagent/swe-agent:latest", data_path="princeton-nlp/SWE-bench_Lite", split="dev", verbose=True, install_environment=True, ), skip_existing=True, agent=AgentArguments( model=ModelArguments( model_name="gpt4", total_cost_limit=0.0, per_instance_cost_limit=3.0, temperature=0.0, top_p=0.95, ), config_file=Path("config/default.yaml"), ), actions=ActionsArguments(open_pr=False, skip_if_commits_reference_issue=True), ) # Nicer yaml dumping of multiline strings def multiline_representer(dumper, data): """configures yaml for dumping multiline strings Ref: https://stackoverflow.com/questions/8640959/how-can-i-control-what-scalar-form-pyyaml-uses-for-my-data """ if data.count("\n") > 0: # check for multiline string return dumper.represent_scalar("tag:yaml.org,2002:str", data, style="|") return dumper.represent_scalar("tag:yaml.org,2002:str", data) yaml.add_representer(str, multiline_representer) return parse(ScriptArguments, default=defaults, add_config_path_arg=False, args=args, formatter_class=RichHelpFormatter, description=Markdown(__doc__))
Args: traj_path (str): _description_ config_file (str): _description_ data_path (str): _description_ suffix (str): _description_ forward_args (List[str]): Passed to run.py Raises: ValueError: Incorrect paths or other config issue Returns: None
def process_single_traj(traj_path: str, config_file: str, data_path: str, suffix: str, *, forward_args: List[str]): """ Args: traj_path (str): _description_ config_file (str): _description_ data_path (str): _description_ suffix (str): _description_ forward_args (List[str]): Passed to run.py Raises: ValueError: Incorrect paths or other config issue Returns: None """ replay_action_trajs_path = "temp_replay.jsonl" # Open trajectory file, extract responses as actions if traj_path.endswith(".yaml"): traj_data = dict() with open(traj_path, "r") as f: traj_data["history"] = yaml.safe_load(f) else: traj_data = json.load(open(traj_path, "r")) actions = [x["content"] for x in traj_data["history"] if x["role"] == "assistant"] instance_id = traj_path.split("/")[-1].split(".")[0] with open(replay_action_trajs_path, "w") as f: print( json.dumps({instance_id: actions}), file=f, end="\n", flush=True ) # Get data_path from args.yaml if data_path is None: args_path = os.path.join( os.path.dirname(traj_path), "args.yaml" ) args = yaml.safe_load(open(args_path)) data_path = args['environment']['data_path'] # Identify the relevant task instance and create it def create_task_instances_tmp_file(data: List[Dict[str, Any]]) -> str: """Helper function to create a temporary file to write task instances to. Returns path to the temporary file. """ data = [d for d in data if d["instance_id"] == instance_id] tmp_path = instance_id + ".jsonl" with open(tmp_path, "w") as f: for d in data: print(json.dumps(d), file=f, end="\n", flush=True) return tmp_path is_other = False if data_path.endswith(".jsonl"): replay_task_instances_path = create_task_instances_tmp_file([json.loads(x) for x in open(data_path, "r").readlines()]) elif data_path.endswith(".json"): replay_task_instances_path = create_task_instances_tmp_file(json.load(open(data_path))) else: # Assume data_path is a github url or local url is_other = True replay_task_instances_path = data_path # Call run.py via subprocess run_args = [ "--config_file", config_file, "--data_path", replay_task_instances_path, "--install_environment", "True", "--model_name", "replay", "--replay_path", replay_action_trajs_path, *forward_args, ] if is_other: # Not sure if this only applies to github urls for data_path run_args.extend(["--skip_existing", "False"]) if suffix is not None: run_args.extend(["--suffix", suffix]) script_args = runscript.get_args(run_args) runscript.main(script_args) os.remove(replay_action_trajs_path) if not is_other: os.remove(replay_task_instances_path)
Parse the folder name to get the different parts
def parse_folder_name(folder_name): """ Parse the folder name to get the different parts """ parsed_folder = folder_name.split("__") if len(parsed_folder) == 7: parsed_folder.append("") return parsed_folder
Convert each experiment to a row in the csv
def convert_experiments_to_rows(folder_name, runs_max): """ Convert each experiment to a row in the csv """ rows = [] directories = get_folders(folder_name) for directory in directories: folders = get_folders(directory) for folder in folders: # Skip debug folders if "debug" in folder.name: continue # Skip fine tuned models if "ft_gpt-3.5" in folder.name: continue # Skip folders without a results.json file json_file = folder / "results.json" if not json_file.exists(): # print(f"No json file in {folder}") continue # Extract run attributes folder_data = parse_folder_name(folder.name) model = folder_data[0] dataset = folder_data[1] if dataset.startswith("swe-bench-dev-easy-"): dataset = dataset[len("swe-bench-dev-easy-") :] elif dataset.startswith("swe-bench-dev-"): dataset = dataset[len("swe-bench-dev-") :] setup = folder_data[2] if len(folder_data) != 8: # TODO: This might be too strict? continue temperature = float(folder_data[3][len("t-"):].strip()) top_p = float(folder_data[4][len("p-"):].strip()) cost = float(folder_data[5][len("c-"):].strip()) install = "Y" if folder_data[6].strip() == "install-1" else "N" # Parse out run number run = folder_data[-1] if "run" not in run: continue try: if "run-" in run: run = int(run.split("run-")[-1].split("-")[0].replace("_", "").strip()) else: run = int(run.split("run")[-1].split("-")[0].replace("_", "").strip()) except Exception as e: print(run) raise e if runs_max is not None and run > runs_max: continue # Load results.json file with json_file.open() as file: results_data = json.load(file) report = results_data.get("report", {}) # Extract resolved ids (to calculate pass@k) resolved_ids = [] if "resolved" in results_data and isinstance(results_data["resolved"], list): resolved_ids = results_data["resolved"] elif "counts" in results_data and isinstance(results_data["counts"]["resolved"], list): resolved_ids = results_data["counts"]["resolved"] # Extract instance costs from trajectories costs_overall = [] costs_success = [] costs_failure = [] for x in glob.glob(os.path.join(str(folder), "*.traj")): traj_data = json.load(open(x)) if "model_stats" not in traj_data["info"]: continue run_cost = traj_data["info"]["model_stats"]["instance_cost"] inst_id = x.split("/")[-1].split(".")[0] costs_overall.append(run_cost) if inst_id in resolved_ids: costs_success.append(run_cost) else: costs_failure.append(run_cost) # Create run row, write to csv rows.append( [ model, dataset, setup, temperature, top_p, cost, install, run, report.get("# Not Generated", 0), report.get("# Generated", 0), report.get("# Applied", 0), report.get("# Resolved", 0), resolved_ids, costs_success, costs_failure, costs_overall, ] ) return rows
Convert any multi-line strings to LiteralScalarString
def convert_to_literal_string(d): """ Convert any multi-line strings to LiteralScalarString """ if isinstance(d, dict): for key, value in d.items(): if isinstance(value, str) and '\n' in value: d[key] = LSS(value.replace('\r\n', '\n').replace('\r', '\n')) elif isinstance(value, dict): convert_to_literal_string(value) elif isinstance(d, list): for i, item in enumerate(d): if isinstance(item, str) and '\n' in item: d[i] = LSS(item.replace('\r\n', '\n').replace('\r', '\n')) elif isinstance(item, dict): convert_to_literal_string(item) elif isinstance(d, str) and '\n' in d: d = LSS(d.replace('\r\n', '\n').replace('\r', '\n')) else: raise ValueError(f"Unsupported type: {type(d)}") return d
Save a single task instance as a yaml file
def save_demo(data, file, traj_path): """ Save a single task instance as a yaml file """ data = convert_to_literal_string(data) yaml = YAML() yaml.indent(mapping=2, sequence=4, offset=2) buffer = io.StringIO() yaml.dump(data, buffer) content = buffer.getvalue() header = DEMO_COMMENT.format(traj_path=traj_path) with open(file, "w") as f: f.write(f"{header}\n{content}")
Create `prompt` by filtering out all keys except for role/content per `history` turn Reference: https://docs.anthropic.com/claude/reference/complete_post
def anthropic_history_to_messages( model: Union[AnthropicModel, BedrockModel], history: list[dict[str, str]], is_demonstration: bool = False ) -> Union[str, list[dict[str, str]]]: """ Create `prompt` by filtering out all keys except for role/content per `history` turn Reference: https://docs.anthropic.com/claude/reference/complete_post """ # Preserve behavior for older models if model.api_model in ["claude-instant", "claude-2.0"] or \ (isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]): # Remove system messages if it is a demonstration if is_demonstration: history = [entry for entry in history if entry["role"] != "system"] # Map history to Claude format prompt = "\n\n" for entry in history: if entry["role"] in {"user", "system"}: prompt += f'{HUMAN_PROMPT} {entry["content"]}\n\n' elif entry["role"] == "assistant": prompt += f'{AI_PROMPT} {entry["content"]}\n\n' prompt += AI_PROMPT return prompt # Remove system messages if it is a demonstration if is_demonstration: history = [entry for entry in history if entry["role"] != "system"] return '\n'.join([entry["content"] for entry in history]) # Return history components with just role, content fields (no system message) messages = [ { k: v for k, v in entry.items() if k in ["role", "content"] } for entry in history if entry["role"] != "system" ] compiled_messages = [] # Combine messages from the same role last_role = None for message in reversed(messages): if last_role == message["role"]: compiled_messages[-1]["content"] = message["content"] + "\n" + compiled_messages[-1]["content"] else: compiled_messages.append(message) last_role = message["role"] compiled_messages = list(reversed(compiled_messages)) # Replace any empty content values with a "(No output)" for message in compiled_messages: if message["content"].strip() == "": message["content"] = "(No output)" return compiled_messages
Query the Anthropic API with the given `history` and return the response.
def anthropic_query(model: Union[AnthropicModel, BedrockModel], history: list[dict[str, str]]) -> str: """ Query the Anthropic API with the given `history` and return the response. """ # Preserve behavior for older models if model.api_model in ["claude-instant", "claude-2.0", "claude-2.1"] or \ (isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]): # Perform Anthropic API call prompt = anthropic_history_to_messages(model, history) if isinstance(model, BedrockModel): # Use a dummy Anthropic client since count_tokens # is not available in AnthropicBedrock # https://github.com/anthropics/anthropic-sdk-python/issues/353 input_tokens = Anthropic().count_tokens(prompt) else: input_tokens = model.api.count_tokens(prompt) completion = model.api.completions.create( model=model.api_model, prompt=prompt, max_tokens_to_sample=model.model_metadata["max_context"] - input_tokens if isinstance(model, Anthropic) else model.model_metadata["max_tokens_to_sample"], temperature=model.args.temperature, top_p=model.args.top_p, ) # Calculate + update costs, return response response = completion.completion if isinstance(model, BedrockModel): output_tokens = Anthropic().count_tokens(response) else: output_tokens = model.api.count_tokens(response) model.update_stats(input_tokens, output_tokens) return response # Get system message(s) system_message = "\n".join([ entry["content"] for entry in history if entry["role"] == "system" ]) messages = anthropic_history_to_messages(model, history) # Perform Anthropic API call response = model.api.messages.create( messages=messages, max_tokens=model.model_metadata["max_tokens"], model=model.api_model, temperature=model.args.temperature, top_p=model.args.top_p, system=system_message, ) # Calculate + update costs, return response model.update_stats( response.usage.input_tokens, response.usage.output_tokens ) response = "\n".join([x.text for x in response.content]) return response
Returns correct model object given arguments and commands
def get_model(args: ModelArguments, commands: Optional[list[Command]] = None): """ Returns correct model object given arguments and commands """ if commands is None: commands = [] if args.model_name == "instant_empty_submit": return InstantEmptySubmitTestModel(args, commands) if args.model_name == "human": return HumanModel(args, commands) if args.model_name == "human_thought": return HumanThoughtModel(args, commands) if args.model_name == "replay": return ReplayModel(args, commands) elif args.model_name.startswith("gpt") or args.model_name.startswith("ft:gpt") or args.model_name.startswith("azure:gpt"): return OpenAIModel(args, commands) elif args.model_name.startswith("claude"): return AnthropicModel(args, commands) elif args.model_name.startswith("bedrock"): return BedrockModel(args, commands) elif args.model_name.startswith("ollama"): return OllamaModel(args, commands) elif args.model_name in TogetherModel.SHORTCUTS: return TogetherModel(args, commands) else: raise ValueError(f"Invalid model name: {args.model_name}")
Given a format string, returns a set of all the keys in the format string.
def extract_keys(format_string): """ Given a format string, returns a set of all the keys in the format string. """ formatter = string.Formatter() keys = set() for _, field_name, _, _ in formatter.parse(format_string): if field_name is not None: keys.add(field_name) return keys
Returns True if the value should be quoted, False otherwise.
def should_quote(value, command): """ Returns True if the value should be quoted, False otherwise. """ return (isinstance(value, str) and command.end_name is None)
if data_path is a file, return the file stem elif it's a github url, return the owner__repo_name
def get_data_path_name(data_path: str): """ if data_path is a file, return the file stem elif it's a github url, return the owner__repo_name """ match = GITHUB_ISSUE_URL_PATTERN.search(data_path) if match: owner, repo, _ = match.groups() return f"{owner}__{repo}" return Path(data_path).stem
Check if data_path is an URL pointing to a github issue
def is_github_issue_url(data_path: str) -> bool: """Check if data_path is an URL pointing to a github issue""" return GITHUB_ISSUE_URL_PATTERN.search(data_path) is not None
Check if data_path is an URL pointing to a github repository. Paths to issues or PRs will also match this pattern.
def is_github_repo_url(data_path: str) -> bool: """Check if data_path is an URL pointing to a github repository. Paths to issues or PRs will also match this pattern. """ return GITHUB_REPO_URL_PATTERN.search(data_path) is not None
Copies a given string into a Docker container at a specified path. Args: - container: Docker SDK container object. - contents: The string to copy into the container. - container_path: The path inside the container where the string should be copied to. Returns: - None
def copy_file_to_container(container, contents, container_path): """ Copies a given string into a Docker container at a specified path. Args: - container: Docker SDK container object. - contents: The string to copy into the container. - container_path: The path inside the container where the string should be copied to. Returns: - None """ temp_file_name = None try: # Create a temporary file with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file_name = temp_file.name # Write the string to the temporary file and ensure it's written to disk temp_file.write(contents.encode('utf-8')) temp_file.flush() os.fsync(temp_file.fileno()) # Create a TAR archive in memory containing the temporary file with tempfile.NamedTemporaryFile(): with open(temp_file_name, 'rb') as temp_file: # Prepare the TAR archive with BytesIO() as tar_stream: with tarfile.open(fileobj=tar_stream, mode='w') as tar: tar_info = tarfile.TarInfo(name=os.path.basename(container_path)) tar_info.size = os.path.getsize(temp_file_name) tar.addfile(tarinfo=tar_info, fileobj=temp_file) tar_stream.seek(0) # Copy the TAR stream to the container container.put_archive(path=os.path.dirname(container_path), data=tar_stream.read()) except Exception as e: logger.error(f"An error occurred: {e}") logger.error(traceback.format_exc()) finally: # Cleanup: Remove the temporary file if it was created if temp_file_name and os.path.exists(temp_file_name): os.remove(temp_file_name)
Copy files or directories from host to container Note: Will need to set ownership on the copied files in the container.
def copy_anything_to_container(container, host_path: str, container_path: str) -> None: """Copy files or directories from host to container Note: Will need to set ownership on the copied files in the container. """ if not Path(host_path).exists(): msg = f"Path {host_path} does not exist, cannot copy it to container." raise FileNotFoundError(msg) cmd = ["docker", "cp", host_path, f"{container.id}:{container_path}"] logger.debug(f"Copying {host_path} to container at {container_path} with command: {shlex.join(cmd)}") try: subprocess.run(cmd, check=True) except subprocess.CalledProcessError as e: msg = f"Error copying {host_path} to container at {container_path}: {e}" raise RuntimeError(msg) from e
Read data from a subprocess with a timeout. This function uses a file descriptor to read data from the subprocess in a non-blocking way. Args: container (subprocess.Popen): The subprocess container. pid_func (function): A function that returns a list of process IDs (except the PID of the main process). timeout_duration (int): The timeout duration in seconds. Returns: str: The data read from the subprocess, stripped of trailing newline characters. Raises: TimeoutError: If the timeout duration is reached while reading from the subprocess.
def read_with_timeout(container, pid_func, timeout_duration): """ Read data from a subprocess with a timeout. This function uses a file descriptor to read data from the subprocess in a non-blocking way. Args: container (subprocess.Popen): The subprocess container. pid_func (function): A function that returns a list of process IDs (except the PID of the main process). timeout_duration (int): The timeout duration in seconds. Returns: str: The data read from the subprocess, stripped of trailing newline characters. Raises: TimeoutError: If the timeout duration is reached while reading from the subprocess. """ buffer = b"" fd = container.stdout.fileno() end_time = time.time() + timeout_duration while time.time() < end_time: pids = pid_func() if len(pids) > 0: # There are still PIDs running time.sleep(0.05) continue ready_to_read, _, _ = select.select([fd], [], [], 0.1) if ready_to_read: data = os.read(fd, 4096) if data: buffer += data else: # No more data to read break time.sleep(0.05) # Prevents CPU hogging if container.poll() is not None: raise RuntimeError("Subprocess exited unexpectedly.\nCurrent buffer: {}".format(buffer.decode())) if time.time() >= end_time: raise TimeoutError("Timeout reached while reading from subprocess.\nCurrent buffer: {}\nRunning PIDs: {}".format(buffer.decode(), pids)) return buffer.decode()
Read data from a subprocess with a timeout. This function uses a file descriptor to read data from the subprocess in a non-blocking way. NOTE: This is an experimental implementation that is faster than `read_with_timeout`, but has not been thoroughly tested. Args: container (subprocess.Popen): The subprocess container. timeout_duration (int): The timeout duration in seconds. Returns: str: The data read from the subprocess, stripped of trailing newline characters. Raises: TimeoutError: If the timeout duration is reached while reading from the subprocess.
def read_with_timeout_experimental(container, timeout_duration): """ Read data from a subprocess with a timeout. This function uses a file descriptor to read data from the subprocess in a non-blocking way. NOTE: This is an experimental implementation that is faster than `read_with_timeout`, but has not been thoroughly tested. Args: container (subprocess.Popen): The subprocess container. timeout_duration (int): The timeout duration in seconds. Returns: str: The data read from the subprocess, stripped of trailing newline characters. Raises: TimeoutError: If the timeout duration is reached while reading from the subprocess. """ buffer = b"" fd = container.stdout.fileno() end_time = time.time() + timeout_duration while time.time() < end_time: ready_to_read, _, _ = select.select([fd], [], [], 0.01) if ready_to_read: data = os.read(fd, 4096) if data: buffer += data if PROCESS_DONE_MARKER_START in buffer.decode(): break time.sleep(0.01) # Prevents CPU hogging if container.poll() is not None: raise RuntimeError("Subprocess exited unexpectedly.\nCurrent buffer: {}".format(buffer.decode())) if time.time() >= end_time: raise TimeoutError("Timeout reached while reading from subprocess.\nCurrent buffer: {}".format(buffer.decode())) decoded = buffer.decode() body = "\n".join(line for line in decoded.splitlines() if not line.startswith(PROCESS_DONE_MARKER_START)) last_line = decoded.splitlines()[-1] _results = PROCESS_DONE_REGEX.search(last_line) if _results is None: raise ValueError(f"Could not find process done marker in last line: {last_line=}, {body=}") exit_code = _results.group(1) return body, exit_code
Get a container object for a given container name and image name Arguments: ctr_name (str): Name of container image_name (str): Name of image persistent (bool): Whether to use a persistent container or not Returns: Container object
def get_container(ctr_name: str, image_name: str, persistent: bool = False) -> Tuple[subprocess.Popen, Set]: """ Get a container object for a given container name and image name Arguments: ctr_name (str): Name of container image_name (str): Name of image persistent (bool): Whether to use a persistent container or not Returns: Container object """ # Let's first check that the image exists and give some better error messages try: client = docker.from_env() except docker.errors.DockerException as e: docker_not_runnnig = any(( "connection aborted" in str(e).lower(), "connection refused" in str(e).lower(), "error while fetching server api version" in str(e).lower(), )) if docker_not_runnnig: msg = ( "Probably the Docker daemon is not running. Please start the Docker daemon and try again. " "You might need to allow the use of the docker socket " "(https://github.com/princeton-nlp/SWE-agent/issues/159) or symlink the socket " "if it's at a non-standard location " "(https://github.com/princeton-nlp/SWE-agent/issues/20#issuecomment-2047506005)." ) raise RuntimeError(msg) from e raise filterred_images = client.images.list(filters={'reference': image_name}) if len(filterred_images) == 0: msg = ( f"Image {image_name} not found. Please ensure it is built and available. " "Please double-check that you followed all installation/setup instructions from the " "readme." ) raise RuntimeError(msg) elif len(filterred_images) > 1: logger.warning(f"Multiple images found for {image_name}, that's weird.") attrs = filterred_images[0].attrs if attrs is not None: logger.info( f"Found image {image_name} with tags: {attrs['RepoTags']}, created: {attrs['Created']} " f"for {attrs['Os']} {attrs['Architecture']}." ) if persistent: return _get_persistent_container(ctr_name, image_name) else: return _get_non_persistent_container(ctr_name, image_name)
Return owner, repo, issue number from issue url
def parse_gh_issue_url(issue_url: str) -> Tuple[str, str, str]: """Return owner, repo, issue number from issue url""" match = GITHUB_ISSUE_URL_PATTERN.search(issue_url) if not match: raise InvalidGithubURL(f"Invalid GitHub issue URL: {issue_url}") res = match.groups() assert len(res) == 3 return tuple(res)
Return owner, repo from repo url
def parse_gh_repo_url(repo_url: str) -> Tuple[str, str]: """Return owner, repo from repo url""" match = GITHUB_REPO_URL_PATTERN.search(repo_url) if not match: raise InvalidGithubURL(f"Invalid GitHub issue URL: {repo_url}") res = match.groups() assert len(res) == 2 return tuple(res)
Returns github issue data in the form of a dictionary. See https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#get-an-issue for return format
def get_gh_issue_data(issue_url: str, *, token: str = ""): """Returns github issue data in the form of a dictionary. See https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#get-an-issue for return format """ owner, repo, issue_number = parse_gh_issue_url(issue_url) api = GhApi(token=token) return api.issues.get(owner, repo, issue_number)
Return problem statement from github issue
def get_problem_statement_from_github_issue(owner: str, repo: str, issue_number: str, *, token: Optional[str] = "") -> str: """Return problem statement from github issue""" api = GhApi(token=token) issue = api.issues.get(owner, repo, issue_number) title = issue.title if issue.title else "" body = issue.body if issue.body else "" return f"{title}\n{body}\n"
Getter function for handling json, jsonl files Args: file_path (str): Path to file Returns: List of instances as dictionaries
def get_instances( file_path: str, base_commit: Optional[str] = None, split: Optional[str] = None, token: Optional[str] = None, *, repo_path: str = "", ) -> List[Dict[str, Any]]: """ Getter function for handling json, jsonl files Args: file_path (str): Path to file Returns: List of instances as dictionaries """ def instance_from_dict(instances): ib = InstanceBuilder(token=token) ib.set_from_dict(instances) return ib.build() def postproc_instance_list(instances): if isinstance(instances, dict): msg = "Expected a list of instances, got a dictionary." raise ValueError(msg) return [instance_from_dict(x) for x in instances] # If file_path is a directory, attempt load from disk if os.path.isdir(file_path): try: dataset_or_dict = load_from_disk(file_path) if isinstance(dataset_or_dict, dict): return postproc_instance_list(dataset_or_dict[split]) return postproc_instance_list(dataset_or_dict) except FileNotFoundError: # Raised by load_from_disk if the directory is not a dataset directory pass # The next if statement is very brittle logic to determine if we're processing a single instance if (Path(file_path).is_file() and Path(file_path).suffix in ['.md', '.txt']) or is_github_issue_url(file_path): ib = InstanceBuilder(token=token) ib.set_problem_statement(file_path) if repo_path: ib.set_repo_info(repo_path, base_commit=base_commit) elif is_github_repo_url(file_path): ib.set_repo_info_from_gh_url(file_path) else: raise ValueError(f"Could not determine repo path from {file_path=}, {repo_path=}") return [ib.build()] if base_commit is not None: raise ValueError("base_commit must be None if data_path is not a github issue url") # If file_path is a file, load the file if file_path.endswith(".json"): return postproc_instance_list(json.load(open(file_path))) if file_path.endswith(".jsonl"): return postproc_instance_list([json.loads(x) for x in open(file_path, 'r').readlines()]) if repo_path: msg = "repo_path must be empty if data_path is not a github url or local repo url" raise ValueError(msg) # Attempt load from HF datasets as a last resort try: return postproc_instance_list(load_dataset(file_path, split=split)) except: raise ValueError( f"Could not load instances from {file_path}. " "Please ensure --data_path is a GitHub URL, a SWE-bench HuggingFace dataset, or a JSON/JSONL file." )
Return the URLs of commits that would close an issue.
def get_associated_commit_urls(org: str, repo: str, issue_number: str, *, token: str = "") -> list[str]: """Return the URLs of commits that would close an issue.""" api = GhApi(token=token) # Strangely the "pull_request" field of api.issues.get is often not set # so we have to go through the events to check if there's a commit events = api.issues.list_events(org, repo, issue_number) commit_urls = [] for event in events: if not event.event == "referenced": continue if not event.commit_id: continue commit = api.repos.get_commit(org, repo, event.commit_id) message = commit.commit.message if f"fixes #{issue_number}" in message.lower() or f"closes #{issue_number}" in message.lower(): commit_urls.append(commit.html_url) return commit_urls
Format a trajectory as a markdown string for use in gh PR description.
def format_trajectory_markdown(trajectory: List[Dict[str, str]]): """Format a trajectory as a markdown string for use in gh PR description.""" prefix = [ "<details>", "<summary>Thought process ('trajectory') of SWE-agent (click to expand)</summary>", "", "", ] steps = [] for i, step in enumerate(trajectory): step_strs = [] for key, value in step.items(): emoji = _MARKDOWN_TRAJECTORY_EMOJI_MAPPING.get(key, "") if emoji: emoji += " " step_strs.append(f"**{emoji}{key.capitalize()} ({i})**:") if key in ["observation", "state", "action"]: step_strs.append("```") step_strs.append(remove_triple_backticks(value).strip()) step_strs.append("```") else: step_strs.append(value.strip()) steps.append("\n".join(step_strs)) suffix = [ "", "</details>", ] return "\n".join(prefix) + "\n\n---\n\n".join(steps) + "\n".join(suffix)
This will use a persistent container
def test_env_args(tmpdir_factory, ): """This will use a persistent container""" local_repo_path = tmpdir_factory.getbasetemp() / "swe-agent-test-repo" clone_cmd = ["git", "clone", "https://github.com/klieret/swe-agent-test-repo", local_repo_path] subprocess.run(clone_cmd, check=True) data_path = local_repo_path / "problem_statements" / "1.md" test_env_args = EnvironmentArguments( data_path=str(data_path), repo_path=str(local_repo_path), image_name="sweagent/swe-agent:latest", container_name="test-container-134245890345098", ) yield test_env_args # Cleanup (after session ends) client = docker.from_env() container = client.containers.get(test_env_args.container_name) container.remove(force=True)
Context manager to make sure we close the shell on the container so that we can reuse it.
def swe_env_context(env_args): """Context manager to make sure we close the shell on the container so that we can reuse it. """ env = SWEEnv(env_args) try: yield env finally: env.close()
Test that swe-agent refuses to work if the local repo is dirty
def test_exception_replay_local_dirty(swe_agent_test_repo_clone, swe_agent_test_repo_traj): """Test that swe-agent refuses to work if the local repo is dirty""" problem_statement_path = swe_agent_test_repo_clone / "problem_statements" / "1.md" test_file = swe_agent_test_repo_clone / "tests" / "missing_colon.py" assert test_file.is_file() test_file.write_text(test_file.read_text().replace("division", "division_function")) run_cmd = [ "--traj_path", str(swe_agent_test_repo_traj), "--repo_path", str(swe_agent_test_repo_clone), "--config_file", "config/default_from_url.yaml", "--data_path", str(problem_statement_path), "--apply_patch", "--raise_exceptions", ] args, remaing_args = get_args(run_cmd) with pytest.raises(ValueError, match=".*dirty.*"): main(**vars(args), forward_args=remaing_args)
Parse command line arguments and set default values.
def parse_args(args): """Parse command line arguments and set default values.""" parser = argparse.ArgumentParser(description="Compare Performance tests.") parser.add_argument( "--old-file", help="Baseline performance test suite (csv file)", required=True ) parser.add_argument( "--new-file", help="New performance test suite (csv file)", required=True ) parser.add_argument( "--format", choices=["markdown", "git", "html"], help="Output format. Default is markdown.", default="markdown", ) parser.add_argument("--output", help="Output file name") parser.add_argument( "--changes-only", help="Output only affected tests", action="store_true" ) parser.add_argument( "--single-table", help="Combine data in a single table in git and markdown formats", action="store_true", ) parser.add_argument( "--delta-threshold", help="Delta threshold. Default 0.05.", type=float, default=0.05, ) return parser.parse_args(args)
Compare benchmarks for changes in a formatted report.
def main(): """Compare benchmarks for changes in a formatted report.""" args = parse_args(sys.argv[1:]) report = create_report( LogParser.results_from_file(args.old_file), LogParser.results_from_file(args.new_file), args.delta_threshold, args.format, args.changes_only, args.single_table, ) print(report) if args.output: with open(args.output, "w") as f: f.write(report)
Adds a new entry to the `CMakeLists.txt` file with the given benchmark name.
def update_cmakelists(name): """Adds a new entry to the `CMakeLists.txt` file with the given benchmark name. """ relative_path = create_relative_path("../CMakeLists.txt") file_contents = [] with open(relative_path, "r") as f: file_contents = f.readlines() file_new_contents = insert_line_alphabetically( name, " single-source/" + name + "\n", file_contents, r" single-source\/([a-zA-Z]+)", ) with open(relative_path, "w") as f: for line in file_new_contents: f.write(line)
Creates a new Swift file with the given name based on the template and places it in the `single-source` directory.
def create_benchmark_file(name): """Creates a new Swift file with the given name based on the template and places it in the `single-source` directory. """ file_text = "" template_path = create_relative_path("Template.swift") with open(template_path, "r") as f: file_text = "".join(f.readlines()) # fill in missing template details file_text = file_text.format( name=name, padding="-" * (56 - len(name)), year=datetime.date.today().year ) file_path_prefix = create_relative_path("../single-source/") file_path = os.path.join(file_path_prefix, name + ".swift") with open(file_path, "w") as f: f.write(file_text)
Adds an `import` statement to the `main.swift` file for the new benchmark.
def add_import_benchmark(name): """Adds an `import` statement to the `main.swift` file for the new benchmark. """ relative_path = create_relative_path("../utils/main.swift") # read current contents into an array file_contents = [] with open(relative_path, "r") as f: file_contents = f.readlines() # the test dependencies are placed before all benchmarks, so we have to # insert the benchmark in the right alphabetical order after we have seen # all test dependencies. read_test_dependencies = False previous_benchmark_name = None file_new_contents = [] for line in file_contents: # check if this line is a definition of a benchmark and get its name match = re.search(r"import ([a-zA-Z]+)", line) if match and match.group(1): benchmark_name = match.group(1) # find where to insert the new benchmark in the right alphabetical # order. if ( name < benchmark_name and previous_benchmark_name is None or name < benchmark_name and name > previous_benchmark_name ): if read_test_dependencies: file_new_contents.append("import " + name + "\n" + line) else: # all test dependencies are first specified, so from now # on we can look where to insert the new benchmark. read_test_dependencies = True file_new_contents.append(line) else: file_new_contents.append(line) previous_benchmark_name = benchmark_name else: file_new_contents.append(line) with open(relative_path, "w") as f: for line in file_new_contents: f.write(line)
Adds an `import` statement to the `main.swift` file for the new benchmark.
def add_register_benchmark(name): """Adds an `import` statement to the `main.swift` file for the new benchmark. """ relative_path = create_relative_path("../utils/main.swift") file_contents = [] with open(relative_path, "r") as f: file_contents = f.readlines() file_new_contents = insert_line_alphabetically( name, "register(" + name + ".benchmarks)\n", file_contents, r"register\(([a-zA-Z]+)\.benchmarks\)", ) with open(relative_path, "w") as f: for line in file_new_contents: f.write(line)
Iterates through the given lines and executes the regex on each line to find where the new benchmark should be inserted with the given `new_line`.
def insert_line_alphabetically(name, new_line, lines, regex): """Iterates through the given lines and executes the regex on each line to find where the new benchmark should be inserted with the given `new_line`. """ # the name of the previous seen benchmark in order to insert the new # one at the correct position previous_benchmark_name = None # the new contents of the file updated_lines = [] for line in lines: # apply regex and get name of benchmark on this line match = re.search(regex, line) if match and match.group(1): benchmark_name = match.group(1) # check if we're at the line where we have to insert the new # benchmark in the correct alphabetical order if ( name < benchmark_name and previous_benchmark_name is None or name < benchmark_name and name > previous_benchmark_name ): updated_lines.append(new_line + line) else: updated_lines.append(line) previous_benchmark_name = benchmark_name else: updated_lines.append(line) return updated_lines
Create PerformanceTestResult Stub.
def _PTR(min_value=700, mem_pages=1000, setup=None): """Create PerformanceTestResult Stub.""" return Stub(min_value=min_value, mem_pages=mem_pages, setup=setup)
Helper function that constructs tuple with arguments for run method.
def _run(test, num_samples=None, num_iters=None, verbose=None, measure_memory=False): """Helper function that constructs tuple with arguments for run method.""" return (test, num_samples, num_iters, verbose, measure_memory)
Capture stdout and stderr and return their output as string buffers.
def captured_output(): """Capture stdout and stderr and return their output as string buffers.""" new_out, new_err = StringIO(), StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err
Split and validate path for an account. :param req: a swob request :returns: a tuple of path parts as strings
def get_account_name_and_placement(req): """ Split and validate path for an account. :param req: a swob request :returns: a tuple of path parts as strings """ drive, part, account = split_and_validate_path(req, 3) validate_internal_account(account) return drive, part, account
Split and validate path for a container. :param req: a swob request :returns: a tuple of path parts as strings
def get_container_name_and_placement(req): """ Split and validate path for a container. :param req: a swob request :returns: a tuple of path parts as strings """ drive, part, account, container = split_and_validate_path(req, 3, 4) validate_internal_container(account, container) return drive, part, account, container
paste.deploy app factory for creating WSGI account server apps
def app_factory(global_conf, **local_conf): """paste.deploy app factory for creating WSGI account server apps""" conf = global_conf.copy() conf.update(local_conf) return AccountController(conf)
Create a list of async-delete jobs :param account: (native or unicode string) account to delete from :param container: (native or unicode string) container to delete from :param objects: (list of native or unicode strings) objects to delete :param timestamp: (Timestamp) time at which objects should be marked deleted :returns: list of dicts appropriate for an UPDATE request to an expiring-object queue
def make_delete_jobs(account, container, objects, timestamp): ''' Create a list of async-delete jobs :param account: (native or unicode string) account to delete from :param container: (native or unicode string) container to delete from :param objects: (list of native or unicode strings) objects to delete :param timestamp: (Timestamp) time at which objects should be marked deleted :returns: list of dicts appropriate for an UPDATE request to an expiring-object queue ''' if six.PY2: if isinstance(account, str): account = account.decode('utf8') if isinstance(container, str): container = container.decode('utf8') return [ { 'name': build_task_obj( timestamp, account, container, obj.decode('utf8') if six.PY2 and isinstance(obj, str) else obj, high_precision=True), 'deleted': 0, 'created_at': timestamp.internal, 'etag': MD5_OF_EMPTY_STRING, 'size': 0, 'storage_policy_index': 0, 'content_type': ASYNC_DELETE_TYPE, } for obj in objects]
Enqueue jobs to async-delete some portion of a container's namespace :param swift: InternalClient to use :param account: account to delete from :param container: container to delete from :param marker: only delete objects after this name :param end_marker: only delete objects before this name. Use ``None`` or empty string to delete to the end of the namespace. :param prefix: only delete objects starting with this prefix :param timestamp: delete all objects as of this time. If ``None``, the current time will be used. :param yield_time: approximate period with which intermediate results should be returned. If ``None``, disable intermediate results. :returns: If ``yield_time`` is ``None``, the number of objects marked for deletion. Otherwise, a generator that will yield out tuples of ``(number of marked objects, last object name)`` approximately every ``yield_time`` seconds. The final tuple will have ``None`` as the second element. This form allows you to retry when an error occurs partway through while minimizing duplicate work.
def mark_for_deletion(swift, account, container, marker, end_marker, prefix, timestamp=None, yield_time=10): ''' Enqueue jobs to async-delete some portion of a container's namespace :param swift: InternalClient to use :param account: account to delete from :param container: container to delete from :param marker: only delete objects after this name :param end_marker: only delete objects before this name. Use ``None`` or empty string to delete to the end of the namespace. :param prefix: only delete objects starting with this prefix :param timestamp: delete all objects as of this time. If ``None``, the current time will be used. :param yield_time: approximate period with which intermediate results should be returned. If ``None``, disable intermediate results. :returns: If ``yield_time`` is ``None``, the number of objects marked for deletion. Otherwise, a generator that will yield out tuples of ``(number of marked objects, last object name)`` approximately every ``yield_time`` seconds. The final tuple will have ``None`` as the second element. This form allows you to retry when an error occurs partway through while minimizing duplicate work. ''' if timestamp is None: timestamp = Timestamp.now() def enqueue_deletes(): deleted = 0 obj_iter = swift.iter_objects( account, container, marker=marker, end_marker=end_marker, prefix=prefix) time_marker = time.time() while True: to_delete = [obj['name'] for obj in itertools.islice( obj_iter, OBJECTS_PER_UPDATE)] if not to_delete: break delete_jobs = make_delete_jobs( account, container, to_delete, timestamp) swift.make_request( 'UPDATE', swift.make_path('.expiring_objects', str(int(timestamp))), headers={'X-Backend-Allow-Private-Methods': 'True', 'X-Backend-Storage-Policy-Index': '0', 'X-Timestamp': timestamp.internal}, acceptable_statuses=(2,), body_file=io.BytesIO(json.dumps(delete_jobs).encode('ascii'))) deleted += len(delete_jobs) if yield_time is not None and \ time.time() - time_marker > yield_time: yield deleted, to_delete[-1] time_marker = time.time() yield deleted, None if yield_time is None: for deleted, marker in enqueue_deletes(): if marker is None: return deleted else: return enqueue_deletes()
Parse the get_nodes commandline args :returns: a tuple, (ring_path, args)
def parse_get_node_args(options, args): """ Parse the get_nodes commandline args :returns: a tuple, (ring_path, args) """ ring_path = None if options.policy_name: if POLICIES.get_by_name(options.policy_name) is None: raise InfoSystemExit('No policy named %r' % options.policy_name) elif args and args[0].endswith('.ring.gz'): if os.path.exists(args[0]): ring_path = args.pop(0) else: raise InfoSystemExit('Ring file does not exist') if options.quoted: args = [urllib.parse.unquote(arg) for arg in args] if len(args) == 1: args = args[0].strip('/').split('/', 2) if not ring_path and not options.policy_name: raise InfoSystemExit('Need to specify policy_name or <ring.gz>') if not (args or options.partition): raise InfoSystemExit('No target specified') if len(args) > 3: raise InfoSystemExit('Invalid arguments') return ring_path, args
Provide a string that is a well formatted curl command to HEAD an object on a storage node. :param ip: the ip of the node :param port: the port of the node :param device: the device of the node :param target: the path of the target resource :param policy_index: the policy_index of the target resource (can be None) :returns: a string, a well formatted curl command
def curl_head_command(ip, port, device, part, target, policy_index): """ Provide a string that is a well formatted curl command to HEAD an object on a storage node. :param ip: the ip of the node :param port: the port of the node :param device: the device of the node :param target: the path of the target resource :param policy_index: the policy_index of the target resource (can be None) :returns: a string, a well formatted curl command """ if is_valid_ipv6(ip): formatted_ip = '[%s]' % ip else: formatted_ip = ip cmd = 'curl -g -I -XHEAD "http://%s:%s/%s/%s/%s"' % ( formatted_ip, port, device, part, urllib.parse.quote(target)) if policy_index is not None: cmd += ' -H "%s: %s"' % ('X-Backend-Storage-Policy-Index', policy_index) cmd += ' --path-as-is' return cmd
print out ring locations of specified type :param ring: ring instance :param datadir: name of directory where things are stored. Usually one of "accounts", "containers", "objects", or "objects-N". :param account: account name :param container: container name :param obj: object name :param tpart: target partition in ring :param all_nodes: include all handoff nodes. If false, only the N primary nodes and first N handoffs will be printed. :param policy_index: include policy_index in curl headers
def print_ring_locations(ring, datadir, account, container=None, obj=None, tpart=None, all_nodes=False, policy_index=None): """ print out ring locations of specified type :param ring: ring instance :param datadir: name of directory where things are stored. Usually one of "accounts", "containers", "objects", or "objects-N". :param account: account name :param container: container name :param obj: object name :param tpart: target partition in ring :param all_nodes: include all handoff nodes. If false, only the N primary nodes and first N handoffs will be printed. :param policy_index: include policy_index in curl headers """ if not ring: raise ValueError("No ring specified") if not datadir: raise ValueError("No datadir specified") if tpart is None and not account: raise ValueError("No partition or account/container/object specified") if not account and (container or obj): raise ValueError("Container/object specified without account") if obj and not container: raise ValueError('Object specified without container') if obj: target = '%s/%s/%s' % (account, container, obj) elif container: target = '%s/%s' % (account, container) else: target = '%s' % (account) if tpart: part = int(tpart) else: part = ring.get_part(account, container, obj) primary_nodes = ring.get_part_nodes(part) handoff_nodes = ring.get_more_nodes(part) if not all_nodes: handoff_nodes = itertools.islice(handoff_nodes, len(primary_nodes)) handoff_nodes = list(handoff_nodes) if account and not tpart: path_hash = hash_path(account, container, obj) else: path_hash = None print('Partition\t%s' % part) print('Hash \t%s\n' % path_hash) for node in primary_nodes: print('Server:Port Device\t%s:%s %s' % (node['ip'], node['port'], node['device'])) for node in handoff_nodes: print('Server:Port Device\t%s:%s %s\t [Handoff]' % ( node['ip'], node['port'], node['device'])) print("\n") for node in primary_nodes: cmd = curl_head_command(node['ip'], node['port'], node['device'], part, target, policy_index) print(cmd) for node in handoff_nodes: cmd = curl_head_command(node['ip'], node['port'], node['device'], part, target, policy_index) cmd += ' # [Handoff]' print(cmd) print("\n\nUse your own device location of servers:") print("such as \"export DEVICE=/srv/node\"") if path_hash: for node in primary_nodes: print('ssh %s "ls -lah ${DEVICE:-/srv/node*}/%s/%s"' % (node['ip'], node['device'], storage_directory(datadir, part, path_hash))) for node in handoff_nodes: print('ssh %s "ls -lah ${DEVICE:-/srv/node*}/%s/%s" # [Handoff]' % (node['ip'], node['device'], storage_directory(datadir, part, path_hash))) else: for node in primary_nodes: print('ssh %s "ls -lah ${DEVICE:-/srv/node*}/%s/%s/%d"' % (node['ip'], node['device'], datadir, part)) for node in handoff_nodes: print('ssh %s "ls -lah ${DEVICE:-/srv/node*}/%s/%s/%d"' ' # [Handoff]' % (node['ip'], node['device'], datadir, part)) print('\nnote: `/srv/node*` is used as default value of `devices`, the ' 'real value is set in the config file on each storage node.')
print out data base info/metadata based on its type :param db_type: database type, account or container :param info: dict of data base info :param metadata: dict of data base metadata :param drop_prefixes: if True, strip "X-Account-Meta-", "X-Container-Meta-", "X-Account-Sysmeta-", and "X-Container-Sysmeta-" when displaying User Metadata and System Metadata dicts
def print_db_info_metadata(db_type, info, metadata, drop_prefixes=False, verbose=False): """ print out data base info/metadata based on its type :param db_type: database type, account or container :param info: dict of data base info :param metadata: dict of data base metadata :param drop_prefixes: if True, strip "X-Account-Meta-", "X-Container-Meta-", "X-Account-Sysmeta-", and "X-Container-Sysmeta-" when displaying User Metadata and System Metadata dicts """ if info is None: raise ValueError('DB info is None') if db_type not in ['container', 'account']: raise ValueError('Wrong DB type') try: account = info['account'] container = None if db_type == 'container': container = info['container'] path = '/%s/%s' % (account, container) else: path = '/%s' % account print('Path: %s' % path) print(' Account: %s' % account) if db_type == 'container': print(' Container: %s' % container) print(' Deleted: %s' % info['is_deleted']) path_hash = hash_path(account, container) if db_type == 'container': print(' Container Hash: %s' % path_hash) else: print(' Account Hash: %s' % path_hash) print('Metadata:') print(' Created at: %s (%s)' % (Timestamp(info['created_at']).isoformat, info['created_at'])) print(' Put Timestamp: %s (%s)' % (Timestamp(info['put_timestamp']).isoformat, info['put_timestamp'])) print(' Delete Timestamp: %s (%s)' % (Timestamp(info['delete_timestamp']).isoformat, info['delete_timestamp'])) print(' Status Timestamp: %s (%s)' % (Timestamp(info['status_changed_at']).isoformat, info['status_changed_at'])) if db_type == 'account': print(' Container Count: %s' % info['container_count']) print(' Object Count: %s' % info['object_count']) print(' Bytes Used: %s' % info['bytes_used']) if db_type == 'container': try: policy_name = POLICIES[info['storage_policy_index']].name except KeyError: policy_name = 'Unknown' print(' Storage Policy: %s (%s)' % ( policy_name, info['storage_policy_index'])) print(' Reported Put Timestamp: %s (%s)' % (Timestamp(info['reported_put_timestamp']).isoformat, info['reported_put_timestamp'])) print(' Reported Delete Timestamp: %s (%s)' % (Timestamp(info['reported_delete_timestamp']).isoformat, info['reported_delete_timestamp'])) print(' Reported Object Count: %s' % info['reported_object_count']) print(' Reported Bytes Used: %s' % info['reported_bytes_used']) print(' Chexor: %s' % info['hash']) print(' UUID: %s' % info['id']) except KeyError as e: raise ValueError('Info is incomplete: %s' % e) meta_prefix = 'x_' + db_type + '_' for key, value in info.items(): if key.lower().startswith(meta_prefix): title = key.replace('_', '-').title() print(' %s: %s' % (title, value)) user_metadata = {} sys_metadata = {} for key, (value, timestamp) in metadata.items(): if is_user_meta(db_type, key): if drop_prefixes: key = strip_user_meta_prefix(db_type, key) user_metadata[key] = value elif is_sys_meta(db_type, key): if drop_prefixes: key = strip_sys_meta_prefix(db_type, key) sys_metadata[key] = value else: title = key.replace('_', '-').title() print(' %s: %s' % (title, value)) if sys_metadata: print(' System Metadata:') for key, value in sys_metadata.items(): print(' %s: %s' % (key, value)) else: print('No system metadata found in db file') if user_metadata: print(' User Metadata:') for key, value in user_metadata.items(): print(' %s: %s' % (key, value)) else: print('No user metadata found in db file') if db_type == 'container': print('Sharding Metadata:') shard_type = 'root' if info['is_root'] else 'shard' print(' Type: %s' % shard_type) print(' State: %s' % info['db_state']) if info.get('shard_ranges'): num_shards = len(info['shard_ranges']) print('Shard Ranges (%d):' % num_shards) count_by_state = defaultdict(int) for srange in info['shard_ranges']: count_by_state[(srange.state, srange.state_text)] += 1 print(' States:') for key_state, count in sorted(count_by_state.items()): key, state = key_state print(' %9s: %s' % (state, count)) if verbose: for srange in info['shard_ranges']: srange = dict(srange, state_text=srange.state_text) print(' Name: %(name)s' % srange) print(' lower: %(lower)r, upper: %(upper)r' % srange) print(' Object Count: %(object_count)d, Bytes Used: ' '%(bytes_used)d, State: %(state_text)s (%(state)d)' % srange) print(' Created at: %s (%s)' % (Timestamp(srange['timestamp']).isoformat, srange['timestamp'])) print(' Meta Timestamp: %s (%s)' % (Timestamp(srange['meta_timestamp']).isoformat, srange['meta_timestamp'])) else: print('(Use -v/--verbose to show more Shard Ranges details)')
Print out basic info and metadata from object, as returned from :func:`swift.obj.diskfile.read_metadata`. Metadata should include the keys: name, Content-Type, and X-Timestamp. Additional metadata is displayed unmodified. :param metadata: dict of object metadata :param drop_prefixes: if True, strip "X-Object-Meta-", "X-Object-Sysmeta-", and "X-Object-Transient-Sysmeta-" when displaying User Metadata, System Metadata, and Transient System Metadata entries :raises ValueError:
def print_obj_metadata(metadata, drop_prefixes=False): """ Print out basic info and metadata from object, as returned from :func:`swift.obj.diskfile.read_metadata`. Metadata should include the keys: name, Content-Type, and X-Timestamp. Additional metadata is displayed unmodified. :param metadata: dict of object metadata :param drop_prefixes: if True, strip "X-Object-Meta-", "X-Object-Sysmeta-", and "X-Object-Transient-Sysmeta-" when displaying User Metadata, System Metadata, and Transient System Metadata entries :raises ValueError: """ user_metadata = {} sys_metadata = {} transient_sys_metadata = {} other_metadata = {} if not metadata: raise ValueError('Metadata is None') path = metadata.pop('name', '') content_type = metadata.pop('Content-Type', '') ts = Timestamp(metadata.pop('X-Timestamp', 0)) account = container = obj = obj_hash = None if path: try: account, container, obj = path.split('/', 3)[1:] except ValueError: raise ValueError('Path is invalid for object %r' % path) else: obj_hash = hash_path(account, container, obj) print('Path: %s' % path) print(' Account: %s' % account) print(' Container: %s' % container) print(' Object: %s' % obj) print(' Object hash: %s' % obj_hash) else: print('Path: Not found in metadata') if content_type: print('Content-Type: %s' % content_type) else: print('Content-Type: Not found in metadata') if ts: print('Timestamp: %s (%s)' % (ts.isoformat, ts.internal)) else: print('Timestamp: Not found in metadata') for key, value in metadata.items(): if is_user_meta('Object', key): if drop_prefixes: key = strip_user_meta_prefix('Object', key) user_metadata[key] = value elif is_sys_meta('Object', key): if drop_prefixes: key = strip_sys_meta_prefix('Object', key) sys_metadata[key] = value elif is_object_transient_sysmeta(key): if drop_prefixes: key = strip_object_transient_sysmeta_prefix(key) transient_sys_metadata[key] = value else: other_metadata[key] = value def print_metadata(title, items): print(title) if items: for key, value in sorted(items.items()): print(' %s: %s' % (key, value)) else: print(' No metadata found') print_metadata('System Metadata:', sys_metadata) print_metadata('Transient System Metadata:', transient_sys_metadata) print_metadata('User Metadata:', user_metadata) print_metadata('Other Metadata:', other_metadata) for label, meta in [ ('Data crypto details', sys_metadata.get('X-Object-Sysmeta-Crypto-Body-Meta')), ('Metadata crypto details', transient_sys_metadata.get('X-Object-Transient-Sysmeta-Crypto-Meta')), ]: if meta is None: continue print('%s: %s' % ( label, json.dumps(load_crypto_meta(meta, b64decode=False), indent=2, sort_keys=True, separators=(',', ': '))))
Display information about an object read from the datafile. Optionally verify the datafile content matches the ETag metadata. :param datafile: path on disk to object file :param check_etag: boolean, will read datafile content and verify computed checksum matches value stored in metadata. :param swift_dir: the path on disk to rings :param policy_name: optionally the name to use when finding the ring :param drop_prefixes: if True, strip "X-Object-Meta-", "X-Object-Sysmeta-", and "X-Object-Transient-Sysmeta-" when displaying User Metadata, System Metadata, and Transient System Metadata entries
def print_obj(datafile, check_etag=True, swift_dir='/etc/swift', policy_name='', drop_prefixes=False): """ Display information about an object read from the datafile. Optionally verify the datafile content matches the ETag metadata. :param datafile: path on disk to object file :param check_etag: boolean, will read datafile content and verify computed checksum matches value stored in metadata. :param swift_dir: the path on disk to rings :param policy_name: optionally the name to use when finding the ring :param drop_prefixes: if True, strip "X-Object-Meta-", "X-Object-Sysmeta-", and "X-Object-Transient-Sysmeta-" when displaying User Metadata, System Metadata, and Transient System Metadata entries """ if not os.path.exists(datafile): print("Data file doesn't exist") raise InfoSystemExit() if not datafile.startswith(('/', './')): datafile = './' + datafile policy_index = None ring = None datadir = DATADIR_BASE # try to extract policy index from datafile disk path fullpath = os.path.abspath(datafile) policy_index = int(extract_policy(fullpath) or POLICIES.legacy) try: if policy_index: datadir += '-' + str(policy_index) ring = Ring(swift_dir, ring_name='object-' + str(policy_index)) elif policy_index == 0: ring = Ring(swift_dir, ring_name='object') except IOError: # no such ring pass if policy_name: policy = POLICIES.get_by_name(policy_name) if policy: policy_index_for_name = policy.idx if (policy_index is not None and policy_index_for_name is not None and policy_index != policy_index_for_name): print('Warning: Ring does not match policy!') print('Double check your policy name!') if not ring and policy_index_for_name: ring = POLICIES.get_object_ring(policy_index_for_name, swift_dir) datadir = get_data_dir(policy_index_for_name) with open(datafile, 'rb') as fp: try: metadata = read_metadata(fp) except EOFError: print("Invalid metadata") raise InfoSystemExit() metadata = {wsgi_to_str(k): v if k == 'name' else wsgi_to_str(v) for k, v in metadata.items()} etag = metadata.pop('ETag', '') length = metadata.pop('Content-Length', '') path = metadata.get('name', '') print_obj_metadata(metadata, drop_prefixes) # Optional integrity check; it's useful, but slow. file_len = None if check_etag: h = md5(usedforsecurity=False) file_len = 0 while True: data = fp.read(64 * 1024) if not data: break h.update(data) file_len += len(data) h = h.hexdigest() if etag: if h == etag: print('ETag: %s (valid)' % etag) else: print("ETag: %s doesn't match file hash of %s!" % (etag, h)) else: print('ETag: Not found in metadata') else: print('ETag: %s (not checked)' % etag) file_len = os.fstat(fp.fileno()).st_size if length: if file_len == int(length): print('Content-Length: %s (valid)' % length) else: print("Content-Length: %s doesn't match file length of %s" % (length, file_len)) else: print('Content-Length: Not found in metadata') account, container, obj = path.split('/', 3)[1:] if ring: print_ring_locations(ring, datadir, account, container, obj, policy_index=policy_index)
Display placement information for an item based on ring lookup. If a ring is provided it always takes precedence, but warnings will be emitted if it doesn't match other optional arguments like the policy_name or ring_name. If no ring is provided the ring_name and/or policy_name will be used to lookup the ring. :param ring: a ring instance :param ring_name: server type, or storage policy ring name if object ring :param account: account name :param container: container name :param obj: object name :param partition: part number for non path lookups :param policy_name: name of storage policy to use to lookup the ring :param all_nodes: include all handoff nodes. If false, only the N primary nodes and first N handoffs will be printed.
def print_item_locations(ring, ring_name=None, account=None, container=None, obj=None, **kwargs): """ Display placement information for an item based on ring lookup. If a ring is provided it always takes precedence, but warnings will be emitted if it doesn't match other optional arguments like the policy_name or ring_name. If no ring is provided the ring_name and/or policy_name will be used to lookup the ring. :param ring: a ring instance :param ring_name: server type, or storage policy ring name if object ring :param account: account name :param container: container name :param obj: object name :param partition: part number for non path lookups :param policy_name: name of storage policy to use to lookup the ring :param all_nodes: include all handoff nodes. If false, only the N primary nodes and first N handoffs will be printed. """ policy_name = kwargs.get('policy_name', None) part = kwargs.get('partition', None) all_nodes = kwargs.get('all', False) swift_dir = kwargs.get('swift_dir', '/etc/swift') if ring and policy_name: policy = POLICIES.get_by_name(policy_name) if policy: if ring_name != policy.ring_name: print('Warning: mismatch between ring and policy name!') else: print('Warning: Policy %s is not valid' % policy_name) policy_index = None if ring is None and (obj or part): if not policy_name: print('Need a ring or policy') raise InfoSystemExit() policy = POLICIES.get_by_name(policy_name) if not policy: print('No policy named %r' % policy_name) raise InfoSystemExit() policy_index = int(policy) ring = POLICIES.get_object_ring(policy_index, swift_dir) ring_name = (POLICIES.get_by_name(policy_name)).ring_name if (container or obj) and not account: print('No account specified') raise InfoSystemExit() if obj and not container: print('No container specified') raise InfoSystemExit() if not account and not part: print('No target specified') raise InfoSystemExit() loc = '<type>' if part and ring_name: if '-' in ring_name and ring_name.startswith('object'): loc = 'objects-' + ring_name.split('-', 1)[1] else: loc = ring_name + 's' if account and container and obj: loc = 'objects' if '-' in ring_name and ring_name.startswith('object'): policy_index = int(ring_name.rsplit('-', 1)[1]) loc = 'objects-%d' % policy_index if account and container and not obj: loc = 'containers' if not any([ring, ring_name]): ring = Ring(swift_dir, ring_name='container') else: if ring_name != 'container': print('Warning: account/container specified ' + 'but ring not named "container"') if account and not container and not obj: loc = 'accounts' if not any([ring, ring_name]): ring = Ring(swift_dir, ring_name='account') else: if ring_name != 'account': print('Warning: account specified ' + 'but ring not named "account"') if account: print('\nAccount \t%s' % urllib.parse.quote(account)) if container: print('Container\t%s' % urllib.parse.quote(container)) if obj: print('Object \t%s\n\n' % urllib.parse.quote(obj)) print_ring_locations(ring, loc, account, container, obj, part, all_nodes, policy_index=policy_index)
Wrap the given ``func`` to catch any ``ValueError`` and raise an ``argparse.ArgumentTypeError`` instead. :param func: a function. :param msg: an optional message to use with any exception that is used; if not given then the string representation of the ValueError will be used. :return: a function wrapper.
def wrap_for_argparse(func, msg=None): """ Wrap the given ``func`` to catch any ``ValueError`` and raise an ``argparse.ArgumentTypeError`` instead. :param func: a function. :param msg: an optional message to use with any exception that is used; if not given then the string representation of the ValueError will be used. :return: a function wrapper. """ def wrapped_func(*args, **kwargs): try: return func(*args, **kwargs) except ValueError as err: raise argparse.ArgumentTypeError(str(err) if msg is None else msg) return wrapped_func
Format a device for display.
def format_device(dev): """ Format a device for display. """ copy_dev = dev.copy() for key in ('ip', 'replication_ip'): if ':' in copy_dev[key]: copy_dev[key] = '[' + copy_dev[key] + ']' return ('d%(id)sr%(region)sz%(zone)s-%(ip)s:%(port)sR' '%(replication_ip)s:%(replication_port)s/%(device)s_' '"%(meta)s"' % copy_dev)
Parse devices to add as specified on the command line. Will exit on error and spew warnings. :returns: array of device dicts
def _parse_add_values(argvish): """ Parse devices to add as specified on the command line. Will exit on error and spew warnings. :returns: array of device dicts """ new_cmd_format, opts, args = validate_args(argvish) # We'll either parse the all-in-one-string format or the # --options format, # but not both. If both are specified, raise an error. parsed_devs = [] if len(args) > 0: if new_cmd_format or len(args) % 2 != 0: print(Commands.add.__doc__.strip()) exit(EXIT_ERROR) devs_and_weights = izip(islice(args, 0, len(args), 2), islice(args, 1, len(args), 2)) for devstr, weightstr in devs_and_weights: dev_dict = parse_add_value(devstr) if dev_dict['region'] is None: stderr.write('WARNING: No region specified for %s. ' 'Defaulting to region 1.\n' % devstr) dev_dict['region'] = 1 if dev_dict['replication_ip'] is None: dev_dict['replication_ip'] = dev_dict['ip'] if dev_dict['replication_port'] is None: dev_dict['replication_port'] = dev_dict['port'] weight = float(weightstr) if weight < 0: raise ValueError('Invalid weight value: %s' % devstr) dev_dict['weight'] = weight parsed_devs.append(dev_dict) else: parsed_devs.append(build_dev_from_opts(opts)) return parsed_devs
Takes a serialized scenario and turns it into a data structure suitable for feeding to run_scenario(). :returns: scenario :raises ValueError: on invalid scenario
def parse_scenario(scenario_data): """ Takes a serialized scenario and turns it into a data structure suitable for feeding to run_scenario(). :returns: scenario :raises ValueError: on invalid scenario """ parsed_scenario = {} try: raw_scenario = json.loads(scenario_data) except ValueError as err: raise ValueError("Invalid JSON in scenario file: %s" % err) if not isinstance(raw_scenario, dict): raise ValueError("Scenario must be a JSON object, not array or string") if 'part_power' not in raw_scenario: raise ValueError("part_power missing") try: parsed_scenario['part_power'] = int(raw_scenario['part_power']) except ValueError as err: raise ValueError("part_power not an integer: %s" % err) if not 1 <= parsed_scenario['part_power'] <= 32: raise ValueError("part_power must be between 1 and 32, but was %d" % raw_scenario['part_power']) if 'replicas' not in raw_scenario: raise ValueError("replicas missing") try: parsed_scenario['replicas'] = float(raw_scenario['replicas']) except ValueError as err: raise ValueError("replicas not a float: %s" % err) if parsed_scenario['replicas'] < 1: raise ValueError("replicas must be at least 1, but is %f" % parsed_scenario['replicas']) if 'overload' not in raw_scenario: raise ValueError("overload missing") try: parsed_scenario['overload'] = float(raw_scenario['overload']) except ValueError as err: raise ValueError("overload not a float: %s" % err) if parsed_scenario['overload'] < 0: raise ValueError("overload must be non-negative, but is %f" % parsed_scenario['overload']) if 'random_seed' not in raw_scenario: raise ValueError("random_seed missing") try: parsed_scenario['random_seed'] = int(raw_scenario['random_seed']) except ValueError as err: raise ValueError("replicas not an integer: %s" % err) if 'rounds' not in raw_scenario: raise ValueError("rounds missing") if not isinstance(raw_scenario['rounds'], list): raise ValueError("rounds must be an array") parser_for_command = { 'add': _parse_add_command, 'remove': _parse_remove_command, 'set_weight': _parse_set_weight_command, 'save': _parse_save_command, } parsed_scenario['rounds'] = [] for round_index, raw_round in enumerate(raw_scenario['rounds']): if not isinstance(raw_round, list): raise ValueError("round %d not an array" % round_index) parsed_round = [] for command_index, command in enumerate(raw_round): if command[0] not in parser_for_command: raise ValueError( "Unknown command (round %d, command %d): " "'%s' should be one of %s" % (round_index, command_index, command[0], parser_for_command.keys())) parsed_round.append( parser_for_command[command[0]]( round_index, command_index, command)) parsed_scenario['rounds'].append(parsed_round) return parsed_scenario
Takes a parsed scenario (like from parse_scenario()) and runs it.
def run_scenario(scenario): """ Takes a parsed scenario (like from parse_scenario()) and runs it. """ seed = scenario['random_seed'] rb = builder.RingBuilder(scenario['part_power'], scenario['replicas'], 1) rb.set_overload(scenario['overload']) command_map = { 'add': rb.add_dev, 'remove': rb.remove_dev, 'set_weight': rb.set_dev_weight, 'save': rb.save, } for round_index, commands in enumerate(scenario['rounds']): print("Round %d" % (round_index + 1)) for command in commands: key = command.pop(0) try: command_f = command_map[key] except KeyError: raise ValueError("unknown command %r" % key) command_f(*command) rebalance_number = 1 parts_moved, old_balance, removed_devs = rb.rebalance(seed=seed) rb.pretend_min_part_hours_passed() print("\tRebalance 1: moved %d parts, balance is %.6f, %d removed " "devs" % (parts_moved, old_balance, removed_devs)) while True: rebalance_number += 1 parts_moved, new_balance, removed_devs = rb.rebalance(seed=seed) rb.pretend_min_part_hours_passed() print("\tRebalance %d: moved %d parts, balance is %.6f, " "%d removed devs" % (rebalance_number, parts_moved, new_balance, removed_devs)) if parts_moved == 0 and removed_devs == 0: break if abs(new_balance - old_balance) < 1 and not ( old_balance == builder.MAX_BALANCE and new_balance == builder.MAX_BALANCE): break old_balance = new_balance
Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for backend Swift services. :param ipaddr: IPv4 address to connect to :param port: port to connect to :param device: device of the node to query :param partition: partition on the device :param method: HTTP method to request ('GET', 'PUT', 'POST', etc.) :param path: request path :param headers: dictionary of headers :param query_string: request query string :param ssl: set True if SSL should be used (default: False) :returns: HTTPConnection object
def http_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None, ssl=False): """ Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for backend Swift services. :param ipaddr: IPv4 address to connect to :param port: port to connect to :param device: device of the node to query :param partition: partition on the device :param method: HTTP method to request ('GET', 'PUT', 'POST', etc.) :param path: request path :param headers: dictionary of headers :param query_string: request query string :param ssl: set True if SSL should be used (default: False) :returns: HTTPConnection object """ if isinstance(path, six.text_type): path = path.encode("utf-8") if isinstance(device, six.text_type): device = device.encode("utf-8") if isinstance(partition, six.text_type): partition = partition.encode('utf-8') elif isinstance(partition, six.integer_types): partition = str(partition).encode('ascii') path = quote(b'/' + device + b'/' + partition + path) return http_connect_raw( ipaddr, port, method, path, headers, query_string, ssl)
Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for backend Swift services. :param ipaddr: IPv4 address to connect to :param port: port to connect to :param method: HTTP method to request ('GET', 'PUT', 'POST', etc.) :param path: request path :param headers: dictionary of headers :param query_string: request query string :param ssl: set True if SSL should be used (default: False) :returns: HTTPConnection object
def http_connect_raw(ipaddr, port, method, path, headers=None, query_string=None, ssl=False): """ Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for backend Swift services. :param ipaddr: IPv4 address to connect to :param port: port to connect to :param method: HTTP method to request ('GET', 'PUT', 'POST', etc.) :param path: request path :param headers: dictionary of headers :param query_string: request query string :param ssl: set True if SSL should be used (default: False) :returns: HTTPConnection object """ if not port: port = 443 if ssl else 80 if ssl: conn = HTTPSConnection('%s:%s' % (ipaddr, port)) else: conn = BufferedHTTPConnection('%s:%s' % (ipaddr, port)) if query_string: # Round trip to ensure proper quoting if six.PY2: query_string = urlencode(parse_qsl( query_string, keep_blank_values=True)) else: query_string = urlencode( parse_qsl(query_string, keep_blank_values=True, encoding='latin1'), encoding='latin1') path += '?' + query_string conn.path = path conn.putrequest(method, path, skip_host=(headers and 'Host' in headers)) if headers: for header, value in headers.items(): conn.putheader(header, str(value)) conn.endheaders() return conn
Parse SWIFT_CONF_FILE and reset module level global constraint attrs, populating OVERRIDE_CONSTRAINTS AND EFFECTIVE_CONSTRAINTS along the way.
def reload_constraints(): """ Parse SWIFT_CONF_FILE and reset module level global constraint attrs, populating OVERRIDE_CONSTRAINTS AND EFFECTIVE_CONSTRAINTS along the way. """ global SWIFT_CONSTRAINTS_LOADED, OVERRIDE_CONSTRAINTS SWIFT_CONSTRAINTS_LOADED = False OVERRIDE_CONSTRAINTS = {} constraints_conf = ConfigParser() if constraints_conf.read(utils.SWIFT_CONF_FILE): SWIFT_CONSTRAINTS_LOADED = True for name, default in DEFAULT_CONSTRAINTS.items(): try: value = constraints_conf.get('swift-constraints', name) except NoOptionError: pass except NoSectionError: # We are never going to find the section for another option break else: if isinstance(default, int): value = int(value) # Go ahead and let it error elif isinstance(default, str): pass # No translation needed, I guess else: # Hope we want a list! value = utils.list_from_csv(value) OVERRIDE_CONSTRAINTS[name] = value for name, default in DEFAULT_CONSTRAINTS.items(): value = OVERRIDE_CONSTRAINTS.get(name, default) EFFECTIVE_CONSTRAINTS[name] = value # "globals" in this context is module level globals, always. globals()[name.upper()] = value
Check metadata sent in the request headers. This should only check that the metadata in the request given is valid. Checks against account/container overall metadata should be forwarded on to its respective server to be checked. :param req: request object :param target_type: str: one of: object, container, or account: indicates which type the target storage for the metadata is :returns: HTTPBadRequest with bad metadata otherwise None
def check_metadata(req, target_type): """ Check metadata sent in the request headers. This should only check that the metadata in the request given is valid. Checks against account/container overall metadata should be forwarded on to its respective server to be checked. :param req: request object :param target_type: str: one of: object, container, or account: indicates which type the target storage for the metadata is :returns: HTTPBadRequest with bad metadata otherwise None """ target_type = target_type.lower() prefix = 'x-%s-meta-' % target_type meta_count = 0 meta_size = 0 for key, value in req.headers.items(): if (isinstance(value, six.string_types) and len(value) > MAX_HEADER_SIZE): return HTTPBadRequest(body=b'Header value too long: %s' % wsgi_to_bytes(key[:MAX_META_NAME_LENGTH]), request=req, content_type='text/plain') if not key.lower().startswith(prefix): continue key = key[len(prefix):] if not key: return HTTPBadRequest(body='Metadata name cannot be empty', request=req, content_type='text/plain') bad_key = not check_utf8(wsgi_to_str(key)) bad_value = value and not check_utf8(wsgi_to_str(value)) if target_type in ('account', 'container') and (bad_key or bad_value): return HTTPBadRequest(body='Metadata must be valid UTF-8', request=req, content_type='text/plain') meta_count += 1 meta_size += len(key) + len(value) if len(key) > MAX_META_NAME_LENGTH: return HTTPBadRequest( body=wsgi_to_bytes('Metadata name too long: %s%s' % ( prefix, key)), request=req, content_type='text/plain') if len(value) > MAX_META_VALUE_LENGTH: return HTTPBadRequest( body=wsgi_to_bytes('Metadata value longer than %d: %s%s' % ( MAX_META_VALUE_LENGTH, prefix, key)), request=req, content_type='text/plain') if meta_count > MAX_META_COUNT: return HTTPBadRequest( body='Too many metadata items; max %d' % MAX_META_COUNT, request=req, content_type='text/plain') if meta_size > MAX_META_OVERALL_SIZE: return HTTPBadRequest( body='Total metadata too large; max %d' % MAX_META_OVERALL_SIZE, request=req, content_type='text/plain') return None
Check to ensure that everything is alright about an object to be created. :param req: HTTP request object :param object_name: name of object to be created :returns: HTTPRequestEntityTooLarge -- the object is too large :returns: HTTPLengthRequired -- missing content-length header and not a chunked request :returns: HTTPBadRequest -- missing or bad content-type header, or bad metadata :returns: HTTPNotImplemented -- unsupported transfer-encoding header value
def check_object_creation(req, object_name): """ Check to ensure that everything is alright about an object to be created. :param req: HTTP request object :param object_name: name of object to be created :returns: HTTPRequestEntityTooLarge -- the object is too large :returns: HTTPLengthRequired -- missing content-length header and not a chunked request :returns: HTTPBadRequest -- missing or bad content-type header, or bad metadata :returns: HTTPNotImplemented -- unsupported transfer-encoding header value """ try: ml = req.message_length() except ValueError as e: return HTTPBadRequest(request=req, content_type='text/plain', body=str(e)) except AttributeError as e: return HTTPNotImplemented(request=req, content_type='text/plain', body=str(e)) if ml is not None and ml > MAX_FILE_SIZE: return HTTPRequestEntityTooLarge(body='Your request is too large.', request=req, content_type='text/plain') if req.content_length is None and \ req.headers.get('transfer-encoding') != 'chunked': return HTTPLengthRequired(body='Missing Content-Length header.', request=req, content_type='text/plain') if len(object_name) > MAX_OBJECT_NAME_LENGTH: return HTTPBadRequest(body='Object name length of %d longer than %d' % (len(object_name), MAX_OBJECT_NAME_LENGTH), request=req, content_type='text/plain') if 'Content-Type' not in req.headers: return HTTPBadRequest(request=req, content_type='text/plain', body=b'No content type') try: req = check_delete_headers(req) except HTTPException as e: return HTTPBadRequest(request=req, body=e.body, content_type='text/plain') if not check_utf8(wsgi_to_str(req.headers['Content-Type'])): return HTTPBadRequest(request=req, body='Invalid Content-Type', content_type='text/plain') return check_metadata(req, 'object')
Verify that the path to the device is a directory and is a lesser constraint that is enforced when a full mount_check isn't possible with, for instance, a VM using loopback or partitions. :param root: base path where the dir is :param drive: drive name to be checked :returns: full path to the device :raises ValueError: if drive fails to validate
def check_dir(root, drive): """ Verify that the path to the device is a directory and is a lesser constraint that is enforced when a full mount_check isn't possible with, for instance, a VM using loopback or partitions. :param root: base path where the dir is :param drive: drive name to be checked :returns: full path to the device :raises ValueError: if drive fails to validate """ return check_drive(root, drive, False)